DS100BR111ASQ/NOPB [TI]

具有输入均衡的 10.3Gbps 超低功耗 2 通道转接驱动器 | RTW | 24 | -40 to 85;
DS100BR111ASQ/NOPB
型号: DS100BR111ASQ/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有输入均衡的 10.3Gbps 超低功耗 2 通道转接驱动器 | RTW | 24 | -40 to 85

驱动 驱动器
文件: 总35页 (文件大小:3106K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
May 25, 2012  
DS100BR111A  
Ultra Low Power 10.3 Gbps 2-Channel Repeaters with Input  
Equalization and Output De-Emphasis  
General Description  
Features  
The DS100BR111A is an extremely low power, high perfor-  
mance dual-channel repeater for serial links with data rates  
up to 10.3 Gbps. The DS100BR210A features one bidirec-  
tional lane (one transmit, one receive channel).  
Two channel repeater for up to 10.3 Gbps  
DS100BR111 : 1x bidirectional lane  
DS100BR111A : 1x bidirectional lane  
Low 65mW/channel (typical) power consumption, with  
option to power down unused channels  
Advanced signal conditioning features  
The DS100BR111A features a powerful continuous time lin-  
ear equalizer (CTLE) to provide a boost of up to +36 dB at 5  
GHz and open an input eye that is completely closed due to  
inter-symbol interference (ISI) induced by the interconnect  
mediums such as an FR-4 backplane or AWG-30 cables. The  
transmitter features a programmable output de-emphasis  
driver with up to -12 dB and allows amplitude voltage levels  
to be selected from 600 mVp-p to 1200 mVp-p to suit multiple  
application scenarios.  
Receive equalization up to +36 dB  
Transmit de-emphasis up to -12 dB  
Transmit VOD control: 600 to 1200 mVp-p  
< 0.25 UI of residual DJ at 10 Gbps  
Programmable via pin selection, EEPROM or SMBus  
interface  
The programmable settings can be applied via pin settings,  
SMBus (I2C) protocol or an external EEPROM. When oper-  
ating in the EEPROM mode, the configuration information is  
automatically loaded on power up – This eliminates the need  
for an external microprocessor or software driver.  
Single supply operation selectable: 2.5V or 3.3v  
Flow-thru pinout in 4mmx4mm 24-pin leadless LLP  
package  
>5kV HBM ESD rating  
Industrial -40 to 85°C operating temperature range  
Part of National's PowerWise family of energy efficient de-  
vices, the DS100BR111A consumes just 65 mW/channel  
(typical), and allow the option to turn-off unused channels.  
This ultra low power consumption eliminates the need for ex-  
ternal heat sinks and simplifies thermal management in active  
cable applications.  
Applications  
High-speed active copper cable modules and FR-4  
backplane in communication systems  
10GE, FC, SAS, SATA 3/6 Gbps (with OOB detection),  
InfiniBand, CPRI, RXAUI and many others  
Typical Application  
30184390  
© 2012 Texas Instruments Incorporated  
301843 SNLS400A  
www.ti.com  
Block Diagram - Detail View Of Channel (1 Of 2)  
30184386  
Pin Diagram  
30184325  
DS100BR111A Pin Diagram 24 lead  
Note 1: The center DAP on the package bottom is the device GND connection. This pad must be connected to GND through multiple (minimum of 4) vias to  
ensure optimal electrical and thermal performance.  
www.ti.com  
2
Ordering Information  
NSID  
Qty  
Spec  
Package  
SQA24A  
SQA24A  
DS100BR111ASQ  
DS100BR111ASQE  
Tape & Reel Supplied As 1,000 Units  
Tape & Reel Supplied As 250 Units  
NOPB  
NOPB  
3
www.ti.com  
Pin Descriptions  
Pin Name  
Pin Number I/O, Type  
Pin Description  
Differential High Speed I/O's  
INA+, INA- ,  
INB+, INB-,  
24, 23  
11, 12  
I, CML  
O,CML  
Inverting and non-inverting CML differential inputs to the  
equalizer. An on-chip 50Ω termination resistor connects INx+ to  
VDD and INx- to VDD when enabled.  
OUTA+, OUTA-,  
OUTB+, OUTB-,  
7, 8  
20, 19  
Inverting and non-inverting 50Ω driver outputs with de-emphasis.  
Compatible with AC coupled CML inputs.  
Control Pins  
ENSMB  
3
I, LVCMOS  
Float  
System Management Bus (SMBus) enable pin  
Tie HIGH = Register Access, SMBus Slave mode  
FLOAT = SMBus Master read from External EEPROM  
Tie LOW = External Pin Control Mode  
ENSMB = 1 (SMBUS MODE)  
SCL  
5
I, LVCMOS  
O, Open  
Drain  
ENSMB Master or Slave mode  
SMBUS clock input pin is enabled. A clock input in Slave mode.  
Can also be a clock output in Master mode.  
SDA  
4
I, LVCMOS, ENSMB Master or Slave mode  
O, Open  
Drain  
The SMBus bidirectional SDA pin is enabled. Data input or open  
drain (pull-down only) output.  
AD0-AD3  
10, 9, 2, 1  
I, LVCMOS, ENSMB Master or Slave mode  
Float  
SMBus Slave Address Inputs. In SMBus mode, these pins are  
(4-Levels)  
the user set SMBus slave address inputs. There are 16  
addresses supported by these pins.  
Pins must be tied LOW or HIGH when used to define the device  
SMBus address.  
Note: Setting VOD_SEL = High in SMBus Mode will force the  
Address = B0'h  
READEN#  
DONE#  
17  
18  
I, LVCMOS  
When using an External EEPROM, a transition from high to low  
starts the load from the external EEPROM  
IO, LVCMOS, EEPROM Download Status  
Float  
HIGH indicates Error / Still Loading  
(4-Levels)  
LOW indicates download complete. No Error.  
ENSMB = 0 (PIN MODE)  
EQA0, EQA1  
EQB0, EQB1  
10, 9  
1, 2  
I, LVCMOS, EQA/B, 0/1 control the level of equalization of each channel. The  
Float  
EQA/B pins are active only when ENSMB is de-asserted (LOW).  
When ENSMB goes high the SMBus registers provide  
independent control of each lane, and the EQB0/B1 pins are  
converted to SMBUS AD2/AD3 inputs. Table 3: Equalizer  
Settings  
(4-Levels)  
DEMA, DEMB  
4, 5  
IO, LVCMOS, DEMA/B controls the level of de-emphasis. The DEMA/B pins  
Float  
(4-Levels)  
are only active when ENSMB is de-asserted (LOW). Each of the  
4 A/B channels have the same level unless controlled by the  
SMBus control registers. When ENSMB goes high the SMBus  
registers provide independent control of each lane and the DEM  
pins are converted to SMBUS SCL and SDA pins.  
Table 4: De-emphasis and Output Voltage Settings  
TX_DIS  
6
I, LVCMOS  
DS100BR111A  
High = OUTA Enabled /OUTB Disabled  
Low = OUTA/B Enabled  
www.ti.com  
4
Pin Name  
Pin Number I/O, Type  
Pin Description  
VOD_SEL  
17  
I, LVCMOS, VOD select.  
Float  
(4-Levels)  
High = (VOD = 950 mV / 1150 mV)  
Float = (VOD = 850 mV)  
20K = (VOD = 1050 mV)  
Low = (VOD = 575 mV)  
Note: DS100BR111A OUTA is limited to 575mV in pin mode,  
see Table 4 for additional information.  
Note: Setting VOD_SEL = High in SMBus Mode will force the  
SMBus Address = B0'h  
VDD_SEL  
MODE  
16  
18  
I, Internal  
Pull-up  
Enables the 3.3V to 2.5V internal regulator  
Low = 3.3 V Operation  
Float = 2.5 V Operation  
I, LVCMOS, Controls Device Mode of Operation  
Float  
(4-Levels)  
High = Continuous Talk (no output IDLE)  
Float = Slow OOB  
20K= eSATA Mode, Fast OOB, Auto Low Power on 100 uS of  
inactivity. SD stays active.  
Low = SAS Mode, Fast OOB  
Status Output  
LOS  
13  
14  
O, Open  
Drain  
When HIGH, indicates Loss of Signal (Default is LOS on INA).  
Can be modified via SMBus registers.  
LOS Threshold Input  
SD_TH  
I, LVCMOS, The SD_TH pin controls LOS threshold setting;  
Float  
Assert (mV), Deassert (mV)  
(4-Levels)  
20K = 160 mV, 100 mV  
Float = 180 mV, 110 mV (Default)  
High = 190 mV, 130 mV  
Low = 210 mV, 150 mV  
Note: Using values less than the default level can extend the  
time required to detect LOS and are not recommended.  
Power  
VDD  
21, 22  
Power  
Power supply pins  
2.5V mode connect to 2.5V  
3.3V mode do not connect to any supply voltage. Should be used  
to attach external decoupling to device, 100 - 200 nF recom-  
mended.  
Note: See Applications section for additional information.  
VIN  
15  
Power  
Power  
VIN = 3.3V +/-10% (input to internal LDO regulator)  
Note: Must FLOAT for 2.5V operation. See Applications  
section for additional information.  
GND  
DAP  
Ground pad (DAP - die attach pad).  
Notes:  
LVCMOS inputs without the “Float” conditions must be driven to a logic low or high at all times or operation is not  
guaranteed. Unless the "Float" level is desired; 4-Level input pins require a minimum 1K resistor to GND, VDD (in 2.5V  
mode), or VIN (in 3.3V mode). For additional information.Table 2: 4-Level Control Pin Settings  
Input edge rate for LVCMOS/FLOAT inputs must be faster than 50 ns from 10–90%.  
5
www.ti.com  
MM, STD - JESD22-A115-A  
CDM, STD - JESD22-C101-D  
Package Thermal Resistance  
θJC  
100 V  
1250 V  
Absolute Maximum Ratings (Note 2)  
If Military/Aerospace specified devices are required,  
please contact the Texas Instruments Sales Office/  
Distributors for availability and specifications.  
3.2°C/W  
33.0°C/W  
θJA, No Airflow, 4 layer JEDEC  
For soldering specifications:  
Supply Voltage (VDD)  
Supply Voltage (VIN)  
LVCMOS Input/Output Voltage  
CML Input Voltage  
-0.5V to +2.75V  
-0.5V to +4.0V  
-0.5V to +4.0V  
-0.5V to (VDD+0.5)  
-30 to +30 mA  
125°C  
See product folder at www.national.com  
www.national.com/ms/MS/MS-SOLDERING.pdf  
Min  
Typ Max Units  
2.375 2.5 2.625  
CML Input Current  
Supply Voltage (2.5V mode)  
Supply Voltage (3.3V mode)  
Ambient Temperature  
V
V
°C  
V
Junction Temperature  
Storage Temperature  
ESD Rating  
3.0  
-40  
3.3 3.6  
25 +85  
3.6  
-40°C to +125°C  
SMBus (SDA, SCL)  
HBM, STD - JESD22-A114F  
> 5 kV  
Symbol  
Power Supply Current  
IDD Supply Current  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
TX_DIS = LOW, EQ = ON  
VOD_SEL = Float ( 1000 mV)  
50  
12  
63  
Auto Low Power Mode  
15  
TX_DIS = LOW, MODE = 20K  
VID CHA and CHB = 0.0V  
VOD_SEL = Float (1000 mV)  
mA  
TX_DIS = HIGH (BR111A)  
25  
35  
LVCMOS DC Specifications  
VIH  
VIL  
Voltage Input High  
2.0  
GND  
2.0  
VDD  
0.7  
V
V
V
Voltage Input Low  
VOH  
Voltage Output High  
IOH = -4.0 mA  
(Note 4)  
VOL  
IIN  
Voltage Output Low  
IOL = 4.0 mA  
0.4  
V
Input Leakage Current Vinput = 0V or VDD  
VDD_SEL = Float  
-15  
-15  
+15  
uA  
Vinput = 0V or VIN  
VDD_SEL = Low  
-15  
IIN-P  
Input Leakage Current Vinput = 0V or VDD - 0.05V  
-160  
+80  
uA  
4-Level Input  
VDD_SEL = Float  
(Note 3)  
Vinput = 0V or VIN - 0.05V  
VDD_SEL = Low  
LOS and ENABLE / DISABLE Timing  
TLOS_OFF  
TLOS_ON  
TOFF  
Input IDLE to Active  
RX_LOS response time  
(Note 13)  
(Note 13)  
0.035  
0.4  
uS  
uS  
uS  
Input Active to IDLE  
RX_LOS response time  
TX Disable assert Time (Note 13)  
TX_DIS = HIGH to  
0.005  
Output OFF  
TON  
TX Disable negateTime (Note 13)  
TX_DIS = LOW to  
Output ON  
0.150  
150  
uS  
nS  
uS  
TLP_EXIT  
Auto Low Power Exit  
ALP to Normal  
Operation  
(Note 13)  
TLP_ENTER  
Auto Low Power Enter (Note 13)  
Normal Operation to  
100  
Auto Low Power  
www.ti.com  
6
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
mV  
CML RECEIVER INPUTS  
VTX  
Source Transmit  
Launch Signal Level  
RX return loss  
Default power-up conditions  
ENSMB = 0 or 1  
190  
800  
1600  
RLRX-IN  
SDD11 @ 4.1 GHz  
SDD11 @ 11.1 GHz  
SCD11 @ 11.1 GHz  
-12  
-8  
dB  
-10  
HIGH SPEED TRANSMITTER OUTPUTS  
VOD1  
Output Voltage  
Differential Swing  
OUT+ and OUT- AC coupled  
and terminated by 50to  
GND  
VOD_SEL = LOW  
DE = LOW  
425  
675  
850  
575  
725  
1025  
1275  
mVp-p  
VOD2  
Output Voltage  
Differential Swing  
OUT+ and OUT- AC coupled  
and terminated by 50to  
GND  
VOD_SEL = FLOAT  
DE = LOW  
850  
VOD3  
Output Voltage  
Differential Swing  
OUT+ and OUT- AC coupled  
and terminated by 50to  
GND  
VOD_SEL = 20K  
DE = LOW  
1050  
- 3.5  
- 6.0  
- 9.0  
VOD_DE1  
VOD_DE2  
VOD_DE3  
De-Emphasis Levels  
De-Emphasis Levels  
De-Emphasis Levels  
OUT+ and OUT- AC coupled  
and terminated by 50to  
GND  
VOD_SEL = FLOAT  
DE = FLOAT  
dB  
dB  
dB  
OUT+ and OUT- AC coupled  
and terminated by 50to  
GND  
VOD_SEL = FLOAT  
DE = 20K  
OUT+ and OUT- AC coupled  
and terminated by 50to  
GND  
VOD_SEL = FLOAT  
DE = HIGH  
VCM-AC  
VCM-DC  
VIDLE  
Output Common-Mode AC Common Mode Voltage  
4.5  
1.1  
mV (RMS)  
Voltage  
DE = 0 dB  
Output DC Common-  
Mode Voltage  
DC Common Mode Voltage  
0
1.9  
30  
V
TX IDLE Output  
Voltage  
mV  
dB  
RLTX-DIFF  
TX return loss  
SDD22 @ 4.1 GHz  
SDD22 @ 11.1 GHz  
SCC22 @ 2.5 GHz  
SCC22 @ 11.1 GHz  
DC, IFORCE = +/- 100 uA  
(Note 6)  
-13  
-9  
-22  
-10  
2.5  
delta ZM  
TR/F  
Transmitter  
Termination Mismatch  
%
Transmitter Rise and  
Fall Time  
Measurement points at 20% -  
80%  
38  
ps  
(Note 14)  
TPD  
Propagation Delay  
Measured at 50% crossing  
EQ = 00  
230  
ps  
7
www.ti.com  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
ps  
TCCSK  
Inter-pair Channel  
Skew  
T = 25°C, VDD = 2.5V  
7
TPPSK  
Part to Part Channel  
Skew  
T = 25°C, VDD = 2.5V  
20  
6.5  
ps  
ns  
TTX-IDLE-SET-TO- Max time to transition to VIN = 1Vpp, 10 Gbps  
idle after differential  
signal  
EQ = 00, DE = 0  
IDLE  
TTX-IDLE-TO-DIFF- Max time to transition to VIN = 1Vpp, 10 Gbps  
3.2  
3.3  
ns  
ns  
valid differential signal EQ = 00, DE = 0  
DATA  
after idle  
TENVELOPE_DIST Active OOB timing  
distortion, input active  
ORT  
time vs. output active  
time  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
OUTPUT JITTER SPECIFICATIONS (Note 4)  
RJ  
Random Jitter  
No Media  
Source Amplitude = 700 mV,  
PRBS15 pattern,  
0.3  
ps (RMS)  
UI  
DJ1  
Deterministic Jitter  
0.09  
10.3125 Gbps  
VOD = 850 mV, EQ =  
minimum, DE = 0 dB  
Equalization  
DJE1  
Residual Deterministic 8 meter 30AWG Cable on  
0.23  
0.15  
UI  
UI  
Jitter  
10.3125 Gbps  
Inputs  
Source = 700 mV, PRBS15  
pattern  
EQ = 2B'h  
DJE2  
Residual Deterministic  
Jitter  
30" FR4 on Inputs  
Source = 700 mV, PRBS15  
pattern  
10.3125 Gbps  
EQ = 17'h  
De-emphasis  
DJD1  
Residual Deterministic 10” 4 mil stripline FR4 on  
0.14  
UI  
Jitter  
10.3125 Gbps  
Outputs  
Source = 700 mV, PRBS15  
pattern  
EQ = Min, VOD = 1050, DE  
= 010  
Note 2: “Absolute Maximum Ratings” indicate limits beyond which damage  
to the device may occur, including inoperability and degradation of device  
reliability and/or performance. Functional operation of the device and/or non-  
degradation at the Absolute Maximum Ratings or other conditions beyond  
those indicated in the Recommended Operating Conditions is not implied.  
The Recommended Operating Conditions indicate conditions at which the  
device is functional and the device should not be operated beyond such  
conditions. Absolute Maximum Numbers are guaranteed for a junction  
temperature range of -40°C to +125°C. Models are validated to Maximum  
Operating Voltages only.  
Note 4: Typical jitter reported is determined by jitter decomposition software  
on the DSA8200 Oscilloscope.  
Note 5: VOH only applies to the DONE# pin; LOS, SCL, and SDA are open-  
drain outputs that have no internal pull-up capability. DONE# is a full  
LVCMOS output with pull-up and pull-down capability  
Note 6: Force +/- 100 uA on output, measure delta V on the Output and  
calculate impedance. Mismatch is the percentage difference of OUTn+ and  
OUTn- impedance driving the same logic state.  
Note 3: Input is held to a maximum of 50 mV below VDD or VIN to simulate  
the use of a 1K resistor on the input.  
www.ti.com  
8
 
 
 
Electrical Characteristics — Serial Management Bus Interface  
Over recommended operating supply and temperature ranges unless other specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
SERIAL BUS INTERFACE DC SPECIFICATIONS: (Note 11)  
VIL  
Data, Clock Input Low Voltage  
Data, Clock Input High Voltage  
0.8  
3.6  
V
V
VIH  
2.1  
4
IPULLUP  
Current Through Pull-Up Resistor High Power Specification  
or Current Source  
mA  
VDD  
Nominal Bus Voltage  
2.375  
-200  
3.6  
+200  
10  
V
ILEAK-Bus  
CI  
Input Leakage Per Bus Segment (Note 8)  
µA  
pF  
Capacitance for SDA and SCL  
(Note 8, Note 9, Note 12)  
RTERM  
External Termination Resistance Pullup VDD = 3.3V,  
2000  
1000  
pull to VDD = 2.5V ± 5% OR 3.3V ±  
10%  
(Note 8, Note 9, Note 10)  
Pullup VDD = 2.5V,  
(Note 8, Note 9, Note 10)  
SERIAL BUS INTERFACE TIMING SPECIFICATIONS  
FSMB  
Bus Operating Frequency  
ENSMB = VDD (Slave Mode)  
400  
520  
kHz  
kHz  
ENSMB = FLOAT (Master Mode)  
(Note 7)  
280  
1.3  
400  
TBUF  
Bus Free Time Between Stop and  
Start Condition  
µs  
µs  
µs  
THD:STA  
Hold time after (Repeated) Start  
Condition. After this period, the first  
clock is generated.  
At IPULLUP, Max  
0.6  
0.6  
TSU:STA  
Repeated Start Condition Setup  
Time  
TSU:STO  
THD:DAT  
TSU:DAT  
TLOW  
Stop Condition Setup Time  
Data Hold Time  
0.6  
0
µs  
ns  
ns  
µs  
µs  
ns  
ns  
Data Setup Time  
100  
1.3  
0.6  
Clock Low Period  
THIGH  
tF  
Clock High Period  
Clock/Data Fall Time  
Clock/Data Rise Time  
(Note 11)  
50  
(Note 11)  
300  
300  
tR  
(Note 11)  
tPOR  
Time in which a device must be  
operational after power-on reset  
(Note 11, Note 12)  
500  
ms  
Note 7: EEPROM interface requires 400 KHz capable EEPROM device.  
Note 8: Recommended value.  
Note 9: Recommended maximum capacitance load per bus segment is 400pF.  
Note 10: Maximum termination voltage should be identical to the device supply voltage.  
Note 11: Compliant to SMBus 2.0 physical layer specification. See System Management Bus (SMBus) Specification Version 2.0, section 3.1.1 SMBus common  
AC specifications for details.  
Note 12: Guaranteed by Design. Parameter not tested in production.  
Note 13: Parameter not tested in production.  
Note 14: Default VOD used for testing. DE = -1.5 dB level used to compensate for fixture attenuation.  
9
www.ti.com  
 
 
 
 
 
 
 
 
Timing Diagrams  
30184302  
FIGURE 1. CML Output Transition Times  
30184303  
FIGURE 2. Propagation Delay Timing Diagram  
www.ti.com  
10  
30184304  
FIGURE 3. Idle Timing Diagram  
30184301  
FIGURE 4. SMBus Timing Parameters  
11  
www.ti.com  
Functional Description  
The DS100BR111A is a high performance circuit capable of delivering excellent performance. Careful attention must be paid to  
the details associated with high-speed design as well as providing a clean power supply. Refer to the information below and  
Revision 4 of the LVDS Owner's Manual for more detailed information on high speed design tips to address signal integrity design  
issues.  
The control pins have been enhanced to have 4 different levels and provide a wider range of control settings. Refer to Table 2: 4-  
Level Control Pin Settings  
Table 2: 4-Level Control Pin Settings  
Pin Setting  
Description  
0
R
Tie pin to GND through a 1 Kresistor  
Tie pin to ground through 20 Kresistor  
Float the pin (no connection)  
Float  
1
Tie pin to VDD through a 1 Kresistor  
Note: 4-Level IO pins require a 1K resistance to GND or VDD/VIN. It is possible to tie mulitple 4-level IO pins together with a single  
resistor to GND or VDD/VIN. When multiple IOs are connected in parallel, the resistance to GND or VDD/VIN should be adjusted  
to compensate. For 2 pins the optimal resistance is 500 Ohms, 3 pins = 330 Ohms, and 4 pins = 250 Ohms.  
Note: For 2.5V mode the control pin logic 1 level is VDD (pins 21 and 22), in 3.3V mode the control pin logic 1 level is defined by  
VIN (pin 15).  
Table 3: Equalizer Settings  
Level  
EQA1/  
EQB1  
EQA0/  
EQB0  
EQ — 8 bits [7:0] dB Boost at 5 Ghz  
Suggested Media  
1
2
0
0
0
R
0000 0000 = 0x00  
0000 0001 = 0x01  
0000 0010 = 0x02  
0000 0011 = 0x03  
0000 0111 = 0x07  
0001 0101 = 0x15  
0000 1011 = 0x0B  
0000 1111 = 0x0F  
0101 0101 = 0x55  
0001 1111 = 0x1F  
2.5  
6.5  
9
FR4 < 5 inch trace  
FR4 5 inch trace  
FR4 10 inch trace  
FR4 15 inch trace  
FR4 20 inch trace  
FR4 25 inch trace  
FR4 25 inch trace  
7m 30AWG Cable  
FR4 30 inch trace  
3
0
Float  
1
4
0
11.5  
14  
5
R
0
6
R
R
15  
7
R
Float  
1
17  
8
R
19  
9
Float  
Float  
0
20  
10  
R
23  
8m 30 AWG Cable  
FR4 35 inch trace  
11  
12  
13  
14  
15  
16  
Float  
Float  
0010 1111 = 0x2F  
0011 1111 = 0x3F  
1010 1010 = 0xAA  
0111 1111 = 0x7F  
1011 1111 = 0xBF  
1111 1111 = 0xFF  
25  
27  
30  
31  
33  
34  
10m 30 AWG Cable  
10m - 12m, Cable  
Float  
1
0
1
1
1
1
R
Float  
1
Note: Settings are approximate and will change based on PCB material, trace dimensions, and driver waveform characteristics.  
www.ti.com  
12  
 
 
Table 4: De-emphasis and Output Voltage Settings  
SMBus Register VOD  
Level  
Level VOD_SEL DEMA/B  
SMBus Register DEM Level  
VOD (mV)  
DEM (dB)  
1
2
0
0
000  
010  
011  
101  
000  
010  
011  
101  
000  
010  
011  
101  
000  
001  
001  
010  
000  
000  
000  
000  
011  
011  
011  
011  
101  
101  
101  
101  
100  
100  
110  
110  
575  
575  
0
0
0
Float  
- 3.5  
- 6  
3
R
575  
4
0
1
575  
- 9  
5
Float  
Float  
Float  
Float  
R
0
Float  
R
850  
0
6
850  
- 3.5  
- 6  
7
850  
8
1
850  
- 9  
9
0
1050  
1050  
1050  
1050  
950  
- 0  
10  
11  
12  
13  
14  
15  
16  
R
Float  
R
- 3.5  
- 6  
R
R
1
- 9  
1
0
0
1
Float  
R
950  
- 1.5  
- 1.5  
- 3.5  
1
1150  
1150  
1
1
Note: Below 850mV output setting De-emphasis gain is reduced.  
Note: The DS100BR111A VOD for OUTPUT A is limited to 575 mV in pin mode (ENSMB=0). With ENSMB = 1 or FLOAT, the VOD  
for OUTPUT A can be adjusted with SMBus register 0x23 [4:2] as shown in the SMBus Register Table.  
Note: In SMBus Mode if VOD_SEL is in the Logic 1 state (1K resistor to VIN/VDD) the DS100BR111A AD0-AD3 pins are internally  
forced to 0'h  
Table 5: Signal Detect Threshold Level  
SD_TH  
SMBus REG bit  
[3:2] and [1:0]  
Assert Level (Typical)  
De-assert Level (Typical)  
0
10  
01  
00  
11  
210 mV  
160 mV  
180 mV  
190 mV  
150 mV  
100 mV  
110 mV  
130 mV  
20K to GND  
Float (Default)  
1
Note: VDD = 2.5V, 25°C, and 010101 pattern at 10 Gbps  
13  
www.ti.com  
 
APPLICATIONS INFORMATION  
for a low inductance return current path. When the via struc-  
ture is associated with thick backplane PCB, further optimiza-  
tion such as back drilling is often used to reduce the  
detrimental high frequency effects of stubs on the signal path.  
4-Level Input Configuration Guidelines  
The 4-level input pins utilize a resistor divider to help set the  
4 valid levels. There is an internal 30K pull-up and a 60K pull-  
down connected to the package pin. These resistors, together  
with the external resistor connection combine to achieve the  
desired voltage level. Using the 1K pull-up, 1K pull-down, no  
connect, and 20K pull-down provide the optimal voltage levels  
for each of the four input states.  
Power Supply Configuration Guidelines  
The DS100BR111A can be configured for 2.5V operation or  
3.3V operation. The lists below outline required connections  
for each supply selection.  
3.3V Mode of Operation  
Table 6: 4-Level Input Voltage  
1. Tie VDD_SEL = 0 with 1K resistor to GND.  
2. Feed 3.3V supply into VIN pin. Local 1.0 uF decoupling  
at VIN is recommended.  
Level  
Setting  
01K to GND  
20K to GND  
FLOAT  
3.3V Mode  
0.1 V  
2.5V Mode  
0.08 V  
0
R
F
1
3. See information on VDD bypass below.  
0.33 * VIN  
0.67 * VIN  
VIN - 0.05V  
0.33 * VDD  
0.67 * VDD  
VIN - 0.04V  
4. SDA and SCL pins should connect pull-up resistor to VIN  
5. Any 4-Level input which requires a connection to "Logic  
1" should use a 1K resistor to VIN  
1K to VDD/VIN  
Typical 4-Level Input Thresholds  
2.5V Mode of Operation  
Level 1 - 2 = 0.2 VIN or VDD  
Level 2 - 3 = 0.5 VIN or VDD  
Level 3 - 4 = 0.8 VIN or VDD  
1. VDD_SEL = Float  
2. VIN = Float  
3. Feed 2.5V supply into VDD pins.  
4. See information on VDD bypass below.  
In order to minimize the startup current associated with the  
integrated 2.5V regulator the 1K pull-up / pull-down resistors  
are recommended. If several 4 level inputs require the same  
setting, it is possible to combine two or more 1K resistors into  
a single lower value resistor. As an example; combining two  
inputs with a single 500resistor is a good way to save board  
space.  
5. SDA and SCL pins connect pull-up resistor to VDD for  
2.5V uC SMBus IO  
6. SDA and SCL pins connect pull-up resistor to VDD for  
3.3V uC SMBus IO  
7. Any 4-Level input which requires a connection to "Logic  
1" should use a 1K resistor to VIN  
PCB Layout Guidelines  
Note: The DAP (bottom solder pad) is the GND connection.  
The CML inputs and outputs have been optimized to work with  
interconnects using a controlled differential impedance of 85  
- 100. It is preferable to route differential lines exclusively on  
one layer of the board, particularly for the input traces. The  
use of vias should be avoided if possible. If vias must be used,  
they should be used sparingly and must be placed symmet-  
rically for each side of a given differential pair. Whenever  
differential vias are used the layout must also provide for a  
low inductance path for the return currents as well. Route the  
differential signals away from other signals and noise sources  
on the printed circuit board. See AN-1187 for additional infor-  
mation on LLP packages.  
Power Supply Bypass  
Two approaches are recommended to ensure that the  
DS100BR111A is provided with an adequate power supply.  
First, the supply (VDD) and ground (GND) pins should be  
connected to power planes routed on adjacent layers of the  
printed circuit board. The layer thickness of the dielectric  
should be minimized so that the VDD and GND planes create  
a low inductance supply with distributed capacitance. Sec-  
ond, careful attention to supply bypassing through the proper  
use of bypass capacitors is required. A 0.1 μF bypass capac-  
itor should be connected to each VDD pin such that the ca-  
pacitor is placed as close as possible to the device. Smaller  
body size capacitors can help facilitate proper component  
placement.  
Different transmission line topologies can be used in various  
combinations to achieve the optimal system performance.  
Impedance discontinuities at vias can be minimized or elimi-  
nated by increasing the swell around each hole and providing  
www.ti.com  
14  
System Management Bus (SMBus) and Configuration  
Registers  
IDLE: If SCL and SDA are both High for a time exceeding  
tBUF from the last detected STOP condition or if they are High  
for a total exceeding the maximum specification for tHIGH then  
the bus will transfer to the IDLE state.  
The System Management Bus interface is compatible to SM-  
Bus 2.0 physical layer specification. ENSMB must be pulled  
high to enable SMBus mode and allow access to the config-  
uration registers.  
SMBus TRANSACTIONS  
The device supports WRITE and READ transactions. See  
Register Description table for register address, type (Read/  
Write, Read Only), default value and function information.  
The DS100BR111A has AD[3:0] inputs in SMBus mode.  
These pins are the user set SMBus slave address inputs.  
When pulled low the AD[3:0] = 0000'b, the device default ad-  
dress byte is B0'h. Based on the SMBus 2.0 specification, this  
configuration results in a 7-bit slave address of 1011000'b.  
The LSB is set to 0'b (for a WRITE), thus the 8-bit value is  
1011 0000'b or B0'h. The device address byte can be set with  
the use of the AD[3:0] inputs.  
WRITING A REGISTER  
To write a register, the following protocol is used (see SMBus  
2.0 specification).  
1. The Host drives a START condition, the 7-bit SMBus  
address, and a “0” indicating a WRITE.  
Shown in the form of an expression:  
2. The Device (Slave) drives the ACK bit (“0”).  
3. The Host drives the 8-bit Register Address.  
4. The Device drives an ACK bit (“0”).  
5. The Host drive the 8-bit data byte.  
6. The Device drives an ACK bit (“0”).  
7. The Host drives a STOP condition.  
Slave Address [7:4] = The DS100BR111A hardware address  
(1011'b) + Address pin AD[3]  
Slave Address [3:1] = Address pins AD[2:0]  
Slave Address [0] = 0'b for a WRITE or 1'b for a READ  
Slave Address Examples:  
AD[3:0] = 0001'b, the device slave address byte is B2'h  
The WRITE transaction is completed, the bus goes IDLE and  
communication with other SMBus devices may now occur.  
Slave Address [7:4] = 1011'b + 0'b = 1011'b or B'h  
Slave Address [3:1] = 001'b  
READING A REGISTER  
Slave Address [0] = 0'b for a WRITE  
To read a register, the following protocol is used (see SMBus  
2.0 specification).  
AD[3:0] = 0010'b, the device slave address byte is B4'h  
Slave Address [7:4] = 1011'b + 0'b = 1011'b or B'h  
Slave Address [3:1] = 010'b  
1. The Host drives a START condition, the 7-bit SMBus  
address, and a “0” indicating a WRITE.  
Slave Address [0] = 0'b for a WRITE  
2. The Device (Slave) drives the ACK bit (“0”).  
3. The Host drives the 8-bit Register Address.  
4. The Device drives an ACK bit (“0”).  
AD[3:0] = 0100'b, the device slave address byte is B8'h  
Slave Address [7:4] = 1011'b + 0'b = 1011'b or B'h  
Slave Address [3:1] = 100'b  
5. The Host drives a START condition.  
Slave Address [0] = 0'b for a WRITE  
6. The Host drives the 7-bit SMBus Address, and a “1”  
indicating a READ.  
AD[3:0] = 1000'b, the device slave address byte is C0'h  
Slave Address [7:4] = 1011'b + 1'b = 1100'b or C'h  
Slave Address [3:1] = 000'b  
7. The Device drives an ACK bit “0”.  
8. The Device drives the 8-bit data value (register contents).  
Slave Address [0] = 0'b for a WRITE  
9. The Host drives a NACK bit “1”indicating end of the  
READ transfer.  
TRANSFER OF DATA VIA THE SMBus  
10. The Host drives a STOP condition.  
During normal operation the data on SDA must be stable dur-  
ing the time when SCL is High.  
The READ transaction is completed, the bus goes IDLE and  
communication with other SMBus devices may now occur.  
There are three unique states for the SMBus:  
Please see SMBus Register Map Table for more information.  
START: A High-to-Low transition on SDA while SCL is High  
indicates a message START condition.  
STOP: A Low-to-High transition on SDA while SCL is High  
indicates a message STOP condition.  
30184305  
FIGURE 5. Typical SMBus Write Operation  
15  
www.ti.com  
EEPROM Modes in DS100BR111A Devices  
[0] = Write Bit, 1'b0  
The DS100BR111A supports reading directly from an exter-  
nal EEPROM device by implementing SMBus Master mode.  
When using the SMBus master mode, the DS100BR111A will  
read directly from specific location in the external EEPROM.  
When designing a system for using the external EEPROM,  
the user needs to follow these specific guidelines.  
The device address can be set with the use of the AD[3:0]  
input up to 16 different addresses. Use the example below  
to set each of the SMBus addresses.  
AD[3:0] = 0001'b, the device address byte is B2'h  
AD[3:0] = 0010'b, the device address byte is B4'h  
AD[3:0] = 0011'b, the device address byte is B6'h  
AD[3:0] = 0100'b, the device address byte is B8'h  
Set the DS100BR111A into SMBus Master Mode  
Float ENSMB (PIN 3)  
The master implementation in the DS100BR111A, support  
multiple devices reading from 1 EEPROM. When tying  
multiple devices to the SDA and SCL pins, use these  
guidelines:  
The external EEPROM device address byte must be  
0xA0'h  
Set the AD[3:0] inputs for SMBus address byte. When the  
AD[3:0] = 0000'b, the device address byte is B0'h.  
Based on the SMBus 2.0 specification, a device can have  
a 7-bit slave address of 1010 000'b. The LSB is set to 0'b  
(for a WRITE). The bit mapping for SMBus is listed below:  
Use adjacent SMBus addresses for the 4 devices  
Use a pull-up resistor on SDA; value = 2.0KΩ  
Use a pull-up resistor on SCL: value = 2.0KΩ  
Daisy-chain READEN# (pin 17) and DONE# (pin18)  
from one device to the next device in the sequence  
[7:5] = Reserved Bits from the SMBus specification  
[4:1] = Usable SMBus Address Bits  
[0] = Write Bit  
1. Tie READEN# of the 1st device in the chain (U1)  
to GND  
The DS100BR111A devices have AD[3:0] inputs in  
SMBus mode (pins 1, 2, 9, 10). These pins set SMBus  
slave address. When the AD[3:0] = 0001'b, the device  
address byte is B2'h.  
2. Tie DONE# of U1 to READEN# of U2  
3. Tie DONE# of U2 to READEN# of U3  
4. Tie DONE# of U3 to READEN# of U4  
5. Optional: Tie DONE# of U4 to a LED to show each  
of the devices have been loaded successfully  
[7:5] = Default to 3b'101  
[4:1] = Address of 4'b0001  
Master EEPROM Mode in the DS100BR111A  
Below is an example of a 2 kbits (256 x 8-bit) EEPROM in hex format for the DS100BR111A device. The first 3 bytes of the EEPROM  
always contain a header common and necessary to control initialization of all devices connected to the I2C bus. CRC enable flag  
to enable/disable CRC checking. There is a MAP bit to flag the presence of an address map that specifies the configuration data  
start in the EEPROM. If the MAP bit is not present the configuration data start address is derived from the DS100BR111A address  
and the configuration data size. A bit to indicate an EEPROM size > 256 bytes is necessary to properly address the EEPROM.  
There are 37 bytes of data size for each DS100BR111A device.  
30184315  
FIGURE 6. Typical EEPROM Data Set  
The CRC-8 calculation is performed on the first 3 bytes of header information plus the 37 bytes of data for the DS100BR111A or  
40 bytes in total. The result of this calculation is placed immediately after the DS100BR111A data in the EEPROM which ends with  
"5454". The CRC-8 in the DS100BR111A uses a polynomial = x8 + x2 + x + 1  
www.ti.com  
16  
In SMBus master mode the DS100BR111A reads its initial configuration from an external EEPROM upon power-up. Some of the  
pins of the DS100BR111A perform the same functions in SMBus master and SMBus slave mode. Once the DS100BR111A has  
finished reading its initial configuration from the external EEPROM in SMBus master mode it reverts to SMBus slave mode and  
can be further configured by an external controller over the SMBus. The connection to an external SMBus master is optional and  
can be omitted for applications were additional security is desirable. There are two pins that provide unique functions in SMBus  
master mode.  
DONE#  
READEN#  
When the DS100BR111A is powered up in SMBus master mode, it reads its configuration from the external EEPROM when the  
READEN# pin goes low. When the DS100BR111A is finished reading its configuration from the external EEPROM, it drives the  
DONE# pin low. In applications where there is more than one DS100BR111A on the same SMBus, bus contention can result if  
more than one DS100BR111A tries to take control of the SMBus at the same time. The READEN# and DONE# pins prevent this  
bus contention. The system should be designed so that the READEN# pin from one DS100BR111A in the system is driven low on  
power-up. This DS100BR111A will take command of the SMBus on power-up and will read its initial configuration from the external  
EEPROM. When it is finished reading its configuration, it will drive the DONE# pin low. This pin should be connected to the  
READEN# pin of another DS100BR111A. When this DS100BR111A senses its READEN# pin driven low, it will take command of  
the SMBus and read its initial configuration from the external EEPROM, after which it will set its DONE# pin low. By connecting  
the DONE# pin of each DS100BR111A to the READEN# pin of the next DS100BR111A, each DS100BR111A can read its initial  
configuration from the EEPROM without causing bus contention.  
30184316  
FIGURE 7. Typical multi-device EEPROM connection diagram  
17  
www.ti.com  
Multi-Device EEPROM Register Map Overview  
Addr Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
BIt 0  
0
CRC EN  
Address  
Map  
EEPROM > Reserved  
256 Bytes  
COUNT[3]  
COUNT[2]  
COUNT[1]  
COUNT[0]  
Header  
1
2
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
EE Burst[7] EE Burst[6] EE Burst[5] EE Burst[4] EE Burst[3] EE Burst[2] EE Burst[1] EE Burst[0]  
CRC[7] CRC[6] CRC[5] CRC[4] CRC[3] CRC[2] CRC[1] CRC[0]  
EE AD0 [7] EE AD0 [6] EE AD0 [5] EE AD0 [4] EE AD0 [3] EE AD0 [2] EE AD0 [1] EE AD0 [0]  
CRC[7] CRC[6] CRC[5] CRC[4] CRC[3] CRC[2] CRC[1] CRC[0]  
EE AD1 [7] EE AD1 [6] EE AD1 [5] EE AD1 [4] EE AD1 [3] EE AD1 [2] EE AD1 [1] EE AD1 [0]  
CRC[7] CRC[6] CRC[5] CRC[4] CRC[3] CRC[2] CRC[1] CRC[0]  
EE AD2 [7] EE AD2 [6] EE AD2 [5] EE AD2 [4] EE AD2 [3] EE AD2 [2] EE AD2 [1] EE AD2 [0]  
CRC[7] CRC[6] CRC[5] CRC[4] CRC[3] CRC[2] CRC[1] CRC[0]  
EE AD3 [7] EE AD3 [6] EE AD3 [5] EE AD3 [4] EE AD3 [3] EE AD3 [2] EE AD3 [1] EE AD3 [0]  
Device 0 3  
Info  
Device 1 5  
Info  
Device 2 7  
Info  
Device 3 9  
Info  
4
6
8
10  
Device 0 11  
Addr 3  
RES  
RES  
RES  
RES  
RES  
LOS_Chann RES  
el  
RES  
Device 0 12  
Addr 4  
Ovrd_LOS LOS Value PDWN Inp PDWN OSC RES  
eSATA CHA eSATA CHB Ovrd TX_DIS  
Device 0 46  
Addr 38  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
Device 0 47  
Addr 39  
Device 1 48  
Addr 3  
RES  
RES  
RES  
RES  
RES  
LOS_Chann RES  
el  
RES  
Device 1 49  
Addr 4  
Ovrd_LOS LOS Value PDWN Inp PDWN OSC RES  
eSATA CHA eSATA CHB Ovrd TX_DIS  
Device 1 83  
Addr 38  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
Device 1 84  
Addr 39  
Device 2 85  
Addr 3  
RES  
RES  
RES  
RES  
RES  
LOS_Chann RES  
el  
RES  
Device 2 86  
Addr 4  
Ovrd_LOS LOS Value PDWN Inp PDWN OSC RES  
eSATA CHA eSATA CHB Ovrd TX_DIS  
Device 2 120 RES  
Addr 38  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
Device 2 121 RES  
Addr 39  
Device 3 122 RES  
Addr 3  
RES  
RES  
RES  
RES  
LOS_Chann RES  
el  
RES  
Device 3 123 Ovrd_LOS LOS Value PDWN Inp PDWN OSC RES  
Addr 4  
eSATA CHA eSATA CHB Ovrd TX_DIS  
Device 3 157 RES  
Addr 38  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
Device 3 158 RES  
Addr 39  
RES  
RES  
RES  
RES  
CRC EN = 1; Address Map = 1  
EEPROM > 256 Bytes = 0  
COUNT[3:0] = 0011'b  
Note: Multiple DS100BR111A devices may point at the same address space if they have identical programming values.  
www.ti.com  
18  
Single EEPROM Header + Register Map with Default Value  
EEPROM  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
BIt 0  
Address Byte  
0
CRC EN  
Address  
Map  
EEPROM > RES  
256 Bytes  
COUNT[3]  
COUNT[2]  
COUNT[1]  
COUNT[0]  
Description  
Value  
Present  
0
0
0
0
0
0
0
0
Description 1 RES  
RES  
0
RES  
0
RES  
0
RES  
0
RES  
0
RES  
0
RES  
0
Value  
0
2
Max  
Max  
Max  
Max  
Max  
Max  
Max  
Max  
Description  
Value  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
Burst size[7] Burst size[6] Burst size[5] Burst size[4] Burst size[3] Burst size[2] Burst size[1] Burst size[0]  
0
0
0
0
0
0
0
0
Description 3 Reserved  
Reserved  
0x01 [6]  
0
Reserved  
0x01 [5]  
0
Reserved  
0x01 [4]  
0
Reserved  
0x01 [3]  
0
Reserved  
0x01 [2]  
0
Reserved  
0x01 [1]  
0
Reserved  
0x01 [0]  
0
Register  
Value  
0x01 [7]  
0
Description 4 Ovrd_LOS LOS_Value PDWN Inp PWDN Osc Reserved  
eSATA  
eSATA  
Ovrd  
Enable A  
Enable B  
TX_DIS  
Register  
Value  
0x02 [5]  
0
0x02 [4]  
0
0x02 [3]  
0
0x02 [2]  
0
0x02 [0]  
0
0x04 [7]  
0
0x04 [6]  
0
0x04 [5]  
0
Description 5 TX_DIS  
CHA  
TX_DIS  
CHB  
Reserved  
Reserved  
Reserved  
Reserved  
Overide  
IDLE_th  
Reserved  
Register  
Value  
0x04 [4]  
0
0x04 [3]  
0
0x04 [2]  
0
0x04 [1]  
0
0x04 [0]  
0
0x06 [4]  
1
0x08 [6]  
0
0x08 [5]  
0
Description 6 Ovrd_IDLE Reserved  
Reserved  
0x08 [2]  
0
Reserved  
0x08 [1]  
0
Reserved  
0x08 [0]  
0
Reserved  
0x0B [6]  
1
Reserved  
0x0B [5]  
1
Reserved  
0x0B [4]  
1
Register  
Value  
0x08 [4]  
0
0x08 [3]  
0
Description 7 Reserved  
Reserved  
0x0B [2]  
0
Reserved  
0x0B [1]  
0
Reserved  
0x0B [0]  
0
Idle auto A  
0x0E [5]  
0
Idle sel A  
0x0E [4]  
0
Reserved  
0x0E [3]  
0
Reserved  
0x0E [2]  
0
Register  
Value  
0x0B [3]  
0
Description 8 CHA EQ[7] CHA EQ[6] CHA EQ[5] CHA EQ[4] CHA EQ[3] CHA EQ[2] CHA EQ[1] CHA EQ[0]  
Register  
Value  
0x0F [7]  
0
0x0F [6]  
0
0x0F [5]  
1
0x0F [4]  
0
0x0F [3]  
1
0x0F [2]  
1
0x0F [1]  
1
0x0F [0]  
1
Description 9 A Sel scp  
Reserved  
0x10 [6]  
1
Reserved  
0x10 [5]  
1
Reserved  
0x10 [4]  
0
Reserved  
0x10 [3]  
1
Reserved  
0x10 [2]  
1
Reserved  
0x10 [1]  
0
Reserved  
0x10 [0]  
1
Register  
Value  
0x10 [7]  
1
Description 1 DEMA[2]  
DEMA[1]  
0x11 [1]  
1
DEMA[0]  
0x11 [0]  
0
CHA Slow IDLE thA[1] IDLE thA[0] IDLE thD[1] IDLE thD[0]  
0
Register  
Value  
0x11 [2]  
0
0x12 [7]  
0
0x12 [3]  
0
0x12 [2]  
0
0x12 [1]  
0
0x12 [0]  
0
Description 1 Idle auto B Idle sel B  
Reserved  
0x15 [3]  
0
Reserved  
0x15 [2]  
0
CHB EQ[7] CHB EQ[6] CHB EQ[5] CHB EQ[4]  
1
Register  
Value  
0x15 [5]  
0
0x15 [4]  
0
0x16 [7]  
0
0x16 [6]  
0
0x16 [5]  
1
0x16 [4]  
0
Description 1 CHB EQ[3] CHB EQ[2] CHB EQ[1] CHB EQ[0] B Sel scp  
Reserved  
0x17 [6]  
1
Reserved  
0x17 [5]  
1
Reserved  
0x17 [4]  
0
2
Register  
Value  
0x16 [3]  
1
0x16 [2]  
1
0x16 [1]  
1
0x16 [0]  
1
0x17 [7]  
1
Description 1 Reserved  
Reserved  
0x17 [2]  
1
Reserved  
0x17 [1]  
0
Reserved  
0x17 [0]  
1
CHB DEM[2] CHB DEM[1] CHB DEM[0] CHB Slow  
3
Register  
Value  
0x17 [3]  
1
0x18 [2]  
0
0x18 [1]  
1
0x18 [0]  
0
0x19 [7]  
0
Description 1 IDLE thA[1] IDLE thA[0] IDLE thD[1] IDLE thD[0] Reserved  
Reserved  
Reserved  
Reserved  
4
Register  
Value  
0x19 [3]  
0
0x19 [2]  
0
0x19 [1]  
0
0x19 [0]  
0
0
0
0
0
19  
www.ti.com  
Description 1 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
5
Register  
Value  
0
0
1
0
1
1
1
1
Description 1 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6
Register  
Value  
1
0
1
0
1
1
0
1
Description 1 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7
Register  
Value  
0
1
0
0
0
0
0
0
1
Reserved  
BR111A  
CHA VOD CHA VOD  
[2]  
BR111A  
BR111A  
CHA VOD  
[0]  
Reserved  
Reserved  
Reserved  
Reserved  
Description 8  
[1]  
Register  
Value  
0x23 [4]  
0
0x23 [3]  
0
0x23 [2]  
0
0
0
0
1
0
Description 1 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x25 [4]  
0
9
Register  
Value  
1
1
1
1
1
0
1
Description 2 Reserved  
Reserved  
0x25 [2]  
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
Register  
Value  
0x25 [3]  
1
0
1
0
1
0
0
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
ovrd fst idle en hi idle th A en hi idle th B en fst idle A  
1
Register  
Value  
0x28 [6]  
0
0x28 [5]  
0
0x28 [4]  
0
0x28 [3]  
1
0
0
0
0
Description 2 en fst idle B sd mgain A sd mgain B Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2
Register  
Value  
0x28 [2]  
1
0x28 [1]  
0
0x28 [0]  
0
0
0
0
0
0
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
3
Register  
Value  
0
1
0
1
1
1
1
1
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
CHB VOD[2] CHB VOD[1] CHB VOD[0] Reserved  
4
Register  
Value  
0x2D [4]  
1
0x2D 3]  
0
0x2D [2]  
1
0
1
0
1
0
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
5
Register  
Value  
1
0
0
0
0
0
0
0
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6
Register  
Value  
0
0
0
0
0
1
0
1
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7
Register  
Value  
1
1
1
1
0
1
0
1
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
8
Register  
Value  
1
0
1
0
1
0
0
0
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
9
Register  
Value  
0
0
0
0
0
0
0
0
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
Register  
Value  
0
1
0
1
1
1
1
1
www.ti.com  
20  
3
1
Description  
Register  
Value  
Reserved  
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1
0
1
1
0
1
0
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2
Register  
Value  
1
0
0
0
0
0
0
0
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
3
Register  
Value  
0
0
0
0
0
1
0
1
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
4
Register  
Value  
1
1
1
1
0
1
0
1
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
5
Register  
Value  
1
0
1
0
1
0
0
0
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6
Register  
Value  
0
0
0
0
0
0
0
0
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7
Register  
Value  
0
0
0
0
0
0
0
0
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
8
Register  
Value  
0
1
0
1
0
1
0
0
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
9
Register  
Value  
0
1
0
1
0
1
0
0
21  
www.ti.com  
Below is an example of a 2 kbits (256 x 8-bit) EEPROM Register Dump in hex format for a multi-device DS100BR111A application.  
EEPROM  
Address  
Address  
(Hex)  
EEPROM  
Data  
Comments  
0
1
2
3
4
5
6
7
8
9
00  
0x43  
CRC_EN = 0, Address Map = 1, Device Count = 3 (Devices 0, 1, 2, and 3)  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
0x00  
0x08  
0x00  
0x0B  
0x00  
0x30  
0x00  
0x30  
0x00  
0x0B  
0x00  
0x00  
0x04  
0x07  
0x00  
0x2F  
0xED  
0x40  
0x02  
0xFE  
0xD4  
0x00  
0x2F  
0xAD  
0x40  
0x02  
0xFA  
0xD4  
0x01  
0x80  
0x5F  
0x56  
0x80  
0x05  
0xF5  
0xA8  
0x00  
0x5F  
0x5A  
0x80  
0x05  
0xF5  
0xA8  
0x00  
0x00  
0x54  
EEPROM Burst Size  
CRC not used  
Device 0 Address Location  
CRC not used  
Device 1 Address Location  
CRC not used  
Device 2 Address Location  
CRC not used  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
Device 3 Address Location  
Begin Device 0 and Device 3 - Address Offset 3  
Default EQ CHA  
Default EQ CHB  
Default EQ CHB  
BR111A CHA VOD =575 mV  
BR111A CHB VOD = 850 mV  
www.ti.com  
22  
EEPROM  
Address  
Address  
(Hex)  
EEPROM  
Data  
Comments  
47  
2F  
0x54  
End Device 0 and Device 3 - Address Offset 39  
Begin Device 1 and Device 2 - Address Offset 3  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
0x00  
0x00  
0x04  
0x07  
0x00  
0x2F  
0xED  
0x40  
0x02  
0xFE  
0xD4  
0x00  
0x2F  
0xAD  
0x40  
0x02  
0xFA  
0xD4  
0x01  
0x80  
0x5F  
0x56  
0x80  
0x05  
0xF5  
0xA8  
0x00  
0x5F  
0x5A  
0x80  
0x05  
0xF5  
0xA8  
0x00  
0x00  
0x54  
0x54  
Default EQ CHA  
Default EQ CHB  
Default EQ CHB  
BR111A CHA VOD = 575 mV  
BR111A CHB VOD = 850 mV  
End Device 1 and Device 2 - Address Offset 39  
23  
www.ti.com  
TABLE 1. SMBus Register Map  
Address Register  
Name  
Bits Field  
Type Default EEPROM Description  
Reg Bit  
0x00  
Device ID  
7
Reserved  
R/W  
R
0x00  
set bit to 0  
6:3  
2
I2C Address [3:0]  
[6:3] SMBus strap observation  
EEPROM reading  
done  
R
1: EEPROM Loading  
0: EEPROM Done Loading  
1
Reserved  
Reserved  
Idle Control  
RWS  
C
Set bit to 0  
Set bit to 0  
0
RWS  
C
0x01  
Control 1  
7:6  
R/W  
0x00  
Yes  
Control  
[7]: Continuous talk ENABLE (Channel A)  
[6]: Continuous talk ENABLE (Channel B)  
5:3  
2
Reserved  
R/W  
R/W  
Set bits to 0  
LOS Select  
LOS Monitor Selection  
1: Use LOS from CH B  
0: Use LOS from CH A  
1:0  
7
Reserved  
Reserved  
Reserved  
LOS override  
R/W  
R/W  
Set bits to 00'b  
Set bit to 0  
0x02  
Control 2  
0x00  
6
Set bit to 0  
5
Yes  
Yes  
LOS pin override enable (1);  
Use Normal Signal Detection (0)  
4
LOS override value  
1: Normal Operation  
0: Output LOS  
3
PWDN Inputs  
PWDN Oscillator  
Reserved  
Yes  
Yes  
1: PWDN  
0: Normal Operation  
2
1
0
Reserved  
Yes  
Yes  
Set bit to 0  
0x04  
Control 3  
7:6  
eSATA Mode  
Enable  
R/W  
0x00  
[7] Channel A (1)  
[6] Channel B (1)  
5
4
3
TX_DIS Override  
Enable  
1: Override Use Reg 0x04[4:3]  
0: Normal Operation - uses pin  
TX_DIS Value  
Channel A  
1: TX Disabled  
0: TX Enabled  
TX_DIS Value  
Channel B  
2
Reserved  
Reserved  
CRC[7:0]  
Set bit to 0'b  
1:0  
7:0  
7
Set bits to 00'b  
0x05  
0x06  
CRC 1  
CRC 2  
R/W  
0x00  
0x10  
Slave Mode CRC Bits  
Disable Master Mode EEPROM Configuration  
Disable EEPROM R/W  
CFG  
6:5  
4
Reserved  
Reserved  
Set bits to 00'b  
Set bit to 1'b  
Yes  
3
CRC Slave Mode  
Enable  
[1]: CRC Disable (No CRC Check)  
[0]: CRC Check ENABLE  
Note: With CRC check DISABLED register  
updates take immediate effect on high speed  
data path. With CRC check ENABLED  
register updates will NOT take effect until  
correct CRC value is loaded  
2:1  
0
Reserved  
Set bits to 00'b  
CRC Enable  
Slave CRC Trigger  
www.ti.com  
24  
0x07  
0x08  
Digital Reset 7  
Reserved  
R/W  
R/W  
0x01  
0x00  
Set bit to 0'b  
and Control  
6
Reset Regs  
Self clearing reset for registers  
Writing a [1] will return register settings to  
default values.  
5
Reset SMBus  
Master  
Self clearing reset for SMBus master state  
machine  
4:0  
Reserved  
Reserved  
Set bits to 0001'b  
Set bit to 0  
Pin Override 7  
6
Override Idle  
Threshold  
Yes  
[1]: Override by Channel - see Reg 0x13 and  
0x19  
[0]: SD_TH pin control  
5
4
Reserved  
Yes  
Yes  
Set bit to 0'b  
Override IDLE  
[1]: Force IDLE by Channel - see Reg 0x0E  
and 0x15  
[0]: Normal Operation  
3
2
1
0
Reserved  
Reserved  
Override DEM  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Yes  
Yes  
Yes  
Yes  
Set bit to 0'b  
Set bit to 0'b  
Set bit to 0'b  
Set bit to 0'b  
Set bit to 0'b  
Set bit to 0'b  
Set bit to 0'b  
Set bits to 000'b  
Set bits to 00'h  
0x0C  
CH A  
7
R/W  
0x00  
Analog  
Override 1  
6
5
4
3:0  
7:0  
0x0D  
0x0E  
CH A  
Reserved  
R/W  
R/W  
0x00  
0x00  
CH A  
7:6  
5
Reserved  
Idle Auto  
set bits to 00'b  
Idle Control  
Yes  
Yes  
Yes  
Auto IDLE value when override bit is set (reg  
0x08 [4] = 1)  
4
Idle Select  
Force IDLE value when override bit is set (reg  
0x08 [4] = 1)  
3
Reserved  
Set bit to 0'b  
2:0  
7:0  
Reserved  
Set bits to 000'b  
0x0F  
0x10  
CH A  
EQ Setting  
BOOST [7:0]  
R/W  
R/W  
0x2F  
0xED  
Yes  
Yes  
EQ Boost Default to 24 dB  
See EQ Table for Information  
CH A  
Control 1  
7
Sel_scp  
1 = Short Circuit Protection ON  
0 = Short Circuit Protection OFF  
6
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
DEM [2:0]  
Yes  
Yes  
Yes  
Set bit to 1'b  
5:3  
2:0  
7:5  
4
Set bits to = 101'b  
Set bits to = 101'b  
Set bits to = 100'b  
Set bit to 0  
0x11  
CH A  
R
0x82  
Control 2  
R/W  
3
Set bit to 0  
2:0  
Yes  
De-Emphasis (Default = -3.5 dB)  
000'b = -0.0 dB  
001'b = -1.5 dB  
010'b = -3.5 dB  
011'b = -6.0 dB  
100'b = -8.0 dB  
101'b = -9.0 dB  
110'b = -10.5 dB  
111'b = -12.0 dB  
25  
www.ti.com  
0x12  
CH A  
Idle  
Threshold  
R/W  
0x00  
7
Slow OOB  
Reserved  
Yes  
Yes  
Slow OOB Enable (1); Disable (0)  
Set bits to 000'b.  
6:4  
3:2  
idle_thA[1:0]  
Assert Thresholds  
Use only if register 0x08 [6] = 1  
00 = 180 mV (Default)  
01 = 160 mV  
10 = 210 mV  
11= 190 mV  
1:0  
idle_thD[1:0]  
Yes  
De-assert Thresholds  
Use only if register 0x08 [6] = 1  
00 = 110 mV (Default)  
01 = 100 mV  
10 = 150 mV  
11= 130 mV  
0x13  
CH B  
Analog  
Override 1  
7
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
R/W  
0x00  
Set bit to 0  
6
Set bit to 0  
5
Set bit to 0  
4
Set bit to 0  
3:0  
7:0  
Set bits to 0000'b  
Set bits to 00'h  
0x14  
0x15  
CH B  
Reserved  
R/W  
R/W  
0x00  
0x00  
CH B  
Idle Control  
7:6  
5
Reserved  
Idle Auto  
Set bits to 00'b  
Yes  
Yes  
Yes  
Auto IDLE value when override bit is set (reg  
0x08 [4] = 1)  
4
Idle Select  
Force IDLE value when override bit is set (reg  
0x08 [4] = 1)  
3:2  
1:0  
7:0  
Reserved  
Set bits to 00'b.  
Set bits to 00'b.  
Reserved  
0x16  
0x17  
CH B  
EQ Setting  
BOOST [7:0]  
R/W  
R/W  
0x2F  
0xED  
Yes  
Yes  
EQ Boost Default to 24 dB  
See EQ Table for Information  
CH B  
Control 1  
7
Sel_scp  
1 = Short Circuit Protection ON  
0 = Short Circuit Protection OFF  
6
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
DEM [2:0]  
Yes  
Yes  
Set bit to 1'b  
5:3  
2:0  
7:5  
4
Set bits to = 101'b  
Set bits to = 101'b  
Set bits to = 100'b  
Set bit to 0'b  
0x18  
CH B  
R
0x82  
Control 2  
R/W  
3
Set bit to 0'b  
2:0  
Yes  
De-Emphasis (Default = -3.5 dB)  
000'b = -0.0 dB  
001'b = -1.5 dB  
010'b = -3.5 dB  
011'b = -6.0 dB  
100'b = -8.0 dB  
101'b = -9.0 dB  
110'b = -10.5 dB  
111'b = -12.0 dB  
www.ti.com  
26  
0x19  
CH B  
Idle  
Threshold  
R/W  
0x00  
7
Slow OOB  
Reserved  
Yes  
Yes  
Slow OOB Enable (1); Disable (0)  
Set bits to 000'b.  
6:4  
3:2  
IDLE thA[1:0]  
Assert Thresholds  
Use only if register 0x08 [6] = 1  
00 = 180 mV (Default)  
01 = 160 mV  
10 = 210 mV  
11= 190 mV  
1:0  
IDLE_thD[1:0]  
Yes  
Yes  
De-assert Thresholds  
Use only if register 0x08 [6] = 1  
00 = 110 mV (Default)  
01 = 100 mV  
10 = 150 mV  
11= 130 mV  
0x23  
BR111A CH 7:6  
A VOD  
Reserved  
R/W  
0x00  
Set bits to 0.  
4:2  
VOD_CH0[2:0]  
DS100BR111A VOD Controls for CH A  
(Default = 000'b)  
000'b = 575 mV  
001'b = 650 mV  
010'b = 750 mV  
011'b = 850 mV  
100'b = 950 mV  
101'b = 1050 mV  
110'b = 1150 mV  
1:0  
BR210A CH 7:5  
Reserved  
Set bits to 00'b.  
Set bits to 101'b.  
Set bits to 011'b.  
Set bits to 01'b.  
0x25  
0x28  
Reserved  
R/W  
R/W  
0xAD  
0x00  
A VOD  
4:2  
1:0  
7
VOD_CH0[2:0]  
Reserved  
Yes  
Idle Control  
Reserved  
6
Override Fast Idle  
Yes  
Yes  
5:4  
en_high_idle_th  
[1:0]  
Enable high SD thresholds  
[5]: CH A  
[4]: CH B  
3:2  
1:0  
en_fast_idle[1:0]  
Yes  
Yes  
Enable Fast Idle  
[3]: CH A  
[2]: CH B  
Reserved  
Set bits to 00'b.  
Set bits to 101'b.  
0x2D  
CH B VOD 7:5  
Reserved  
R/W  
0xAD  
0x87  
27  
Control  
4:2  
VOD_CH0[2:0]  
VOD Controls for CH B (Default = 011'b)  
000'b = 575 mV  
001'b = 650 mV  
010'b = 750 mV  
011'b = 850 mV  
100'b = 950 mV  
101'b = 1050 mV  
110'b = 1150 mV  
1:0  
7:5  
4:0  
Reserved  
Set bits to '01b  
0x51  
Device  
Information  
Version[2:0]  
Device ID[4:0]  
R
Read bits = 100'b  
BR111A = '0 0111b  
www.ti.com  
Typical DC Performance  
Characteristics  
The following data was collected at 25°C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.3V Mode  
2.5V Mode  
700 800 900 1000 1100 1200 1300  
OUTPUT VOLTAGE (mV)  
30184393  
FIGURE 8. Supply Current vs. Output Voltage Setting  
60  
VOD = 700 mV  
Temp = 25°C  
56  
52  
2.5V Mode  
48  
44  
40  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
SUPPLY VOLTAGE (V)  
30184394  
FIGURE 9. Supply Current vs. Supply Voltage  
1200  
1100  
1000  
900  
800  
700  
600  
500  
0
1
2
3
4
5
6
VOD SETTING  
30184395  
FIGURE 10. Output Voltage vs. Output Voltage Setting  
www.ti.com  
28  
Typical AC Performance Characteristics  
NO MEDIA:  
Device  
Random Jitter (Rj)  
Deterministic Jitter  
(Dj)  
Dj Component Breakdown Total Jitter (Tj @  
1E-12)  
DS100BR111A @  
10.3125 Gbps  
210 fs  
10.0 ps  
DDJ = 7.8 ps  
DCD = 1.8 ps  
DDPWS = 5.6 ps  
PJ = 0.25 ps  
12.9 ps  
30184363  
FIGURE 11. No Media; D3186 driving device directly  
29  
www.ti.com  
The following lab setups were used to collect typical performance data on FR4 and Cable media.  
30184371  
FIGURE 12. Equalization Test Setup for FR4  
EQUALIZATION RESULTS:  
30184357  
FIGURE 13. Equalization Performance with 30" of 4 mil FR4 using EQ settting 0x17  
www.ti.com  
30  
30184372  
FIGURE 14. Equalization Test Setup for Cables  
CABLE TRANSMIT and RECEIVE RESULTS:  
30184361  
FIGURE 15. 8M 30AWG Cable Performance with 700mV Launch VOD and Rx EQ setting 0x2B  
31  
www.ti.com  
30184370  
FIGURE 16. De-Emphasis Test Setup  
DE-EMPHASIS RESULTS:  
30184341  
FIGURE 17. De-Emphasis Performance with 10" of 4 mil FR4 using DE settting 0x02  
30184340  
FIGURE 18. 10" of 4 mil FR4 Without De-Emphasis  
www.ti.com  
32  
Physical Dimensions inches (millimeters) unless otherwise noted  
Order Number DS100BR111ASQ (Tape and Reel 1000 units)  
Order Number DS100BR111ASQE (Tape and Reel 250 units)  
NS Package Number SQA24A  
(See AN-1187 for PCB Design and Assembly Recommendations)  
33  
www.ti.com  
Notes  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

DS100BR111ASQE

Ultra Low Power 10.3 Gbps 2-Channel Repeaters with Input Equalization and Output De-Emphasis
TI

DS100BR111ASQE/NOPB

具有输入均衡的 10.3Gbps 超低功耗 2 通道转接驱动器 | RTW | 24 | -40 to 85
TI

DS100BR111A_14

Ultra Low Power 10.3 Gbps 2-Channel Repeaters with Input Equalization and Output De-Emphasis
TI

DS100BR111SQ

Ultra Low Power 10.3 Gbps 2-Channel Repeater with Input Equalization and Output De-Emphasis
TI

DS100BR111SQ/NOPB

具有输入均衡和输出去加重功能的 10.3Gbps 超低功耗 2 通道转接驱动器 | RTW | 24 | -40 to 85
TI

DS100BR111SQE

Ultra Low Power 10.3 Gbps 2-Channel Repeater with Input Equalization and Output De-Emphasis
TI

DS100BR111SQE/NOPB

具有输入均衡和输出去加重功能的 10.3Gbps 超低功耗 2 通道转接驱动器 | RTW | 24 | -40 to 85
TI

DS100BR111_13

Ultra Low Power 10.3 Gbps 2-Channel Repeater with Input Equalization and Output De-Emphasis
TI

DS100BR210

Ultra Low Power 10.3 Gbps 2-Channel Repeater with Input Equalization and Output De-Emphasis
TI

DS100BR210SQ

Ultra Low Power 10.3 Gbps 2-Channel Repeater with Input Equalization and Output De-Emphasis
TI

DS100BR210SQ/NOPB

具有输入均衡和输出去加重功能的 10.3Gbps 低功耗 2 通道转接驱动器 | RTW | 24 | -40 to 85
TI

DS100BR210SQE

Ultra Low Power 10.3 Gbps 2-Channel Repeater with Input Equalization and Output De-Emphasis
TI