DRV8872 [TI]

具有故障报告和电流调节功能的 50V、3.6A H 桥电机驱动器;
DRV8872
型号: DRV8872
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有故障报告和电流调节功能的 50V、3.6A H 桥电机驱动器

电机 驱动 驱动器
文件: 总27页 (文件大小:2168K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV8872  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
DRV8872具有故障报告功能的 3.6A 刷式直流电机驱动器(PWM 控制)  
1 特性  
3 说明  
1
H 桥电机驱动器  
DRV8872 器件是一款刷式直流 (BDC) 电机驱动器,  
适用于打印机、电器、工业设备和其他小型机器。两个  
逻辑输入控制 H 桥驱动器,该驱动器由四个 N 沟道金  
属氧化物半导体场效应晶体管 (MOSFET) 组成,能够  
以高达 3.6A 的峰值电流执行双向电机控制。利用电流  
衰减模式,可通过对输入进行脉宽调制 (PWM) 来控制  
电机转速。如果将两个输入均置为低电平,则电机驱动  
器将进入低功耗休眠模式。  
驱动一个直流电机、一个步进电机的绕组或其他  
负载  
6.5V 45V 宽工作电压范围  
565mΩ(典型值)RDS(on) (HS + LS)  
3.6A 峰值电流驱动能力  
脉宽调制 (PWM) 控制接口  
集成电流调节功能  
低功耗休眠模式  
DRV8872 器件 具备 集成电流调节功能。该功能基于  
内部基准电压以及 ISEN 引脚电压(与流经外部感测电  
阻的电机电流成正比)。该器件能够将电流限制在某一  
已知水平,这可显著降低系统功耗要求,并且无需大容  
量电容来维持稳定电压,尤其是在电机启动和停转时。  
故障状态输出引脚  
小型封装尺寸  
8 引脚 HSOP 封装,带有 PowerPAD™  
4.9mm × 6mm  
集成保护 功能  
该器件针对故障和短路问题提供了全面保护,包括欠压  
锁定 (UVLO)、过流保护 (OCP) 和热关断 (TSD)。通  
过将 nFAULT 输出拉为低电平来报告故障。故障排除  
后,器件自动恢复正常状态。  
VM 欠压闭锁 (UVLO)  
过流保护 (OCP)  
热关断 (TSD)  
故障报告 (nFAULT)  
自动故障恢复  
器件信息(1)  
器件型号  
DRV8872  
封装  
HSOP (8)  
封装尺寸(标称值)  
2 应用范围  
4.90mm x 6.00mm  
打印机  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
电器  
工业设备  
其他机电 应用  
H 桥状态  
简化电路原理图  
6.5 to 45 V  
DRV8872  
3.6 A  
IN1  
IN2  
Brushed DC  
Motor Driver  
BDC  
Controller  
Current  
Regulation  
nFAULT  
ISEN  
Fault  
Protection and  
Reporting  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCZ0  
 
 
 
DRV8872  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
7.3 Feature Description................................................... 8  
7.4 Device Functional Modes........................................ 10  
8
9
Application and Implementation ........................ 11  
8.1 Application Information............................................ 11  
8.2 Typical Application .................................................. 11  
Power Supply Recommendations...................... 14  
9.1 Bulk Capacitance .................................................... 14  
10 Layout................................................................... 15  
10.1 Layout Guidelines ................................................. 15  
10.2 Layout Example .................................................... 15  
10.3 Thermal Considerations....................................... 15  
10.4 Power Dissipation ................................................. 15  
11 器件和文档支持 ..................................................... 17  
11.1 文档支持................................................................ 17  
11.2 接收文档更新通知 ................................................. 17  
11.3 社区资源................................................................ 17  
11.4 ....................................................................... 17  
11.5 静电放电警告......................................................... 17  
11.6 Glossary................................................................ 17  
12 机械、封装和可订购信息....................................... 17  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (January 2016) to Revision C  
Page  
Deleted the power supply voltage ramp rate (VM) parameter from the Absolute Maximum Ratings table .......................... 3  
Added the output current parameter to the Absolute Maximum Ratings table ...................................................................... 3  
已添加 接收文档更新通知.............................................................................................................................................. 17  
Changes from Revision A (August 2015) to Revision B  
Page  
Updated the ƒPWM max value and added a note .................................................................................................................... 4  
Removed the redundant TA condition and added ƒPWM = 24 kHz .......................................................................................... 5  
Added more information to clarify how the max RMS current varies for different applications ........................................... 12  
Changes from Original (August 2015) to Revision A  
Page  
Updated conditions for 12 ............................................................................................................................................... 13  
2
Copyright © 2015–2016, Texas Instruments Incorporated  
 
DRV8872  
www.ti.com.cn  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
5 Pin Configuration and Functions  
DDA Package  
8-Pin HSOP With Exposed Thermal Pad  
Top View  
GND  
IN2  
1
2
3
4
8
7
6
5
OUT2  
ISEN  
OUT1  
VM  
Thermal  
Pad  
IN1  
nFAULT  
Pin Functions  
PIN  
TYPE  
PWR  
I
DESCRIPTION  
NAME  
GND  
NO.  
1
Logic ground  
Logic inputs  
Connect to board ground.  
IN1  
IN2  
3
Controls the H-bridge output. Has internal pulldowns. (See 1.)  
2
If using current regulation, connect ISEN to a resistor (low-value,  
ISEN  
7
PWR  
High-current ground path high-power-rating) to ground. If not using current regulation, connect  
ISEN directly to ground.  
Low-level indicates UVLO, TSD, or OCP fault. Connect to a pullup  
nFAULT  
4
OD  
O
Fault status (open-drain)  
resistor.  
OUT1  
OUT2  
6
8
H-bridge outputs  
Connect directly to the motor, or other inductive load.  
6.5-V to 45-V power  
supply  
Connect a 0.1-µF bypass capacitor to ground, as well as sufficient  
bulk capacitance, rated for the VM voltage.  
VM  
5
PWR  
Connect to board ground. For good thermal dissipation, use large  
ground planes on multiple layers, and multiple nearby vias  
connecting those planes.  
PAD  
Thermal pad  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.7  
–0.5  
0
MAX  
UNIT  
V
Power supply voltage (VM)  
50  
Logic input voltage (IN1, IN2)  
7
6
V
Fault pin (nFAULT)  
V
Continuous phase node pin voltage (OUT1, OUT2)  
Current sense input pin voltage (ISEN)(2)  
Output current (100% duty cycle)  
Operating junction temperature, TJ  
Storage temperature, Tstg  
VM + 0.7  
1
V
V
3.5  
A
–40  
–65  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Transients of ±1 V for less than 25 ns are acceptable  
Copyright © 2015–2016, Texas Instruments Incorporated  
3
DRV8872  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
www.ti.com.cn  
6.2 ESD Ratings  
VALUE  
±6000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
6.5  
0
NOM  
MAX  
45  
UNIT  
V
VM  
VI  
Power supply voltage  
Logic input voltage (IN1, IN2)  
Logic input PWM frequency (IN1, IN2)  
Peak output current(2)  
5.5  
200(1)  
V
fPWM  
Ipeak  
TA  
0
kHz  
A
0
3.6  
Operating ambient temperature  
–40  
125  
°C  
(1) The voltages applied to the inputs should have at least 800 ns of pulse width to ensure detection. Typical devices require at least 400  
ns. If the PWM frequency is 200 kHz, the usable duty cycle range is 16% to 84%  
(2) Power dissipation and thermal limits must be observed  
6.4 Thermal Information  
DRV8872  
THERMAL METRIC(1)  
DDA (HSOP)  
8 PINS  
41.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
53.1  
23.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.2  
ψJB  
23  
RθJC(bot)  
2.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2015–2016, Texas Instruments Incorporated  
DRV8872  
www.ti.com.cn  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
6.5 Electrical Characteristics  
TA = 25°C, over recommended operating conditions (unless otherwise noted)  
PARAMETER  
POWER SUPPLY (VM)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VM  
VM operating voltage  
VM operating supply current  
VM sleep current  
6.5  
45  
10  
10  
50  
V
IVM  
VM = 12 V  
3
mA  
µA  
µs  
IVMSLEEP  
tON  
VM = 12 V  
Turn-on time(1)  
VM > VUVLO with IN1 or IN2 high  
40  
LOGIC-LEVEL INPUTS (IN1, IN2)  
VIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic low current  
Input logic high current  
Pulldown resistance  
Propagation delay  
0.5  
V
V
VIH  
VHYS  
IIL  
1.5  
–1  
0.5  
V
VIN = 0 V  
1
μA  
μA  
k  
μs  
ms  
IIH  
VIN = 3.3 V  
33  
100  
0.7  
1
100  
RPD  
tPD  
To GND  
INx to OUTx change (see 6)  
Inputs low to sleep  
1
tsleep  
Time to sleep  
1.5  
MOTOR DRIVER OUTPUTS (OUT1, OUT2)  
RDS(ON)  
RDS(ON)  
tDEAD  
Vd  
High-side FET on resistance  
Low-side FET on resistance  
Output dead time  
VM = 24 V, I = 1 A, fPWM = 25 kHz  
VM = 24 V, I = 1 A, fPWM = 25 kHz  
307  
258  
220  
0.8  
360  
320  
mΩ  
mΩ  
ns  
Body diode forward voltage  
IOUT = 1 A  
1
V
CURRENT REGULATION  
ISEN voltage for current  
chopping  
VTRIP  
0.32  
0.35  
0.38  
V
tOFF  
PWM off-time  
PWM blanking time  
25  
2
μs  
tBLANK  
µs  
PROTECTION CIRCUITS  
VM falls until UVLO triggers  
VM rises until operation recovers  
Rising to falling threshold  
6.1  
6.3  
6.4  
6.5  
VUVLO  
VM undervoltage lockout  
V
VUV,HYS  
IOCP  
VM undervoltage hysteresis  
100  
3.7  
180  
mV  
A
Overcurrent protection trip  
level  
4.5  
6.4  
tOCP  
Overcurrent deglitch time  
Overcurrent retry time  
1.5  
3
μs  
tRETRY  
ms  
Thermal shutdown  
temperature  
TSD  
150  
175  
40  
°C  
°C  
THYS  
Thermal shutdown hysteresis  
nFAULT OPEN DRAIN OUTPUT  
VOL  
IOH  
Output low voltage  
IO = 5 mA  
VO = 3.3 V  
0.5  
1
V
Output high leakage current  
µA  
(1) tON applies when the device initially powers up, and when it exits sleep mode.  
版权 © 2015–2016, Texas Instruments Incorporated  
5
DRV8872  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
www.ti.com.cn  
6.6 Typical Characteristics  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.37  
0.36  
0.35  
0.34  
0.33  
0.9  
0.8  
0.7  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Ambient Temperature (èC)  
Temperature (°C)  
D001  
D003  
1. RDS(on) vs Temperature  
2. VTRIP vs Temperature  
10  
8
6
4
2
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
VM (V)  
D004  
3. IVMSLEEP vs VM at 25°C  
6
版权 © 2015–2016, Texas Instruments Incorporated  
DRV8872  
www.ti.com.cn  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
7 Detailed Description  
7.1 Overview  
The DRV8872 device is an optimized 8-pin device for driving brushed DC motors with 6.5 to 45 V and up to 3.6-  
A peak current. The integrated current regulation restricts motor current to a predefined maximum. Two logic  
inputs control the H-bridge driver, which consists of four N-channel MOSFETs that have a typical Rds(on) of 565  
m(including one high-side and one low-side FET). A single power input, VM, serves as both device power and  
the motor winding bias voltage. The integrated charge pump of the device boosts VM internally and fully  
enhances the high-side FETs. Motor speed can be controlled with pulse-width modulation, at frequencies  
between 0 to 100 kHz. The device has an integrated sleep mode that is entered by bringing both inputs low. An  
assortment of protection features prevent the device from being damaged if a system fault occurs.  
7.2 Functional Block Diagram  
Power  
VCP  
VM  
VCP  
VM  
VM  
Charge  
Pump  
OUT1  
Gate  
Driver  
bulk  
0.1 µF  
OCP  
GND  
BDC  
PPAD  
VCP  
VM  
OUT2  
ISEN  
IN1  
IN2  
Gate  
Driver  
Core  
Logic  
OCP  
RSENSE  
+
nFAULT  
œ
VTRIP  
Protection Features  
Overcurrent  
Monitoring  
Temperature  
Sensor  
Voltage  
Monitoring  
Copyright © 2016, Texas Instruments Incorporated  
版权 © 2015–2016, Texas Instruments Incorporated  
7
DRV8872  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Bridge Control  
The DRV8872 output consists of four N-channel MOSFETs that are designed to drive high current. These  
MOSFETs are controlled by the two logic inputs IN1 and IN2, according to 1.  
1. H-Bridge Control  
IN1  
0
IN2  
0
OUT1  
OUT2  
DESCRIPTION  
Coast; H-bridge disabled to High-Z (sleep entered after 1 ms)  
Reverse (current OUT2 OUT1)  
High-Z  
High-Z  
0
1
L
H
L
H
L
L
1
0
Forward (current OUT1 OUT2)  
1
1
Brake; low-side slow decay  
The inputs can be set to static voltages for 100% duty-cycle drive, or they can be pulse-width modulated (PWM)  
for variable motor speed. When using PWM, switching between driving and braking typically works best. For  
example, to drive a motor forward with 50% of its max RPM, IN1 = 1 and IN2 = 0 during the driving period, and  
IN1 = 1 and IN2 = 1 during the other period. Alternatively, the coast mode (IN1 = 0, IN2 = 0) for fast current  
decay is also available. The input pins can be powered before VM is applied.  
VM  
VM  
1
2
3
1
2
3
Reverse drive  
Forward drive  
Slow decay (brake)  
High-Z (coast)  
Slow decay (brake)  
High-Z (coast)  
1
1
OUT1  
OUT2  
OUT1  
OUT2  
2
3
2
3
FORWARD  
REVERSE  
4. H-Bridge Current Paths  
7.3.2 Sleep Mode  
When IN1 and IN2 are both low for time tSLEEP (typically 1 ms), the DRV8872 device enters a low-power sleep  
mode, where the outputs remain High-Z and the device uses IVMSLEEP (microamps) of current. If the device is  
powered up while both inputs are low, sleep mode is immediately entered. After IN1 or IN2 are high for at least 5  
µs, the device is operational 50 µs (tON) later.  
7.3.3 Current Regulation  
The DRV8872 device limits the output current based on the resistance of an external sense resistor on pin ISEN,  
according to 公式 1.  
8
版权 © 2015–2016, Texas Instruments Incorporated  
 
DRV8872  
www.ti.com.cn  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
VTRIP (V)  
0.35 (V)  
ITRIP (A) =  
=
RISEN (W) RISEN (W)  
(1)  
For example, if RISEN = 0.16 , the DRV8872 device limits motor current to 2.2 A no matter how much load  
torque is applied. For guidelines on selecting a sense resistor, see the Sense Resistor section.  
When ITRIP has been reached, the device enforces slow current decay by enabling both low-side FETs, and it  
does this for time tOFF (typically 25 µs).  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
5. Current Regulation Time Periods  
After tOFF has elapsed, the output is re-enabled according to the two inputs INx. The drive time (tDRIVE) until  
reaching another ITRIP event heavily depends on the VM voltage, the back-EMF of the motor, and the inductance  
of the motor.  
7.3.4 Dead Time  
When an output changes from driving high to driving low, or driving low to driving high, dead time is automatically  
inserted to prevent shoot-through. tDEAD is the time in the middle when the output is High-Z. If the output pin is  
measured during tDEAD, the voltage will depend on the direction of current. If current is leaving the pin, the  
voltage is a diode drop below ground. If current is entering the pin, the voltage is a diode drop above VM. This  
diode is the body diode of the high-side or low-side FET.  
IN1  
IN2  
OUT1  
tPD  
tR  
tDEAD  
tPD  
tF  
tDEAD  
OUT2  
tPD  
tF  
tDEAD  
tPD  
tR  
tDEAD  
6. Propagation Delay Time  
版权 © 2015–2016, Texas Instruments Incorporated  
9
DRV8872  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
www.ti.com.cn  
7.3.5 Protection Circuits  
The DRV8872 device is fully protected against VM undervoltage, overcurrent, and overtemperature events.  
When the device is in a protected state, nFAULT is driven low. When the fault condition is removed, nFAULT  
becomes a high-impedance state.  
7.3.5.1 VM Undervoltage Lockout (UVLO)  
If at any time the voltage on the VM pin falls below the undervoltage-lockout threshold voltage, all FETs in the H-  
bridge are disabled. Operation resumes when VM rises above the UVLO threshold.  
7.3.5.2 Overcurrent Protection (OCP)  
If the output current exceeds the OCP threshold IOCP for longer than tOCP, all FETs in the H-bridge are disabled  
for a duration of tRETRY. After that, the H-bridge re-enables according to the state of the INx pins. If the  
overcurrent fault is still present, the cycle repeats; otherwise normal device operation resumes.  
7.3.5.3 Thermal Shutdown (TSD)  
If the die temperature exceeds safe limits, all FETs in the H-bridge is disabled. After the die temperature has  
fallen to a safe level, operation automatically resumes.  
2. Protection Functionality  
FAULT  
CONDITION  
VM < VUVLO  
IOUT > IOCP  
TJ > 150°C  
H-BRIDGE BECOMES  
Disabled  
NFAULT BECOMES  
RECOVERY  
VM > VUVLO  
VM undervoltage lockout (UVLO)  
Overcurrent (OCP)  
Low  
Low  
Low  
Disabled  
Disabled  
tRETRY  
Thermal shutdown (TSD)  
TJ < TSD - T HYS  
7.4 Device Functional Modes  
The DRV8872 device can be used in multiple ways to drive a brushed DC motor.  
7.4.1 PWM With Current Regulation  
This scheme uses all of the capabilities of the device. The ITRIP current is set above the normal operating current,  
and high enough to achieve an adequate spin-up time, but low enough to constrain current to a desired level.  
Motor speed is controlled by the duty cycle of one of the inputs, while the other input is static. Brake and slow  
decay is typically used during the off-time.  
7.4.2 PWM Without Current Regulation  
If current regulation is not needed, the ISEN pin should be directly connected to the PCB ground plane. This  
mode provides the highest possible peak current: up to 3.6 A for a few hundred milliseconds (depending on PCB  
characteristics and the ambient temperature). If current exceeds 3.6 A, the device might reach overcurrent  
protection (OCP) or over-temperature shutdown (TSD). If that occurs, the device disables and protects itself for  
about 3 ms (tRETRY) and then resumes normal operation.  
7.4.3 Static Inputs With Current Regulation  
The IN1 and IN2 pins can be set high and low for 100% duty cycle drive, and ITRIP can be used to control the  
current, speed, and torque capability of the motor.  
7.4.4 VM Control  
In some systems, varying VM as a means of changing motor speed is desirable. See the Motor Voltage section  
for more information.  
10  
版权 © 2015–2016, Texas Instruments Incorporated  
 
DRV8872  
www.ti.com.cn  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV8872 device is typically used to drive one brushed DC motor.  
8.2 Typical Application  
GND  
IN2  
OUT2  
ISEN  
OUT1  
VM  
3.3 V  
0.2  
BDC  
DRV8872  
Controller  
IN1  
PU  
nFAULT  
PPAD  
+
œ
6.5 to 45 V  
Power Supply  
0.1 µF  
47 µF  
Copyright © 2016, Texas Instruments Incorporated  
7. Typical Connections  
8.2.1 Design Requirements  
3 lists the design parameters.  
3. Design Parameters  
DESIGN PARAMETER  
REFERENCE  
VM  
EXAMPLE VALUE  
Motor voltage  
24 V  
0.8 A  
2 A  
Motor RMS current  
Motor startup current  
Motor current trip point  
Sense resistance  
PWM frequency  
IRMS  
ISTART  
ITRIP  
RISEN  
fPWM  
2.2 A  
0.16 Ω  
5 kHz  
8.2.2 Detailed Design Procedure  
8.2.2.1 Motor Voltage  
The motor voltage used depends on the ratings of the motor selected and the desired RPM. A higher voltage  
spins a brushed DC motor faster with the same PWM duty cycle applied to the power FETs. A higher voltage  
also increases the rate of current change through the inductive motor windings.  
8.2.2.2 Drive Current  
The current path is through the high-side sourcing DMOS power driver, motor winding, and low-side sinking  
DMOS power driver. Power dissipation losses in one source and sink DMOS power driver are shown in 公式 2.  
PD = I2  
R
+ RDS(on)Sink  
(
)
DS(on)Source  
(2)  
11  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
 
DRV8872  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
www.ti.com.cn  
The DRV8872 device has been measured to be capable of 2-A RMS current at 25°C on standard FR-4 PCBs.  
The maximum RMS current varies based on the PCB design, ambient temperature, and PWM frequency.  
Typically, switching the inputs at 200 kHz compared to 20 kHz causes 20% more power loss in heat.  
8.2.2.3 Sense Resistor  
For optimal performance, the sense resistor must have the features that follow:  
Surface-mount device  
Low inductance  
Rated for high enough power  
Placed closely to the motor driver  
2
The power dissipated by the sense resistor equals IRMS × R. For example, if peak motor current is 3 A, RMS  
motor current is 1.5 A, and a 0.2-sense resistor is used, the resistor dissipates 1.5 A2 × 0.2 = 0.45 W. The  
power quickly increases with higher current levels.  
Resistors typically have a rated power within some ambient temperature range, along with a derated power curve  
for high ambient temperatures. When a PCB is shared with other components generating heat, the system  
designer should add margin. It is always best to measure the actual sense resistor temperature in a final system.  
Because power resistors are larger and more expensive than standard resistors, multiple standard resistors can  
be used in parallel, between the sense node and ground. This configuration distributes the current and heat  
dissipation.  
8.2.3 Application Curves  
8. Current Ramp With a 2-Ω, 1 mH,  
9. Current Ramp With a 2-Ω, 1 mH,  
RL Load and VM = 12 V  
RL Load and VM = 24 V  
12  
版权 © 2015–2016, Texas Instruments Incorporated  
DRV8872  
www.ti.com.cn  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
10. Current Ramp With a 2-Ω, 1 mH,  
11. tPD  
RL Load and VM = 45 V  
12. Current Regulation With RSENSE = 0.26  
13. OCP With 24 V and Outputs Shorted Together  
版权 © 2015–2016, Texas Instruments Incorporated  
13  
DRV8872  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
www.ti.com.cn  
9 Power Supply Recommendations  
9.1 Bulk Capacitance  
Having appropriate local bulk capacitance is an important factor in motor drive system design. More bulk  
capacitance is generally beneficial but with the disadvantages of increased cost and physical size.  
The amount of local capacitance needed depends on a variety of factors, including:  
The highest current required by the motor system  
The power supply’s capacitance and ability to source current  
The amount of parasitic inductance between the power supply and motor system  
The acceptable voltage ripple  
The type of motor used (brushed DC, brushless DC, stepper)  
The motor braking method  
The inductance between the power supply and motor drive system limits the rate that the current can change  
from the power supply. If the local bulk capacitance is too small, the system responds to excessive current  
demands or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor  
voltage remains stable and high current can be quickly supplied.  
The data sheet generally provides a recommended value, but system-level testing is required to determine the  
appropriate sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VBB  
+
Motor  
Driver  
+
œ
GND  
Local  
IC Bypass  
Bulk Capacitor  
Capacitor  
14. Example Setup of Motor Drive System With External Power Supply  
The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases  
when the motor transfers energy to the supply.  
14  
版权 © 2015–2016, Texas Instruments Incorporated  
DRV8872  
www.ti.com.cn  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
10 Layout  
10.1 Layout Guidelines  
The bulk capacitor should be placed to minimize the distance of the high-current path through the motor driver  
device. The connecting metal trace widths should be as wide as possible, and numerous vias should be used  
when connecting PCB layers. These practices minimize inductance and allow the bulk capacitor to deliver high  
current.  
Small-value capacitors should be ceramic, and placed closely to device pins.  
The high-current device outputs should use wide metal traces.  
The device thermal pad should be soldered to the PCB top-layer ground plane. Multiple vias should be used to  
connect to a large bottom-layer ground plane. The use of large metal planes and multiple vias help dissipate the  
I2 × RDS(on) heat that is generated in the device.  
15 shows the recommended layout and component placement.  
10.2 Layout Example  
GND  
IN2  
OUT2  
ISEN  
OUT1  
VM  
IN1  
nFAULT  
+
15. Layout Recommendation  
10.3 Thermal Considerations  
The DRV8872 device has thermal shutdown (TSD) as described in the Thermal Shutdown (TSD) section. If the  
die temperature exceeds approximately 175°C, the device is disabled until the temperature drops below the  
temperature hysteresis level.  
Any tendency of the device to enter TSD is an indication of either excessive power dissipation, insufficient  
heatsinking, or too high of an ambient temperature.  
10.4 Power Dissipation  
Power dissipation in the DRV8872 device is dominated by the power dissipated in the output FET resistance,  
RDS(on). Use 公式 2 from the Drive Current section to calculate the estimated average power dissipation of when  
driving a load.  
Note that at startup, the output current is much higher than normal running current; this peak current and its  
duration must be also be considered.  
版权 © 2015–2016, Texas Instruments Incorporated  
15  
 
DRV8872  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
www.ti.com.cn  
Power Dissipation (接下页)  
The maximum amount of power that can be dissipated in the device is dependent on ambient temperature and  
heatsinking.  
RDS(on) increases with temperature, so as the device heats, the power dissipation  
increases. This fact must be taken into consideration when sizing the heatsink.  
The power dissipation of the DRV8872 is a function of RMS motor current and the FET resistance (RDS(ON)) of  
each output.  
2
Power ö IRMS ì High-side RDS(ON) + Low-side RDS(ON)  
(
)
(3)  
For this example, the ambient temperature is 58°C, and the junction temperature reaches 80°C. At 58°C, the  
sum of RDS(ON) is about 0.72 . With an example motor current of 0.8 A, the dissipated power in the form of heat  
is 0.8 A2 × 0.72 = 0.46 W.  
The temperature that the DRV8872 reaches depends on the thermal resistance to the air and PCB. Soldering the  
device PowerPAD to the PCB ground plane, with vias to the top and bottom board layers, is important to  
dissipate heat into the PCB and reduce the device temperature. In the example used here, the DRV8872 had an  
effective thermal resistance RθJA of 48°C/W, and a TJ value as shown in 公式 4.  
TJ = TA + (PD ì RqJA ) = 58èC + (0.46 W ì 48èC/W) = 80èC  
(4)  
10.4.1 Heatsinking  
The PowerPAD package uses an exposed pad to remove heat from the device. For proper operation, this pad  
must be thermally connected to copper on the PCB to dissipate heat. On a multi-layer PCB with a ground plane,  
this connection can be accomplished by adding a number of vias to connect the thermal pad to the ground plane.  
On PCBs without internal planes, a copper area can be added on either side of the PCB to dissipate heat. If the  
copper area is on the opposite side of the PCB from the device, thermal vias are used to transfer the heat  
between top and bottom layers.  
For details about how to design the PCB, refer to the TI application report, PowerPAD™ Thermally Enhanced  
Package (SLMA002), and the TI application brief, PowerPAD Made Easy™ (SLMA004), available at www.ti.com.  
In general, the more copper area that can be provided, the more power can be dissipated.  
16  
版权 © 2015–2016, Texas Instruments Incorporated  
 
DRV8872  
www.ti.com.cn  
ZHCSE40C AUGUST 2015REVISED JULY 2016  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
相关文档如下:  
《电流再循环和衰减模式》(文献编号:SLVA321)  
《计算电机驱动器功耗》(文献编号:SLVA504)  
DRV8872 评估模块》(文献编号:SLVUAJ5)  
PowerPAD™ 耐热增强型封装》(文献编号:SLMA002)  
PowerPAD™ 速成》(文献编号:SLMA004)  
《了解电机驱动器电流额定值》(文献编号:SLVA505)  
11.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015–2016, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8872DDA  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
DDA  
DDA  
8
8
75  
RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
8872  
8872  
DRV8872DDAR  
2500 RoHS & Green  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8872DDAR  
SO  
Power  
PAD  
DDA  
8
2500  
330.0  
12.8  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SO PowerPAD DDA  
SPQ  
Length (mm) Width (mm) Height (mm)  
366.0 364.0 50.0  
DRV8872DDAR  
8
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DDA HSOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DRV8872DDA  
8
75  
517  
7.87  
635  
4.25  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
DDA 8  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4202561/G  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY