DRV8912QPWPRQ1 [TI]

具有高级诊断功能的汽车类 40V、6A、12 通道半桥电机驱动器 | PWP | 24 | -40 to 125;
DRV8912QPWPRQ1
型号: DRV8912QPWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有高级诊断功能的汽车类 40V、6A、12 通道半桥电机驱动器 | PWP | 24 | -40 to 125

电机 驱动 驱动器
文件: 总157页 (文件大小:3164K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
具有高级诊断功能的 DRV89xx-Q1 汽车多通道半桥驱动器  
1 特性  
这些器件能够以独立、顺序或并行模式驱动刷式直流  
1
(BDC) 电机或步进电机。半桥是完全可控的,以实现  
电机的正转、反转、滑行和制动操作。  
符合面向汽车 标准  
46810 12 路半桥输出  
4.5V 32V 工作电压  
这些器件具有带菊花链功能的标准 16 5MHz 串行外  
设接口 (SPI),可进行完整的配置和详细的诊断。根据  
器件的不同,集成了四个或八个可编程 PWM 发生  
器,以便在电机运行或 LED 调光控制期间限制电流。  
40V 绝对最大电压  
每个输出具有 1A RMS 电流  
并联输出具有 6A 最大电流  
低功耗睡眠模式 (1.5µA)  
支持 3.3V 5V 逻辑输入  
SPI 提供配置和诊断功能  
该器件包含许多保护和诊断 功能, 其中包括用于在发  
生故障时向系统发出警报的 nFAULT 引脚。此器件 具  
有 用于在标称负载电流较小时检测开路负载情况的低  
电流开路负载检测 (OLD) 模式和用于离线 OLD 的无源  
OLD 模式。该器件还针对短路、欠压和过热情况实现  
了全面保护。  
5MHz 16 SPI 通信  
菊花链功能  
可通过 SPI PWM 发生器进行编程  
独立半桥 PWM 运行  
ti.com 上查看我们完整的刷式电机驱动器产品系  
列。  
可针对高侧、低侧和 H 桥负载驱动进行配置  
支持 8 位占空比分辨率  
集成保护 功能, 通过 SPI 提供每通道详细诊断  
器件信息(1)  
nFAULT 引脚输出  
器件型号  
封装  
封装尺寸(标称值)  
VM 欠压锁定 (UVLO)  
VM 过压保护 (OVP)  
DRV8912-Q1  
DRV8910-Q1  
DRV8908-Q1  
DRV8906-Q1  
DRV8904-Q1  
逻辑电源上电复位 (POR)  
过流保护 (OCP)  
HTSSOP (24)  
7.80mm × 4.40mm  
增强的开路负载检测 (OLD)  
热警告和热关断 (OTW/OTSD)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
(2) 简化原理图  
2 应用  
HVAC 翼板直流电机  
4.5 V to 32 V  
侧后视镜调整和后视镜折叠  
LED 应用  
OUT1  
DRV8912-Q1  
nSLEEP  
M
12-Channel Half-Bridge  
多刷式直流电机和电磁阀  
nSCS  
Driver  
SCLK  
OUT2  
3 说明  
SDI  
OUT11  
SPI PWM Control  
DRV89xx-Q1 是引脚对引脚兼容的集成多通道半桥驱  
动器系列,具有 4 12 个半桥。该器件系列 具有 低  
导通状态电阻 (RDS(ON)),可在高电流运行期间提高热  
性能。  
SDO  
nFAULT  
M
Built-In Protection  
OUT12  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEC9  
 
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
目录  
8.6 Register Map........................................................... 60  
Application and Implementation ...................... 127  
9.1 Application Information.......................................... 127  
9.2 Typical Application ............................................... 128  
9.3 Thermal Application .............................................. 133  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications....................................................... 14  
7.1 Absolute Maximum Ratings .................................... 14  
7.2 ESD Ratings............................................................ 14  
7.3 Recommended Operating Conditions..................... 14  
7.4 Thermal Information................................................ 14  
7.5 Electrical Characteristics......................................... 15  
7.6 Timing Requirements.............................................. 18  
7.7 Typical Characteristics............................................ 20  
Detailed Description ............................................ 24  
8.1 Overview ................................................................. 24  
8.2 Functional Block Diagram ....................................... 25  
8.3 Feature Description................................................. 26  
8.4 Device Functional Modes........................................ 54  
8.5 Programming........................................................... 56  
9
10 Power Supply Recommendations ................... 139  
10.1 Bulk Capacitance Sizing ..................................... 139  
11 Layout................................................................. 140  
11.1 Layout Guidelines ............................................... 140  
11.2 Layout Example .................................................. 140  
12 器件和文档支持 ................................................... 141  
12.1 文档支持 ............................................................. 141  
12.2 相关链接.............................................................. 141  
12.3 接收文档更新通知 ............................................... 141  
12.4 社区资源.............................................................. 141  
12.5 ..................................................................... 141  
12.6 静电放电警告....................................................... 141  
12.7 Glossary.............................................................. 141  
13 机械、封装和可订购信息..................................... 142  
13.1 Package Option Addendum ................................ 146  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (December 2019) to Revision B  
Page  
已更改 将器件状态更改成了混合生产”................................................................................................................................... 1  
Changes from Original (September 2019) to Revision A  
Page  
已更改 将器件状态更改成了生产数据”................................................................................................................................... 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
5 Device Comparison Table  
NUMBER OF HALF-  
NUMBER OF PWM  
GENERATORS  
OPEN-LOAD DETECTION  
LINK TO REGISTER MAP  
SCHEMES  
DEVICE  
BRIDGES  
DRV8912-Q1  
DRV8910-Q1  
12  
10  
4
4
Active OLD, Low-Current  
Active OLD, Negative-Current  
Active OLD  
17  
18  
DRV8908-Q1  
DRV8906-Q1  
DRV8904-Q1  
8
6
4
8
8
8
50  
51  
52  
Passive OLD, Active OLD,  
Low-Current Active OLD,  
Negative-Current Active OLD  
Copyright © 2019, Texas Instruments Incorporated  
3
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
DRV8912-Q1 PWP Package  
24-Pin HTSSOP Package With Exposed Thermal Pad  
Top View  
GND  
OUT1  
OUT5  
OUT7  
SDI  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GND  
2
OUT2  
OUT8  
VM  
3
4
5
SCLK  
nSCS  
OUT12  
OUT11  
VM  
VDD  
6
Thermal  
Pad  
SDO  
7
nSLEEP  
OUT9  
OUT6  
OUT4  
nFAULT  
8
9
10  
11  
12  
OUT10  
OUT3  
GND  
Not to scale  
Pin Functions—DRV8912-Q1  
PIN  
TYPE  
DESCRIPTION  
NAME  
GND  
GND  
GND  
NO.  
13  
24  
1
PWR  
PWR  
PWR  
Device power ground. Connect the GND pin to the system ground.  
Device power ground. Connect the GND pin to the system ground.  
Device power ground. Connect the GND pin to the system ground.  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an  
external pull-up resistor.  
nFAULT  
nSCS  
12  
19  
8
OD  
Serial chip select. A logic low on this pin enables serial interface communication. Internal  
pull-up.  
I
I
Driver enable pin. When this pin is logic low the device goes to a low-power sleep mode.  
Internal pull-down.  
nSLEEP  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
OUT12  
2
O
O
O
O
O
O
O
O
O
O
O
O
Half-bridge 1 output  
Half-bridge 2 output  
Half-bridge 3 output  
Half-bridge 4 output  
Half-bridge 5 output  
Half-bridge 6 output  
Half-bridge 7 output  
Half-bridge 8 output  
Half-bridge 9 output  
Half-bridge 10 output  
Half-bridge 11 output  
Half-bridge 12 output  
23  
14  
11  
3
10  
4
22  
9
15  
17  
18  
4
Copyright © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
Pin Functions—DRV8912-Q1 (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
Serial clock input. Serial data is shifted out and captured on the corresponding rising and  
falling edge on this pin. Internal pull-down.  
SCLK  
20  
I
SDI  
5
7
I
Serial data input. Data is captured on the falling edge of the SCLK pin. Internal pull-down.  
Serial data output. Data is shifted out on the rising edge of the SCLK pin.  
SDO  
PP  
Logic power supply input. Connect a X5R or X7R, 0.1-μF, VDD-rated ceramic capacitor and  
greater than or equal to 1-μF bulk capacitance between the VDD and GND pins.  
VDD  
6
PWR  
Main power supply input. Connect all VM pins together to the motor supply voltage. Connect  
a X5R or X7R, 0.1-μF, VM-rated ceramic capacitor and greater than or equal to 10-μF bulk  
capacitance between the VM and GND pins.  
VM  
16  
PWR  
Main power supply input. Connect all VM pins together to the motor supply voltage. Connect  
a X5R or X7R, 0.1-μF, VM-rated ceramic capacitor and greater than or equal to 10-μF bulk  
capacitance between the VM and GND pins.  
VM  
21  
PWR  
Copyright © 2019, Texas Instruments Incorporated  
5
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
DRV8910-Q1 PWP Package  
24-Pin HTSSOP Package With Exposed Thermal Pad  
Top View  
GND  
OUT1  
OUT5  
OUT7  
SDI  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GND  
OUT2  
OUT8  
VM  
2
3
4
5
SCLK  
nSCS  
NC  
VDD  
6
Thermal  
Pad  
SDO  
7
nSLEEP  
OUT9  
OUT6  
OUT4  
nFAULT  
8
NC  
9
VM  
10  
11  
12  
OUT10  
OUT3  
GND  
Not to scale  
Pin Functions—DRV8910-Q1  
PIN  
TYPE  
DESCRIPTION  
NAME  
GND  
GND  
GND  
NC  
NO.  
13  
24  
1
PWR  
PWR  
PWR  
Device power ground. Connect the GND pin to the system ground.  
Device power ground. Connect the GND pin to the system ground.  
Device power ground. Connect the GND pin to the system ground.  
Not connected  
17  
18  
NC  
Not connected  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an  
external pull-up resistor.  
nFAULT  
nSCS  
12  
19  
8
OD  
Serial chip select. A logic low on this pin enables serial interface communication. Internal  
pull-up.  
I
I
Driver enable pin. When this pin is logic low the device goes to a low-power sleep mode.  
Internal pull-down.  
nSLEEP  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
2
O
O
O
O
O
O
O
O
O
O
Half-bridge 1 output  
Half-bridge 2 output  
Half-bridge 3 output  
Half-bridge 4 output  
Half-bridge 5 output  
Half-bridge 6 output  
Half-bridge 7 output  
Half-bridge 8 output  
Half-bridge 9 output  
Half-bridge 10 output  
23  
14  
11  
3
10  
4
22  
9
15  
Serial clock input. Serial data is shifted out and captured on the corresponding rising and  
falling edge on this pin. Internal pull-down.  
SCLK  
SDI  
20  
5
I
I
Serial data input. Data is captured on the falling edge of the SCLK pin. Internal pull-down.  
6
Copyright © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
Pin Functions—DRV8910-Q1 (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
SDO  
7
PP  
Serial data output. Data is shifted out on the rising edge of the SCLK pin.  
Logic power supply input. Connect a X5R or X7R, 0.1-μF, VDD-rated ceramic capacitor and  
greater than or equal to 1-μF bulk capacitance between the VDD and GND pins.  
VDD  
6
PWR  
Main power supply input. Connect all VM pins together to the motor supply voltage. Connect  
a X5R or X7R, 0.1-μF, VM-rated ceramic capacitor and greater than or equal to 10-μF bulk  
capacitance between the VM and GND pins.  
VM  
16  
PWR  
PWR  
Main power supply input. Connect all VM pins together to the motor supply voltage. Connect  
a X5R or X7R, 0.1-μF, VM-rated ceramic capacitor and greater than or equal to 10-μF bulk  
capacitance between the VM and GND pins.  
VM  
21  
Copyright © 2019, Texas Instruments Incorporated  
7
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
DRV8908-Q1 PWP Package  
24-Pin HTSSOP Package With Exposed Thermal Pad  
Top View  
GND  
OUT1  
OUT5  
OUT7  
SDI  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GND  
OUT2  
OUT8  
VM  
2
3
4
5
SCLK  
nSCS  
NC  
VDD  
6
Thermal  
Pad  
SDO  
7
nSLEEP  
NC  
8
NC  
9
VM  
OUT6  
OUT4  
nFAULT  
10  
11  
12  
NC  
OUT3  
GND  
Not to scale  
Pin Functions—DRV8908-Q1  
PIN  
TYPE  
DESCRIPTION  
NAME  
GND  
GND  
GND  
NC  
NO.  
13  
24  
1
PWR  
PWR  
PWR  
Device power ground. Connect the GND pin to the system ground.  
Device power ground. Connect the GND pin to the system ground.  
Device power ground. Connect the GND pin to the system ground.  
9
Not connected  
Not connected  
Not connected  
Not connected  
NC  
15  
17  
18  
NC  
NC  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an  
external pull-up resistor.  
nFAULT  
nSCS  
12  
19  
8
OD  
Serial chip select. A logic low on this pin enables serial interface communication. Internal  
pull-up.  
I
I
Driver enable pin. When this pin is logic low the device goes to a low-power sleep mode.  
Internal pull-down.  
nSLEEP  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
2
O
O
O
O
O
O
O
O
Half-bridge 1 output  
Half-bridge 2 output  
Half-bridge 3 output  
Half-bridge 4 output  
Half-bridge 5 output  
Half-bridge 6 output  
Half-bridge 7 output  
Half-bridge 8 output  
23  
14  
11  
3
10  
4
22  
Serial clock input. Serial data is shifted out and captured on the corresponding rising and  
falling edge on this pin. Internal pull-down.  
SCLK  
SDI  
20  
5
I
I
Serial data input. Data is captured on the falling edge of the SCLK pin. Internal pull-down.  
8
Copyright © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
Pin Functions—DRV8908-Q1 (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
SDO  
7
PP  
Serial data output. Data is shifted out on the rising edge of the SCLK pin.  
Logic power supply input. Connect a X5R or X7R, 0.1-μF, VDD-rated ceramic capacitor and  
greater than or equal to 1-μF bulk capacitance between the VDD and GND pins.  
VDD  
6
PWR  
Main power supply input. Connect all VM pins together to the motor supply voltage. Connect  
a X5R or X7R, 0.1-μF, VM-rated ceramic capacitor and greater than or equal to 10-μF bulk  
capacitance between the VM and GND pins.  
VM  
16  
PWR  
PWR  
Main power supply input. Connect all VM pins together to the motor supply voltage. Connect  
a X5R or X7R, 0.1-μF, VM-rated ceramic capacitor and greater than or equal to 10-μF bulk  
capacitance between the VM and GND pins.  
VM  
21  
Copyright © 2019, Texas Instruments Incorporated  
9
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
DRV8906-Q1 PWP Package  
24-Pin HTSSOP Package With Exposed Thermal Pad  
Top View  
GND  
OUT1  
OUT5  
NC  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GND  
OUT2  
NC  
2
3
4
VM  
SDI  
5
SCLK  
nSCS  
NC  
VDD  
6
Thermal  
Pad  
SDO  
7
nSLEEP  
NC  
8
NC  
9
VM  
OUT6  
OUT4  
nFAULT  
10  
11  
12  
NC  
OUT3  
GND  
Not to scale  
Pin Functions—DRV8906-Q1  
PIN  
TYPE  
DESCRIPTION  
NAME  
GND  
GND  
GND  
NC  
NO.  
13  
24  
1
PWR  
PWR  
PWR  
Device power ground. Connect the GND pin to the system ground.  
Device power ground. Connect the GND pin to the system ground.  
Device power ground. Connect the GND pin to the system ground.  
4
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
NC  
9
NC  
15  
17  
18  
22  
NC  
NC  
NC  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an  
external pull-up resistor.  
nFAULT  
nSCS  
12  
19  
8
OD  
Serial chip select. A logic low on this pin enables serial interface communication. Internal  
pull-up.  
I
I
Driver enable pin. When this pin is logic low the device goes to a low-power sleep mode.  
Internal pull-down.  
nSLEEP  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
2
O
O
O
O
O
O
Half-bridge 1 output  
Half-bridge 2 output  
Half-bridge 3 output  
Half-bridge 4 output  
Half-bridge 5 output  
Half-bridge 6 output  
23  
14  
11  
3
10  
Serial clock input. Serial data is shifted out and captured on the corresponding rising and  
falling edge on this pin. Internal pull-down.  
SCLK  
SDI  
20  
5
I
I
Serial data input. Data is captured on the falling edge of the SCLK pin. Internal pull-down.  
10  
Copyright © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
Pin Functions—DRV8906-Q1 (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
SDO  
7
PP  
Serial data output. Data is shifted out on the rising edge of the SCLK pin.  
Logic power supply input. Connect a X5R or X7R, 0.1-μF, VDD-rated ceramic capacitor and  
greater than or equal to 1-μF bulk capacitance between the VDD and GND pins.  
VDD  
6
PWR  
Main power supply input. Connect all VM pins together to the motor supply voltage. Connect  
a X5R or X7R, 0.1-μF, VM-rated ceramic capacitor and greater than or equal to 10-μF bulk  
capacitance between the VM and GND pins.  
VM  
16  
PWR  
PWR  
Main power supply input. Connect all VM pins together to the motor supply voltage. Connect  
a X5R or X7R, 0.1-μF, VM-rated ceramic capacitor and greater than or equal to 10-μF bulk  
capacitance between the VM and GND pins.  
VM  
21  
Copyright © 2019, Texas Instruments Incorporated  
11  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
DRV8904-Q1 PWP Package  
24-Pin HTSSOP Package With Exposed Thermal Pad  
Top View  
GND  
OUT1  
NC  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GND  
OUT2  
NC  
2
3
NC  
4
VM  
SDI  
5
SCLK  
nSCS  
NC  
VDD  
6
Thermal  
Pad  
SDO  
nSLEEP  
NC  
7
8
NC  
9
VM  
NC  
10  
11  
12  
NC  
OUT4  
nFAULT  
OUT3  
GND  
Not to scale  
Pin Functions—DRV8904-Q1  
PIN  
TYPE  
DESCRIPTION  
NAME  
GND  
GND  
GND  
NC  
NO.  
13  
24  
1
PWR  
PWR  
PWR  
Device power ground. Connect the GND pin to the system ground.  
Device power ground. Connect the GND pin to the system ground.  
Device power ground. Connect the GND pin to the system ground.  
3
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
Not connected  
NC  
4
NC  
9
NC  
10  
15  
17  
18  
22  
NC  
NC  
NC  
NC  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an  
external pull-up resistor.  
nFAULT  
nSCS  
12  
19  
8
OD  
Serial chip select. A logic low on this pin enables serial interface communication. Internal  
pull-up.  
I
I
Driver enable pin. When this pin is logic low the device goes to a low-power sleep mode.  
Internal pull-down.  
nSLEEP  
OUT1  
OUT2  
OUT3  
OUT4  
2
O
O
O
O
Half-bridge 1 output  
Half-bridge 2 output  
Half-bridge 3 output  
Half-bridge 4 output  
23  
14  
11  
Serial clock input. Serial data is shifted out and captured on the corresponding rising and  
falling edge on this pin. Internal pull-down.  
SCLK  
SDI  
20  
5
I
I
Serial data input. Data is captured on the falling edge of the SCLK pin. Internal pull-down.  
12  
Copyright © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
Pin Functions—DRV8904-Q1 (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
SDO  
7
PP  
Serial data output. Data is shifted out on the rising edge of the SCLK pin.  
Logic power supply input. Connect a X5R or X7R, 0.1-μF, VDD-rated ceramic capacitor and  
greater than or equal to 1-μF bulk capacitance between the VDD and GND pins.  
VDD  
6
PWR  
Main power supply input. Connect all VM pins together to the motor supply voltage. Connect  
a X5R or X7R, 0.1-μF, VM-rated ceramic capacitor and greater than or equal to 10-μF bulk  
capacitance between the VM and GND pins.  
VM  
16  
PWR  
PWR  
Main power supply input. Connect all VM pins together to the motor supply voltage. Connect  
a X5R or X7R, 0.1-μF, VM-rated ceramic capacitor and greater than or equal to 10-μF bulk  
capacitance between the VM and GND pins.  
VM  
21  
Copyright © 2019, Texas Instruments Incorporated  
13  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
4.5  
MAX  
40  
UNIT  
V
Power supply pin voltage (VM)  
Logic supply pin voltage (VDD)  
–0.3  
–0.7  
–0.3  
–0.3  
0
5.75  
V
Output pin voltage (OUTx)  
VM + 0.7  
VDD + 0.3  
VDD + 0.3  
6
V
Logic pin input voltage (nSCS, nSLEEP, SCLK, SDI)  
Logic pin output voltage (nFAULT, SDO)  
Continuous supply current (VM pins combined)  
V
V
A
Internally  
Limited  
Internally  
Limited  
Peak output current drive (OUTx)  
A
Continous sink current (GND pins combined)  
Junction temperature, TJ  
0
–40  
–65  
6
150  
150  
A
°C  
°C  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE UNIT  
OUTx and VM pins  
Other pins  
±4000  
±2000  
±750  
Human body model (HBM), per  
AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
V
Corner pins (1, 12, 13, and 24)  
Other pins  
Charged device model (CDM), per  
AEC Q100-011  
±500  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
4.5  
3
NOM  
MAX  
32  
UNIT  
V
VVM  
VDD  
VIN  
VOD  
IOD  
VOP  
IOP  
TA  
Power supply voltage (VM)  
Logic supply voltage (VDD)  
5.5  
5.5  
5.5  
5
V
Logic input voltage (nSCS, nSLEEP, SCLK, SDI)  
Open drain pullup voltage (nFAULT)  
Open drain output current (nFAULT)  
Push-pull pullup voltage (SDO)  
Push-pull output current (SDO)  
Operating ambient temperature  
Operating junction temperature  
0
V
0
V
0
mA  
V
0
5.5  
5
0
mA  
°C  
°C  
–40  
–40  
125  
150  
TJ  
7.4 Thermal Information  
DRV8908-Q1  
DRV8906-Q1  
DRV8904-Q1  
DRV8912-Q1  
DRV8910-Q1  
THERMAL METRIC(1)  
UNIT  
PWP (HTSSOP)  
24 PINS  
30.2  
PWP (HTSSOP)  
24 PINS  
31.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
23.7  
25.4  
10.1  
11.2  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics application report.  
14  
Copyright © 2019, Texas Instruments Incorporated  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
Thermal Information (continued)  
DRV8908-Q1  
DRV8906-Q1  
DRV8904-Q1  
DRV8912-Q1  
DRV8910-Q1  
THERMAL METRIC(1)  
UNIT  
PWP (HTSSOP)  
PWP (HTSSOP)  
24 PINS  
0.3  
24 PINS  
0.4  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
°C/W  
ΨJB  
10.0  
2.5  
11.2  
3.1  
RθJC(bot)  
7.5 Electrical Characteristics  
at TJ = –40°C to +150°C, VVM = 4.5 to 32 V (Main Supply), VVDD = 3 to 5.5 V (Logic Supply) (unless otherwise noted). Typical  
limits apply for TA = 25°C, VVM = 13.5 V, VVDD = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VDD, VM)  
VVM = 13.5 V, nSLEEP = 0, TA = 25 °C  
VVM = 13.5 V, nSLEEP = 0, TA = 125 °C  
0.35  
1
2
µA  
µA  
IVMQ  
VM sleep mode current  
VVM = 13.5 V, VVDD = 3.3 V, nSLEEP =  
0, TA = 25 °C  
0.01  
0.2  
0.3  
2
µA  
µA  
IVDDQ  
VDD sleep mode current  
VM standby mode current  
VDD standby mode current  
VM operating mode current  
VVM = 13.5 V, VVDD = 3.3 V, nSLEEP =  
0, TA = 125 °C  
VVM = 13.5 V, nSLEEP = 1, Driver =  
'OFF', TA = 25 °C  
0.5  
0.5  
1
mA  
mA  
mA  
mA  
mA  
mA  
IVMS  
IVDDS  
IVM  
VVM = 13.5 V, nSLEEP = 1, Driver =  
'OFF', TA = 125 °C  
VVM = 13.5 V, VVDD = 3.3 V, nSLEEP =  
1, SPI = 'OFF', TA = 25 °C  
0.6  
VVM = 13.5 V, VVDD = 3.3 V, nSLEEP =  
1, SPI = 'OFF', TA = 125 °C  
1
VVM = 13.5 V, nSLEEP = 1, All High-  
Side FETs = 'ON', TA = 25 °C  
2.6  
5
VVM = 13.5 V, nSLEEP = 1, All High-  
Side FETs = 'ON', TA = 125 °C  
5
VVM = 13.5 V, VVDD = 3.3 V, nSLEEP =  
1, All High-Side FETs = 'ON', SPI = 'ON'  
(5 MHz), TA = 25 °C  
2.8  
5
5
mA  
mA  
IVDD  
VDD operating mode current  
VVM = 13.5 V, VVDD = 3.3 V, nSLEEP =  
1, All High-Side FETs = 'ON', SPI = 'ON'  
(5 MHz), TA = 125 °C  
tWAKE  
tSLEEP  
Wake-up time  
Turnoff time  
nSLEEP high to SPI ready  
nSLEEP low to device sleep  
200  
20  
µs  
µs  
LOGIC-LEVEL INPUTS (nSLEEP, SCLK, SDI)  
VIL  
VIH  
VHYS  
IIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic low current  
Input logic high current  
Input capacitance  
0
0.7*VDD  
200  
0.3*VDD  
VDD  
V
V
mV  
µA  
µA  
pF  
VIN = 0 V  
–1  
1
75  
15  
IIH  
VIN = VVDD  
34  
34  
CID  
LOGIC-LEVEL INPUTS (nSCS)  
VIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic low current  
0
0.7*VDD  
200  
0.3*VDD  
VDD  
V
V
VIH  
VHYS  
IIL  
mV  
µA  
VIN = 0 V  
75  
Copyright © 2019, Texas Instruments Incorporated  
15  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TJ = –40°C to +150°C, VVM = 4.5 to 32 V (Main Supply), VVDD = 3 to 5.5 V (Logic Supply) (unless otherwise noted). Typical  
limits apply for TA = 25°C, VVM = 13.5 V, VVDD = 3.3 V  
PARAMETER  
TEST CONDITIONS  
VIN = VVDD  
MIN  
TYP  
MAX  
1
UNIT  
µA  
IIH  
Input logic high current  
Input capacitance  
–1  
CID  
15  
pF  
OPEN-DRAIN OUTPUTS (nFAULT)  
VOL  
IOH  
Output logic low voltage  
Output logic high current  
Output capacitance  
IOD = 5 mA  
VOD = 5 V  
0
0.4  
1
V
–1  
µA  
pF  
COD  
15  
PUSH-PULL OUTPUTS (SDO)  
VOL  
VOH  
IOL  
Output logic low voltage  
IOP = 5 mA  
IOP = 5 mA  
VOP = 0 V  
VOP = VVDD  
0
VDD–0.6  
–1  
0.4  
VDD  
1
V
Output logic high voltage  
Output logic low current  
Output logic high current  
Output capacitance  
V
µA  
µA  
pF  
IOH  
–1  
1
COD  
30  
DRIVER OUTPUTS (OUTx)  
VVM = 13.5 V, IOUT = 0.5 A, TA = 25°C  
VVM = 13.5 V, IOUT = 0.5 A, TA = 125°C  
VVM = 13.5 V, IOUT = 0.5 A, TA = 25°C  
VVM = 13.5 V, IOUT = 0.5 A, TA = 125°C  
0.75  
0.75  
1.1  
1.5  
1.1  
1.5  
Ω
Ω
Ω
Ω
High-side MOSFET on resistance  
RDS(ON)  
Low-side MOSFET on resistance  
VVM = 13.5 V, 10-90%, RLOAD = 27 ,  
HBx_SR = 0b  
0.6  
2.5  
20  
5
V/µs  
V/µs  
µs  
Output rise and fall time (high-side  
and low-side)  
SR  
VVM = 13.5 V, 10-90%, RLOAD = 27 ,  
HBx_SR = 1b  
VVM = 13.5 V, SR = 0, HS/LS driver  
OFF to LS/HS driver ON  
8
2
5
3
32  
15  
25  
10  
Output dead time (high to low /  
low to high)  
tDEAD  
VVM = 13.5 V, SR = 1, HS/LS driver  
OFF to LS/HS driver ON  
µs  
High-side ON (SPI last transition) to  
OUTx transition, SR = 0  
12  
5
µs  
Propagation delay (high-side /  
low-side ON/OFF)  
tPD  
High-side ON (SPI last transition) to  
OUTx transition, SR = 1  
µs  
VOUTx = 13.5 V, nSLEEP = 1, SR = 0b  
VOUTx = 13.5 V, nSLEEP = 1, SR = 1b  
VOUTx = 13.5 V, nSLEEP = 0  
VOUTx = 0 V, nSLEEP = 1  
6
20  
4
10  
35  
15  
2
µA  
µA  
µA  
µA  
µA  
Leakage current low-side  
Leakage current high-side  
ILEAK  
VOUTx = 0 V, nSLEEP = 0  
2
PWM MODE  
PWM_CHx_FREQ = 00b  
PWM_CHx_FREQ = 01b  
PWM_CHx_FREQ = 10b  
PWM_CHx_FREQ = 11b  
80  
100  
Hz  
Hz  
Hz  
Hz  
fPWM  
PWM switching frequency  
200  
2000  
PROTECTION CIRCUITS  
Supply rising  
Supply falling  
4.0  
3.8  
4.5  
4.3  
V
V
Supply undervoltage lockout  
(UVLO)  
VUVLO  
Supply undervoltage lockout  
hysteresis  
VUVLO_HYS  
tUVLO  
Rising to falling theshold  
200  
10  
mV  
µs  
Supply undervoltage deglitch time  
16  
Copyright © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
Electrical Characteristics (continued)  
at TJ = –40°C to +150°C, VVM = 4.5 to 32 V (Main Supply), VVDD = 3 to 5.5 V (Logic Supply) (unless otherwise noted). Typical  
limits apply for TA = 25°C, VVM = 13.5 V, VVDD = 3.3 V  
PARAMETER  
TEST CONDITIONS  
Supply rising, EXT_OVP = 0b  
Supply falling, EXT_OVP = 0b  
Supply rising, EXT_OVP = 1b  
Supply falling, EXT_OVP = 1b  
MIN  
21  
TYP  
MAX  
25  
UNIT  
V
V
V
V
20  
24  
Supply overvoltage protection  
(OVP)  
VOVP  
32.7  
32  
35  
34.3  
Rising to falling theshold, EXT_OVP =  
0b  
1
V
V
Supply overvoltage protection  
hysteresis  
VOVP_HYS  
Rising to falling theshold, EXT_OVP =  
1b  
0.7  
10  
tOVP  
Supply overvoltage deglitch time  
Logic undervoltage (POR)  
µs  
V
Supply rising  
2.45  
2.4  
3
VPOR  
Supply falling  
2.95  
V
VPOR_HYS  
IOCP  
Logic undervoltage hysteresis  
Rising to falling theshold  
75  
mV  
Overcurrent protection trip  
point(1)(2)  
1.3  
1.8  
2.3  
A
OCP_DEG = 000b  
OCP_DEG = 001b  
OCP_DEG = 010b  
OCP_DEG = 011b  
OCP_DEG = 100b  
OCP_DEG = 101b  
OCP_DEG = 110b  
OCP_DEG = 111b  
10  
5
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
2.5  
1
Overcurrent protection deglitch  
time  
tOCP  
60  
40  
30  
20  
Current flowing from VM to OUTx (High-  
Side = ON) or OUTx to GND (Low-Side  
= ON)  
IOLD  
Open load detection current  
2
2
9
15  
18  
30  
2
mA  
mA  
mA  
µA  
V
Current flowing from OUTx to VM (High-  
Side = ON) or GND to OUTx (Low-Side  
= ON)  
Negative open load detection  
current  
IOLD_NEG  
IOLD_LOW  
IOL_GND  
VOL_GND  
IOL_VM  
Current flowing from VM to OUTx (High-  
Side = ON) or OUTx to GND (Low-Side  
= ON)  
Open load detection current in low  
current OLD mode  
0.2  
0.8  
100  
3.1  
100  
DRV8908/6/4, FETs in Hi-Z state,  
current from OUTx to GND during OLD  
trip  
Passive OLD current  
DRV8908/6/4, FETs in Hi-Z state,  
voltage at OUTx during OLD trip for  
GND-connected load  
Passive OLD voltage threshold  
Passive OLD current  
DRV8908/6/4, FETs in Hi-Z state,  
current from VM to OUTx for OLD trip,  
HBX_VM_POLD = 0b  
µA  
DRV8908/6/4, FETs in Hi-Z state,  
voltage at OUTx during OLD trip for  
VM-connected load, HBX_VM_POLD =  
0b  
VOL_VM  
Passive OLD voltage threshold  
1.1  
V
DRV8908/6/4, FETs in Hi-Z state,  
current from VM to OUTx for OLD trip,  
HBX_VM_POLD = 1b  
IOL_VM  
Passive OLD current  
480  
1.6  
µA  
V
DRV8908/6/4, FETs in Hi-Z state,  
voltage at OUTx during OLD trip for VM  
connceted load, HBX_VM_POLD = 1b  
VOL_VM  
Passive OLD voltage threshold  
(1) For 20-V < VVM < 28-V, the OCP deglicth time must be limited to 10-µs (Default Deglitch Value, OCP_DEG = 000b).  
(2) For VVM > 28 V, the OCP deglicth time must be limited to 1-µs (Lowest Deglitch Value, OCP_DEG = 011b).  
