DRV8880RHRT [TI]

具有电流调节、1/16 微步进和智能调优功能的 45V、2A 双极步进电机驱动器   | RHR | 28 | -40 to 125;
DRV8880RHRT
型号: DRV8880RHRT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电流调节、1/16 微步进和智能调优功能的 45V、2A 双极步进电机驱动器   | RHR | 28 | -40 to 125

电机 驱动 驱动器
文件: 总51页 (文件大小:2518K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
DRV8880 具有 AutoTune™ 功能的 2A 步进电机驱动器  
1 特性  
2 应用  
1
微步进电机驱动器  
自动取款机和验钞机  
视频安保摄像机  
STEP/DIR 接口  
多功能打印机和文档扫描仪  
3D 打印机  
最高 1/16 的微步进分度器  
非循环和标准 ½ 步进模式  
办公自动化设备  
6.5V 45V 的工作电源电压范围  
工厂自动化和机器人  
多种衰减模式,可为任何电机提供支持  
AutoTune™  
混合衰减  
慢速衰减  
快速衰减  
3 说明  
DRV8880 是一款适用于工业 应用的双极步进电机驱动  
器。该器件具有两个 N 沟道功率金属氧化物半导体场  
效应晶体管 (MOSFET) H 桥驱动器和一个微步进分度  
器。DRV8880 能够驱动高达 2.0A 的满量程电流或  
1.4A 均方根 (rms) 电流(采用适当的印刷电路板  
(PCB) 接地层进行散热,电压为 24VTA = 25°C)。  
平滑步进的自适应消隐时间  
可配置关断时间脉宽调制 (PWM) 斩波  
1020 30μs 关断时间  
3.3V10mA 低压降 (LDO) 稳压器  
低电流休眠模式 (28μA)  
小型封装尺寸  
AutoTune™ 可自动调整步进电机以实现最佳电流调节  
性能,并且能够对电机变化和老化问题进行补偿。此  
外,该器件还提供慢速、快速和混合三种衰减模式。  
28 HTSSOP (PowerPAD™)  
28 WQFN  
STEP/DIR 引脚提供简单的控制接口。器件可配置为多  
种步进模式,从全步进模式到 1/16 步进模式。凭借专  
用的 nSLEEP 引脚,该器件可提供一种低功耗的休眠  
模式,从而实现超低静态电流待机。  
保护 特性  
VM 欠压锁定 (UVLO2)  
逻辑欠压 (UVLO1)  
电荷泵电压 (CPUV)  
过流保护 (OCP)  
该器件内置以下保护功能:欠压、电荷泵故障、过流、  
短路以及过热保护。故障条件通过 nFAULT 引脚指  
示。  
锁存过流保护 (OCP) 模式  
重试过流保护 (OCP) 模式  
器件信息(1)  
热关断 (TSD)  
故障条件指示引脚 (nFAULT)  
器件型号  
DRV8880  
封装  
HTSSOP (28)  
WQFN (28)  
封装尺寸(标称值)  
9.70mm x 4.40mm  
5.50mm × 3.50mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化系统图  
微步进电流波形  
Full-scale current  
6.ꢁ to 4ꢁ ë  
RMS current  
5wë8880  
{Ç9ꢀ/5Lw  
2.0 !  
2.0 !  
M
{tepper  
ꢃotor 5river  
{tep size  
+
-
5ecay mode  
!µš}ǵvꢀ¡  
AOUT  
BOUT  
1/16 µstep  
Step Input  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSD18  
 
 
 
 
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 30  
Application and Implementation ........................ 31  
8.1 Application Information............................................ 31  
8.2 Typical Application ................................................. 31  
Power Supply Recommendations...................... 35  
9.1 Bulk Capacitance Sizing ......................................... 35  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Indexer Timing Requirements................................... 8  
6.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
8
9
10 Layout................................................................... 36  
10.1 Layout Guidelines ................................................. 36  
10.2 Layout Example .................................................... 36  
11 器件和文档支持 ..................................................... 37  
11.1 文档支持................................................................ 37  
11.2 接收文档更新通知 ................................................. 37  
11.3 社区资源................................................................ 37  
11.4 ....................................................................... 37  
11.5 静电放电警告......................................................... 37  
11.6 Glossary................................................................ 37  
12 机械、封装和可订购信息....................................... 37  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (August 2017) to Revision C  
Page  
Changed the maximum value for VREF from V3P3 + 0.5 V to 4.1 V in the Absolute Maximum Ratings table .................... 5  
Changes from Revision A (July 2015) to Revision B  
Page  
Added the Power Supplies and Input Pins section .............................................................................................................. 27  
已添加 接收文档更新通知.............................................................................................................................................. 37  
Changes from Original (June 2015) to Revision A  
Page  
已将器件状态更新为量产数据 ................................................................................................................................................. 1  
Updated from "PowerPAD" to "thermal pad" ......................................................................................................................... 4  
2
Copyright © 2015–2017, Texas Instruments Incorporated  
 
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
5 Pin Configuration and Functions  
PWP PowerPAD™ Package  
28-Pin HTSSOP  
RHR Package  
28-Pin WQFN With Exposed Thermal Pad  
Top View  
Top View  
1
2
28  
27  
26  
/t[  
/tI  
Db5  
Çwv0  
Çwv1  
a0  
3
ë/t  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VCP  
VM  
TRQ1  
M0  
4
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
ëa  
5
!hÜÇ1  
!L{9b  
!hÜÇ2  
.hÜÇ2  
.L{9b  
.hÜÇ1  
ëa  
a1  
3
AOUT1  
AISEN  
AOUT2  
BOUT2  
BISEN  
BOUT1  
VM  
M1  
4
6
STEP  
{Ç9t  
5
DIR  
7
5Lw  
6
ENABLE  
DECAY0  
DECAY1  
nFAULT  
nSLEEP  
8
9b!.[9  
59/!ò0  
59/!ò1  
nC!Ü[Ç  
n{[99t  
ÇhCC  
7
9
8
10  
11  
12  
13  
14  
9
10  
GND  
Db5  
!Ç9  
ëw9C  
ë3t3  
Pin Functions  
PIN  
PWP  
1
TYPE  
DESCRIPTION  
NAME  
CPL  
RHR  
27  
Charge pump switching  
pins  
Connect a VM rated, 0.1-µF ceramic capacitor between  
CPH and CPL  
PWR  
CPH  
VCP  
2
28  
3
1
O
Charge pump output  
Power supply  
Connect a 16 V, 0.47 µF ceramic capacitor to VM  
Connect to motor supply voltage; bypass to GND with two  
0.1 µF (for each pin) plus one bulk capacitor rated for VM  
VM  
4, 11  
2, 9  
PWR  
AOUT1  
AOUT2  
5
7
3
5
H-bridge outputs, drives one winding of a stepper motor  
O
O
O
Winding A output  
Winding A sense  
Winding B output  
Requires sense resistor to GND; value sets peak current  
in winding A  
AISEN  
6
4
BOUT2  
BOUT1  
8
6
8
H-bridge outputs, drives one winding of a stepper motor  
10  
Requires sense resistor to GND; value sets peak current  
in winding B  
BISEN  
GND  
9
7
O
Winding B sense  
Device ground  
12, 28  
10, 26  
PWR  
Must be connected to ground  
Logic high enables AutoTune operation; when logic low,  
the decay mode is set through the DECAYx pins;  
AutoTune must be pulled high prior to power-up or coming  
out of sleep, or else tied to V3P3 in order to enable  
AutoTune; internal pulldown; see AutoTune  
ATE  
13  
11  
I
AutoTune enable pin  
Full scale current  
reference input  
Voltage on this pin sets the full scale chopping current.  
VREF  
14  
12  
I
Internal supply voltage; bypass to GND with a 6.3 V, 0.47  
µF ceramic capacitor; up to 10 mA external load  
V3P3  
15  
16  
17  
13  
14  
15  
PWR  
Internal regulator  
TOFF  
I
I
Decay mode off time set  
Sleep mode input  
Sets the off-time during current chopping; tri-level pin  
Logic high to enable device; logic low to enter low-power  
sleep mode; internal pulldown  
nSLEEP  
Pulled logic low with fault condition; open-drain output  
requires an external pullup  
nFAULT  
18  
16  
O
I
Fault indication pin  
DECAY1  
DECAY0  
19  
20  
17  
18  
Sets the decay mode; see description section; tri-level pin  
Decay mode setting pins  
Logic high to enable device outputs and internal indexer;  
logic low to disable; internal pulldown  
ENABLE  
DIR  
21  
22  
19  
20  
I
I
Enable driver input  
Direction input  
Logic level sets the direction of stepping; internal pulldown  
Copyright © 2015–2017, Texas Instruments Incorporated  
3
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
STEP  
PWP  
RHR  
A rising edge causes the indexer to advance one step;  
internal pulldown  
23  
21  
I
I
Step input  
M1  
24  
25  
22  
23  
Sets the step mode; full, 1/2, 1/4, 1/8, 1/16; tri-level pin  
Microstepping mode  
setting pins  
M0  
TRQ1  
TRQ0  
PAD  
26  
24  
Scales the current by 100%, 75%, 50%, or 25%; internal  
pulldown  
Torque DAC current  
scalar  
I
27  
25  
PAD  
PAD  
PWR  
Thermal pad  
Must be connected to ground  
4
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)  
over operating free-air temperature range referenced with respect to GND (unless otherwise noted)  
MIN  
MAX  
50  
UNIT  
V
Power supply voltage (VM)  
–0.3  
0
Power supply voltage ramp rate (VM)  
Charge pump voltage (VCP, CPH)  
Charge pump negative switching pin (CPL)  
Internal regulator voltage (V3P3)  
Internal regulator current output (V3P3)  
2
V/µs  
V
–0.3  
–0.3  
–0.3  
0
VM + 12  
VM  
V
3.8  
V
10  
mA  
Control pin voltage (STEP, DIR, ENABLE, nSLEEP, nFAULT, M0, M1, DECAY0,  
DECAY1, TRQ0, TRQ1, ATE)  
–0.3  
7.0  
V
Open drain output current (nFAULT)  
0
10  
4.1  
mA  
V
Reference input pin voltage (VREF)  
–0.3  
–0.7  
–0.55  
Continuous phase node pin voltage (AOUT1, AOUT2, BOUT1, BOUT2)  
VM + 0.7  
0.55  
V
(2)  
Continuous shunt amplifier input pin voltage (AISEN, BISEN)  
V
Peak drive current (AOUT1, AOUT2, BOUT1, BOUT2, AISEN, BISEN)  
Operating junction temperature, TJ  
Internally limited  
A
–40  
–65  
150  
150  
°C  
°C  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Transients of ±1 V for less than 25 ns are acceptable  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
(1)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001  
Charged-device model (CDM), per JEDEC specification JESD22-C101  
Electrostatic  
discharge  
V(ESD)  
V
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
MAX  
45  
UNIT  
V
(1)  
VM  
Power supply voltage range  
Digital pin voltage range  
Reference rms voltage range  
Applied STEP signal  
6.5  
VIN  
0
5.3  
V
(2)  
VREF  
ƒPWM  
IV3P3  
IFS  
0.3  
V3P3  
V
(3)  
0
0
0
0
100  
kHz  
mA  
A
(4)  
V3P3 external load current  
Motor full scale current  
Motor rms current  
10  
2.0  
1.4  
Irms  
A
TA  
Operating ambient temperature  
–40  
125  
°C  
(1) Internal logic and indexer remain active down to VUVLO2 (4.9 V maximum) even though the output H-bridges are disabled  
(2) Operational at VREF 0 to 0.3 V, but accuracy is degraded  
(3) STEP input can operate up to 1 MHz, but system bandwidth is limited by the motor load  
(4) Power dissipation and thermal limits must be observed  
Copyright © 2015–2017, Texas Instruments Incorporated  
5
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
6.4 Thermal Information  
DRV8880  
PWP (HTSSOP)  
(1)  
THERMAL METRIC  
RHR (WQFN)  
UNIT  
28 PINS  
33.1  
16.6  
14.4  
0.4  
28 PINS  
37.5  
23.0  
8.0  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
14.2  
1.3  
7.8  
RθJC(bot)  
1.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VM, V3P3)  
VM  
VM operating voltage  
6.5  
45  
18  
V
nSLEEP high; ENABLE high; no motor  
load; VM = 24 V  
IVM  
VM operating supply current  
8
mA  
nSLEEP low; VM = 24 V; TA = 25°C  
28  
IVMQ  
VM sleep mode supply current  
μA  
nSLEEP low; VM = 24 V; TA = 125°C  
77  
(1)  
tSLEEP  
tWAKE  
tON  
Sleep time  
nSLEEP low to sleep mode  
nSLEEP high to output transition  
VM > VUVLO2 to output transition  
External load 0 to 10 mA  
100  
1.5  
1.5  
3.6  
μs  
ms  
ms  
V
Wake-up time  
Turn-on time  
V3P3  
LDO regulator voltage  
2.9  
3.3  
CHARGE PUMP (VCP, CPH, CPL)  
VM > 12 V  
VM + 11.5  
VCP  
VCP operating voltage  
V
VUVLO2 < VM < 12 V  
2×VM – 1.5  
Charge pump switching  
frequency  
(1)  
ƒVCP  
VM > VUVLO2  
175  
715  
kHz  
LOGIC-LEVEL INPUTS (STEP, DIR, ENABLE, nSLEEP, TRQ0, TRQ1, ATE)  
VIL  
VIH  
VHYS  
IIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic low current  
Input logic high current  
Pulldown resistance  
Propagation delay  
0
1.6  
100  
–1  
0.6  
5.3  
V
V
mV  
μA  
μA  
kΩ  
ns  
VIN = 0 V  
1
IIH  
VIN = 5.0 V  
50  
100  
450  
100  
RPD  
tPD  
Measured between the pin and GND  
STEP input to current change  
TRI-LEVEL INPUTS (M0, M1, DECAY0, DECAY1, TOFF)  
VIL  
VIZ  
VIH  
VHYS  
IIL  
Tri-level input logic low voltage  
Tri-level input Hi-Z voltage  
Tri-level input logic high voltage  
Tri-level input hysteresis  
0
0.6  
5.3  
V
V
1.1  
1.6  
100  
–55  
V
mV  
μA  
μA  
μA  
kΩ  
kΩ  
Tri-level input logic low current  
Tri-level input Hi-Z current  
Tri-level input logic high current  
Tri-level pulldown resistance  
Tri-level pullup resistance  
VIN = 0 V  
–35  
IIZ  
VIN = 1.3 V  
15  
85  
40  
45  
IIH  
VIN = 3.3 V  
RPD  
RPU  
Measured between the pin and GND  
Measured between V3P3 and the pin  
(1) Specified by design and characterization data  
6
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CONTROL OUTPUTS (nFAULT)  
VOL  
IOH  
Output logic low voltage  
Output logic high leakage  
IO = 4 mA  
External pullup resistor to 3.3 V  
0.5  
1
V
–1  
μA  
MOTOR DRIVER OUTPUTS (AOUT1, AOUT2, BOUT1, BOUT2)  
VM = 24 V, I = 1 A, TA = 25°C  
330  
400  
430  
500  
300  
370  
370  
450  
(1)  
VM = 24 V, I = 1 A, TA = 125°C  
VM = 6.5 V, I = 1 A, TA = 25°C  
VM = 6.5 V, I = 1 A, TA = 125°C  
VM = 24 V, I = 1 A, TA = 25°C  
VM = 24 V, I = 1 A, TA = 125°C  
VM = 6.5 V, I = 1 A, TA = 25°C  
VM = 6.5 V, I = 1 A, TA = 125°C  
440  
560  
400  
490  
RDS(ON)  
High-side FET on resistance  
Low-side FET on resistance  
mΩ  
mΩ  
(1)  
(1)  
RDS(ON)  
(1)  
VM = 24 V, 50 Ω load from xOUTx to  
GND  
tRISE  
tFALL  
Output rise time  
Output fall time  
70  
70  
ns  
ns  
VM = 24 V, 50 Ω load from VM to  
xOUTx  
(2)  
tDEAD  
Vd  
Output dead time  
200  
0.7  
ns  
V
Body diode forward voltage  
IOUT = 0.5 A  
1
PWM CURRENT CONTROL (VREF, AISEN, BISEN)  
TRQ at 100%, VREF = 3.3 V  
500  
375  
250  
125  
6.58  
6.56  
6.51  
6.38  
20  
TRQ at 75%, VREF = 3.3 V  
TRQ at 50%, VREF = 3.3 V  
TRQ at 25%, VREF = 3.3 V  
TRQ at 100% (TRQ0 = 0, TRQ1 = 0)  
TRQ at 75% (TRQ0 = 1, TRQ1 = 0)  
TRQ at 50% (TRQ0 = 0, TRQ1 = 1)  
TRQ at 25% (TRQ0 = 1, TRQ1 = 1)  
TOFF Logic Low  
VTRIP  
xISENSE trip voltage, full scale  
mV  
6.25  
6.2  
6.91  
6.92  
6.94  
6.93  
AV  
Amplifier attenuation  
PWM off-time  
V/V  
μs  
6.09  
5.83  
tOFF  
TOFF Logic High  
30  
TOFF Hi-Z  
10  
1.8  
1.5  
tBLANK  
PWM blanking time  
See Table 9 for details  
µs  
1.2  
0.9  
PROTECTION CIRCUITS  
VUVLO2 VM undervoltage lockout  
VM falling; UVLO2 report  
VM rising; UVLO2 recovery  
VM falling; logic disabled  
VM rising; logic enabled  
Rising to falling threshold  
VCP falling; CPUV report  
VCP rising; CPUV recovery  
Rising to falling threshold  
Current through any FET  
Voltage at AISEN or BISEN  
5.8  
6.1  
4.5  
4.8  
6.4  
6.5  
4.9  
5
V
VUVLO1  
VUVLO,HYS undervoltage hysteresis  
VCPUV Charge pump undervoltage  
VCPUV,HYS CP undervoltage hysteresis  
Logic undervoltage  
V
mV  
V
100  
VM + 1.8  
VM + 1.9  
50  
2.5  
0.9  
mV  
A
IOCP  
VOCP  
tOCP  
Overcurrent protection trip level  
Sense pin overcurrent trip level  
Overcurrent deglitch time  
3.6  
1.25  
2
V
μs  
(2) Specified by design and characterization data  
Copyright © 2015–2017, Texas Instruments Incorporated  
7
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.5  
TYP  
MAX  
UNIT  
ms  
tRETRY  
Overcurrent retry time  
2
(2)  
TTSD  
THYS  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
Die temperature TJ  
Die temperature TJ  
150  
°C  
(2)  
35  
°C  
6.6 Indexer Timing Requirements  
NO.  
MIN  
MAX  
UNIT  
(1)  
1
2
3
4
5
ƒSTEP  
Step frequency  
1
MHz  
ns  
tWH(STEP)  
tWL(STEP)  
tSU(DIR, Mx)  
tH(DIR, Mx)  
Pulse duration, STEP high  
Pulse duration, STEP low  
Setup time, DIR or Mx to STEP rising  
Hold time, DIR or Mx to STEP rising  
470  
470  
200  
200  
ns  
ns  
ns  
(1) STEP input can operate up to 1 MHz, but system bandwidth is limited by the motor load  
1
3
2
STEP  
DIR, Mx  
5
4
Figure 1. Timing Diagram  
8
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
6.7 Typical Characteristics  
Over recommended operating conditions (unless otherwise noted)  
6.5  
6.45  
6.4  
6.35  
6.3  
6.25  
6.2  
6.35  
6.3  
6.15  
6.1  
6.25  
6.2  
6.15  
6.1  
6.05  
6
6.05  
6
5.95  
5.9  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
5.95  
5.85  
5.8  
5.9  
VM = 24 V  
VM = 12 V  
5.85  
5.8  
5.75  
5
10  
15  
20  
25  
30  
35  
40  
45  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage VM (V)  
Ambient Temperature TA (èC)  
D001  
D002  
Figure 2. Supply Current over VM  
Figure 3. Supply Current over Temperature  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
25.5  
25  
24.5  
24  
23.5  
23  
22.5  
22  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
VM = 24 V  
VM = 12 V  
21.5  
6
21  
6
9
12  
15  
18  
21  
24  
27  
30  
33  
36  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage VM (V)  
Ambient Temperature TA (èC)  
D003  
D004  
Figure 4. Sleep Current over VM  
Figure 5. Sleep Current over Temperature  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
550  
500  
450  
400  
350  
300  
250  
200  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage VM (V)  
Ambient Temperature TA (èC)  
D005  
D006  
Figure 6. High-Side RDS(ON) over VM  
Figure 7. High-Side RDS(ON) over Temperature (VM = 12 V)  
Copyright © 2015–2017, Texas Instruments Incorporated  
9
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Over recommended operating conditions (unless otherwise noted)  
600  
480  
450  
420  
390  
360  
330  
300  
270  
240  
210  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
550  
500  
450  
400  
350  
300  
250  
200  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage VM (V)  
Ambient Temperature TA (èC)  
D007  
D008  
Figure 8. Low-Side RDS(ON) over VM  
Figure 9. Low-Side RDS(ON) over Temperature (VM = 12 V)  
3.36  
0.5  
TRQ = 00  
TRQ = 01  
TRQ = 10  
TRQ = 11  
0.45  
0.4  
3.355  
3.35  
0.35  
0.3  
3.345  
3.34  
0.25  
0.2  
3.335  
0.15  
0.1  
3.33  
3.325  
3.32  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0.05  
0
0
1
2
3
4
5
6
7
8
9
10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VREF Pin Voltage (V)  
V3P3 Load (mA)  
D009  
D010  
Figure 10. xISEN Full-Scale Trip Voltage over VREF Input  
Figure 11. V3P3 Regulator over Load (VM = 24 V)  
10  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
7 Detailed Description  
7.1 Overview  
The DRV8880 is an integrated motor driver solution for bipolar stepper motors. The device integrates two NMOS  
H-bridges, current regulation circuitry, and a microstepping indexer. The DRV8880 can be powered with a supply  
voltage between 6.5 and 45 V, and is capable of providing an output current up to 2.5 A peak current, 2.0 A full-  
scale current, or 1.4 A rms current. Actual operable full-scale and rms current will depend on ambient  
temperature, supply voltage, and PCB ground plane size. Between VM = 6.4 V and VM = 4.9 V the H-bridge  
outputs are shut down, but the internal logic remains active in order to prevent missed steps.  
A simple STEP/DIR interface allows easy interfacing to the controller circuit. The internal indexer is able to  
execute high-accuracy microstepping without requiring the processor to control the current level. The indexer is  
capable of full step and half step as well as microstepping to 1/4, 1/8, and 1/16. In addition to the standard half  
stepping mode, a non-circular 1/2-stepping mode is avaialble for increased torque output at higher motor rpm.  
The current regulation is highly configurable, with several decay modes of operation. The decay mode can be  
selected as a fixed slow, slow/mixed, mixed, slow/fast, or fast decay. The slow/mixed decay mode uses slow  
decay on increasing steps and mixed decay on decreasing steps. Similarly, the slow/fast decay mode uses slow  
decay on increasing steps and fast decay on decreasing steps.  
In addition, an AutoTune mode can be used which automatically adjusts the decay setting to minimize current  
ripple while still reacting quickly to step changes. This feature greatly simplifies stepper driver integration into a  
motor drive system.  
The PWM off-time, tOFF, can be adjusted to 10, 20, or 30 µs.  
An adaptive blanking time feature automatically scales the minimum drive time with output current. This helps  
alleviate zero-crossing distortion by limiting the drive time at low-current steps.  
A torque DAC feature allows the controller to scale the output current without needing to scale the analog  
reference voltage input VREF. The torque DAC is accessed using digital input pins. This allows the controller to  
save power by decreasing the current consumption when not required.  
A low-power sleep mode is included which allows the system to save power when not driving the motor.  
Copyright © 2015–2017, Texas Instruments Incorporated  
11  
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
7.2 Functional Block Diagram  
VM  
+
0.1 µF  
0.1 µF  
bulk  
VM  
VM  
VM  
VM  
Power  
0.47 µF  
0.1 µF  
VCP  
CPH  
CPL  
AutoTune  
AOUT1  
AOUT2  
+
Charge  
Pump  
Off-  
time  
PWM  
Gate  
Drive  
Step  
Motor  
VM  
-
V3P3  
10 mA  
3.3-V LDO  
0.47 µF  
+
-
STEP  
DIR  
AISEN  
RSENSE  
+
Core Logic  
-
VREF  
TRQ[1:0]  
ENABLE  
nSLEEP  
ATE  
4
{Lb9 5!/  
1ꢀ!v  
Control  
Inputs  
TRQ[1:0]  
M[1:0]  
VM  
V3P3  
V3P3  
BOUT1  
BOUT2  
DECAY[1:0]  
TOFF  
Indexer  
V3P3  
Off-  
time  
PWM  
VM  
Gate  
Drive  
VREF  
Analog  
Input  
Protection  
Overcurrent  
BISEN  
RSENSE  
Output  
+
nFAULT  
Undervoltage  
Thermal  
-
VREF  
TRQ[1:0]  
4
{Lb9 5!/  
1ꢀ!v  
GND GND PPAD  
12  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
7.3 Feature Description  
Table 1 lists the recommended values of the external components.  
Table 1. External Components  
COMPONENT  
CVM1  
PIN 1  
VM  
PIN 2  
GND  
GND  
RECOMMENDED  
0.1-µF ceramic capacitor rated for VM per VM pin  
CVM1  
VM  
Bulk electrolytic capacitor rated for VM, recommended value is 100  
µF, see Bulk Capacitance Sizing  
CVCP  
CSW  
VCP  
CPH  
V3P3  
VM  
CPL  
16-V, 0.47-µF ceramic capacitor  
0.1-µF X7R capacitor rated for VM  
6.3-V, 0.47-µF ceramic capacitor  
> 5 kpullup  
CV3P3  
RnFAULT  
RAISEN  
RBISEN  
GND  
(1)  
VMCU  
nFAULT  
GND  
AISEN  
BISEN  
Sense resistor, see Sense Resistor  
GND  
(1) VMCU is not a pin on the DRV8880, but a supply voltage pullup is required for open-drain output nFAULT; nFAULT may be pulled up to  
V3P3  
7.3.1 Stepper Motor Driver Current Ratings  
Stepper motor drivers can be classified using three different numbers to describe the output current: peak, rms,  
and full-scale.  
7.3.1.1 Peak Current Rating  
The peak current in a stepper driver is limited by the overcurrent protection trip threshold IOCP. The peak current  
describes any transient duration current pulse, for example when charging capacitance, when the overall duty  
cycle is very low. In general the minimum value of IOCP specifies the peak current rating of the stepper motor  
driver. For the DRV8880, the peak current rating is 2.5 A per bridge.  
7.3.1.2 RMS Current Rating  
The rms (average) current is determined by the thermal considerations of the IC. The rms current is calculated  
based on the RDS(ON), rise and fall time, PWM frequency, device quiescent current, and package thermal  
performance in a typical system at 25°C. The real operating rms current may be higher or lower depending on  
heatsinking and ambient temperature. For the DRV8880, the rms current rating is 1.4 A per bridge.  
7.3.1.3 Full-Scale Current Rating  
The full-scale current describes the top of the sinusoid current waveform while microstepping. Since the  
sineusoid amplitude is related to the rms current, the full-scale current is also determined by the thermal  
considerations of the IC. The full-scale current rating is approximately 2 × Irms. The full-scale current is set by  
VREF, the sense resistor, and Torque DAC when configuring the DRV8880 , see Current Regulation for details.  
For the DRV8880, the full-scale current rating is 2.0 A per bridge.  
Full-scale current  
RMS current  
AOUT  
BOUT  
Step Input  
Figure 12. Full-Scale and rms Current  
Copyright © 2015–2017, Texas Instruments Incorporated  
13  
 
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
7.3.2 PWM Motor Drivers  
The DRV8880 contains drivers for two full H-bridges. A block diagram of the circuitry is shown in Figure 13.  
VM  
xOUT1  
+
Step  
Motor  
tía  
[ogic  
Dꢀꢁe  
5rive  
VM  
-
5evice  
[ogic  
xOUT2  
xISEN  
+
-
+
-
VREF  
TRQ[1:0]  
RSENSE  
4
{Lb9 5!/  
1ꢀ!v  
Figure 13. PWM Motor Driver Block Diagram  
7.3.3 Microstepping Indexer  
Built-in indexer logic in the DRV8880 allows a number of different stepping configurations. The Mx pins are used  
to configure the stepping format as shown in Table 2.  
Table 2. Microstepping Settings  
M1  
M0  
STEP MODE  
Full step (2-phase excitation) with 71%  
current  
0
0
0
1
1
0
1
Z
Z
Z
1
0
1
Z
Z
0
1
Z
Non-circular 1/2 step  
1/2 step  
1/4 step  
1/8 step  
1/16 step  
Reserved  
Reserved  
Reserved  
Table 3 shows the relative current and step directions for full-step through 1/16-step operation. The AOUT  
current is the sine of the electrical angle; BOUT current is the cosine of the electrical angle. Positive current is  
defined as current flowing from xOUT1 to xOUT2 while driving.  
At each rising edge of the STEP input the indexer travels to the next state in the table. The direction is shown  
with the DIR pin logic high. If the DIR pin is logic low, the sequence is reversed.  
Note that if the step mode is changed while stepping, the indexer will advance to the next valid state for the new  
MODE setting at the rising edge of STEP.  
The home state is an electrical angle of 45°. This state is entered after power-up, after exiting logic undervoltage  
lockout, or after exiting sleep mode. This is shown in Table 3 with the highlighted row.  
14  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
Table 3. Microstepping Relative Current Per Step  
FULL  
STEP  
ELECTRICAL ANGLE  
(°)  
AOUT CURRENT  
(% full-scale)  
BOUT CURRENT  
(% full-scale)  
1/2 STEP 1/4 STEP 1/8 STEP 1/16 STEP  
1
2
3
4
5
6
1
1
1
0.000°  
5.625°  
0%  
10%  
20%  
29%  
38%  
47%  
56%  
63%  
71%  
77%  
83%  
88%  
92%  
96%  
98%  
100%  
100%  
100%  
98%  
96%  
92%  
88%  
83%  
77%  
71%  
63%  
56%  
47%  
38%  
29%  
20%  
10%  
0%  
100%  
100%  
98%  
2
2
3
11.250°  
16.875°  
22.500°  
28.125°  
33.750°  
39.375°  
45.000°  
50.625°  
56.250°  
61.875°  
67.500°  
73.125°  
78.750°  
84.375°  
90.000°  
95.625°  
101.250°  
106.875°  
112.500°  
118.125°  
123.750°  
129.375°  
135.000°  
140.625°  
146.250°  
151.875°  
157.500°  
163.125°  
168.750°  
174.375°  
180.000°  
185.625°  
191.250°  
196.875°  
202.500°  
208.125°  
213.750°  
219.375°  
225.000°  
230.625°  
236.250°  
241.875°  
247.500°  
253.125°  
258.750°  
4
96%  
2
3
5
92%  
6
88%  
4
7
83%  
8
77%  
1
2
3
3
5
9
71%  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
63%  
6
56%  
47%  
4
7
38%  
29%  
8
20%  
10%  
5
9
0%  
–10%  
–20%  
–29%  
–38%  
–47%  
–56%  
–63%  
–71%  
–77%  
–83%  
–88%  
–92%  
–96%  
–98%  
–100%  
–100%  
–100%  
–98%  
–96%  
–92%  
–88%  
–83%  
–77%  
–71%  
–63%  
–56%  
–47%  
–38%  
–29%  
–20%  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
6
7
8
9
–10%  
–20%  
–29%  
–38%  
–47%  
–56%  
–63%  
–71%  
–77%  
–83%  
–88%  
–92%  
–96%  
–98%  
10  
11  
12  
Copyright © 2015–2017, Texas Instruments Incorporated  
15  
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
Table 3. Microstepping Relative Current Per Step (continued)  
FULL  
STEP  
ELECTRICAL ANGLE  
(°)  
AOUT CURRENT  
(% full-scale)  
BOUT CURRENT  
(% full-scale)  
1/2 STEP 1/4 STEP 1/8 STEP 1/16 STEP  
48  
264.375°  
270.000°  
275.625°  
281.250°  
286.875°  
292.500°  
298.125°  
303.750°  
309.375°  
315.000°  
320.625°  
326.250°  
331.875°  
337.500°  
343.125°  
348.750°  
354.375°  
360.000°  
–100%  
–100%  
–100%  
–98%  
–96%  
–92%  
–88%  
–83%  
–77%  
–71%  
–63%  
–56%  
–47%  
–38%  
–29%  
–20%  
–10%  
0%  
–10%  
0%  
7
8
1
13  
14  
15  
16  
1
25  
26  
27  
28  
29  
30  
31  
32  
1
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
1
10%  
20%  
29%  
38%  
47%  
56%  
63%  
71%  
77%  
83%  
88%  
92%  
96%  
98%  
100%  
100%  
4
Non-circular 1/2–step operation is shown in Table 4. This stepping mode consumes more power than circular  
1/2-step operation, but provides a higher torque at high motor rpm.  
Table 4. Non-Circular 1/2-Stepping Current  
NON-CIRCULAR  
1/2 STEP  
ELECTRICAL ANGLE  
(°)  
AOUT CURRENT  
(% FULL-SCALE)  
BOUT CURRENT  
(% FULL-SCALE)  
1
2
3
4
5
6
7
8
0°  
0
100  
100  
0
45°  
100  
100  
100  
0
90°  
135°  
180°  
225°  
270°  
315°  
-100  
-100  
-100  
0
–100  
–100  
–100  
100  
16  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
7.3.4 Current Regulation  
The current through the motor windings is regulated by an adjustable fixed-off-time PWM current regulation  
circuit. When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage,  
inductance of the winding, and the magnitude of the back EMF present. After the current hits the current  
chopping threshold, the bridge enters a decay mode for a fixed period of time to decrease the current, which is  
configurable between 10 and 30 µs through the tri-level input TOFF. After the off time expires, the bridge is re-  
enabled, starting another PWM cycle.  
Table 5. Off-Time Settings  
TOFF  
OFF-TIME tOFF  
20 µs  
0
1
Z
30 µs  
10 µs  
The PWM chopping current is set by a comparator which compares the voltage across a current sense resistor  
connected to the xISEN pin with a reference voltage. To generate the reference voltage for the current chopping  
comparator, the output of a sine lookup table is applied to a sine-weighted DAC, whose full-scale output voltage  
is set by VREF. This voltage is attenuated by a factor of Av. In addition, the TRQx pins further scale the  
reference.  
VM  
xOUT1  
+
Step  
Motor  
tía  
[ogic  
Dꢀꢁe  
5rive  
VM  
-
5evice  
[ogic  
xOUT2  
xISEN  
+
-
+
-
VREF  
TRQ[1:0]  
RSENSE  
4
{Lb9 5!/  
1ꢀ!v  
Figure 14. Current Regulation Block Diagram  
The full-scale (100%) chopping current is calculated as follows:  
VREF (V) ì TRQ (%) VREF (V) ì TRQ (%)  
IFS (A) =  
=
AV ì RSENSE (W)  
6.6 ì RSENSE (W)  
(1)  
The TRQx pins are the inputs to a Torque DAC used to scale the output current. The current scalar value for  
different inputs is shown below.  
Table 6. Torque DAC Settings  
TRQ1  
TRQ0  
CURRENT SCALAR  
(TRQ)  
EFFECTIVE  
ATTENUATION  
1
1
0
0
1
0
1
0
25%  
50%  
26.4 V/V  
13.2 V/V  
8.8 V/V  
6.6 V/V  
75%  
100%  
Copyright © 2015–2017, Texas Instruments Incorporated  
17  
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
Table 7 gives the xISEN trip voltage at a given DAC code and TRQ[1:0] setting for 1/16 step mode. In this table,  
VREF = 3.3 V.  
Table 7. xISEN Trip Voltages over Torque DAC and Microsteps  
TORQUE DAC TRQ[1:0] SETTING  
1/16 STEP (SINE  
DAC CODE)  
00 – 100%  
500.0 mV  
490.0 mV  
480.0 mV  
460.0 mV  
440.0 mV  
415.0 mV  
385.0 mV  
355.0 mV  
315.0 mV  
280.0 mV  
235.0 mV  
190.0 mV  
145.0 mV  
100.0 mV  
50.0 mV  
01 – 75%  
375.0 mV  
367.5 mV  
360.0 mV  
345.0 mV  
330.0 mV  
311.3 mV  
288.8 mV  
266.3 mV  
236.3 mV  
210.0 mV  
176.3 mV  
142.5 mV  
108.8 mV  
75.0 mV  
10 – 50%  
250.0 mV  
245.0 mV  
240.0 mV  
230.0 mV  
220.0 mV  
207.5 mV  
192.5 mV  
177.5 mV  
157.5 mV  
140.0 mV  
117.5 mV  
95.0 mV  
72.5 mV  
50.0 mV  
25.0 mV  
0.0 mV  
11 – 25%  
125.0 mV  
122.5 mV  
120.0 mV  
115.0 mV  
110.0 mV  
103.8 mV  
96.3 mV  
88.8 mV  
78.8 mV  
70.0 mV  
58.8 mV  
47.5 mV  
36.3 mV  
25.0 mV  
12.5 mV  
0.0 mV  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
37.5 mV  
1
0.0 mV  
0.0 mV  
18  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
7.3.5 Decay Modes  
A fixed decay mode is selected by setting the tri-level DECAYx pins as shown in Table 8. Please note that if the  
ATE pin is logic high, the DECAYx pins are ignored and AutoTune is used.  
Table 8. Decay Mode Settings  
DECAY1  
DECAY0  
INCREASING STEPS  
Slow Decay  
DECREASING STEPS  
Slow Decay  
0
0
1
1
0
1
Z
Z
Z
0
1
0
1
Z
Z
0
1
Z
Slow Decay  
Mixed Decay: 2 tBLANK  
Mixed Decay: 30% Fast  
Mixed Decay: 30% Fast  
Mixed Decay: 60% Fast  
Fast Decay  
Slow Decay  
Mixed Decay: 30% Fast  
Slow Decay  
Slow Decay  
Mixed Decay: 1 tBLANK  
Mixed Decay: 60% Fast  
Fast Decay  
Mixed Decay: 30% Fast  
Mixed Decay: 60% Fast  
Fast Decay  
Increasing and decreasing current are defined in the chart below. For the Slow/Mixed decay mode, the decay  
mode is set as slow during increasing current steps and mixed decay during decreasing current steps. In full step  
mode, the increasing step decay mode is always used.  
Figure 15. Definition of Increasing and Decreasing Steps  
Copyright © 2015–2017, Texas Instruments Incorporated  
19  
 
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
7.3.5.1 Mode 1: Slow Decay for Increasing and Decreasing Current  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tOFF  
tDRIVE  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
Figure 16. Slow/Slow Decay Mode  
During slow decay, both of the low-side FETs of the H-bridge are turned on, allowing the current to be  
recirculated.  
Slow decay exhibits the least current ripple of the decay modes for a given tOFF. However on decreasing current  
steps, slow decay will take a long time to settle to the new ITRIP level because the current decreases very  
slowly.  
In cases where current is held for a long time (no input in the STEP pin) or at very low stepping speeds, slow  
decay may not properly regulate current because no back-EMF is present across the motor windings. In this  
state, motor current can rise very quickly, and may require a large off-time. In some cases this may cause a loss  
of current regulation, and a more aggressive decay mode is recommended.  
20  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
7.3.5.2 Mode 2: Slow Decay for Increasing Current, Mixed Decay for Decreasing current  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tOFF  
tBLANK  
tDRIVE  
tDRIVE  
ITRIP  
tBLANK  
tFAST  
tBLANK  
tDRIVE  
tFAST  
tDRIVE  
tOFF  
tOFF  
Figure 17. Slow/Mixed Decay Mode  
Mixed decay begins as fast decay for a time, followed by slow decay for the remainder of tOFF. In this mode,  
mixed decay only occurs during decreasing current. Slow decay is used for increasing current.  
This mode exhibits the same current ripple as slow decay for increasing current, since for increasing current, only  
slow decay is used. For decreasing current, the ripple is larger than slow decay, but smaller than fast decay. On  
decreasing current steps, mixed decay will settle to the new ITRIP level faster than slow decay.  
In cases where current is held for a long time (no input in the STEP pin) or at very low stepping speeds, slow  
decay may not properly regulate current because no back-EMF is present across the motor windings. In this  
state, motor current can rise very quickly, and may require a large off-time. In some cases this may cause a loss  
of current regulation, and a more aggressive decay mode is recommended.  
Copyright © 2015–2017, Texas Instruments Incorporated  
21  
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
7.3.5.3 Mode 3: Mixed Decay for Increasing and Decreasing Current  
ITRIP  
tOFF  
tBLANK  
tOFF  
tBLANK  
tDRIVE  
tDRIVE  
tDRIVE  
ITRIP  
tBLANK  
tFAST  
tBLANK  
tDRIVE  
tFAST  
tDRIVE  
tOFF  
tOFF  
Figure 18. Mixed/Mixed Decay Mode  
Mixed decay begins as fast decay for a time, followed by slow decay for the remainder of tOFF. In this mode,  
mixed decay occurs for both increasing and decreasing current steps.  
This mode exhibits ripple larger than slow decay, but smaller than fast decay. On decreasing current steps,  
mixed decay will settle to the new ITRIP level faster than slow decay.  
In cases where current is held for a long time (no input in the STEP pin) or at very low stepping speeds, slow  
decay may not properly regulate current because no back-EMF is present across the motor windings. In this  
state, motor current can rise very quickly, and requires an excessively large off-time. Increasing/decreasing  
mixed decay mode allows the current level to stay in regulation when no back-EMF is present across the motor  
windings.  
22  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
7.3.5.4 Mode 4: Slow Decay for Increasing Current, Fast Decay for Decreasing current  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tOFF  
tBLANK  
tDRIVE  
tDRIVE  
Please note that these graphs are not the same scale; tOFF is the same  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
tOFF  
Figure 19. Slow/Fast Decay Mode  
During fast decay, the polarity of the H-bridge is reversed. The H-bridge will be turned off as current approaches  
zero in order to prevent current flow in the reverse direction. In this mode, fast decay only occurs during  
decreasing current. Slow decay is used for increasing current.  
Fast decay exhibits the highest current ripple of the decay modes for a given tOFF. Transition time on decreasing  
current steps is much faster than slow decay since the current is allowed to decrease much faster.  
Copyright © 2015–2017, Texas Instruments Incorporated  
23  
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
7.3.5.5 Mode 5: Fast Decay for Increasing and Decreasing Current  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tOFF  
tBLANK  
tDRIVE  
tOFF  
tDRIVE  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
tOFF  
Figure 20. Fast/Fast Decay Mode  
During fast decay, the polarity of the H-bridge is reversed. The H-bridge will be turned off as current approaches  
zero in order to prevent current flow in the reverse direction.  
Fast decay exhibits the highest current ripple of the decay modes for a given tOFF. Transition time on decreasing  
current steps is much faster than slow decay since the current is allowed to decrease much faster.  
24  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
7.3.6 AutoTune  
To enable the AutoTune mode, pull the ATE pin logic high. Ensure the DECAYx pins are logic low. The  
AutoTune mode is registered internally when exiting from sleep mode or the power-up sequence. The ATE pin  
can be shorted to V3P3 to pull it logic high for this purpose.  
AutoTune greatly simplifies the decay mode selection by automatically configuring the decay mode between  
slow, mixed, and fast decay. In mixed decay, AutoTune dynamically adjusts the fast decay percentage of the  
total mixed decay time. This feature eliminates motor tuning by automatically determining the best decay setting  
that results in the lowest ripple for the motor.  
The decay mode setting is optimized iteratively each PWM cycle. If the motor current overshoots the target trip  
level, then the decay mode becomes more aggressive (add fast decay percentage) on the next cycle in order to  
prevent regulation loss. If there is a long drive time to reach the target trip level, the decay mode becomes less  
aggressive (remove fast decay percentage) on the next cycle in order to operate with less ripple and more  
efficiently. On falling steps, AutoTune will automatically switch to fast decay in order to reach the next step  
quickly.  
AutoTune will automatically adjust the decay scheme based on operating factors like:  
Motor winding resistance and inductance  
Motor aging effects  
Motor dynamic speed and load  
Motor supply voltage variation  
Motor back-EMF difference on rising and falling steps  
Step transitions  
Low-current vs. high-current dI/dt  
7.3.7 Adaptive Blanking Time  
After the current is enabled in an H-bridge, the voltage on the xISEN pin is ignored for a period of time before  
enabling the current sense circuitry. Note that the blanking time also sets the minimum drive time of the PWM.  
The blanking time is automatically scaled so that the drive time is reduced at lower current steps.  
The time tBLANK is determined by the sine DAC code and the torque DAC setting. The timing information for  
tBLANK is given in Table 9.  
Table 9. Adaptive Blanking Time Settings over Torque DAC and Microsteps  
TORQUE DAC TRQ[1:0] SETTING  
SINE DAC CODE  
00 – 100%  
1.80 µs  
1.80 µs  
1.80 µs  
1.80 µs  
1.80 µs  
1.80 µs  
1.80 µs  
1.80 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.20 µs  
1.20 µs  
0.90 µs  
0.90 µs  
01 – 75%  
1.50 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.20 µs  
1.20 µs  
0.90 µs  
0.90 µs  
10 – 50%  
1.50 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.50 µs  
1.20 µs  
1.20 µs  
1.20 µs  
1.20 µs  
0.90 µs  
0.90 µs  
0.90 µs  
0.90 µs  
11 – 25%  
1.20 µs  
1.20 µs  
1.20 µs  
1.20 µs  
1.20 µs  
1.20 µs  
1.20 µs  
1.20 µs  
0.90 µs  
0.90 µs  
0.90 µs  
0.90 µs  
0.90 µs  
0.90 µs  
0.90 µs  
0.90 µs  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Copyright © 2015–2017, Texas Instruments Incorporated  
25  
 
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
7.3.8 Charge Pump  
A charge pump is integrated in order to supply a high-side NMOS gate drive voltage. The charge pump requires  
a capacitor between the VM and VCP pins. Additionally a low-ESR ceramic capacitor is required between pins  
CPH and CPL.  
VM  
0.47 µF  
VCP  
VM  
CPH  
/harge  
VM  
0.1 µF  
tump  
CPL  
Figure 21. Charge Pump Diagram  
7.3.9 LDO Voltage Regulator  
An LDO regulator is integrated into the DRV8880. It can be used to provide the supply voltage for low-current  
devices. For proper operation, bypass V3P3 to GND using a ceramic capacitor.  
The V3P3 output is nominally 3.3 V. When the V3P3 LDO current load exceeds 10 mA, the LDO will behave like  
a constant current source. The output voltage will drop significantly with currents greater than 10 mA.  
VM  
+
3.3 V  
V3P3  
-
10 mA  
0.47 µF max  
Figure 22. LDO Diagram  
If a digital input needs to be tied permanently high (that is, M or TOFF), it is preferable to tie the input to V3P3  
instead of an external regulator. This will save power when VM is not applied or in sleep mode: V3P3 is disabled  
and current will not be flowing through the input pulldown resistors. For reference, logic level inputs have a  
typical pulldown of 100 kΩ, and tri-level inputs have a typical pulldown of 40 kΩ.  
26  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
7.3.10 Logic and Tri-Level Pin Diagrams  
The diagram below gives the input structure for logic-level pins STEP, DIR, ENABLE, nSLEEP, TRQ0, TRQ1,  
and ATE:  
ë3t3  
100 k  
Figure 23. Logic-level Input Pin Diagram  
Tri-level logic pins TOFF, M0, M1, DECAY0, and DECAY1 have the following structure:  
ë3t3  
+
ë3t3  
t
45 k  
40 kΩ  
ë3t3  
+
t
Figure 24. Tri-level Input Pin Diagram  
7.3.11 Power Supplies and Input Pins  
The control pins and reference input pin can be driven within the recommended operating conditions without the  
VM power supply present, or when the device is in sleep mode.  
Each control pin has a weak pulldown resistor to ground. TI recommends setting the inputs to a logic low when in  
sleep mode to minimize current through the pulldown resistors.  
Copyright © 2015–2017, Texas Instruments Incorporated  
27  
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
7.3.12 Protection Circuits  
The DRV8880 is fully protected against undervoltage, charge pump undervoltage, overcurrent, and  
overtemperature events.  
7.3.13 VM UVLO (UVLO2)  
If at any time the voltage on the VM pin falls below the VM undervoltage lockout threshold voltage (VUVLO2), all  
FETs in the H-bridge will be disabled, the charge pump will be disabled, and the nFAULT pin will be driven low.  
Operation will resume when VM rises above the UVLO2 threshold. The nFAULT pin will be released after  
operation has resumed.  
The indexer position is not reset by this fault even though the output drivers are disabled. The indexer position is  
maintained and internal logic remains active until VM falls below the logic undervoltage threshold (VUVLO1).  
7.3.14 Logic Undervoltage (UVLO1)  
If at any time the voltage on the VM pin falls below the logic undervoltage threshold voltage (VUVLO1), the internal  
logic is reset, and the V3P3 regulator is disabled. Operation will resume when VM rises above the UVLO1  
threshold. The nFAULT pin is logic low during this state since it is pulled low upon encountering VM  
undervoltage. Decreasing VM below this undervoltage threshold will reset the indexer position.  
7.3.15 VCP Undervoltage Lockout (CPUV)  
If at any time the voltage on the VCP pin falls below the charge pump undervoltage lockout threshold voltage, all  
FETs in the H-bridge will be disabled and the nFAULT pin will be driven low. Operation will resume when VCP  
rises above the CPUV threshold. The nFAULT pin will be released after operation has resumed.  
7.3.16 Thermal Shutdown (TSD)  
If the die temperature exceeds safe limits, all FETs in the H-bridge will be disabled and the nFAULT pin will be  
driven low. Once the die temperature has fallen to a safe level operation will automatically resume. The nFAULT  
pin will be released after operation has resumed.  
7.3.17 Overcurrent Protection (OCP)  
An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this  
analog current limit persists for longer than tOCP, all FETs in the H-bridge will be disabled and nFAULT will be  
driven low. In addition to this FET current limit, an overcurrent condition is also detected if the voltage at xISEN  
exceeds VOCP  
.
The overcurrent fault response can be set to either latched mode or retry mode:  
V3P3  
5.1 k  
ENABLE  
FAULTn  
ENABLE  
FAULTn  
V3P3  
{hort  
5etect  
5evice  
[ogic  
5evice  
[ogic  
Figure 25. Latched OCP Mode  
Figure 26. Retry OCP Mode  
In latched mode, operation will resume after the ENABLE pin is brought logic low for at least 1 μs to reset the  
output driver. The nFAULT pin will be released after ENABLE is returned logic high. Removing and re-applying  
VM or toggling nSLEEP will also reset the latched fault.  
28  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
In retry mode, the driver will be re-enabled after the OCP retry period (tRETRY) has passed. nFAULT becomes  
high again after the retry time. If the fault condition is still present, the cycle repeats. If the fault is no longer  
present, normal operation resumes and nFAULT remains deasserted.  
A microcontroller can retain control of the ENABLE pin while in retry mode if it is operated like an open-drain  
output. Many microcontrollers support this. When the DRV8880 is operating normally, configure the MCU GPIO  
as an input. In this state, the MCU can detect whenever nFAULT is pulled low. In order to disable the DRV8880  
output, configure the GPIO output state as low, and then configure the GPIO as an output.  
Alternatively, a logic-level FET may be used to create an open drain external to the MCU. In this case, an  
additional MCU GPIO may be required in order to monitor the nFAULT pin.  
V3P3  
V3P3  
DRV8880  
DRV8880  
MCU  
MCU  
5.1 k  
5.1 kΩ  
ENABLE  
ENABLE  
5evice  
[ogic  
5evice  
[ogic  
FAULTn  
FAULTn  
Figure 27. Methods For Operating in Retry Mode  
Table 10. Fault Condition Summary  
ERROR  
REPORT  
CHARGE  
PUMP  
FAULT  
CONDITION  
H-BRIDGE  
Disabled  
Disabled  
Disabled  
Disabled  
INDEXER  
Operating  
Disabled  
V3P3  
RECOVERY  
VM undervoltage  
(UVLO2)  
VM < VUVLO2  
(max 6.4 V)  
VM > VUVLO2  
(max 6.5 V)  
nFAULT  
None  
Disabled  
Disabled  
Operating  
Operating  
Operating  
Operating  
Operating  
Operating  
Logic undervoltage  
(UVLO1)  
VM < VUVLO2  
(max 4.9 V)  
VM > VUVLO2  
(max 4.8 V)  
VCP undervoltage  
(CPUV)  
VCP < VCPUV  
(typ VM + 1.8 V)  
VCP > VCPUV  
(typ VM + 1.9 V)  
nFAULT  
nFAULT  
Operating  
Operating  
Thermal Shutdown  
(TSD)  
TJ > TTSD  
(min 150°C)  
TJ < TTSD - THYS  
(THYS typ 35°C)  
IOUT > IOCP  
(min 2.5 A)  
VxISEN > VOCP  
(min 0.9 V)  
ENABLE  
-or-  
tRETRY  
Overcurrent  
(OCP)  
nFAULT  
Disabled  
Operating  
Operating  
Operating  
Copyright © 2015–2017, Texas Instruments Incorporated  
29  
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
7.4 Device Functional Modes  
The DRV8880 internal logic, indexer, and charge pump are operating unless the nSLEEP pin is brought logic  
low. In sleep mode the charge pump is disabled, the H-bridge FETs are disabled Hi-Z, and the V3P3 regulator is  
disabled. tSLEEP must elapse after a falling edge on the nSLEEP pin before the device is in sleep mode. The  
DRV8880 is brought out of sleep mode automatically if nSLEEP is brought logic high. tWAKE must elapse before  
the outputs change state after wake-up.  
If the ENABLE pin is brought logic low, the H-bridge outputs are disabled, but the charge pump and internal logic  
will remian active. A rising edge on STEP will advance the indexer, but the outputs will not change state until  
ENABLE brought logic high.  
When VM falls below the VM undervoltage lockout threshold VUVLO2, the output driver and charge pump are  
disabled, but the internal logic and V3P3 remain active. In this mode, STEP inputs will advance the indexer, but  
the outputs will remain disabled. If VM falls below the logic undervoltage threshold VUVLO1, the internal logic is  
reset and the indexer will lose position.  
Table 11. Functional Modes Summary  
CONDITION  
H-BRIDGE  
CHARGE PUMP  
INDEXER  
V3P3  
6.5 V < VM < 45 V  
nSLEEP pin = 1  
ENABLE pin = 1  
Operating  
Operating  
Operating  
Operating  
Operating  
6.5 V < VM < 45 V  
nSLEEP pin = 1  
ENABLE pin = 0  
Disabled  
Disabled  
Disabled  
Operating  
Disabled  
Operating  
Disabled  
Operating  
Disabled  
5.0 V < VM < 45 V  
nSLEEP pin = 0  
Sleep mode  
VM undervoltage (UVLO2)  
Logic undervoltage (UVLO1)  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Operating  
Operating  
Operating  
Operating  
Disabled  
Operating  
Operating  
Operating  
Operating  
Operating  
Fault encountered VCP undervoltage (CPUV)  
Thermal shutdown (TSD)  
Operating  
Operating  
Operating  
Overcurrent (OCP)  
30  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV8880 is used in stepper control.  
8.2 Typical Application  
The following design procedure can be used to configure the DRV8880.  
5wë8880tít  
28  
27  
26  
2ꢀ  
24  
23  
22  
21  
20  
1ꢁ  
18  
17  
16  
1ꢀ  
1
Db5  
/t[  
/tI  
2
0.1 µF  
Çwv0  
Çwv1  
a0  
VM  
0.1 µF  
3
ë/t  
4
0.47 µF  
ëa  
a1  
!hÜÇ1  
!L{9b  
!hÜÇ2  
.hÜÇ2  
.L{9b  
.hÜÇ1  
ëa  
250 m  
6
Step  
{Ç9t  
Motor  
7
5Lw  
8
+
-
9b!.[9  
59/!ò0  
59/!ò1  
nC!Ü[Ç  
n{[99t  
ÇhCC  
250 mΩ  
10  
11  
12  
13  
14  
VM  
+
Db5  
100 µF  
0.1 µF  
10 kΩ  
!Ç9  
ë3t3  
ëw9C  
R1  
R2  
0.47 µF  
Figure 28. Typical Application Schematic  
8.2.1 Design Requirements  
Table 12 gives design input parameters for system design.  
Table 12. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
REFERENCE  
EXAMPLE VALUE  
24 V  
VM  
RL  
LL  
Motor winding resistance  
Motor winding inductance  
Motor full step angle  
0.8 /phase  
1.4 mH/phase  
1.8°/step  
θstep  
nm  
v
Target microstepping level  
Target motor speed  
1/8 step  
120 rpm  
Copyright © 2015–2017, Texas Instruments Incorporated  
31  
 
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
Table 12. Design Parameters (continued)  
DESIGN PARAMETER  
Target full-scale current  
REFERENCE  
EXAMPLE VALUE  
IFS  
1.5 A  
8.2.2 Detailed Design Procedure  
8.2.2.1 Stepper Motor Speed  
The first step in configuring the DRV8880 requires the desired motor speed and microstepping level. If the target  
application requires a constant speed, then a square wave with frequency ƒstep must be applied to the STEP pin.  
If the target motor speed is too high, the motor will not spin. Make sure that the motor can support the target  
speed.  
For a desired motor speed (v), microstepping level (nm), and motor full step angle (θstep),  
v (rpm) ì 360 (è / rot)  
step (è / step) ìnm (steps / microstep) ì 60 (s / min)  
ƒstep (steps / s) =  
q
(2)  
θstep can be found in the stepper motor data sheet or written on the motor itself.  
For the DRV8880, the microstepping level is set by the Mx pins and can be any of the settings in the table below.  
Higher microstepping will mean a smother motor motion and less audible noise, but will increase switching  
losses and require a higher ƒstep to achieve the same motor speed.  
Table 13. Microstepping Indexer Settings  
M1  
M0  
STEP MODE  
0
0
Full step (2-phase excitation) with 71%  
current  
0
1
1
0
1
1
0
1
Z
Z
Non-circular 1/2 step  
1/2 step  
1/4 step  
1/8 step  
1/16 step  
Example: Target 120 rpm at 1/8 microstep mode. The motor is 1.8°/step  
120 rpm ì 360è / rot  
ƒstep (steps / s) =  
= 3.2 kHz  
1.8è / step ì1/ 8 steps / microstep ì 60 s / min  
(3)  
8.2.2.2 Current Regulation  
In a stepper motor, the full-scale current (IFS) is the maximum current driven through either winding. This quantity  
will depend on the TRQ pins, the VREF analog voltage, and the sense resistor value (RSENSE). During stepping,  
IFS defines the current chopping threshold (ITRIP) for the maximum current step.  
VREF (V) ì TRQ (%) VREF (V) ì TRQ (%)  
IFS (A) =  
=
Av ì RSENSE (W)  
6.6 ì RSENSE (W)  
(4)  
TRQ is a DAC used to scale the output current. The current scalar value for different inputs is shown below.  
Table 14. Torque DAC Settings  
TRQ1  
TRQ0  
CURRENT SCALAR (TRQ)  
1
1
0
0
1
0
1
0
25%  
50%  
75%  
100%  
32  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
Example: If the desired full-scale current is 1.5 A  
Set RSENSE = 100 m, assume TRQ = 100%.  
VREF would have to be 0.99 V.  
Create a resistor divider from V3P3 (3.3 V) to set VREF 0.99 V.  
Set R2 = 10 k, set R1 = 22 kΩ  
Note that IFS must also follow the equation below in order to avoid saturating the motor. VM is the motor supply  
voltage, and RL is the motor winding resistance.  
VM (V)  
IFS (A) <  
RL (W) + 2 ì RDS(ON) (W) + RSENSE (W)  
(5)  
8.2.2.3 Decay Modes  
The DRV8880 supports several different decay modes: slow decay, fast decay, mixed decay, and AutoTune. The  
current through the motor windings is regulated using an adjustable fixed-time-off scheme. This means that after  
any drive phase, when a motor winding current has hit the current chopping threshold (ITRIP), the DRV8880 will  
place the winding in one of the decay modes for tOFF. After tOFF, a new drive phase starts. For fixed decay modes  
(slow, fast, and mixed), the best setting can be determined by operating the motor and choosing the best setting.  
8.2.2.4 Sense Resistor  
For optimal performance, it is important for the sense resistor to be:  
Surface-mount  
Low inductance  
Rated for high enough power  
Placed closely to the motor driver  
2
The power dissipated by the sense resistor equals Irms × R. For example, if the rms motor current is 1.4A and a  
250 msense resistor is used, the resistor will dissipate 1.4 A2 × 0.25 = 0.49 W. The power quickly increases  
with higher current levels.  
Resistors typically have a rated power within some ambient temperature range, along with a derated power curve  
for high ambient temperatures. When a PCB is shared with other components generating heat, margin should be  
added. It is always best to measure the actual sense resistor temperature in a final system, along with the power  
MOSFETs, as those are often the hottest components.  
Because power resistors are larger and more expensive than standard resistors, it is common practice to use  
multiple standard resistors in parallel, between the sense node and ground. This distributes the current and heat  
dissipation.  
Copyright © 2015–2017, Texas Instruments Incorporated  
33  
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
8.2.3 Application Curves  
Figure 29. Mixed Decay 30% Fast on Increasing and  
Decreasing Steps  
Figure 30. Slow Decay on Increasing and Decreasing  
Steps  
Figure 31. Slow Decay on Increasing and Mixed Decay  
30% Fast on Decreasing Steps  
Figure 32. AutoTune  
Figure 33. Mixed Decay 30% Fast on Increasing and  
Decreasing Steps  
Figure 34. AutoTune  
34  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
9 Power Supply Recommendations  
The DRV8880 is designed to operate from an input voltage supply (VM) range between 6.5 V and 45 V. The  
device has an absolute maximum rating of 50 V. A 0.1-µF ceramic capacitor rated for VM must be placed at  
each VM pin as close to the DRV8880 as possible. In addition, a bulk capacitor must be included on VM.  
9.1 Bulk Capacitance Sizing  
Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.  
The amount of local capacitance needed depends on a variety of factors, including:  
The highest current required by the motor system  
The power supply’s capacitance and ability to source current  
The amount of parasitic inductance between the power supply and motor system  
The acceptable voltage ripple  
The type of motor used (brushed DC, brushless DC, stepper)  
The motor braking method  
The inductance between the power supply and motor drive system will limit the rate current can change from the  
power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or  
dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage  
remains stable and high current can be quickly supplied.  
The data sheet generally provides a recommended value, but system-level testing is required to determine the  
appropriate sized bulk capacitor.  
The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases  
when the motor transfers energy to the supply.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
Motor  
Driver  
+
œ
GND  
Local  
IC Bypass  
Bulk Capacitor  
Capacitor  
Figure 35. Setup of Motor Drive System With External Power Supply  
Copyright © 2015–2017, Texas Instruments Incorporated  
35  
DRV8880  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Each VM terminal must be bypassed to GND using a low-ESR ceramic bypass capacitors with recommended  
values of 0.1 μF rated for VM. These capacitors should be placed as close to the VM pins as possible with a  
thick trace or ground plane connection to the device GND pin.  
The VM pin must be bypassed to ground using a bulk capacitor rated for VM. This component may be an  
electrolytic.  
A low-ESR ceramic capacitor must be placed in between the CPL and CPH pins. A value of 0.1 μF rated for VM  
is recommended. Place this component as close to the pins as possible.  
A low-ESR ceramic capacitor must be placed in between the VM and VCP pins. A value of 0.47 μF rated for 16  
V is recommended. Place this component as close to the pins as possible.  
Bypass V3P3 to ground with a ceramic capacitor rated 6.3 V. Place this bypassing capacitor as close to the pin  
as possible.  
The current sense resistors should be placed as close as possible to the device pins in order to minimize trace  
inductance between the pin and resistor.  
10.2 Layout Example  
+
0.1 µF  
CPL  
CPH  
GND  
TRQ0  
TRQ1  
M0  
0.1 µF  
VCP  
VM  
0.47 µF  
AOUT1  
AISEN  
AOUT2  
BOUT2  
BISEN  
BOUT1  
VM  
M1  
STEP  
DIR  
ENABLE  
DECAY0  
DECAY1  
nFAULT  
nSLEEP  
TOFF  
0.1 µF  
GND  
ATE  
VREF  
V3P3  
0.1 µF  
Figure 36. Layout Recommendation  
36  
版权 © 2015–2017, Texas Instruments Incorporated  
DRV8880  
www.ti.com.cn  
ZHCSDY8C JUNE 2015REVISED AUGUST 2017  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
德州仪器 (TI)PowerPAD™ 热增强型封装》应用报告  
德州仪器 (TI)PowerPAD™ 速成》应用报告  
德州仪器 (TI)《电流再循环和衰减模式》应用报告  
德州仪器 (TI)《计算电机驱动器的功耗》应用报告  
德州仪器 (TI)《了解电机驱动器电流额定值》应用报告  
11.2 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
AutoTune, PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2015–2017, Texas Instruments Incorporated  
37  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8880PWP  
DRV8880PWPR  
DRV8880RHRR  
DRV8880RHRT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
WQFN  
PWP  
PWP  
RHR  
RHR  
28  
28  
28  
28  
50  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DRV8880  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
DRV8880  
DRV8880  
DRV8880  
WQFN  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Oct-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8880PWPR  
DRV8880RHRR  
DRV8880RHRT  
HTSSOP PWP  
28  
28  
28  
2000  
3000  
250  
330.0  
330.0  
180.0  
16.4  
12.4  
12.4  
6.9  
3.8  
3.8  
10.2  
5.8  
1.8  
1.2  
1.2  
12.0  
8.0  
16.0  
12.0  
12.0  
Q1  
Q1  
Q1  
WQFN  
WQFN  
RHR  
RHR  
5.8  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8880PWPR  
DRV8880RHRR  
DRV8880RHRT  
HTSSOP  
WQFN  
PWP  
RHR  
RHR  
28  
28  
28  
2000  
3000  
250  
350.0  
346.0  
210.0  
350.0  
346.0  
185.0  
43.0  
33.0  
35.0  
WQFN  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
PWP HTSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DRV8880PWP  
28  
50  
530  
10.2  
3600  
3.5  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
PWP 28  
4.4 x 9.7, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224765/B  
www.ti.com  
PACKAGE OUTLINE  
PWP0028C  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
26X 0.65  
28  
1
2X  
9.8  
9.6  
8.45  
NOTE 3  
14  
15  
0.30  
0.19  
28X  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.95 MAX  
NOTE 5  
14  
15  
2X 0.2 MAX  
NOTE 5  
0.25  
GAGE PLANE  
1.2 MAX  
5.18  
4.48  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
28  
3.1  
2.4  
4223582/A 03/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0028C  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(3.1)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
28X (1.5)  
1
28X (0.45)  
28  
SEE DETAILS  
(R0.05) TYP  
(5.18)  
(0.6)  
26X (0.65)  
SYMM  
(9.7)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(1.2) TYP  
(
0.2) TYP  
VIA  
14  
15  
(1.2) TYP  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4223582/A 03/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0028C  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.1)  
BASED ON  
0.125 THICK  
STENCIL  
28X (1.5)  
METAL COVERED  
BY SOLDER MASK  
1
28X (0.45)  
28  
(R0.05) TYP  
26X (0.65)  
SYMM  
(5.18)  
BASED ON  
0.125 THICK  
STENCIL  
15  
14  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.47 X 5.79  
3.10 X 5.18 (SHOWN)  
2.83 X 4.73  
0.125  
0.15  
0.175  
2.62 X 4.38  
4223582/A 03/2017  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RHR 28  
3.5 x 5.5, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4210249/B  
www.ti.com  
PACKAGE OUTLINE  
RHR0028A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
5.6  
5.4  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
2±0.1  
2X 1.5  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
11  
14  
24X 0.5  
10  
15  
2X  
4.5  
4±0.1  
SEE TERMINAL  
DETAIL  
1
24  
0.3  
28X  
28  
25  
0.5  
0.2  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A  
B
28X  
0.3  
0.05  
4219075/A 11/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHR0028A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2)  
SYMM  
28X (0.6)  
28X (0.25)  
25  
28  
1
24  
24X (0.5)  
(0.66)  
(5.3)  
TYP  
SYMM  
(4)  
(
0.2) TYP  
VIA  
15  
10  
11  
14  
(0.75) TYP  
(3.3)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219075/A 11/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHR0028A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.55) TYP  
28  
25  
28X (0.6)  
28X (0.25)  
1
24  
24X (0.5)  
SYMM  
(1.32)  
TYP  
(5.3)  
METAL  
TYP  
6X (1.12)  
15  
10  
14  
11  
6X (0.89)  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4219075/A 11/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DRV8881

具有电流调节和智能调优功能的 45V、2A 双极双步进或四路 H 桥电机驱动器
TI

DRV8881EPWP

具有电流调节和智能调优功能的 45V、2A 双极双步进或四路 H 桥电机驱动器 | PWP | 28 | -40 to 125
TI

DRV8881EPWPR

具有电流调节和智能调优功能的 45V、2A 双极双步进或四路 H 桥电机驱动器 | PWP | 28 | -40 to 125
TI

DRV8881ERHRR

具有电流调节和智能调优功能的 45V、2A 双极双步进或四路 H 桥电机驱动器 | RHR | 28 | -40 to 125
TI

DRV8881ERHRT

具有电流调节和智能调优功能的 45V、2A 双极双步进或四路 H 桥电机驱动器 | RHR | 28 | -40 to 125
TI

DRV8881PPWP

具有电流调节和智能调优功能的 45V、2A 双极双步进或四路 H 桥电机驱动器 | PWP | 28 | -40 to 125
TI

DRV8881PPWPR

具有电流调节和智能调优功能的 45V、2A 双极双步进或四路 H 桥电机驱动器 | PWP | 28 | -40 to 125
TI

DRV8881PRHRR

具有电流调节和智能调优功能的 45V、2A 双极双步进或四路 H 桥电机驱动器 | RHR | 28 | -40 to 125
TI

DRV8881PRHRT

具有电流调节和智能调优功能的 45V、2A 双极双步进或四路 H 桥电机驱动器 | RHR | 28 | -40 to 125
TI

DRV8884

具有电流调节功能和 1/16 微步进的 37V、1A 双极步进电机驱动器  
TI

DRV8884PWP

具有电流调节功能和 1/16 微步进的 37V、1A 双极步进电机驱动器   | PWP | 24 | -40 to 125
TI

DRV8884PWPR

具有电流调节功能和 1/16 微步进的 37V、1A 双极步进电机驱动器   | PWP | 24 | -40 to 125
TI