DRV8885RHRR [TI]

具有集成电流感应功能和 1/16 微步进的 37V、1.5A 双极步进电机驱动器 | RHR | 28 | -40 to 125;
DRV8885RHRR
型号: DRV8885RHRR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成电流感应功能和 1/16 微步进的 37V、1.5A 双极步进电机驱动器 | RHR | 28 | -40 to 125

电机 驱动 驱动器
文件: 总46页 (文件大小:2821K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
DRV8885 具有集成电流检测功能的 1.5A 步进电机驱动器  
1 特性  
2 应用  
1
脉宽调制 (PWM) 微步进电机驱动器  
多功能打印机和扫描仪  
激光束打印机  
最高 1/16 微步进  
3D 打印机  
非循环和标准 ½ 步进模式  
自动取款机和验钞机  
视频安保摄像机  
办公自动化设备  
工厂自动化和机器人  
集成电流检测功能  
无需检测电阻  
±6.25% 满量程电流精度  
慢速衰减和混合衰减选项  
8.0V 37V 的工作电源电压范围  
3 说明  
RDS(ON)24V 25°C 条件下为 0.86Ω HS +  
DRV8885 是一款面向工业设备应用的步进电机 应用。  
此器件具有两个 N 沟道功率金属氧化物半导体场效应  
晶体管 (MOSFET) H 桥驱动器、一个微步进分度器以  
及集成电流检测功能。DRV8885 能够驱动高达 1.5A  
的满量程输出电流或 1.0A rms 输出电流(采用适当的  
印刷电路板 (PCB) 接地层进行散热,电压为 24VTA  
= 25°C)。  
LS  
高电流容量  
每个桥的满量程为 1.5A  
每个桥的均方根 (rms) 1.0A  
固定的关断时间 PWM 斩波  
简单的 STEP/DIR 接口  
低电流休眠模式 (20μA)  
小型封装和外形尺寸  
DRV8885 集成了电流检测功能,消除了对两个外部检  
测电阻的需求。  
24 引脚散热薄型小外形尺寸 (HTSSOP)  
PowerPAD™封装  
STEP/DIR 引脚提供简单的控制接口。器件可配置为多  
种步进模式,从全步进模式到 1/16 步进模式。凭借专  
用的 nSLEEP 引脚,该器件可提供一种低功耗的休眠  
模式,从而实现超低静态电流待机。  
28 WQFN 封装  
保护 特性  
VM 欠压锁定 (UVLO)  
电荷泵欠压 (CPUV)  
过流保护 (OCP)  
该器件内置以下保护功能:欠压、电荷泵故障、过流、  
短路以及过热保护。故障状态通过 nFAULT 引脚指  
示。  
热关断 (TSD)  
故障条件指示引脚 (nFAULT)  
器件信息 (1)  
器件型号  
DRV8885  
封装  
HTSSOP (24)  
WQFN (28)  
封装尺寸(标称值)  
7.80mm × 4.40mm  
5.50mm × 3.5mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
微步进电流波形  
8 to 37 V  
Full-scale current  
RMS current  
DRV8885  
STEP/DIR  
1.5 A  
1.5 A  
M
Stepper  
Motor  
Driver  
Step size  
+
œ
Decay mode  
Current Sense  
AOUT  
BOUT  
1/16 µstep  
Step Input  
Copyright © 2016, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSD39  
 
 
 
 
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 26  
Application and Implementation ........................ 27  
8.1 Application Information............................................ 27  
8.2 Typical Application .................................................. 27  
Power Supply Recommendations...................... 30  
9.1 Bulk Capacitance ................................................... 30  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Indexer Timing Requirements................................... 8  
6.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
8
9
10 Layout................................................................... 31  
10.1 Layout Guidelines ................................................. 31  
10.2 Layout Example .................................................... 31  
11 器件和文档支持 ..................................................... 32  
11.1 文档支持................................................................ 32  
11.2 接收文档更新通知 ................................................. 32  
11.3 社区资源................................................................ 32  
11.4 ....................................................................... 32  
11.5 静电放电警告......................................................... 32  
11.6 术语表 ................................................................... 32  
12 机械、封装和可订购信息....................................... 32  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (July 2018) to Revision C  
Page  
已更改 器件状态从预告信息更改为生产数据”...................................................................................................................... 1  
Changes from Revision A (April 2016) to Revision B  
Page  
已添加 WQFN 封装选项 ......................................................................................................................................................... 1  
Deleted and internal indexer from the description of the ENABLE pin in the Pin Functions table......................................... 3  
Changed until ENABLE is deasserted to until ENABLE is asserted in the Device Functional Modes section .................... 26  
已添加 接收文档更新通知.............................................................................................................................................. 32  
Changes from Original (October 2015) to Revision A  
Page  
Updated peak drive current based on OCP ........................................................................................................................... 4  
Updated RPD and RPU values ................................................................................................................................................. 6  
Fixed chopping current equation .......................................................................................................................................... 18  
Added "Controlling RREF with a PWM Resource"............................................................................................................... 18  
Fixed resistance values in tri-level input pin diagram........................................................................................................... 24  
2
Copyright © 2015–2018, Texas Instruments Incorporated  
 
DRV8885  
www.ti.com.cn  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
5 Pin Configuration and Functions  
PWP PowerPAD™ Package  
24-Pin HTSSOP  
RHR Package  
28-Pin WQFN With Exposed Thermal Pad  
Top View  
Top View  
CPL  
CPH  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
DECAY  
TRQ  
2
VCP  
3
M1  
VCP  
VM  
1
2
3
4
5
6
7
8
9
10  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
TRQ  
VM  
4
M0  
M1  
AOUT1  
PGND  
AOUT2  
BOUT2  
PGND  
BOUT1  
VM  
5
DIR  
AOUT1  
PGND  
AOUT2  
BOUT2  
PGND  
BOUT1  
VM  
M0  
6
STEP  
ENABLE  
nSLEEP  
RREF  
nFAULT  
DVDD  
AVDD  
Thermal  
Pad  
DIR  
7
Thermal  
Pad  
STEP  
ENABLE  
nSLEEP  
RREF  
nFAULT  
NC  
8
9
10  
11  
12  
GND  
GND  
Not to scale  
Not to scale  
Pin Functions  
PIN  
NO.  
HTSSOP WQFN  
TYPE(1)  
DESCRIPTION  
NAME  
AOUT1  
AOUT2  
AVDD  
BOUT1  
BOUT2  
CPH  
5
7
3
5
O
PWR  
O
Winding A output. Connect to stepper motor winding.  
13  
10  
8
12  
8
Internal regulator. Bypass to GND with a X5R or X7R, 0.47-μF, 6.3-V ceramic capacitor.  
Winding B output. Connect to stepper motor winding.  
6
2
28  
27  
PWR  
I
Charge pump switching node. Connect a X5R or X7R, 0.022-μF, VM-rated ceramic capacitor from CPH to CPL.  
CPL  
1
Decay-mode setting. Sets the decay mode (see the Decay Modes section). Decay mode can be adjusted during  
operation.  
DECAY  
24  
25  
DIR  
20  
14  
18  
12  
21  
22  
21  
13  
19  
10  
22  
23  
11  
14  
15  
26  
4
I
Direction input. Logic level sets the direction of stepping; internal pulldown resistor.  
Internal regulator. Bypass to GND with a X5R or X7R, 0.47-μF, 6.3-V ceramic capacitor.  
Enable driver input. Logic high to enable device outputs; logic low to disable; internal pulldown resistor.  
Device ground. Connect to system ground.  
DVDD  
ENABLE  
GND  
M0  
PWR  
I
PWR  
I
Microstepping mode-setting. Sets the step mode; tri-level pins; sets the step mode; internal pulldown resistor.  
M1  
NC  
No connect. No internal connection  
6
9
PGND  
RREF  
PWR  
I
Power ground. Connect to system ground.  
7
16  
17  
Current-limit analog input. Connect a resistor to ground to set full-scale regulation current.  
(1) I = input, O = output, PWR = power, OD = open-drain  
Copyright © 2015–2018, Texas Instruments Incorporated  
3
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
STEP  
HTSSOP WQFN  
19  
23  
3
20  
24  
1
I
I
Step input. A rising edge causes the indexer to advance one step; internal pulldown resistor.  
Current-scaling control. Scales the output current; tri-level pin.  
TRQ  
VCP  
PWR  
Charge pump output. Connect a X5R or X7R, 0.22-μF, 16-V ceramic capacitor to VM.  
4
2
Power supply. Connect to motor supply voltage and bypass to GND with two 0.01-μF ceramic capacitors (one for  
each pin) plus a bulk capacitor rated for VM.  
VM  
PWR  
11  
15  
9
nFAULT  
nSLEEP  
16  
OD  
I
Fault indication. Pulled logic low with fault condition; open-drain output requires an external pullup resistor.  
Sleep mode input. Logic high to enable device; logic low to enter low-power sleep mode; internal pulldown  
resistor.  
17  
18  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
0
MAX  
40  
UNIT  
V
Power supply voltage (VM)  
Power supply voltage ramp rate (VM)  
Charge pump voltage (VCP, CPH)  
Charge pump negative switching pin (CPL)  
Internal regulator voltage (DVDD)  
Internal regulator current output (DVDD)  
Internal regulator voltage (AVDD)  
2
V/µs  
V
–0.3  
–0.3  
–0.3  
0
VM + 7  
VM  
V
3.8  
V
1
mA  
V
–0.3  
–0.3  
0
5.7  
Control pin voltage (STEP, DIR, ENABLE, nFAULT, M0, M1, DECAY, TRQ, nSLEEP)  
Open drain output current (nFAULT)  
5.7  
V
10  
mA  
V
Current limit input pin voltage (RREF)  
–0.3  
–0.7  
6.0  
Continuous phase node pin voltage (AOUT1, AOUT2, BOUT1, BOUT2)  
Peak drive current (AOUT1, AOUT2, BOUT1, BOUT2)  
Operating junction temperature, TJ  
VM + 0.7  
2.3  
V
A
–40  
–65  
150  
150  
°C  
°C  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
(1)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001  
Charged-device model (CDM), per JEDEC specification JESD22-C101  
V(ESD)  
Electrostatic discharge  
V
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2015–2018, Texas Instruments Incorporated  
DRV8885  
www.ti.com.cn  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
8
MAX  
UNIT  
V
VM  
Power supply voltage range  
Logic level input voltage  
Applied STEP signal (STEP)  
DVDD external load current  
Motor full scale current  
37  
VCC  
ƒPWM  
IDVDD  
IFS  
0
5.3  
V
(1)  
0
100  
kHz  
mA  
A
(2)  
0
1
0
1.5  
1.0  
Irms  
Motor rms current  
0
A
TA  
Operating ambient temperature  
–40  
125  
°C  
(1) STEP input can operate up to 500 kHz, but system bandwidth is limited by the motor load  
(2) Power dissipation and thermal limits must be observed  
6.4 Thermal Information  
DRV8885  
(1)  
THERMAL METRIC  
PWP (HTSSOP)  
RHR (WQFN)  
28 PINS  
33.6  
UNIT  
24 PINS  
36.1  
18.3  
15.8  
0.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
23.8  
12.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
15.7  
1.1  
12.6  
RθJC(bot)  
3.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2015–2018, Texas Instruments Incorporated  
5
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VM, DVDD, AVDD)  
VVM  
VM operating voltage  
8
37  
8
V
VM 8 to 35 V, ENABLE = 1,  
nSLEEP = 1, No motor load  
IVM  
VM operating supply current  
5
mA  
nSLEEP = 0; TA = 25°C  
20  
40  
IVMQ  
VM sleep mode supply current  
μA  
(1)  
nSLEEP = 0; TA = 125°C  
tSLEEP  
tWAKE  
tON  
Sleep time  
nSLEEP = 0 to sleep-mode  
nSLEEP = 1 to output transition  
VM > UVLO to output transition  
0- to 1-mA external load  
No external load  
50  
0.85  
0.85  
3.3  
200  
1.5  
1.5  
3.6  
5.5  
μs  
ms  
ms  
V
Wake-up time  
Turn-on time  
VDVDD  
VAVDD  
Internal regulator voltage  
Internal regulator voltage  
2.9  
4.5  
5.0  
V
CHARGE PUMP (VCP, CPH, CPL)  
VVCP VCP operating voltage  
VM > 8 V  
VM + 5.5  
V
LOGIC-LEVEL INPUTS (STEP, DIR, ENABLE, nSLEEP, M1)  
VIL  
VIH  
VHYS  
IIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic low current  
Input logic high current  
Pulldown resistance  
Propagation delay  
0
1.6  
100  
–1  
0.8  
5.3  
V
V
mV  
μA  
μA  
kΩ  
μs  
VIN = 0 V  
1
IIH  
VIN = 5.0 V  
100  
RPD  
tPD  
To GND  
100  
1.1  
STEP to current change  
1.2  
TRI-LEVEL INPUT (M0, TRQ)  
VIL  
VIZ  
Tri-level input logic low voltage  
0
0.65  
V
V
Tri-level input Hi-Z voltage  
Tri-level input logic high  
voltage  
VIH  
1.5  
5.3  
V
IIL  
IIZ  
Tri-level input logic low current VIN = 0 V  
–80  
–5  
μA  
μA  
Tri-level input Hi-Z current  
VIN = 1.3 V  
5
Tri-level input logic high  
current  
IIH  
VIN = 5.0 V  
155  
μA  
RPD  
RPU  
Tri-level pulldown resistance  
Tri-level pullup resistance  
To GND  
18  
30  
32  
60  
50  
90  
kΩ  
kΩ  
To DVDD  
QUAD-LEVEL INPUT (DECAY)  
VI1  
VI2  
VI3  
VI4  
IO  
Quad-level input voltage 1  
5% resistor 5 kΩ to GND  
5% resistor 15 kΩ to GND  
5% resistor 45 kΩ to GND  
5% resistor 135 kΩ to GND  
To GND  
0.07  
0.24  
0.71  
2.12  
14  
0.11  
0.32  
0.97  
2.90  
22  
0.13  
0.40  
1.20  
3.76  
30  
V
V
Quad-level input voltage 2  
Quad-level input voltage 3  
Quad-level input voltage 4  
Output current  
V
V
μA  
CONTROL OUTPUTS (nFAULT)  
VOL  
IOH  
Output logic low voltage  
Output logic high leakage  
IO = 1 mA, RPULLUP = 4.7 kΩ  
VO = 5.0 V, RPULLUP = 4.7 kΩ  
0.5  
+1  
V
–1  
μA  
(1) Not tested in production; limits are based on characterization data  
6
Copyright © 2015–2018, Texas Instruments Incorporated  
DRV8885  
www.ti.com.cn  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MOTOR DRIVER OUTPUTS (AOUT1, AOUT2, BOUT1, BOUT2)  
RDS(ON)  
RDS(ON)  
High-side FET on resistance  
Low-side FET on resistance  
Output rise time  
VM = 24 V, I = 1 A, TA = 25°C  
VM = 24 V, I = 1 A, TA = 25°C  
440  
420  
100  
100  
200  
0.7  
490  
460  
mΩ  
mΩ  
ns  
(2)  
tRISE  
(2)  
tFALL  
Output fall time  
ns  
(2)  
tDEAD  
Output dead time  
ns  
(2)  
Vd  
Body diode forward voltage  
IOUT = 0.5 A  
1.0  
V
PWM CURRENT CONTROL (RREF)  
ARREF  
VRREF  
tOFF  
RREF transimpedance gain  
RREF voltage  
28.1  
1.18  
30  
1.232  
20  
31.9  
1.28  
kAΩ  
V
RREF = 18 to 132 kΩ  
PWM off-time  
μs  
Equivalent capacitance on  
RREF  
CRREF  
10  
pF  
µs  
IRREF = 1.5 A, 63% to 100% current  
setting  
1.5  
1.0  
tBLANK  
PWM blanking time  
Current trip accuracy  
IRREF = 1.5 A, 0% to 63% current  
setting  
IRREF = 1.0 A, 10% to 20% current  
setting, 1% reference resistor  
–25%  
–12.5%  
–6.25%  
25%  
12.5%  
6.25%  
IRREF = 1.0 A, 20% to 63% current  
setting, 1% reference resistor  
ΔITRIP  
IRREF = 1.0 A, 71% to 100% current  
setting, 1% reference resistor  
PROTECTION CIRCUITS  
VM falling; UVLO report  
VM rising; UVLO recovery  
Rising to falling threshold  
VCP falling; CPUV report  
7.8  
8.0  
VUVLO  
VM UVLO  
V
VUVLO,HYS  
VCPUV  
Undervoltage hysteresis  
100  
mV  
V
Charge pump undervoltage  
VM + 2.0  
Overcurrent protection trip  
level  
IOCP  
Current through any FET  
2.3  
A
tOCP  
Overcurrent deglitch time  
Overcurrent retry time  
1.3  
1
1.9  
20  
2.8  
1.6  
μs  
tRETRY  
ms  
Thermal shutdown  
temperature  
(2)  
TTSD  
Die temperature TJ  
Die temperature TJ  
150  
°C  
°C  
(2)  
THYS  
Thermal shutdown hysteresis  
(2) Not tested in production; limits are based on characterization data  
Copyright © 2015–2018, Texas Instruments Incorporated  
7
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
6.6 Indexer Timing Requirements  
TA = 25°C, over recommended operating conditions unless otherwise noted  
NO.  
MIN  
MAX  
UNIT  
kHz  
ns  
(1)  
1
2
3
4
5
ƒSTEP  
Step frequency  
500  
tWH(STEP)  
tWL(STEP)  
tSU(DIR, Mx)  
tH(DIR, Mx)  
Pulse duration, STEP high  
970  
970  
200  
200  
Pulse duration, STEP low  
ns  
Setup time, DIR or USMx to STEP rising  
Hold time, DIR or USMx to STEP rising  
ns  
ns  
(1) STEP input can operate up to 500 kHz, but system bandwidth is limited by the motor load  
1
3
2
STEP  
DIR, Mx  
5
4
Figure 1. Timing Diagram  
8
Copyright © 2015–2018, Texas Instruments Incorporated  
DRV8885  
www.ti.com.cn  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
6.7 Typical Characteristics  
Over recommended operating conditions (unless otherwise noted)  
6.4  
6.2  
6
6.2  
6
5.8  
5.6  
5.4  
5.2  
5
5.8  
T A = 125°C  
T A = 85°C  
5.6  
T A = 25°C  
T A = -40°C  
5.4  
5.2  
5
5
10  
15  
20  
25  
30  
35  
40  
-40  
-20  
0
20  
40  
60  
80  
(èC)  
100  
120  
140  
Supply Voltage VM (V)  
Ambient Temperature T  
A
D001  
D002  
Figure 2. Supply Current over VM  
Figure 3. Supply Current over Temperature (VM = 24 V)  
20  
18  
16  
14  
12  
10  
8
16  
T A = 125°C  
T A = 85°C  
T A = 25°C  
T A = -40°C  
15  
14  
13  
12  
11  
10  
9
8
6
7
4
6
5
10  
15  
20  
25  
30  
35  
40  
-40  
-20  
0
20  
40  
60  
80  
(èC)  
100  
120  
140  
Supply Voltage VM (V)  
Ambient Temperature T  
A
D003  
D004  
Figure 4. Sleep Current over VM  
Figure 5. Sleep Current over Temperature (VM = 24 V)  
650  
600  
550  
500  
450  
400  
350  
300  
630  
TA = +125°C  
600  
570  
540  
510  
480  
450  
420  
390  
360  
330  
TA = +85°C  
TA = +25°C  
TA = -40°C  
5
10  
15  
20  
25  
30  
35  
40  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage VM (V)  
Ambient Temperature TA (èC)  
D005  
D006  
Figure 6. High-Side RDS(ON) over VM  
Figure 7. High-Side RDS(ON) over Temperature (VM = 24 V)  
Copyright © 2015–2018, Texas Instruments Incorporated  
9
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
Over recommended operating conditions (unless otherwise noted)  
600  
600  
570  
540  
510  
480  
450  
420  
390  
360  
330  
300  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
550  
500  
450  
400  
350  
300  
5
10  
15  
20  
25  
30  
35  
40  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage VM (V)  
Ambient Temperature TA (èC)  
D007  
D008  
Figure 8. Low-Side RDS(ON) over VM  
Figure 9. Low-Side RDS(ON) over Temperature (VM = 24 V)  
3.339  
3.336  
3.333  
3.33  
2
TRQ = 0  
TRQ = Z  
TRQ = 1  
1
0.7  
0.5  
3.327  
3.324  
3.321  
3.318  
3.315  
3.312  
3.309  
3.306  
3.303  
0.3  
0.2  
0.1  
0.07  
0.05  
T A = 125°C  
T A = 85°C  
T A = 25°C  
T A = -40°C  
0.03  
0.02  
0.01  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
10  
20  
30  
40 50 60 70  
100  
200  
300  
DVDD Load (mA)  
R REF (kW)  
D009  
D010  
Figure 10. DVDD Regulator over Load (VM = 24 V)  
Figure 11. Full-Scale Current over RREF Selection  
10  
Copyright © 2015–2018, Texas Instruments Incorporated  
DRV8885  
www.ti.com.cn  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
7 Detailed Description  
7.1 Overview  
The DRV8885 is an integrated motor driver solution for bipolar stepper motors. The device integrates two NMOS  
H-bridges, integrated current sense and regulation circuitry, and a microstepping indexer. The DRV8885 can be  
powered with a supply voltage between 8 and 37 V, and is capable of providing an output current up 2.3-A peak,  
1.5-A full-scale, or 1.0-A rms. Actual full-scale and rms current will depend on ambient temperature, supply  
voltage, and PCB ground plane size.  
The DRV8885 integrates current sense functionality, which eliminates the need for high-power external sense  
resistors. This integration does not dissipate the external sense resistor power, because the current sense  
functionality is not implemented using a resistor-based architecture. This functionality helps improve component  
cost, board size, PCB layout, and system power consumption.  
A simple STEP/DIR interface allows easy interfacing to the controller circuit. The internal indexer is able to  
execute high-accuracy microstepping without requiring the processor to control the current level. The indexer is  
capable of full step and half step as well as microstepping to 1/4, 1/8, and 1/16. In addition to the standard half  
stepping mode, a non-circular 1/2-stepping mode is available for increased torque output at higher motor rpm.  
The current regulation is configurable with several decay modes of operation. The decay mode can be selected  
as a fixed slow, slow/mixed, or mixed decay. The slow/mixed decay mode uses slow decay on increasing steps  
and mixed decay on decreasing steps.  
An adaptive blanking time feature automatically scales the minimum drive time with output current. This helps  
alleviate zero-crossing distortion by limiting the drive time at low-current steps.  
A torque DAC feature allows the controller to scale the output current without needing to scale the reference  
resistor. The torque DAC is accessed using a digital input pin. This allows the controller to save power by  
decreasing the current consumption when not high current is not required.  
A low-power sleep mode is included which allows the system to save power when not driving the motor.  
Copyright © 2015–2018, Texas Instruments Incorporated  
11  
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
7.2 Functional Block Diagram  
VM  
+
0.01 µF  
0.01 µF  
bulk  
VM  
VM  
VM  
VM  
Power  
Adaptive  
Blanking  
0.22 µF  
VCP  
AOUT1  
CPH  
Charge Pump  
0.022 µF  
CPL  
AIREF  
+
-
+
Step  
AVDD  
Motor  
5.0-V LDO  
3.3-V LDO  
VM  
0.47 µF  
DVDD  
œ
1 mA  
0.47 µF  
+
œ
AOUT2  
STEP  
DIR  
-
+
AIREF  
IREF  
PGND  
Core Logic  
ENABLE  
nSLEEP  
M[1:0]  
AIREF  
4
SINE DAC  
VM  
Control  
Inputs  
DVDD  
BOUT1  
DVDD  
DECAY  
TRQ  
DVDD  
BIREF  
-
+
VM  
DVDD  
IREF  
Analog  
Input  
RREF  
BOUT2  
PGND  
RREF  
Protection  
Overcurrent  
-
+
Output  
BIREF  
IREF  
nFAULT  
Undervoltage  
Thermal  
BIREF  
4
SINE DAC  
GND  
PPAD  
Copyright © 2016, Texas Instruments Incorporated  
12  
Copyright © 2015–2018, Texas Instruments Incorporated  
DRV8885  
www.ti.com.cn  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
7.3 Feature Description  
Table 1 lists the recommended external components for the DRV8885 device.  
Table 1. External Components  
COMPONENT  
CVM  
PIN 1  
VM  
PIN 2  
GND  
GND  
VM  
RECOMMENDED  
Two 0.01-µF ceramic capacitors rated for VM  
Bulk electrolytic capacitor rated for VM  
16-V, 0.22-µF ceramic capacitor  
0.022-µF X7R capacitor rated for VM  
6.3-V, 0.47-µF ceramic capacitor  
6.3-V, 0.47-µF ceramic capacitor  
>4.7 kΩ  
CVM  
VM  
CVCP  
VCP  
CPH  
AVDD  
DVDD  
CSW  
CPL  
CAVDD  
CDVDD  
RnFAULT  
GND  
GND  
nFAULT  
(1)  
VCC  
Resistor to limit chopping current must be installed. See the Typical Application  
section for value selection.  
RREF  
RREF  
GND  
(1) VCC is not a pin on the DRV8885, but a VCC supply voltage pullup is required for open-drain output nFAULT; nFAULT may be pulled  
up to DVDD  
7.3.1 Stepper Motor Driver Current Ratings  
Stepper motor drivers can be classified using three different numbers to describe the output current: peak, rms,  
and full-scale.  
7.3.1.1 Peak Current Rating  
The peak current in a stepper driver is limited by the overcurrent protection trip threshold IOCP. The peak current  
describes any transient duration current pulse, for example when charging capacitance, when the overall duty  
cycle is very low. In general the minimum value of IOCP specifies the peak current rating of the stepper motor  
driver. For the DRV8885, the peak current rating is 2.3 A per bridge.  
7.3.1.2 RMS Current Rating  
The rms (average) current is determined by the thermal considerations of the IC. The rms current is calculated  
based on the RDS(ON), rise and fall time, PWM frequency, device quiescent current, and package thermal  
performance in a typical system at 25°C. The real operating rms current may be higher or lower depending on  
heatsinking and ambient temperature. For the DRV8885, the rms current rating is 1.0 A per bridge.  
7.3.1.3 Full-Scale Current Rating  
The full-scale current describes the top of the sinusoid current waveform while microstepping. Since the  
sineusoid amplitude is related to the rms current, the full-scale current is also determined by the thermal  
considerations of the IC. The full-scale current rating is approximately 2 × Irms. The full-scale current is set by  
VREF, the sense resistor, and Torque DAC when configuring the DRV8885, see Current Regulation for details.  
For the DRV8885, the full-scale current rating is 1.5 A per bridge.  
Full-scale current  
RMS current  
AOUT  
BOUT  
Step Input  
Figure 12. Full-Scale and rms Current  
Copyright © 2015–2018, Texas Instruments Incorporated  
13  
 
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
7.3.2 PWM Motor Drivers  
The DRV8885 contains drivers for two full H-bridges. Figure 13 shows a block diagram of the circuitry.  
VM  
AOUT1  
Gate  
Drive  
AIREF  
+
Step  
œ
Motor  
PWM Logic  
+
VM  
Device Logic  
œ
AOUT2  
+
œ
Gate  
Drive  
AIREF  
œ
+
PGND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 13. PWM Motor Driver Block Diagram  
7.3.3 Microstepping Indexer  
Built-in indexer logic in the DRV8885 allows a number of different stepping configurations. The Mx pins are used  
to configure the stepping format as shown in Table 2.  
Table 2. Microstepping Settings  
M1  
0
M0  
0
STEP MODE  
Full step (2-phase excitation) with 71% current  
0
1
1/16 step  
1
0
1/2 step  
1
1
1/4 step  
0
Z
1/8 step  
1
Z
Non-circular 1/2 step  
Table 3 shows the relative current and step directions for full-step through 1/16-step operation. The AOUT  
current is the sine of the electrical angle; BOUT current is the cosine of the electrical angle. Positive current is  
defined as current flowing from xOUT1 to xOUT2 while driving.  
At each rising edge of the STEP input the indexer travels to the next state in the table. The direction is shown  
with the DIR pin logic high. If the DIR pin is logic low, the sequence is reversed.  
On power-up or when exiting sleep mode, keep the STEP pin logic low, otherwise the indexer will advance one  
step.  
14  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
DRV8885  
www.ti.com.cn  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
Note that if the step mode is changed from full, ½, ¼, 1/8, or 1/16 to full, ½, ¼, 1/8, or 1/16 while stepping, the  
indexer will advance to the next valid state for the new MODE setting at the rising edge of STEP. If the step  
mode is changed from or to non-circular ½ step the indexer will go immediately to the valid state for that mode.  
The home state is an electrical angle of 45°. This state is entered after power-up, after exiting logic undervoltage  
lockout, or after exiting sleep mode. This is shown in the table below with cells outlined in red.  
Table 3. Microstepping Relative Current Per Step (DIR = 1)  
FULL STEP  
1/2 STEP  
1/4 STEP  
1/8 STEP  
1/16 STEP  
ELECTRICAL  
ANGLE  
(DEGREES)  
AOUT  
BOUT  
CURRENT (% CURRENT (%  
FULL-SCALE) FULL-SCALE)  
1
1
1
2
1
0.000°  
5.625°  
0%  
10%  
20%  
29%  
38%  
47%  
56%  
63%  
71%  
77%  
83%  
88%  
92%  
96%  
98%  
100%  
100%  
100%  
98%  
96%  
92%  
88%  
83%  
77%  
71%  
63%  
56%  
47%  
38%  
29%  
20%  
10%  
0%  
100%  
100%  
98%  
2
3
11.250°  
16.875°  
22.500°  
28.125°  
33.750°  
39.375°  
45.000°  
50.625°  
56.250°  
61.875°  
67.500°  
73.125°  
78.750°  
84.375°  
90.000°  
95.625°  
101.250°  
106.875°  
112.500°  
118.125°  
123.750°  
129.375°  
135.000°  
140.625°  
146.250°  
151.875°  
157.500°  
163.125°  
168.750°  
174.375°  
180.000°  
185.625°  
191.250°  
196.875°  
202.500°  
208.125°  
213.750°  
219.375°  
4
96%  
2
3
3
5
92%  
6
88%  
4
7
83%  
8
77%  
1
2
3
4
5
5
9
71%  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
63%  
6
56%  
47%  
4
7
38%  
29%  
8
20%  
10%  
5
9
0%  
–10%  
–20%  
–29%  
–38%  
–47%  
–56%  
–63%  
–71%  
–77%  
–83%  
–88%  
–92%  
–96%  
–98%  
–100%  
–100%  
–100%  
–98%  
–96%  
–92%  
–88%  
–83%  
–77%  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
6
2
7
8
9
–10%  
–20%  
–29%  
–38%  
–47%  
–56%  
–63%  
10  
Copyright © 2015–2018, Texas Instruments Incorporated  
15  
 
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
BOUT  
Table 3. Microstepping Relative Current Per Step (DIR = 1) (continued)  
FULL STEP  
1/2 STEP  
1/4 STEP  
1/8 STEP  
1/16 STEP  
ELECTRICAL  
ANGLE  
(DEGREES)  
AOUT  
CURRENT (% CURRENT (%  
FULL-SCALE) FULL-SCALE)  
3
6
11  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
1
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
1
225.000°  
230.625°  
236.250°  
241.875°  
247.500°  
253.125°  
258.750°  
264.375°  
270.000°  
275.625°  
281.250°  
286.875°  
292.500°  
298.125°  
303.750°  
309.375°  
315.000°  
320.625°  
326.250°  
331.875°  
337.500°  
343.125°  
348.750°  
354.375°  
360.000°  
–71%  
–77%  
–83%  
–88%  
–92%  
–96%  
–98%  
–100%  
–100%  
–100%  
–98%  
–96%  
–92%  
–88%  
–83%  
–77%  
–71%  
–63%  
–56%  
–47%  
–38%  
–29%  
–20%  
–10%  
0%  
–71%  
–63%  
–56%  
–47%  
–38%  
–29%  
–20%  
–10%  
0%  
12  
13  
14  
15  
16  
1
7
8
1
10%  
20%  
29%  
38%  
47%  
56%  
63%  
71%  
77%  
83%  
88%  
92%  
96%  
98%  
100%  
100%  
4
Non-circular 1/2–step operation is shown below. This stepping mode consumes more power than circular ½-step  
operation, but provides a higher torque at high motor rpm.  
Table 4. Non-Circular 1/2-Stepping Current  
NON-CIRCULAR 1/2 STEP  
AOUT CURRENT  
(% FULL-SCALE)  
BOUT CURRENT  
(% FULL-SCALE)  
ELECTRICAL ANGLE  
(DEGREES)  
1
2
3
4
5
6
7
8
0
100  
100  
0
0
100  
100  
100  
0
45  
90  
–100  
–100  
–100  
0
135  
180  
225  
270  
315  
–100  
–100  
–100  
100  
16  
Copyright © 2015–2018, Texas Instruments Incorporated  
DRV8885  
www.ti.com.cn  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
7.3.4 Current Regulation  
The current through the motor windings is regulated by an adjustable fixed-off-time PWM current regulation  
circuit. When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage,  
inductance of the winding, and the magnitude of the back EMF present. Once the current hits the current  
chopping threshold, the bridge enters a decay mode for a fixed, 20 μs, period of time to decrease the current.  
After the off time expires, the bridge is re-enabled, starting another PWM cycle.  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
Figure 14. Current Chopping Waveform  
The PWM chopping current is set by a comparator which looks at the voltage across current sense FETs in  
parallel with the low-side drivers. The current sense FETs are biased with a reference current that is the output of  
a current-mode sine-weighted DAC whose full-scale reference current is set by the current through the RREF  
pin. An external resistor is placed from the RREF pin to GND in order to set the reference current. In addition,  
the TRQ pin can further scale the reference current.  
The chopping current is calculated as follows:  
ARREF (kAW)  
RREF (kW)  
30 (kAW)  
RREF (kW)  
IFS (A) =  
ì TRQ (%) =  
ì TRQ (%)  
(1)  
Example: If a 30-kΩ resistor is connected to the RREF pin, the chopping current will be 1 A (TRQ at 100%)  
The TRQ pin is the input to a DAC used to scale the output current. The current scalar value for different inputs  
is shown below.  
Table 5. Torque DAC Settings  
TRQ  
CURRENT SCALAR (TRQ)  
0
Z
1
100%  
75%  
50%  
Copyright © 2015–2018, Texas Instruments Incorporated  
17  
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
7.3.5 Controlling RREF With an MCU  
In some cases, the full-scale output current may need to be changed on the fly between many different values,  
depending on motor speed and loading. The RREF pin reference current can be adjusted in system by tying the  
RREF resistor to a DAC output instead of GND.  
In this mode of operation, as the DAC voltage increases, the reference current will decrease and therefore the  
full-scale current will decrease as well. For proper operation, the output of the DAC should not rise above VRREF  
.
MCU  
DVDD  
IREF  
Analog Input  
RREF  
RREF  
DAC  
Copyright © 2016, Texas Instruments Incorporated  
Figure 15. Controlling RREF with a DAC  
The chopping current as controlled by a DAC is calculated as follows:  
ARREF (kAW) ì V  
(V) œ VDAC (V)  
[
]
ì TRQ (%)  
RREF  
IFS (A) =  
VRREF (V) ì RREF (kW)  
(2)  
Example: If a 20-kΩ resistor is connected from the RREF pin to the DAC, and the DAC is outputting 0.74 V, the  
chopping current will be 600 mA (TRQ at 100%)  
RREF can also be adjusted using a PWM signal and low-pass filter.  
MCU  
AVDD  
IREF  
Analog Input  
GPIO  
R1  
RREF  
RREF  
R2  
C1  
Copyright © 2016, Texas Instruments Incorporated  
Figure 16. Controlling RREF with a PWM Resource  
18  
Copyright © 2015–2018, Texas Instruments Incorporated  
DRV8885  
www.ti.com.cn  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
7.3.6 Decay Modes  
The DRV8885 decay mode is selected by setting the quad-level DECAY pin to the voltage range in Table 6.  
Table 6. Decay Mode Settings  
DECAY  
INCREASING STEPS  
DECREASING STEPS  
100 mV  
Slow decay  
Mixed decay: 30% fast  
Can be tied to ground  
300 mV, 15 kto GND  
1.0 V, 45 kto GND  
Mixed decay: 30% fast  
Mixed decay: 60% fast  
Mixed decay: 30% fast  
Mixed decay: 60% fast  
2.9 V  
Can be tied to DVDD  
Slow decay  
Slow decay  
Increasing and decreasing current are defined in the chart below. For the Slow/Mixed decay mode, the decay  
mode is set as slow during increasing current steps and mixed decay during decreasing current steps. In full step  
mode the decreasing steps decay mode is always used.  
Increasing Decreasing  
Increasing Decreasing  
STEP Input  
Decreasing  
Increasing  
Increasing Decreasing  
STEP Input  
Figure 17. Definition of Increasing and Decreasing Steps  
Copyright © 2015–2018, Texas Instruments Incorporated  
19  
 
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
7.3.6.1 Mode 1: Slow Decay for Increasing and Decreasing Current  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tOFF  
tDRIVE  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
Figure 18. Slow/Slow Decay Mode  
During slow decay, both of the low side FETs of the H-bridge are turned on, allowing the current to be  
recirculated.  
Slow decay exhibits the least current ripple of the decay modes for a given tOFF. However on decreasing current  
steps, slow decay will take a long time to settle to the new ITRIP level because the current decreases very slowly.  
20  
Copyright © 2015–2018, Texas Instruments Incorporated  
DRV8885  
www.ti.com.cn  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
7.3.6.2 Mode 2: Slow Decay for Increasing Current, Mixed Decay for Decreasing Current  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tOFF  
tBLANK  
tDRIVE  
tDRIVE  
ITRIP  
tBLANK  
tFAST  
tBLANK  
tDRIVE  
tFAST  
tDRIVE  
tOFF  
tOFF  
Figure 19. Slow/Mixed Decay Mode  
Mixed decay begins as fast decay for a time, followed by slow decay for the remainder of tOFF. In this mode,  
mixed decay only occurs during decreasing current. Slow decay is used for increasing current.  
This mode exhibits the same current ripple as slow decay for increasing current, since for increasing current, only  
slow decay is used. For decreasing current, the ripple is larger than slow decay, but smaller than fast decay. On  
decreasing current steps, mixed decay will settle to the new ITRIP level faster than slow decay.  
Copyright © 2015–2018, Texas Instruments Incorporated  
21  
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
7.3.6.3 Mode 3: Mixed Decay for Increasing and Decreasing Current  
ITRIP  
tOFF  
tBLANK  
tOFF  
tBLANK  
tDRIVE  
tDRIVE  
tDRIVE  
ITRIP  
tBLANK  
tDRIVE  
tFAST  
tBLANK  
tDRIVE  
tFAST  
tOFF  
tOFF  
Figure 20. Mixed/Mixed Decay Mode  
Mixed decay begins as fast decay for a time, followed by slow decay for the remainder of tOFF. In this mode,  
mixed decay occurs for both increasing and decreasing current steps.  
This mode exhibits ripple larger than slow decay, but smaller than fast decay. On decreasing current steps,  
mixed decay will settle to the new ITRIP level faster than slow decay.  
In cases where current is held for a long time (no input in the STEP pin) or at very low stepping speeds, slow  
decay may not properly regulate current because no back-EMF is present across the motor windings. In this  
state, motor current can rise very quickly, and requires an excessively large off-time. Increasing/decreasing  
mixed decay mode allows the current level to stay in regulation when no back-EMF is present across the motor  
windings.  
22  
Copyright © 2015–2018, Texas Instruments Incorporated  
DRV8885  
www.ti.com.cn  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
7.3.7 Blanking Time  
After the current is enabled in an H-bridge, the current sense comparator is ignored for a period of time (tBLANK  
)
before enabling the current sense circuitry. Note that the blanking time also sets the minimum drive time of the  
PWM. Table 7 shows the blanking time based on the sine table index and the torque DAC setting. Please note  
that the torque DAC index is not the same as one step as given in Table 3.  
Table 7. Adaptive Blanking  
Time over Torque DAC and  
Microsteps  
tblank = 1.5 µs  
tblank = 1.0 µs  
TORQUE DAC (TRQ)  
SINE INDEX  
100%  
100%  
98%  
96%  
92%  
88%  
83%  
77%  
71%  
63%  
56%  
47%  
38%  
29%  
20%  
10%  
0%  
75%  
75%  
50%  
50%  
16  
15  
14  
13  
12  
11  
10  
9
73.5  
49%  
72%  
48%  
69%  
46%  
66%  
44%  
62.3%  
57.8%  
53.3%  
47.3%  
42%  
41.5%  
38.5%  
35.5%  
31.5%  
28%  
8
7
6
35.3  
23.5%  
19%  
5
28.5  
4
21.8%  
15%  
14.5%  
10%  
3
2
7.5%  
0%  
5%  
1
0%  
7.3.8 Charge Pump  
A charge pump is integrated in order to supply a high-side NMOS gate drive voltage. The charge pump requires  
a capacitor between the VM and VCP pins. Additionally a low ESR ceramic capacitor is required between pins  
CPH and CPL.  
VM  
0.22 µF  
VCP  
VM  
CPH  
Charge  
Pump  
VM  
0.022 µF  
CPL  
Copyright © 2016, Texas Instruments Incorporated  
Figure 21. Charge Pump Diagram  
Copyright © 2015–2018, Texas Instruments Incorporated  
23  
 
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
7.3.9 LDO Voltage Regulator  
An LDO regulator is integrated into the DRV8885. DVDD can be used to provide a reference voltage. For proper  
operation, bypass DVDD to GND using a ceramic capacitor.  
The DVDD output is nominally 3.3 V. When the DVDD LDO current load exceeds 1 mA, the output voltage will  
drop significantly.  
The AVDD pin also requires a bypass capacitor to GND. This LDO is for DRV8885 internal use only.  
VM  
+
œ
AVDD  
DVDD  
0.47 µF  
0.47 µF  
VM  
+
œ
3.3 V  
1 mA  
max  
Copyright © 2016, Texas Instruments Incorporated  
Figure 22. LDO Diagram  
If a digital input needs to be tied permanently high (that is, Mx, DECAY or TRQ), it is preferable to tie the input to  
DVDD instead of an external regulator. This will save power when VM is not applied or in sleep mode: DVDD is  
disabled and current will not be flowing through the input pulldown resistors. For reference, logic level inputs  
have a typical pulldown of 100 k, and tri-level inputs have a typical pulldown of 60 k.  
7.3.10 Logic and Multi-Level Pin Diagrams  
Figure 23 gives the input structure for logic-level pins STEP, DIR, ENABLE, nSLEEP, M1:  
DVDD  
100 k  
Figure 23. Logic-level Input Pin Diagram  
Tri-level logic pins M0 and TRQ have the following structure:  
DVDD  
+
DVDD  
-
60 k  
32 kΩ  
DVDD  
+
-
Figure 24. Tri-level Input Pin Diagram  
24  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
DRV8885  
www.ti.com.cn  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
Quad-level logic pin DECAY has the following structure:  
DVDD  
+
t
DVDD  
20 µA  
DVDD  
+
t
DVDD  
+
t
Figure 25. Quad-level Input Pin Diagram  
7.3.11 Protection Circuits  
The DRV8885 is fully protected against undervoltage, charge pump undervoltage, overcurrent, and  
overtemperature events.  
7.3.11.1 VM Undervoltage Lockout (UVLO)  
If at any time the voltage on the VM pin falls below the VM undervoltage lockout threshold voltage (VUVLO), all  
FETs in the H-bridge will be disabled, the charge pump will be disabled, the logic will be reset, the DVDD  
regulator is disabled, and the nFAULT pin will be driven low. Operation will resume when VM rises above the  
UVLO threshold. The nFAULT pin will be released after operation has resumed. Decreasing VM below this  
undervoltage threshold will reset the indexer position.  
7.3.11.2 VCP Undervoltage Lockout (CPUV)  
If at any time the voltage on the VCP pin falls below the charge pump undervoltage lockout threshold voltage, all  
FETs in the H-bridge will be disabled and the nFAULT pin will be driven low. Operation will resume when VCP  
rises above the CPUV threshold. The nFAULT pin will be released after operation has resumed.  
7.3.11.3 Overcurrent Protection (OCP)  
An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this  
analog current limit persists for longer than tOCP, all FETs in the H-bridge will be disabled and nFAULT will be  
driven low.  
The driver will be re-enabled after the OCP retry period (tRETRY) has passed. nFAULT becomes high again at  
after the retry time. If the fault condition is still present, the cycle repeats. If the fault is no longer present, normal  
operation resumes and nFAULT remains deasserted.  
7.3.11.4 Thermal Shutdown (TSD)  
If the die temperature exceeds safe limits, all FETs in the H-bridge will be disabled and the nFAULT pin will be  
driven low. Once the die temperature has fallen to a safe level operation will automatically resume. The nFAULT  
pin will be released after operation has resumed.  
Copyright © 2015–2018, Texas Instruments Incorporated  
25  
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
RECOVERY  
Table 8. Fault Condition Summary  
FAULT  
CONDITION  
ERROR  
H-BRIDGE  
CHARGE  
PUMP  
INDEXER  
DVDD  
REPORT  
VM undervoltage  
(UVLO)  
VM < VUVLO  
(max 7.8 V)  
VM > VUVLO  
(max 8.0 V)  
nFAULT  
nFAULT  
nFAULT  
nFAULT  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Operating  
Operating  
Operating  
Disabled  
Operating  
Operating  
Operating  
Disabled  
Operating  
Operating  
Operating  
VCP undervoltage  
(CPUV)  
VCP < VCPUV  
(typ VM + 2.0 V)  
VCP > VCPUV  
(typ VM + 2.7 V)  
IOUT > IOCP  
(min 2.1 A)  
Overcurrent (OCP)  
tRETRY  
Thermal Shutdown  
(TSD)  
TJ > TTSD  
(min 150°C)  
TJ < TTSD - THYS  
(THYS typ 20°C)  
7.4 Device Functional Modes  
The DRV8885 is active unless the nSLEEP pin is brought logic low. In sleep mode the charge pump is disabled,  
the H-bridge FETs are disabled Hi-Z, and the V3P3 regulator is disabled. Note that tSLEEP must elapse after a  
falling edge on the nSLEEP pin before the device is in sleep mode. The DRV8885 is brought out of sleep mode  
automatically if nSLEEP is brought logic high. Note that tWAKE must elapse before the outputs change state after  
wake-up.  
TI recommends to keep the STEP pin logic low when coming out of nSLEEP or when applying power.  
If the ENABLE pin is brought logic low, the H-bridge outputs are disabled, but the internal logic will still be active.  
A rising edge on STEP will advance the indexer, but the outputs will not change state until ENABLE is asserted.  
Table 9. Functional Modes Summary  
CONDITION  
H-BRIDGE  
CHARGE PUMP  
INDEXER  
V3P3  
8 V < VM < 40 V  
nSLEEP pin = 1  
ENABLE pin = 1  
Operating  
Operating  
Operating  
Operating  
Operating  
8 V < VM < 40 V  
nSLEEP pin = 1  
ENABLE pin = 0  
Disabled  
Disabled  
Disabled  
Operating  
Disabled  
Operating  
Disabled  
Operating  
Disabled  
8 V < VM < 40  
nSLEEP pin = 0  
Sleep mode  
VM undervoltage (UVLO)  
VCP undervoltage (CPUV)  
Overcurrent (OCP)  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Operating  
Operating  
Operating  
Disabled  
Operating  
Operating  
Operating  
Disabled  
Operating  
Operating  
Operating  
Fault encountered  
Thermal Shutdown (TSD)  
26  
Copyright © 2015–2018, Texas Instruments Incorporated  
DRV8885  
www.ti.com.cn  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV8885 is used in bipolar stepper control.  
8.2 Typical Application  
The following design procedure can be used to configure the DRV8885.  
DRV8885PWP  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
DECAY  
TRQ  
CPL  
CPH  
2
0.022 µF  
0.22 µF  
3
M1  
VCP  
4
VM  
M0  
VM  
5
0.01 µF  
DIR  
AOUT1  
PGND  
AOUT2  
BOUT2  
PGND  
BOUT1  
VM  
6
Step  
Motor  
STEP  
ENABLE  
nSLEEP  
RREF  
nFAULT  
DVDD  
AVDD  
7
8
+
œ
9
10  
11  
12  
VM  
+
30 k  
GND  
100 µF  
0.47 µF  
0.01 µF  
0.47 µF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 26. Typical Application Schematic  
8.2.1 Design Requirements  
Table 10 gives design input parameters for system design.  
Table 10. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
REFERENCE  
EXAMPLE VALUE  
24 V  
VM  
RL  
LL  
Motor winding resistance  
Motor winding inductance  
Motor full step angle  
2.6 /phase  
1.4 mH/phase  
1.8°/step  
θstep  
nm  
v
Target microstepping level  
Target motor speed  
1/8 step  
120 rpm  
Target full-scale current  
IFS  
1.0 A  
Copyright © 2015–2018, Texas Instruments Incorporated  
27  
 
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Stepper Motor Speed  
The first step in configuring the DRV8885 requires the desired motor speed and microstepping level. If the target  
application requires a constant speed, then a square wave with frequency ƒstep must be applied to the STEP pin.  
If the target motor speed is too high, the motor will not spin. Make sure that the motor can support the target  
speed.  
For a desired motor speed (v), microstepping level (nm), and motor full step angle (θstep),  
v (rpm) ì 360 (è / rot)  
step (è / step) ìnm (steps / microstep) ì 60 (s / min)  
ƒstep (steps / s) =  
q
(3)  
θstep can be found in the stepper motor data sheet, or written on the motor itself.  
For the DRV8885, the microstepping level is set by the Mx pins and can be any of the settings in the table below.  
Higher microstepping will mean a smother motor motion and less audible noise, but will increase switching  
losses and require a higher fstep to achieve the same motor speed.  
Table 11. Microstepping Indexer Settings  
M1  
0
M0  
0
STEP MODE  
Full step (2-phase excitation) with 71% current  
0
1
1/16 step  
1
0
1/2 step  
1
1
1/4 step  
0
Z
1/8 step  
1
Z
Non-circular 1/2 step  
Example: Target 120 rpm at 1/8 microstep mode. The motor is 1.8°/step  
120 rpm ì 360è / rot  
ƒstep (steps / s) =  
= 3.2 kHz  
1.8è / step ì1/ 8 steps / microstep ì 60 s / min  
(4)  
8.2.2.2 Current Regulation  
In a stepper motor, the full-scale current (IFS) is the maximum current driven through either winding. This quantity  
will depend on the RREF resistor and the TRQ setting. During stepping, IFS defines the current chopping  
threshold (ITRIP) for the maximum current step.  
ARREF (kAW)  
RREF (kW)  
30 (kAW) ì TRQ%  
RREF (kW)  
IFS (A) =  
=
(5)  
Note that IFS must also follow Equation 6 in order to avoid saturating the motor. VM is the motor supply voltage,  
and RL is the motor winding resistance.  
VM (V)  
IFS (A) <  
RL (W) + 2 ì RDS(ON) (W)  
(6)  
8.2.2.3 Decay Modes  
The DRV8885 supports three different decay modes: slow decay, slow/mixed and all mixed decay. The current  
through the motor windings is regulated using an adjustable fixed-time-off scheme. This means that after any  
drive phase, when a motor winding current has hit the current chopping threshold (ITRIP), the DRV8885 will place  
the winding in one of the three decay modes for tOFF. After tOFF, a new drive phase starts.  
The blanking time tBLANK defines the minimum drive time for the PWM current chopping. ITRIP is ignored during  
tBLANK, so the winding current may overshoot the trip level.  
28  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
DRV8885  
www.ti.com.cn  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
8.2.3 Application Curves  
Figure 27. Microstepping Using Slow Decay on Increasing  
and Decreasing Steps; Current Loses Regulation on  
Falling Steps  
Figure 28. Microstepping Using Slow Decay on Increasing  
Steps and Mixed 30% Fast Decay on Decreasing Steps  
Figure 29. Microstepping Using Mixed 30% Fast Decay on  
Increasing and Decreasing Steps  
Figure 30. Microstepping Using Mixed 60% Fast Decay on  
Increasing and Decreasing Steps  
Copyright © 2015–2018, Texas Instruments Incorporated  
29  
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
The DRV8885 is designed to operate from an input voltage supply (VM) range between 8 V and 35 V. A 0.01 µF  
ceramic capacitor rated for VM must be placed at each VM pin as close to the DRV8885 as possible. In addition,  
a bulk capacitor must be included on VM.  
9.1 Bulk Capacitance  
Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.  
The amount of local capacitance needed depends on a variety of factors, including:  
The highest current required by the motor system  
The power supply’s capacitance and ability to source current  
The amount of parasitic inductance between the power supply and motor system  
The acceptable voltage ripple  
The type of motor used (brushed DC, brushless DC, stepper)  
The motor braking method  
The inductance between the power supply and motor drive system will limit the rate current can change from the  
power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or  
dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage  
remains stable and high current can be quickly supplied.  
The data sheet generally provides a recommended value, but system-level testing is required to determine the  
appropriate sized bulk capacitor.  
The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases  
when the motor transfers energy to the supply.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
Motor  
Driver  
+
œ
GND  
Local  
IC Bypass  
Bulk Capacitor  
Capacitor  
Copyright © 2016, Texas Instruments Incorporated  
Figure 31. Example Setup of Motor Drive System With External Power Supply  
30  
Copyright © 2015–2018, Texas Instruments Incorporated  
DRV8885  
www.ti.com.cn  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
10 Layout  
10.1 Layout Guidelines  
The VM terminal should be bypassed to GND using a low-ESR ceramic bypass capacitor with a recommended  
value of 0.01 µF rated for VM. This capacitor should be placed as close to the VM pin as possible with a thick  
trace or ground plane connection to the device GND pin.  
The VM pin must be bypassed to ground using a bulk capacitor rated for VM. This component may be an  
electrolytic.  
A low-ESR ceramic capacitor must be placed in between the CPL and CPH pins. A value of 0.022 µF rated for  
VM is recommended. Place this component as close to the pins as possible.  
A low-ESR ceramic capacitor must be placed in between the VM and VCP pins. A value of 0.22 µF rated for 16  
V is recommended. Place this component as close to the pins as possible.  
Bypass AVDD and DVDD to ground with a ceramic capacitor rated 6.3 V. Place this bypassing capacitor as  
close to the pin as possible.  
10.2 Layout Example  
+
0.01 µF  
CPL  
CPH  
DECAY  
TRQ  
VCP  
M1  
VM  
M0  
AOUT1  
PGND  
AOUT2  
BOUT2  
PGND  
BOUT1  
VM  
DIR  
STEP  
ENABLE  
nSLEEP  
RREF  
nFAULT  
DVDD  
AVDD  
0.01 µF  
GND  
Figure 32. Layout Recommendation  
版权 © 2015–2018, Texas Instruments Incorporated  
31  
DRV8885  
ZHCSER7C OCTOBER 2015REVISED NOVEMBER 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《计算电机驱动器的功耗》应用报告  
德州仪器 (TI)《电流再循环和衰减模式》应用报告  
德州仪器 (TI)《使用数模转换器 (DAC) 调整满量程电流》应用报告  
德州仪器 (TI)DRV8885 评估模块 (EVM) 用户指南》  
德州仪器 (TI)PowerPAD™ 速成》应用报告  
德州仪器 (TI)PowerPAD™ 热增强型封装》应用报告  
德州仪器 (TI)《了解电机驱动器电流额定值》应用报告  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2015–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8885PWP  
DRV8885PWPR  
DRV8885RHRR  
DRV8885RHRT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
WQFN  
PWP  
PWP  
RHR  
RHR  
24  
24  
28  
28  
60  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DRV8885  
Samples  
Samples  
Samples  
Samples  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
DRV8885  
DRV8885  
DRV8885  
WQFN  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jun-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8885PWPR  
DRV8885RHRR  
DRV8885RHRT  
HTSSOP PWP  
24  
28  
28  
2000  
3000  
250  
330.0  
330.0  
180.0  
16.4  
12.4  
12.4  
6.95  
3.8  
8.3  
5.8  
5.8  
1.6  
1.2  
1.2  
8.0  
8.0  
8.0  
16.0  
12.0  
12.0  
Q1  
Q1  
Q1  
WQFN  
WQFN  
RHR  
RHR  
3.8  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8885PWPR  
DRV8885RHRR  
DRV8885RHRT  
HTSSOP  
WQFN  
PWP  
RHR  
RHR  
24  
28  
28  
2000  
3000  
250  
350.0  
367.0  
210.0  
350.0  
367.0  
185.0  
43.0  
35.0  
35.0  
WQFN  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
PWP HTSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DRV8885PWP  
24  
60  
530  
10.2  
3600  
3.5  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
PWP 24  
4.4 x 7.6, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224742/B  
www.ti.com  
PACKAGE OUTLINE  
PWP0024B  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC SMALL OUTLINE  
6.6  
6.2  
SEATING PLANE  
C
TYP  
PIN 1 ID  
A
0.1 C  
AREA  
22X 0.65  
24  
1
2X  
7.9  
7.7  
NOTE 3  
7.15  
12  
13  
0.30  
24X  
4.5  
4.3  
0.19  
B
0.1  
C A  
B
(0.15) TYP  
SEE DETAIL A  
4X (0.2) MAX  
NOTE 5  
2X (0.95) MAX  
NOTE 5  
EXPOSED  
THERMAL PAD  
0.25  
GAGE PLANE  
5.16  
4.12  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
2.40  
1.65  
4222709/A 02/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may not be present and may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0024B  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(2.4)  
24X (1.5)  
SYMM  
SEE DETAILS  
1
24  
24X (0.45)  
(R0.05)  
TYP  
(7.8)  
NOTE 9  
(1.1)  
TYP  
SYMM  
(5.16)  
22X (0.65)  
(
0.2) TYP  
VIA  
12  
13  
(1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-24  
4222709/A 02/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0024B  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(2.4)  
BASED ON  
0.125 THICK  
STENCIL  
24X (1.5)  
(R0.05) TYP  
1
24  
24X (0.45)  
(5.16)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
22X (0.65)  
13  
12  
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.68 X 5.77  
2.4 X 5.16 (SHOWN)  
2.19 X 4.71  
0.125  
0.15  
0.175  
2.03 X 4.36  
4222709/A 02/2016  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RHR 28  
3.5 x 5.5, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4210249/B  
www.ti.com  
PACKAGE OUTLINE  
RHR0028A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
5.6  
5.4  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
2±0.1  
2X 1.5  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
11  
14  
24X 0.5  
10  
15  
2X  
4.5  
4±0.1  
SEE TERMINAL  
DETAIL  
1
24  
0.3  
28X  
28  
25  
0.5  
0.2  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A  
B
28X  
0.3  
0.05  
4219075/A 11/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHR0028A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2)  
SYMM  
28X (0.6)  
28X (0.25)  
25  
28  
1
24  
24X (0.5)  
(0.66)  
(5.3)  
TYP  
SYMM  
(4)  
(
0.2) TYP  
VIA  
15  
10  
11  
14  
(0.75) TYP  
(3.3)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219075/A 11/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHR0028A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.55) TYP  
28  
25  
28X (0.6)  
28X (0.25)  
1
24  
24X (0.5)  
SYMM  
(1.32)  
TYP  
(5.3)  
METAL  
TYP  
6X (1.12)  
15  
10  
14  
11  
6X (0.89)  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4219075/A 11/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY