DRV8886 [TI]

具有集成电流感应功能和 1/16 微步进的 37V、2A 双极步进电机驱动器;
DRV8886
型号: DRV8886
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成电流感应功能和 1/16 微步进的 37V、2A 双极步进电机驱动器

电机 驱动 驱动器
文件: 总47页 (文件大小:3073K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
DRV8886 集成电流检测功能的 2A 步进电机驱动器  
1 特性  
3 说明  
1
脉宽调制 (PWM) 微步进电机驱动器  
DRV8886 是一款适用于工业和消费类终端设备的 步进  
电机驱动器。该器件与两个 N 沟道功率金属氧化物半  
导体场效应晶体管 (MOSFET) H 桥驱动器、一个微步  
进分度器以及集成电流检测功能完全集成。DRV8886  
能够驱动高达 2A 的满量程电流或 1.4A rms 输出电流  
(电压为 24V TA = 25°C,取决于印刷电路板  
(PCB) 设计)。  
最高 1/16 微步进  
非循环和标准 ½ 步进模式  
集成电流检测功能  
无需感测电阻  
±6.25% 满量程电流精度  
慢速衰减和混合衰减选项  
8V 37V 工作电源电压范围  
DRV8886 采用内部电流检测架构,无需使用两个外部  
功率感测电阻,从而缩小 PCB 面积并削减系统成本。  
DRV8886 使用内部固定关断时间 PWM 电流调节方  
案,可在慢速和混合衰减选项之间进行调节。  
RDS(ON)550mΩ HS + LS(在 24V 25℃ 条  
件下)  
高电流容量  
每条桥臂的峰值电流为 3A  
简易 STEP/DIR 接口允许外部控制器管理步进电机的  
方向和步进速率。该器件可以配置为不同步进模式,范  
围涵盖整步至 1/16 微步。凭借专用 nSLEEP 引脚,该  
器件可提供一种低功耗休眠模式,从而实现超低静态待  
机电流。  
每条桥臂的满量程电流为 2A  
每条桥臂的均方根 (rms) 电流为 1.4A  
固定关断时间脉宽调制 (PWM) 电流调节  
简单的 STEP/DIR 接口  
低电流休眠模式 (20μA)  
小型封装尺寸  
该器件的 保护功能 包括:电源欠压、电荷泵故障、过  
流、短路以及过热保护。故障状态通过 nFAULT 引脚  
指示。  
24 引脚散热薄型小外形尺寸 (HTSSOP)  
PowerPAD™封装  
28 WQFN 封装  
器件信息 (1)  
保护 特性  
器件型号  
DRV8886  
封装  
HTSSOP (24)  
WQFN(2) (28)  
封装尺寸(标称值)  
7.80mm × 4.40mm  
5.50mm × 3.5mm  
VM 欠压闭锁 (UVLO)  
电荷泵欠压 (CPUV)  
过流保护 (OCP)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
热关断 (TSD)  
故障条件指示引脚 (nFAULT)  
(2) 仅供预览。  
简化原理图  
2 应用  
8 to 37 V  
双极步进电机  
多功能打印机和扫描仪  
激光束打印机  
DRV8886  
STEP  
DIR  
3D 打印机  
M
2 A  
自动取款机和验钞机  
视频安保摄像机  
办公自动化设备  
工厂自动化和机器人  
Step Size  
Stepper Motor  
Driver  
Decay Mode  
+
œ
nFAULT  
Current Sense  
1/16 µstep  
2 A  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
English Data Sheet: SLVSDA4  
 
 
 
 
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 27  
Application and Implementation ........................ 28  
8.1 Application Information............................................ 28  
8.2 Typical Application .................................................. 28  
Power Supply Recommendations...................... 31  
9.1 Bulk Capacitance ................................................... 31  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Indexer Timing Requirements................................... 8  
6.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
8
9
10 Layout................................................................... 32  
10.1 Layout Guidelines ................................................. 32  
10.2 Layout Example .................................................... 32  
11 器件和文档支持 ..................................................... 33  
11.1 文档支持................................................................ 33  
11.2 接收文档更新通知 ................................................. 33  
11.3 社区资源................................................................ 33  
11.4 ....................................................................... 33  
11.5 静电放电警告......................................................... 33  
11.6 术语表 ................................................................... 33  
12 机械、封装和可订购信息....................................... 33  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (January 2017) to Revision A  
Page  
已添加 WQFN 封装选项 ......................................................................................................................................................... 1  
已更改 the units of the High-Side and Low-Side RDS(ON) axis labels from mΩ to Ω in the high-side and low-side  
RDS(ON) over VM and over temperature graphs ...................................................................................................................... 9  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
5 Pin Configuration and Functions  
PWP PowerPAD™ Package  
24-Pin HTSSOP  
RHR Package  
28-Pin WQFN With Exposed Thermal Pad  
Top View  
Top View  
CPL  
CPH  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
DECAY  
TRQ  
2
VCP  
3
M1  
VCP  
VM  
1
2
3
4
5
6
7
8
9
10  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
TRQ  
VM  
4
M0  
M1  
AOUT1  
PGND  
AOUT2  
BOUT2  
PGND  
BOUT1  
VM  
5
DIR  
AOUT1  
PGND  
AOUT2  
BOUT2  
PGND  
BOUT1  
VM  
M0  
6
STEP  
ENABLE  
nSLEEP  
RREF  
nFAULT  
DVDD  
AVDD  
Thermal  
Pad  
DIR  
7
Thermal  
Pad  
STEP  
ENABLE  
nSLEEP  
RREF  
nFAULT  
NC  
8
9
10  
11  
12  
GND  
GND  
Not to scale  
Not to scale  
Pin Functions  
PIN  
NO.  
HTSSOP WQFN  
TYPE(1)  
DESCRIPTION  
NAME  
AOUT1  
AOUT2  
AVDD  
BOUT1  
BOUT2  
CPH  
5
7
3
5
O
PWR  
O
Winding A output. Connect to stepper motor winding.  
13  
10  
8
12  
8
Internal regulator. Bypass to GND with a X5R or X7R, 0.47-μF, 6.3-V ceramic capacitor.  
Winding B output. Connect to stepper motor winding.  
6
2
28  
27  
PWR  
I
Charge pump switching node. Connect a X5R or X7R, 0.022-μF, VM-rated ceramic capacitor from CPH to CPL.  
CPL  
1
Decay-mode setting. Sets the decay mode (see the Decay Modes section). Decay mode can be adjusted during  
operation.  
DECAY  
24  
25  
DIR  
20  
14  
18  
12  
21  
22  
21  
13  
19  
10  
22  
23  
11  
14  
15  
26  
4
I
Direction input. Logic level sets the direction of stepping; internal pulldown resistor.  
Internal regulator. Bypass to GND with a X5R or X7R, 0.47-μF, 6.3-V ceramic capacitor.  
Enable driver input. Logic high to enable device outputs; logic low to disable; internal pulldown resistor.  
Device ground. Connect to system ground.  
DVDD  
ENABLE  
GND  
M0  
PWR  
I
PWR  
I
Microstepping mode-setting. Sets the step mode; tri-level pins; sets the step mode; internal pulldown resistor.  
M1  
NC  
No connect. No internal connection  
6
9
PGND  
RREF  
PWR  
I
Power ground. Connect to system ground.  
7
16  
17  
Current-limit analog input. Connect a resistor to ground to set full-scale regulation current.  