Copyright © 2019, Texas Instruments Incorporated  
17  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TJ = –40°C to +150°C, VVM = 4.5 to 32 V (Main Supply), VVDD = 3 to 5.5 V (Logic Supply) (unless otherwise noted). Typical  
limits apply for TA = 25°C, VVM = 13.5 V, VVDD = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Passive OLD detect resistance  
threshold  
DRV8908/6/4, FETs in Hi-Z state, Full  
bridge connection  
ROL  
ROL  
ROL  
ROL  
5
100  
kΩ  
Passive OLD detect resistance  
threshold  
DRV8908/6/4, FETs in Hi-Z State, Load  
connected to GND  
5
5
5
100  
400  
100  
kΩ  
kΩ  
kΩ  
Passive OLD detect resistance  
threshold  
DRV8908/6/4, FETs in Hi-Z State, Load  
connected to VM, HBX_VM_POLD = 0b  
Passive OLD detect resistance  
threshold  
DRV8908/6/4, FETs in Hi-Z State, Load  
connected to VM, HBX_VM_POLD = 1b  
tOLD  
Open load deglitch time  
Active OLD (Continuous Mode)  
Active OLD (PWM Mode)  
Die temperature (Tj)  
2
150  
120  
3
200  
140  
20  
4
300  
170  
ms  
µs  
°C  
°C  
°C  
°C  
tOLD  
Open load deglitch time  
TOTW  
Thermal warning temperature  
Thermal warning hysteresis  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
TOTW_HYS  
TOTSD  
TOTSD_HYS  
Die temperature (Tj)  
Die temperature (Tj)  
150  
175  
20  
200  
Die temperature (Tj)  
7.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
SPI (nSCS, SCLK, SDI, SDO)  
tREADY  
tCLK  
SPI ready after after enable  
SCLK minimum period  
SCLK minimum high time  
SCLK minimum low time  
SDI input data setup time  
SDI input data hold time  
SDO output data delay time  
nSCS input setup time  
nSCS input hold time  
VM > UVLO, ENABLE = 3.3 V  
1
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
200  
100  
100  
40  
tCLKH  
tCLKL  
tSU_SDI  
tHD_SDI  
tDLY_SDO  
tSU_nSCS  
tHD_nSCS  
tHI_nSCS  
tDIS_nSCS  
tSC_SPI  
60  
SCLK high to SDO valid  
60  
100  
100  
600  
nSCS minimum high time before active low  
nSCS disable delay time  
nSCS high to SDO high impedance  
30  
Successive SPI write gaps  
2.5  
18  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
tHI_nSCS  
tSU_nSCS  
tHD_nSCS  
tCLK  
tCLKH  
tCLKL  
X
MSB  
LSB  
X
tSU_SDI tHD_SDI  
Z
MSB  
LSB  
Z
tDIS_nSCS  
tEN_nSCS tDLY_SDO  
1. SPI Timing  
版权 © 2019, Texas Instruments Incorporated  
19  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
7.7 Typical Characteristics  
1.6  
1.4  
1.2  
1
2.5  
2
VVM = 4.5 V  
VVM = 13.5 V  
VVM = 18 V  
VVM = 24 V  
VVM = 32 V  
1.5  
1
0.8  
0.6  
TA = -40°C  
0.4  
0.2  
0
TA = 25°C  
TA = 85°C  
TA = 125°C  
0.5  
0
3
6
9
12  
15  
VM Supply Voltage (V)  
18  
21  
24  
27  
30  
33  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D001  
D002  
2. VM Sleep Mode Current (IVMQ) vs Supply Voltage (VVM  
)
3. VM Sleep Mode Current (IVMQ) vs Ambient Temperature  
(TA)  
0.5  
0.4  
TA = -40°C  
TA = 25°C  
TA = 85°C  
VVDD = 3 V  
0.45  
0.35  
0.3  
VVDD = 3.3 V  
VVDD = 4 V  
VVDD = 5 V  
VVDD = 5.5 V  
0.4  
TA = 125°C  
0.35  
0.25  
0.2  
0.3  
0.25  
0.2  
0.15  
0.1  
0.15  
0.1  
0.05  
0
0.05  
0
-0.05  
3
3.25 3.5 3.75  
4
VDD Supply Voltage (V)  
4.25 4.5 4.75  
5
5.25 5.5  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D003  
D004  
4. VDD Sleep Mode Current (IVDDQ) vs Supply Voltage  
5. VDD Sleep Mode Current (IVDDQ) vs Ambient  
(VVDD  
)
Temperature (TA)  
0.22  
0.215  
0.21  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
0.205  
0.2  
0.195  
0.19  
0.185  
0.18  
VVM = 4.5 V  
VVM = 13.5 V  
VVM = 18 V  
VVM = 24 V  
VVM = 32 V  
0.175  
0.17  
0.08  
0.06  
0.04  
0.02  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
0.165  
0.16  
0.155  
0.15  
0.145  
3
6
9
12  
15  
18  
21  
VM Supply Voltage (V)  
24  
27  
30  
33  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D005  
D006  
6. VM Standby Mode Current (IVMS) vs Supply Voltage  
(VVM  
7. VM Standby Mode Current (IVMS) vs Ambient  
)
Temperature (TA)  
20  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
1.2  
1.1  
1
0.93  
VVDD = 3 V  
VVDD = 3.3 V  
VVDD = 4 V  
VVDD = 5 V  
VVDD = 5.5 V  
0.9  
0.87  
0.84  
0.81  
0.78  
0.75  
0.72  
0.69  
0.66  
0.63  
0.6  
0.9  
0.8  
0.7  
0.6  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
3
3.25 3.5 3.75  
4
VDD Supply Voltage (V)  
4.25 4.5 4.75  
5
5.25 5.5  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D007  
D008  
8. VDD Standby Mode Current (IVDDS) vs Supply Voltage  
9. VDD Standby Mode Current (IVDDS) vs Ambient  
(VVDD  
)
Temperature (TA)  
2.65  
2.6  
2.65  
2.6  
VVM = 4.5 V  
VVM = 13.5 V  
VVM = 18 V  
VVM = 24 V  
VVM = 32 V  
2.55  
2.5  
2.55  
2.5  
2.45  
2.4  
2.45  
2.4  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
2.35  
2.3  
2.35  
2.3  
2.25  
2.25  
3
6
9
12  
15  
VM Supply Voltage (V)  
18  
21  
24  
27  
30  
33  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D009  
D010  
10. VM Operating Mode Current (IVM) vs Supply Voltage  
(VVM  
11. VM Operating Mode Current (IVM) vs Ambient  
)
Temperature (TA)  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
3.4  
3.35  
3.3  
VVDD = 3 V  
VVDD = 3.3 V  
VVDD = 4 V  
VVDD = 5 V  
VVDD = 5.5 V  
3.25  
3.2  
3.15  
3.1  
3.05  
3
2.95  
2.9  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
2.85  
2.8  
2.75  
2.7  
3
3.25 3.5 3.75  
4
VDD Supply Voltage (V)  
4.25 4.5 4.75  
5
5.25 5.5  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D011  
D012  
12. VDD Operating Mode Current (IVDD) vs Supply Voltage  
13. VDD Operating Mode Current (IVDD) vs Ambient  
(VVDD  
)
Temperature (TA)  
版权 © 2019, Texas Instruments Incorporated  
21  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
1.4  
1.1  
1.05  
1
TA = -40°C  
1.3  
1.2  
1.1  
1
TA = 25°C  
TA = 85°C  
TA = 125°C  
0.95  
0.9  
0.85  
0.8  
0.9  
0.8  
0.7  
0.6  
0.5  
0.75  
0.7  
VVM = 4.5 V  
VVM = 13.5 V  
VVM = 18 V  
VVM = 24 V  
VVM = 32 V  
0.65  
0.6  
0.55  
0.5  
3
6
9
12  
15  
VM Supply Voltage (V)  
18  
21  
24  
27  
30  
33  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D013  
D014  
14. Figure 7. High Side On-State Resistance (RDS(ON)) vs  
Supply Voltage (VVM  
15. High Side On-State Resistance (RDS(ON)) vs Ambient  
)
Temperature (TA)  
1.4  
1.3  
1.2  
1.1  
1
1.1  
1.05  
1
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
0.95  
0.9  
0.85  
0.8  
0.9  
0.8  
0.7  
0.6  
0.5  
0.75  
VVM = 4.5 V  
VVM = 13.5 V  
VVM = 18 V  
VVM = 24 V  
VVM = 32 V  
0.7  
0.65  
0.6  
0.55  
0.5  
3
6
9
12  
15  
VM Supply Voltage (V)  
18  
21  
24  
27  
30  
33  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D015  
D016  
16. Low-Side On-State Resistance (RDS(ON)) vs Supply  
Voltage (VVM  
17. Low-Side On-State Resistance (RDS(ON)) vs Ambient  
)
Temperature (TA)  
9.6  
9.2  
8.8  
8.4  
10.2  
10  
9.8  
9.6  
9.4  
9.2  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
VVM = 4.5 V  
VVM = 13.5 V  
VVM = 18 V  
VVM = 24 V  
VVM = 32 V  
9
8.8  
8.6  
8.4  
3
6
9
12  
15  
VM Supply Voltage (V)  
18  
21  
24  
27  
30  
33  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D017  
D018  
18. High-Side Open-Load Detection Current (IOLD) vs  
Supply Voltage (VVM  
19. High-Side Open-load Detection Current (IOLD) vs  
)
Ambient Temperature (TA)  
22  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
10.5  
10  
9.8  
9.6  
9.4  
9.2  
9
VVM = 4.5 V  
VVM = 13.5 V  
VVM = 18 V  
VVM = 24 V  
VVM = 32 V  
10.2  
9.9  
9.6  
9.3  
9
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
3
6
9
12  
15  
VM Supply Voltage (V)  
18  
21  
24  
27  
30  
33  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D019  
D020  
20. Low-Side Open-Load Detection Current (IOLD) vs  
Supply Voltage (VVM  
21. Low-Side Open-load Detection Current (IOLD) vs  
)
Ambient Temperature (TA)  
1.15  
1.08  
VVM = 4.5 V  
VVM = 13.5 V  
VVM = 18 V  
VVM = 24 V  
VVM = 32 V  
1.1  
1.04  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
1.05  
1
1
0.95  
0.96  
3
6
9
12  
15  
VM Supply Voltage (V)  
18  
21  
24  
27  
30  
33  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D021  
D022  
22. Low open-load detection current (IOLD_LOW) vs supply  
voltage (VVM  
23. Low open-load detection current (IOLD_LOW) vs  
)
ambient temperature (TA)  
版权 © 2019, Texas Instruments Incorporated  
23  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8 Detailed Description  
8.1 Overview  
www.ti.com.cn  
The DRV89xx-Q1 family are 4.5-V to 32-V integrated multi half-bridge drivers which supports a maximum voltage  
of 40-V for load-dump scenario. The half-bridges are designed to support 1-A per half-bridge and 6-A from the  
VM/GND pins. The DRV89xx family offers drivers from 4 to 12 half-bridge outputs.  
A standard 16-bit, 5-MHz serial peripheral interface (SPI) provides a simple method for configuring the various  
device settings and reading fault diagnostic information through an external controller. The device is also  
equipped with a daisy-chain functionality which allows connecting multiple devices using a single nSCS line and  
saving on multiple resources.  
This device has 4 internal PWM generators (DRV8912-Q1 and DRV8910-Q1) or 8 internal PWM generators  
(DRV8908-Q1, DRV8906-Q1 and DRV8904-Q1) which can be mapped to any of the half-bridge through SPI  
registers. The PWM frequency (4 options) and duty (8-bit resolution) for each channel can be selected using the  
SPI registers. This PWM mode is useful for implementing the current control of motor or dimming control of  
LEDs.  
The device also has numerous integrated protection features which protects the device in case of any abnormal  
scenario. The over-current protection (OCP) ensures the device protection in any short scenarios like the phase  
short, phase to ground short and phase to supply short conditions. Undervoltage lockout (UVLO) and overvoltage  
protection (OVP) ensures the driver operation in fluctuating voltages to support the crank-start and load-dump  
scenario in automotive applications. In addition to this, the open-load detection (OLD) feature ensure the proper  
load connection. All devices support active OLD, low-current OLD, and negative-current OLD. Passive OLD is  
only supported on DRV8908-Q1, DRV8906-Q1 and DRV8904-Q1 devices. Device faults are indicated on the  
nFAULT pin, and detailed information is available in the device SPI registers.  
The device integrates a spread spectrum clocking feature for both the internal digital oscillator and internal  
charge pump. This feature combined with programmable output slew-rate control minimizes the radiated  
emissions from the device.  
The device is available in a 24-pin HTSSOP package with a thermal pad.  
24  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.2 Functional Block Diagram  
VDD  
VVM  
+
+
+
CVDD2  
CVM2  
CVM1  
VM  
CVM2  
CVM1  
CVDD1  
VM  
VDD  
VM Undervoltage  
and Overvoltage  
Logic Supply  
(POR)  
Charge Pump  
nSLEEP  
VDD  
Digital Core  
RnFAULT  
Outputs  
Protection  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
OUT12  
nFAULT  
Power Stage  
Predriver Stage  
Overcurrent  
Protection  
Open-Load  
Detection  
SCLK  
SDI  
VM  
SPI  
(With Daisy  
Chain)  
Thermal Warning  
Thermal Shutdown  
HS  
Predriver  
VDD  
SDO  
4-Channel  
(DRV8912/10) /  
8-Channel  
(DRV8908/06/04)  
PWM Generators  
VDD  
LS  
Predriver  
nSCS  
GND  
GND  
GND  
GND  
TPAD  
版权 © 2019, Texas Instruments Incorporated  
25  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.3 Feature Description  
1 lists the recommended values of the external components for the driver.  
1. DRV89xx-Q1 Driver External Components  
COMPONENTS  
CVM1  
PIN 1  
VM  
PIN 2  
GND  
RECOMMENDED  
X5R or X7R, 0.1-μF, VM-rated capacitor  
10 μF, VM-rated capacitor  
X5R or X7R, 0.1-μF, 6.3-V capacitor  
1 μF, 6.3-V capacitor  
CVM2  
VM  
GND  
CVDD1  
VDD  
VDD  
VDD  
GND  
CVDD2  
GND  
RnFAULT  
nFAULT  
Pullup resistor  
8.3.1 Half Bridge Drivers  
8.3.1.1 Control Modes  
The half-bridge drivers can be programmed to drive loads (motor, solenoids, LEDs) continuously (without PWM)  
or in chopping mode (with PWM) and in parallel operation for driving high current.  
8.3.1.1.1 Continuous Mode (Without PWM)  
The half-bridges are configured to operate in the continuous mode without using any PWM switching by default.  
Any high-side or low-side switch is switched on by individually setting the high-side enable bits (HBX_HS_EN)  
and low-side enable bits (HBX_LS_EN) in operation control registers (OP_CTRL_1, OP_CTRL_2 and  
OP_CTRL_3).  
If the high-side enable bit (HBX_HS_EN) and low-side enable bit (HBX_LS_EN) of a  
particular half-bridge is set high (shoot-through configuration), then the particular half-  
bridge driver will remain in Hi-Z state until he shoot-through condition is cleared.  
The high-side and low-side enable bits of a particular half-bridge are configured to drive the motor in forward  
mode, reverse mode, brake mode and coast mode as shown in 2.  
2. Motor Operation in Continuous Mode (Motor Connected between HB1 and HB2)  
BRIDGE OPERATION  
nSLEEP  
HALF-BRIDGE-1  
HALF-BRIDGE-2  
OUT1  
OUT2  
(DC MOTOR)  
HB1_HS_EN = Don't Care  
HB1_LS_EN = Don't Care  
HB2_HS_EN = Don't Care  
HB2_LS_EN = Don't Care  
0
1
1
1
1
1
1
Z
Z
H
L
Z
Z
L
Sleep Mode  
HB1_HS_EN = 0  
HB1_LS_EN = 0  
HB2_HS_EN = 0  
HB2_LS_EN = 0  
Motor Coast  
Forward Direction  
Reverse Direction  
Motor Brake (Low-Side)  
Motor Brake (High-Side)  
Motor Coast  
HB1_HS_EN = 1  
HB1_LS_EN = 0  
HB2_HS_EN = 0  
HB2_LS_EN = 1  
HB1_HS_EN = 0  
HB1_LS_EN = 1  
HB2_HS_EN = 1  
HB2_LS_EN = 0  
H
L
HB1_HS_EN = 0  
HB1_LS_EN =1  
HB2_HS_EN = 0  
HB2_LS_EN = 1  
L
HB1_HS_EN =1  
HB1_LS_EN = 0  
HB2_HS_EN = 1  
HB2_LS_EN = 0  
H
Z
H
Z
HB1_HS_EN = 1  
HB1_LS_EN = 1  
HB2_HS_EN = 1  
HB2_LS_EN = 1  
26  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
24 shows the bridge configuration for motor operation in forward direction with high-side FET of OUT1 and  
low-side FET of OUT2 in conducting state with current flowing from OUT1 to OUT2. Similarly, the motor  
operation in reverse direction is achieved by switching ON the high-side FET of OUT2 and low-side FET of  
OUT1 such that current flows from OUT2 to OUT1 as shown in 25.  
VM  
VM  
X
X
M
OUT2  
M
OUT2  
OUT1  
OUT1  
X
X
24. Continuous Mode (Forward Direction)  
25. Continuous Mode (Reverse Direction)  
26 and 27 shows the bridge operation in coast mode with motor initially running in forward and reverse  
direction respectively. As shown in these figures, due to the energy stored in motor's inductance, the current will  
continue to flow in motor and take the path flow through the body diodes of FETs.  
VM  
VM  
X
X
X
X
M
OUT2  
M
OUT2  
OUT1  
OUT1  
X
X
X
X
26. Continuous Mode (Coast - From Forward  
27. Continuous Mode (Coast- From Reverse  
Direction)  
Direction)  
版权 © 2019, Texas Instruments Incorporated  
27  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
28 shows the low-side braking of the motor when both low-side FET's of the driver are turned ON. In this  
case, the motor is considered to be operating in forward direction (current flow from OUT1 to OUT2) and then  
braking is applied. similarly, for the high-side braking, both high-side FET's of the driver are turned ON as shown  
in 29.  
VM  
VM  
X
X
M
OUT2  
M
OUT2  
OUT1  
OUT1  
X
X
28. Continuous Mode (Brake - Low-Side)  
8.3.1.1.2 Chopping Mode (With PWM)  
29. Continuous Mode (Brake - High-Side)  
The half-bridges can be configured in the chopping mode by enabling the PWM switching on any particular half-  
bridge or both half-bridges. Each half-bridge can be mapped to any of the 4 PWM channels for which frequency  
and duty can be controlled independently. User has the flexibility to select the PWM frequency of channels out of  
4 settings of 80-Hz, 100-Hz, 200-Hz and 2-kHz. Moreover, duty (8-bit resolution) of the 4 PWM generators can  
be adjusted independently.  
The PWM chopping mode operation is done in five steps as follows and explained in detail below.  
1. PWM Configuration  
2. Free-Wheeling Mode (Synchronous Rectification) Disable / Enable  
3. PWM Channels Mapping  
4. PWM Channels Configuration (PWM Frequency and PWM Duty)  
5. Half-Bridge Enable  
8.3.1.1.2.1 PWM Configuration  
The operation of selected half-bridge to operate in continuous mode or chopping mode (PWM mode) is selected  
using the PWM control register (PWM_CTRL_1 and PWM_CTRL_2). The HBX_PWM bit in PWM control register  
is set to enable the PWM switching in half-bridge.  
The default mode of any half-bridge is continuous mode. If the corresponding HBx_PWM  
bit in PMW_CTRL_X register is not set, then the particular half-bridge will operate in  
continuous mode.  
8.3.1.1.2.2 Free-Wheeling Mode (Synchronous Rectification) Disable / Enable  
The synchronous rectification of the half-bridge operating in PWM can be enabled by setting the HBX_FW bit in  
free-wheeling control registers (FW_CTRL_1 and FW_CTRL_2). 30 shows the operation of the driver when  
the synchronous rectification mode is disabled. As shown in this figure, during the PWM off time, the high-side  
diode of the OUT2 conducts to close the current path required for motor.  
28  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
When synchronous rectification mode is enabled, if either of the low-side or high-side of the half-bridge operates  
in the PWM switching, then the other switch of the same half-bridge operates in complementary fashion. 31  
shows such example of the synchronous rectification, where the high-side FET of OUT2 half-bridge is turned ON  
when the low-side FET of same half-bridge is turned off in a PWM cycle.  
VM  
VM  
Continuous  
ON  
Continuous  
ON  
Diode  
FET  
X
Recirculation  
Recirculation  
M
OUT2  
M
OUT2  
OUT1  
OUT1  
PWM ON  
PWM ON  
X
X
PWM OFF  
PWM OFF  
30. PWM Mode (Synchronous Rectification =  
31. PWM Mode (Synchronous Rectification =  
OFF)  
ON)  
The default mode of any half-bridge is asynchronous rectification mode. If the  
corresponding bit in FW_CTRL_X regsiter is not set, then the particular half-bridge will  
operate in asynchronous rectification mode.  
8.3.1.1.2.3 PWM Channels Mapping  
DRV89XX-Q1 devices includes 4/8 PWM generators which can be mapped to any of the OUTX half bridge  
outputs using the PWM map control registers. The HBx_PWM_MAP bits in the PWM_MAP_CTRL_X registers  
are used to map any of the 4 channels in DRV8912-Q1/DRV8910-Q1 or 8 channels in DRV8908-Q1/DRV8906-  
Q1/DRV8904-Q1 to the OUTX outputs as shown in 3.  
3. PWM Mapping of DRV8912-Q1/DRV8910-Q1  
HBX_PWM MAP BITS  
HBX_PWM_MAP = 00b  
HBX_PWM_MAP = 01b  
HBX_PWM_MAP = 10b  
HBX_PWM_MAP = 11b  
PWM CHANNEL  
Channel 1 Selected for OUTX  
Channel 2 Selected for OUTX  
Channel 3 Selected for OUTX  
Channel 4 Selected for OUTX  
Any half-bridge is mapped to PWM channel 1 by default.  
8.3.1.1.2.4 PWM Channels Configuration (PWM Frequency and PWM Duty)  
The frequency and duty of each PWM generator can be controlled independently. The PWM_CHx_FREQ bits of  
PWM frequency control register (PWM_FREQ_CTRL) is used to select the frequency of PWM generator as  
shown in 4. The PWM duty of each channel is controlled by the PWM duty control register  
(PWM_DUTY_CTRL_X).  
版权 © 2019, Texas Instruments Incorporated  
29  
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
4. PWM Frequency  
HBX_PWM MAP BITS  
PWM CHANNEL  
80 Hz  
PWM_CHx_FREQ = 00b  
PWM_CHx_FREQ = 01b  
PWM_CHx_FREQ = 10b  
PWM_CHx_FREQ = 11b  
100 Hz  
200 Hz  
2000 Hz  
8.3.1.1.2.5 Half-Bridge Enable  
The four steps of PWM mode enable, free-wheeling mode configuration, PWM channel mapping and PWM  
channels configuration ensure the proper configuration of PWM mode. Once the half-bridge is configured for the  
PWM generation, the half-bridge is enabled by enabling either of the high-side or low-side switch by individually  
setting the high-side enable bits (HBX_HS_EN) or low-side enable bits (HBX_LS_EN) in operation control  
registers (OP_CTRL_1, OP_CTRL_2 and OP_CTRL_3).  
The PWM is applicable to either of the high-side or low-side switch depending upon the  
HBX_HS_EN and HBX_LS_EN bits in OP_CTRL_X registers. In synchronous rectification  
mode, the opposite side switch will conduct in PWM off time.  
8.3.1.1.3 Parallel Mode (Continuous Operation)  
Parallel mode in DRV89XX-Q1 device is implemented to support higher current loads which cannot be supported  
by a single channel. This mode can also be used for reducing the effective on-state resistance (RDS(ON)) for  
achieving a better thermal performance of the device.  
The configuration of various mode is very similar to the single half-bridge operation as explained in Continuous  
Mode (Without PWM) section. Considering six half-bridges for the parallel operation (OUT1, OUT2, OUT3 as  
group - 'X' and OUT4, OUT5, OUT6 as group 'Y'), various modes can be summarized in 5.  
5. Motor Operation in Parallel Mode (Continuous Operation) (with Motor Connected between  
OUT1/2/3 and OUT4/5/6)  
HALF-BRIDGE-1  
HALF-BRIDGE-2  
HALF-BRIDGE-3 (X)  
HALF-BRIDGE-4  
HALF-BRIDGE-5  
HALF-BRIDGE-6 (Y)  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
BRIDGE OPERATION  
(DC MOTOR)  
nSLEEP  
HBX_HS_EN = Don't Care  
HBX_LS_EN = Don't Care  
HBY_HS_EN = Don't Care  
HBY_LS_EN = Don't Care  
0
1
1
1
1
1
1
Z
Z
H
L
Z
Z
L
Sleep Mode  
Motor Coast  
HBX_HS_EN = 0  
HBX_LS_EN = 0  
HBY_HS_EN = 0  
HBY_LS_EN = 0  
HBX_HS_EN = 1  
HBX_LS_EN = 0  
HBY_HS_EN = 0  
HBY_LS_EN = 1  
Forward Direction  
Reverse Direction  
Motor Brake (Low-Side)  
Motor Brake (High-Side)  
Motor Coast  
HBX_HS_EN = 0  
HBX_LS_EN = 1  
HBY_HS_EN = 1  
HBY_LS_EN = 0  
H
L
HBX_HS_EN = 0  
HBX_LS_EN =1  
HBY_HS_EN = 0  
HBY_LS_EN = 1  
L
HBX_HS_EN =1  
HBX_LS_EN = 0  
HBY_HS_EN = 1  
HBY_LS_EN = 0  
H
Z
H
Z
HBX_HS_EN = 1  
HBX_LS_EN = 1  
HBY_HS_EN = 1  
HBY_LS_EN = 1  
For parallel mode operation, the device operation under safe operating area (SOA) is  
recommended for supply voltage, VVM 20-V, HBX_SR = HBY_SR = 1b, tOCP 10-µs and  
PL_MODE_EN = 01b.  
30  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
32 shows three half-bridges (OUT1, OUT2 and OUT3) operating as a parallel high-side switch and other three  
half-bridges (OUT4, OUT5 and OUT6) are operating as a parallel low-side switch for achieving a forward motor  
operation. Similarly the reverse direction of motor is achieved by operation of OUT1, OUT2 and OUT3 as a  
parallel low-side switch and other three half-bridges (OUT4, OUT5 and OUT6) as parallel high-side switch as  
shown in 33.  
VM  
X
X
X
OUT1  
OUT4  
OUT6  
OUT2  
OUT3  
OUT5  
M
X
X
X
32. Parallel Mode (Forward Direction)  
VM  
X
X
X
OUT1  
OUT4  
OUT6  
OUT2  
OUT3  
OUT5  
M
X
X
X
33. Parallel Mode (Reverse Direction)  
版权 © 2019, Texas Instruments Incorporated  
31  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
34 and 35 shows the bridge operation in coast mode with motor initially running in forward and reverse  
direction respectively. As shown in these figures, the body diodes of the FETs conducts to continue the current  
flow path due to energy stored in motor's inductance.  
VM  
X
X
X
X
X
X
OUT1  
OUT4  
OUT6  
OUT2  
OUT3  
OUT5  
M
X
X
X
X
X
X
34. Parallel Mode (Coast from Forward Direction)  
VM  
X
X
X
X
X
X
OUT1  
OUT4  
OUT6  
OUT2  
OUT3  
OUT5  
M
X
X
X
X
X
X
35. Parallel Mode (Coast from Reverse Direction)  
32  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
The low-side braking of the motor during all the low-side FET's of the driver turning ON is shown in 36. In this  
case, the motor is considered to be operating in forward direction (current flow from OUT1/2/3 to OUT4/5/6) and  
then braking is applied. similarly, for the high-side braking, all high-side FET's of the driver are turned ON as  
shown in 37.  
VM  
X
X
X
X
X
X
OUT4  
OUT5  
OUT6  
OUT1  
OUT2  
OUT3  
M
36. Parallel Mode (Brake - Low-Side)  
VM  
OUT1  
OUT4  
OUT6  
OUT2  
OUT3  
OUT5  
M
X
X
X
X
X
X
37. Parallel Mode (Brake - High-Side)  
版权 © 2019, Texas Instruments Incorporated  
33  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.3.1.1.4 Parallel Mode (PWM Operation)  
The half-bridges connected in parallel mode can be configured in the chopping mode by enabling the PWM  
switching on any particular group of high-side or low-side half-bridges or both group of half-bridges. For PWM  
operation in parallel mode, all half-bridges is to be mapped to a single PWM channel selected from any of the 4  
PWM channels to avoid any delay in the PWM durations which can lead to undesired OCP condition. The user  
has the flexibility to select the PWM frequency of channels out of 4 settings of 80-Hz, 100-Hz, 200-Hz and 2-kHz  
and the duty adjustment which supports 8-bit resolution. Following steps enable the PWM operation with driver  
connected for parallel mode and are explained below.  
1. PWM Configuration  
2. Free-Wheeling Mode (Synchronous Rectification) Disable / Enable  
3. PWM Channels Mapping  
4. PWM Channels Configuration (PWM Frequency and PWM Duty)  
5. PWM Generators Disable  
6. Half-Bridge Enable  
7. PWM Generators Enable  
8.3.1.1.4.1 PWM Configuration  
The PWM control register (PWM_CTRL_1 and PWM_CTRL_2) are used to select the operation of particular half-  
bridges in the PWM mode. Considering a case for the motor movement in forward direction as shown in 34,  
with low-side FETs of OUT4, OUT5 and OUT6 operating in PWM mode. The HBX_PWM bit in PWM control  
register is set to enable the PWM switching in selected half-bridges as shown below:  
HB4_PWM = 1b  
HB5_PWM = 1b  
HB6_PWM = 1b  
8.3.1.1.4.2 Free-Wheeling Mode (Synchronous Rectification) Disable / Enable  
The synchronous rectification of the half bridges operating in PWM mode (OUT4, OUT5 and OUT6) are enabled  
by setting the corresponding HBX_FW bits in free-wheeling control register (FW_CTRL_1 and FW_CTRL_2). By  
default, the synchronous rectification mode is disabled.  
HB4_FW = 1b  
HB5_FW = 1b  
HB6_FW = 1b  
38 shows the parallel operation of half-bridges in PWM mode with synchronous rectification disabled. As  
shown in this figure, during the PWM off time, the high-side diode of the OUT4, OUT5 and OUT6 conducts to  
close the current path required for motor.  
When synchronous rectification mode is enabled, the high-side FETs of OUT4, OUT5 and OUT6 starts  
conducting during the PWM OFF time to close the motor current path as shown in 39.  
34  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
VM  
Diode  
Recirculation  
X
X
X
OUT1  
OUT4  
OUT6  
OUT2  
OUT3  
OUT5  
M
X
X
X
PWM ON  
PWM OFF  
38. Parallel Mode (PWM with Synchronous Rectification = OFF)  
VM  
FET  
Recirculation  
OUT1  
OUT4  
OUT6  
OUT2  
OUT3  
OUT5  
M
PWM ON  
X
X
X
PWM OFF  
39. Parallel Mode (PWM with Synchronous Rectification = ON)  
8.3.1.1.4.3 PWM Channels Mapping  
The low-side FET's of half-bridges OUT4, OUT5 and OUT6 are mapped to any of the PWM generator by using  
the HBX_PWM_MAP bits in PWM mapping control registers. For parallel operation, all the half-bridges operating  
in PWM mode is mapped to a single PWM generator. Considering that PWM generator-4 is used for the mapping  
of half-bridges, following bits of the PWM_MAP_CTRL_X registers are affected:  
HB4_PWM_MAP = 11b  
HB5_PWM_MAP = 11b  
HB6_PWM_MAP = 11b  
If the PWM of any channel is enabled, then it is mapped to PWM generator-1 by default.  
版权 © 2019, Texas Instruments Incorporated  
35  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.3.1.1.4.4 PWM Channels Configuration (PWM Frequency and PWM Duty)  
The PWM_CHx_FREQ bits of PWM frequency control registers (PWM_FREQ_CTRL_X) is used to select the  
frequency of PWM generator. Moreover, the PWM duty of each channel is controlled by the PWM duty control  
register (PWM_DUTY_CTRL_X). Considering a frequency of 2-kHz is selected for the PWM operation (for PWM  
Generator-4), following frequency control and duty control registers are effected:  
PWM_CH4_FREQ = 11b  
PWM_CH4_FREQ = '8-bit duty'  
8.3.1.1.4.5 PWM Generators Disable  
The PWM generators are disabled to ensure that all the half-bridges are turned-on at same time to avoid false  
OCP conditions for supporting higher current operation. The false OCP condition can arise due to the minimum  
time required for the SPI delay to switch on various half-bridges available in different registers. This can cause  
higher current (OCP condition) in one of the paralleled half-bridge while other half-bridge turning ON is delayed  
to the SPI register write delay and the propagation delay. Therefore, this sequence includes disabling the PWM  
generators initially, then enabling half-bridges and followed by enabling the PWM generators to avoid such issue.  
The PWM generator-4 is disabled by using the following command in the PWM_CTRL_X registers:  
PWM_CH4_DIS = 1b  
All PWM generators are enabled by default (Default value of PWM_CTRL_X registers is  
00h).  
8.3.1.1.4.6 Half-Bridge Enable  
Once the PWM generators are disabled, the high-side and low-side FETs in half-bridges to be paralleled are  
enabled. High-side switches (connected in parallel) operating in continuous mode are enabled using the following  
bits in the OP_CTRL_X registers:  
HB1_HS_EN = 1b  
HB2_HS_EN = 1b  
HB3_HS_EN = 1b  
Moreover, the low-side switches (connected in parallel) operating in PWM mode are enabled using the following  
bits in the OP_CTRL_X:  
HB4_LS_EN = 1b  
HB5_LS_EN = 1b  
HB6_LS_EN = 1b  
8.3.1.1.4.7 PWM Generators Enable  
After the half-bridges are enabled, the PWM generators are also enabled for tuning-on the respective FETs  
operating in PWM mode. For this case, the low-side FETs of OUT4, OUT5 and OUT6 are turned ON for PWM  
operation connected to PWM generator-4. The PWM generator is enabled by the bits in the PWM_CTRL_X  
registers as shown:  
PWM_CH4_DIS = 0b  
36  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.3.1.2 Half-Bridge Drive Architecture  
8.3.1.2.1 Slew Rate  
An adjustable gate-drive current control to the MOSFETs of half-bridges is implemented to achieve the slew rate  
control. The MOSFET VDS slew rates are a critical factor for optimizing radiated emissions, energy and duration  
of diode recovery spikes and switching voltage transients related to parasitics. These slew rates are  
predominantly determined by the rate of gate charge to internal MOSFETs as shown in 40.  
VM  
VCP (Internal)  
Slew Rate  
Control  
OUTx  
VCP (Internal)  
Slew Rate  
Control  
GND  
40. Slew Rate Circuit Implementation  
The slew rate of each half-bridge can be adjusted by HBX_SR bits in Slew Rate control register (SR_CTRL_1  
and SR_CTRL_2). Each half-bridge can be selected to a slew rate of 0.6-V/µs or 2.5-V/µs. The slew rate is  
calculated by the rise-time and fall-time of the voltage on OUTx pin as shown in 41. The slew rate (SR) is  
calculate as shown in  
VOUTx  
VM  
VM  
90%  
90%  
10%  
10%  
0
Time  
tfall  
trise  
41. Slew Rate Timings  
版权 © 2019, Texas Instruments Incorporated  
37  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.3.1.2.2 Cross Conduction (Dead Time)  
The device is fully protected for any cross conduction of MOSFETs. In half-bridge configuration, the operation of  
high-side and low-side MOSFETs are ensured to avoid any shoot through currents by inserting a dead time  
(tdead). This is implemented by sensing the gate-source voltage (VGS) of the high-side and low-side MOSFETs  
and ensured that VGS of high-side MOSFET has reached below turn-off levels before switching on the low-side  
MOSFET of same half-bridge as shown in 42 and 43.  
VM  
Gate  
Control  
+
VGS  
HS  
LS  
œ
OUTx  
Gate  
Control  
+
GND  
VGS  
œ
42. Cross Conduction Protection  
OUTx HS  
OUTX  
(HS)  
10%  
tDEAD  
OUTX  
(LS)  
10%  
OUTx LS  
Time  
43. Dead Time  
38  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.3.1.2.3 Propagation Delay  
Propagation delay refers to the delay time from SPI valid condition to OUTx going high (10% level) as shown in  
44. The propagation constitutes of three major parameters.  
1. Digital delay for SPI command decode.  
2. Analog delay for driver switch-on and gate current charging delay.  
3. Slew rate delay for OUTx node to reach 10% of the final settling value.  
nSCS  
OUTx High  
tPD  
10%  
OUTx Low  
OUTx  
Time  
44. Propagation Delay  
8.3.2 Pin Diagrams  
This section presents the I/O structure of all digital input and output pins.  
8.3.2.1 Logic Level Input Pin (nSLEEP, SCLK and SDI)  
45 shows the input structure for the logic levels pins, nSLEEP, SCLK and SDI. The input can be with a  
voltage or external resistor. It is recommended to put SCLK and SDI pin low in device sleep mode to reduce  
leakage current through internal pull-down resistors.  
VDD  
STATE  
VIH  
CONNECTION  
Tied to VDD  
Tied to GND  
INPUT  
Logic High  
Logic Low  
VIL  
RPD  
ESD  
45. Logic Level Input Pin Structure (nSLEEP, SCLK and SDI)  
版权 © 2019, Texas Instruments Incorporated  
39  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.3.2.2 Logic Level Input Pin (nSCS)  
46 shows the input structure for the logic levels pin, nSCS. The input can be with a voltage or external  
resistor.  
VDD  
VDD  
STATE  
VIH  
CONNECTION  
Tied to VDD  
Tied to GND  
INPUT  
RPU  
Logic High  
Logic Low  
VIL  
ESD  
46. Logic Level Input Pin Structure (nSCS)  
8.3.2.3 Open Drain Output Pin (nFAULT)  
47 shows the structure of the open-drain output pin, nFAULT. The open-drain output requires an external  
pullup resistor to function properly.  
VDD  
STATE  
No Fault  
Fault  
STATUS  
Pulled-Up  
RPU  
OUTPUT  
Inactive  
Active  
Pulled-Down  
ESD  
47. Open Drain Output Pin Structure (nFAULT)  
8.3.2.4 Push Pull Output Pin (SDO)  
48 shows the structure of push-pull pin, SDO.  
VDD  
STATE  
VOH  
STATUS  
Pulled-Up  
OUTPUT  
Logic High  
Logic Low  
VOL  
Pulled-Down  
ESD  
48. Push Pull Output Pin (SDO) Structure  
40  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.3.3 Protection Circuits  
The DRV89xx-Q1 device is fully protected against undervoltage, overcurrent, and over-temperature events.  
8.3.3.1 VM Supply Undervoltage Lockout (UVLO)  
If at any time the input supply voltage on the VM pin falls below the VUVLO threshold, all of the half-bridges are  
disabled, the charge pump is disabled, and the nFAULT pin is driven low as shown in 49. The UVLO bit is  
also latched high in the IC status (IC_STAT) register. Normal operation resumes (driver operation and the  
nFAULT pin is released) when the VM undervoltage condition is removed. The UVLO bit remains set until  
cleared through the CLR_FLT bit.  
VUVLO (max) rising  
VUVLO (min) rising  
VUVLO (max) falling  
VUVLO (min) falling  
VVM  
DEVICE ON  
DEVICE OFF  
DEVICE ON  
nFAULT  
Time  
49. VM UVLO Operation  
8.3.3.2 VM Supply Overvoltage Protection (OVP)  
If at any time the input supply voltage on the VM pin rises above the VOVP threshold, all of the half-bridges are  
disabled, the charge pump is disabled, and the nFAULT pin is driven low as shown in 50. The OVP bit is also  
latched high in the IC status (IC_STAT) register. Normal operation resumes (driver operation and the nFAULT  
pin is released) when the VM overvoltage condition is removed. The OVP bit remains set until cleared through  
the CLR_FLT bit.  
An extended overvoltage operation is also supported in this device for higher over-voltage range up to 32-V. This  
operation is enabled by setting the EXT_OVP bit in the configuration (CONFIG_CTRL) register.  
VVM  
VOVP (max) rising  
VOVP (min) rising  
VOVP (max) falling  
VOVP (min) falling  
DEVICE ON  
DEVICE OFF  
DEVICE ON  
nFAULT  
Time  
50. Over Voltage Protection  
版权 © 2019, Texas Instruments Incorporated  
41  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.3.3.3 Logic Supply Power on Reset (POR)  
If at any time the input logic supply voltage on the VDD pin falls below the VPOR threshold or the nSLEEP pin is  
toggled (high to low), all of the half-bridges are disabled and the charge pump is disabled, as shown in 51.  
Normal operation resumes (driver operation) when the VDD undervoltage condition is removed or the nSLEEP  
pin is latched high. The NPOR bit is reset and latched low in the IC status (IC_STAT) register once the device  
presumes VDD. The NPOR bit remains in reset condition until cleared through the CLR_FLT bit.  
If the device has successfully waked up, then the NPOR bit is automatically latched high once the CLR_FLT  
command is issued.  
NPOR is not reported to nFAULT pin.  
VPOR (max) rising  
VPOR (min) rising  
VPOR (max) falling  
VPOR (min) falling  
VDD  
DEVICE ON  
DEVICE OFF  
DEVICE ON  
51. VDD UVLO Operation  
8.3.3.4 Overcurrent Protection (OCP)  
A current-limit circuit on each MOSFET limits the current through the MOSFET by removing the gate drive signal.  
If this current limit stay active for longer than the tOCP deglitch time, the high-side and the low-side FETs in the  
corresponding half bridge are disabled and the nFAULT pin is driven low. The OCP bit in the IC status  
(IC_STAT) register and corresponding bit in overcurrent protection status register (OCP_STAT_X) register is  
latched high. The charge pump remains active during this condition. The OCP bit in the IC status (IC_STAT)  
register and corresponding bits (HBX_HS_OCP / HBX_LS_OCP) in overcurrent protection status register  
(OCP_STAT_X) register remains set until cleared through the CLR_FLT bit.  
User also has the programmability of disabling the OCP fault on the nFAULT pin by setting the OCP_REP bit in  
the CONFIG_CTRL register.  
The device also provides two slew-rate options for the device turn-off during an OCP event which can be  
programmed via the PL_MODE_EN bits in OLD_CTRL_2 register. The default option (PL_MODE_EN = 00b) is  
the faster slew rate option (typical around 1µs) which can be used for the single bridge operation. The slower  
option (PL_MODE_EN = 01b) provides a slower slew rate (half-bridge slew rate, HBX_SR) which can be used  
for the higher current applications in device parallel mode operation.  
42  
版权 © 2019, Texas Instruments Incorporated  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
6. Overcurrent Protection  
nFAULT PIN  
Drive  
Current  
BRIDGE  
CONFIGURATION  
REGISTER  
SETTINGS  
BRIDGE  
STATE  
BITS  
AFFECTED  
RECOVERY  
OCP_REP OCP_REP  
= 0  
= 1  
OUT1 High-Side  
ON  
HB1_HS_EN = 1  
HB1_LS_EN = 1  
ENABLED  
ENABLED  
HIGH  
HIGH  
ILOAD < IOCP  
OUT2 Low-Side  
ON  
HIGH  
HIGH  
HIGH  
HIGH  
Full Bridge  
(OUT1/2)  
Forward Direction  
N/A  
N/A  
HB1_HS_EN = 1  
HB2_LS_EN = 1  
ENABLED  
ENABLED  
ILOAD < IOCP  
Full Bridge  
(OUT1/2)  
Reverse Direction  
HB1_LS_EN = 1  
HB2_HS_EN = 1  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
OUT1 High-Side  
ON  
OUT1 Short to  
GND  
OCP = 1 (IC_STAT)  
HB1_HS_OCP = 1  
HB1_HS_EN = 1  
HB1_LS_EN = 1  
Hi-Z  
Hi-Z  
ISHORT or ILOAD  
>
IOCP  
OUT1 Low-Side  
ON  
OCP = 1 (IC_STAT)  
HB1_LS_OCP = 1  
OUT1 Short to VM  
OCP  
Condition  
Removed  
CLR_FLT = 1  
Full Bridge  
(OUT1/2)  
Forward Direction  
OUT1 / OUT2  
Short  
OCP = 1 (IC_STAT)  
HB1_HS_OCP = 1 or  
HB2_LS_OCP = 1  
HB1_HS_EN = 1  
HB2_LS_EN = 1  
Hi-Z  
Hi-Z  
LOW  
LOW  
HIGH  
HIGH  
(1)  
ISHORT or ILOAD  
>
IOCP  
Full Bridge  
(OUT1/2)  
Reverse Direction  
OUT1 / OUT2  
Short  
OCP = 1 (IC_STAT)  
HB1_LS_OCP = 1 or  
HB1_LS_EN = 1  
HB2_HS_EN = 1  
(2)  
HB2_HS_OCP = 1  
(1) Either of the HB1_HS_OCP or HB2_LS_OCP will set depending upon which half-bridge OCP trigger first.  
(2) Either of the HB1_LS_OCP or HB2_HS_OCP will set depending upon which half-bridge OCP trigger first.  
Peak Current  
because of  
deglitch time  
IOCP  
IOUTx  
tOCP  
nFAULT Released  
nFAULT Pulled High  
Fault Condition  
nFAULT  
Time  
Fault Cleared  
52. Over Current Protection  
版权 © 2019, Texas Instruments Incorporated  
43  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.3.3.5 Open-load detection (OLD)  
The DRV89XX-Q1 devices implement multiple open-load detection schemes to allow the controller to determine  
if a load is connected to the OUTX terminals. The OLD schemes available in DRV89XX-Q1 are listed below. 7  
summarizes the use-cases for each OLD scheme.  
Active OLD  
Low-Current Active OLD  
Negative-Current Active OLD  
Passive OLD (only available in DRV8908-Q1, DRV8906-Q1 and DRV8904-Q1)  
7. Summary of OLD features  
LOW-CURRENT  
ACTIVE OLD  
NEGATIVE-CURRENT  
ACTIVE OLD  
PASSIVE OLD  
ACTIVE OLD  
Part  
numbers  
DRV8908/06/04-Q1  
DRV8912/10/08/06/04-Q1  
Detects the open-load  
condition during current re-  
circulation (on high-side or  
low-side) when  
synchronous rectification is  
enabled for both half-bridge  
and full-bridge  
Detects open-load  
condition prior to  
enabling the outputs  
Detects the open-load condition  
while driving a load with small  
operating current  
When is  
it used  
Detects the open-load condition  
while driving a load  
configurations  
State of  
OUTx for  
valid  
Hi-Z (outputs disabled)  
H/L  
L
H/L  
OLD  
OLD  
Trigger  
Condition  
VOLx_HS(+) > VOLx_HS or  
VOLx_LS(-) < VOLx_LS  
IOUTX < IOLD  
IOUTX < IOLD_LOW  
IOUTX > IOLD_NEG  
A false flag can occur during  
current re-circulation if  
synchronous rectification is ON.  
Enabling Negative-current OLD  
will solve this. A false flag can  
also occur if the operating current the low-side FET will increase by 11  
for the load is small (below IOLD times, hence the thermal  
threshold). See Low-current OLD performance has to be monitored.  
for solution.  
Only applicable for the current  
flowing in the low-side FETs. The  
IOCP for the low-side FET is also  
reduced by 11 times. The RDS(ON) of  
Only functional during  
current re-circulation,  
however it works in  
conjunction with active  
OLD. This feature is not  
needed if synchronous  
rectification is disabled.  
Passive OLD sequence  
is not enabled if any  
other fault other than  
OCP/OLD is present.  
Tradeoffs  
Can be  
used with  
other  
Negative-current OLD and low-  
current OLD  
Active OLD and negative-current  
OLD  
Active OLD and low-current  
OLD  
No  
OLD  
schemes  
8.3.3.5.1 Active OLD  
Active OLD can identify an open-load condition on the OUTX pins while driving a load. As shown in 53, the  
DRV89xx identifies an open-load fault condition when the current through the MOSFET (IOUTX) is lower than the  
open-load current threshold (IOLD) for longer than the open-load deglitch time (tOLD). At that point the device takes  
the following actions.  
OLD bit in the IC status (IC_STAT) register sets to 1  
HBX_HS_OLD or HBX_LS_OLD bit in the open-load status register (OLD_STAT_X) sets to 1 (depending if  
the fault is on the high-side MOSFET or low-side MOSFET, respectively).  
nFAULT pin is drives low to indicate a fault to the controller.  
44  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
Motor Starting Peak  
Current  
Motor  
Motor Connected  
Operation  
Motor Nominal Current  
Motor Open  
IOLD  
IOUTx  
tOLD  
nFAULT Pulled High  
Fault Condition  
Fault Cleared  
nFAULT Released  
nFAULT  
Time  
53. Active open-load detection  
Normal operation resumes (driver operation resumes, the nFAULT pin goes high, OLD bit is reset to 0) when the  
open-load condition is removed (the user reconnects the load to the OUTX connection) and the controller writes  
the CLR_FLT bit to 1.  
After the open-load fault condition is removed, the nFAULT pin will be driven high and the  
fault status are removed when,  
CLR_FLT command is issued after deglitch time (tOLD) while OUTX is set high.  
CLR_FLT command is issued after OUTX is set to Hi-Z.  
CLR_FLT command is issued after HBX_OLD_DIS bit is set.  
By default, OLD on the DRV89xx-Q1 devices is enabled. The OLD control registers (OLD_CTRL_1 and  
OLD_CTRL_2) allow the user to disable OLD on the OUTX pins with the HBX_OLD_DIS bits. The OLD_OP bit in  
the OLD_CTRL_2 register determines the response of the device to an active OLD fault. If OLD_OP = 0, the  
OUTX pins go to the Hi-Z state to stop driving the outputs. If OLD_OP = 1, the OUTX pins stay in their previous  
state and do not react to the OLD fault unless the user takes action. Similarly, the OLD_REP bit determines if the  
OLD fault will report on the nFAULT pin or only in the IC_STAT register. 8 summarizes the open-load  
detection feature and conditions.  
By default the OLD feature is enabled, the outputs disable (go Hi-Z) when the OLD flags,  
and the nFAULT pin will report the OLD.  
8. OLD Configuration  
LOAD /  
OPEN  
REGISTER  
SETTINGS  
BITS  
EFFECTED  
OLD_OP OLD_REP  
OUT1  
OUT2  
nFAULT  
RECOVERY  
Half-  
Bridge  
Load  
HB1_HS_EN = 1  
X
X
X
X
H
X
HIGH  
HB1_LS_EN = 1  
L
X
HIGH  
Connected  
N/A  
N/A  
HB1_HS_EN = 1  
HB2_LS_EN = 1  
X
X
X
X
H
L
L
HIGH  
HIGH  
Full-Bridge  
Load  
Connected  
HB1_LS_EN = 1  
HB2_HS_EN = 1  
H
版权 © 2019, Texas Instruments Incorporated  
45  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
RECOVERY  
8. OLD Configuration (接下页)  
LOAD /  
OPEN  
REGISTER  
SETTINGS  
BITS  
EFFECTED  
OLD_OP OLD_REP  
OUT1  
OUT2  
nFAULT  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Hi-Z  
Hi-Z  
H
X
X
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
OLD = 1 (IC_STAT)  
HB1_HS_OLD = 1  
HB1_HS_EN = 1  
HB1_LS_EN = 1  
X
Half-  
Bridge  
Open  
H
X
Hi-Z  
Hi-Z  
L
X
X
OLD = 1 (IC_STAT)  
HB1_LS_OLD = 1  
X
OLD Condition  
Removed  
CLR_FLT = 1  
L
X
Hi-Z  
Hi-Z  
H
Hi-Z  
Hi-Z  
L
OLD = 1 (IC_STAT)  
HB1_HS_OLD = 1 or  
HB1_HS_EN = 1  
HB2_LS_EN = 1  
(1)  
HB2_LS_OLD = 1  
H
L
Full-Bridge  
Open  
Hi-Z  
Hi-Z  
L
Hi-Z  
Hi-Z  
H
OLD = 1 (IC_STAT)  
HB1_LS_OLD = 1 or  
HB1_LS_EN = 1  
HB2_HS_EN = 1  
(2)  
HB2_HS_OLD = 1  
L
H
(1) Either of the HB1_HS_OLD or HB2_LS_OLD will set depending upon which half-bridge OLD triggers first.  
(2) Either of the HB1_LS_OLD or HB2_HS_OLD will set depending upon which half-bridge OLD triggers first.  
8.3.3.5.1.1 Negative-current OLD  
The DRV89XX-Q1 device also includes a negative-current OLD mode. The negative current can flow either  
through the body diode of high-side FET or the FET itself depending on whether or not the channel is configured  
for synchronous rectification. 54 shows the current re-circulation through the body diode of the high-side FET  
when the synchronous rectification mode is OFF (i.e. HB2_FW = 0). In this case, the active OLD will not falsely  
report an open-load condition since the OLD circuit only enables when the FET is ON. Negative-current OLD will  
also work during re-circulation through the low-side FETs.  
55 shows the negative current re-circulation through the high-side FET when synchronous rectification is ON  
(i.e. HB2_FW = 1). In this scenario, for default operation (OLD_NEG_EN = 0), the device can show a false open-  
load fault since the FET current is lower than the positive OLD threshold. However, when negative-current OLD  
mode is enabled, the device will only flag an open-load fault if IOUTX < IOLD_NEG. This mode is enabled by setting  
the OLD_NEG_EN bit in OLD_CTRL3 register.  
56 shows the waveforms of false open-load detection when the negative-current OLD setting is disabled  
(OLD_NEG_EN = 0). As shown in this figure, the high-side FET of the OUT1 channel is always switched ON and  
the low-side and high-side FET of the OUT2 channel are operating in complimentary way (i.e. synchronous  
rectification mode is enabled). In synchronous rectification, the current flows in negative direction from OUT2 to  
VM (i.e. FET Source to Drain) during the high-side FET conduction. Initially, for the first PWM cycle, the OLD  
mode is disabled to show the currents in different FETs during the motor operation. When OLD is enabled in  
second PWM cycle, then the device registers a false open-load detect during the high-side FET conduction as  
shown in 56. The nFAULT pin is pulled low and both high-side and low-side FET of OUT2 channels are  
disabled. The body diode of the high side FET (OUT2) conducts to complete the motor current path.  
This false detection of open load is eliminated by enabling the negative-current OLD setting (OLD_NEG_EN = 1).  
As shown in 57, the negative OLD current setting (IOLD_NEG) is enabled for the high-side FET of OUT2  
channel. This setting allows the negative current path (from source to drain) in high-side FET. The nFAULT pin is  
latched high and OUT2 channel is not disabled when OLD is enabled in second PWM cycle.  
46  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
VM  
VM  
Continuous  
ON  
Continuous  
ON  
Diode  
FET  
X
Recirculation  
Recirculation  
M
OUT2  
M
OUT2  
OUT1  
OUT1  
PWM ON  
PWM ON  
X
X
PWM OFF  
PWM OFF  
54. Negative Current Flow in OUT2 by Body  
55. Negative Current Flow in High-Side FET of  
Diode of High-Side FET  
OUT2 Channel  
OUT1_HS  
OUT1_HS  
OUT1_LS  
OUT2_LS  
OUT2_HS  
OUT1_LS  
OUT2_LS  
OUT2_HS  
IOUT1_HS  
IOLD  
IOLD  
IOLD  
IOLD  
IOUT1_HS  
Body Diode  
Conduction  
IOLD  
IOUT2_LS  
IOUT2_LS  
OLD Disabled  
OLD Disabled  
OLD Enabled  
OLD Enabled  
IOUT2_HS  
IOUT2_HS  
(FET Current)  
IOLD_NEG  
tOLD  
No FAULT  
Fault  
Condition  
nFAULT Pulled High  
Time  
nFAULT Pulled High  
Time  
nFAULT  
nFAULT  
56. Waveforms Showing False OLD With  
57. Waveforms Showing Operation with  
Negative-Current OLD Disabled  
Negative-Current OLD Enabled  
8.3.3.5.2 Low-current OLD  
Low-current open-load detection is another type of active open-load detection in the DRV89XX-Q1 devices. In  
low-current open-load detection, the current detection threshold is around 10x lower than the active open-load  
detection scheme. This feature gives the user flexibility to detect a valid open-load condition when driving loads  
that require low current.  
版权 © 2019, Texas Instruments Incorporated  
47  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
As shown in 58, if the low-side MOSFET is in operating condition (switched-ON) and the current flowing in the  
particular MOSFET is lower than the low-current active open-load current threshold (IOLD_LOW) for at least open-  
load detection deglitch time (tOLD), then an open-load condition is detected. The OLD bit in the IC status  
(IC_STAT) register is set, the HBX_LS_OLD bit in the open-load status register (OLD_STAT_X) is set and  
nFAULT pin is driven low during an open-load detect. Normal operation resumes (driver operation and the  
nFAULT pin is released) when the open-load condition is removed and CLR_FLT command is issued. The OLD  
bit remains set until cleared through the CLR_FLT bit.  
Motor Starting Peak  
Current  
Motor  
Operation  
Motor Nominal Current  
Motor Open  
Motor Connected  
IOLD_LOW  
IOUTx  
tOLD  
nFAULT Pulled High  
Fault Condition  
Fault Cleared  
nFAULT Released  
nFAULT  
Time  
58. Low-Current OLD  
The low-current OLD has following limitations  
This feature is only applicable for the current flowing in low-side FET.  
Once this mode is enabled the corresponding over-current threshold for the low-side  
FET is also reduced by 11 times (~120 mA min.).  
The RDS(on) of the low side FET will increase by 11 times (~7.5 typical), hence the  
thermal performance has to be monitored. However, for the lower current the thermal  
dissipation is limited.  
59 shows the flowchart for implementing the low-current active OLD in continuous mode of operation.  
Following are the steps to configure and detect the low-current active OLD in the DRV89XX-Q1 device.  
1. Enable OLD by setting the OLD_OP bit in OLD_CTRL_2 register. This setting will ensure that the OUTX  
outputs continue to operate when and OLD fault occurs.  
2. Enable the full-bridge operation by setting the individual HBX_HS_EN/HBX_LS_EN bits in operation control  
(OP_CTRL_1, OP_CTRL_2 and OP_CTRL_3) registers.  
3. Check for the nFAULT pin status and the OLD fault in the IC_STAT register.  
4. If the nFAULT pin is low and the OLD fault is high, then check for the individual  
HBX_HS_OLD/HBX_LS_OLD bits in OLD status (OLD_STAT_1, OLD_STAT_2 and OLD_STAT_3)  
registers.  
5. Disable OLD using the HBX_OLD_DIS bits for the OUTX pins acting as high-side drivers.  
6. Enable the low-current OLD mode for the half-bridge which low-side is operating by using the  
HBX_LOLD_EN bit in OLD control (OLD_CTRL_3 and OLD_CTRL_4) registers. This will also disable the  
high-side OLD for the particular half-bridge.  
7. Wait for the open-load deglitch time (tOLD).  
8. Issue the clear fault command (CLR_FLT) to release the nFAULT pin and clear the OLD bits if low-current  
OLD is not detected.  
48  
版权 © 2019, Texas Instruments Incorporated  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
9. If the OLD bit is high and the nFAULT pin is not released (low), then low-current OLD fault is detected.  
The low-current OLD is applicable only for low-side FETs. The user has to enable the low-  
current OLD mode for the corresponding low-side FET.  
Set OLD_OP = 1  
Set HBX_HS_EN = 1 or HBX_LS_EN = 1  
Is  
NO  
OLD = 1 &  
nFAULT = 0  
Continue  
?
YES  
Read OLD_STAT_X  
Set HBX_OLD_DIS = 1  
Set HBX_LOLD_EN = 1  
tOLD  
HBX_LOLD_EN = 0  
CLR_FLT = 1  
Is  
OLD = 1 &  
NO  
nFAULT = 0  
?
YES  
OLD Detected  
59. Flowchart for Enabling Low-Current OLD (Continuous Mode)  
8.3.3.5.3 Passive OLD  
In passive OLD, the detection of open load is carried before the driver is turned on. The state of all FETs remains  
in Hi-Z state, while a minimal amount of current flows through motor for short amount of time to test the motor  
connection. The diagnostic current is very small to avoid causing the motor rotation.  
60 shows the circuit implementation of the passive OLD. As shown in this figure, a constant current source  
pulls the OUT1 pin to the AVDD (internal) fixed voltage which allows current flow from OUT1 to OUT2 terminal.  
The current drawn is completely dependent on the motor resistance between OUT1 and OUT2 and limited by the  
internal current sourcing (IOL_PU) and sinking (IOL_PD) capability of the passive OLD circuitry. Depending on this  
current and the comparator threshold voltage (VOL_HS and VOL_LS), the comparator output OL1_HS and OL2_LS  
are either set or reset which determines the open-load status. When an open load is detected, the OLD bit in the  
IC status (IC_STAT) register is set, the HBX_LS_OLD bit in the open-load status register (OLD_STAT_X) is set  
and nFAULT pin is driven low. The OLD bit remains set until cleared through the CLR_FLT bit. This  
implementation is applicable for any half-bridges.  
Passive OLD sequence is not disabled by the HBX_OLD_DIS bits.  
版权 © 2019, Texas Instruments Incorporated  
49  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
MOTOR  
OUT1  
OUT2  
VM  
AVDD  
VM  
AVDD  
SW1_HS  
SW2_HS  
X
X
X
œ
ROL_HS  
ROL_HS  
VOL_HS  
VOL_HS  
-
OL2_HS  
+
OL1_HS  
+
IOL_PU  
IOL_PU  
X
SW2_LS  
SW1_LS  
IOL_PD  
IOL_PD  
X
œ
-
OL1_LS  
OL2_LS  
X
+
ROL_LS  
VOL_LS  
VOL_LS  
+
ROL_LS  
OPEN LOAD DETECT  
60. Passive OLD Circuit  
Following are the steps to configure and detect the passive OLD in the DRV89XX-Q1 device.  
1. Enable the passive OLD mode for the individual half-bridges which is to be diagnosed using the Half-bridge  
passive OLD enable bits (HBX_POLD_EN) in OLD_CTRL_5 register.  
2. Configure the half-bridge operation control bits (HBX_HS_EN/HBX_LS_EN) in operation control register  
(OP_CTRL_X) to determine the high-side and low-side OLD check. Note that these bits are now used for the  
passive OLD configuration. If anytime, the HBX_POLD_EN is reset then the bridge starts operating.  
3. Enable the passive OLD using the Passive OLD Enable bit (POLD_EN) in CONFIG_CTRL register. Setting  
the POLD_EN bit enables the passive OLD detection circuit on all OUTx pin for which the corresponding  
HBX_HS_EN or HBX_LS_EN are set to 1.  
4. Wait for the passive OLD time as determined by the user.  
5. After the completion of passive OLD time, disable the passive OLD enable bit (POLD_EN).  
6. Monitor the nFAULT pin / OLD bit in Status register (IC_STAT) and the HBX_HS_OLD/HBX_LS_OLD bit in  
the OLD status registers (OLD_STAT_X) for any open-load detection.  
7. Restart the sequence for other half-bridges / full-bridges.  
50  
版权 © 2019, Texas Instruments Incorporated  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
During normal driving, HBX_HS_EN and HBX_LS_EN bits control the state of OUTX. However, when POLD_EN  
and HBX_POLD_EN are 1, the OUTX channel is disabled, and HBX_HS_EN and HBX_LS_EN control SWX_HS  
and SWX_LS used for passive OLD (see schematic representation in 60). 9 shows the truth table for this  
operation.  
9. Truth Table for Passive OLD  
HBX_HS_ HBX_LS_  
HBX_POLD_EN  
OUTX  
SWX_HS SWX_LS  
OPEN LOAD SEQUENCE  
EN  
EN  
Follows  
HBX_HS_EN and  
HBX_LS_EN  
Passive OLD for the channel is disabled and  
HBX_HS_EN/HBX_LS_EN set output OUTx state  
0
X
X
Open  
Open  
1
1
1
1
0
0
1
1
0
1
0
1
Z
Z
Z
Z
Open  
Open  
Open  
Closed  
Open  
Off state - no passive OLD  
Valid passive OLD for VM-connected load  
Valid passive OLD for GND-connected load  
Invalid state  
Closed  
Open  
Open  
The OLD_REP bit works in a similar way as for the active OLD. The OLD_OP bit is not  
applicable for passive OLD operation since the outputs are already disabled.  
Passive OLD sequence is not enabled if any other fault (other than OCP/OLD) is present.  
10 shows an example for configuring passive OLD for various loads. The HBX_VM_POLD bits can be  
enabled for any loads that connect directly to VM. In cases where VM is low, the passive OLD current may need  
to be larger so passive OLD does not falsely indicate an open load. Setting HBX_VM_POLD = 1 chooses a  
smaller ROL so more current flows and the device can properly detect an open load.  
版权 © 2019, Texas Instruments Incorporated  
51  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
10. Passive OLD Configurations  
OPEN-LOAD  
DETECTION  
CONNECTION  
HB1_VM_POLD  
HB2_VM_POLD  
HB1_HS_EN HB1_LS_EN HB2_HS_EN HB2_LS_EN  
Detection based on resistance threshold (Forward  
Connection)  
0
0
0
0
1
0
0
1
0
1
1
0
Full Bridge Operation  
(Motor Connected  
Between OUT1 and  
OUT2)  
Detection based on resistance threshold (Reverse  
Connection)  
0
0
0
0
1
0
0
1
1
0
0
1
Invalid case (both high-side OLD circuitry operating)  
Invalid case (both low-side OLD circuitry operating)  
Detection only for OUT1 channel based on resistance  
threshold  
1
X
1
X
X
X
0
0
0
0
0
0
X
1
1
X
X
X
0
0
0
0
0
0
0
0
0
1
0
1
1
0
1
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
Detection only for OUT2 channel based on resistance  
threshold  
Detection for both outputs based on resistance  
threshold  
Half Bridge Operation  
(Load Connected  
Between OUT1/2 and VM)  
Invalid case (OUT1 high-side OLD circuitry is  
operating for VM connected load)  
Invalid case (OUT2 high-side OLD circuitry is  
operating for VM connected load)  
Invalid case (both high-side OLD circuitry is operating  
for VM connected load)  
Detection only for OUT1 channel based on resistance  
threshold  
Detection only for OUT2 channel based on resistance  
threshold  
Detection for both outputs based on resistance  
threshold  
Half Bridge Operation  
(Load Connected  
Between OUT1/2 and  
GND)  
Invalid case (OUT1 low-side OLD circuitry is operating  
for GND connected load)  
Invalid case (OUT2 low-side OLD circuitry is operating  
for GND connected load)  
Invalid case (both low-side OLD circuitry is operating  
for GND connected load)  
52  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.3.3.6 Thermal Warning (OTW)  
If the die temperature exceeds the trip point of the thermal warning (TOTW), the OTW bit is set in the IC status  
(IC_STAT) register. The reporting of OTW on the nFAULT pin can be enabled by setting the over-temperature  
warning reporting (OTW_REP) bit in the configuration control (CONFIG_CTRL) register. The device performs no  
additional action and continues to function. In this case, the nFAULT pin releases when the die temperature  
decreases below the hysteresis point of the thermal warning (TOTW_HYS). The OTW bit remains set until cleared  
through the CLR_FLT bit and the die temperature is lower than thermal warning trip (TOTW).  
Over Temperature warning is not reported on nFAULT pin by default.  
8.3.3.7 Thermal Shutdown (OTSD)  
If the die temperature exceeds the trip point of the thermal shutdown limit (TOTSD), all half-bridge drivers are  
disabled, the charge pump is shut down, and the nFAULT pin is driven low. In addition, the OTSD bit is latched  
high in IC status (IC_STAT) register. Normal operation resumes (driver operation and the nFAULT pin is  
released) when the overtemperature shutdown condition is removed and die temperature decreases below the  
hysteresis point of the thermal warning (TOTSD_HYS). The OTSD bit remains latched high indicating that a thermal  
event occurred until a clear fault command is issued through the CLR_FLT bit. This protection feature cannot be  
disabled.  
版权 © 2019, Texas Instruments Incorporated  
53  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.4 Device Functional Modes  
8.4.1 Sleep Mode (nSLEEP = 0)  
www.ti.com.cn  
The nSLEEP pin manages the state of the DRV89xx-Q1 device. When the nSLEEP pin is low, the device enters  
a low-power sleep mode. In sleep mode, all half-bridge drivers are disabled, the internal charge pump is  
disabled, the internal regulators are disabled, and the SPI bus is disabled. The tSLEEP time must elapse after a  
falling edge on the nSLEEP pin before the device enters sleep mode. The device comes out of sleep mode  
automatically if the nSLEEP pin is pulled high. The tWAKE time must elapse before the device is ready for inputs.  
8.4.2 Operating Mode (nSLEEP = 1)  
When the nSLEEP pin is high and VVM > VUVLO, the device enters operating mode. The tWAKE time must elapse  
before the device is ready for inputs. In this mode the half bridge drivers, charge pump, internal regulators, and  
SPI bus are active. 11 summarizes the different operating modes of DRV89XX-Q1 device.  
11. Functional Modes  
MODE  
CONDITION  
HALF-BRIDGES  
INTERNAL CIRCUITS  
4.5-V < VVM < 20-V (EXT_OVP = 0b)  
4.5-V < VVM < 32-V (EXT_OVP = 1b)  
nSLEEP Pin = High  
Operating  
Operating  
Operating  
4.5-V < VVM < 32-V  
nSLEEP Pin = Low  
Sleep  
Fault  
Disabled  
Disabled  
Any Fault Condition Met  
Depends on Fault  
Depends on Fault  
8.4.3 Fault Mode  
The DRV89XX-Q1 is protected against various faults as summarized in 12.  
12. Fault Action and Response  
HALF-  
BRIDGE  
FAULT  
CONDITION  
CONFIGURATION  
REPORT  
LOGIC  
RECOVERY  
VM Undervoltage  
(UVLO)  
VVM < VUVLO  
(Max. 4.5-V)  
nFAULT Pin  
IC_STAT Register  
Automatic:  
VVM > VUVLO  
Hi-Z  
Hi-Z  
Active  
Reset  
VDD Undervoltage  
(UVLO)  
VVDD < VPOR  
(Max 3-V)  
Automatic:  
VVDD > VPOR  
IC_STAT Register  
VVM > VOVP  
(Min. 20-V)  
EXT_OVP = 0  
VM Overvoltage  
(OVP)  
nFAULT Pin  
IC_STAT Register  
Automatic:  
VVM < VOVP  
Hi-Z  
Active  
VVM > VOVP  
(Min. 32-V)  
EXT_OVP = 1  
OCP_REP = 0  
OCP_REP = 1  
IC_STAT Register  
Hi-Z  
Hi-Z  
Active  
Active  
Over Current  
Protection (OCP)  
IOUT > IOCP  
(Min. 1.3-A)  
CLR_FLT = 1 &  
IOUT < IOCP  
nFAULT Pin  
IC_STAT Register  
OLD_OP = 0  
OLD_REP = 0  
nFAULT Pin  
IC_STAT Register  
Hi-Z  
Hi-Z  
Active  
Active  
Active  
Active  
Active  
OLD_OP = 0  
OLD_REP = 1  
IC_STAT Register  
IOUT < IOLD  
(Max. 15-mA)  
CLR_FLT = 1 &  
IMOTOR > IOLD  
OLD_OP = 1  
OLD_REP = 0  
nFAULT Pin  
IC_STAT Register  
Operating  
Operating  
N/A  
Open-Load Detect  
(OLD)  
OLD_OP = 1  
OLD_REP = 1  
IC_STAT Register  
nFAULT Pin  
IC_STAT Register  
CLR_FLT = 1 &  
OLD Sequenced  
&
OLD_REP = 0  
RLOAD > ROLD  
(Max. 100-kΩ)  
OLD_REP = 1  
OTW_REP = 0  
IC_STAT Register  
IC_STAT Register  
N/A  
Active  
Active  
RLOAD < ROLD  
Operating  
No Action  
Over-Temperature  
Warning (OTW)  
TJ > TOTW  
(Min. 120°C)  
Automatic:  
TJ < TOTW  
–TOTW_HYS  
nFAULT Pin  
IC_STAT Register  
OTW_REP = 1  
Operating  
Active  
54  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
FAULT  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
12. Fault Action and Response (接下页)  
HALF-  
BRIDGE  
CONDITION  
CONFIGURATION  
REPORT  
LOGIC  
RECOVERY  
Automatic:  
TJ < TOTSD  
–TOTSD_HYS  
Over-Temperature  
Shutdown (OTSD)  
TJ > TOTSD  
(Min. 150°C)  
nFAULT Pin  
IC_STAT Register  
Hi-Z  
Active  
版权 © 2019, Texas Instruments Incorporated  
55  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.5 Programming  
8.5.1 SPI  
SPI bus is used to set device configurations, operating parameters, and read out diagnostic information on the  
DRV89xx-Q1 device. The SPI operates in slave mode and connects to a master controller. The SPI input data  
(SDI) word consists of a 16 bit word, with an 8 bit command and 8 bits of data. The SPI output data (SDO) word  
consists of 8 bit register data and the first 8 bits make up the Status Register with Fault Status indication. The  
data sequence between the MCU and the SPI slave driver is shown in 61.  
nSCS  
A1  
S1  
D1  
R1  
SDI  
SDO  
61. SPI Data Frame  
A valid frame must meet the following conditions:  
The SCLK pin should be low when the nSCS pin transitions from high to low and from low to high.  
The nSCS pin should be pulled high for at least 400 ns between words.  
When the nSCS pin is pulled high, any signals at the SCLK and SDI pins are ignored and the SDO pin is  
placed in the Hi-Z state.  
Data is captured on the falling edge of SCLK and data is propagated on the rising edge of SCLK.  
The most significant bit (MSB) is shifted in and out first.  
A full 16 SCLK cycles must occur for transaction to be valid.  
If the data word sent to the SDI pin is less than or more than 16 bits, a frame error occurs and the data word  
is ignored.  
For a write command, the existing data in the register being written to is shifted out on the SDO pin following  
the 8 bit command data.  
8.5.2 SPI Format  
The SDI input data word is 16 bits long and consists of the following format:  
1 read or write bit, W (bit B14)  
6 address bits, A (bits B13 through B8)  
8 data bits, D (bits B7 through B0)  
The SDO output data word is 16 bits long and the first 8 bits makes up the IC status register. The report word is  
the content of the register being accessed.  
For a write command (W0 = 0), the response word on the SDO pin is the data currently in the register being  
written to.  
For a read command (W0 = 1), the response word is the data currently in the register being read.  
56  
版权 © 2019, Texas Instruments Incorporated  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
Programming (接下页)  
13. SDI Input Data Word Format  
R/W  
Address  
Data  
Bit  
B15  
0
B14  
W0  
B13  
A5  
B12  
A4  
B11  
A3  
B10  
A2  
B9  
A1  
B8  
A0  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
Data  
14. SDO Output Data Word Format  
IC Status  
Report  
Bit  
B15  
1
B14  
1
B13  
OT  
B12  
B11  
B10  
B9  
B8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
Data  
OLD  
OCP UVLO OVP NPOR  
8.5.3 SPI Interface for Multiple Slaves  
Multiple DRV89XX-Q1 devices can be connected to the master controller with and without the daisy chain. For  
connecting a 'n' number of DRV89XX-Q1 to a master controller without using a daisy chain, 'n' number of I/O  
resources from master controller has to be utilized for nSCS pins as shown 62. Whereas, if the daisy chain  
configuration is used, then a single nSCS line can be used for connecting multiple DRV89XX-Q1 devices as  
shown in 63.  
DRV89xx-Q1  
DRV89xx-Q1  
SCLK  
SDI  
nSCS  
SCLK  
Master Controller  
Master Controller  
SPI  
SPI  
SDO  
SDI  
Communication  
Communication  
SDO  
nSCS  
CS1  
MCLK  
MO  
CS  
MCLK  
MO  
SPI  
SPI  
Communication  
Communication  
MI  
MI  
DRV89xx-Q1  
DRV89xx-Q1  
CS2  
SCLK  
SDI  
SDI  
SDO  
SPI  
SPI  
SDO  
SCLK  
nSCS  
Communication  
Communication  
nSCS  
62. SPI Operation Without Daisy Chain  
63. SPI Operation With Daisy Chain  
版权 © 2019, Texas Instruments Incorporated  
57  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.5.3.1 SPI Interface for Multiple Slaves in Daisy Chain  
The DRV89XX-Q1 device can be connected in a daisy chain configuration to save GPIO ports when multiple  
devices are communicating to the same MCU. 64 shows the topology when 3 devices are connected in series  
with waveforms.  
SDO2  
SDI3  
SDO3  
M-SDI  
M-SDO  
SDI1  
SDO1  
SDI2  
M-SDO  
SDI1  
SDI2  
SDI2  
SDO3  
SDO2  
SDO1  
M-nSCS  
M-SCLK  
M-SDI  
nSCS  
SDI1  
HDR1  
HDR2  
HDR1  
S1  
A3  
A2  
A1  
A2  
A3  
D3  
R1  
R2  
R3  
D2  
D3  
R1  
R2  
D1  
D2  
D3  
R1  
SDO1  
SDI2  
S1  
S2  
S3  
HDR2  
HDR1  
S1  
A3  
SDO2  
SDI3  
HDR2  
HDR1  
SDO3  
S2  
HDR2  
All Address  
Bytes Reach  
Destination  
All Address  
Bytes Reach  
Destination  
Status  
Response Here  
Reads  
Execute Here  
Writes  
Execute Here  
64. Daisy Chain SPI Operation  
The first device in the chain shown above receives data from the master controller in the following format. See  
SDI1 in 64  
2 bytes of Header  
3 bytes of Address  
3 bytes of Data  
After the data has been transmitted through the chain, the master controller receives it in the following format.  
See SDO3 in 64  
3 bytes of Status  
2 bytes of Header (should be identical to the information controller sent)  
3 bytes of Report  
58  
版权 © 2019, Texas Instruments Incorporated  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
The Header bytes contain information of the number of devices connected in the chain, and a global clear fault  
command that will clear the fault registers of all the devices on the rising edge of the chip select (nSCS) signal.  
N5 through N0 are 6 bits dedicated to show the number of devices in the chain as shown in 65. Up to 63  
devices can be connected in series per daisy chain connection.  
The 5 LSBs of the HDR2 register are don’t care bits that can be used by the MCU to determine integrity of the  
daisy chain connection. Header bytes must start with 1 and 0 for the two MSBs.  
1
0
N5  
N4  
N3  
N2  
N1  
N0  
HDR1  
Number of Devices in the Chain  
(Up to 26 œ 1 = 63)  
1
0
CLR  
X
X
X
X
X
HDR2  
Don‘t Care  
1 = Global FAULT Clear  
0 = Don‘t Care  
65. Header Bits  
The Status byte provides information about the fault status register for each device in the daisy chain as shown  
in 66. That way the master controller does not have to initiate a read command to read the fault status from  
any particular device. This saves the controller additional read commands and makes the system more efficient  
to determine fault conditions flagged in a device.  
Header Bytes (HDR)  
HDR1  
1
1
0
0
N5  
N4  
X
N3  
X
N2  
X
N1  
X
N0  
X
HDR2  
CLR  
OVP  
A1  
NPOR  
A0  
Status Byte (SX)  
Address Byte (AX)  
Data Byte (AX)  
OLD  
A4  
OCP  
A3  
UVLO  
A2  
1
0
OT  
A5  
D5  
1
R/W  
D7  
D6  
D4  
D3  
D2  
D1  
D0  
66. Daisy Chain Read Registers  
When data passes through a device, it determines the position of itself in the chain by counting the number of  
Status bytes it receives following by the first Header byte. For example, in this 3 device configuration, device 2 in  
the chain will receive two Status bytes before receiving HDR1 byte, followed by HDR2 byte.  
From the two Status bytes it knows that its position is second in the chain, and from HDR2 byte it knows how  
many devices are connected in the chain. That way it only loads the relevant address and data byte in its buffer  
and bypasses the other bits. This protocol allows for faster communication without adding latency to the system  
for up to 63 devices in the chain.  
版权 © 2019, Texas Instruments Incorporated  
59  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
The address and data bytes remain the same with respect to a single device connection. The Report bytes (R1  
through R3), as shown in the figure above, is the content of the register being accessed.  
nSCS  
SCLK  
SDI  
X
Z
MSB  
MSB  
LSB  
LSB  
X
Z
SDO  
Capture  
Point  
Propagate  
Point  
67. SPI Slave Timing Diagram  
8.6 Register Map  
This section contains the register maps and bit descriptions for all of the DRV89xx-Q1 devices. DRV8912-Q1  
and DRV8910-Q1 Register Maps contains the register maps and register descriptions for DRV8912-Q1 and  
DRV8910-Q1 devices. DRV8908-Q1, DRV8906-Q1 and DRV8904-Q1 Register Maps contains the register maps  
and register descriptions for DRV8908-Q1, DRV8906-Q1, and DRV8904-Q1 devices. 15 summarizes the  
differences among the part numbers in the DRV89xx-Q1 family.  
15. Summary of DRV89xx-Q1 Device Family  
NUMBER OF HALF-  
BRIDGES  
NUMBER OF PWM  
GENERATORS  
OPEN-LOAD DETECTION  
SCHEMES  
DEVICE  
LINK TO REGISTER MAP  
DRV8912-Q1  
DRV8910-Q1  
12  
10  
4
4
Active OLD, Low-Current  
Active OLD, Negative-Current  
Active OLD  
17  
18  
DRV8908-Q1  
DRV8906-Q1  
DRV8904-Q1  
8
6
4
8
8
8
50  
51  
52  
Passive OLD, Active OLD,  
Low-Current Active OLD,  
Negative-Current Active OLD  
Complex bit access types are encoded to fit into small table cells. 16 shows the codes that are used for  
access types in this section.  
16. Control Registers Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
60  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.1 DRV8912-Q1 and DRV8910-Q1 Register Maps  
17. DRV8912-Q1 Register Map  
Name  
IC_STAT  
7
6
5
4
3
2
1
0
Type Address  
Reserved  
OTSD  
OTW  
OLD  
OCP  
UVLO  
OVP  
NPOR  
R
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h(1)  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
OCP_STAT_1  
HB4_HS_OCP  
HB8_HS_OCP  
HB4_LS_OCP  
HB8_LS_OCP  
HB3_HS_OCP  
HB7_HS_OCP  
HB3_LS_OCP  
HB7_LS_OCP  
HB2_HS_OCP  
HB6_HS_OCP  
HB2_LS_OCP  
HB6_LS_OCP  
HB1_HS_OCP  
HB5_HS_OCP  
HB1_LS_OCP  
HB5_LS_OCP  
HB9_LS_OCP  
HB1_LS_OLD  
HB5_LS_OLD  
HB9_LS_OLD  
CLR_FLT  
R
OCP_STAT_2  
R
OCP_STAT_3  
HB12_HS_OCP HB12_LS_OCP HB11_HS_OCP HB11_LS_OCP HB10_HS_OCP HB10_LS_OCP HB9_HS_OCP  
R
OLD_STAT_1  
HB4_HS_OLD  
HB8_HS_OLD  
HB4_LS_OLD  
HB8_LS_OLD  
HB3_HS_OLD  
HB7_HS_OLD  
HB3_LS_OLD  
HB7_LS_OLD  
HB2_HS_OLD  
HB6_HS_OLD  
HB2_LS_OLD  
HB6_LS_OLD  
HB1_HS_OLD  
HB5_HS_OLD  
R
OLD_STAT_2  
R
OLD_STAT_3  
HB12_HS_OLD HB12_LS_OLD HB11_HS_OLD HB11_LS_OLD HB10_HS_OLD HB10_LS_OLD HB9_HS_OLD  
R
CONFIG_CTRL  
OP_CTRL_1  
Reserved  
HB4_HS_EN  
HB8_HS_EN  
HB12_HS_EN  
HB8_PWM  
IC_ID  
OCP_REP  
HB2_HS_EN  
HB6_HS_EN  
HB10_HS_EN  
HB4_PWM  
HB12_PWM  
HB4_FW  
OTW_REP  
HB2_LS_EN  
HB6_LS_EN  
HB10_LS_EN  
HB3_PWM  
HB11_PWM  
HB3_FW  
EXT_OVP  
HB1_HS_EN  
HB5_HS_EN  
HB9_HS_EN  
HB2_PWM  
HB10_PWM  
HB2_FW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
HB4_LS_EN  
HB8_LS_EN  
HB12_LS_EN  
HB7_PWM  
HB3_HS_EN  
HB7_HS_EN  
HB11_HS_EN  
HB6_PWM  
HB3_LS_EN  
HB7_LS_EN  
HB11_LS_EN  
HB5_PWM  
HB1_LS_EN  
HB5_LS_EN  
HB9_LS_EN  
HB1_PWM  
HB9_PWM  
HB1_FW  
OP_CTRL_2  
OP_CTRL_3  
PWM_CTRL_1  
PWM_CTRL_2  
FW_CTRL_1  
PWM_CH4_DIS PWM_CH3_DIS PWM_CH2_DIS PWM_CH1_DIS  
HB8_FW HB7_FW HB6_FW HB5_FW  
Reserved  
FW_CTRL_2  
HB12_FW  
HB11_FW  
HB10_FW  
HB9_FW  
PWM_MAP_CTRL_1  
PWM_MAP_CTRL_2(1)  
PWM_MAP_CTRL_3  
PWM_FREQ_CTRL  
PWM_DUTY_CTRL_1  
PWM_DUTY_CTRL_2  
PWM_DUTY_CTRL_3  
PWM_DUTY_CTRL_4  
SR_CTRL_1  
HB4_PWM_MAP  
HB3_PWM_MAP  
HB2_PWM_MAP  
HB1_PWM_MAP  
HB8_PWM_MAP  
HB12_PWM_MAP  
PWM_CH4_FREQ  
HB7_PWM_MAP  
HB11_PWM_MAP  
PWM_CH3_FREQ  
HB6_PWM_MAP  
HB10_PWM_MAP  
PWM_CH2_FREQ  
HB5_PWM_MAP  
HB9_PWM_MAP  
PWM_CH1_FREQ  
PWM_DUTY_CH1  
PWM_DUTY_CH2  
PWM_DUTY_CH3  
PWM_DUTY_CH4  
HB8_SR  
HB7_SR  
HB6_SR  
HB5_SR  
HB4_SR  
HB12_SR  
HB3_SR  
HB2_SR  
HB10_SR  
HB1_SR  
HB9_SR  
SR_CTRL_2  
Reserved  
HB11_SR  
OLD_CTRL_1  
HB8_OLD_DIS HB7_OLD_DIS HB6_OLD_DIS HB5_OLD_DIS HB4_OLD_DIS HB3_OLD_DIS HB2_OLD_DIS HB1_OLD_DIS  
OLD_CTRL_2  
OLD_REP  
OLD_OP  
PL_MODE_EN  
HB12_OLD_DIS HB11_OLD_DIS HB10_OLD_DIS HB9_OLD_DIS  
HB12_LOLD_E HB11_LOLD_E HB10_LOLD_E  
HB9_LOLD_EN  
OLD_CTRL_3  
OLD_CTRL_4  
OCP_DEG  
OLD_NEG_EN  
RW  
RW  
1Bh  
24h  
N
N
N
HB8_LOLD_EN HB7_LOLD_EN HB6_LOLD_EN HB5_LOLD_EN HB4_LOLD_EN HB3_LOLD_EN HB2_LOLD_EN HB1_LOLD_EN  
(1) After this register address, the functions are similar between DRV8912-Q1 and DRV8910-Q1. However, DRV8908-Q1, DRV8906-Q1, and DRV8904-Q1 have different functions for these  
addresses.  
版权 © 2019, Texas Instruments Incorporated  
61  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
18. DRV8910-Q1 Register Map  
Name  
IC_STAT  
7
6
5
4
3
2
1
0
Type Address  
Reserved  
OTSD  
OTW  
OLD  
OCP  
UVLO  
OVP  
NPOR  
R
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h(1)  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
OCP_STAT_1  
HB4_HS_OCP  
HB8_HS_OCP  
HB4_LS_OCP  
HB8_LS_OCP  
HB3_HS_OCP  
HB7_HS_OCP  
HB3_LS_OCP  
HB7_LS_OCP  
HB2_HS_OCP  
HB6_HS_OCP  
HB2_LS_OCP  
HB6_LS_OCP  
HB1_HS_OCP  
HB5_HS_OCP  
HB1_LS_OCP  
HB5_LS_OCP  
HB9_LS_OCP  
HB1_LS_OLD  
HB5_LS_OLD  
HB9_LS_OLD  
CLR_FLT  
R
OCP_STAT_2  
R
OCP_STAT_3  
Reserved  
HB10_HS_OCP HB10_LS_OCP HB9_HS_OCP  
R
OLD_STAT_1  
HB4_HS_OLD  
HB8_HS_OLD  
HB4_LS_OLD  
HB8_LS_OLD  
HB3_HS_OLD  
HB7_HS_OLD  
HB3_LS_OLD  
HB7_LS_OLD  
HB2_HS_OLD  
HB6_HS_OLD  
HB2_LS_OLD  
HB6_LS_OLD  
HB1_HS_OLD  
HB5_HS_OLD  
R
OLD_STAT_2  
R
OLD_STAT_3  
Reserved  
HB10_HS_OLD HB10_LS_OLD HB9_HS_OLD  
R
CONFIG_CTRL  
OP_CTRL_1  
Reserved  
IC_ID  
OCP_REP  
HB2_HS_EN  
HB6_HS_EN  
HB10_HS_EN  
HB4_PWM  
OTW_REP  
HB2_LS_EN  
HB6_LS_EN  
HB10_LS_EN  
HB3_PWM  
EXT_OVP  
HB1_HS_EN  
HB5_HS_EN  
HB9_HS_EN  
HB2_PWM  
HB10_PWM  
HB2_FW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
HB4_HS_EN  
HB8_HS_EN  
HB4_LS_EN  
HB8_LS_EN  
HB3_HS_EN  
HB7_HS_EN  
HB3_LS_EN  
HB7_LS_EN  
HB1_LS_EN  
HB5_LS_EN  
HB9_LS_EN  
HB1_PWM  
HB9_PWM  
HB1_FW  
OP_CTRL_2  
OP_CTRL_3  
Reserved  
PWM_CTRL_1  
PWM_CTRL_2  
FW_CTRL_1  
HB8_PWM  
HB7_PWM  
HB6_PWM  
HB5_PWM  
PWM_CH4_DIS PWM_CH3_DIS PWM_CH2_DIS PWM_CH1_DIS  
HB8_FW HB7_FW HB6_FW HB5_FW  
Reserved  
Reserved  
HB4_FW  
HB3_FW  
FW_CTRL_2  
HB10_FW  
HB9_FW  
PWM_MAP_CTRL_1  
PWM_MAP_CTRL_2(1)  
PWM_MAP_CTRL_3  
PWM_FREQ_CTRL  
PWM_DUTY_CTRL_1  
PWM_DUTY_CTRL_2  
PWM_DUTY_CTRL_3  
PWM_DUTY_CTRL_4  
SR_CTRL_1  
HB4_PWM_MAP  
HB3_PWM_MAP  
HB7_PWM_MAP  
HB2_PWM_MAP  
HB1_PWM_MAP  
HB8_PWM_MAP  
HB6_PWM_MAP  
HB10_PWM_MAP  
PWM_CH2_FREQ  
HB5_PWM_MAP  
HB9_PWM_MAP  
PWM_CH1_FREQ  
Reserved  
PWM_CH4_FREQ  
PWM_CH3_FREQ  
PWM_DUTY_CH1  
PWM_DUTY_CH2  
PWM_DUTY_CH3  
PWM_DUTY_CH4  
HB8_SR  
HB7_SR  
HB6_SR  
HB5_SR  
HB4_SR  
HB3_SR  
HB2_SR  
HB10_SR  
HB1_SR  
HB9_SR  
SR_CTRL_2  
Reserved  
OLD_CTRL_1  
HB8_OLD_DIS HB7_OLD_DIS HB6_OLD_DIS HB5_OLD_DIS HB4_OLD_DIS HB3_OLD_DIS HB2_OLD_DIS HB1_OLD_DIS  
OLD_CTRL_2  
OLD_REP  
OLD_OP  
PL_MODE_EN  
Reserved  
HB10_OLD_DIS HB9_OLD_DIS  
HB10_LOLD_E  
HB9_LOLD_EN  
N
OLD_CTRL_3  
OLD_CTRL_4  
OCP_DEG  
OLD_NEG_EN  
Reserved  
RW  
RW  
1Bh  
24h  
HB8_LOLD_EN HB7_LOLD_EN HB6_LOLD_EN HB5_LOLD_EN HB4_LOLD_EN HB3_LOLD_EN HB2_LOLD_EN HB1_LOLD_EN  
(1) After this register address, the register functions are similar between DRV8912-Q1 and DRV8910-Q1. However, DRV8908-Q1, DRV8906-Q1, and DRV8904-Q1 have different functions  
for these addresses.  
62  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.1.1 Status Registers  
The status registers are used to report warning and fault conditions. The status registers are read-only registers.  
19 lists the memory-mapped registers for the status registers. All register offset addresses not listed in 19  
should be considered as reserved locations and the register contents should not be modified.  
19. Status Registers Summary Table  
Address  
0x00  
Register Name  
Section  
Go  
IC Status  
0x01  
Overcurrent Protection (OCP) Status 1  
Overcurrent Protection (OCP) Status 2  
Overcurrent Protection (OCP) Status 3  
Open-Load Detect (OLD) Status 1  
Open-Load Detect (OLD) Status 2  
Open-Load Detect (OLD) Status 3  
Go  
0x02  
Go  
0x03  
Go  
0x04  
Go  
0x05  
Go  
0x06  
Go  
8.6.1.1.1 IC Status (IC_STAT) Register (Address = 0x00) [reset = 0x00]  
The IC status (IC_STAT) register is shown in 68 and described in 20.  
Register access type: Read only  
68. IC Status Register  
7
6
5
4
3
2
1
0
Reserved  
R-0b  
OTSD  
R-0b  
OTW  
R-0b  
OLD  
R-0b  
OCP  
R-0b  
UVLO  
R-0b  
OVP  
R-0b  
NPOR  
R-0b  
20. IC Status Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
Reserved  
R
0b  
Reserved  
6
5
4
3
2
1
0
OTSD  
OTW  
OLD  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = No overtemperature shutdown is detected  
1b = Overcurrent condition is detected  
0b = No overtemperature warning is detected  
1b = Overcurrent condition is detected  
0b = No open-load condition is detected  
1b = Open-load condition is detected  
OCP  
0b = No overcurrent condition is detected  
1b = Overcurrent condition is detected  
UVLO  
OVP  
0b = No undervoltage lock-out condition is detected  
1b = Under-voltage lock-out condition condition is detected  
0b = No overvoltage condition is detected  
1b = Overvoltage condition is detected  
NPOR  
0b = Power-on-reset condition is detected  
1b = No power-on-reset condition is detected  
版权 © 2019, Texas Instruments Incorporated  
63  
 
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.1.1.2 Overcurrent Protection (OCP) Status 1 (OCP_STAT_1) Register (Address = 0x01) [reset = 0x00]  
The overcurrent protection (OCP) status 1 register is shown in 69 and described in 21.  
Register access type: Read only  
69. Overcurrent Protection (OCP) Status 1 Register  
7
6
5
4
3
2
1
0
HB4_HS_OCP HB4_LS_OCP HB3_HS_OCP HB3_LS_OCP HB2_HS_OCP HB2_LS_OCP HB1_HS_OCP HB1_LS_OCP  
R-0b R-0b R-0b R-0b R-0b R-0b R-0b R-0b  
21. Overcurrent Protection (OCP) Status 1 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
6
5
4
3
2
1
0
HB4_HS_OCP  
R
0b  
0b = No overcurrent detected on high-side switch of half-  
bridge 4  
1b = Overcurrent detected on high-side switch of half-bridge 4  
HB4_LS_OCP  
HB3_HS_OCP  
HB3_LS_OCP  
HB2_HS_OCP  
HB2_LS_OCP  
HB1_HS_OCP  
HB1_LS_OCP  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = No overcurrent detected on low-side switch of half-  
bridge 4  
1b = Overcurrent detected on low-side switch of half-bridge 4  
0b = No overcurrent detected on high-side switch of half-  
bridge 3  
1b = Overcurrent detected on high-side switch of half-bridge 3  
0b = No overcurrent detected on low-side switch of half-  
bridge 3  
1b = Overcurrent detected on low-side switch of half-bridge 3  
0b = No overcurrent detected on high-side switch of half-  
bridge 2  
1b = Overcurrent detected on high-side switch of half-bridge 2  
0b = No overcurrent detected on low-side switch of half-  
bridge 2  
1b = Overcurrent detected on low-side switch of half-bridge 2  
0b = No overcurrent detected on high-side switch of half-  
bridge 1  
1b = Overcurrent detected on high-side switch of half-bridge 1  
0b = No overcurrent detected on low-side switch of half-  
bridge 1  
1b = Overcurrent detected on low-side switch of half-bridge 1  
64  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.1.1.3 Overcurrent Protection (OCP) Status 2 (OCP_STAT_2) Register (Address = 0x02) [reset = 0x00]  
The overcurrent protection (OCP) status 2 register is shown in 70 and described in .  
Register access type: Read only  
70. Overcurrent Protection (OCP) Status 2 Register  
7
6
5
4
3
2
1
0
HB8_HS_OCP HB8_LS_OCP HB7_HS_OCP HB7_LS_OCP HB6_HS_OCP HB6_LS_OCP HB5_HS_OCP HB5_LS_OCP  
R-0b R-0b R-0b R-0b R-0b R-0b R-0b R-0b  
22. Overcurrent Protection (OCP) Status 2 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
6
5
4
3
2
1
0
HB8_HS_OCP  
R
0b  
0b = No overcurrent detected on high-side switch of half-  
bridge 8  
1b = Overcurrent detected on high-side switch of half-bridge 8  
HB8_LS_OCP  
HB7_HS_OCP  
HB7_LS_OCP  
HB6_HS_OCP  
HB6_LS_OCP  
HB5_HS_OCP  
HB5_LS_OCP  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = No overcurrent detected on low-side switch of half-  
bridge 8  
1b = Overcurrent detected on low-side switch of half-bridge 8  
0b = No overcurrent detected on high-side switch of half-  
bridge 7  
1b = Overcurrent detected on high-side switch of half-bridge 7  
0b = No overcurrent detected on low-side switch of half-  
bridge 7  
1b = Overcurrent detected on low-side switch of half-bridge 7  
0b = No overcurrent detected on high-side switch of half-  
bridge 6  
1b = Overcurrent detected on high-side switch of half-bridge 6  
0b = No overcurrent detected on low-side switch of half-  
bridge 6  
1b = Overcurrent detected on low-side switch of half-bridge 6  
0b = No overcurrent detected on high-side switch of half-  
bridge 5  
1b = Overcurrent detected on high-side switch of half-bridge 5  
0b = No overcurrent detected on low-side switch of half-  
bridge 5  
1b = Overcurrent detected on low-side switch of half-bridge 5  
版权 © 2019, Texas Instruments Incorporated  
65  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.1.1.4 Overcurrent Protection (OCP) Status 3 (OCP_STAT_3) Register (Address = 0x03) [reset = 0x00]  
The overcurrent protection (OCP) status 3 register is shown in 71 and described in 23.  
Register access type: Read only  
71. Overcurrent Protection (OCP) Status 3 Register  
7
6
5
4
3
2
1
0
HB12_HS_OC HB12_LS_OCP HB11_HS_OC HB11_LS_OCP HB10_HS_OC HB10_LS_OCP HB9_HS_OCP HB9_LS_OCP  
P
P
P
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
23. Overcurrent Protection (OCP) Status 3 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
6
5
4
3
2
1
0
HB12_HS_OCP  
R
0b  
0b = No overcurrent detected on high-side switch of half-  
bridge 12  
1b = Overcurrent detected on high-side switch of half-bridge 12  
HB12_LS_OCP  
HB11_HS_OCP  
HB11_LS_OCP  
HB10_HS_OCP  
HB10_LS_OCP  
HB9_HS_OCP  
HB9_LS_OCP  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = No overcurrent detected on low-side switch of half-  
bridge 12  
1b = Overcurrent detected on low-side switch of half-bridge 12  
0b = No overcurrent detected on high-side switch of half-  
bridge 11  
1b = Overcurrent detected on high-side switch of half-bridge 11  
0b = No overcurrent detected on low-side switch of half-  
bridge 11  
1b = Overcurrent detected on low-side switch of half-bridge 11  
0b = No overcurrent detected on high-side switch of half-  
bridge 10  
1b = Overcurrent detected on high-side switch of half-bridge 10  
0b = No overcurrent detected on low-side switch of half-  
bridge 10  
1b = Overcurrent detected on low-side switch of half-bridge 10  
0b = No overcurrent detected on high-side switch of half-  
bridge 9  
1b = Overcurrent detected on high-side switch of half-bridge 9  
0b = No overcurrent detected on low-side switch of half-  
bridge 9  
1b = Overcurrent detected on low-side switch of half-bridge 9  
66  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.1.1.5 Open-Load Detect (OLD) Status 1 (OLD_STAT_1) Register (Address = 0x04) [reset = 0x00]  
The open-load detect (OLD) status 1 register is shown in 72 and described in 24.  
Register access type: Read only  
72. Open-Load Detect (OLD) Status 1 Register  
7
6
5
4
3
2
1
0
HB4_HS_OLD HB4_LS_OLD HB3_HS_OLD HB3_LS_OLD HB2_HS_OLD HB2_LS_OLD HB1_HS_OLD HB1_LS_OLD  
R-0b R-0b R-0b R-0b R-0b R-0b R-0b R-0b  
24. Open-Load Detect (OLD) Status 1 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
6
5
4
3
2
1
0
HB4_HS_OLD  
R
0b  
0b = No open load detected on high-side switch of half-  
bridge 4  
1b = Open load detected on high-side switch of half-bridge 4  
HB4_LS_OLD  
HB3_HS_OLD  
HB3_LS_OLD  
HB2_HS_OLD  
HB2_LS_OLD  
HB1_HS_OLD  
HB1_LS_OLD  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = No open load detected on low-side switch of half-  
bridge 4  
1b = Open load detected on low-side switch of half-bridge 4  
0b = No open load detected on high-side switch of half-  
bridge 3  
1b = Open load detected on high-side switch of half-bridge 3  
0b = No open load detected on low-side switch of half-  
bridge 3  
1b = Open load detected on low-side switch of half-bridge 3  
0b = No open load detected on high-side switch of half-  
bridge 2  
1b = Open load detected on high-side switch of half-bridge 2  
0b = No open load detected on low-side switch of half-  
bridge 2  
1b = Open load detected on low-side switch of half-bridge 2  
0b = No open load detected on high-side switch of half-  
bridge 1  
1b = Open load detected on high-side switch of half-bridge 1  
0b = No open load detected on low-side switch of half-  
bridge 1  
1b = Open load detected on low-side switch of half-bridge 1  
版权 © 2019, Texas Instruments Incorporated  
67  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.1.1.6 Open-Load Detect (OLD) Status 2 (OLD_STAT_2) Register (Address = 0x05) [reset = 0x00]  
The open-load detect (OLD) status 2 register is shown in 73 and described in 25.  
Register access type: Read only  
73. Open-Load Detect (OLD) Status 2 Register  
7
6
5
4
3
2
1
0
HB8_HS_OLD HB8_LS_OLD HB7_HS_OLD HB7_LS_OLD HB6_HS_OLD HB6_LS_OLD HB5_HS_OLD HB5_LS_OLD  
R-0b R-0b R-0b R-0b R-0b R-0b R-0b R-0b  
25. Open-Load Detect (OLD) Status 2 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
6
5
4
3
2
1
0
HB8_HS_OLD  
R
0b  
0b = No open load detected on high-side switch of half-  
bridge 8  
1b = Open load detected on high-side switch of half-bridge 8  
HB8_LS_OLD  
HB7_HS_OLD  
HB7_LS_OLD  
HB6_HS_OLD  
HB6_LS_OLD  
HB5_HS_OLD  
HB5_LS_OLD  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = No open load detected on low-side switch of half-  
bridge 8  
1b = Open load detected on low-side switch of half-bridge 8  
0b = No open load detected on high-side switch of half-  
bridge 7  
1b = Open load detected on high-side switch of half-bridge 7  
0b = No open load detected on low-side switch of half-  
bridge 7  
1b = Open load detected on low-side switch of half-bridge 7  
0b = No open load detected on high-side switch of half-  
bridge 6  
1b = Open load detected on high-side switch of half-bridge 6  
0b = No open load detected on low-side switch of half-  
bridge 6  
1b = Open load detected on low-side switch of half-bridge 6  
0b = No open load detected on high-side switch of half-  
bridge 5  
1b = Open load detected on high-side switch of half-bridge 5  
0b = No open load detected on low-side switch of half-  
bridge 5  
1b = Open load detected on low-side switch of half-bridge 5  
68  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.1.1.7 Open-Load Detect (OLD) Status 3 (OLD_STAT_3) Register (Address = 0x06) [reset = 0x00]  
The open-load detect (OLD) status 3 register is shown in 74 and described in 26.  
Register access type: Read only  
74. Open-Load Detect (OLD) Status 3 Register  
7
6
5
4
3
2
1
0
HB12_HS_OLD HB12_LS_OLD HB11_HS_OLD HB11_LS_OLD HB10_HS_OLD HB10_LS_OLD HB9_HS_OLD HB9_LS_OLD  
R-0b R-0b R-0b R-0b R-0b R-0b R-0b R-0b  
26. Open-Load Detect (OLD) Status 3 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
6
5
4
3
2
1
0
HB12_HS_OLD  
R
0b  
0b = No open load detected on high-side switch of half-  
bridge 12  
1b = Open load detected on high-side switch of half-bridge 12  
HB12_LS_OLD  
HB11_HS_OLD  
HB11_LS_OLD  
HB10_HS_OLD  
HB10_LS_OLD  
HB9_HS_OLD  
HB9_LS_OLD  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = No open load detected on low-side switch of half-  
bridge 12  
1b = Open load detected on low-side switch of half-bridge 12  
0b = No open load detected on high-side switch of half-  
bridge 11  
1b = Open load detected on high-side switch of half-bridge 11  
0b = No open load detected on low-side switch of half-  
bridge 11  
1b = Open load detected on low-side switch of half-bridge 11  
0b = No open load detected on high-side switch of half-  
bridge 10  
1b = Open load detected on high-side switch of half-bridge 10  
0b = No open load detected on low-side switch of half-  
bridge 10  
1b = Open load detected on low-side switch of half-bridge 10  
0b = No open load detected on high-side switch of half-  
bridge 9  
1b = Open load detected on high-side switch of half-bridge 9  
0b = No open load detected on low-side switch of half-  
bridge 9  
1b = Open load detected on low-side switch of half-bridge 9  
版权 © 2019, Texas Instruments Incorporated  
69  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.1.2 Control Registers  
The control registers are used to configure the device. The control registers are read and write capable.  
27 lists the memory-mapped registers for the control registers. All register offset addresses not listed in 27  
should be considered as reserved locations and the register contents should not be modified.  
27. Control Registers Summary Table  
Address  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x24  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Configuration Register  
Operation Control 1 Register  
Operation Control 2 Register  
Operation Control 3 Register  
PWM Control 1 Register  
PWM Control 2 Register  
Free-Wheeling Control 1 Register  
Free-Wheeling Control 2 Register  
PWM Map Control 1 Register  
PWM Map Control 2 Register  
PWM Map Control 3 Register  
PWM Frequency Control Register  
PWM Duty Control Channel 1 Register  
PWM Duty Control Channel 2 Register  
PWM Duty Control Channel 3 Register  
PWM Duty Control Channel 4 Register  
Slew Rate Control 1 Register  
Slew Rate Control 2 Register  
Open-Load Detect Control 1 Register  
Open-Load Detect Control 2 Register  
Open-Load Detect Control 3 Register  
Open-Load Detect Control 4 Register  
70  
版权 © 2019, Texas Instruments Incorporated  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.1.2.1 Configuration (CONFIG_CTRL) Register (Address = 0x07) [reset = 0x00]  
The configuration register is shown in 75 and described in 28.  
Register access type: Read/Write  
75. Configuration Register  
7
6
5
4
3
2
1
0
Reserved  
R/W-0b  
IC_ID  
R-Xb  
OCP_REP  
R/W-0b  
OTW_REP  
R/W-0b  
EXT_OVP  
R/W-0b  
CLR_FLT  
R/W-0b  
R-Xb  
R-Xb  
28. Configuration Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
Reserved  
R/W  
0b  
Reserved  
6-4  
IC_ID  
R
XXXb  
000b = Device connected is DRV8912-Q1 (12 Channel Device)  
001b = Device connected is DRV8910-Q1 (10 Channel Device)  
010b = Device connected is DRV8908-Q1 (8 Channel Device)  
011b = Device connected is DRV8906-Q1 (6 Channel Device)  
100b = Device connected is DRV8904-Q1 (4 Channel Device)  
101b = Reserved  
110b = Reserved  
111b = Reserved  
3
2
OCP_REP  
OTW_REP  
R/W  
R/W  
0b  
0b  
0b = Overcurrent condition is reported in nFAULT pin  
1b = Overcurrent condition warning is not reported on the  
nFAULT pin  
0b = Overtemperature warning is not reported in nFAULT  
pin  
1b = Overtemperature warning is reported on the nFAULT pin  
1
0
EXT_OVP  
CLR_FLT  
R/W  
R/W  
0b  
0b  
0b = Overvoltage protection threshold is at 21 V  
1b = Overvoltage protection threshold is at 33 V  
0b = Faults not cleared  
1b = Clear all faults  
CLR_FLT bit is an auto-clear bit and will always read '0'.  
版权 © 2019, Texas Instruments Incorporated  
71  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.1.2.2 Operation Control 1 (OP_CTRL_1) Register (Address = 0x08) [reset = 0x00]  
The operation control 1 register is shown in 76 and described in 29.  
Register access type: Read/Write  
76. Operation Control 1 Register  
7
6
5
4
3
2
1
0
HB4_HS_EN  
R/W-0b  
HB4_LS_EN  
R/W-0b  
HB3_HS_EN  
R/W-0b  
HB3_LS_EN  
R/W-0b  
HB2_HS_EN  
R/W-0b  
HB2_LS_EN  
R/W-0b  
HB1_HS_EN  
R/W-0b  
HB1_LS_EN  
R/W-0b  
29. Operation Control 1 Register Field Descriptions  
Bit  
Field  
HB4_HS_EN  
Type  
Default  
Description  
7
R/W  
0b  
0b = Half-bridge 4 high-side switch is disabled  
1b = Half-bridge 4 high-side switch is enabled  
6
5
4
3
2
1
0
HB4_LS_EN  
HB3_HS_EN  
HB3_LS_EN  
HB2_HS_EN  
HB2_LS_EN  
HB1_HS_EN  
HB1_LS_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = Half-bridge 4 low-side switch is disabled  
1b = Half-bridge 4 low-side switch is enabled  
0b = Half-bridge 3 high-side switch is disabled  
1b = Half-bridge 3 high-side switch is enabled  
0b = Half-bridge 3 low-side switch is disabled  
1b = Half-bridge 3 low-side switch is enabled  
0b = Half-bridge 2 high-side switch is disabled  
1b = Half-bridge 2 high-side switch is enabled  
0b = Half-bridge 2 low-side switch is disabled  
1b = Half-bridge 2 low-side switch is enabled  
0b = Half-bridge 1 high-side switch is disabled  
1b = Half-bridge 1 high-side switch is enabled  
0b = Half-bridge 1 low-side switch is disabled  
1b = Half-bridge 1 low-side switch is enabled  
72  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.1.2.3 Operation Control 2 (OP_CTRL_2) Register (Address = 0x09) [reset = 0x00]  
The operation control 2 register is shown in 77 and described in 30.  
Register access type: Read/Write  
77. Operation Control 2 Register  
7
6
5
4
3
2
1
0
HB8_HS_EN  
R/W-0b  
HB8_LS_EN  
R/W-0b  
HB7_HS_EN  
R/W-0b  
HB7_LS_EN  
R/W-0b  
HB6_HS_EN  
R/W-0b  
HB6_LS_EN  
R/W-0b  
HB5_HS_EN  
R/W-0b  
HB5_LS_EN  
R/W-0b  
30. Operation Control 2 Register Field Descriptions  
Bit  
Field  
HB8_HS_EN  
Type  
Default  
Description  
7
R/W  
0b  
0b = Half-bridge 8 high-side switch is disabled  
1b = Half-bridge 8 high-side switch is enabled  
6
5
4
3
2
1
0
HB8_LS_EN  
HB7_HS_EN  
HB7_LS_EN  
HB6_HS_EN  
HB6_LS_EN  
HB5_HS_EN  
HB5_LS_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = Half-bridge 8 low-side switch is disabled  
1b = Half-bridge 8 low-side switch is enabled  
0b = Half-bridge 7 high-side switch is disabled  
1b = Half-bridge 7 high-side switch is enabled  
0b = Half-bridge 7 low-side switch is disabled  
1b = Half-bridge 7 low-side switch is enabled  
0b = Half-bridge 6 high-side switch is disabled  
1b = Half-bridge 6 high-side switch is enabled  
0b = Half-bridge 6 low-side switch is disabled  
1b = Half-bridge 6 low-side switch is enabled  
0b = Half-bridge 5 high-side switch is disabled  
1b = Half-bridge 5 high-side switch is enabled  
0b = Half-bridge 5 low-side switch is disabled  
1b = Half-bridge 5 low-side switch is enabled  
版权 © 2019, Texas Instruments Incorporated  
73  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.1.2.4 Operation Control 3 (OP_CTRL_3) Register (Address = 0x0A) [reset = 0x00]  
The operation control 3 register is shown in 78 and described in 31.  
Register access type: Read/Write  
78. Operation Control 3 Register  
7
6
5
4
3
2
1
0
HB12_HS_EN  
R/W-0b  
HB12_LS_EN  
R/W-0b  
HB11_HS_EN  
R/W-0b  
HB11_LS_EN  
R/W-0b  
HB10_HS_EN  
R/W-0b  
HB10_LS_EN  
R/W-0b  
HB9_HS_EN  
R/W-0b  
HB9_LS_EN  
R/W-0b  
31. Operation Control 3 Register Field Descriptions  
Bit  
Field  
HB12_HS_EN  
Type  
Default  
Description  
7
R/W  
0b  
0b = Half-bridge 12 high-side switch is disabled  
1b = Half-bridge 12 high-side switch is enabled  
6
5
4
3
2
1
0
HB12_LS_EN  
HB11_HS_EN  
HB11_LS_EN  
HB10_HS_EN  
HB10_LS_EN  
HB9_HS_EN  
HB9_LS_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = Half-bridge 12 low-side switch is disabled  
1b = Half-bridge 12 low-side switch is enabled  
0b = Half-bridge 11 high-side switch is disabled  
1b = Half-bridge 11 high-side switch is enabled  
0b = Half-bridge 11 low-side switch is disabled  
1b = Half-bridge 11 low-side switch is enabled  
0b = Half-bridge 10 high-side switch is disabled  
1b = Half-bridge 10 high-side switch is enabled  
0b = Half-bridge 10 low-side switch is disabled  
1b = Half-bridge 10 low-side switch is enabled  
0b = Half-bridge 9 high-side switch is disabled  
1b = Half-bridge 9 high-side switch is enabled  
0b = Half-bridge 9 low-side switch is disabled  
1b = Half-bridge 9 low-side switch is enabled  
74  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.1.2.5 PWM Control 1 (PWM_CTRL_1) Register (Address = 0x0B) [reset = 0x00]  
The PWM control 1 register is shown in 79 and described in 32.  
Register access type: Read/Write  
79. PWM Control 1 Register  
7
6
5
4
3
2
1
0
HB8_PWM  
R/W-0b  
HB7_PWM  
R/W-0b  
HB6_PWM  
R/W-0b  
HB5_PWM  
R/W-0b  
HB4_PWM  
R/W-0b  
HB3_PWM  
R/W-0b  
HB2_PWM  
R/W-0b  
HB1_PWM  
R/W-0b  
32. PWM Control 1 Register Field Descriptions  
Bit  
Field  
HB8_PWM  
Type  
Default  
Description  
7
R/W  
0b  
0b = Half-bridge 8 is operating in continuous mode  
1b = Half-bridge 8 is operating in PWM mode  
6
5
4
3
2
1
0
HB7_PWM  
HB6_PWM  
HB5_PWM  
HB4_PWM  
HB3_PWM  
HB2_PWM  
HB1_PWM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = Half-bridge 7 is operating in continuous mode  
1b = Half-bridge 7is operating in PWM mode  
0b = Half-bridge 6 is operating in continuous mode  
1b = Half-bridge 6 is operating in PWM mode  
0b = Half-bridge 5 is operating in continuous mode  
1b = Half-bridge 5 is operating in PWM mode  
0b = Half-bridge 4 is operating in continuous mode  
1b = Half-bridge 4 is operating in PWM mode  
0b = Half-bridge 3 is operating in continuous mode  
1b = Half-bridge 3 is operating in PWM mode  
0b = Half-bridge 2 is operating in continuous mode  
1b = Half-bridge 2 is operating in PWM mode  
0b = Half-bridge 1 is operating in continuous mode  
1b = Half-bridge 1 is operating in PWM mode  
版权 © 2019, Texas Instruments Incorporated  
75  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.1.2.6 PWM Control 2 (PWM_CTRL_2) Register (Address = 0x0C) [reset = 0x00]  
The PWM control 2 register is shown in 80 and described in 33.  
Register access type: Read/Write  
80. PWM Control 2 Register  
7
6
5
4
3
2
1
0
PWM_CH4_DI PWM_CH3_DI PWM_CH2_DI PWM_CH1_DI  
HB12_PWM  
HB11_PWM  
HB10_PWM  
HB9_PWM  
S
S
S
S
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
33. PWM Control 2 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
PWM_CH4_DIS  
PWM_CH3_DIS  
PWM_CH2_DIS  
PWM_CH1_DIS  
HB12_PWM  
R/W  
0b  
0b = PWM Generator-4 is enabled  
1b = PWM Generator-4 is disabled  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = PWM Generator-3 is enabled  
1b = PWM Generator-3 is disabled  
0b = PWM Generator-2 is enabled  
1b = PWM Generator-2 is disabled  
0b = PWM Generator-1 is enabled  
1b = PWM Generator-1 is disabled  
0b = Half-bridge 12 is operating in continuous mode  
1b = Half-bridge 12 is operating in PWM mode  
HB11_PWM  
0b = Half-bridge 11 is operating in continuous mode  
1b = Half-bridge 11 is operating in PWM mode  
HB10_PWM  
0b = Half-bridge 10 is operating in continuous mode  
1b = Half-bridge 10 is operating in PWM mode  
HB9_PWM  
0b = Half-bridge 9 is operating in continuous mode  
1b = Half-bridge 9 is operating in PWM mode  
76  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.1.2.7 Free-Wheeling Control 1 (FW_CTRL_1) Register (Address = 0x0D) [reset = 0x00]  
The free-wheeling control 1 register is shown in 81 and described in 34.  
Register access type: Read/Write  
81. Free-Wheeling Control 1 Register  
7
6
5
4
3
2
1
0
HB8_FW  
R/W-0b  
HB7_FW  
R/W-0b  
HB6_FW  
R/W-0b  
HB5_FW  
R/W-0b  
HB4_FW  
R/W-0b  
HB3_FW  
R/W-0b  
HB2_FW  
R/W-0b  
HB1_FW  
R/W-0b  
34. Free-Wheeling Control 1 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
HB8_FW  
HB7_FW  
HB6_FW  
HB5_FW  
HB4_FW  
HB3_FW  
HB2_FW  
HB1_FW  
R/W  
0b  
0b = Passive free-wheeling on half-bridge 8 is enabled  
1b = Active free-wheeling on half-bridge 8 is enabled  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = Passive free-wheeling on half-bridge 7 is enabled  
1b = Active free-wheeling on half-bridge 7 is enabled  
0b = Passive free-wheeling on half-bridge 6 is enabled  
1b = Active free-wheeling on half-bridge 6 is enabled  
0b = Passive free-wheeling on half-bridge 5 is enabled  
1b = Active free-wheeling on half-bridge 5 is enabled  
0b = Passive free-wheeling on half-bridge 4 is enabled  
1b = Active free-wheeling on half-bridge 4 is enabled  
0b = Passive free-wheeling on half-bridge 3 is enabled  
1b = Active free-wheeling on half-bridge 3 is enabled  
0b = Passive free-wheeling on half-bridge 2 is enabled  
1b = Active free-wheeling on half-bridge 2 is enabled  
0b = Passive free-wheeling on half-bridge 1 is enabled  
1b = Active free-wheeling on half-bridge 1 is enabled  
版权 © 2019, Texas Instruments Incorporated  
77  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.1.2.8 Free-Wheeling Control 2 (FW_CTRL_2) Register (Address = 0x0E) [reset = 0x00]  
The free-wheeling control 2 register is shown in 82 and described in 35.  
Register access type: Read/Write  
82. Free-Wheeling Control 2 Register  
7
6
5
4
3
2
1
0
Reserved  
HB12_FW  
R/W-0b  
HB11_FW  
R/W-0b  
HB10_FW  
R/W-0b  
HB9_FW  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
35. Free-Wheeling Control 2 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-4  
Reserved  
HB12_FW  
R/W  
0000b  
Reserved  
3
2
1
0
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b = Passive free-wheeling on half-bridge 12 is enabled  
1b = Active free-wheeling on half-bridge 12 is enabled  
HB11_FW  
HB10_FW  
HB9_FW  
0b = Passive free-wheeling on half-bridge 11 is enabled  
1b = Active free-wheeling on half-bridge 11 is enabled  
0b = Passive free-wheeling on half-bridge 10 is enabled  
1b = Active free-wheeling on half-bridge 10 is enabled  
0b = Passive free-wheeling on half-bridge 9 is enabled  
1b = Active free-wheeling on half-bridge 9 is enabled  
78  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.1.2.9 PWM Map Control 1 (PWM_MAP_CTRL_1) Register (Address = 0x0F) [reset = 0x00]  
The PWM Map Control 1 register is shown in 83 and described in 36.  
Register access type: Read/Write  
83. PWM Map Control 1 Register  
7
6
5
4
3
2
1
0
HB4_PWM_MAP  
HB3_PWM_MAP  
HB2_PWM_MAP  
HB1_PWM_MAP  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
36. PWM Map Control 1 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
HB4_PWM_MAP  
HB3_PWM_MAP  
HB2_PWM_MAP  
HB1_PWM_MAP  
R/W  
00b  
00b = HB4 mapped to PWM channel 1  
01b = HB4 mapped to PWM channel 2  
10b = HB4 mapped to PWM channel 3  
11b = HB4 mapped to PWM channel 4  
5-4  
3-2  
1-0  
R/W  
R/W  
R/W  
00b  
00b  
00b  
00b = HB3 mapped to PWM channel 1  
01b = HB3 mapped to PWM channel 2  
10b = HB3 mapped to PWM channel 3  
11b = HB3 mapped to PWM channel 4  
00b = HB2 mapped to PWM channel 1  
01b = HB2 mapped to PWM channel 2  
10b = HB2 mapped to PWM channel 3  
11b = HB2 mapped to PWM channel 4  
00b = HB1 mapped to PWM channel 1  
01b = HB1 mapped to PWM channel 2  
10b = HB1 mapped to PWM channel 3  
11b = HB1 mapped to PWM channel 4  
版权 © 2019, Texas Instruments Incorporated  
79  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.1.2.10 PWM Map Control 2 (PWM_MAP_CTRL_2) Register (Address = 0x10) [reset = 0x00]  
The PWM Map Control 2 register is shown in 84 and described in 37.  
Register access type: Read/Write  
84. PWM Map Control 2 Register  
7
6
5
4
3
2
1
0
HB8_PWM_MAP  
HB7_PWM_MAP  
HB6_PWM_MAP  
HB5_PWM_MAP  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
37. PWM Map Control 2 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
HB8_PWM_MAP  
HB7_PWM_MAP  
HB6_PWM_MAP  
HB5_PWM_MAP  
R/W  
00b  
00b = HB8 mapped to PWM channel 1  
01b = HB8 mapped to PWM channel 2  
10b = HB8 mapped to PWM channel 3  
11b = HB8 mapped to PWM channel 4  
5-4  
3-2  
1-0  
R/W  
R/W  
R/W  
00b  
00b  
00b  
00b = HB7 mapped to PWM channel 1  
01b = HB7 mapped to PWM channel 2  
10b = HB7 mapped to PWM channel 3  
11b = HB7 mapped to PWM channel 4  
00b = HB6 mapped to PWM channel 1  
01b = HB6 mapped to PWM channel 2  
10b = HB6 mapped to PWM channel 3  
11b = HB6 mapped to PWM channel 4  
00b = HB5 mapped to PWM channel 1  
01b = HB5 mapped to PWM channel 2  
10b = HB5 mapped to PWM channel 3  
11b = HB5 mapped to PWM channel 4  
80  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.1.2.11 PWM Map Control 3 (PWM_MAP_CTRL_3) Register (Address = 0x11) [reset = 0x00]  
The PWM Map Control 3 register is shown in 85 and described in 38.  
Register access type: Read/Write  
85. PWM Map Control 3 Register  
7
6
5
4
3
2
1
0
HB12_PWM_MAP  
R/W-0b R/W-0b  
HB11_PWM_MAP  
R/W-0b R/W-0b  
HB10_PWM_MAP  
R/W-0b R/W-0b  
HB9_PWM_MAP  
R/W-0b  
R/W-0b  
38. PWM Map Control 3 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
HB12_PWM_MAP  
R/W  
00b  
00b = HB12 mapped to PWM channel 1  
01b = HB12 mapped to PWM channel 2  
10b = HB12 mapped to PWM channel 3  
11b = HB12 mapped to PWM channel 4  
5-4  
3-2  
1-0  
HB11_PWM_MAP  
HB10_PWM_MAP  
HB9_PWM_MAP  
R/W  
R/W  
R/W  
00b  
00b  
00b  
00b = HB11 mapped to PWM channel 1  
01b = HB11 mapped to PWM channel 2  
10b = HB11 mapped to PWM channel 3  
11b = HB11 mapped to PWM channel 4  
00b = HB10 mapped to PWM channel 1  
01b = HB10 mapped to PWM channel 2  
10b = HB10 mapped to PWM channel 3  
11b = HB10 mapped to PWM channel 4  
00b = HB9 mapped to PWM channel 1  
01b = HB9 mapped to PWM channel 2  
10b = HB9 mapped to PWM channel 3  
11b = HB9 mapped to PWM channel 4  
版权 © 2019, Texas Instruments Incorporated  
81  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.1.2.12 PWM Frequency Control (PWM_FREQ_CTRL) Register (Address = 0x12) [reset = 0x00]  
The PWM Frequency Control register is shown in 86 and described in 39.  
Register access type: Read/Write  
86. PWM Frequency Control Register  
7
6
5
4
3
2
1
0
PWM_CH4_FREQ  
R/W-0b R/W-0b  
PWM_CH3_FREQ  
R/W-0b R/W-0b  
PWM_CH2_FREQ  
R/W-0b R/W-0b  
PWM_CH1_FREQ  
R/W-0b R/W-0b  
39. PWM Frequency Control Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
PWM_CH4_FREQ  
R/W  
00b  
00b = PWM frequency is 80 Hz  
01b = PWM frequency is 100 Hz  
10b = PWM frequency is 200 Hz  
11b = PWM frequency is 2000 Hz  
5-4  
3-2  
1-0  
PWM_CH3_FREQ  
PWM_CH2_FREQ  
PWM_CH1_FREQ  
R/W  
R/W  
R/W  
00b  
00b  
00b  
00b = PWM frequency is 80 Hz  
01b = PWM frequency is 100 Hz  
10b = PWM frequency is 200 Hz  
11b = PWM frequency is 2000 Hz  
00b = PWM frequency is 80 Hz  
01b = PWM frequency is 100 Hz  
10b = PWM frequency is 200 Hz  
11b = PWM frequency is 2000 Hz  
00b = PWM frequency is 80 Hz  
01b = PWM frequency is 100 Hz  
10b = PWM frequency is 200 Hz  
11b = PWM frequency is 2000 Hz  
82  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.1.2.13 PWM Duty Control Channel 1 (PWM_DUTY_CH1) Register (Address = 0x13) [reset = 0x00]  
The channel 1 PWM duty cycle control register is shown in 87 and described in 40.  
Register access type: Read/Write  
87. PWM Duty Control Channel 1 Register  
7
6
5
4
3
2
1
0
PWM_DUTY_CH1  
R/W-0b R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
40. PWM Duty Control Channel 1 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
PWM_DUTY_CH1  
R/W  
00000000b  
00000000b = 0 % PWM Duty  
11111111b = 100 % PWM Duty  
Calculate duty as decimal (xxxxxxxxb) × 1/255  
8.6.1.2.14 PWM Duty Control Channel 2 (PWM_DUTY_CH2) Register (Address = 0x14) [reset = 0x00]  
The channel 2 PWM duty cycle control register is shown in 88 and described in 41.  
Register access type: Read/Write  
88. PWM Duty Control Channel 2 Register  
7
6
5
4
3
2
1
0
PWM_DUTY_CH2  
R/W-0b R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
41. PWM Duty Control Channel 2 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
PWM_DUTY_CH2  
R/W  
00000000b  
00000000b = 0 % PWM Duty  
11111111b = 100 % PWM Duty  
Calculate duty as decimal (xxxxxxxxb) × 1/255  
版权 © 2019, Texas Instruments Incorporated  
83  
 
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.1.2.15 PWM Duty Control Channel 3 (PWM_DUTY_CH3) Register (Address = 0x15) [reset = 0x00]  
The channel 3 PWM duty cycle control register is shown in 89 and described in 42.  
Register access type: Read/Write  
89. PWM Duty Control Channel 3 Register  
7
6
5
4
3
2
1
0
PWM_DUTY_CH3  
R/W-0b R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
42. PWM Duty Control Channel 3 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
PWM_DUTY_CH3  
R/W  
00000000b  
00000000b = 0 % PWM Duty  
11111111b = 100 % PWM Duty  
Calculate duty as decimal (xxxxxxxxb) × 1/255  
8.6.1.2.16 PWM Duty Control Channel 4 (PWM_DUTY_CH4) Register (Address = 0x16) [reset = 0x00]  
The channel 4 PWM duty cycle control register is shown in 90 and described in 43.  
Register access type: Read/Write  
90. PWM Duty Control Channel 4 Register  
7
6
5
4
3
2
1
0
PWM_DUTY_CH4  
R/W-0b R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
43. PWM Duty Control Channel 4 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
PWM_DUTY_CH4  
R/W  
00000000b  
00000000b = 0 % PWM Duty  
11111111b = 100 % PWM Duty  
Calculate duty as decimal (xxxxxxxxb) × 1/255  
84  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.1.2.17 Slew Rate Control 1 (SR_CTRL_1) Register (Address = 0x17) [reset = 0x00]  
The slew rate control 1 register is shown in 91 and described in 44.  
Register access type: Read/Write  
91. Slew Rate Control 1 Register  
7
6
5
4
3
2
1
0
HB8_SR  
R/W-0b  
HB7_SR  
R/W-0b  
HB6_SR  
R/W-0b  
HB5_SR  
R/W-0b  
HB4_SR  
R/W-0b  
HB3_SR  
R/W-0b  
HB2_SR  
R/W-0b  
HB1_SR  
R/W-0b  
44. Slew Rate Control 1 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
HB8_SR  
R/W  
0b  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
6
5
4
3
2
1
0
HB7_SR  
HB6_SR  
HB5_SR  
HB4_SR  
HB3_SR  
HB2_SR  
HB1_SR  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
版权 © 2019, Texas Instruments Incorporated  
85  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.1.2.18 Slew Rate Control 2 (SR_CTRL_2) Register (Address = 0x18) [reset = 0x00]  
The slew rate control 2 register is shown in 92 and described in 45.  
Register access type: Read/Write  
92. Slew Rate Control 2 Register  
7
6
5
4
3
2
1
0
Reserved  
HB12_SR  
R/W-0b  
HB11_SR  
R/W-0b  
HB10_SR  
R/W-0b  
HB9_SR  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
45. Slew Rate Control 2 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-4  
Reserved  
HB12_SR  
R/W  
0000b  
Reserved  
3
2
1
0
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
HB11_SR  
HB10_SR  
HB9_SR  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
86  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.1.2.19 Open-Load Detect (OLD) Control 1 (OLD_CTRL_1) Register (Address = 0x19) [reset = 0x00]  
The open-load detect (OLD) control (OLD_CTRL_1) register-1 is shown in 93 and described in 46.  
Register access type: Read/Write  
93. Open-Load Detect (OLD) Control (OLD_CTRL_1) Register  
7
6
5
4
3
2
1
0
HB8_OLD_DIS HB7_OLD_DIS HB6_OLD_DIS HB5_OLD_DIS HB4_OLD_DIS HB3_OLD_DIS HB2_OLD_DIS HB1_OLD_DIS  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
46. Open-Load Detect (OLD) Control (OLD_CTRL_1) Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
HB8_OLD_DIS  
R/W  
0b  
0b = Open-load detection on half-bridge 8 is enabled  
1b = Open-load on half-bridge 8 is disabled  
6
5
4
3
2
1
0
HB7_OLD_DIS  
HB6_OLD_DIS  
HB5_OLD_DIS  
HB4_OLD_DIS  
HB3_OLD_DIS  
HB2_OLD_DIS  
HB1_OLD_DIS  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = Open-load detection on half-bridge 7 is enabled  
1b = Open-load on half-bridge 7 is disabled  
0b = Open-load detection on half-bridge 6 is enabled  
1b = Open-load on half-bridge 6 is disabled  
0b = Open-load detection on half-bridge 5 is enabled  
1b = Open-load on half-bridge 5 is disabled  
0b = Open-load detection on half-bridge 4 is enabled  
1b = Open-load on half-bridge 4 is disabled  
0b = Open-load detection on half-bridge 3 is enabled  
1b = Open-load on half-bridge 3 is disabled  
0b = Open-load detection on half-bridge 2 is enabled  
1b = Open-load on half-bridge 2 is disabled  
0b = Open-load detection on half-bridge 1 is enabled  
1b = Open-load on half-bridge 1 is disabled  
版权 © 2019, Texas Instruments Incorporated  
87  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.1.2.20 Open-Load Detect (OLD) Control 2 (OLD_CTRL_2) Register (Address = 0x1A) [reset = 0x00]  
The open-load detect (OLD) control (OLD_CTRL_2) register-2 is shown in 94 and described in 47.  
Register access type: Read/Write  
94. Open-Load Detect (OLD) Control (OLD_CTRL_2) Register  
7
6
5
4
3
2
1
0
OLD_REP  
OLD_OP  
PL_MODE_EN  
HB12_OLD_DI HB11_OLD_DI HB10_OLD_DI HB9_OLD_DIS  
S
S
S
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
47. Open-Load Detect (OLD) Control (OLD_CTRL_2) Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
OLD_REP  
R/W  
0b  
0b = Report on nFAULT pin during OLD condition  
1b = No report on nFAULT pin during OLD condition  
6
OLD_OP  
R/W  
W
0b  
0b = Half bridges are not active after OLD condition detect  
1b = Half bridges are active after OLD condition detect  
5-4  
PL_MODE_EN  
00b  
00b = Parallel mode OCP fast turn-off slew is enabled  
01b = Parallel mode OCP slow turn-off slew is enabled  
10b = Invalid Setting  
11b = Invalid Setting  
3
2
1
0
HB12_OLD_DIS  
HB11_OLD_DIS  
HB10_OLD_DIS  
HB9_OLD_DIS  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b = Open-load detection on half-bridge 12 is enabled  
1b = Open-load on half-bridge 12 is disabled  
0b = Open-load detection on half-bridge 11 is enabled  
1b = Open-load on half-bridge 11 is disabled  
0b = Open-load detection on half-bridge 10 is enabled  
1b = Open-load on half-bridge 10 is disabled  
0b = Open-load detection on half-bridge 9 is enabled  
1b = Open-load on half-bridge 9 is disabled  
For DRV8912 and DRV8910, the PL_MODE_EN is write only bits and always read "00b".  
88  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.1.2.21 Open-Load Detect (OLD) Control 3 (OLD_CTRL_3) Register (Address = 0x1B) [reset = 0x00]  
The open-load detect (OLD) control (OLD_CTRL_3) register-3 is shown in 95 and described in 48. This  
register also contains the bits to set the OCP deglitch time (OCP_DEG).  
Register access type: Read/Write  
95. Open-Load Detect (OLD) Control (OLD_CTRL_3) Register  
7
6
5
4
3
2
1
0
OCP_DEG  
OLD_NEG_EN HB12_LOLD_E HB11_LOLD_E HB10_LOLD_E HB9_LOLD_EN  
N
N
N
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
48. Open-Load Detect (OLD) Control (OLD_CTRL_3) Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-5  
OCP_DEG  
R/W  
000b  
000b = OCP deglitch time is 10 µs  
001b = OCP deglitch time is 5 µs  
010b = OCP deglitch time is 2.5µs  
011b = OCP deglitch time is 1 µs  
100b = OCP deglitch time is 60 µs  
101b = OCP deglitch time is 40 µs  
110b = OCP deglitch time is 30 µs  
111b = OCP deglitch time is 20 µs  
4
3
2
1
0
OLD_NEG_EN  
HB12_LOLD_EN  
HB11_LOLD_EN  
HB10_LOLD_EN  
HB9_LOLD_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b = Negative-current OLD mode is disabled  
1b = Negative-current OLD mode is enabled  
0b = Low-current OLD on half-bridge 12 is disabled  
1b = Low-current OLD on half-bridge 12 is enabled  
0b = Low-current OLD on half-bridge 11 is disabled  
1b = Low-current OLD on half-bridge 12 is enabled  
0b = Low-current OLD on half-bridge 10 is disabled  
1b = Low-current OLD on half-bridge 12 is enabled  
0b = Low-current OLD on half-bridge 9 is disabled  
1b = Low-current OLD on half-bridge 9 is enabled  
版权 © 2019, Texas Instruments Incorporated  
89  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.1.2.22 Open-Load Detect (OLD) Control 4 (OLD_CTRL_4) Register (Address = 0x24) [reset = 0x00]  
The open-load detect (OLD) control (OLD_CTRL_4) register-4 is shown in 96 and described in 49.  
Register access type: Read/Write  
96. Open-Load Detect (OLD) Control (OLD_CTRL_4) Register  
7
6
5
4
3
2
1
0
HB8_LCOLD_E HB7_LOLD_EN HB6_LOLD_EN HB5_LOLD_EN HB4_LOLD_EN HB3_LOLD_EN HB2_LOLD_EN HB1_LOLD_EN  
N
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
49. Open-Load Detect (OLD) Control (OLD_CTRL_4) Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
HB8_LOLD_EN  
R/W  
0b  
0b = Low-current OLD on half-bridge 8 is disabled  
1b = Low-current OLD on half-bridge 8 is enabled  
6
5
4
3
2
1
0
HB7_LOLD_EN  
HB6_LOLD_EN  
HB5_LOLD_EN  
HB4_LOLD_EN  
HB3_LOLD_EN  
HB2_LOLD_EN  
HB1_LOLD_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = Low-current OLD on half-bridge 7 is disabled  
1b = Low-current OLD on half-bridge 7 is enabled  
0b = Low-current OLD on half-bridge 6 is disabled  
1b = Low-current OLD on half-bridge 6 is enabled  
0b = Low-current OLD on half-bridge 5 is disabled  
1b = Low-current OLD on half-bridge 5 is enabled  
0b = Low-current OLD on half-bridge 4 is disabled  
1b = Low-current OLD on half-bridge 4 is enabled  
0b = Low-current OLD on half-bridge 3 is disabled  
1b = Low-current OLD on half-bridge 3 is enabled  
0b = Low-current OLD on half-bridge 2 is disabled  
1b = Low-current OLD on half-bridge 2 is enabled  
0b = Low-current OLD on half-bridge 1 is disabled  
1b = Low-current OLD on half-bridge 1 is enabled  
90  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2 DRV8908-Q1, DRV8906-Q1 and DRV8904-Q1 Register Maps  
50. DRV8908-Q1 Register Map  
Name  
7
6
5
4
3
2
1
0
Type Address  
IC_STAT  
Reserved  
OTSD  
OTW  
OLD  
OCP  
UVLO  
OVP  
NPOR  
R
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h(1)  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
OCP_STAT_1  
HB4_HS_OCP  
HB8_HS_OCP  
HB4_LS_OCP  
HB8_LS_OCP  
HB3_HS_OCP  
HB7_HS_OCP  
HB3_LS_OCP  
HB7_LS_OCP  
HB2_HS_OCP  
HB6_HS_OCP  
HB2_LS_OCP  
HB6_LS_OCP  
HB1_HS_OCP  
HB5_HS_OCP  
HB1_LS_OCP  
HB5_LS_OCP  
R
OCP_STAT_2  
R
OCP_STAT_3  
Reserved  
R
OLD_STAT_1  
HB4_HS_OLD  
HB8_HS_OLD  
HB4_LS_OLD  
HB8_LS_OLD  
HB3_HS_OLD  
HB7_HS_OLD  
HB3_LS_OLD  
HB7_LS_OLD  
HB2_HS_OLD  
HB6_HS_OLD  
HB2_LS_OLD  
HB6_LS_OLD  
HB1_HS_OLD  
HB5_HS_OLD  
HB1_LS_OLD  
HB5_LS_OLD  
R
OLD_STAT_2  
R
OLD_STAT_3  
Reserved  
R
CONFIG_CTRL  
POLD_EN  
HB4_HS_EN  
HB8_HS_EN  
IC_ID  
OCP_REP  
HB2_HS_EN  
HB6_HS_EN  
OTW_REP  
HB2_LS_EN  
HB6_LS_EN  
EXT_OVP  
HB1_HS_EN  
HB5_HS_EN  
CLR_FLT  
HB1_LS_EN  
HB5_LS_EN  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OP_CTRL_1  
HB4_LS_EN  
HB8_LS_EN  
HB3_HS_EN  
HB7_HS_EN  
HB3_LS_EN  
HB7_LS_EN  
OP_CTRL_2  
OP_CTRL_3  
Reserved  
PWM_CTRL_1  
HB8_PWM  
HB7_PWM  
HB6_PWM  
HB5_PWM  
HB4_PWM  
HB3_PWM  
HB2_PWM  
HB1_PWM  
PWM_CTRL_2  
PWM_CH8_DIS PWM_CH7_DIS PWM_CH6_DIS PWM_CH5_DIS PWM_CH4_DIS PWM_CH3_DIS PWM_CH2_DIS PWM_CH1_DIS  
FW_CTRL_1  
HB8_FW  
HB7_FW  
HB6_FW  
HB5_FW  
HB4_FW  
HB3_FW  
HB2_FW  
HB1_FW  
FW_CTRL_2  
Reserved  
PWM_MAP_CTRL_1  
PWM_MAP_CTRL_2(1)  
PWM_MAP_CTRL_3  
PWM_MAP_CTRL_4  
PWM_FREQ_CTRL _1  
PWM_FREQ_CTRL _2  
PWM_DUTY_CTRL_1  
PWM_DUTY_CTRL_2  
PWM_DUTY_CTRL_3  
PWM_DUTY_CTRL_4  
PWM_DUTY_CTRL_5  
PWM_DUTY_CTRL_6  
PWM_DUTY_CTRL_7  
PWM_DUTY_CTRL_8  
SR_CTRL_1  
Reserved  
Reserved  
Reserved  
Reserved  
HB2_PWM_MAP  
HB4_PWM_MAP  
HB6_PWM_MAP  
HB8_PWM_MAP  
HB1_PWM_MAP  
HB3_PWM_MAP  
HB5_PWM_MAP  
HB7_PWM_MAP  
PWM_CH4_FREQ  
PWM_CH8_FREQ  
PWM_CH3_FREQ  
PWM_CH7_FREQ  
PWM_CH2_FREQ  
PWM_CH6_FREQ  
PWM_CH1_FREQ  
PWM_CH5_FREQ  
PWM_DUTY_CH1  
PWM_DUTY_CH2  
PWM_DUTY_CH3  
PWM_DUTY_CH4  
PWM_DUTY_CH5  
PWM_DUTY_CH6  
PWM_DUTY_CH7  
PWM_DUTY_CH8  
HB8_SR  
HB7_SR  
HB6_SR  
HB5_SR  
HB4_SR  
HB3_SR  
HB2_SR  
HB1_SR  
(1) After this register address, the register functions are similar among DRV8908-Q1, DRV8906-Q1, and DRV8904-Q1. However, DRV8912-Q1 and DRV8910-Q1 have different functions for  
these addresses.  
版权 © 2019, Texas Instruments Incorporated  
91  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
50. DRV8908-Q1 Register Map (接下页)  
Name  
7
6
5
4
3
2
1
0
Type Address  
SR_CTRL_2  
OLD_CTRL_1  
OLD_CTRL_2  
OLD_CTRL_3  
OLD_CTRL_4  
OLD_CTRL_5  
OLD_CTRL_6  
Reserved  
HB8_OLD_DIS HB7_OLD_DIS HB6_OLD_DIS HB5_OLD_DIS HB4_OLD_DIS HB3_OLD_DIS HB2_OLD_DIS HB1_OLD_DIS  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
OLD_REP  
OLD_OP  
PL_MODE_EN  
OLD_NEG_EN  
Reserved  
Reserved  
OCP_DEG  
HB8_LOLD_EN HB7_LOLD_EN HB6_LOLD_EN HB5_LOLD_EN HB4_LOLD_EN HB3_LOLD_EN HB2_LOLD_EN HB1_LOLD_EN  
HB8_POLD_EN HB7_POLD_EN HB6_POLD_EN HB5_POLD_EN HB4_POLD_EN HB3_POLD_EN HB2_POLD_EN HB1_POLD_EN  
HB8_VM_POLD HB7_VM_POLD HB6_VM_POLD HB5_VM_POLD HB4_VM_POLD HB3_VM_POLD HB2_VM_POLD HB1_VM_POLD  
92  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
51. DRV8906-Q1 Register Map  
Name  
7
6
5
4
3
2
1
0
Type Address  
IC_STAT  
Reserved  
OTSD  
OTW  
OLD  
OCP  
UVLO  
OVP  
NPOR  
R
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h(1)  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
OCP_STAT_1  
HB4_HS_OCP  
HB4_LS_OCP  
HB3_HS_OCP  
HB3_LS_OCP  
HB2_HS_OCP  
HB6_HS_OCP  
HB2_LS_OCP  
HB6_LS_OCP  
HB1_HS_OCP  
HB5_HS_OCP  
HB1_LS_OCP  
HB5_LS_OCP  
R
OCP_STAT_2  
Reserved  
R
OCP_STAT_3  
Reserved  
R
OLD_STAT_1  
HB4_HS_OLD  
HB4_LS_OLD  
HB4_LS_EN  
HB3_HS_OLD  
HB3_LS_OLD  
HB3_LS_EN  
HB2_HS_OLD  
HB6_HS_OLD  
HB2_LS_OLD  
HB6_LS_OLD  
HB1_HS_OLD  
HB5_HS_OLD  
HB1_LS_OLD  
HB5_LS_OLD  
R
OLD_STAT_2  
Reserved  
R
OLD_STAT_3  
Reserved  
R
CONFIG_CTRL  
OP_CTRL_1  
POLD_EN  
IC_ID  
OCP_REP  
HB2_HS_EN  
HB6_HS_EN  
OTW_REP  
HB2_LS_EN  
HB6_LS_EN  
EXT_OVP  
HB1_HS_EN  
HB5_HS_EN  
CLR_FLT  
HB1_LS_EN  
HB5_LS_EN  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
HB4_HS_EN  
HB3_HS_EN  
OP_CTRL_2  
Reserved  
OP_CTRL_3  
Reserved  
PWM_CTRL_1  
Reserved  
HB6_PWM  
HB5_PWM  
HB4_PWM  
HB3_PWM  
HB2_PWM  
HB1_PWM  
PWM_CTRL_2  
Reserved  
Reserved  
PWM_CH6_DIS PWM_CH5_DIS PWM_CH4_DIS PWM_CH3_DIS PWM_CH2_DIS PWM_CH1_DIS  
FW_CTRL_1  
HB6_FW  
HB5_FW  
HB4_FW  
HB3_FW  
HB2_FW  
HB1_FW  
FW_CTRL_2  
Reserved  
PWM_MAP_CTRL_1  
PWM_MAP_CTRL_2(1)  
PWM_MAP_CTRL_3  
PWM_MAP_CTRL_4  
PWM_FREQ_CTRL _1  
PWM_FREQ_CTRL _2  
PWM_DUTY_CTRL_1  
PWM_DUTY_CTRL_2  
PWM_DUTY_CTRL_3  
PWM_DUTY_CTRL_4  
PWM_DUTY_CTRL_5  
PWM_DUTY_CTRL_6  
PWM_DUTY_CTRL_7  
PWM_DUTY_CTRL_8  
SR_CTRL_1  
Reserved  
Reserved  
Reserved  
HB2_PWM_MAP  
HB4_PWM_MAP  
HB6_PWM_MAP  
HB1_PWM_MAP  
HB3_PWM_MAP  
HB5_PWM_MAP  
Reserved  
PWM_CH4_FREQ  
PWM_CH3_FREQ  
PWM_CH2_FREQ  
PWM_CH6_FREQ  
PWM_CH1_FREQ  
PWM_CH5_FREQ  
Reserved  
PWM_DUTY_CH1  
PWM_DUTY_CH2  
PWM_DUTY_CH3  
PWM_DUTY_CH4  
PWM_DUTY_CH5  
PWM_DUTY_CH6  
Reserved  
Reserved  
Reserved  
Reserved  
HB6_SR  
HB5_SR  
Reserved  
HB6_OLD_DIS HB5_OLD_DIS HB4_OLD_DIS HB3_OLD_DIS HB2_OLD_DIS HB1_OLD_DIS  
HB4_SR  
HB3_SR  
HB2_SR  
HB1_SR  
SR_CTRL_2  
OLD_CTRL_1  
(1) After this register address, the register functions are similar among DRV8908-Q1, DRV8906-Q1, and DRV8904-Q1. However, DRV8912-Q1 and DRV8910-Q1 have different functions for  
these addresses.  
版权 © 2019, Texas Instruments Incorporated  
93  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
51. DRV8906-Q1 Register Map (接下页)  
Name  
7
6
5
4
3
2
1
0
Type Address  
OLD_CTRL_2  
OLD_CTRL_3  
OLD_CTRL_4  
OLD_CTRL_5  
OLD_CTRL_6  
OLD_REP  
OLD_OP  
OCP_DEG  
PL_MODE_EN  
OLD_NEG_EN  
Reserved  
Reserved  
RW  
RW  
RW  
RW  
RW  
20h  
21h  
22h  
23h  
24h  
Reserved  
HB6_LOLD_EN HB5_LOLD_EN HB4_LOLD_EN HB3_LOLD_EN HB2_LOLD_EN HB1_LOLD_EN  
HB6_POLD_EN HB5_POLD_EN HB4_POLD_EN HB3_POLD_EN HB2_POLD_EN HB1_POLD_EN  
HB6_VM_POLD HB5_VM_POLD HB4_VM_POLD HB3_VM_POLD HB2_VM_POLD HB1_VM_POLD  
Reserved  
Reserved  
94  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
52. DRV8904-Q1 Register Map  
Name  
7
6
5
4
3
2
1
0
Type Address  
IC_STAT  
Reserved  
OTSD  
OTW  
OLD  
OCP  
UVLO  
OVP  
NPOR  
R
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h(1)  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
OCP_STAT_1  
HB4_HS_OCP  
HB4_LS_OCP  
HB3_HS_OCP  
HB3_LS_OCP  
HB2_HS_OCP  
HB2_LS_OCP  
HB1_HS_OCP  
HB1_LS_OCP  
R
OCP_STAT_2  
Reserved  
Reserved  
HB3_LS_OLD HB2_HS_OLD  
R
OCP_STAT_3  
R
OLD_STAT_1  
HB4_HS_OLD  
HB4_LS_OLD  
HB4_LS_EN  
HB3_HS_OLD  
HB2_LS_OLD  
HB1_HS_OLD  
HB1_LS_OLD  
R
OLD_STAT_2  
Reserved  
Reserved  
R
OLD_STAT_3  
R
CONFIG_CTRL  
OP_CTRL_1  
POLD_EN  
IC_ID  
OCP_REP  
HB2_HS_EN  
Reserved  
Reserved  
HB4_PWM  
OTW_REP  
EXT_OVP  
CLR_FLT  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
HB4_HS_EN  
HB3_HS_EN  
HB3_LS_EN  
HB2_LS_EN  
HB1_HS_EN  
HB1_LS_EN  
OP_CTRL_2  
OP_CTRL_3  
PWM_CTRL_1  
Reserved  
HB3_PWM  
HB2_PWM  
HB1_PWM  
PWM_CTRL_2  
Reserved  
Reserved  
PWM_CH4_DIS PWM_CH3_DIS PWM_CH2_DIS PWM_CH1_DIS  
FW_CTRL_1  
HB4_FW  
Reserved  
HB2_PWM_MAP  
HB4_PWM_MAP  
Reserved  
HB3_FW  
HB2_FW  
HB1_FW  
FW_CTRL_2  
PWM_MAP_CTRL_1  
PWM_MAP_CTRL_2(1)  
PWM_MAP_CTRL_3  
PWM_MAP_CTRL_4  
PWM_FREQ_CTRL _1  
PWM_FREQ_CTRL _2  
PWM_DUTY_CTRL_1  
PWM_DUTY_CTRL_2  
PWM_DUTY_CTRL_3  
PWM_DUTY_CTRL_4  
PWM_DUTY_CTRL_5  
PWM_DUTY_CTRL_6  
PWM_DUTY_CTRL_7  
PWM_DUTY_CTRL_8  
SR_CTRL_1  
Reserved  
HB1_PWM_MAP  
HB3_PWM_MAP  
Reserved  
Reserved  
PWM_CH4_FREQ  
PWM_CH3_FREQ  
PWM_CH2_FREQ  
PWM_CH1_FREQ  
Reserved  
PWM_DUTY_CH1  
PWM_DUTY_CH2  
PWM_DUTY_CH3  
PWM_DUTY_CH4  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
HB4_SR  
Reserved  
HB4_OLD_DIS HB3_OLD_DIS HB2_OLD_DIS HB1_OLD_DIS  
HB3_SR  
HB2_SR  
HB1_SR  
SR_CTRL_2  
OLD_CTRL_1  
(1) After this register address, the register functions are similar among DRV8908-Q1, DRV8906-Q1, and DRV8904-Q1. However, DRV8912-Q1 and DRV8910-Q1 have different functions for  
these addresses.  
版权 © 2019, Texas Instruments Incorporated  
95  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
52. DRV8904-Q1 Register Map (接下页)  
Name  
7
6
5
4
3
2
1
0
Type Address  
OLD_CTRL_2  
OLD_CTRL_3  
OLD_CTRL_4  
OLD_CTRL_5  
OLD_CTRL_6  
OLD_REP  
OLD_OP  
OCP_DEG  
PL_MODE_EN  
OLD_NEG_EN  
Reserved  
Reserved  
RW  
RW  
RW  
RW  
RW  
20h  
21h  
22h  
23h  
24h  
Reserved  
HB4_LOLD_EN HB3_LOLD_EN HB2_LOLD_EN HB1_LOLD_EN  
HB4_POLD_EN HB3_POLD_EN HB2_POLD_EN HB1_POLD_EN  
HB4_VM_POLD HB3_VM_POLD HB2_VM_POLD HB1_VM_POLD  
Reserved  
Reserved  
96  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2.1 Status Registers  
The status registers are used to report warning and fault conditions. The status registers are read-only registers.  
53 lists the memory-mapped registers for the status registers. All register offset addresses not listed in 53  
should be considered as reserved locations and the register contents should not be modified.  
53. Status Registers Summary Table  
Address  
0x00  
Register Name  
Section  
Go  
IC Status  
0x01  
Overcurrent Protection (OCP) Status 1  
Overcurrent Protection (OCP) Status 2  
Overcurrent Protection (OCP) Status 3  
Open-Load Detect (OLD) Status 1  
Open-Load Detect (OLD) Status 2  
Open-Load Detect (OLD) Status 3  
Go  
0x02  
Go  
0x03  
Go  
0x04  
Go  
0x05  
Go  
0x06  
Go  
8.6.2.1.1 IC Status (IC_STAT) Register (Address = 0x00) [reset = 0x00]  
The IC status (IC_STAT) register is shown in 97 and described in 54.  
Register access type: Read only  
97. IC Status Register  
7
6
5
4
3
2
1
0
Reserved  
R-0b  
OTSD  
R-0b  
OTW  
R-0b  
OLD  
R-0b  
OCP  
R-0b  
UVLO  
R-0b  
OVP  
R-0b  
NPOR  
R-0b  
54. IC Status Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
Reserved  
R
0b  
Reserved  
6
5
4
3
2
1
0
OTSD  
OTW  
OLD  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = No overtemperature shutdown is detected  
1b = Overcurrent condition is detected  
0b = No overtemperature warning is detected  
1b = Overcurrent condition is detected  
0b = No open-load condition is detected  
1b = Open-load condition is detected  
OCP  
0b = No overcurrent condition is detected  
1b = Overcurrent condition is detected  
UVLO  
OVP  
0b = No undervoltage lock-out condition is detected  
1b = Under-voltage lock-out condition condition is detected  
0b = No overvoltage condition is detected  
1b = Overvoltage condition is detected  
NPOR  
0b = Power-on-reset condition is detected  
1b = No power-on-reset condition is detected  
版权 © 2019, Texas Instruments Incorporated  
97  
 
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.2.1.2 Overcurrent Protection (OCP) Status 1 (OCP_STAT_1) Register (Address = 0x01) [reset = 0x00]  
The overcurrent protection (OCP) status 1 register is shown in 98 and described in 55.  
Register access type: Read only  
98. Overcurrent Protection (OCP) Status 1 Register  
7
6
5
4
3
2
1
0
HB4_HS_OCP HB4_LS_OCP HB3_HS_OCP HB3_LS_OCP HB2_HS_OCP HB2_LS_OCP HB1_HS_OCP HB1_LS_OCP  
R-0b R-0b R-0b R-0b R-0b R-0b R-0b R-0b  
55. Overcurrent Protection (OCP) Status 1 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
6
5
4
3
2
1
0
HB4_HS_OCP  
R
0b  
0b = No overcurrent detected on high-side switch of half-  
bridge 4  
1b = Overcurrent detected on high-side switch of half-bridge 4  
HB4_LS_OCP  
HB3_HS_OCP  
HB3_LS_OCP  
HB2_HS_OCP  
HB2_LS_OCP  
HB1_HS_OCP  
HB1_LS_OCP  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = No overcurrent detected on low-side switch of half-  
bridge 4  
1b = Overcurrent detected on low-side switch of half-bridge 4  
0b = No overcurrent detected on high-side switch of half-  
bridge 3  
1b = Overcurrent detected on high-side switch of half-bridge 3  
0b = No overcurrent detected on low-side switch of half-  
bridge 3  
1b = Overcurrent detected on low-side switch of half-bridge 3  
0b = No overcurrent detected on high-side switch of half-  
bridge 2  
1b = Overcurrent detected on high-side switch of half-bridge 2  
0b = No overcurrent detected on low-side switch of half-  
bridge 2  
1b = Overcurrent detected on low-side switch of half-bridge 2  
0b = No overcurrent detected on high-side switch of half-  
bridge 1  
1b = Overcurrent detected on high-side switch of half-bridge 1  
0b = No overcurrent detected on low-side switch of half-  
bridge 1  
1b = Overcurrent detected on low-side switch of half-bridge 1  
98  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2.1.3 Overcurrent Protection (OCP) Status 2 (OCP_STAT_2) Register (Address = 0x02) [reset = 0x00]  
The overcurrent protection (OCP) status 2 register is shown in 99 and described in 56.  
Register access type: Read only  
99. Overcurrent Protection (OCP) Status 2 Register  
7
6
5
4
3
2
1
0
HB8_HS_OCP HB8_LS_OCP HB7_HS_OCP HB7_LS_OCP HB6_HS_OCP HB6_LS_OCP HB5_HS_OCP HB5_LS_OCP  
R-0b R-0b R-0b R-0b R-0b R-0b R-0b R-0b  
56. Overcurrent Protection (OCP) Status 2 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
6
5
4
3
2
1
0
HB8_HS_OCP  
R
0b  
0b = No overcurrent detected on high-side switch of half-  
bridge 8  
1b = Overcurrent detected on high-side switch of half-bridge 8  
HB8_LS_OCP  
HB7_HS_OCP  
HB7_LS_OCP  
HB6_HS_OCP  
HB6_LS_OCP  
HB5_HS_OCP  
HB5_LS_OCP  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = No overcurrent detected on low-side switch of half-  
bridge 8  
1b = Overcurrent detected on low-side switch of half-bridge 8  
0b = No overcurrent detected on high-side switch of half-  
bridge 7  
1b = Overcurrent detected on high-side switch of half-bridge 7  
0b = No overcurrent detected on low-side switch of half-  
bridge 7  
1b = Overcurrent detected on low-side switch of half-bridge 7  
0b = No overcurrent detected on high-side switch of half-  
bridge 6  
1b = Overcurrent detected on high-side switch of half-bridge 6  
0b = No overcurrent detected on low-side switch of half-  
bridge 6  
1b = Overcurrent detected on low-side switch of half-bridge 6  
0b = No overcurrent detected on high-side switch of half-  
bridge 5  
1b = Overcurrent detected on high-side switch of half-bridge 5  
0b = No overcurrent detected on low-side switch of half-  
bridge 5  
1b = Overcurrent detected on low-side switch of half-bridge 5  
8.6.2.1.4 Overcurrent Protection (OCP) Status 3 (OCP_STAT_3) Register (Address = 0x03) [reset = 0x00]  
The overcurrent protection (OCP) status 3 register is shown in 100 and described in 100.  
Register access type: Read only  
100. Overcurrent Protection (OCP) Status 3 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
57. Overcurrent Protection (OCP) Status 3 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Default  
Description  
Reserved  
R
0b  
Reserved.  
版权 © 2019, Texas Instruments Incorporated  
99  
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.2.1.5 Open-Load Detect (OLD) Status 1 (OLD_STAT_1) Register (Address = 0x04) [reset = 0x00]  
The open-load detect (OLD) status 1 register is shown in 101 and described in 58.  
Register access type: Read only  
101. Open-Load Detect (OLD) Status 1 Register  
7
6
5
4
3
2
1
0
HB4_HS_OLD HB4_LS_OLD HB3_HS_OLD HB3_LS_OLD HB2_HS_OLD HB2_LS_OLD HB1_HS_OLD HB1_LS_OLD  
R-0b R-0b R-0b R-0b R-0b R-0b R-0b R-0b  
58. Open-Load Detect (OLD) Status 1 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
6
5
4
3
2
1
0
HB4_HS_OLD  
R
0b  
0b = No open load detected on high-side switch of half-  
bridge 4  
1b = Open load detected on high-side switch of half-bridge 4  
HB4_LS_OLD  
HB3_HS_OLD  
HB3_LS_OLD  
HB2_HS_OLD  
HB2_LS_OLD  
HB1_HS_OLD  
HB1_LS_OLD  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = No open load detected on low-side switch of half-  
bridge 4  
1b = Open load detected on low-side switch of half-bridge 4  
0b = No open load detected on high-side switch of half-  
bridge 3  
1b = Open load detected on high-side switch of half-bridge 3  
0b = No open load detected on low-side switch of half-  
bridge 3  
1b = Open load detected on low-side switch of half-bridge 3  
0b = No open load detected on high-side switch of half-  
bridge 2  
1b = Open load detected on high-side switch of half-bridge 2  
0b = No open load detected on low-side switch of half-  
bridge 2  
1b = Open load detected on low-side switch of half-bridge 2  
0b = No open load detected on high-side switch of half-  
bridge 1  
1b = Open load detected on high-side switch of half-bridge 1  
0b = No open load detected on low-side switch of half-  
bridge 1  
1b = Open load detected on low-side switch of half-bridge 1  
100  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2.1.6 Open-Load Detect (OLD) Status 2 (OLD_STAT_2) Register (Address = 0x05) [reset = 0x00]  
The open-load detect (OLD) status 2 register is shown in 102 and described in 59.  
Register access type: Read only  
102. Open-Load Detect (OLD) Status 2 Register  
7
6
5
4
3
2
1
0
HB8_HS_OLD HB8_LS_OLD HB7_HS_OLD HB7_LS_OLD HB6_HS_OLD HB6_LS_OLD HB5_HS_OLD HB5_LS_OLD  
R-0b R-0b R-0b R-0b R-0b R-0b R-0b R-0b  
59. Open-Load Detect (OLD) Status 2 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
6
5
4
3
2
1
0
HB8_HS_OLD  
R
0b  
0b = No open load detected on high-side switch of half-  
bridge 8  
1b = Open load detected on high-side switch of half-bridge 8  
HB8_LS_OLD  
HB7_HS_OLD  
HB7_LS_OLD  
HB6_HS_OLD  
HB6_LS_OLD  
HB5_HS_OLD  
HB5_LS_OLD  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = No open load detected on low-side switch of half-  
bridge 8  
1b = Open load detected on low-side switch of half-bridge 8  
0b = No open load detected on high-side switch of half-  
bridge 7  
1b = Open load detected on high-side switch of half-bridge 7  
0b = No open load detected on low-side switch of half-  
bridge 7  
1b = Open load detected on low-side switch of half-bridge 7  
0b = No open load detected on high-side switch of half-  
bridge 6  
1b = Open load detected on high-side switch of half-bridge 6  
0b = No open load detected on low-side switch of half-  
bridge 6  
1b = Open load detected on low-side switch of half-bridge 6  
0b = No open load detected on high-side switch of half-  
bridge 5  
1b = Open load detected on high-side switch of half-bridge 5  
0b = No open load detected on low-side switch of half-  
bridge 5  
1b = Open load detected on low-side switch of half-bridge 5  
8.6.2.1.7 Open-Load Detect (OLD) Status 3 (OLD_STAT_3) Register (Address = 0x06) [reset = 0x00]  
The open-load detect (OLD) status 3 register is shown in 103 and described in 60.  
Register access type: Read only  
103. Open-Load Detect (OLD) Status 3 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
60. Open-Load Detect (OLD) Status 3 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Default  
Description  
Reserved  
R
0b  
Reserved.  
版权 © 2019, Texas Instruments Incorporated  
101  
 
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.2.2 Control Registers  
The control registers are used to configure the device. The control registers are read and write capable.  
61 lists the memory-mapped registers for the control registers. All register offset addresses not listed in 61  
should be considered as reserved locations and the register contents should not be modified.  
61. Control Registers Summary Table  
Address  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Configuration Register  
Operation Control 1 Register  
Operation Control 2 Register  
Operation Control 3 Register  
PWM Control 1 Register  
PWM Control 2 Register  
Free-Wheeling Control 1 Register  
Free-Wheeling Control 2 Register  
PWM Map Control 1 Register  
PWM Map Control 2 Register  
PWM Map Control 3 Register  
PWM Map Control 4 Register  
PWM Frequency Control 1 Register  
PWM Frequency Control 2 Register  
PWM Duty Control Channel 1 Register  
PWM Duty Control Channel 2 Register  
PWM Duty Control Channel 3 Register  
PWM Duty Control Channel 4 Register  
PWM Duty Control Channel 5 Register  
PWM Duty Control Channel 6 Register  
PWM Duty Control Channel 7 Register  
PWM Duty Control Channel 8 Register  
Slew Rate Control 1 Register  
Slew Rate Control 2 Register  
Open-Load Detect (OLD) Control 1 Register  
Open-Load Detect (OLD) Control 2 Register  
Open-Load Detect (OLD) Control 3 Register  
Open-Load Detect (OLD) Control 4 Register  
Open-Load Detect (OLD) Control 5 Register  
Open-Load Detect (OLD) Control 6 Register  
102  
版权 © 2019, Texas Instruments Incorporated  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2.2.1 Configuration (CONFIG_CTRL) Register (Address = 0x07) [reset = 0x00]  
The configuration register is shown in 104 and described in 62.  
Register access type: Read/Write  
104. Configuration Register  
7
6
5
4
3
2
1
0
POLD_EN  
R/W-0b  
IC_ID  
R-Xb  
OCP_REP  
R/W-0b  
OTW_REP  
R/W-0b  
EXT_OVP  
R/W-0b  
CLR_FLT  
R/W-0b  
R-Xb  
R-Xb  
62. Configuration Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
POLD_EN  
R/W  
0b  
0b = Passive OLD is disabled  
1b = Passive OLD is enabled  
6-4  
IC_ID  
R
XXXb  
000b = Device connected is DRV8912-Q1 (12 Channel Device)  
001b = Device connected is DRV8910-Q1 (10 Channel Device)  
010b = Device connected is DRV8908-Q1 (8 Channel Device)  
011b = Device connected is DRV8906-Q1 (6 Channel Device)  
100b = Device connected is DRV8904-Q1 (4 Channel Device)  
101b = Reserved  
110b = Reserved  
111b = Reserved  
3
2
OCP_REP  
OTW_REP  
R/W  
R/W  
0b  
0b  
0b = Overcurrent condition is reported in nFAULT pin  
1b = Overcurrent condition warning is not reported on the  
nFAULT pin  
0b = Overtemperature warning is not reported in nFAULT  
pin  
1b = Overtemperature warning is reported on the nFAULT pin  
1
0
EXT_OVP  
CLR_FLT  
R/W  
R/W  
0b  
0b  
0b = Overvoltage protection threshold is at 21 V  
1b = Overvoltage protection threshold is at 33 V  
0b = Faults not cleared  
1b = Clear all faults  
CLR_FLT bit is an auto-clear bit and will always read '0'.  
版权 © 2019, Texas Instruments Incorporated  
103  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.2.2.2 Operation Control 1 (OP_CTRL_1) Register (Address = 0x08) [reset = 0x00]  
The operation control 1 register is shown in 105 and described in 63.  
Register access type: Read/Write  
105. Operation Control 1 Register  
7
6
5
4
3
2
1
0
HB4_HS_EN  
R/W-0b  
HB4_LS_EN  
R/W-0b  
HB3_HS_EN  
R/W-0b  
HB3_LS_EN  
R/W-0b  
HB2_HS_EN  
R/W-0b  
HB2_LS_EN  
R/W-0b  
HB1_HS_EN  
R/W-0b  
HB1_LS_EN  
R/W-0b  
63. Operation Control 1 Register Field Descriptions  
Bit  
Field  
HB4_HS_EN  
Type  
Default  
Description  
7
R/W  
0b  
0b = Half-bridge 4 high-side switch is disabled  
1b = Half-bridge 4 high-side switch is enabled  
6
5
4
3
2
1
0
HB4_LS_EN  
HB3_HS_EN  
HB3_LS_EN  
HB2_HS_EN  
HB2_LS_EN  
HB1_HS_EN  
HB1_LS_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = Half-bridge 4 low-side switch is disabled  
1b = Half-bridge 4 low-side switch is enabled  
0b = Half-bridge 3 high-side switch is disabled  
1b = Half-bridge 3 high-side switch is enabled  
0b = Half-bridge 3 low-side switch is disabled  
1b = Half-bridge 3 low-side switch is enabled  
0b = Half-bridge 2 high-side switch is disabled  
1b = Half-bridge 2 high-side switch is enabled  
0b = Half-bridge 2 low-side switch is disabled  
1b = Half-bridge 2 low-side switch is enabled  
0b = Half-bridge 1 high-side switch is disabled  
1b = Half-bridge 1 high-side switch is enabled  
0b = Half-bridge 1 low-side switch is disabled  
1b = Half-bridge 1 low-side switch is enabled  
104  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2.2.3 Operation Control 2 (OP_CTRL_2) Register (Address = 0x09) [reset = 0x00]  
The operation control 2 register is shown in 106 and described in 64.  
Register access type: Read/Write  
106. Operation Control 2 Register  
7
6
5
4
3
2
1
0
HB8_HS_EN  
R/W-0b  
HB8_LS_EN  
R/W-0b  
HB7_HS_EN  
R/W-0b  
HB7_LS_EN  
R/W-0b  
HB6_HS_EN  
R/W-0b  
HB6_LS_EN  
R/W-0b  
HB5_HS_EN  
R/W-0b  
HB5_LS_EN  
R/W-0b  
64. Operation Control 2 Register Field Descriptions  
Bit  
Field  
HB8_HS_EN  
Type  
Default  
Description  
7
R/W  
0b  
0b = Half-bridge 8 high-side switch is disabled  
1b = Half-bridge 8 high-side switch is enabled  
6
5
4
3
2
1
0
HB8_LS_EN  
HB7_HS_EN  
HB7_LS_EN  
HB6_HS_EN  
HB6_LS_EN  
HB5_HS_EN  
HB5_LS_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = Half-bridge 8 low-side switch is disabled  
1b = Half-bridge 8 low-side switch is enabled  
0b = Half-bridge 7 high-side switch is disabled  
1b = Half-bridge 7 high-side switch is enabled  
0b = Half-bridge 7 low-side switch is disabled  
1b = Half-bridge 7 low-side switch is enabled  
0b = Half-bridge 6 high-side switch is disabled  
1b = Half-bridge 6 high-side switch is enabled  
0b = Half-bridge 6 low-side switch is disabled  
1b = Half-bridge 6 low-side switch is enabled  
0b = Half-bridge 5 high-side switch is disabled  
1b = Half-bridge 5 high-side switch is enabled  
0b = Half-bridge 5 low-side switch is disabled  
1b = Half-bridge 5 low-side switch is enabled  
版权 © 2019, Texas Instruments Incorporated  
105  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.2.2.4 Operation Control 3 (OP_CTRL_3) Register (Address = 0x0A) [reset = 0x00]  
The operation control 3 register is shown in 107 and described in 65.  
Register access type: Read  
107. Operation Control 3 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
65. Operation Control 3 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Default  
Description  
Reserved  
R
0b  
Reserved.  
106  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2.2.5 PWM Control 1 (PWM_CTRL_1) Register (Address = 0x0B) [reset = 0x00]  
The PWM control 1 register is shown in 108 and described in 66.  
Register access type: Read/Write  
108. PWM Control 1 Register  
7
6
5
4
3
2
1
0
HB8_PWM  
R/W-0b  
HB7_PWM  
R/W-0b  
HB6_PWM  
R/W-0b  
HB5_PWM  
R/W-0b  
HB4_PWM  
R/W-0b  
HB3_PWM  
R/W-0b  
HB2_PWM  
R/W-0b  
HB1_PWM  
R/W-0b  
66. PWM Control 1 Register Field Descriptions  
Bit  
Field  
HB8_PWM  
Type  
Default  
Description  
7
R/W  
0b  
0b = Half-bridge 8 is operating in continuous mode  
1b = Half-bridge 8 is operating in PWM mode  
6
5
4
3
2
1
0
HB7_PWM  
HB6_PWM  
HB5_PWM  
HB4_PWM  
HB3_PWM  
HB2_PWM  
HB1_PWM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = Half-bridge 7 is operating in continuous mode  
1b = Half-bridge 7is operating in PWM mode  
0b = Half-bridge 6 is operating in continuous mode  
1b = Half-bridge 6 is operating in PWM mode  
0b = Half-bridge 5 is operating in continuous mode  
1b = Half-bridge 5 is operating in PWM mode  
0b = Half-bridge 4 is operating in continuous mode  
1b = Half-bridge 4 is operating in PWM mode  
0b = Half-bridge 3 is operating in continuous mode  
1b = Half-bridge 3 is operating in PWM mode  
0b = Half-bridge 2 is operating in continuous mode  
1b = Half-bridge 2 is operating in PWM mode  
0b = Half-bridge 1 is operating in continuous mode  
1b = Half-bridge 1 is operating in PWM mode  
版权 © 2019, Texas Instruments Incorporated  
107  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.2.2.6 PWM Control 2 (PWM_CTRL_2) Register (Address = 0x0C) [reset = 0x00]  
The PWM control 2 register is shown in 109 and described in 67.  
Register access type: Read/Write  
109. PWM Control 2 Register  
7
6
5
4
3
2
1
0
PWM_CH8_DI PWM_CH7_DI PWM_CH6_DI PWM_CH5_DI PWM_CH4_DI PWM_CH3_DI PWM_CH2_DI PWM_CH1_DI  
S
S
S
S
S
S
S
S
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
67. PWM Control 2 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
PWM_CH8_DIS  
PWM_CH7_DIS  
PWM_CH6_DIS  
PWM_CH5_DIS  
PWM_CH4_DIS  
PWM_CH3_DIS  
PWM_CH2_DIS  
PWM_CH1_DIS  
R/W  
0b  
0b = PWM Generator-8 is enabled  
1b = PWM Generator-8 is disabled  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = PWM Generator-7 is enabled  
1b = PWM Generator-7 is disabled  
0b = PWM Generator-6 is enabled  
1b = PWM Generator-6 is disabled  
0b = PWM Generator-5 is enabled  
1b = PWM Generator-5 is disabled  
0b = PWM Generator-4 is enabled  
1b = PWM Generator-4 is disabled  
0b = PWM Generator-3 is enabled  
1b = PWM Generator-3 is disabled  
0b = PWM Generator-2 is enabled  
1b = PWM Generator-2 is disabled  
0b = PWM Generator-1 is enabled  
1b = PWM Generator-1 is disabled  
108  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2.2.7 Free-Wheeling Control 1 (FW_CTRL_1) Register (Address = 0x0D) [reset = 0x00]  
The free-wheeling control 1 register is shown in 110 and described in 68.  
Register access type: Read/Write  
110. Free-Wheeling Control 1 Register  
7
6
5
4
3
2
1
0
HB8_FW  
R/W-0b  
HB7_FW  
R/W-0b  
HB6_FW  
R/W-0b  
HB5_FW  
R/W-0b  
HB4_FW  
R/W-0b  
HB3_FW  
R/W-0b  
HB2_FW  
R/W-0b  
HB1_FW  
R/W-0b  
68. Free-Wheeling Control 1 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
HB8_FW  
HB7_FW  
HB6_FW  
HB5_FW  
HB4_FW  
HB3_FW  
HB2_FW  
HB1_FW  
R/W  
0b  
0b = Passive free-wheeling on half-bridge 8 is enabled  
1b = Active free-wheeling on half-bridge 8 is enabled  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = Passive free-wheeling on half-bridge 7 is enabled  
1b = Active free-wheeling on half-bridge 7 is enabled  
0b = Passive free-wheeling on half-bridge 6 is enabled  
1b = Active free-wheeling on half-bridge 6 is enabled  
0b = Passive free-wheeling on half-bridge 5 is enabled  
1b = Active free-wheeling on half-bridge 5 is enabled  
0b = Passive free-wheeling on half-bridge 4 is enabled  
1b = Active free-wheeling on half-bridge 4 is enabled  
0b = Passive free-wheeling on half-bridge 3 is enabled  
1b = Active free-wheeling on half-bridge 3 is enabled  
0b = Passive free-wheeling on half-bridge 2 is enabled  
1b = Active free-wheeling on half-bridge 2 is enabled  
0b = Passive free-wheeling on half-bridge 1 is enabled  
1b = Active free-wheeling on half-bridge 1 is enabled  
8.6.2.2.8 Free-Wheeling Control 2 (FW_CTRL_2) Register (Address = 0x0E) [reset = 0x00]  
The free-wheeling control 2 register is shown in 111 and described in 69.  
Register access type: Read/Write  
111. Free-Wheeling Control 2 Register  
7
6
5
4
3
2
1
0
Reserved  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
69. Free-Wheeling Control 2 Register Field Descriptions  
Bit  
Field  
Reserved  
Type  
Default  
Description  
7-0  
R/W  
0000b  
Reserved.  
版权 © 2019, Texas Instruments Incorporated  
109  
 
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.2.2.9 PWM Map Control 1 (PWM_MAP_CTRL_1) Register (Address = 0x0F) [reset = 0x00]  
The PWM Map Control 1 register is shown in 112 and described in 70.  
Register access type: Read/Write  
112. PWM Map Control 1 Register  
7
6
5
4
3
2
1
0
Reserved  
HB2_PWM_MAP  
R/W-0b  
HB1_PWM_MAP  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
70. PWM Map Control 1 Register Field Descriptions  
Bit  
7-6  
3-2  
Field  
Type  
R
Default  
00b  
Description  
Reserved  
Reserved  
HB2_PWM_MAP  
R/W  
000b  
00b = HB2 mapped to PWM channel 1  
001b = HB2 mapped to PWM channel 2  
010b = HB2 mapped to PWM channel 3  
011b = HB2 mapped to PWM channel 4  
100b = HB2 mapped to PWM channel 5  
101b = HB2 mapped to PWM channel 6  
110b = HB mapped to PWM channel 7  
111b = HB2 mapped to PWM channel 8  
1-0  
HB1_PWM_MAP  
R/W  
000b  
00b = HB1 mapped to PWM channel 1  
001b = HB1 mapped to PWM channel 2  
010b = HB1 mapped to PWM channel 3  
011b = HB1 mapped to PWM channel 4  
100b = HB1 mapped to PWM channel 5  
101b = HB1 mapped to PWM channel 6  
110b = HB1 mapped to PWM channel 7  
111b = HB1 mapped to PWM channel 8  
110  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2.2.10 PWM Map Control 2 (PWM_MAP_CTRL_2) Register (Address = 0x10) [reset = 0x00]  
The PWM frequency map control 2 register is shown in 113 and described in 71.  
Register access type: Read/Write  
113. PWM Map Control 2 Register  
7
6
5
4
3
2
1
0
Reserved  
HB4_PWM_MAP  
R/W-0b  
HB3_PWM_MAP  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
71. PWM Map Control 2 Register Field Descriptions  
Bit  
7-6  
3-2  
Field  
Type  
R
Default  
00b  
Description  
Reserved  
Reserved  
HB4_PWM_MAP  
R/W  
000b  
00b = HB4 mapped to PWM channel 1  
001b = HB4 mapped to PWM channel 2  
010b = HB4 mapped to PWM channel 3  
011b = HB4 mapped to PWM channel 4  
100b = HB4 mapped to PWM channel 5  
101b = HB4 mapped to PWM channel 6  
110b = HB4 mapped to PWM channel 7  
111b = HB4 mapped to PWM channel 8  
1-0  
HB3_PWM_MAP  
R/W  
000b  
00b = HB3 mapped to PWM channel 1  
001b = HB3 mapped to PWM channel 2  
010b = HB3 mapped to PWM channel 3  
011b = HB3 mapped to PWM channel 4  
100b = HB3 mapped to PWM channel 5  
101b = HB3 mapped to PWM channel 6  
110b = HB3 mapped to PWM channel 7  
111b = HB3 mapped to PWM channel 8  
版权 © 2019, Texas Instruments Incorporated  
111  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.2.2.11 PWM Map Control 3 (PWM_MAP_CTRL_3) Register (Address = 0x11) [reset = 0x00]  
The PWM frequency map control 3 register is shown in 114 and described in 72.  
Register access type: Read/Write  
114. PWM Map Control 3 Register  
7
6
5
4
3
2
1
0
Reserved  
HB6_PWM_MAP  
R/W-0b  
HB5_PWM_MAP  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
72. PWM Map Control 3 Register Field Descriptions  
Bit  
7-6  
3-2  
Field  
Type  
R
Default  
00b  
Description  
Reserved  
Reserved  
HB6_PWM_MAP  
R/W  
000b  
00b = HB6 mapped to PWM channel 1  
01b = HB6 mapped to PWM channel 2  
10b = HB6 mapped to PWM channel 3  
11b = HB6 mapped to PWM channel 4  
01b = HB6 mapped to PWM channel 5  
10b = HB6 mapped to PWM channel 6  
11b = HB6 mapped to PWM channel 7  
01b = HB6 mapped to PWM channel 8  
1-0  
HB5_PWM_MAP  
R/W  
000b  
00b = HB5 mapped to PWM channel 1  
01b = HB5 mapped to PWM channel 2  
10b = HB5 mapped to PWM channel 3  
11b = HB5 mapped to PWM channel 4  
01b = HB5 mapped to PWM channel 5  
10b = HB5 mapped to PWM channel 6  
11b = HB5 mapped to PWM channel 7  
01b = HB5 mapped to PWM channel 8  
112  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2.2.12 PWM Map Control 4 (PWM_MAP_CTRL_4) Register (Address = 0x12) [reset = 0x00]  
The PWM frequency map control 4 register is shown in 115 and described in 73.  
Register access type: Read/Write  
115. PWM Map Control 4 Register  
7
6
5
4
3
2
1
0
Reserved  
HB8_PWM_MAP  
R/W-0b  
HB7_PWM_MAP  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
73. PWM Map Control 4 Register Field Descriptions  
Bit  
7-6  
3-2  
Field  
Type  
R
Default  
00b  
Description  
Reserved  
Reserved  
HB8_PWM_MAP  
R/W  
000b  
00b = HB8 mapped to PWM channel 1  
01b = HB8 mapped to PWM channel 2  
10b = HB8 mapped to PWM channel 3  
11b = HB8 mapped to PWM channel 4  
01b = HB8 mapped to PWM channel 5  
10b = HB8 mapped to PWM channel 6  
11b = HB8 mapped to PWM channel 7  
01b = HB8 mapped to PWM channel 8  
1-0  
HB7_PWM_MAP  
R/W  
000b  
00b = HB7 mapped to PWM channel 1  
01b = HB7 mapped to PWM channel 2  
10b = HB7 mapped to PWM channel 3  
11b = HB7 mapped to PWM channel 4  
01b = HB7 mapped to PWM channel 5  
10b = HB7 mapped to PWM channel 6  
11b = HB7 mapped to PWM channel 7  
01b = HB7 mapped to PWM channel 8  
版权 © 2019, Texas Instruments Incorporated  
113  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.2.2.13 PWM Frequency Control 1 (PWM_FREQ_CTRL_1) Register (Address = 0x13 [reset = 0x00]  
The PWM frequency control register 1 is shown in 116 and described in 74.  
Register access type: Read/Write  
116. PWM Frequency Control 1 Register  
7
6
5
4
3
2
1
0
PWM_CH4_FREQ  
R/W-0b R/W-0b  
PWM_CH3_FREQ  
R/W-0b R/W-0b  
PWM_CH2_FREQ  
R/W-0b R/W-0b  
PWM_CH1_FREQ  
R/W-0b R/W-0b  
74. PWM Frequency Control 1 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
PWM_CH4_FREQ  
R/W  
00b  
00b = PWM frequency is 80 Hz  
01b = PWM frequency is 100 Hz  
10b = PWM frequency is 200 Hz  
11b = PWM frequency is 2000 Hz  
5-4  
3-2  
1-0  
PWM_CH3_FREQ  
PWM_CH2_FREQ  
PWM_CH1_FREQ  
R/W  
R/W  
R/W  
00b  
00b  
00b  
00b = PWM frequency is 80 Hz  
01b = PWM frequency is 100 Hz  
10b = PWM frequency is 200 Hz  
11b = PWM frequency is 2000 Hz  
00b = PWM frequency is 80 Hz  
01b = PWM frequency is 100 Hz  
10b = PWM frequency is 200 Hz  
11b = PWM frequency is 2000 Hz  
00b = PWM frequency is 80 Hz  
01b = PWM frequency is 100 Hz  
10b = PWM frequency is 200 Hz  
11b = PWM frequency is 2000 Hz  
114  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2.2.14 PWM Frequency Control 2 (PWM_FREQ_CTRL_2) Register (Address = 0x14 [reset = 0x00]  
The PWM frequency control register 2 is shown in 117 and described in 75.  
Register access type: Read/Write  
117. PWM Frequency Control 2 Register  
7
6
5
4
3
2
1
0
PWM_CH8_FREQ  
R/W-0b R/W-0b  
PWM_CH7_FREQ  
R/W-0b R/W-0b  
PWM_CH6_FREQ  
R/W-0b R/W-0b  
PWM_CH5_FREQ  
R/W-0b R/W-0b  
75. PWM Frequency Control 2 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
PWM_CH8_FREQ  
R/W  
00b  
00b = PWM frequency is 80 Hz  
01b = PWM frequency is 100 Hz  
10b = PWM frequency is 200 Hz  
11b = PWM frequency is 2000 Hz  
5-4  
3-2  
1-0  
PWM_CH7_FREQ  
PWM_CH6_FREQ  
PWM_CH5_FREQ  
R/W  
R/W  
R/W  
00b  
00b  
00b  
00b = PWM frequency is 80 Hz  
01b = PWM frequency is 100 Hz  
10b = PWM frequency is 200 Hz  
11b = PWM frequency is 2000 Hz  
00b = PWM frequency is 80 Hz  
01b = PWM frequency is 100 Hz  
10b = PWM frequency is 200 Hz  
11b = PWM frequency is 2000 Hz  
00b = PWM frequency is 80 Hz  
01b = PWM frequency is 100 Hz  
10b = PWM frequency is 200 Hz  
11b = PWM frequency is 2000 Hz  
版权 © 2019, Texas Instruments Incorporated  
115  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.2.2.15 PWM Duty Control Channel 1 (PWM_DUTY_CH1) Register (Address = 0x15) [reset = 0x00]  
The channel 1 PWM duty cycle control register is shown in 118 and described in 76.  
Register access type: Read/Write  
118. PWM Duty Control Channel 1 Register  
7
6
5
4
3
2
1
0
PWM_DUTY_CH1  
R/W-0b R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
76. PWM Duty Control Channel 1 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
PWM_DUTY_CH1  
R/W  
00000000b  
00000000b = 0 % PWM Duty  
11111111b = 100 % PWM Duty  
Calculate duty as decimal (xxxxxxxxb) × 1/255  
8.6.2.2.16 PWM Duty Control Channel 2 (PWM_DUTY_CH2) Register (Address = 0x16) [reset = 0x00]  
The channel 2 PWM duty cycle control register is shown in 119 and described in 77.  
Register access type: Read/Write  
119. PWM Duty Control Channel 2 Register  
7
6
5
4
3
2
1
0
PWM_DUTY_CH2  
R/W-0b R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
77. PWM Duty Control Channel 2 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
PWM_DUTY_CH2  
R/W  
00000000b  
00000000b = 0 % PWM Duty  
11111111b = 100 % PWM Duty  
Calculate duty as decimal (xxxxxxxxb) × 1/255  
116  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2.2.17 PWM Duty Control Channel 3 (PWM_DUTY_CH3) Register (Address = 0x17) [reset = 0x00]  
The channel 3 PWM duty cycle control register is shown in 120 and described in 78.  
Register access type: Read/Write  
120. PWM Duty Control Channel 3 Register  
7
6
5
4
3
2
1
0
PWM_DUTY_CH3  
R/W-0b R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
78. PWM Duty Control Channel 3 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
PWM_DUTY_CH3  
R/W  
00000000b  
00000000b = 0 % PWM Duty  
11111111b = 100 % PWM Duty  
Calculate duty as decimal (xxxxxxxxb) × 1/255  
8.6.2.2.18 PWM Duty Control Channel 4 (PWM_DUTY_CH4) Register (Address = 0x18) [reset = 0x00]  
The channel 4 PWM duty cycle control register is shown in 121 and described in 79.  
Register access type: Read/Write  
121. PWM Duty Control Channel 4 Register  
7
6
5
4
3
2
1
0
PWM_DUTY_CH4  
R/W-0b R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
79. PWM Duty Control Channel 4 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
PWM_DUTY_CH4  
R/W  
00000000b  
00000000b = 0 % PWM Duty  
11111111b = 100 % PWM Duty  
Calculate duty as decimal (xxxxxxxxb) × 1/255  
版权 © 2019, Texas Instruments Incorporated  
117  
 
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.2.2.19 PWM Duty Control Channel 5 (PWM_DUTY_CH5) Register (Address = 0x19) [reset = 0x00]  
The channel 5 PWM duty cycle control register is shown in 122 and described in 80.  
Register access type: Read/Write  
122. PWM Duty Control Channel 5 Register  
7
6
5
4
3
2
1
0
PWM_DUTY_CH5  
R/W-0b R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
80. PWM Duty Control Channel 5 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
PWM_DUTY_CH5  
R/W  
00000000b  
00000000b = 0 % PWM Duty  
11111111b = 100 % PWM Duty  
Calculate duty as decimal (xxxxxxxxb) × 1/255  
8.6.2.2.20 PWM Duty Control Channel 6 (PWM_DUTY_CH6) Register (Address = 0x1A) [reset = 0x00]  
The channel 6 PWM duty cycle control register is shown in 123 and described in 81.  
Register access type: Read/Write  
123. PWM Duty Control Channel 6 Register  
7
6
5
4
3
2
1
0
PWM_DUTY_CH6  
R/W-0b R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
81. PWM Duty Control Channel 6 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
PWM_DUTY_CH6  
R/W  
00000000b  
00000000b = 0 % PWM Duty  
11111111b = 100 % PWM Duty  
Calculate duty as decimal (xxxxxxxxb) × 1/255  
118  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2.2.21 PWM Duty Control Channel 7 (PWM_DUTY_CH7) Register (Address = 0x1B) [reset = 0x00]  
The channel 7 PWM duty cycle control register is shown in 124 and described in 82.  
Register access type: Read/Write  
124. PWM Duty Control Channel 7 Register  
7
6
5
4
3
2
1
0
PWM_DUTY_CH7  
R/W-0b R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
82. PWM Duty Control Channel 7 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
PWM_DUTY_CH7  
R/W  
00000000b  
00000000b = 0 % PWM Duty  
11111111b = 100 % PWM Duty  
Calculate duty as decimal (xxxxxxxxb) × 1/255  
8.6.2.2.22 PWM Duty Control Channel 8 (PWM_DUTY_CH8) Register (Address = 0x1C) [reset = 0x00]  
The channel 8 PWM duty cycle control register is shown in 125 and described in 83.  
Register access type: Read/Write  
125. PWM Duty Control Channel 8 Register  
7
6
5
4
3
2
1
0
PWM_DUTY_CH4  
R/W-0b R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
83. PWM Duty Control Channel 8 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
PWM_DUTY_CH8  
R/W  
00000000b  
00000000b = 0 % PWM Duty  
11111111b = 100 % PWM Duty  
Calculate duty as decimal (xxxxxxxxb) × 1/255  
版权 © 2019, Texas Instruments Incorporated  
119  
 
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.2.2.23 Slew Rate Control 1 (SR_CTRL_1) Register (Address = 0x1D [reset = 0x00]  
The slew rate control 1 register is shown in 91 and described in 44.  
Register access type: Read/Write  
126. Slew Rate Control 1 Register  
7
6
5
4
3
2
1
0
HB8_SR  
R/W-0b  
HB7_SR  
R/W-0b  
HB6_SR  
R/W-0b  
HB5_SR  
R/W-0b  
HB4_SR  
R/W-0b  
HB3_SR  
R/W-0b  
HB2_SR  
R/W-0b  
HB1_SR  
R/W-0b  
84. Slew Rate Control 1 Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
HB8_SR  
R/W  
0b  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
6
5
4
3
2
1
0
HB7_SR  
HB6_SR  
HB5_SR  
HB4_SR  
HB3_SR  
HB2_SR  
HB1_SR  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
0b = 0.6 V/µs  
1b = 2.5 V/µs  
8.6.2.2.24 Slew Rate Control 2 (SR_CTRL_2) Register (Address = 0x1E) [reset = 0x00]  
The slew rate control 2 register is shown in 92 and described in 45.  
Register access type: Read/Write  
127. Slew Rate Control 2 Register  
7
6
5
4
Reserved  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
85. Slew Rate Control 2 Register Field Descriptions  
Bit  
Field  
Reserved  
Type  
Default  
Description  
7-4  
R/W  
0000b  
Reserved  
120  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2.2.25 Open-Load Detect (OLD) Control 1 (OLD_CTRL_1) Register (Address = 0x1F) [reset = 0x00]  
The open-load detect (OLD) control (OLD_CTRL_1) register-1 is shown in 128 and described in 86.  
Register access type: Read/Write  
128. Open-Load Detect (OLD) Control (OLD_CTRL_1) Register  
7
6
5
4
3
2
1
0
HB8_OLD_DIS HB7_OLD_DIS HB6_OLD_DIS HB5_OLD_DIS HB4_OLD_DIS HB3_OLD_DIS HB2_OLD_DIS HB1_OLD_DIS  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
86. Open-Load Detect (OLD) Control (OLD_CTRL_1) Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
HB8_OLD_DIS  
R/W  
0b  
0b = Open-load detection on half-bridge 8 is enabled  
1b = Open-load on half-bridge 8 is disabled  
6
5
4
3
2
1
0
HB7_OLD_DIS  
HB6_OLD_DIS  
HB5_OLD_DIS  
HB4_OLD_DIS  
HB3_OLD_DIS  
HB2_OLD_DIS  
HB1_OLD_DIS  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = Open-load detection on half-bridge 7 is enabled  
1b = Open-load on half-bridge 7 is disabled  
0b = Open-load detection on half-bridge 6 is enabled  
1b = Open-load on half-bridge 6 is disabled  
0b = Open-load detection on half-bridge 5 is enabled  
1b = Open-load on half-bridge 5 is disabled  
0b = Open-load detection on half-bridge 4 is enabled  
1b = Open-load on half-bridge 4 is disabled  
0b = Open-load detection on half-bridge 3 is enabled  
1b = Open-load on half-bridge 3 is disabled  
0b = Open-load detection on half-bridge 2 is enabled  
1b = Open-load on half-bridge 2 is disabled  
0b = Open-load detection on half-bridge 1 is enabled  
1b = Open-load on half-bridge 1 is disabled  
版权 © 2019, Texas Instruments Incorporated  
121  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.2.2.26 Open-Load Detect (OLD) Control 2 (OLD_CTRL_2) Register (Address = 0x20) [reset = 0x00]  
The open-load detect (OLD) control (OLD_CTRL_2) register-2 is shown in 94 and described in 47.  
Register access type: Read/Write  
129. Open-Load Detect (OLD) Control (OLD_CTRL_2) Register  
7
6
5
4
3
2
1
0
OLD_REP  
R/W-0b  
OLD_OP  
R/W-0b  
PL_MODE_EN  
Reserved  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
87. Open-Load Detect (OLD) Control (OLD_CTRL_2) Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
OLD_REP  
R/W  
0b  
0b = Report on nFAULT pin during OLD condition  
1b = No report on nFAULT pin during OLD condition  
6
OLD_OP  
R/W  
R/W  
0b  
0b = Half bridges are not active after OLD condition detect  
1b = Half bridges are active after OLD condition detect  
5-4  
PL_MODE_EN  
00b  
00b = Parallel mode OCP fast turn-off slew is enabled  
01b = Parallel mode OCP slow turn-off slew is enabled  
10b = Invalid Setting  
11b = Invalid Setting  
3-0  
Reserved  
R
0b  
Reserved  
122  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2.2.27 Open-Load Detect (OLD) Control 3 (OLD_CTRL_3) Register (Address = 0x21) [reset = 0x00]  
The open-load detect (OLD) control (OLD_CTRL_3) register-3 is shown in 95 and described in 48. This  
register also contains the bits to set the OCP deglitch time (OCP_DEG).  
Register access type: Read/Write  
130. Open-Load Detect (OLD) Control (OLD_CTRL_3) Register  
7
6
5
4
3
2
1
0
OCP_DEG  
R/W-0b  
OLD_NEG_EN  
R/W-0b  
Reserved  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
88. Open-Load Detect (OLD) Control (OLD_CTRL_3) Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-5  
OCP_DEG  
R/W  
000b  
000b = OCP deglitch time is 10 µs  
001b = OCP deglitch time is 5 µs  
010b = OCP deglitch time is 2.5µs  
011b = OCP deglitch time is 1 µs  
100b = OCP deglitch time is 60 µs  
101b = OCP deglitch time is 40 µs  
110b = OCP deglitch time is 30 µs  
111b = OCP deglitch time is 20 µs  
4
OLD_NEG_EN  
Reserved  
R/W  
R/W  
0b  
0b  
0b = Negative-current OLD mode is disabled  
1b = Negative-current OLD mode is enabled  
3-0  
Reserved  
版权 © 2019, Texas Instruments Incorporated  
123  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.2.2.28 Open Load Detect (OLD) Control 4 (OLD_CTRL_4) Register (Address = 0x22) [reset = 0x00]  
The open load detect (OLD) control (OLD_CTRL_4) register-4 is shown in 131 and described in 89.  
Register access type: Read/Write  
131. Open Load Detect (OLD) Control (OLD_CTRL_4) Register  
7
6
5
4
3
2
1
0
HB8_LCOLD_E HB7_LOLD_EN HB6_LOLD_EN HB5_LOLD_EN HB4_LOLD_EN HB3_LOLD_EN HB2_LOLD_EN HB1_LOLD_EN  
N
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
89. Open Load Detect (OLD) Control (OLD_CTRL_4) Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
HB8_LOLD_EN  
R/W  
0b  
0b = Low-current OLD on half-bridge 8 is disabled  
1b = Low-current OLD on half-bridge 8 is enabled  
6
5
4
3
2
1
0
HB7_LOLD_EN  
HB6_LOLD_EN  
HB5_LOLD_EN  
HB4_LOLD_EN  
HB3_LOLD_EN  
HB2_LOLD_EN  
HB1_LOLD_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = Low-current OLD on half-bridge 7 is disabled  
1b = Low-current OLD on half-bridge 7 is enabled  
0b = Low-current OLD on half-bridge 6 is disabled  
1b = Low-current OLD on half-bridge 6 is enabled  
0b = Low-current OLD on half-bridge 5 is disabled  
1b = Low-current OLD on half-bridge 5 is enabled  
0b = Low-current OLD on half-bridge 4 is disabled  
1b = Low-current OLD on half-bridge 4 is enabled  
0b = Low-current OLD on half-bridge 3 is disabled  
1b = Low-current OLD on half-bridge 3 is enabled  
0b = Low-current OLD on half-bridge 2 is disabled  
1b = Low-current OLD on half-bridge 2 is enabled  
0b = Low-current OLD on half-bridge 1 is disabled  
1b = Low-current OLD on half-bridge 1 is enabled  
124  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
8.6.2.2.29 Open Load Detect (OLD) Control 5 (OLD_CTRL_5) Register (Address = 0x23) [reset = 0x00]  
The open load detect (OLD) (OLD_CTRL_5) register-5 is shown in 132 and described in 90.  
132. Open Load Detect (OLD) Control (OLD_CTRL_5) Register  
7
6
5
4
3
2
1
0
HB8_POLD_E HB7_POLD_E HB6_POLD_E HB5_POLD_E HB4_POLD_E HB3_POLD_E HB2_POLD_E HB1_POLD_E  
N
N
N
N
N
N
N
N
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
90. Open Load Detect (OLD) Control (OLD_CTRL_5) Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
HB8_POLD_EN  
R/W  
0b  
0b = Passive OLD operation of half-bridge 8 is disabled  
1b = Passive OLD operation of half-bridge 8 is enabled  
6
5
4
3
2
1
0
HB7_POLD_EN  
HB6_POLD_EN  
HB5_POLD_EN  
HB4_POLD_EN  
HB3_POLD_EN  
HB2_POLD_EN  
HB1_POLD_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = Passive OLD operation of half-bridge 7 is disabled  
1b = Passive OLD operation of half-bridge 7 is enabled  
0b = Passive OLD operation of half-bridge 6 is disabled  
1b = Passive OLD operation of half-bridge 6 is enabled  
0b = Passive OLD operation of half-bridge 5 is disabled  
1b = Passive OLD operation of half-bridge 5 is enabled  
0b = Passive OLD operation of half-bridge 4 is disabled  
1b = Passive OLD operation of half-bridge 4 is enabled  
0b = Passive OLD operation of half-bridge 3 is disabled  
1b = Passive OLD operation of half-bridge 3 is enabled  
0b = Passive OLD operation of half-bridge 2 is disabled  
1b = Passive OLD operation of half-bridge 2 is enabled  
0b = Passive OLD operation of half-bridge 1 is disabled  
1b = Passive OLD operation of half-bridge 1 is enabled  
版权 © 2019, Texas Instruments Incorporated  
125  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8.6.2.2.30 Open Load Detect (OLD) Control 6 (OLD_CTRL_6) Register (Address = 0x24) [reset = 0x00]  
The open load detect (OLD) (OLD_CTRL_6) register-6 register is shown in 133 and described in 91.  
133. Open Load Detect (OLD) Control (OLD_CTRL_6) Register  
7
6
5
4
3
2
1
0
HB8_VM_POL HB7_VM_POL HB6_VM_POL HB5_VM_POL HB4_VM_POL HB3_VM_POL HB2_VM_POL HB1_VM_POL  
D
D
D
D
D
D
D
D
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
91. Open Load Detect (OLD) Control (OLD_CTRL_6) Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
HB8_VM_POLD  
R/W  
0b  
0b = Passive OLD operation for VM connected load of half-  
bridge 8 is disabled  
1b = Passive OLD operation for VM connected load of half-  
bridge 8 is enabled  
6
5
4
3
2
1
0
HB7_VM_POLD  
HB6_VM_POLD  
HB5_VM_POLD  
HB4_VM_POLD  
HB3_VM_POLD  
HB2__VM_POLD  
HB1_VM_POLD  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = Passive OLD operation for VM connected load of half-  
bridge 7 is disabled  
1b = Passive OLD operation for VM connected load of half-  
bridge 7 is enabled  
0b = Passive OLD operation for VM connected load of half-  
bridge 6 is disabled  
1b = Passive OLD operation for VM connected load of half-  
bridge 6 is enabled  
0b = Passive OLD operation for VM connected load of half-  
bridge 5 is disabled  
1b = Passive OLD operation for VM connected load of half-  
bridge 5 is enabled  
0b = Passive OLD operation for VM connected load of half-  
bridge 4 is disabled  
1b = Passive OLD operation for VM connected load of half-  
bridge 4 is enabled  
0b = Passive OLD operation for VM connected load of half-  
bridge 3 is disabled  
1b = Passive OLD operation for VM connected load of half-  
bridge 3 is enabled  
0b = Passive OLD operation for VM connected load of half-  
bridge 2 is disabled  
1b = Passive OLD operation for VM connected load of half-  
bridge 2 is enabled  
0b = Passive OLD operation for VM connected load of half-  
bridge 1 is disabled  
1b = Passive OLD operation for VM connected load of half-  
bridge 1 is enabled  
126  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DRV89xx-Q1 device is primarily used in control of multiple brushed DC motors in HVAC applications. The  
design procedures in the Typical Application section highlight how to use and configure the DRV89xx-Q1 device.  
The DRV89xx-Q1 device can alternatively be used in automotive side-mirrors targeting the mirror-fold (by  
paralleling the half-bridges to meet the high current requirement), mirror x-y direction control and side indicator  
LED's as presented in Alternative Application section.  
版权 © 2019, Texas Instruments Incorporated  
127  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
9.2 Typical Application  
9.2.1 Primary Application  
The DRV89xx-Q1 is primarily used for the control of multiple brushed DC motors which can be connected in  
independent-type, sequential-type or the parallel-type motor connection as shown in 134.  
An automotive battery powers the device to power supply pin (VM). A 3.3-V regulated power supply is generated  
for the supplying power to the digital core (VDD) of the device. A micro-controller is connected to the DRV89XX-  
Q1 device with the SPI interface (4-lines) for control, configuration and diagnostics. The device operating or  
sleep state is controlled by the nSLEEP pin and nFAULT pins is used as an additional hardware diagnostics.  
+
bulk  
0.1 µF  
VDD  
VBAT  
0.1 µF  
Sequential-Type BDC  
Motor Connection  
Parallel-Type BDC  
Motor Connection  
Independent-Type BDC  
Motor Connection  
VIN  
VM  
VM  
VOUT  
Regulator  
(3.3 V or 5 V)  
+
OUT1  
OUT1  
OUT2  
OUT3  
OUT1  
bulk  
0.1 µF  
OUT2  
DRV8912-Q1  
M
M
M
M
OUT2  
OUT3  
OUT3  
OUT4  
RPU1  
nFAULT  
GP-I  
M
Microcontroller  
OUT5  
OUT6  
OUT4  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
SDO  
nSCS  
SCLK  
SDI  
GP-I  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
M
11 × BDC  
Motors  
OUT7  
OUT8  
GP-O  
6 × BDC  
Motors  
SPI  
SPI  
GP-O  
GP-O  
OUT9  
OUT10  
OUT11  
OUT11  
M
M
M
OUT11  
OUT12  
GP-O  
nSLEEP  
OUT12  
GND  
OUT12  
GND  
134. Primary Application Schematic (Automotive HVAC Application)  
128  
版权 © 2019, Texas Instruments Incorporated  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
Typical Application (接下页)  
9.2.1.1 Design Requirements  
92 lists example input parameters for the system design.  
92. Design Parameters  
DESIGN PARAMETERS  
Supply voltage  
REFERENCE  
EXAMPLE VALUE  
13.5-V  
VVM  
Supply digital voltage  
VVDD  
3.3-V  
Number of motor connected  
Number of motor operating in normal operation  
Number of motor operating in stall condition  
Motor RMS current  
N
6 motors  
4 motors  
2 motors  
200-mA  
NF  
NS  
IRMS  
Motor peak current  
IPEAK  
800-mA  
Motor resistance  
RMOTOR  
16.9-Ω  
Motor inductance  
LMOTOR  
10-mH  
PWM Frequency  
fPWM  
2-kHz (Internal)  
22.5-µs  
Rise and fall time for continuous mode (SR = 0)  
Rise and fall time for PWM mode (SR = 1)  
tRISE_CONT, tFALL_CONT  
tRISE_PWM, tFALL_PWM  
5.4-µs  
9.2.1.2 Detailed Design Procedure  
The design procedure includes the selection of motor current rating the power dissipation to meet the desired  
thermal performance.  
9.2.1.2.1 Motor Current Rating  
Motor specification selection is the most importance criteria for the design. Each half-bridge (OUTx) of the  
DRV89XX-Q1 device is designed to handle RMS current of 1-A and the peak current is limited by the minimum  
over-current (OCP) limit of 1.3-A. Therefore, a motor with peak starting current higher than 1.3-A is expected to  
hit OCP limit. For higher peak current motors (starting current higher than 1.3-A), following methods can be  
implemented:  
1. Current Chopping: During starting, if supply voltage is connected directly to the motor, then due to low  
back-emf (when speed is zero or low), a huge peak current is demanded by the motor. This peak current is  
only limited by the motor's winding resistance (RMOTOR). This peak current of motor can be limited by starting  
the motor with low-duty PWM switching operation and then gradually increasing (duty-ramping) the duty with  
speed to 100% PWM operation (equivalent to motor operating in continuous mode). This duty-ramping  
provides enough time to ramp motor speed and build sufficient back-emf which limits the peak current. The  
DRV89XX-Q1 device implements a 2-kHz PWM switching operation which is suitable for the HVAC damper  
motors.  
2. OCP Deglitch Time Adjustments: This method is applicable if the motor inertia is low and the motor can  
quickly pick up the speed. For this method, the motor starting current should settle to lower than minimum  
over-current limit (IOCP) before OCP deglitch time (tOCP) is over. The device provides multiple (8 settings)  
OCP deglitch time settings with a default deglitch time of 10-µs and can be increased to a maximum value of  
60-µs.  
For multiple motor connection, it has to be ensured that the total device current should be  
lower than the maximum current-carrying capability of the power-supply (VM/GND) pins  
i.e. 6-A (maximum).  
9.2.1.2.2 Power Dissipation  
A detailed explanation of the power dissipation of the device is presented in Power Dissipation section.  
版权 © 2019, Texas Instruments Incorporated  
129  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
9.2.2 Alternative Application  
The DRV89xx-Q1 can alternatively be used for the mirrors targeting the mirror-fold, mirror x-y direction control  
and side indicator LED's as shown in 135.  
The half-bridges are connected in parallel to support the higher current requirement of the mirror fold application.  
Whereas, single half-bridges can be used for driving the low-current motors used for the mirror X and Y  
positioning. Moreover, the LED's used in side indicators, puddle lamp is lower current which can be easily driven  
by single half-bridges.  
The driver is powered by the automotive battery with a 3.3-V regulated power supply generated for the supplying  
power to the digital pin (VDD). A micro-controller is connected to the DRV89XX-Q1 device with the SPI interface  
(4-lines) for control, configuration and diagnostics. The device operating or sleep state is controlled by the  
nSLEEP pin and nFAULT pins is used as an additional hardware diagnostics.  
+
bulk  
0.1 µF  
VBAT  
0.1 µF  
VIN  
VM  
VM  
VDD  
VOUT  
Regulator  
(3.3 V or 5 V)  
+
OUT1  
bulk  
0.1 µF  
DRV8912-Q1  
M
M
Mirror X-Y  
Drirection  
OUT2  
OUT3  
RPU1  
nFAULT  
GP-I  
Microcontroller  
SDO  
nSCS  
SCLK  
SDI  
GP-I  
OUT4  
OUT5  
OUT6  
OUT7  
GP-O  
Mirror  
Fold  
SPI  
SPI  
M
GP-O  
GP-O  
OUT8  
OUT9  
OUT10  
OUT11  
RLED  
GP-O  
nSLEEP  
OUT12  
GND  
Indicator LED  
GND  
GND  
135. Alternative Application Schematic (Automotive Side-Mirror Application)  
130  
版权 © 2019, Texas Instruments Incorporated  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
9.2.2.1 Design Requirements  
93 lists example input parameters for the system design.  
93. Design Parameters  
DESIGN PARAMETERS  
Supply voltage  
REFERENCE  
VVM  
EXAMPLE VALUE  
13.5-V  
Supply digital voltage  
VVDD  
3.3-V  
Motor RMS current (Mirror Fold Motor)  
Motor peak current (Mirror Fold Motor)  
Motor RMS current (X/Y Direction Motor)  
Motor peak current (X/Y Direction Motor)  
LED Current  
IRMS_FOLD  
1.8-A  
IPEAK_FOLD  
IRMS_XY  
3-A  
200-mA  
IPEAK_XY  
800-mA  
ILED  
150-mA  
PWM Frequency (Motor)  
fPWM_MOTOR  
fPWM_LED  
tRISE_CONT, tFALL_CONT  
tRISE_PWM, tFALL_PWM  
2-kHz (Internal)  
100-Hz (Internal)  
22.5-µs  
PWM Frequency (LED)  
Rise and fall time for continuous mode (SR = 0)  
Rise and fall time for PWM mode (SR = 1)  
5.4-µs  
9.2.2.2 Detailed Design Procedure  
The key-requirement for this application is the selection of number of half-bridges to operate in parallel for the  
high current motor (mirror-fold) application. Parallel Mode (Continuous Operation) describes the configuration for  
half-bridges for enabling the parallel mode operation.  
9.2.2.2.1 H-Bridge Requirements for Parallel Operation  
The selection of number of half-bridges for connecting in parallel operation to support higher current depends on  
two parameters as:  
1. Peak / Stall Current: The mirror-fold motor peak current decides the amount of current flowing through a  
single half-bridge which has to be lower than the minimum OCP (IOCP) threshold limit. A current limiting  
approach for limiting the peak current of motor can also be implemented as shown in Motor Current Rating  
section. This section also explains the application of adjusting the OCP deglitch timing for meeting the  
desired peak currents.  
2. Thermal: For meeting the desired thermal performance during the peak current / stall condition, the number  
of half-bridges is increased to reduce the effective RDS(ON)  
.
For this example as shown in 93, six half-bridges can be connected in parallel combination (3 half-bridges for  
high-side and 3 half-bridges for low-side) to support the 3-A peak current requirement. The power dissipation for  
this can be calculated in similar way as explained in Power Dissipation section.  
版权 © 2019, Texas Instruments Incorporated  
131  
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
9.2.3 Application Curves  
136. Motor Operation in Continuous Mode  
137. Motor Operation in PWM Mode  
138. Multiple Motor Operation in PWM Mode  
139. Active Open-Load Detection  
132  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
9.3 Thermal Application  
This section presents the power dissipation and thermal analysis of DRV89XX-Q1 device applicable for different  
types of PCB's.  
9.3.1 Power Dissipation  
The total power dissipation in the DRV89XX-Q1 device constitutes three main components as the power  
dissipation in full-bridges (PDRV) due to on-state resistance (RDS(ON)), power dissipation due to switching losses in  
FETs (PSW) and power losses due to quiescent current consumption (PQ).  
9.3.1.1 Power Dissipation Due to Device On-State Resistance (RDS(ON)  
)
The current path for a motor connected in full-bridge is through the high-side FET of one half-bridge and low-side  
FET of other half-bridge. The power dissipation of DRV89XX-Q1 depends on the amount of current flowing  
through the full-bridge and the number of such full-bridges which are operating together. The power dissipation  
(PFB_CONT) in a single full-bridge configuration for continuous mode depends on the motor rms current (IRMS) and  
high-side (RDS(ON)_HS) and low-side (RDS(ON)_LS) on-state resistance as shown in 公式 1.  
PFB_CONT = (IRMS)2 x (RDS(ON)_HS + RDS(ON)_LS  
)
(1)  
The power dissipation (PFB_STALL) in a single full-bridge configuration for motor is a stall condition depends on the  
motor peak current (IPEAK) and high-side (RDS(ON)_HS) and low-side (RDS(ON)_LS) on-state resistance as shown in  
公式 2.  
PFB_STALL = (IPEAK)2 x (RDS(ON)_HS + RDS(ON)_LS  
)
(2)  
Now, the power dissipation for operating mode and stall mode in single full-bridge for the typical application as  
shown in 92 is calculated in 公式 3 and 公式 4 respectively.  
PFB_CONT = (IRMS)2 x (RDS(ON)_HS + RDS(ON)_LS) = (200-mA)2 x (0.75-Ω + 0.75-Ω) = 60-mW  
PFB_STALL = (IPEAK)2 x (RDS(ON)_HS + RDS(ON)_LS) = (800-mA)2 x (0.75-Ω + 0.75-Ω) = 960-mW  
(3)  
(4)  
For NF-full bridges in operating condition and NS-full bridges in stall condition, the total driver power (PDRV) is  
expressed and calculated as shown in 公式 5.  
PDRV = NF x PFB_CONT + NS x PFB_STALL = 4 x 60-mW + 2 x 960-mW = 2.16-W  
(5)  
This power calculation is highly dependent on the device temperature which significantly  
effects the high-side and low-side RDS(ON) of the FETs. For more accurate calculation,  
consider the dependency of RDS(ON) of FETs with device temperature.  
9.3.1.2 Power Dissipation Due to Switching Losses  
The power loss due to the PWM switching frequency depends on the slew rates (rise-time (tRISE_PWM) and fall-  
time (tFALL_PWM)), supply voltage (VVM), motor RMS current (IRMS) and the PWM switching frequency (fPWM).  
Considering a case, where the PWM switching is only applicable for single half-bridge in a full-bridge  
configuration (see Free-Wheeling Mode (Synchronous Rectification) Disable / Enable), therefore only half of the  
half-bridges are operating in PWM switching. Hence, the switching losses during rise-time and fall-time is  
calculated as shown in 公式 6 and 公式 7.  
PSW_RISE = (NF/2) x 0.5 x VVM x IRMS x tRISE_PWM x fPWM  
PSW_FALL = (NF/2) x 0.5 x VVM x IRMS x tFALL_PWM x fPWM  
(6)  
(7)  
Putting various parameters from 92 in 公式 6 and 公式 7, the rise-time (PSW_RISE) and fall-time (PSW_FALL  
)
switching losses are calculated as shown in 公式 8 and 公式 9 as,  
PSW_RISE = (NF/2) x 0.5 x VVM x IRMS x tRISE_PWM x fPWM = (4/2) x 0.5 x 13.5-V x 200-mA x 9-µs x 2-kHz = 48.6-mW  
PSW_FALL = (NF/2) x 0.5 x VVM x IRMS x tFALL_PWM x fPWM = (4/2) x 0.5 x 13.5-V x 200-mA x 9-µs x 2-kHz = 48.6-mW  
(8)  
(9)  
Hence, the total switching power (PSW) is calculated as the sum of rise-time (PSW_RISE) switching losses and fall-  
time (PSW_FALL) switching losses as shown in 公式 10.  
PSW = PSW_RISE + PSW_FALL = 48.6-mW + 48.6-mW = 97.2-mW  
(10)  
133  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
 
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Thermal Application (接下页)  
The rise-time (tRISE) and the fall-time (tFALL) are calculated based on typical values of the  
slew rate (SR) from Specifications. This parameter is intended to change based on the  
supply-voltage, temperature and device to device variation.  
9.3.1.3 Power Dissipation Due to Quiescent Current  
The power dissipation due to the quiescent current taken by the power supply (PVM) and the digital supply (PVDD  
)
depends on the applied voltage (VVM and VVDD) and operating mode currents (IVM and IVDD) and are calculated  
as shown in 公式 11 and 公式 12 respectively.  
PVM = VVM x IVM  
(11)  
(12)  
PVDD = VVDD x IVDD  
Putting various parameters from 92 in 公式 11 and 公式 12, the power-supply (PVM) and digital-supply  
(PSW_FALL) quiescent power losses are calculated as shown in 公式 13 and 公式 14 as,  
PVM = VVM x IVM = 13.5-V x 3-mA = 40.5-mW  
PVDD = VVDD x IVDD = 3.3-V x 3-mA = 9-mW  
(13)  
(14)  
The total quiescent power loss (PQ) is calculated as the sum of quiescent power loss due to VM and VDD as  
shown in 公式 15 as,  
PQ = PVM + PVDD = 40.5-mW + 9.9-mW = 50.4-mW  
(15)  
The quiescent power is calculated using the typical operating current (IVM and IVDD) which  
is dependent on supply-voltage, temperature and device to device variation.  
9.3.1.4 Total Power Dissipation  
The total power dissipation (PTOT) is calculated as the sum of the power dissipation in full-bridges (PDRV), power  
dissipation due to switching losses in FET's (PSW) and power losses due to quiescent current consumption (PQ)  
as shown in 公式 16.  
PTOT = PDRV + PSW + PQ  
(16)  
Now, by putting values of PDRV, PSW and PQ from 公式 5, 公式 10 and 公式 15 in 公式 16, the total power  
dissipation (PTOT) is calculated as shown in 公式 17.  
PTOT = PDRV + PSW + PQ = 2.16-W + 97.2-mW + 50.4-mW = 2.3076-W  
(17)  
9.3.2 PCB Types  
Thermal analysis in this section is focused for the 2-layer and 4-layer PCB with two different copper thickness (1-  
oz and 2-oz) and six different copper areas (1-cm2, 2-cm2, 4-cm2, 8-cm2, 16-cm2 and 32-cm2).  
140 and 141 shows the top-layer and bottom-layer which is applicable for both 2/4-layer PCB. 142 and  
143 shows the mid-layer-1 and mid-layer-2 of a 4-layer PCB. The top-layer, mid-layer-1 and bottom-layer of  
the PCB is filled with ground plane, whereas, the mid-layer-2 is filled with power plane.  
The thickness of copper for different PCB layers in different PCB types is summarized in 94. The PCB  
dimension (A) for different PCB copper area is summarized in 95.  
94. PCB Type and Copper Thickness  
PCB Type  
Copper Thickness  
1-oz PCB  
Top Layer  
1-oz  
Bottom Layer  
1-oz  
Mid-Layer 1  
Mid-Layer 2  
2-Layer  
N/A  
2-oz PCB  
2-oz  
2-oz  
4-Layer  
1-oz PCB  
1-oz  
1-oz  
1-oz  
1-oz  
1-oz  
1-oz  
2-oz PCB  
2-oz  
2-oz  
134  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
A
A
6.4  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
3
1.2  
1.2  
4
5
6
4.02  
7.8  
7
A
A
8
9
10  
11  
12  
2.96  
3.4  
Trace 0.22 x 34.5 mm  
at 0.65 mm pitch  
26.52 mm2 (0.2252cm2)  
TOP LAYER  
BOTTOM LAYER  
140. PCB - Top Layer (4/2-Layer PCB)  
141. PCB - Bottom Layer (4/2-Layer PCB)  
A
A
A
A
MID LAYER-2  
MID LAYER-1  
142. PCB - Mid Layer-1 (4-Layer PCB)  
143. PCB - Mid Layer-2 (4-Layer PCB)  
95. PCB Dimension  
COPPER AREA (cm2)  
DIMENSION (A) (mm)  
13.31 mm  
1 cm2  
2 cm2  
4 cm2  
8 cm2  
16 cm2  
32 cm2  
17.64 mm  
23.62 mm  
31.98 mm  
43.76 mm  
60.36 mm  
版权 © 2019, Texas Instruments Incorporated  
135  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
9.3.3 Thermal Parameters  
The variation of thermal parameters such as the RθJA (Junction-to-Ambient Thermal Resistance) and ΨJB  
(Junction-to-Board Characterization Parameter) is highly dependent on the PCB type, copper thickness and the  
copper pad area.  
144 and 145 shows the variation of the RθJA (Junction-to-Ambient Thermal Resistance) and ΨJB (Junction-  
to-Board Characterization Parameter) with copper-pad area for 2-layer PCB. As shown in these curves, the  
thermal resistance is lower for the higher copper thickness PCB and the higher copper pad-area.  
Similarly, 146 and 145 shows the variation of the RθJA and ΨJB with copper-pad area for 4-layer PCB  
respectively.  
The thermal parameters (RθJA (Junction-to-Ambient Thermal Resistance) and ΨJB  
(Junction-to-Board Characterization Parameter)) are calculated considering the ambient  
temperature of 25°C and with 1.5-W power evenly dissipated between high-side and low-  
side FET's. The thermal parameters calculated considering the power dissipation at the  
actual location of the power-FETs rather than an averaged estimation.  
The thermal parameters are highly dependent on the external conditions such as altitude,  
package geometry etc. Refer to Application Report for more details.  
80  
70  
60  
50  
40  
30  
20  
16  
14  
12  
10  
8
1-oz Copper  
2-oz Copper  
1-oz Copper  
2-oz Copper  
6
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Copper Pad-Area (cm2)  
Copper Pad-Area (cm2)  
D002  
D001  
144. 2-Layer PCB Junction-to-Ambient Thermal  
145. 2-Layer PCB Junction-to-Board Characterization  
Parameter (ΨJB) vs Copper Area  
Resistance (RθJA) vs Copper Area  
8
30  
28  
26  
24  
22  
20  
1-oz Copper  
2-oz Copper  
1-oz Copper  
2-oz Copper  
7.8  
7.6  
7.4  
7.2  
7
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Copper Pad-Area (cm2)  
Copper Pad-Area (cm2)  
D004  
D003  
146. 4-Layer PCB Junction-to-Ambient Thermal  
147. 4-Layer PCB Junction-to-Board Characterization  
(ΨJB) Parameter vs Copper Area  
Resistance (RθJA) vs Copper Area  
136  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
9.3.4 Transient Thermal  
This section presents the variation of transient thermal parameters such as the ZθJA (Transient Junction-to-  
Ambient Thermal Resistance) and ZΨJB (Transient Junction-to-Board Characterization Parameter) with time for 4-  
layer PCB board with different copper pad area.  
148, 149 and 150 shows the transient junction-to-ambient thermal resistance (ZθJA) vs time for 4-Layer  
PCB with copper-pad area of 4-cm2, 8-cm2 and 16-cm2 respectively.  
151, 152 and 153 shows the transient junction-to-ambient thermal resistance (ZΨJB) vs time for 4-Layer  
PCB with copper-pad area of 4-cm2, 8-cm2 and 16-cm2 respectively.  
30  
27  
24  
21  
18  
15  
12  
9
30  
27  
24  
21  
18  
15  
12  
9
0.5-oz Copper  
1-oz Copper  
2-oz Copper  
0.5-oz Copper  
1-oz Copper  
2-oz Copper  
6
6
3
3
0
1E-6 1E-5 0.0001  
0
1E-6 1E-5 0.0001  
0.01 0.1  
Time (s)  
1 2 510  
100 1000  
0.01 0.1  
Time (s)  
1 2 510  
100 1000  
D004  
D0045  
148. Transient Junction-to-Ambient Thermal Resistance  
(ZθJA) vs Time for 4-Layer PCB with Copper-Pad Area of 4-  
cm2  
149. Transient Junction-to-Ambient Thermal Resistance  
(ZθJA) vs Time for 4-Layer PCB with Copper-Pad Area of 8-  
cm2  
30  
27  
24  
21  
18  
15  
12  
9
10  
9
8
7
6
5
4
3
2
1
0
0.5-oz Copper  
1-oz Copper  
2-oz Copper  
0.5-oz Copper  
1-oz Copper  
2-oz Copper  
6
3
0
1E-6 1E-5 0.0001  
0.01 0.1  
Time (s)  
1 2 510  
100 1000  
1E-6 1E-5 0.0001  
0.01 0.1  
Time (s)  
1 2 510  
100 1000  
D006  
D001  
150. Transient Junction-to-Ambient Thermal Resistance  
(ZθJA) vs Time for 4-Layer PCB with Copper-Pad Area of  
16-cm2  
151. Transient Junction-to-Board Characterization  
(ZΨJB) Parameter vs Time for 4-Layer PCB with Copper-  
Pad Area of 4-cm2  
版权 © 2019, Texas Instruments Incorporated  
137  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
10  
10  
9
8
7
6
5
4
3
2
1
0
0.5-oz Copper  
1-oz Copper  
2-oz Copper  
0.5-oz Copper  
1-oz Copper  
2-oz Copper  
9
8
7
6
5
4
3
2
1
0
1E-6 1E-5 0.0001  
0.01 0.1  
Time (s)  
1 2 510  
100 1000  
1E-6 1E-5 0.0001  
0.01 0.1  
Time (s)  
1 2 510  
100 1000  
D002  
D003  
152. Transient Junction-to-Board Characterization  
(ZΨJB) Parameter vs Time for 4-Layer PCB with Copper-  
Pad Area of 8-cm2  
153. Transient Junction-to-Board Characterization  
(ZΨJB) Parameter vs Time for 4-Layer PCB with Copper-  
Pad Area of 16-cm2  
9.3.5 Device Junction Temperature Estimation  
The device junction temperature (TJ) is calculated by the power dissipation and the thermal parameters  
(Junction-to-Ambient Thermal Resistance (RθJA)) for the particular PCB. For an ambient temperature of TA and  
total power dissipation (PTOT), the junction temperature (TJ) is calculated as shown in 公式 18.  
TJ = TA + (PTOT x RθJA  
)
(18)  
Considering a 4-layer PCB, with copper thickness as 2-oz and copper-pad area as 16-cm2, the junction-to-  
ambient thermal resistance (RθJA) can be taken from 146 as 22°C/W.  
By putting the value of total power dissipation (PTOT) from 公式 17 in 公式 18 and taking ambient temperature  
(TA) as 25°C, the junction temperature is calculated as shown in 公式 19.  
TJ = TA + (PTOT x RθJA) = 25°C + (2.3076-W x 22°C/W) = 75.77 °C  
(19)  
Hence, the power dissipation of 2.3076-W in the DRV89XX-Q1 device causes the junction temperature (TJ) to  
increase to 75.77°C. This junction temperature has a margin of 74.23°C before hitting the thermal shutdown limit.  
138  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
10 Power Supply Recommendations  
The DRV89xx-Q1 device is designed to operate from an input voltage supply (VM) range from 4.5-V to 32-V. A  
0.1-μF ceramic capacitor rated for VM must be placed as close to the device as possible. In addition, a bulk  
capacitor must be included on the VM pin but can be shared with the bulk bypass capacitance for the external  
power MOSFETs.  
10.1 Bulk Capacitance Sizing  
Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size. The  
amount of local capacitance depends on a variety of factors including:  
The highest current required by the motor system  
The power supply's type, capacitance, and ability to source current  
The amount of parasitic inductance between the power supply and motor system  
The acceptable supply voltage ripple  
Type of motor (brushed DC, brushless DC, stepper)  
The motor startup and braking methods  
The inductance between the power supply and motor drive system will limit the rate of change of current from the  
power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or  
dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage  
remains stable and high current can be quickly supplied.  
The data sheet provides a recommended minimum value, but system level testing is required to determine the  
appropriate sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
+
Motor Driver  
œ
GND  
Local  
Bulk Capacitor  
IC Bypass  
Capacitor  
154. Motor Drive Power Supply Parasitic Example  
版权 © 2019, Texas Instruments Incorporated  
139  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Bypass the VM pin to the GND pin using a low-ESR ceramic bypass capacitor with a recommended value of 0.1  
μF. Place this capacitor as close to the VM pin as possible with a thick trace or ground plane connected to the  
PGND pin. Additionally, bypass the VM pin using a bulk capacitor rated for VM. This component can be  
electrolytic. This capacitance must be at least 10 μF.  
Bypass the VDD pin to the GND pin with a 0.1-μF low-ESR ceramic capacitor rated for 6.3 V (X5R or X7R).  
Place this capacitor as close to the pin as possible and minimize the path from the capacitor to the AGND pin.  
11.2 Layout Example  
GND  
OUT2  
OUT8  
VM  
GND  
OUT1  
OUT5  
OUT7  
SDI  
+
SCLK  
nSCS  
OUT12  
OUT11  
VM  
+
VDD  
SDO  
nSLEEP  
OUT9  
OUT6  
OUT4  
nFAULT  
+
OUT10  
OUT3  
GND  
Ground  
Supply Lines  
OUTX Lines  
Digital Signals  
155. Layout Example  
140  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)DRV8912-Q1 评估模块 (EVM)》  
德州仪器 (TI)《电机驱动器布局指南》应用报告  
12.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
96. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
DRV8904-Q1  
DRV8906-Q1  
DRV8908-Q1  
DRV8910-Q1  
DRV8912-Q1  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2019, Texas Instruments Incorporated  
141  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
142  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
PACKAGE OUTLINE  
PowerPADTM TSSOP - 1.2 mm max height  
PWP0024N  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
22X 0.65  
24  
1
2X  
7.9  
7.7  
7.15  
NOTE 3  
12  
13  
0.30  
0.19  
24X  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 1.25 MAX  
NOTE 5  
13  
12  
2X 0.35 MAX  
NOTE 5  
0.25  
GAGE PLANE  
1.2 MAX  
4.02  
3.12  
25  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
24  
1
2.96  
2.06  
4224477/A 08/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
版权 © 2019, Texas Instruments Incorporated  
143  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
PowerPADTM TSSOP - 1.2 mm max height  
PWP0024N  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(2.96)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
24X (1.5)  
1
24X (0.45)  
24  
SEE DETAILS  
(R0.05) TYP  
(4.02)  
22X (0.65)  
SYMM  
(0.6)  
25  
(7.8)  
NOTE 9  
(1.2) TYP  
SOLDER MASK  
DEFINED PAD  
(
0.2) TYP  
VIA  
12  
13  
(1.2) TYP  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4224477/A 08/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
144  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
EXAMPLE STENCIL DESIGN  
PowerPADTM TSSOP - 1.2 mm max height  
PWP0024N  
SMALL OUTLINE PACKAGE  
(2.96)  
BASED ON  
0.125 THICK  
STENCIL  
METAL COVERED  
BY SOLDER MASK  
24X (1.5)  
1
24X (0.45)  
24  
(R0.05) TYP  
22X (0.65)  
(4.02)  
SYMM  
25  
BASED ON  
0.125 THICK  
STENCIL  
12  
13  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.31 X 4.49  
2.96 X 4.02 (SHOWN)  
2.70 X 3.67  
0.125  
0.15  
0.175  
2.50 X 3.40  
4224477/A 08/2018  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
版权 © 2019, Texas Instruments Incorporated  
145  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
13.1 Package Option Addendum  
13.1.1 Packaging Information  
www.ti.com.cn  
Package  
Type  
Package  
Drawing  
Package  
Qty  
Lead/Ball  
Finish(3)  
(1)  
(2)  
(4)  
Orderable Device  
Status  
PREVIEW  
Pins  
Eco Plan  
MSL Peak Temp  
Op Temp (°C)  
Device Marking(5)(6)  
P8912  
CU  
NIPDAU  
PDRV8912QPWPRQ1  
HTSSOP  
PWP  
24  
2000  
TBD  
Level-3-260C-168hrs  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material)  
space  
(3) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
space  
(4) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(6) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief  
on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third  
parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for  
release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
146  
版权 © 2019, Texas Instruments Incorporated  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
www.ti.com.cn  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
13.1.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
PDRV8912QPWPRQ1  
HTSSOP  
PWP  
24  
2000  
330  
16.4  
6.95  
8.3  
1.6  
8.0  
16  
Q1  
版权 © 2019, Texas Instruments Incorporated  
147  
DRV8904-Q1, DRV8906-Q1, DRV8908-Q1  
DRV8910-Q1, DRV8912-Q1  
ZHCSJB5B SEPTEMBER 2019REVISED DECEMBER 2019  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
PWP 24  
SPQ  
Length (mm) Width (mm)  
367 367  
Height (mm)  
PDRV8912QPWPRQ1  
HTSSOP  
2000  
38  
148  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8904QPWPRQ1  
DRV8906QPWPRQ1  
DRV8908QPWPRQ1  
DRV8910QPWPRQ1  
DRV8912QPWPRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
PWP  
PWP  
24  
24  
24  
24  
24  
2000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DRV8904  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
DRV8906  
DRV8908  
DRV8910  
DRV8912  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Feb-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8904QPWPRQ1  
DRV8906QPWPRQ1  
DRV8908QPWPRQ1  
DRV8912QPWPRQ1  
HTSSOP PWP  
HTSSOP PWP  
HTSSOP PWP  
HTSSOP PWP  
24  
24  
24  
24  
2000  
2000  
2000  
3000  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
6.95  
6.95  
6.95  
6.95  
8.3  
8.3  
8.3  
8.3  
1.6  
1.6  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8904QPWPRQ1  
DRV8906QPWPRQ1  
DRV8908QPWPRQ1  
DRV8912QPWPRQ1  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
PWP  
24  
24  
24  
24  
2000  
2000  
2000  
3000  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PWP 24  
4.4 x 7.6, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224742/B  
www.ti.com  
PACKAGE OUTLINE  
PWP0024N  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
22X 0.65  
PLANE  
24  
1
2X  
7.9  
7.7  
7.15  
NOTE 3  
12  
13  
0.30  
0.19  
24X  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 1.25 MAX  
NOTE 5  
13  
12  
2X 0.35 MAX  
NOTE 5  
0.25  
GAGE PLANE  
1.2 MAX  
4.02  
3.12  
25  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
24  
1
2.96  
2.06  
4224477/A 08/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0024N  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(2.96)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
24X (1.5)  
1
24X (0.45)  
24  
SEE DETAILS  
(R0.05) TYP  
(4.02)  
22X (0.65)  
SYMM  
(0.6)  
25  
(7.8)  
NOTE 9  
(1.2) TYP  
SOLDER MASK  
DEFINED PAD  
(
0.2) TYP  
VIA  
12  
13  
(1.2) TYP  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4224477/A 08/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0024N  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.96)  
BASED ON  
0.125 THICK  
STENCIL  
METAL COVERED  
BY SOLDER MASK  
24X (1.5)  
1
24X (0.45)  
24  
(R0.05) TYP  
22X (0.65)  
(4.02)  
SYMM  
25  
BASED ON  
0.125 THICK  
STENCIL  
12  
13  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.31 X 4.49  
2.96 X 4.02 (SHOWN)  
2.70 X 3.67  
0.125  
0.15  
0.175  
2.50 X 3.40  
4224477/A 08/2018  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY