DRV8881PRHRR [TI]

具有电流调节和智能调优功能的 45V、2A 双极双步进或四路 H 桥电机驱动器 | RHR | 28 | -40 to 125;
DRV8881PRHRR
型号: DRV8881PRHRR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电流调节和智能调优功能的 45V、2A 双极双步进或四路 H 桥电机驱动器 | RHR | 28 | -40 to 125

电机 驱动 驱动器
文件: 总50页 (文件大小:2306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
DRV8881 2.5A 双路 H 桥电机驱动器  
1 特性  
2 应用  
1
双路 H 桥电机驱动器  
自动取款机和验钞机  
视频安保摄像机  
双极步进电机驱动器  
多功能打印机和文档扫描仪  
工厂自动化和机器人  
舞台照明设备  
单路或双路刷式直流电机驱动器  
6.5V 45V 的工作电源电压范围  
两个控制接口选项  
PHASE/ENABLE (DRV8881E)  
PWM (DRV8881P)  
3 说明  
DRV8881 是一款面向工业应用的双极步进或刷式直流  
电机驱动器。 该器件的输出级由两个 N 沟道功率金属  
氧化物半导体场效应晶体管 (MOSFET) H 桥驱动器组  
成。 DRV8881 的每个 H 桥能够驱动高达 2.5A 的峰值  
电流或 1.4A 均方根 (rms) 电流(采用适当的印刷电路  
(PCB) 接地层进行散热,电压为 24VTA =  
25°C)。  
多种衰减模式,可为任何电机提供支持  
AutoTune™(仅限 DRV8881E)  
混合衰减  
慢速衰减  
快速衰减  
平滑运动的自适应消隐时间  
并行工作模式(仅限 DRV8881P)  
可配置关断时间脉宽调制 (PWM) 斩波  
AutoTune™ 可自动调整电机以实现最佳电流调节性  
能,并且能够对电机变化和老化问题进行补偿。  
DRV8881E 上提供 AutoTune 功能。 此外,该器件还  
提供慢速、快速和混合三种衰减模式。  
1020 30μs 关断时间  
3.3V10mA 低压降 (LDO) 稳压器  
低电流休眠模式 (28μA)  
小型封装尺寸  
该器件可通过 PH/EN (DRV8881E) PWM  
(DRV8881P) 引脚提供一个简单的控制接口。 内置的  
感测放大器能够实现可调节的电流控制。 凭借专用的  
nSLEEP 引脚,该器件可提供一种低功耗的休眠模  
式,从而实现超低静态电流待机。  
28 引脚散热薄型小外形尺寸 (HTSSOP)  
(PowerPAD) 封装  
28 引脚超薄型四方扁平无引线 (WQFN)  
(PowerPAD) 封装  
空白  
保护特性  
该器件内置以下保护功能:欠压、电荷泵故障、过流、  
短路以及过热保护。 故障条件通过 nFAULT 引脚指  
示。  
VM 欠压闭锁 (UVLO)  
电荷泵电压 (CPUV)  
过流保护 (OCP)  
器件信息(1)  
自动过流保护 (OCP) 重试  
热关断 (TSD)  
器件型号  
DRV8881  
封装  
HTSSOP (28)  
WQFN (28)  
封装尺寸(标称值)  
9.70mm × 6.40mm  
5.50mm × 3.50mm  
故障条件指示引脚 (nFAULT)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSD19  
 
 
 
 
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
DRV8881E 简化系统图  
DRV8881P 简化系统图  
6.5 to 45 V  
6.5 to 45 V  
APH/AEN  
BPH/BEN  
DRV8881E  
AIN1/AIN2  
DRV8881P  
STEPPER  
STEPPER  
BDC  
BDC  
2.5 A  
2.5 A  
2.5 A  
2.5 A  
BIN1/BIN2  
Dual  
H-Bridge  
Motor Driver  
Dual  
H-Bridge  
Motor Driver  
Current scalar  
Decay mode  
Current scalar  
Decay mode  
+
-
+
-
BDC  
BDC  
µš}dµvꢀ¡ꢁ  
Parallel Mode  
2
版权 © 2015, Texas Instruments Incorporated  
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
目录  
7.4 Device Functional Modes........................................ 27  
Application and Implementation ........................ 28  
8.1 Application Information............................................ 28  
8.2 Typical Applications ................................................ 28  
Power Supply Recommendations...................... 34  
9.1 Bulk Capacitance Sizing ......................................... 34  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 8  
6.6 Typical Characteristics............................................ 10  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagrams ..................................... 13  
7.3 Feature Description................................................. 15  
10 Layout................................................................... 35  
10.1 Layout Guidelines ................................................. 35  
10.2 Layout Example .................................................... 35  
11 器件和文档支持 ..................................................... 36  
11.1 文档支持................................................................ 36  
11.2 社区资源................................................................ 36  
11.3 ....................................................................... 36  
11.4 静电放电警告......................................................... 36  
11.5 Glossary................................................................ 36  
12 机械、封装和可订购信息....................................... 36  
7
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (June 2015) to Revision A  
Page  
已将器件状态更新为量产数据 ................................................................................................................................................. 1  
Updated from "PowerPAD" to "thermal pad" ......................................................................................................................... 5  
Corrected ATE pin number for RHR package to 23............................................................................................................... 5  
Copyright © 2015, Texas Instruments Incorporated  
3
 
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
5 Pin Configuration and Functions  
PWP Package  
28-Pin HTSSOP  
Top View DRV8881E  
RHR Package  
28-Pin WQFN  
Top View DRV8881E  
1
2
28  
27  
26  
CPL  
CPH  
GND  
TRQ0  
TRQ1  
ATE  
3
VCP  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VCP  
VM  
TRQ1  
ATE  
4
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VM  
5
AOUT1  
AISEN  
AOUT2  
BOUT2  
BISEN  
BOUT1  
VM  
APH  
3
AOUT1  
AISEN  
AOUT2  
BOUT2  
BISEN  
BOUT1  
VM  
APH  
4
6
AEN  
AEN  
5
BPH  
7
BPH  
6
BEN  
8
BEN  
7
ADECAY  
BDECAY  
nFAULT  
nSLEEP  
9
ADECAY  
BDECAY  
nFAULT  
nSLEEP  
TOFF  
V3P3  
8
10  
11  
12  
13  
14  
9
10  
GND  
GND  
AVREF  
BVREF  
PWP Package  
28-Pin HTSSOP  
Top View DRV8881P  
RHR Package  
28-Pin WQFN  
Top View DRV8881P  
1
2
28  
27  
26  
CPL  
CPH  
GND  
TRQ0  
TRQ1  
PARA  
AIN1  
3
VCP  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VCP  
VM  
TRQ1  
4
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VM  
PARA  
5
AOUT1  
AISEN  
AOUT2  
BOUT2  
BISEN  
BOUT1  
VM  
3
AOUT1  
AISEN  
AOUT2  
BOUT2  
BISEN  
BOUT1  
VM  
AIN1  
4
6
AIN2  
AIN2  
5
BIN1  
7
BIN1  
6
BIN2  
8
BIN2  
7
ADECAY  
BDECAY  
nFAULT  
nSLEEP  
9
ADECAY  
BDECAY  
nFAULT  
nSLEEP  
TOFF  
8
10  
11  
12  
13  
14  
9
10  
GND  
GND  
AVREF  
BVREF  
V3P3  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
CPL  
PWP  
RHR  
27  
1
2
3
Connect a VM rated, 0.1-µF ceramic capacitor between CPH  
and CPL  
PWR Charge pump output  
Charge pump output  
PWR Power supply  
CPH  
VCP  
28  
1
O
Connect a 16-V, 0.47-µF ceramic capacitor to VM  
Connect to motor supply voltage; bypass to GND with two 0.1  
µF (for each pin) plus one bulk capacitor rated for VM  
VM  
4, 11  
2, 9  
AOUT1  
AOUT2  
5
7
3
5
H-bridge outputs, drives one winding of a stepper motor  
O
O
O
O
Winding A output  
Winding A sense  
Winding B output  
Winding B sense  
Requires sense resistor to GND; value sets peak current in  
winding A  
AISEN  
6
4
BOUT2  
BOUT1  
8
6
8
H-bridge outputs, drives one winding of a stepper motor  
10  
Requires sense resistor to GND; value sets peak current in  
winding B  
BISEN  
GND  
9
7
12, 28  
10, 26  
PWR Device ground  
Must be connected to ground  
4
Copyright © 2015, Texas Instruments Incorporated  
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
Pin Functions (continued)  
PIN  
PWP  
TYPE  
DESCRIPTION  
NAME  
RHR  
Voltage on this pin sets the full scale chopping current in H-  
bridge A  
AVREF  
13  
14  
11  
I
Reference voltage input  
Voltage on this pin sets the full scale chopping current in H-  
bridge B  
BVREF  
12  
Internal supply voltage; bypass to GND with a 6.3-V, 0.47-µF  
ceramic capacitor; up to 10-mA external load  
V3P3  
15  
16  
17  
13  
14  
15  
Internal regulator  
TOFF  
I
I
Decay mode off time set  
Sleep mode input  
Sets the off-time during current chopping; tri-level pin  
Logic high to enable device; logic low to enter low-power sleep  
mode; internal pulldown  
nSLEEP  
Pulled logic low with fault condition; open-drain output requires  
an external pullup  
nFAULT  
BDECAY  
ADECAY  
18  
19  
20  
16  
17  
18  
O
I
Fault indication pin  
Set the decay mode for bridge B; see Decay Modes ; tri-level  
pin  
Decay mode setting pins  
Set the decay mode for bridge A; see Decay Modes ; tri-level  
pin  
TRQ1  
TRQ0  
PAD  
26  
27  
24  
25  
Scales the current by 100%, 75%, 50%, or 25%; internal  
pulldown  
I
Torque DAC current scalar  
PAD  
PAD  
PWR Thermal pad  
Must be connected to ground  
DRV8881E PH/EN Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
BEN  
PWP  
21  
RHR  
19  
I
I
I
I
Bridge B enable input  
Logic high enables bridge B; logic low disables the bridge Hi-Z  
Logic high drives current from BOUT1 BOUT2  
BPH  
22  
20  
Bridge B phase input  
Bridge A enable input  
Bridge A phase input  
AEN  
23  
21  
Logic high enables bridge A; logic low disables the bridge Hi-Z  
Logic high drives current from AOUT1 AOUT2  
APH  
24  
22  
Logic high enables AutoTune operation; when logic low, the  
decay mode is set through the DECAYx pins; AutoTune must  
be pulled high prior to power-up or coming out of sleep, or else  
tied to V3P3 in order to enable AutoTune; internal pulldown;  
see AutoTune  
ATE  
25  
23  
I
AutoTune enable pin  
DRV8881P PWM Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
BIN2  
PWP  
21  
RHR  
19  
I
Bridge B PWM input  
Logic controls the state of H-bridge B; internal pulldown  
BIN1  
22  
20  
AIN2  
23  
21  
I
I
Bridge A PWM input  
Parallel mode input  
Logic controls the state of H-bridge A; internal pulldown  
Logic high enables parallel mode  
AIN1  
24  
22  
PARA  
25  
23  
Copyright © 2015, Texas Instruments Incorporated  
5
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
External Components  
COMPONENT  
CVM1  
PIN 1  
VM  
PIN 2  
RECOMMENDED  
GND  
GND  
0.1-µF ceramic capacitor rated for VM per VM pin  
CVM1  
VM  
Bulk electrolytic capacitor rated for VM, recommended value is 100  
µF, see Bulk Capacitance Sizing  
CVCP  
CSW  
VCP  
CPH  
V3P3  
VM  
CPL  
16 V, 0.47 µF ceramic capacitor  
0.1-µF X7R capacitor rated for VM  
6.3 V, 0.47-µF ceramic capacitor  
> 5 kΩ  
CV3P3  
RnFAULT  
RAISEN  
RBISEN  
GND  
(1)  
VMCU  
nFAULT  
GND  
AISEN  
BISEN  
Optional sense resistor, see Sense Resistor  
GND  
(1) VMCU is not a pin on the DRV8881, but a supply voltage pullup is required for open-drain output nFAULT; nFAULT may be pulled up to  
V3P3  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range referenced with respect to GND (unless otherwise noted)  
(1)  
MIN  
–0.3  
0
MAX  
50  
UNIT  
V
Power supply voltage (VM)  
Power supply voltage ramp rate (VM)  
Charge pump voltage (VCP, CPH)  
Charge pump negative switching pin (CPL)  
Internal regulator voltage (V3P3)  
Internal regulator current output (V3P3)  
2
V/µs  
V
–0.3  
–0.3  
–0.3  
0
VM + 12  
VM  
V
3.8  
V
10  
mA  
Control pin voltage (APH, AEN, BPH, BEN, AIN1, AIN2, BIN1, BIN2, nSLEEP,  
nFAULT, ADECAY, BDECAY, TRQ0, TRQ1, ATE, PARA)  
–0.3  
7.0  
V
Open drain output current (nFAULT)  
0
10  
mA  
V
Reference input pin voltage (AVREF, BVREF)  
–0.3  
–0.7  
–0.55  
V3P3 + 0.5  
VM + 0.7  
0.55  
Continuous phase node pin voltage (AOUT1, AOUT2, BOUT1, BOUT2)  
V
(2)  
Continuous shunt amplifier input pin voltage (AISEN, BISEN)  
V
Peak drive current (AOUT1, AOUT2, BOUT1, BOUT2, AISEN, BISEN)  
Operating junction temperature, TJ  
Internally limited  
A
–40  
–65  
150  
150  
°C  
°C  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Transients of ±1 V for less than 25 ns are acceptable  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
(1)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001  
Charged-device model (CDM), per JEDEC specification JESD22-C101  
V(ESD)  
Electrostatic discharge  
V
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6
Copyright © 2015, Texas Instruments Incorporated  
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
45  
UNIT  
V
VM  
Power supply voltage range  
6.5  
VIN  
Digital pin voltage range  
0
5.3  
V
(1)  
VREF  
ƒPWM  
IV3P3  
Irms  
Reference rms voltage range (AVREF, BVREF)  
Applied PWM signal (APH, AEN, BPH, BEN, AIN1, AIN2, BIN1, BIN2)  
V3P3 external load current  
0.3  
V3P3  
100  
V
0
0
kHz  
mA  
A
(2)  
10  
Motor rms current per H-bridge  
0
1.4  
TA  
Operating ambient temperature  
–40  
125  
°C  
(1) Operational at VREF 0 to 0.3 V, but accuracy is degraded  
(2) Power dissipation and thermal limits must be observed  
6.4 Thermal Information  
DRV8881  
(1)  
THERMAL METRIC  
PWP (HTSSOP)  
RHR (WQFN)  
UNIT  
28 PINS  
33.1  
16.6  
14.4  
0.4  
28 PINS  
37.5  
23.0  
8.0  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
14.2  
1.3  
7.8  
RθJC(bot)  
1.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2015, Texas Instruments Incorporated  
7
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VM, V3P3)  
VM  
VM operating voltage  
6.5  
45  
18  
V
nSLEEP high; ENABLE high; no motor  
load; VM = 24 V  
IVM  
VM operating supply current  
8
mA  
nSLEEP low; VM = 24 V; TA = 25°C  
28  
IVMQ  
VM sleep mode supply current  
μA  
nSLEEP low; VM = 24 V; TA = 125°C  
77  
(1)  
tSLEEP  
tWAKE  
tON  
Sleep time  
nSLEEP low to sleep mode  
nSLEEP high to output transition  
VM > VUVLO to output transition  
External load 0 to 10 mA  
100  
1.5  
1.5  
3.6  
μs  
ms  
ms  
V
Wake-up time  
Turn-on time  
V3P3  
Internal regulator voltage  
2.9  
3.3  
CHARGE PUMP (VCP, CPH, CPL)  
VM > 12 V  
VM + 11.5  
VCP  
VCP operating voltage  
V
VUVLO < VM < 12 V  
2×VM – 1.5  
Charge pump switching  
frequency  
(1)  
ƒVCP  
VM > VUVLO  
175  
715  
kHz  
LOGIC-LEVEL INPUTS (APH, AEN, BPH, BEN, AIN1, AIN2, BIN1, BIN2, nSLEEP, TRQ0, TRQ1, PARA)  
VIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic low current  
Input logic high current  
Pulldown resistance  
0
1.6  
100  
–1  
0.6  
5.3  
V
V
VIH  
VHYS  
IIL  
mV  
μA  
μA  
kΩ  
VIN = 0 V  
1
IIH  
VIN = 5.0 V  
50  
100  
RPD  
Measured between the pin and GND  
100  
xPH, xEN, xINx input to current  
change  
tPD  
Propagation delay  
450  
ns  
TRI-LEVEL INPUTS (ADECAY, BDECAY, TOFF)  
VIL  
VIZ  
VIH  
VHYS  
IIL  
Tri-level input logic low voltage  
Tri-level input Hi-Z voltage  
Tri-level input logic high voltage  
Tri-level input hysteresis  
0
0.6  
5.3  
V
V
1.1  
1.6  
100  
–55  
V
mV  
μA  
μA  
μA  
kΩ  
kΩ  
Tri-level input logic low current  
Tri-level input Hi-Z current  
Tri-level input logic high current  
Tri-level pulldown resistance  
Tri-level pullup resistance  
VIN = 0 V  
–35  
IIZ  
VIN = 1.3 V  
15  
85  
40  
45  
IIH  
VIN = 3.3 V  
RPD  
RPU  
Measured between the pin and GND  
Measured between V3P3 and the pin  
CONTROL OUTPUTS (nFAULT)  
VOL  
IOH  
Output logic low voltage  
Output logic high leakage  
IO = 4 mA  
0.5  
1
V
External pullup resistor to 3.3 V  
–1  
μA  
MOTOR DRIVER OUTPUTS (AOUT1, AOUT2, BOUT1, BOUT2)  
VM = 24 V, I = 1 A, TA = 25°C  
330  
400  
430  
500  
300  
370  
370  
450  
(1)  
VM = 24 V, I = 1 A, TA = 125°C  
VM = 6.5 V, I = 1 A, TA = 25°C  
VM = 6.5 V, I = 1 A, TA = 125°C  
VM = 24 V, I = 1 A, TA = 25°C  
VM = 24 V, I = 1 A, TA = 125°C  
VM = 6.5 V, I = 1 A, TA = 25°C  
VM = 6.5 V, I = 1 A, TA = 125°C  
440  
560  
400  
490  
RDS(ON)  
High-side FET on resistance  
Low-side FET on resistance  
mΩ  
mΩ  
(1)  
(1)  
RDS(ON)  
(1)  
(1) Specified by design and characterization data  
8
Copyright © 2015, Texas Instruments Incorporated  
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VM = 24 V, 50 Ω load from xOUTx to  
GND  
tRISE  
tFALL  
Output rise time  
70  
ns  
VM = 24 V, 50 Ω load from VM to  
xOUTx  
Output fall time  
70  
ns  
(2)  
tDEAD  
Vd  
Output dead time  
200  
0.7  
ns  
V
Body diode forward voltage  
IOUT = 0.5 A  
1
PWM CURRENT CONTROL (VREF, AISEN, BISEN)  
TRQ at 100%, VREF = 3.3 V  
500  
375  
250  
125  
6.58  
6.56  
6.51  
6.38  
20  
TRQ at 75%, VREF = 3.3 V  
TRQ at 50%, VREF = 3.3 V  
TRQ at 25%, VREF = 3.3 V  
Torque = 100% (TRQ0 = 0, TRQ1 = 0)  
Torque = 75% (TRQ0 = 1, TRQ1 = 0)  
Torque = 50% (TRQ0 = 0, TRQ1 = 1)  
Torque = 25% (TRQ0 = 1, TRQ1 = 1)  
TOFF logic low  
xISENSE trip voltage, full scale  
current step  
VTRIP  
mV  
6.25  
6.2  
6.91  
6.92  
6.94  
6.93  
AV  
Amplifier attenuation  
PWM off-time  
V/V  
μs  
6.09  
5.83  
tOFF  
TOFF logic high  
30  
TOFF Hi-Z  
10  
1.8  
1.5  
tBLANK  
PWM blanking time  
See Table 6 for details  
µs  
1.2  
0.9  
PROTECTION CIRCUITS  
VM falling; UVLO report  
VM rising; UVLO recovery  
Rising to falling threshold  
VCP falling; CPUV report  
VCP rising; CPUV recovery  
Rising to falling threshold  
Current through any FET  
Voltage at AISEN or BISEN  
5.8  
6.1  
6.4  
6.5  
VUVLO  
VM undervoltage lockout  
V
mV  
V
VUVLO,HYS Undervoltage hysteresis  
100  
VM + 1.8  
VM + 1.9  
VCPUV  
Charge pump undervoltage  
VCPUV,HYS CP undervoltage hysteresis  
50  
2.5  
0.9  
mV  
A
IOCP  
Overcurrent protection trip level  
Sense pin overcurrent trip level  
Overcurrent deglitch time  
3.6  
1.25  
2
VOCP  
tOCP  
V
μs  
ms  
°C  
°C  
tRETRY  
Overcurrent retry time  
0.5  
2
(2)  
TTSD  
THYS  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
Die temperature TJ  
Die temperature TJ  
150  
(2)  
35  
(2) Specified by design and characterization data  
Copyright © 2015, Texas Instruments Incorporated  
9
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
6.6 Typical Characteristics  
Over recommended operating conditions (unless otherwise noted)  
6.5  
6.45  
6.4  
6.35  
6.3  
6.25  
6.2  
6.35  
6.3  
6.15  
6.1  
6.25  
6.2  
6.15  
6.1  
6.05  
6
6.05  
6
5.95  
5.9  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
5.95  
5.85  
5.8  
5.9  
VM = 24 V  
VM = 12 V  
5.85  
5.8  
5.75  
5
10  
15  
20  
25  
30  
35  
40  
45  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage VM (V)  
Ambient Temperature TA (qC)  
D001  
D002  
Figure 1. Supply Current over VM  
Figure 2. Supply Current over Temperature  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
25.5  
25  
24.5  
24  
23.5  
23  
22.5  
22  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
VM = 24 V  
VM = 12 V  
21.5  
6
21  
6
9
12  
15  
18  
21  
24  
27  
30  
33  
36  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage VM (V)  
Ambient Temperature TA (qC)  
D003  
D004  
Figure 3. Sleep Current over VM  
Figure 4. Sleep Current over Temperature  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
550  
500  
450  
400  
350  
300  
250  
200  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage VM (V)  
Ambient Temperature TA (qC)  
D005  
D006  
Figure 5. High-Side RDS(ON) over VM  
Figure 6. High-Side RDS(ON) over Temperature (VM = 12 V)  
10  
Copyright © 2015, Texas Instruments Incorporated  
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
Typical Characteristics (continued)  
Over recommended operating conditions (unless otherwise noted)  
600  
480  
450  
420  
390  
360  
330  
300  
270  
240  
210  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
550  
500  
450  
400  
350  
300  
250  
200  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage VM (V)  
Ambient Temperature TA (qC)  
D007  
D008  
Figure 7. Low-Side RDS(ON) over VM  
Figure 8. Low-Side RDS(ON) over Temperature (VM = 12 V)  
3.36  
0.5  
TRQ = 00  
TRQ = 01  
TRQ = 10  
TRQ = 11  
0.45  
0.4  
3.355  
3.35  
0.35  
0.3  
3.345  
3.34  
0.25  
0.2  
3.335  
0.15  
0.1  
3.33  
3.325  
3.32  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0.05  
0
0
1
2
3
4
5
6
7
8
9
10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VREF Pin Voltage (V)  
V3P3 Load (mA)  
D009  
D010  
Figure 9. xISEN Trip Voltage over VREF Input  
Figure 10. V3P3 Regulator over Load (VM = 24 V)  
Copyright © 2015, Texas Instruments Incorporated  
11  
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DRV8881 is an integrated motor driver solution for bipolar stepper motors or single/dual brushed-DC motors.  
The device integrates two NMOS H-bridges and current regulation circuitry. The DRV8881 can be powered with  
a supply voltage between 6.5 and 45 V, and is capable of providing an output current up to 2.5 A peak or 1.4 A  
rms per H-bridge. Actual operable rms current will depend on ambient temperature, supply voltage, and PCB  
ground plane size.  
A simple PH/EN (DRV8881E) or PWM (DRV8881P) interface allows easy interfacing to the controller circuit.  
The current regulation is highly configurable, with several decay modes of operation. The decay mode can be  
selected as a fixed slow, mixed, or fast decay.  
In addition, an AutoTune mode can be used which automatically adjusts the decay setting to minimize current  
ripple while still reacting quickly to step changes. This feature greatly simplifies stepper driver integration into a  
motor drive system. AutoTune is only available on the DRV8881E.  
The PWM off-time, tOFF, can be adjusted to 10, 20, or 30 μs.  
An adaptive blanking time feature automatically scales the minimum drive time with output current. This helps  
alleviate current waveform distortion by limiting the drive time at low-currents.  
A torque DAC feature allows the controller to scale the output current without needing to scale the analog  
reference voltage inputs AVREF and BVREF. The torque DAC is accessed using digital input pins. This allows  
the controller to save power by decreasing the current consumption when not required.  
In the DRV8881P, a parallel mode allows the user to parallel the two H-bridge outputs in order to double the  
current capacity.  
A low-power sleep mode is included which allows the system to save power when not driving the motor.  
12  
Copyright © 2015, Texas Instruments Incorporated  
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
7.2 Functional Block Diagrams  
VM  
+
0.1 µF  
0.1 µF  
bulk  
VM  
VM  
VM  
VM  
Power  
0.47 µF  
0.1 µF  
VCP  
CPH  
CPL  
AutoTune  
AOUT1  
+
Charge  
Pump  
Off-  
time  
PWM  
Gate  
Drive  
Step  
Motor  
VM  
BDC  
AOUT2  
-
V3P3  
10 mA  
3.3-V LDO  
0.47 µF  
+
-
APH  
AEN  
BPH  
BEN  
AISEN  
RSENSE  
+
Core Logic  
-
TRQ[1:0]  
AVREF  
1/Av  
nSLEEP  
ATE  
Control  
Inputs  
VM  
TRQ[1:0]  
ADECAY  
BDECAY  
TOFF  
V3P3  
BOUT1  
BOUT2  
V3P3  
V3P3  
Off-  
time  
PWM  
VM  
Gate  
Drive  
BDC  
AVREF  
BVREF  
Protection  
Analog  
Inputs  
Overcurrent  
BISEN  
RSENSE  
+
Undervoltage  
Thermal  
nFAULT  
Output  
-
TRQ[1:0]  
BVREF  
1/Av  
GND GND PPAD  
Figure 11. DRV8881E Block Diagram  
Copyright © 2015, Texas Instruments Incorporated  
13  
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
Functional Block Diagrams (continued)  
VM  
+
0.1 µF  
0.1 µF  
bulk  
VM  
VM  
VM  
VM  
Power  
0.47 µF  
0.1 µF  
VCP  
CPH  
CPL  
Parallel Mode  
AOUT1  
AOUT2  
+
Charge  
Pump  
Off-  
time  
PWM  
Gate  
Drive  
Step  
Motor  
VM  
BDC  
-
V3P3  
10 mA  
3.3-V LDO  
0.47 µF  
+
-
AIN1  
AIN2  
BIN1  
BIN2  
AISEN  
RSENSE  
+
Core Logic  
-
TRQ[1:0]  
AVREF  
1/Av  
nSLEEP  
PARA  
Control  
Inputs  
VM  
TRQ[1:0]  
ADECAY  
BDECAY  
TOFF  
V3P3  
BOUT1  
BOUT2  
V3P3  
V3P3  
Off-  
time  
PWM  
VM  
Gate  
Drive  
BDC  
AVREF  
BVREF  
Protection  
Analog  
Inputs  
Overcurrent  
BISEN  
RSENSE  
+
Undervoltage  
Thermal  
nFAULT  
Output  
-
TRQ[1:0]  
BVREF  
1/Av  
GND GND PPAD  
Figure 12. DRV8881P Block Diagram  
14  
Copyright © 2015, Texas Instruments Incorporated  
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
7.3 Feature Description  
7.3.1 Motor Driver Current Ratings  
Brushed motor drivers can be classified using two different numbers to describe the output current: peak and  
rms. Stepper motor drivers can be described with three numbers: peak, rms, and full-scale.  
7.3.1.1 Peak Current Rating  
The peak current in a motor driver is limited by the overcurrent protection trip threshold IOCP. The peak current  
describes any transient duration current pulse, for example when charging capacitance, when the overall duty  
cycle is very low. In general the minimum value of IOCP specifies the peak current rating of the motor driver. For  
the DRV8881, the peak current rating is 2.5 A per bridge.  
7.3.1.2 RMS Current Rating  
The rms (average) current is determined by the thermal considerations of the IC. The rms current is calculated  
based on the RDS(ON), rise and fall time, PWM frequency, device quiescent current, and package thermal  
performance in a typical system at 25°C. The real operating rms current may be higher or lower depending on  
heatsinking and ambient temperature. For the DRV8881, the rms current rating is 1.4 A per bridge. In parallel  
mode, the DRV8881P is capable of double the rms output current, or 2.8 A.  
7.3.1.3 Full-Scale Current Rating  
The full-scale current for a stepper motor describes the top of the sinusoid current waveform while stepping.  
Since the sineusoid amplitude is related to the rms current, the full-scale current is also determined by the  
thermal considerations of the IC. The full-scale current rating is approximately 2 × Irms. The full-scale current is  
set by xVREF, the sense resistor, and Torque DAC when configuring the DRV8881. For the DRV8881, the full-  
scale current rating is 2.0 A per bridge.  
full-scale current  
rms current  
Figure 13. Full-Scale and rms Current  
Copyright © 2015, Texas Instruments Incorporated  
15  
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
Feature Description (continued)  
7.3.2 PWM Motor Drivers  
The DRV8881 contains drivers for two full H-bridges. Figure 14 shows a block diagram of the circuitry.  
VM  
AOUT1  
+
Step  
Motor  
PWM  
Logic  
Gate  
Drive  
VM  
BDC  
-
Device  
Logic  
AOUT2  
AISEN  
+
-
+
-
TRQ[1:0]  
RSENSE  
AVREF  
1/Av  
Figure 14. PWM Motor Driver Block Diagram  
7.3.3 Bridge Control  
The DRV8881E is controlled using a PH/EN interface. Table 1 gives the full H-bridge state. Note that this table  
does not take into account the current control built into the DRV8881E. Positive current is defined in the direction  
of xOUT1 xOUT2.  
Table 1. DRV8881E (PH/EN) Control Interface  
nSLEEP  
ENx  
X
PHx  
X
xOUT1  
Hi-Z  
Hi-Z  
L
xOUT2  
Hi-Z  
Hi-Z  
H
V3P3  
DESCRIPTION  
Sleep mode; H-bridge disabled Hi-Z  
H-bridge disabled Hi-Z  
0
1
1
1
Disabled  
Enabled  
Enabled  
Enabled  
0
X
1
0
Reverse (current xOUT2 xOUT1)  
Forward (current xOUT1 xOUT2)  
1
1
H
L
The DRV8881P is controlled using a PWM interface. Table 2 gives the full H-bridge state. Note that this table  
does not take into account the current control built into the DRV8881P. Positive current is defined in the direction  
of xOUT1 xOUT2.  
Table 2. DRV8881P (PWM) Control Interface  
nSLEEP  
xIN1  
xIN2  
xOUT1  
xOUT2  
V3P3  
DESCRIPTION  
Sleep mode; H-bridge disabled Hi-Z  
Coast; H-bridge disabled Hi-Z  
Reverse (current xOUT2 xOUT1)  
Forward (current xOUT1 xOUT2)  
Brake; low-side slow decay  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Hi-Z  
Hi-Z  
L
Hi-Z  
Hi-Z  
H
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
H
L
L
L
16  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
7.3.4 Current Regulation  
The current through the motor windings is regulated by an adjustable fixed-off-time PWM current regulation  
circuit. When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage,  
inductance of the winding, and the magnitude of the back EMF present. Once the current hits the current  
chopping threshold, the bridge enters a decay mode for a fixed period of time to decrease the current, which is  
configurable between 10 and 30 µs through the tri-level input TOFF. After the off time expires, the bridge is re-  
enabled, starting another PWM cycle.  
Table 3. Off-Time Settings  
TOFF  
OFF-TIME tOFF  
20 µs  
0
1
Z
30 µs  
10 µs  
The PWM chopping current is set by a comparator which compares the voltage across a current sense resistor  
connected to the xISEN pin with a reference voltage. To generate the reference voltage for the current chopping  
comparator, the xVREF input is attenuated by a factor of Av. In addition, the TRQx pins further scale the  
reference.  
VM  
AOUT1  
+
Step  
Motor  
PWM  
Logic  
Gate  
Drive  
VM  
BDC  
-
Device  
Logic  
AOUT2  
AISEN  
+
-
+
-
TRQ[1:0]  
RSENSE  
AVREF  
1/Av  
Figure 15. Current Regulation Block Diagram  
The chopping current is calculated as follows:  
V R E F ( V ) u T R Q (% )  
V R E F ( V ) u T R Q (% )  
IT R IP ( A )   
 
A
u R S E N S E (: )  
6 .6 u R S E N S E (: )  
v
(1)  
TRQ is a DAC used to scale the output current. The current scalar value for different inputs is shown in Table 4.  
Table 4. Torque DAC Settings  
TRQ1  
TRQ0  
CURRENT SCALAR (TRQ)  
EFFECTIVE ATTENUATION  
1
1
0
0
1
0
1
0
25%  
50%  
26.4 V/V  
13.2 V/V  
8.8 V/V  
6.6 V/V  
75%  
100%  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
7.3.5 Decay Modes  
A fixed decay mode is selected by setting the tri-level ADECAY and BDECAY pins as shown in Table 5. Note  
that if the ATE pin is logic high, the ADECAY and BDECAY pins are ignored and AutoTune is used.  
Table 5. Decay Mode Settings  
xDECAY  
DECAY MODE  
Slow decay  
0
Z
1
Fast decay  
Mixed decay: 30% fast  
The ADECAY pin sets the decay mode for H-bridge A (AOUT1, AOUT2), and the BDECAY pin sets the decay  
mode for H-bridge B (BOUT1, BOUT2).  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
7.3.5.1 Mode 1: Slow Decay  
To configure the DRV8881 into this mode, pull DECAY1 and DECAY0 logic low.  
ITRIP  
tBLANK  
tDRIVE  
tBLANK  
tOFF  
tOFF  
tDRIVE  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
Figure 16. Slow Decay Mode  
During slow decay, both of the low-side FETs of the H-bridge are turned on, allowing the current to be  
recirculated.  
Slow decay exhibits the least current ripple of the decay modes for a given tOFF. However, if the current trip level  
is decreasing, slow decay will take a long time to settle to the new ITRIP level because the current decreases very  
slowly.  
Copyright © 2015, Texas Instruments Incorporated  
19  
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
7.3.5.2 Mode 2: Fast Decay  
To configure the DRV8881 into this mode, pull DECAY1 and DECAY0 logic high.  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tOFF  
tBLANK  
tDRIVE  
tDRIVE  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
tOFF  
Figure 17. Fast Decay Mode  
During fast decay, the polarity of the H-bridge is reversed. The H-bridge will be turned off as current approaches  
zero in order to prevent current flow in the reverse direction.  
Fast decay exhibits the highest current ripple of the decay modes for a given tOFF. Transition time on decreasing  
current is much faster than slow decay since the current is allowed to decrease much faster.  
20  
Copyright © 2015, Texas Instruments Incorporated  
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
7.3.5.3 Mode 3: 30%/70% Mixed Decay  
To configure the DRV8881 into this mode, pull DECAY1 logic high and pull DECAY0 logic low.  
ITRIP  
tOFF  
tBLANK  
tOFF  
tBLANK  
tDRIVE  
tDRIVE  
tDRIVE  
ITRIP  
tBLANK  
tDRIVE  
tFAST  
tBLANK  
tDRIVE  
tFAST  
tOFF  
tOFF  
Figure 18. Mixed Decay Mode (30% Fast, 70% Slow)  
Mixed decay begins as fast decay for 30% of tOFF, followed by slow decay for the remainder of tOFF. In this mode,  
mixed decay occurs for both increasing and decreasing current steps.  
This mode exhibits ripple larger than slow decay, but smaller than fast decay. Mixed decay will settle to the new  
ITRIP level faster than slow decay when dealing with decreasing current trip levels.  
In cases where current is held for a long time or at very-low stepping speeds, slow decay may not properly  
regulate current because no back-EMF is present across the motor windings. In this state, motor current can rise  
very quickly, and requires an excessively large off-time. Increasing/decreasing mixed decay mode allows the  
current level to stay in regulation when no back-EMF is present across the motor windings.  
Copyright © 2015, Texas Instruments Incorporated  
21  
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
7.3.6 AutoTune  
AutoTune is available on DRV8881E only.  
To enable the AutoTune mode, pull the ATE pin logic high. Ensure the xDECAY pins are logic low. The  
AutoTune mode is registered internally when exiting from sleep mode or the power-up sequence. The ATE pin  
can be shorted to V3P3 to pull it logic high for this purpose.  
AutoTune greatly simplifies the decay mode selection by automatically configuring the decay mode between  
slow, mixed, and fast decay. In mixed decay, AutoTune dynamically adjusts the fast decay percentage of the  
total mixed decay time. This feature eliminates motor tuning by automatically determining the best decay setting  
that results in the lowest ripple for the motor.  
The decay mode setting is optimized iteratively each PWM cycle. If the motor current overshoots the target trip  
level, then the decay mode becomes more aggressive (add fast decay percentage) on the next cycle in order to  
prevent regulation loss. If there is a long drive time to reach the target trip level, the decay mode becomes less  
aggressive (remove fast decay percentage) on the next cycle in order to operate with less ripple and more  
efficiently.  
AutoTune will automatically adjust the decay scheme based on operating factors like:  
Motor winding resistance and inductance  
Motor aging effects  
Motor dynamic speed and load  
Motor supply voltage variation  
Motor back-EMF difference on rising and falling steps  
Low-current vs. high-current dI/dt  
7.3.7 Adaptive Blanking Time  
After the current is enabled in an H-bridge, the voltage on the xISEN pin is ignored for a period of time before  
enabling the current sense circuitry. Note that the blanking time also sets the minimum drive time of the PWM.  
The time tBLANK is determined by VREF and the torque DAC setting. The timing information for tBLANK is given in  
Table 6.  
Table 6. Adaptive Blanking Time Settings over Torque DAC and xVREF Input  
Voltage  
xVREF  
TORQUE DAC TRQ[1:0] SETTING  
00 - 100%  
1.80 µs  
1.50 µs  
1.20 µs  
0.90 µs  
01 - 75%  
1.50 µs  
1.20 µs  
0.90 µs  
0.90 µs  
10 - 50%  
1.20 µs  
0.90 µs  
0.90 µs  
0.90 µs  
11 - 25%  
0.90 µs  
0.90 µs  
0.90 µs  
0.90 µs  
2.475 3.300 V  
1.650 2.475 V  
0.825 1.650 V  
0.000 0.825 V  
22  
Copyright © 2015, Texas Instruments Incorporated  
 
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
7.3.8 Parallel Mode  
To enter parallel mode on the DRV8881P, the PARA pin must be logic high during device power-up or when  
exiting the sleep mode. The PARA pin can be shorted to V3P3 to pull it logic high for this purpose.  
In this mode, the AIN1 and AIN2 pins control the state of the outputs and the BIN1 and BIN2 pins are ignored.  
Similarly, the ADECAY pin controls the decay mode of the output and AVREF is used as the analog reference  
voltage. The BIN1, BIN2, BDECAY, and BVREF pins can be tied to GND or left Hi-Z.  
VM  
+
0.1 µF  
0.1 µF  
bulk  
VM  
VM  
VM  
VM  
Power  
0.47 µF  
0.1 µF  
VCP  
CPH  
CPL  
Parallel Mode  
AOUT1  
Charge  
Pump  
Off-  
time  
PWM  
Gate  
Drive  
VM  
BDC  
AOUT2  
AISEN  
V3P3  
10 mA  
3.3-V LDO  
0.47 µF  
AIN1  
AIN2  
BIN1  
BIN2  
+
Core Logic  
-
TRQ[1:0]  
AVREF  
1/Av  
nSLEEP  
PARA  
Control  
Inputs  
VM  
TRQ[1:0]  
ADECAY  
BDECAY  
TOFF  
V3P3  
BOUT1  
BOUT2  
V3P3  
V3P3  
Off-  
time  
PWM  
VM  
Gate  
Drive  
AVREF  
BVREF  
Protection  
Analog  
Inputs  
Overcurrent  
BISEN  
RSENSE  
Undervoltage  
Thermal  
nFAULT  
Output  
GND GND PPAD  
Figure 19. Parallel Mode Diagram  
Copyright © 2015, Texas Instruments Incorporated  
23  
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
7.3.9 Charge Pump  
A charge pump is integrated in order to supply a high-side NMOS gate drive voltage. The charge pump requires  
a capacitor between the VM and VCP pins. Additionally a low-ESR ceramic capacitor is required between pins  
CPH and CPL.  
VM  
0.47 µF  
VCP  
VM  
CPH  
Charge  
VM  
0.1 µF  
Pump  
CPL  
Figure 20. Charge Pump Diagram  
7.3.10 LDO Voltage Regulator  
An LDO regulator is integrated into the DRV8881. It can be used to provide the supply voltage for a low-power  
microcontroller or other low-current devices. For proper operation, bypass V3P3 to GND using a ceramic  
capacitor.  
The V3P3 output is nominally 3.3 V. When the V3P3 LDO current load exceeds 10 mA, the LDO will behave like  
a constant current source. The output voltage will drop significantly with currents greater than 10 mA.  
VM  
+
3.3 V  
V3P3  
-
10 mA  
0.47 µF max  
Figure 21. LDO Diagram  
If a digital input needs to be tied permanently high (that is, TOFF or ADECAY), it is preferable to tie the input to  
V3P3 instead of an external regulator. This will save power when VM is not applied or in sleep mode: V3P3 is  
disabled and current will not be flowing through the input pulldown resistors. For reference, logic level inputs  
have a typical pulldown of 100 k, and tri-level inputs have a typical pulldown of 40 k.  
24  
Copyright © 2015, Texas Instruments Incorporated  
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
7.3.11 Logic and Tri-Level Pin Diagrams  
Figure 22 gives the input structure for logic-level pins APH/AIN1, AEN/AIN2, BPH/BIN1, BEN/BIN2, nSLEEP,  
ATE/PARA, TRQ0, TRQ1:  
V3P3  
100 kŸ  
Figure 22. Logic-level Input Pin Diagram  
Tri-level logic pins TOFF, ADECAY, and BDECAY have the following structure as shown in Figure 23.  
V3P3  
+
V3P3  
±
45 kŸ  
40 kŸ  
V3P3  
+
±
Figure 23. Tri-Level Input Pin Diagram  
Copyright © 2015, Texas Instruments Incorporated  
25  
 
 
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
7.3.12 Protection Circuits  
The DRV8881 is fully protected against VM undervoltage, charge pump undervoltage, overcurrent, and  
overtemperature events.  
7.3.12.1 VM Undervoltage Lockout (UVLO)  
If at any time the voltage on the VM pin falls below the undervoltage lockout threshold voltage, all FETs in the H-  
bridge will be disabled, the charge pump will be disabled, and the nFAULT pin will be driven low. Operation will  
resume when VM rises above the UVLO threshold. The nFAULT pin will be released after operation has  
resumed.  
7.3.12.2 VCP UVLO (CPUV)  
If at any time the voltage on the VCP pin falls below the undervoltage lockout threshold voltage, all FETs in the  
H-bridge will be disabled and the nFAULT pin will be driven low. Operation will resume when VCP rises above  
the CPUV threshold. The nFAULT pin will be released after operation has resumed.  
7.3.12.3 Overcurrent Protection (OCP)  
An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this  
analog current limit persists for longer than tOCP, all FETs in the H-bridge will be disabled and nFAULT will be  
driven low. In addition to this FET current limit, an overcurrent condition is also detected if the voltage at xISEN  
exceeds VOCP  
.
For the DRV8881E (PH/EN), both H-bridges are shut down when either bridge encounters an overcurrent fault.  
For the DRV8881P (PWM), only the H-bridge driver experiencing the overcurrent fault is shut down, and the  
other bridge will remain active.  
The driver will be re-enabled after the OCP retry period (tRETRY) has passed. nFAULT becomes high again after  
the retry time. If the fault condition is still present, the cycle repeats. If the fault is no longer present, normal  
operation resumes and nFAULT remains deasserted.  
7.3.12.4 Thermal Shutdown (TSD)  
If the die temperature exceeds safe limits, all FETs in the H-bridge will be disabled and the nFAULT pin will be  
driven low. After the die temperature has fallen to a safe level, operation will automatically resume. The nFAULT  
pin will be released after operation has resumed.  
Table 7. Fault Condition Summary  
ERROR  
REPORT  
CHARGE  
PUMP  
FAULT  
CONDITION  
H-BRIDGE  
Disabled  
Disabled  
Disabled  
V3P3  
RECOVERY  
VM < VUVLO  
(max 6.4 V)  
VM > VUVLO  
(max 6.5 V)  
VM undervoltage (UVLO)  
nFAULT  
nFAULT  
nFAULT  
Disabled  
Operating  
Operating  
Operating  
Operating  
Operating  
VCP undervoltage  
(CPUV)  
VCP < VCPUV  
(typ VM + 1.8 V)  
VCP > VCPUV  
(typ VM + 1.9 V)  
TJ > TTSD  
(min 150°C)  
TJ < TTSD- THYS  
(THYS typ 35°C)  
Thermal shutdown (TSD)  
IOUT > IOCP  
(min 2.5 A)  
VxISEN > VOCP  
(min 0.9 V)  
Overcurrent (OCP)  
nFAULT  
Disabled  
Operating  
Operating  
tRETRY  
26  
Copyright © 2015, Texas Instruments Incorporated  
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
7.4 Device Functional Modes  
The DRV8881 is active unless the nSLEEP pin is brought logic low. In sleep mode the charge pump is disabled,  
the H-bridge FETs are disabled Hi-Z, and the V3P3 regulator is disabled. Note that tSLEEP must elapse after a  
falling edge on the nSLEEP pin before the device is in sleep mode. The DRV8881 is brought out of sleep mode  
automatically if nSLEEP is brought logic high. Note that tWAKE must elapse before the outputs change state after  
wake-up.  
Table 8. Functional Modes Summary  
FAULT  
Operating  
CONDITION  
H-BRIDGE  
CHARGE PUMP  
V3P3  
6.5 V < VM < 45 V  
nSLEEP pin = 1  
Operating  
Operating  
Operating  
6.5 V < VM < 45 V  
nSLEEP pin = 0  
Sleep mode  
Disabled  
Disabled  
Disabled  
VM undervoltage (UVLO)  
VCP undervoltage (CPUV)  
Overcurrent (OCP)  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Operating  
Operating  
Operating  
Operating  
Operating  
Operating  
Operating  
Fault encountered  
Thermal shutdown (TSD)  
Copyright © 2015, Texas Instruments Incorporated  
27  
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV8881 is used in stepper or brushed motor control.  
8.2 Typical Applications  
8.2.1 DRV8881P Typical Application  
The following design procedure can be used to configure the DRV8881. In this application, the DRV8881P will be  
used to drive a stepper motor.  
DRV8881PPWP  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
GND  
CPL  
CPH  
2
0.1 µF  
TRQ0  
TRQ1  
PARA  
AIN1  
VM  
0.1 µF  
3
VCP  
4
0.47 µF  
VM  
5
AOUT1  
AISEN  
AOUT2  
BOUT2  
BISEN  
BOUT1  
VM  
250 mŸ  
6
Step  
AIN2  
Motor  
7
BIN1  
8
+
-
BIN2  
250 mŸ  
9
ADECAY  
BDECAY  
nFAULT  
nSLEEP  
TOFF  
10  
11  
12  
13  
14  
VM  
+
GND  
100 µF  
0.1 µF  
10 kŸ  
AVREF  
BVREF  
V3P3  
R1  
R2  
0.47 µF  
Figure 24. Typical Application Schematic  
28  
Copyright © 2015, Texas Instruments Incorporated  
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
Typical Applications (continued)  
8.2.1.1 Design Requirements  
Table 9 gives design input parameters for system design.  
Table 9. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
REFERENCE  
EXAMPLE VALUE  
24 V  
VM  
RL  
Motor winding resistance  
Motor winding inductance  
Motor full step angle  
4.5 /phase  
10.5 mH/phase  
1.8°/step  
LL  
θstep  
nm  
v
Target microstepping level  
Target motor speed  
Non-circular 1/2 step  
120 rpm  
Target full-scale current  
IFS  
800 mA  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Current Regulation  
In a stepper motor, the full-scale current (IFS) is the maximum current driven through either winding. This quantity  
will depend on the TRQ pins, the xVREF analog voltage, and the sense resistor value (RSENSE). AVREF and  
BVREF can be configured to drive different currents, but in this example the same full-scale current is used in  
both coils.  
xV R E F ( V ) u T R Q (% )  
xV R E F ( V ) u T R Q (% )  
IF S ( A )   
 
A
u R S E N S E (: )  
6 .6 u R S E N S E ( : )  
v
(2)  
TRQ is a DAC used to scale the output current. The current scalar value for different inputs is shown in Table 10.  
Table 10. Torque DAC Settings  
TRQ1  
TRQ0  
CURRENT SCALAR (TRQ)  
1
1
0
0
1
0
1
0
25%  
50%  
75%  
100%  
Example: If the desired full-scale current is 800 mA  
Set RSENSE = 250 m, assume TRQ = 100%.  
xVREF would have to be 1.32 V.  
Create a resistor divider from V3P3 (3.3 V) to set AVREF and BVREF 1.32 V.  
Set R2 = 10 k, set R1 = 15 kΩ  
Note that IFS must also follow Equation 3 in order to avoid saturating the motor. VM is the motor supply voltage,  
and RL is the motor winding resistance.  
VM (V)  
IFS (A) ꢀ  
RL (:) 2 u RDS(ON) (:) RSENSE (:)  
(3)  
8.2.1.2.2 Stepper Motor Speed  
Next, the driving waveform needs to be planned. In order to command the correct speed, determine the  
frequency of the input waveform.  
If the target motor speed is too high, the motor will not spin. Make sure that the motor can support the target  
speed.  
For a desired motor speed (v), microstepping level (nm), and motor full step angle (θstep),  
Copyright © 2015, Texas Instruments Incorporated  
29  
 
 
 
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
v (rpm) u 360 (q / rot)  
step (q / step) unm (steps / microstep) u 60 (s / min)  
¦
ꢀVWHSV ꢁ Vꢂ   
step  
T
(4)  
θstep can be found in the stepper motor data sheet or written on the motor itself.  
The frequency ƒstep gives the frequency of input change on the DRV8881P. 1/ ƒstep = tSTEP on the diagram below.  
120 rpm u 360q / rot  
1.8q / step u1/ 2 steps / microstep u 60 s / min  
¦
ꢀVWHSV ꢁ Vꢂ   
  ꢃꢄꢄ+]  
step  
(5)  
Figure 25. Example 1/2 Stepping Operation  
8.2.1.2.3 Decay Modes  
The DRV8881 supports several different decay modes: slow decay, fast decay, mixed decay, and AutoTune  
(DRV8881E only). The current through the motor windings is regulated using an adjustable fixed-time-off  
scheme. This means that after any drive phase, when a motor winding current has hit the current chopping  
threshold (ITRIP), the DRV8881 will place the winding in one of the decay modes for TOFF. After TOFF, a new  
drive phase starts.  
8.2.1.2.4 Sense Resistor  
For optimal performance, it is important for the sense resistor to be:  
Surface-mount  
Low inductance  
Rated for high enough power  
Placed closely to the motor driver  
The power dissipated by the sense resistor equals Irms 2 × R. For example, if the rms motor current is 1.4 A and a  
250 msense resistor is used, the resistor will dissipate 1.4 A2 × 0.25 = 0.49 W. The power quickly increases  
with higher current levels.  
Resistors typically have a rated power within some ambient temperature range, along with a derated power curve  
for high ambient temperatures. When a PCB is shared with other components generating heat, margin should be  
added. It is always best to measure the actual sense resistor temperature in a final system, along with the power  
MOSFETs, as those are often the hottest components.  
30  
Copyright © 2015, Texas Instruments Incorporated  
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
Because power resistors are larger and more expensive than standard resistors, it is common practice to use  
multiple standard resistors in parallel, between the sense node and ground. This distributes the current and heat  
dissipation.  
8.2.1.3 Application Curve  
Figure 26. DRV8881P Inputs and Output Current Waveform  
Copyright © 2015, Texas Instruments Incorporated  
31  
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
8.2.2 Alternate Application  
In this application, the DRV8881P will be operated in parallel mode in order to drive a single brushed-DC motor.  
DRV8881PPWP  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
GND  
CPL  
CPH  
2
0.1 µF  
TRQ0  
TRQ1  
PARA  
AIN1  
VM  
0.1 µF  
3
VCP  
4
0.47 µF  
V3P3  
VM  
5
AOUT1  
AISEN  
AOUT2  
BOUT2  
BISEN  
BOUT1  
VM  
100 mŸ  
6
AIN2  
7
BIN1  
BDC  
8
BIN2  
9
ADECAY  
BDECAY  
nFAULT  
nSLEEP  
TOFF  
10  
11  
12  
13  
14  
VM  
+
GND  
100 µF  
0.1 µF  
10 kŸ  
AVREF  
BVREF  
V3P3  
R1  
0.47 µF  
R2  
Figure 27. Typical Application Schematic  
8.2.2.1 Design Requirements  
Table 11 gives design input parameters for system design.  
Table 11. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
REFERENCE  
EXAMPLE VALUE  
VM  
RL  
24 V  
6 Ω  
Motor winding resistance  
Motor winding inductance  
Target maximum motor current  
LL  
4.1 mH  
2 A  
ITRIP  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 Current Regulation  
The maximum current (ITRIP) is set by the TRQ pins, the xVREF analog voltage, and the sense resistor value  
(RSENSE). In parallel mode the winding current is set by AVREF only and BVREF is ignored. When starting a  
brushed-DC motor, a large inrush current may occur because there is no back-EMF. Current regulation will act to  
limit this inrush current and prevent high current on startup.  
Example: If the desired regulation current is 2 A  
Set RSENSE = 100 m, assume TRQ = 100%.  
AVREF would have to be 1.32 V.  
Create a resistor divider from V3P3 (3.3 V) to set AVREF 1.32 V: Set R2 = 10 k, set R1 = 15 kΩ  
32  
Copyright © 2015, Texas Instruments Incorporated  
 
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
8.2.2.3 Application Curves  
Figure 28. DRV8881P Startup Current Waveform Without  
Current Regulation  
Figure 29. DRV8881P Startup Current Waveform Without  
Current Regulation (Zoomed In)  
Figure 30. DRV8881P Startup Current Waveform With 2-A  
Current Regulation  
Figure 31. DRV8881P Startup Current Waveform With 2-A  
Current Regulation (Zoomed In)  
Copyright © 2015, Texas Instruments Incorporated  
33  
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
9 Power Supply Recommendations  
The DRV8881 is designed to operate from an input voltage supply (VM) range between 6.5 V and 45 V. THe  
device has an absolute maximum rating of 50 V. A 0.1 µF ceramic capacitor rated for VM must be placed at each  
VM pin as close to the DRV8881 as possible. In addition, a bulk capacitor must be included on VM.  
9.1 Bulk Capacitance Sizing  
Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.  
The amount of local capacitance needed depends on a variety of factors, including:  
The highest current required by the motor system  
The power supply’s capacitance and ability to source current  
The amount of parasitic inductance between the power supply and motor system  
The acceptable voltage ripple  
The type of motor used (brushed DC, brushless DC, stepper)  
The motor braking method  
The inductance between the power supply and motor drive system will limit the rate current can change from the  
power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or  
dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage  
remains stable and high current can be quickly supplied.  
The data sheet generally provides a recommended value, but system-level testing is required to determine the  
appropriate sized bulk capacitor.  
The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases  
when the motor transfers energy to the supply.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
Motor  
Driver  
+
±
GND  
Local  
IC Bypass  
Bulk Capacitor  
Capacitor  
Figure 32. Setup of Motor Drive System With External Power Supply  
34  
Copyright © 2015, Texas Instruments Incorporated  
DRV8881  
www.ti.com.cn  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
10 Layout  
10.1 Layout Guidelines  
Each VM terminal must be bypassed to GND using a low-ESR ceramic bypass capacitors with recommended  
values of 0.1 μF rated for VM. These capacitors should be placed as close to the VM pins as possible with a  
thick trace or ground plane connection to the device GND pin.  
The VM pin must be bypassed to ground using a bulk capacitor rated for VM. This component may be an  
electrolytic.  
A low-ESR ceramic capacitor must be placed in between the CPL and CPH pins. A value of 0.1 μF rated for VM  
is recommended. Place this component as close to the pins as possible.  
A low-ESR ceramic capacitor must be placed in between the VM and VCP pins. A value of 0.47 μF rated for 16  
V is recommended. Place this component as close to the pins as possible.  
Bypass V3P3 to ground with a ceramic capacitor rated 6.3 V. Place this bypassing capacitor as close to the pin  
as possible.  
The current sense resistors should be placed as close as possible to the device pins in order to minimize trace  
inductance between the pin and resistor.  
10.2 Layout Example  
+
0.1 µF  
CPL  
CPH  
GND  
TRQ0  
0.1 µF  
VCP  
TRQ1  
VM  
PARA  
AIN1  
0.47 µF  
AOUT1  
AISEN  
AOUT2  
BOUT2  
BISEN  
BOUT1  
VM  
AIN2  
BIN1  
BIN2  
ADECAY  
BDECAY  
nFAULT  
nSLEEP  
TOFF  
0.1 µF  
GND  
BVREF  
AVREF  
V3P3  
0.1 µF  
Figure 33. Layout Recommendation  
版权 © 2015, Texas Instruments Incorporated  
35  
DRV8881  
ZHCSDY9A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
PowerPAD™ 耐热增强型封装》SLMA002  
PowerPAD™ 速成》SLMA004  
《电流再循环和衰减模式》SLVA321  
《计算电机驱动器的功耗》SLVA504  
《了解电机驱动器的额定电流》SLVA505  
《采用 DRV88xx 系列的高分辨率微步进驱动器》SLVA416  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
36  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8881EPWP  
DRV8881EPWPR  
DRV8881ERHRR  
DRV8881ERHRT  
DRV8881PPWP  
DRV8881PPWPR  
DRV8881PRHRR  
DRV8881PRHRT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
WQFN  
PWP  
PWP  
RHR  
RHR  
PWP  
PWP  
RHR  
RHR  
28  
28  
28  
28  
28  
28  
28  
28  
50  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DRV8881E  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
DRV8881E  
DRV8881E  
DRV8881E  
DRV8881P  
DRV8881P  
DRV8881P  
DRV8881P  
WQFN  
250  
250  
RoHS & Green  
RoHS & Green  
HTSSOP  
HTSSOP  
WQFN  
2000 RoHS & Green  
3000 RoHS & Green  
WQFN  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8881EPWPR  
DRV8881ERHRR  
DRV8881ERHRT  
DRV8881PPWPR  
DRV8881PRHRR  
DRV8881PRHRT  
HTSSOP PWP  
28  
28  
28  
28  
28  
28  
2000  
3000  
250  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
16.4  
12.4  
12.4  
16.4  
12.4  
12.4  
6.9  
3.8  
3.8  
6.9  
3.8  
3.8  
10.2  
5.8  
1.8  
1.2  
1.2  
1.8  
1.2  
1.2  
12.0  
8.0  
16.0  
12.0  
12.0  
16.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
WQFN  
WQFN  
RHR  
RHR  
5.8  
8.0  
HTSSOP PWP  
2000  
3000  
250  
10.2  
5.8  
12.0  
8.0  
WQFN  
WQFN  
RHR  
RHR  
5.8  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8881EPWPR  
DRV8881ERHRR  
DRV8881ERHRT  
DRV8881PPWPR  
DRV8881PRHRR  
DRV8881PRHRT  
HTSSOP  
WQFN  
PWP  
RHR  
RHR  
PWP  
RHR  
RHR  
28  
28  
28  
28  
28  
28  
2000  
3000  
250  
350.0  
346.0  
210.0  
350.0  
346.0  
210.0  
350.0  
346.0  
185.0  
350.0  
346.0  
185.0  
43.0  
33.0  
35.0  
43.0  
33.0  
35.0  
WQFN  
HTSSOP  
WQFN  
2000  
3000  
250  
WQFN  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DRV8881EPWP  
DRV8881PPWP  
PWP  
PWP  
HTSSOP  
HTSSOP  
28  
28  
50  
530  
530  
10.2  
10.2  
3600  
3600  
3.5  
3.5  
250  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
RHR 28  
3.5 x 5.5, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4210249/B  
www.ti.com  
PACKAGE OUTLINE  
RHR0028A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
5.6  
5.4  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
2±0.1  
2X 1.5  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
11  
14  
24X 0.5  
10  
15  
2X  
4.5  
4±0.1  
SEE TERMINAL  
DETAIL  
1
24  
0.3  
28X  
28  
25  
0.5  
0.2  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A  
B
28X  
0.3  
0.05  
4219075/A 11/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHR0028A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2)  
SYMM  
28X (0.6)  
28X (0.25)  
25  
28  
1
24  
24X (0.5)  
(0.66)  
(5.3)  
TYP  
SYMM  
(4)  
(
0.2) TYP  
VIA  
15  
10  
11  
14  
(0.75) TYP  
(3.3)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219075/A 11/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHR0028A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.55) TYP  
28  
25  
28X (0.6)  
28X (0.25)  
1
24  
24X (0.5)  
SYMM  
(1.32)  
TYP  
(5.3)  
METAL  
TYP  
6X (1.12)  
15  
10  
14  
11  
6X (0.89)  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4219075/A 11/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
PWP 28  
4.4 x 9.7, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224765/B  
www.ti.com  
PACKAGE OUTLINE  
PWP0028C  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
26X 0.65  
28  
1
2X  
9.8  
9.6  
8.45  
NOTE 3  
14  
15  
0.30  
0.19  
28X  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.95 MAX  
NOTE 5  
14  
15  
2X 0.2 MAX  
NOTE 5  
0.25  
GAGE PLANE  
1.2 MAX  
5.18  
4.48  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
28  
3.1  
2.4  
4223582/A 03/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0028C  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(3.1)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
28X (1.5)  
1
28X (0.45)  
28  
SEE DETAILS  
(R0.05) TYP  
(5.18)  
(0.6)  
26X (0.65)  
SYMM  
(9.7)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(1.2) TYP  
(
0.2) TYP  
VIA  
14  
15  
(1.2) TYP  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4223582/A 03/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0028C  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.1)  
BASED ON  
0.125 THICK  
STENCIL  
28X (1.5)  
METAL COVERED  
BY SOLDER MASK  
1
28X (0.45)  
28  
(R0.05) TYP  
26X (0.65)  
SYMM  
(5.18)  
BASED ON  
0.125 THICK  
STENCIL  
15  
14  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.47 X 5.79  
3.10 X 5.18 (SHOWN)  
2.83 X 4.73  
0.125  
0.15  
0.175  
2.62 X 4.38  
4223582/A 03/2017  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DRV8881PRHRT

具有电流调节和智能调优功能的 45V、2A 双极双步进或四路 H 桥电机驱动器 | RHR | 28 | -40 to 125
TI

DRV8884

具有电流调节功能和 1/16 微步进的 37V、1A 双极步进电机驱动器  
TI

DRV8884PWP

具有电流调节功能和 1/16 微步进的 37V、1A 双极步进电机驱动器   | PWP | 24 | -40 to 125
TI

DRV8884PWPR

具有电流调节功能和 1/16 微步进的 37V、1A 双极步进电机驱动器   | PWP | 24 | -40 to 125
TI

DRV8884RHRR

具有电流调节功能和 1/16 微步进的 37V、1A 双极步进电机驱动器   | RHR | 28 | -40 to 125
TI

DRV8884RHRT

具有电流调节功能和 1/16 微步进的 37V、1A 双极步进电机驱动器   | RHR | 28 | -40 to 125
TI

DRV8885

具有集成电流感应功能和 1/16 微步进的 37V、1.5A 双极步进电机驱动器
TI

DRV8885PWP

具有集成电流感应功能和 1/16 微步进的 37V、1.5A 双极步进电机驱动器 | PWP | 24 | -40 to 125
TI

DRV8885PWPR

具有集成电流感应功能和 1/16 微步进的 37V、1.5A 双极步进电机驱动器 | PWP | 24 | -40 to 125
TI

DRV8885RHRR

具有集成电流感应功能和 1/16 微步进的 37V、1.5A 双极步进电机驱动器 | RHR | 28 | -40 to 125
TI

DRV8885RHRT

具有集成电流感应功能和 1/16 微步进的 37V、1.5A 双极步进电机驱动器 | RHR | 28 | -40 to 125
TI

DRV8886

具有集成电流感应功能和 1/16 微步进的 37V、2A 双极步进电机驱动器
TI