(1) I = input, O = output, PWR = power, OD = open-drain  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
STEP  
HTSSOP WQFN  
19  
23  
3
20  
24  
1
I
I
Step input. A rising edge causes the indexer to advance one step; internal pulldown resistor.  
Current-scaling control. Scales the output current; tri-level pin.  
TRQ  
VCP  
PWR  
Charge pump output. Connect a X5R or X7R, 0.22-μF, 16-V ceramic capacitor to VM.  
4
2
Power supply. Connect to motor supply voltage and bypass to GND with two 0.01-μF ceramic capacitors (one for  
each pin) plus a bulk capacitor rated for VM.  
VM  
PWR  
11  
15  
9
nFAULT  
nSLEEP  
16  
OD  
I
Fault indication. Pulled logic low with fault condition; open-drain output requires an external pullup resistor.  
Sleep mode input. Logic high to enable device; logic low to enter low-power sleep mode; internal pulldown  
resistor.  
17  
18  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
0
MAX  
40  
UNIT  
V
Power supply voltage (VM)  
Power supply voltage ramp rate (VM)  
2
V/µs  
V
Charge pump voltage (VCP, CPH)  
–0.3  
–0.3  
–0.3  
0
VM + 7  
VM  
Charge pump negative switching pin (CPL)  
Internal regulator voltage (DVDD)  
V
3.8  
V
Internal regulator current output (DVDD)  
1
mA  
V
Internal regulator voltage (AVDD)  
–0.3  
–0.3  
0
5.7  
Control pin voltage (STEP, DIR, ENABLE, nFAULT, M0, M1, DECAY, TRQ, nSLEEP)  
Open drain output current (nFAULT)  
5.7  
V
10  
mA  
V
Current limit input pin voltage (RREF)  
–0.3  
–1.0  
–3.0  
0
6.0  
Continuous phase node pin voltage (AOUT1, AOUT2, BOUT1, BOUT2)  
Transient 100 ns phase node pin voltage (AOUT1, AOUT2, BOUT1, BOUT2)  
Peak drive current (AOUT1, AOUT2, BOUT1, BOUT2)  
Operating junction temperature, TJ  
VM + 1.0  
VM + 3.0  
3
V
V
A
–40  
–65  
150  
150  
°C  
°C  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
VVM  
VI  
Power supply voltage (VM)  
8
37  
V
Input voltage (DECAY, DIR, ENABLE, M0, M1, nSLEEP, STEP,  
TRQ)  
0
5.3  
V
ƒPWM  
IDVDD  
IFS  
Applied STEP signal (STEP)  
External load current (DVDD)  
Motor full-scale current (xOUTx)  
Motor RMS current (xOUTx)  
Operating ambient temperature  
0
0
100(1)  
1(2)  
2(2)  
kHz  
mA  
A
0
Irms  
0
1.4(2)  
A
TA  
–40  
125  
°C  
(1) STEP input can operate up to 500 kHz, but system bandwidth is limited by the motor load  
(2) Power dissipation and thermal limits must be observed  
6.4 Thermal Information  
DRV8886  
THERMAL METRIC(1)  
PWP (HTSSOP)  
RHR (WQFN)  
28 PINS  
33.2  
UNIT  
24 PINS  
33.8  
18.0  
7.7  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
23.1  
12.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
0.3  
ψJB  
7.8  
12.0  
RθJC(bot)  
1.3  
3.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
6.5 Electrical Characteristics  
at TA = -40 to 125°C, VVM = 8 to 37 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VM, DVDD, AVDD)  
VVM  
VM operating voltage  
8
37  
8
V
ENABLE = 1, nSLEEP = 1, No motor  
load  
IVM  
VM operating supply current  
5
mA  
nSLEEP = 0; TA = 25°C  
nSLEEP = 0; TA = 125°C(1)  
nSLEEP = 0 to sleep-mode  
nSLEEP = 1 to output transition  
VM > UVLO to output transition  
0- to 1-mA external load  
No external load  
20  
40  
IVMQ  
VM sleep mode supply current  
μA  
tSLEEP  
tWAKE  
tON  
Sleep time  
50  
0.85  
0.85  
3.3  
200  
1.5  
1.5  
3.6  
5.5  
μs  
ms  
ms  
V
Wake-up time  
Turn-on time  
VDVDD  
VAVDD  
Internal regulator voltage  
Internal regulator voltage  
2.9  
4.5  
5
V
CHARGE PUMP (VCP, CPH, CPL)  
VVCP VCP operating voltage  
LOGIC-LEVEL INPUTS (STEP, DIR, ENABLE, nSLEEP, M1)  
VM + 5.5  
V
VIL  
Input logic-low voltage  
Input logic-high voltage  
Input logic hysteresis  
Input logic-low current  
Input logic-high current  
Pulldown resistance  
Propagation delay  
0
0.8  
5.3  
V
V
VIH  
VHYS  
IIL  
1.6  
200  
100  
mV  
μA  
μA  
k  
μs  
VIN = 0 V  
–1  
1
IIH  
VIN = 5 V  
100  
RPD  
To GND  
(1)  
tPD  
STEP to current change  
1.2  
TRI-LEVEL INPUT (M0, TRQ)  
VIL  
VIZ  
Tri-level input logic low voltage  
0
0.65  
1.25  
V
V
Tri-level input Hi-Z voltage  
0.95  
1.1  
Tri-level input logic high  
voltage  
VIH  
IIL  
1.5  
5.3  
V
Tri-level input logic low current VIN = 0 V  
–90  
μA  
μA  
Tri-level input logic high  
VIN = 5 V  
IIH  
155  
current  
RPD  
RPU  
Tri-level pulldown resistance  
Tri-level pullup resistance  
VIN = Hi-Z, to GND  
65  
kΩ  
kΩ  
VIN = Hi-Z, to DVDD  
130  
QUAD-LEVEL INPUT (DECAY)  
VI1  
VI2  
VI3  
VI4  
IO  
Quad-level input voltage 1  
Can set with 1% 5 kΩ to GND  
Can set with 1% 15 kΩ to GND  
Can set with 1% 44.2 kΩ to GND  
Can set with 1% 133 kΩ to GND  
To GND  
0
0.24  
0.71  
2.12  
17  
0.14  
0.46  
1.24  
5.3  
V
V
Quad-level input voltage 2  
Quad-level input voltage 3  
Quad-level input voltage 4  
Output current  
V
V
22  
27.25  
μA  
CONTROL OUTPUTS (nFAULT)  
VOL  
IOH  
Output logic-low voltage  
Output logic-high leakage  
IO = 1 mA, RPULLUP = 4.7 kΩ  
VO = 5 V, RPULLUP = 4.7 kΩ  
0.5  
1
V
–1  
μA  
(1) Specified by design and characterization data  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
Electrical Characteristics (continued)  
at TA = -40 to 125°C, VVM = 8 to 37 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MOTOR DRIVER OUTPUTS (AOUT1, AOUT2, BOUT1, BOUT2)  
RDS(ON)  
High-side FET on resistance  
Low-side FET on resistance  
Output rise time  
VM = 24 V, I = 1.4 A, TA = 25°C  
VM = 24 V, I = 1.4 A, TA = 25°C  
290  
260  
100  
100  
200  
0.7  
346  
320  
mΩ  
mΩ  
ns  
RDS(ON)  
(1)  
tRISE  
(1)  
tFALL  
Output fall time  
ns  
(1)  
tDEAD  
Output dead time  
ns  
(1)  
Vd  
Body diode forward voltage  
IOUT = 0.5 A  
1
V
PWM CURRENT CONTROL (RREF)  
ARREF  
VRREF  
tOFF  
RREF transimpedance gain  
RREF voltage  
28.1  
1.18  
30  
1.232  
20  
31.9  
1.28  
kAΩ  
V
RREF = 18 to 132 kΩ  
PWM off-time  
μs  
Equivalent capacitance on  
RREF  
CRREF  
10  
pF  
µs  
IRREF = 2.0 A, 63% to 100% current  
setting  
1.5  
1
tBLANK  
PWM blanking time  
Current trip accuracy  
IRREF = 2.0 A, 0% to 63% current  
setting  
IRREF = 1.5 A, 10% to 20% current  
setting, 1% reference resistor  
–15%  
–10%  
15%  
10%  
IRREF = 1.5 A, 20% to 63% current  
setting, 1% reference resistor  
ΔITRIP  
IRREF = 1.5 A, 71% to 100% current  
setting, 1% reference resistor  
–6.25%  
6.25%  
PROTECTION CIRCUITS  
VM falling, UVLO report  
VM rising, UVLO recovery  
Rising to falling threshold  
VCP falling; CPUV report  
7
7.8  
8
VUVLO  
VM UVLO  
V
7.2  
VUVLO,HYS  
VCPUV  
Undervoltage hysteresis  
200  
mV  
V
Charge pump undervoltage  
VM + 2  
Overcurrent protection trip  
level  
IOCP  
Current through any FET  
3
A
(1)  
tOCP  
Overcurrent deglitch time  
Overcurrent retry time  
1.3  
1
1.9  
20  
2.8  
1.6  
μs  
tRETRY  
ms  
Thermal shutdown  
temperature  
(1)  
TTSD  
Die temperature TJ  
Die temperature TJ  
150  
°C  
°C  
(1)  
THYS  
Thermal shutdown hysteresis  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
6.6 Indexer Timing Requirements  
at TA = -40 to 125°C, VVM = 8 to 37 V (unless otherwise noted)  
NO.  
MIN  
MAX  
UNIT  
kHz  
ns  
(1)  
1
2
3
4
5
ƒSTEP  
Step frequency  
500  
tWH(STEP)  
tWL(STEP)  
tSU(DIR, Mx)  
tH(DIR, Mx)  
Pulse duration, STEP high  
970  
970  
200  
200  
Pulse duration, STEP low  
ns  
Setup time, DIR or USMx to STEP rising  
Hold time, DIR or USMx to STEP rising  
ns  
ns  
(1) STEP input can operate up to 500 kHz, but system bandwidth is limited by the motor load.  
1
3
2
STEP  
DIR, Mx  
5
4
1. Timing Diagram  
8
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
6.7 Typical Characteristics  
Over recommended operating conditions (unless otherwise noted)  
7
7
6.8  
6.6  
6.4  
6.2  
6
TA = -40°C  
6.8  
TA = 25°C  
TA = 125°C  
6.6  
6.4  
6.2  
6
5.8  
5.6  
5.4  
5.2  
5
VM = 8 V  
VM = 24 V  
VM = 37 V  
5.8  
5.6  
5
10  
10  
10  
15  
20  
25  
30  
35  
40  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage (V)  
Ambient Temperature (°C)  
D001  
D002  
2. Supply Current over VM  
3. Supply Current over Temperature  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
VM = 8 V  
VM = 24 V  
VM = 37 V  
TA = -40°C  
TA = 25°C  
TA = 125°C  
6
4
6
-40  
5
15  
20  
25  
30  
35  
40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage (V)  
Ambient Temperature (°C)  
D003  
D0042  
4. Sleep Current over VM  
5. Sleep Current over Temperature  
0.5  
0.45  
0.4  
0.4  
0.38  
0.36  
0.34  
0.32  
0.3  
0.35  
0.3  
0.25  
0.2  
0.28  
0.26  
0.24  
0.22  
0.15  
0.1  
TA = -40°C  
TA = 25°C  
TA = 125°C  
VM = 8 V  
VM = 24 V  
VM = 37 V  
0.05  
0
5
15  
20  
25  
30  
35  
40  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage (V)  
Ambient Temperature (°C)  
D005  
D006  
6. High-Side RDS(ON) over VM  
7. High-Side RDS(ON) over Temperature  
版权 © 2017–2018, Texas Instruments Incorporated  
9
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
Over recommended operating conditions (unless otherwise noted)  
0.5  
0.42  
0.4  
0.45  
0.4  
0.38  
0.36  
0.34  
0.32  
0.3  
0.35  
0.3  
0.25  
0.2  
0.28  
0.26  
0.24  
0.22  
0.2  
0.15  
0.1  
TA = -40°C  
VM = 8 V  
VM = 24 V  
VM = 37 V  
TA = 25°C  
0.05  
0
TA = 125°C  
5
10  
15  
20  
25  
30  
35  
40  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage (V)  
Ambient Temperature (°C)  
D007  
D008  
8. Low-Side RDS(ON) over VM  
9. Low-Side RDS(ON) over Temperature  
3.339  
2
TRQ = 0  
3.336  
3.333  
3.33  
TRQ = Z  
TRQ = 1  
1
0.7  
0.5  
3.327  
3.324  
3.321  
3.318  
3.315  
3.312  
3.309  
3.306  
3.303  
0.3  
0.2  
0.1  
0.07  
0.05  
T A = 125°C  
T A = 85°C  
T A = 25°C  
T A = -40°C  
0.03  
0.02  
0.01  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
10  
20  
30  
40 50 60 70  
100  
200  
300  
DVDD Load (mA)  
R REF (kW)  
D009  
D010  
10. DVDD Regulator over Load (VM = 24 V)  
11. Full-Scale Current over RREF Selection  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
7 Detailed Description  
7.1 Overview  
The DRV8886 device is an integrated motor-driver solution for bipolar stepper motors. The device integrates two  
N-channel power MOSFET H-bridges, integrated current sense and regulation circuitry, and a microstepping  
indexer. The DRV8886 device can be powered with a supply voltage from 8 to 37 V and is capable of providing  
an output current up to 3-A peak, 2-A full-scale, or 1.4-A root mean square (rms). The actual full-scale and rms  
current depends on the ambient temperature, supply voltage, and PCB thermal capability.  
The DRV8886 device uses an integrated current-sense architecture which eliminates the need for two external  
power sense resistors. This architecture removes the power dissipated in the sense resistors by using a current  
mirror approach and using the internal power MOSFETs for current sensing. The current regulation set point is  
adjusted with a standard low-power resistor connected to the RREF pin. This features reduces external  
component cost, board PCB size, and system power consumption.  
A simple STEP/DIR interface allows for an external controller to manage the direction and step rate of the  
stepper motor. The internal indexer can execute high-accuracy microstepping without requiring the external  
controller to manage the winding current level. The indexer is capable of full step, half step, and 1/4, 1/8, 1/16  
microstepping. In addition to a standard half stepping mode, a non-circular half stepping mode is available for  
increased torque output at higher motor RPM.  
The current regulation is configurable between several decay modes. The decay mode can be selected as a  
fixed slow, slow-mixed, or mixed decay current regulation scheme. The slow-mixed decay mode uses slow decay  
on increasing steps and mixed decay on decreasing steps.  
An adaptive blanking time feature automatically scales the minimum drive time with output current level. This  
feature helps alleviate zero-crossing distortion by limiting the drive time at low-current steps.  
A torque DAC feature allows the controller to scale the output current without needing to scale the RREF  
reference resistor. The torque DAC is accessed using a digital input pin which allows the controller to save  
system power by decreasing the motor current consumption when high output torque is not required.  
A low-power sleep mode is included which allows the system to save power when not actively driving the motor.  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
7.2 Functional Block Diagram  
VM  
0.01 F  
0.01 F  
Bulk  
VM  
VM  
VM  
0.22 F  
Power  
VCP  
AOUT1  
CPH  
Charge  
Pump  
0.022 F  
CPL  
Current  
Sense  
Stepper  
Motor  
AVDD  
AVDD  
Regulator  
VM  
Gate  
Drivers  
0.47 F  
DVDD  
DVDD  
Regulator  
AOUT2  
PGND  
0.47 F  
GND  
Current  
Sense  
Digital  
Core  
IREF  
STEP  
SINE DAC  
VM  
DIR  
ENABLE  
nSLEEP  
M1  
BOUT1  
Current  
Sense  
Control  
Inputs  
VM  
Gate  
Drivers  
Microstepping  
Indexer  
DVDD  
DVDD  
DVDD  
M0  
BOUT2  
Adaptive  
Blanking  
TRQ  
Current  
Sense  
IREF  
PGND  
VCC  
DECAY  
SINE DAC  
DVDD  
IREF  
Protection  
RPU  
nFAULT  
Fault Output  
Overcurrent  
RREF  
Analog  
Input  
RREF  
RREF  
Undervoltage  
Overtemperature  
PPAD  
Copyright © 2017, Texas Instruments Incorporated  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
7.3 Feature Description  
1 lists the recommended external components for the DRV8886 device.  
1. DRV8886 External Components  
COMPONENT  
CVM1  
PIN 1  
VM  
PIN 2  
GND  
GND  
VM  
RECOMMENDED  
Two X5R or X7R, 0.01-µF, VM-rated ceramic capacitors  
Bulk, VM-rated capacitor  
CVM2  
VM  
CVCP  
VCP  
CPH  
AVDD  
DVDD  
X5R or X7R, 0.22-µF, 16-V ceramic capacitor  
X5R or X7R, 0.022-µF, VM-rated ceramic capacitor  
X5R or X7R, 0.47-µF, 6.3-V ceramic capacitor  
X5R or X7R, 0.47-µF, 6.3-V ceramic capacitor  
>4.7-kresistor  
CSW  
CPL  
CAVDD  
CDVDD  
RnFAULT  
GND  
GND  
nFAULT  
(1)  
VCC  
Resistor to limit chopping current must be installed. See the Typical Application  
section for value selection.  
RREF  
RREF  
GND  
(1) VCC is not a pin on the DRV8886 device, but a VCC supply voltage pullup is required for open-drain output nFAULT; nFAULT may be  
pulled up to DVDD  
7.3.1 Stepper Motor Driver Current Ratings  
Stepper motor drivers can be classified using three different numbers to describe the output current: peak, rms,  
and full-scale.  
7.3.1.1 Peak Current Rating  
The peak current in a stepper driver is limited by the overcurrent protection trip threshold, IOCP. The peak current  
describes any transient duration current pulse, for example when charging capacitance, when the overall duty  
cycle is very low. In general the minimum value of IOCP specifies the peak current rating of the stepper motor  
driver. For the DRV8886 device, the peak current rating is 3 A per bridge.  
7.3.1.2 rms Current Rating  
The rms (average) current is determined by the thermal considerations of the device. The rms current is  
calculated based on the RDS(ON), rise and fall time, PWM frequency, device quiescent current, and package  
thermal performance in a typical system at 25°C. The actual operating rms current may be higher or lower  
depending on heatsinking and ambient temperature. For the DRV8886 device, the rms current rating is 1.4 A per  
bridge.  
7.3.1.3 Full-Scale Current Rating  
The full-scale current describes the top of the sinusoid current waveform while microstepping. Because the  
sinusoid amplitude is related to the rms current, the full-scale current is also determined by the thermal  
considerations of the device. The full-scale current rating is approximately 2 × IRMS. The full-scale current is set  
by the RREF pin and the torque DAC when configuring the DRV8886 device, for details see the Current  
Regulation section. For the DRV8886 device, the full-scale current rating is 2 A per bridge.  
Full-scale current  
RMS current  
AOUT  
BOUT  
Step Input  
12. Full-Scale and rms Current  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
 
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
7.3.2 PWM Motor Drivers  
The DRV8886 device has drivers for two full H-bridges to drive the two windings of a bipolar stepper motor. 图  
13 shows a block diagram of the circuitry.  
VM  
xOUT1  
Current  
Sense  
Microstepping and  
Current Regulation  
Logic  
VM  
Gate  
Drivers  
xOUT2  
PGND  
Current  
Sense  
13. PWM Motor Driver Block Diagram  
7.3.3 Microstepping Indexer  
Built-in indexer logic in the DRV8886 device allows a number of different step modes. The M1 and M0 pins are  
used to configure the step mode as shown in 2.  
2. Microstepping Settings  
M1  
0
M0  
0
STEP MODE  
Full step (2-phase excitation) with 71% current  
0
1
1/16 step  
1
0
1/2 step  
1
1
1/4 step  
0
Z
1/8 step  
1
Z
Non-circular 1/2 step  
3 shows the relative current and step directions for full-step through 1/16-step operation. The AOUT current is  
the sine of the electrical angle and the BOUT current is the cosine of the electrical angle. Positive current is  
defined as current flowing from the xOUT1 pin to the xOUT2 pin while driving.  
At each rising edge of the STEP input the indexer travels to the next state in the table. The direction is shown  
with the DIR pin logic high. If the DIR pin is logic low, the sequence is reversed.  
On power-up or when exiting sleep mode, keep the STEP pin logic low, otherwise the indexer advances one  
step.  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
If the step mode is changed from full, 1/2, 1/4, 1/8, or 1/16 to full, 1/2, 1/4, 1/8, or 1/16  
while stepping, the indexer advances to the next valid state for the new step mode setting  
at the rising edge of STEP. If the step mode is changed from or to noncircular 1/2 step the  
indexer goes immediately to the valid state for that mode.  
The home state is an electrical angle of 45°. This state is entered after power-up, after exiting logic undervoltage  
lockout, or after exiting sleep mode. 3 lists the home state in red.  
3. Microstepping Relative Current Per Step (DIR = 1)  
FULL STEP  
1/2 STEP  
1/4 STEP  
1/8 STEP  
1/16 STEP  
ELECTRICAL  
ANGLE  
(DEGREES)  
AOUT  
BOUT  
CURRENT (% CURRENT (%  
FULL-SCALE) FULL-SCALE)  
1
1
1
2
1
0.000°  
5.625°  
0%  
10%  
20%  
29%  
38%  
47%  
56%  
63%  
71%  
77%  
83%  
88%  
92%  
96%  
98%  
100%  
100%  
100%  
98%  
96%  
92%  
88%  
83%  
77%  
71%  
63%  
56%  
47%  
38%  
29%  
20%  
10%  
0%  
100%  
100%  
98%  
2
3
11.250°  
16.875°  
22.500°  
28.125°  
33.750°  
39.375°  
45.000°  
50.625°  
56.250°  
61.875°  
67.500°  
73.125°  
78.750°  
84.375°  
90.000°  
95.625°  
101.250°  
106.875°  
112.500°  
118.125°  
123.750°  
129.375°  
135.000°  
140.625°  
146.250°  
151.875°  
157.500°  
163.125°  
168.750°  
174.375°  
180.000°  
185.625°  
191.250°  
196.875°  
202.500°  
208.125°  
4
96%  
2
3
3
5
92%  
6
88%  
4
7
83%  
8
77%  
1
2
3
4
5
5
9
71%  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
63%  
6
56%  
47%  
4
7
38%  
29%  
8
20%  
10%  
5
9
0%  
–10%  
–20%  
–29%  
–38%  
–47%  
–56%  
–63%  
–71%  
–77%  
–83%  
–88%  
–92%  
–96%  
–98%  
–100%  
–100%  
–100%  
–98%  
–96%  
–92%  
–88%  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
6
2
7
8
9
–10%  
–20%  
–29%  
–38%  
–47%  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
 
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
BOUT  
3. Microstepping Relative Current Per Step (DIR = 1) (接下页)  
FULL STEP  
1/2 STEP  
1/4 STEP  
1/8 STEP  
1/16 STEP  
ELECTRICAL  
ANGLE  
(DEGREES)  
AOUT  
CURRENT (% CURRENT (%  
FULL-SCALE) FULL-SCALE)  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
1
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
1
213.750°  
219.375°  
225.000°  
230.625°  
236.250°  
241.875°  
247.500°  
253.125°  
258.750°  
264.375°  
270.000°  
275.625°  
281.250°  
286.875°  
292.500°  
298.125°  
303.750°  
309.375°  
315.000°  
320.625°  
326.250°  
331.875°  
337.500°  
343.125°  
348.750°  
354.375°  
360.000°  
–56%  
–63%  
–71%  
–77%  
–83%  
–88%  
–92%  
–96%  
–98%  
–100%  
–100%  
–100%  
–98%  
–96%  
–92%  
–88%  
–83%  
–77%  
–71%  
–63%  
–56%  
–47%  
–38%  
–29%  
–20%  
–10%  
0%  
–83%  
–77%  
–71%  
–63%  
–56%  
–47%  
–38%  
–29%  
–20%  
–10%  
0%  
3
6
11  
12  
13  
14  
15  
16  
1
7
8
1
10%  
20%  
29%  
38%  
47%  
56%  
63%  
4
71%  
77%  
83%  
88%  
92%  
96%  
98%  
100%  
100%  
4 shows the noncircular 1/2–step operation. This stepping mode consumes more power than circular 1/2-step  
operation, but provides a higher torque at high motor rpm.  
4. Non-Circular 1/2-Stepping Current  
NON-CIRCULAR 1/2-STEP  
AOUT CURRENT  
(% FULL-SCALE)  
BOUT CURRENT  
(% FULL-SCALE)  
ELECTRICAL ANGLE  
(DEGREES)  
1
2
3
4
5
6
7
8
0
100  
100  
0
0
100  
100  
100  
0
45  
90  
–100  
–100  
–100  
0
135  
180  
225  
270  
315  
–100  
–100  
–100  
100  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
7.3.4 Current Regulation  
The current through the motor windings is regulated by an adjustable, fixed-off-time PWM current-regulation  
circuit. When an H-bridge is enabled, current rises through the winding at a rate dependent on the supply  
voltage, inductance of the winding, and the magnitude of the back EMF present. When the current hits the  
current regulation threshold, the bridge enters a decay mode for a fixed 20 μs, period of time to decrease the  
current. After the off time expires, the bridge is re-enabled, starting another PWM cycle.  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
14. Current Chopping Waveform  
The PWM regulation current is set by a comparator which monitors the voltage across the current sense  
MOSFETs in parallel with the low-side power MOSFETs. The current sense MOSFETs are biased with a  
reference current that is the output of a current-mode sine-weighted DAC whose full-scale reference current is  
set by the current through the RREF pin. An external resistor is placed from the RREF pin to GND to set the  
reference current. In addition, the TRQ pin can further scale the reference current.  
Use 公式 1 to calculate the full-scale regulation current.  
ARREF (kAW)  
RREF (kW)  
30 (kAW)  
RREF (kW)  
IFS (A) =  
ì TRQ (%) =  
ì TRQ (%)  
(1)  
For example, if a 30-kΩ resistor is connected to the RREF pin, the full-scale regulation current is 1 A (TRQ at  
100%).  
The TRQ pin is the input to a DAC used to scale the output current. 5 lists the current scalar value for different  
inputs.  
5. Torque DAC Settings  
TRQ  
CURRENT SCALAR (TRQ)  
0
Z
1
100%  
75%  
50%  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
 
 
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
7.3.5 Controlling RREF With an MCU DAC  
In some cases, the full-scale output current may need to be changed between many different values, depending  
on motor speed and loading. The reference current of the RREF pin can be adjusted in the system by tying the  
RREF resistor to a DAC output instead of GND.  
In this mode of operation, as the DAC voltage increases, the reference current decreases and therefore the full-  
scale regulation current decreases as well. For proper operation, the output of the DAC should not rise above  
VRREF  
.
DVDD  
IREF  
Controller  
DAC  
RREF  
Analog  
Input  
RREF  
RREF  
15. Controlling RREF With a DAC Resource  
Use 公式 2 to calculate the full-scale regulation current as controlled by a controller DAC.  
ARREF (kAW) ì V (V) œ VDAC (V)  
[
]
ì TRQ (%)  
RREF  
IFS (A) =  
VRREF (V) ì RREF (kW)  
(2)  
For example, if a 20-kΩ resistor is connected from the RREF pin to the DAC, and the DAC outputs 0.74 V, the  
chopping current is 600 mA (TRQ at 100%)  
The RREF pin can also be adjusted using a PWM signal and low-pass filter.  
DVDD  
IREF  
Controller  
RREF  
RREF  
Analog  
PWM  
Input  
R1  
R2  
RREF  
C1  
16. Controlling RREF With a PWM Resource  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
7.3.6 Decay Modes  
The DRV8886 decay mode is selected by setting the quad-level DECAY pin to the voltage range listed in 6.  
The decay mode setting can be modified during device operation.  
6. Decay Mode Settings  
DECAY  
INCREASING STEPS  
DECREASING STEPS  
100 mV  
Slow decay  
Mixed decay: 30% fast  
Can be tied to ground  
300 mV, 15 kto GND  
1 V, 45 kto GND  
Mixed decay: 30% fast  
Mixed decay: 60% fast  
Mixed decay: 30% fast  
Mixed decay: 60% fast  
2.9 V  
Can be tied to DVDD  
Slow decay  
Slow decay  
17 defines increasing and decreasing current. For the slow-mixed decay mode, the decay mode is set as slow  
during increasing current steps and mixed decay during decreasing current steps. In full step mode the  
decreasing steps decay mode is always used. In noncircular 1/2-step mode the increasing step decay mode is  
used after a level transition (0% to 100% and 0% to –100%). When the level transition is to a similar level (100%  
to 100% and –100% to –100%), the decreasing step decay mode is used.  
Increasing Decreasing  
Increasing Decreasing  
STEP Input  
Decreasing  
Increasing  
Increasing Decreasing  
STEP Input  
17. Definition of Increasing and Decreasing Steps  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
 
 
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
7.3.6.1 Mode 1: Slow Decay for Increasing Current, Mixed Decay for Decreasing Current  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tOFF  
tBLANK  
tDRIVE  
tDRIVE  
ITRIP  
tBLANK  
tFAST  
tBLANK  
tDRIVE  
tFAST  
tDRIVE  
tOFF  
tOFF  
18. Slow-Mixed Decay Mode  
Mixed decay begins as fast decay for a time, followed by slow decay for the remainder of the tOFF time. In this  
mode, mixed decay only occurs during decreasing current. Slow decay is used for increasing current.  
This mode exhibits the same current ripple as slow decay for increasing current because for increasing current,  
only slow decay is used. For decreasing current, the ripple is larger than slow decay, but smaller than fast decay.  
On decreasing current steps, mixed decay will settle to the new ITRIP level faster than slow decay.  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
7.3.6.2 Mode 2: Mixed Decay for Increasing and Decreasing Current  
ITRIP  
tOFF  
tBLANK  
tOFF  
tBLANK  
tDRIVE  
tDRIVE  
tDRIVE  
ITRIP  
tBLANK  
tDRIVE  
tFAST  
tBLANK  
tDRIVE  
tFAST  
tOFF  
tOFF  
19. Mixed-Mixed Decay Mode  
Mixed decay begins as fast decay for a time, followed by slow decay for the remainder of tOFF. In this mode,  
mixed decay occurs for both increasing and decreasing current steps.  
This mode exhibits ripple larger than slow decay, but smaller than fast decay. On decreasing current steps,  
mixed decay settles to the new ITRIP level faster than slow decay.  
In cases where current is held for a long time (no input in the STEP pin) or at very low stepping speeds, slow  
decay may not properly regulate current because no back-EMF is present across the motor windings. In this  
state, motor current can rise very quickly, and requires an excessively large off-time. Increasing or decreasing  
mixed decay mode allows the current level to stay in regulation when no back-EMF is present across the motor  
windings.  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
7.3.6.3 Mode 3: Slow Decay for Increasing and Decreasing Current  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tOFF  
tDRIVE  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
20. Slow-Slow Decay Mode  
During slow decay, both of the low-side MOSFETs of the H-bridge are turned on, allowing the current to be  
recirculated.  
Slow decay exhibits the least current ripple of the decay modes for a given tOFF. However, on decreasing current  
steps, slow decay takes a long time to settle to the new ITRIP level because the current decreases very slowly.  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
7.3.7 Blanking Time  
After the current is enabled in an H-bridge, the current sense comparator is ignored for a period of time (tBLANK  
)
before enabling the current-sense circuitry. The blanking time also sets the minimum drive time of the PWM. 7  
shows the blanking time based on the sine table index and the torque DAC setting. The torque DAC index is not  
the same as one step as given in 3.  
7. Adaptive Blanking Time  
over Torque DAC and  
Microsteps  
tblank = 1.5 µs  
tblank = 1 µs  
TORQUE DAC (TRQ)  
SINE INDEX  
100%  
100%  
98%  
96%  
92%  
88%  
83%  
77%  
71%  
63%  
56%  
47%  
38%  
29%  
20%  
10%  
0%  
75%  
75%  
50%  
50%  
16  
15  
14  
13  
12  
11  
10  
9
73.5  
49%  
72%  
48%  
69%  
46%  
66%  
44%  
62.3%  
57.8%  
53.3%  
47.3%  
42%  
41.5%  
38.5%  
35.5%  
31.5%  
28%  
8
7
6
35.3  
23.5%  
19%  
5
28.5  
4
21.8%  
15%  
14.5%  
10%  
3
2
7.5%  
0%  
5%  
1
0%  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
 
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
7.3.8 Charge Pump  
A charge pump is integrated to supply a high-side N-channel MOSFET gate-drive voltage. The charge pump  
requires a capacitor between the VM and VCP pins to act as the storage capacitor. Additionally a ceramic  
capacitor is required between the CPH and CPL pins to act as the flying capacitor.  
VM  
VM  
0.22 F  
VCP  
CPH  
0.022 F  
VM  
Charge  
Pump  
Control  
CPL  
21. Charge Pump Block Diagram  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
7.3.9 Linear Voltage Regulators  
An linear voltage regulator is integrated into the DRV8886 device. The DVDD regulator can be used to provide a  
reference voltage. For proper operation, bypass the DVDD pin to GND using a ceramic capacitor.  
The DVDD output is nominally 3.3 V. When the DVDD LDO current load exceeds 1 mA, the output voltage drops  
significantly.  
The AVDD pin also requires a bypass capacitor to GND. This LDO is for DRV8886 internal use only.  
VM  
+
œ
DVDD  
3.3-V, 1-mA  
0.47 F  
VM  
+
œ
AVDD  
0.47 F  
22. Linear Voltage Regulator Block Diagram  
If a digital input must be tied permanently high (that is, Mx, DECAY or TRQ), tying the input to the DVDD pin  
instead of an external regulator is preferred. This method saves power when the VM pin is not applied or in sleep  
mode: the DVDD regulator is disabled and current does not flow through the input pulldown resistors. For  
reference, logic level inputs have a typical pulldown of 100 k, and tri-level inputs have a typical pulldown of 60  
k.  
7.3.10 Logic and Multi-Level Pin Diagrams  
23 shows the input structure for the logic-level pins STEP, DIR, ENABLE, nSLEEP, and M1.  
DVDD  
100 k  
23. Logic-Level Input Pin Diagram  
The tri-level logic pins, M0 and TRQ, have the structure shown in 24.  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
 
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
DVDD  
+
-
DVDD  
60 k  
32 kΩ  
DVDD  
+
-
24. Tri-Level Input Pin Diagram  
The quad-level logic pin, DECAY, has the structure shown in 25.  
DVDD  
+
t
DVDD  
20 µA  
DVDD  
+
t
DVDD  
+
t
25. Quad-Level Input Pin Diagram  
7.3.11 Protection Circuits  
The DRV8886 device is fully protected against supply undervoltage, charge pump undervoltage, output  
overcurrent, and device overtemperature events.  
7.3.11.1 VM Undervoltage Lockout (UVLO)  
If at any time the voltage on the VM pin falls below the VM undervoltage-lockout threshold voltage (VUVLO), all  
MOSFETs in the H-bridge are disabled, the charge pump is disabled, the logic is reset, and the nFAULT pin is  
driven low. Operation resumes when the VM voltage rises above the VUVLO threshold. The nFAULT pin is  
released after operation resumes. Decreasing the VM voltage below this undervoltage threshold resets the  
indexer position.  
7.3.11.2 VCP Undervoltage Lockout (CPUV)  
If at any time the voltage on the VCP pin falls below the charge-pump undervoltage-lockout threshold voltage  
(VCPUV), all MOSFETs in the H-bridge are disabled and the nFAULT pin is driven low. Operation resumes when  
the VCP voltage rises above the VCPUV threshold. The nFAULT pin is released after operation resumes.  
7.3.11.3 Overcurrent Protection (OCP)  
An analog current-limit circuit on each MOSFET limits the current through the MOSFET by removing the gate  
drive. If this analog current limit persists for longer than tOCP, all MOSFETs in the H-bridge are disabled and the  
nFAULT pinis driven low.  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
The driver is re-enabled after the OCP retry period (tRETRY) has passed. The nFAULT pin becomes high again at  
after the retry time. If the fault condition is still present, the cycle repeats. If the fault is no longer present, normal  
operation resumes and nFAULT remains deasserted.  
7.3.11.4 Thermal Shutdown (TSD)  
If the die temperature exceeds TTSD level, all MOSFETs in the H-bridge are disabled and the nFAULT pin is  
driven low. When the die temperature falls below the TTSD level, operation automatically resumes. The nFAULT  
pin is released after operation resumes.  
8. Fault Condition Summary  
FAULT  
CONDITION  
ERROR H-BRIDGE CHARGE INDEXER  
DVDD  
AVDD  
RECOVERY  
REPORT  
PUMP  
VM undervoltage  
(UVLO)  
VM < VUVLO  
(max 7.8 V)  
VM > VUVLO  
(max 8 V)  
nFAULT  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Operating  
Disabled  
VCP undervoltage  
(CPUV)  
VCP < VCPUV  
(typ VM + 2 V)  
VCP > VCPUV  
(typ VM + 2.7 V)  
nFAULT  
nFAULT  
Operating Operating Operating Operating  
Operating Operating Operating Operating  
IOUT > IOCP  
(min 3 A)  
Overcurrent (OCP)  
tRETRY  
TJ < TTSD  
THYS  
(THYS typ 20°C)  
Thermal shutdown  
(TSD)  
TJ > TTSD  
(min 150°C)  
nFAULT  
Disabled  
Operating Operating Operating Operating  
7.4 Device Functional Modes  
The DRV8886 device is active unless the nSLEEP pin is brought logic low. In sleep mode the charge pump is  
disabled, the H-bridge MOSFETs are disabled Hi-Z, and the regulators are disabled.  
The tSLEEP time must elapse after a falling edge on the nSLEEP pin before the device is in  
sleep mode. The DRV8886 device is brought out of sleep mode automatically if nSLEEP  
is brought logic high.  
The tWAKE time must elapse before the outputs change state after wake-up.  
TI recommends to keep the STEP pin logic low when coming out of nSLEEP or when applying power.  
If the ENABLE pin is brought logic low, the H-bridge outputs are disabled, but the internal logic is still active. A  
rising edge on STEP advances the indexer, but the outputs do not change state until the ENABLE pin is  
asserted.  
9 lists a summary of the functional modes.  
9. Functional Modes Summary  
CONDITION  
H-BRIDGE  
CHARGE PUMP  
INDEXER  
DVDD  
AVDD  
8 V < VM < 40 V  
nSLEEP pin = 1  
ENABLE pin = 1  
Operating  
Operating  
Operating  
Operating  
Operating  
Operating  
8 V < VM < 40 V  
nSLEEP pin = 1  
ENABLE pin = 0  
Disabled  
Disabled  
Disabled  
Operating  
Disabled  
Operating  
Disabled  
Operating  
Disabled  
Operating  
Disabled  
8 V < VM < 40  
nSLEEP pin = 0  
Sleep mode  
VM undervoltage (UVLO)  
VCP undervoltage (CPUV)  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Operating  
Operating  
Operating  
Disabled  
Operating  
Operating  
Operating  
Operating  
Operating  
Operating  
Operating  
Disabled  
Operating  
Operating  
Operating  
Fault encountered  
Overcurrent (OCP)  
Thermal Shutdown (TSD)  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
 
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV8886 device is used in bipolar stepper control.  
8.2 Typical Application  
The following design procedure can be used to configure the DRV8886 device.  
DRV8886PWP  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
DECAY  
TRQ  
CPL  
CPH  
0.022 F  
0.22 F  
2
3
M1  
VCP  
4
VM  
M0  
VM  
5
0.01 F  
DIR  
AOUT1  
PGND  
AOUT2  
BOUT2  
PGND  
BOUT1  
VM  
6
Step  
Motor  
STEP  
ENABLE  
nSLEEP  
7
8
+
œ
9
RREF  
10  
11  
12  
nFAULT  
30 kꢁ  
VM  
DVDD  
AVDD  
GND  
0.47 F  
0.01 F  
100 F  
+
0.47 F  
Copyright © 2017, Texas Instruments Incorporated  
26. Typical Application Schematic  
8.2.1 Design Requirements  
10 lists the design input parameters for system design.  
10. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
REFERENCE  
EXAMPLE VALUE  
24 V  
VM  
RL  
LL  
Motor winding resistance  
Motor winding inductance  
Motor full step angle  
2.6 /phase  
1.4 mH/phase  
1.8°/step  
θstep  
nm  
v
Target microstepping level  
Target motor speed  
1/8 step  
120 rpm  
Target full-scale current  
IFS  
2 A  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
8.2.2 Detailed Design Procedure  
8.2.2.1 Stepper Motor Speed  
The first step in configuring the DRV8886 device requires the desired motor speed and microstepping level. If the  
target application requires a constant speed, then a square wave with frequency ƒstep must be applied to the  
STEP pin.  
If the target motor speed is too high, the motor does not spin. Make sure that the motor can support the target  
speed.  
Use 公式 3 to calculate ƒstep for a desired motor speed (v), microstepping level (nm), and motor full step angle  
(θstep).  
v (rpm) ì 360 (è / rot)  
step (è / step) ìnm (steps / microstep) ì 60 (s / min)  
ƒstep (steps / s) =  
q
(3)  
The value of θstep can be found in the stepper motor data sheet, or written on the motor.  
For the DRV8886 device, the microstepping level is set by the Mx pins and can be any of the settings listed in 表  
11. Higher microstepping results in smoother motor motion and less audible noise, but increases switching  
losses and requires a higher ƒstep to achieve the same motor speed.  
11. Microstepping Indexer Settings  
M1  
0
M0  
0
STEP MODE  
Full step (2-phase excitation) with 71% current  
0
1
1/16 step  
1
0
1/2 step  
1
1
1/4 step  
0
Z
1/8 step  
1
Z
Non-circular 1/2 step  
For example, the motor is 1.8°/step for a target of 120 rpm at 1/8 microstep mode.  
120 rpm ì 360è / rot  
1.8è / step ì1/ 8 steps / microstep ì 60 s / min  
ƒstep (steps / s) =  
= 3.2 kHz  
(4)  
8.2.2.2 Current Regulation  
In a stepper motor, the full-scale current (IFS) is the maximum current driven through either winding. This quantity  
depends on the RREF resistor and the TRQ setting. During stepping, IFS defines the current chopping threshold  
(ITRIP) for the maximum current step.  
ARREF (kAW)  
RREF (kW)  
30 (kAW) ì TRQ%  
RREF (kW)  
IFS (A) =  
=
(5)  
The IFS current must also follow 公式 6 to avoid saturating the motor. VM is the motor  
supply voltage, and RL is the motor winding resistance.  
VM (V)  
IFS (A) <  
RL (W) + 2 ì RDS(ON) (W)  
(6)  
8.2.2.3 Decay Modes  
The DRV8886 device supports three different decay modes: slow decay, slow-mixed decay, and all mixed decay.  
The current through the motor windings is regulated using an adjustable fixed-time-off scheme which means that  
after any drive phase, when a motor winding current has hit the current chopping threshold (ITRIP), the DRV8886  
places the winding in one of the three decay modes for tOFF. After tOFF, a new drive phase starts.  
The blanking time, tBLANK, defines the minimum drive time for the PWM current chopping. ITRIP is ignored during  
tBLANK, so the winding current may overshoot the trip level.  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
 
 
 
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
8.2.3 Application Curves  
27. 1/8 Microstepping With Slow-Slow Decay;  
28. 1/8 Microstepping With Slow-Mixed Decay  
Loss of Current Regulation on Falling Steps  
29. 1/8 Microstepping With Mixed30-Mixed30 Decay  
30. 1/8 Microstepping With Mixed60-Mixed60 Decay  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
9 Power Supply Recommendations  
The DRV8886 device is designed to operate from an input voltage supply (VM) range from 8 V to 37 V. A 0.01-  
µF ceramic capacitor rated for VM must be placed at each VM pin as close to the DRV8886 device as possible.  
In addition, a bulk capacitor must be included on VM.  
9.1 Bulk Capacitance  
Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.  
The amount of local capacitance needed depends on a variety of factors, including:  
The highest current required by the motor system  
The power supply’s capacitance and ability to source current  
The amount of parasitic inductance between the power supply and motor system  
The acceptable voltage ripple  
The type of motor used (brushed DC, brushless DC, stepper)  
The motor braking method  
The inductance between the power supply and motor drive system will limit the rate current can change from the  
power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or  
dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage  
remains stable and high current can be quickly supplied.  
The data sheet generally provides a recommended value, but system-level testing is required to determine the  
appropriate sized bulk capacitor.  
The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases  
when the motor transfers energy to the supply.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
Motor  
Driver  
+
œ
GND  
Local  
IC Bypass  
Bulk Capacitor  
Capacitor  
Copyright © 2016, Texas Instruments Incorporated  
31. Example Setup of Motor Drive System With External Power Supply  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
DRV8886  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The VM pin should be bypassed to GND using a low-ESR ceramic bypass capacitor with a recommended value  
of 0.01 µF rated for VM. This capacitor should be placed as close to the VM pin as possible with a thick trace or  
ground plane connection to the device GND pin.  
The VM pin must be bypassed to ground using a bulk capacitor rated for VM. This component can be an  
electrolytic capacitor.  
A low-ESR ceramic capacitor must be placed between the CPL and CPH pins. A value of 0.022 µF rated for VM  
is recommended. Place this component as close to the pins as possible.  
A low-ESR ceramic capacitor must be placed between the VM and VCP pins. A value of 0.22 µF rated for 16 V  
is recommended. Place this component as close to the pins as possible.  
Bypass the AVDD and DVDD pins to ground with a low-ESR ceramic capacitor rated 6.3 V. Place this bypass  
capacitor as close to the pin as possible.  
10.2 Layout Example  
+
0.01 µF  
CPL  
CPH  
DECAY  
TRQ  
VCP  
M1  
VM  
M0  
AOUT1  
PGND  
AOUT2  
BOUT2  
PGND  
BOUT1  
VM  
DIR  
STEP  
ENABLE  
nSLEEP  
RREF  
nFAULT  
DVDD  
AVDD  
0.01 µF  
GND  
32. Layout Recommendation  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8886  
www.ti.com.cn  
ZHCSFZ1A JANUARY 2017REVISED JULY 2018  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《计算电机驱动器的功耗》应用报告  
德州仪器 (TI)《电流再循环和衰减模式》应用报告  
德州仪器 (TI)DRV8886 评估模块用户指南》  
德州仪器 (TI)《使用数模转换器 (DAC) 调整满量程电流》应用报告  
德州仪器 (TI)《工业电机驱动解决方案指南》  
德州仪器 (TI)PowerPAD™ 速成》应用报告  
德州仪器 (TI)PowerPAD™ 热增强型封装》应用报告  
德州仪器 (TI)《了解电机驱动器电流额定值》应用报告  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8886PWP  
DRV8886PWPR  
DRV8886RHRR  
DRV8886RHRT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
WQFN  
PWP  
PWP  
RHR  
RHR  
24  
24  
28  
28  
60  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DRV8886  
Samples  
Samples  
Samples  
Samples  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
DRV8886  
DRV8886  
DRV8886  
WQFN  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8886PWPR  
DRV8886RHRR  
DRV8886RHRT  
HTSSOP PWP  
24  
28  
28  
2000  
3000  
250  
330.0  
330.0  
180.0  
16.4  
12.4  
12.4  
6.95  
3.8  
8.3  
5.8  
5.8  
1.6  
1.2  
1.2  
8.0  
8.0  
8.0  
16.0  
12.0  
12.0  
Q1  
Q1  
Q1  
WQFN  
WQFN  
RHR  
RHR  
3.8  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8886PWPR  
DRV8886RHRR  
DRV8886RHRT  
HTSSOP  
WQFN  
PWP  
RHR  
RHR  
24  
28  
28  
2000  
3000  
250  
350.0  
367.0  
210.0  
350.0  
367.0  
185.0  
43.0  
35.0  
35.0  
WQFN  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
PWP HTSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DRV8886PWP  
24  
60  
530  
10.2  
3600  
3.5  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
PWP 24  
4.4 x 7.6, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224742/B  
www.ti.com  
PACKAGE OUTLINE  
PWP0024B  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC SMALL OUTLINE  
6.6  
6.2  
SEATING PLANE  
C
TYP  
PIN 1 ID  
A
0.1 C  
AREA  
22X 0.65  
24  
1
2X  
7.9  
7.7  
NOTE 3  
7.15  
12  
13  
0.30  
24X  
4.5  
4.3  
0.19  
B
0.1  
C A  
B
(0.15) TYP  
SEE DETAIL A  
4X (0.2) MAX  
NOTE 5  
2X (0.95) MAX  
NOTE 5  
EXPOSED  
THERMAL PAD  
0.25  
GAGE PLANE  
5.16  
4.12  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
2.40  
1.65  
4222709/A 02/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may not be present and may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0024B  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(2.4)  
24X (1.5)  
SYMM  
SEE DETAILS  
1
24  
24X (0.45)  
(R0.05)  
TYP  
(7.8)  
NOTE 9  
(1.1)  
TYP  
SYMM  
(5.16)  
22X (0.65)  
(
0.2) TYP  
VIA  
12  
13  
(1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-24  
4222709/A 02/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0024B  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(2.4)  
BASED ON  
0.125 THICK  
STENCIL  
24X (1.5)  
(R0.05) TYP  
1
24  
24X (0.45)  
(5.16)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
22X (0.65)  
13  
12  
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.68 X 5.77  
2.4 X 5.16 (SHOWN)  
2.19 X 4.71  
0.125  
0.15  
0.175  
2.03 X 4.36  
4222709/A 02/2016  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RHR 28  
3.5 x 5.5, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4210249/B  
www.ti.com  
PACKAGE OUTLINE  
RHR0028A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
5.6  
5.4  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
2±0.1  
2X 1.5  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
11  
14  
24X 0.5  
10  
15  
2X  
4.5  
4±0.1  
SEE TERMINAL  
DETAIL  
1
24  
0.3  
28X  
28  
25  
0.5  
0.2  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A  
B
28X  
0.3  
0.05  
4219075/A 11/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHR0028A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2)  
SYMM  
28X (0.6)  
28X (0.25)  
25  
28  
1
24  
24X (0.5)  
(0.66)  
(5.3)  
TYP  
SYMM  
(4)  
(
0.2) TYP  
VIA  
15  
10  
11  
14  
(0.75) TYP  
(3.3)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219075/A 11/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHR0028A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.55) TYP  
28  
25  
28X (0.6)  
28X (0.25)  
1
24  
24X (0.5)  
SYMM  
(1.32)  
TYP  
(5.3)  
METAL  
TYP  
6X (1.12)  
15  
10  
14  
11  
6X (0.89)  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4219075/A 11/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY