DS100BR210_14 [TI]

Ultra Low Power 10.3 Gbps 2-Channel Repeater with Input Equalization and Output De-Emphasis;
DS100BR210_14
型号: DS100BR210_14
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Ultra Low Power 10.3 Gbps 2-Channel Repeater with Input Equalization and Output De-Emphasis

文件: 总39页 (文件大小:1757K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
April 9, 2012  
DS100BR210  
Ultra Low Power 10.3 Gbps 2-Channel Repeater with Input  
Equalization and Output De-Emphasis  
General Description  
Features  
The DS100BR210 is an extremely low power, high perfor-  
mance dual-channel repeater for serial links with data rates  
up to 10.3 Gbps. The DS100BR210 is configured as two uni-  
directional channels.  
Two channel repeater for up to 10.3 Gbps  
DS100BR210 : 2x unidirectional channels  
DS100BR111 : 1x bidirectional lane  
10G-KR bi-directional interface compatibility  
The DS100BR210 inputs feature a powerful 4-stage continu-  
ous time linear equalizer (CTLE) to provide a boost of up to  
+36 dB at 5 GHz and open an input eye that is completely  
closed due to inter-symbol interference (ISI) induced by the  
interconnect mediums such as an FR-4 backplane or  
AWG-30 cables. The transmitter features a programmable  
output de-emphasis driver with up to -12 dB and allows am-  
plitude voltage levels to be selected from 700 mVp-p to 1200  
mVp-p to suit multiple application scenarios.  
Allows for back-channel communication and training  
Low 65mW/channel (typical) power consumption, with  
option to power down unused channels  
Advanced signal conditioning features  
Receive equalization up to +36 dB  
Transmit de-emphasis up to -12 dB  
Transmit VOD control: 700 to 1200 mVp-p  
< 0.3 UI of residual DJ at 10 Gbps  
When configured as a 10G-KR repeater, the DS100BR210  
allows the KR host and the end point to optimize the full link  
by adjusting transmit and receive equalizer coefficients using  
back-channel communication techniques specified by the  
802.3ap standard.  
Programmable via pin selection, EEPROM or SMBus  
interface  
Single supply operation selectable: 2.5V or 3.3v  
Flow-thru pinout in 4mmx4mm 24-pin leadless LLP  
package  
The programmable settings can be applied via pin contol,  
SMBus (I2C) protocol or an external EEPROM. When oper-  
ating in the EEPROM mode, the configuration information is  
automatically loaded on power up – This eliminates the need  
for an external microprocessor or software driver.  
>5kV HBM ESD rating  
Industrial -40 to 85°C operating temperature range  
Applications  
Part of National's PowerWise family of energy efficient de-  
vices, the DS100BR210 consumes just 65 mW/channel (typ-  
ical), and allows the option to turn-off unused channels. This  
ultra low power consumption eliminates the need for external  
heat sinks and simplifies thermal management in active cable  
applications.  
High-speed active copper cable modules and FR-4  
backplane in communication systems  
10GE, 10G-KR, FC, SAS, SATA 3/6 Gbps (with OOB  
detection), InfiniBand, CPRI, RXAUI and many others.  
Typical Application  
30175390  
© 2012 Texas Instruments Incorporated  
301753 SNLS348C  
www.ti.com  
Block Diagram - Detail View Of Channel (1 Of 2)  
30175386  
Pin Diagram  
30175324  
DS100BR210 Pin Diagram 24 lead  
Note 1: The center DAP on the package bottom is the device GND connection. This pad must be connected to GND through multiple (minimum of 4) vias to  
ensure optimal electrical and thermal performance.  
www.ti.com  
2
Ordering Information  
NSID  
Qty  
Spec  
Package  
SQA24A  
SQA24A  
DS100BR210SQ  
DS100BR210SQE  
Tape & Reel Supplied As 1,000 Units  
Tape & Reel Supplied As 250 Units  
NOPB  
NOPB  
3
www.ti.com  
Pin Descriptions  
Pin Name  
Pin Number I/O, Type  
Pin Descriptions  
Differential High Speed I/O's  
INA+, INA- ,  
INB+, INB-,  
7, 8  
11, 12  
I, CML  
O,CML  
Inverting and non-inverting CML differential inputs to the  
equalizer. A on-chip 50Ω termination resistor connects INx+ to  
VDD and INx- to VDD when enabled.  
OUTA+, OUTA-,  
OUTB+, OUTB-,  
24, 23  
20, 19  
Inverting and non-inverting 50Ω driver outputs with de-emphasis.  
Compatible with AC coupled CML inputs.  
Control Pins  
ENSMB  
3
I, LVCMOS  
Float  
System Management Bus (SMBus) enable pin  
Tie HIGH = Register Access, SMBus Slave mode  
FLOAT = SMBus Master read from External EEPROM  
Tie LOW = External Pin Control Mode  
ENSMB = 1 (SMBUS MODE)  
SCL  
5
I, LVCMOS  
O, Open  
Drain  
ENSMB Master or Slave mode  
SMBUS clock input pin is enabled. A clock input in Slave mode.  
Can also be a clock output in Master mode.  
SDA  
4
I, LVCMOS, ENSMB Master or Slave mode  
O, Open  
Drain  
The SMBus bidirectional SDA pin is enabled. Data input or open  
drain (pull-down only) output.  
AD0-AD3  
10, 9, 2, 1  
I, LVCMOS, ENSMB Master or Slave mode  
Float  
SMBus Slave Address Inputs. In SMBus mode, these pins are  
(4-Levels)  
the user set SMBus slave address inputs. There are 16  
addresses supported by these pins.  
Pins must be tied LOW or HIGH when used to define the device  
SMBus address.  
Note: Setting VOD_SEL = High in SMBus Mode will force the  
Address = B0'h  
READEN#  
DONE#  
17  
18  
I, LVCMOS  
When using an External EEPROM, a transition from high to low  
starts the load from the external EEPROM  
IO, LVCMOS, EEPROM Download Status  
Float  
HIGH indicates Error / Still Loading  
(4-Levels)  
LOW indicates download complete. No Error.  
ENSMB = 0 (PIN MODE)  
EQA0, EQA1  
EQB0, EQB1  
10, 9  
1, 2  
I, LVCMOS, EQA/B ,0/1 control the level of equalization of each channel. The  
Float  
EQA/B pins are active only when ENSMB is de-asserted (LOW).  
When ENSMB goes high the SMBus registers provide  
independent control of each lane, and the EQB0/B1 pins are  
converted to SMBUS AD2/AD3 inputs.  
(4-Levels)  
Table 3: Equalizer Settings  
DEMA, DEMB  
4, 5  
IO, LVCMOS, DEMA/B controls the level of de-emphasis. The DEMA/B pins  
Float  
(4-Levels)  
are only active when ENSMB is de-asserted (LOW). The default  
SMBus setting is -3.5 dB. Each of the 4 A/B channels have the  
same level unless controlled by the SMBus control registers.  
When ENSMB goes high the SMBus registers provide  
independent control of each lane and the DEM pins are  
converted to SMBUS SCL and SDA pins.  
Table 4: De-emphasis and Output Voltage Settings  
TX_DIS  
6
I, LVCMOS  
DS100BR210  
High = OUTA/B Disabled  
Low = OUTA/B Enabled  
www.ti.com  
4
Pin Name  
Pin Number I/O, Type  
Pin Descriptions  
VOD_SEL  
17  
I, LVCMOS, EQ Mode and VOD select.  
Float  
High = 10G-KR Mode (VOD = 1.1V/1.3V)  
(4-Levels)  
Float = (VOD = 1.0 V)  
20K = (VOD = 1.2 V)  
Low = (VOD = 700m V)  
Note: Setting VOD_SEL = High in SMBus Mode will force the  
SMBus Address = B0'h  
VDD_SEL  
MODE  
16  
18  
I, Internal  
Pull-up  
Enables the 3.3V to 2.5V internal regulator  
Low = 3.3 V Operation  
Float = 2.5 V Operation  
I, LVCMOS, Controls Device Mode of Operation  
Float  
(4-Levels)  
High = Continuous Talk (no output IDLE)  
Float = 10G-KR Mode, Slow OOB  
20K= eSATA Mode, Fast OOB, Auto Low Power on 100 uS of  
inactivity. SD stays active.  
Low = SAS Mode, Fast OOB  
Status Output  
LOS  
13  
14  
O, Open  
Drain  
When HIGH, indicates Loss of Signal (Default is LOS on INA).  
Can be modified via SMBus registers.  
LOS Threshold Input  
SD_TH  
I, LVCMOS, The SD_TH pin controls LOS threshold setting;  
Float  
Assert (mV), Deassert (mV)  
(4-Levels)  
20K = 160 mV, 100 mV  
Float = 180 mV, 110 mV (Default)  
High = 190 mV, 130 mV  
Low = 210 mV, 150 mV  
Note: Using values less than the default level can extend the  
time required to detect LOS and are not recommended.  
Power  
VDD  
21, 22  
Power  
Power supply pins  
2.5V mode connect to 2.5V  
3.3V mode do not connect to any supply voltage. Should be used  
to attach external decoupling to device, 100 - 200 nF recom-  
mended.  
NOTE: See Applications section for additional information.  
VIN  
15  
Power  
Power  
VIN = 3.3V +/-10% (input to internal LDO regulator)  
NOTE: Must FLOAT for 2.5V operation. See Applications  
section for additional information.  
GND  
DAP  
Ground pad (DAP - die attach pad).  
Notes:  
LVCMOS inputs without the “Float” conditions must be driven to a logic low or high at all times or operation is not  
guaranteed. Unless the "Float" level is desired; 4-Level input pins require a minimum 1K resistor to GND, VDD (in 2.5V  
mode), or VIN (in 3.3V mode). For Additional information. Tables Table 2: 4-Level Control Pin Settings, Table 6: 4-Level  
Input Voltage  
Input edge rate for LVCMOS/FLOAT inputs must be faster than 50 ns from 10–90%.  
5
www.ti.com  
MM, STD - JESD22-A115-A  
CDM, STD - JESD22-C101-D  
Package Thermal Resistance  
θJC  
100 V  
1250 V  
Absolute Maximum Ratings (Note 2)  
If Military/Aerospace specified devices are required,  
please contact the Texas Instruments Sales Office/  
Distributors for availability and specifications.  
3.2°C/W  
33.0°C/W  
θJA, No Airflow, 4 layer JEDEC  
For soldering specifications:  
Supply Voltage (VDD)  
Supply Voltage (VIN)  
LVCMOS Input/Output Voltage  
CML Input Voltage  
-0.5V to +2.75V  
-0.5V to +4.0V  
-0.5V to +4.0V  
-0.5V to (VDD+0.5)  
-30 to +30 mA  
125°C  
See product folder at www.national.com  
www.national.com/ms/MS/MS-SOLDERING.pdf  
Min  
Typ Max Units  
2.375 2.5 2.625  
CML Input Current  
Supply Voltage (2.5V mode)  
Supply Voltage (3.3V mode)  
Ambient Temperature  
V
V
°C  
V
Junction Temperature  
Storage Temperature  
ESD Rating  
3.0  
-40  
3.3 3.6  
25 +85  
3.6  
-40°C to +125°C  
SMBus (SDA, SCL)  
HBM, STD - JESD22-A114F  
> 5 kV  
Symbol  
Power Supply Current  
IDD Supply Current  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
TX_DIS = LOW, EQ = ON  
VOD_SEL = Float ( 1000 mV)  
50  
12  
63  
Auto Low Power Mode  
15  
TX_DIS = LOW, MODE = 20K  
VID CHA and CHB = 0.0V  
VOD_SEL = Float (1000 mV)  
mA  
TX_DIS = HIGH (BR210)  
12  
15  
LVCMOS DC Specifications  
VIH  
High Level Input  
Voltage  
2.0  
VDD  
0.7  
V
VIL  
Low Level Input Voltage  
GND  
2.0  
V
V
VOH  
High Level Output  
Voltage  
IOH = -4.0 mA  
(Note 5)  
VOL  
IIN  
Low Level Output  
Voltage  
IOL = 4.0 mA  
0.4  
+15  
+15  
+80  
V
Input Leakage Current Vinput = 0V or VDD  
SCL and SDA  
-15  
-15  
uA  
VDD_SEL = Float  
Vinput = 0V or VIN  
VDD_SEL = Low  
IIN-P  
Input Leakage Current Vinput = 0V or VDD - 0.05V  
-160  
uA  
4-Level Input  
VDD_SEL = Float  
(Note 3)  
Vinput = 0V or VIN - 0.05V  
VDD_SEL = Low  
LOS and ENABLE / DISABLE Timing  
TLOS_OFF  
TLOS_ON  
TOFF  
Input IDLE to Active  
RX_LOS response time  
(Note 13)  
(Note 13)  
0.035  
0.4  
uS  
uS  
uS  
Input Active to IDLE  
RX_LOS response time  
TX Disable assert Time (Note 13)  
TX_DIS = HIGH to  
0.005  
Output OFF  
TON  
TX Disable negateTime (Note 13)  
TX_DIS = LOW to  
Output ON  
0.150  
150  
uS  
nS  
TLP_EXIT  
Auto Low Power Exit  
ALP to Normal  
Operation  
(Note 13)  
www.ti.com  
6
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
uS  
TLP_ENTER  
Auto Low Power Enter (Note 13)  
Normal Operation to  
Auto Low Power  
100  
800  
CML RECEIVER INPUTS  
VTX  
Source Transmit  
Launch Signal Level  
RX return loss  
Default power-up conditions  
ENSMB = 0 or 1  
190  
1600  
mV  
dB  
RLRX-IN  
SDD11 @ 4.1 GHz  
SDD11 @ 11.1 GHz  
SCD11 @ 11.1 GHz  
-12  
-8  
-10  
HIGH SPEED TRANSMITTER OUTPUTS  
VOD1  
Output Voltage  
Differential Swing  
OUT+ and OUT- AC coupled  
and terminated by 50to  
GND  
VOD_SEL = LOW (700 mV  
setting)  
500  
800  
950  
650  
1000  
1150  
- 3.5  
- 6.0  
- 9.0  
800  
1100  
1350  
mVp-p  
DE = LOW  
VOD2  
Output Voltage  
Differential Swing  
OUT+ and OUT- AC coupled  
and terminated by 50to  
GND  
VOD_SEL = FLOAT (1000  
mV setting)  
DE = LOW  
VOD3  
Output Voltage  
Differential Swing  
OUT+ and OUT- AC coupled  
and terminated by 50to  
GND  
VOD_SEL = 20K (1200 mV  
setting)  
DE = LOW  
VOD_DE1  
VOD_DE2  
VOD_DE3  
De-Emphasis Levels  
De-Emphasis Levels  
De-Emphasis Levels  
OUT+ and OUT- AC coupled  
and terminated by 50to  
GND  
VOD_SEL = FLOAT (1000  
mV setting)  
dB  
dB  
dB  
DE = FLOAT  
OUT+ and OUT- AC coupled  
and terminated by 50to  
GND  
VOD_SEL = FLOAT (1000  
mV setting)  
DE = 20K  
OUT+ and OUT- AC coupled  
and terminated by 50to  
GND  
VOD_SEL = FLOAT (1000  
mV setting)  
DE = HIGH  
VCM-AC  
VCM-DC  
VIDLE  
Output Common-Mode AC Common Mode Voltage  
4.5  
1.1  
mV (RMS)  
Voltage  
DE = 0 dB, VOD <= 1000 mV  
DC Common Mode Voltage  
Output DC Common-  
Mode Voltage  
0
1.9  
30  
V
TX IDLE Output  
Voltage  
mV  
7
www.ti.com  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
dB  
RLTX-DIFF  
TX return loss  
SDD22 @ 4.1 GHz  
SDD22 @ 11.1 GHz  
SCC22 @ 2.5 GHz  
SCC22 @ 11.1 GHz  
Measured at DC operating  
-13  
-9  
-22  
-10  
2.5  
delta ZM  
Transmitter  
%
Termination Mismatch point  
(Note 6)  
TR/F  
Transmitter Rise and  
Fall Time  
Measurement points at 20% -  
80%  
38  
ps  
(Note 14)  
TPD  
Propagation Delay  
Measured at 50% crossing  
EQ = 00  
230  
7
ps  
ps  
TCCSK  
Channel to Channel  
Skew  
T = 25°C, VDD = 2.5V  
TPPSK  
Part to Part Skew  
T = 25°C, VDD = 2.5V  
20  
ps  
ns  
TTX-IDLE-SET-TO- Max time to transition to VIN = 1Vpp, 10 Gbps  
6.5  
idle after differential  
signal  
EQ = 00, DE = 0  
IDLE  
TTX-IDLE-TO-DIFF- Max time to transition to VIN = 1Vpp, 10 Gbps  
3.2  
3.3  
ns  
ns  
valid differential signal EQ = 00, DE = 0  
DATA  
after idle  
TENV_DISTORT  
Active OOB timing  
distortion, input active  
time vs. output active  
time  
www.ti.com  
8
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
OUTPUT JITTER SPECIFICATIONS: (Note 4)  
RJ  
Random Jitter  
No Media  
Source Amplitude = 700 mV,  
PRBS15 pattern,  
0.3  
ps (RMS)  
UI  
DJ1  
Deterministic Jitter  
0.09  
10.3125 Gbps  
VOD = Default, EQ =  
minimum, DE = 0 dB  
Equalization  
DJE1  
Residual Deterministic 8 meter 30AWG Cable on  
0.27  
0.17  
UI  
UI  
Jitter  
Input  
10.3125 Gbps  
Source = 700 mV, PRBS15  
pattern  
EQ = 0F'h; See Figure 15  
DJE2  
Residual Deterministic  
Jitter  
30" 4-mil FR4 on Inputs  
Source = 700 mV, PRBS15  
pattern  
10.3125 Gbps  
EQ = 16'h; See Figure 12  
De-emphasis  
DJD1  
Residual Deterministic 10” 4 mil stripline FR4 on  
0.13  
UI  
Jitter  
10.3125 Gbps  
Outputs  
Source = 700 mV, PRBS15  
pattern  
EQ = Min, VOD = 1200 mV,  
DE = 010'b  
See Figure 17  
Note 2: “Absolute Maximum Ratings” indicate limits beyond which damage  
to the device may occur, including inoperability and degradation of device  
reliability and/or performance. Functional operation of the device and/or non-  
degradation at the Absolute Maximum Ratings or other conditions beyond  
those indicated in the Recommended Operating Conditions is not implied.  
The Recommended Operating Conditions indicate conditions at which the  
device is functional and the device should not be operated beyond such  
conditions. Absolute Maximum Numbers are guaranteed for a junction  
temperature range of -40°C to +125°C. Models are validated to Maximum  
Operating Voltages only.  
Note 4: Typical jitter reported is determined by jitter decomposition software  
on the DSA8200 Oscilloscope.  
Note 5: VOH only applies to the DONE# pin; LOS, SCL, and SDA are open-  
drain outputs that have no internal pull-up capability. DONE# is a full  
LVCMOS output with pull-up and pull-down capability  
Note 6: Force +/- 100 uA on output, measure delta V on the Output and  
calculate impedance. Mismatch is the percentage difference of OUTn+ and  
OUTn- impedance driving the same logic state.  
Note 3: Input is held to a maximum of 50 mV below VDD or VIN to simulate  
the use of a 1K resistor on the input.  
9
www.ti.com  
 
 
 
 
Electrical Characteristics — Serial Management Bus Interface  
Over recommended operating supply and temperature ranges unless other specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
SERIAL BUS INTERFACE DC SPECIFICATIONS: (Note 7)  
VIL  
Data, Clock Input Low Voltage  
Data, Clock Input High Voltage  
0.8  
3.6  
V
V
VIH  
2.1  
4
IPULLUP  
Current Through Pull-Up Resistor High Power Specification  
or Current Source  
mA  
VDD  
Nominal Bus Voltage  
2.375  
-200  
3.6  
+200  
10  
V
ILEAK-Bus  
CI  
Input Leakage Per Bus Segment (Note 8)  
µA  
pF  
Capacitance for SDA and SCL  
(Note 8, Note 9, Note 12)  
RTERM  
External Termination Resistance Pullup VDD = 3.3V,  
2000  
1000  
pull to VDD = 2.5V ± 5% OR 3.3V ±  
10%  
(Note 8, Note 9, Note 10)  
Pullup VDD = 2.5V,  
(Note 8, Note 9, Note 10)  
SERIAL BUS INTERFACE TIMING SPECIFICATIONS  
FSMB  
Bus Operating Frequency  
ENSMB = VDD (Slave Mode)  
400  
520  
kHz  
kHz  
ENSMB = FLOAT (Master Mode)  
(Note 7)  
280  
1.3  
400  
TBUF  
Bus Free Time Between Stop and  
Start Condition  
µs  
µs  
µs  
THD:STA  
Hold time after (Repeated) Start  
Condition. After this period, the first  
clock is generated.  
At IPULLUP, Max  
0.6  
0.6  
TSU:STA  
Repeated Start Condition Setup  
Time  
TSU:STO  
THD:DAT  
TSU:DAT  
TLOW  
Stop Condition Setup Time  
Data Hold Time  
0.6  
0
µs  
ns  
ns  
µs  
µs  
ns  
ns  
Data Setup Time  
100  
1.3  
0.6  
Clock Low Period  
THIGH  
tF  
Clock High Period  
Clock/Data Fall Time  
Clock/Data Rise Time  
(Note 11)  
50  
(Note 11)  
300  
300  
tR  
(Note 11)  
tPOR  
Time in which a device must be  
operational after power-on reset  
(Note 11, Note 12)  
500  
ms  
Note 7: EEPROM interface requires 400 KHz capable EEPROM device.  
Note 8: Recommended value.  
Note 9: Recommended maximum capacitance load per bus segment is 400pF.  
Note 10: Maximum termination voltage should be identical to the device supply voltage.  
Note 11: Compliant to SMBus 2.0 physical layer specification. See System Management Bus (SMBus) Specification Version 2.0, section 3.1.1 SMBus common  
AC specifications for details.  
Note 12: Guaranteed by Design and/or characterization. Parameter not tested in production.  
Note 13: Parameter not tested in production.  
Note 14: Default VOD used for testing. DE = -1.5 dB level used to compensate for fixture attenuation.  
www.ti.com  
10  
 
 
 
 
 
 
 
 
Timing Diagrams  
30175302  
FIGURE 1. CML Output Transition Times  
30175303  
FIGURE 2. Propagation Delay Timing Diagram  
11  
www.ti.com  
30175304  
FIGURE 3. Idle Timing Diagram  
30175301  
FIGURE 4. SMBus Timing Parameters  
www.ti.com  
12  
Functional Description  
The DS100BR210 is a high performance circuit capable of delivering excellent performance. Careful attention must be paid to the  
details associated with high-speed design as well as providing a clean power supply. Refer to the information below and Revision  
4 of the LVDS Owner's Manual for more detailed information on high speed design tips to address signal integrity design issues.  
The control pins have been enhanced to have 4 different levels and provide a wider range of control settings. Refer to  
Table 2: 4-Level Control Pin Settings  
Pin Setting  
Description  
0
R
Tie pin to GND through a 1 Kresistor  
Tie pin to ground through 20 Kresistor  
Float the pin (no connection)  
Float  
1
Tie pin to VDD through a 1 Kresistor  
Note: 4-Level IO pins require a 1K resistance to GND or VDD/VIN. It is possible to tie mulitple 4-level IO pins together with a single  
resistor to GND or VDD/VIN. When multiple IOs are connected in parallel, the resistance to GND or VDD/VIN should be adjusted  
to compensate. For 2 pins the optimal resistance is 500 Ohms, 3 pins = 330 Ohms, and 4 pins = 250 Ohms.  
Note: For 2.5V mode the control pin logic 1 level is VDD (pins 21 and 22), in 3.3V mode the control pin logic 1 level is defined by  
VIN (pin 15).  
Table 3: Equalizer Settings  
EQA1/  
EQB1  
EQA0/  
EQB0  
Level  
EQ — 8 bits [7:0] dB Boost at 5 Ghz  
Suggested Media  
1
2
0
0
0
R
0000 0000 = 0x00  
0000 0001 = 0x01  
0000 0010 = 0x02  
0000 0011 = 0x03  
0000 0111 = 0x07  
0001 0101 = 0x15  
0000 1011 = 0x0B  
0000 1111 = 0x0F  
0101 0101 = 0x55  
0001 1111 = 0x1F  
2.5  
6.5  
9
FR4 < 5 inch trace  
FR4 5 inch trace  
FR4 10 inch trace  
FR4 15 inch trace  
FR4 20 inch trace  
FR4 25 inch trace  
FR4 25 inch trace  
7m 30AWG Cable  
FR4 30 inch trace  
3
0
Float  
1
4
0
11.5  
14  
5
R
0
6
R
R
15  
7
R
Float  
1
17  
8
R
19  
9
Float  
Float  
0
20  
10  
R
23  
8m 30 AWG Cable  
FR4 35 inch trace  
11  
12  
13  
14  
15  
16  
Float  
Float  
0010 1111 = 0x2F  
0011 1111 = 0x3F  
1010 1010 = 0xAA  
0111 1111 = 0x7F  
1011 1111 = 0xBF  
1111 1111 = 0xFF  
25  
27  
30  
31  
33  
34  
10m 30 AWG Cable  
10m - 12m, Cable  
Float  
1
0
1
1
1
1
R
Float  
1
Note: Settings are approximate and will change based on PCB material, trace dimensions, and driver waveform characteristics.  
13  
www.ti.com  
 
 
Table 4: De-emphasis and Output Voltage Settings  
SMBus Register VOD  
Level  
Level VOD_SEL DEMA/B  
SMBus Register DEM Level  
VOD (mV)  
DEM (dB)  
1
2
0
0
000  
010  
011  
101  
000  
010  
011  
101  
000  
010  
011  
101  
000  
001  
001  
010  
000  
000  
000  
000  
011  
011  
011  
011  
101  
101  
101  
101  
100  
110  
100  
110  
700  
700  
0
0
0
Float  
- 3.5  
- 6  
3
R
700  
4
0
1
700  
- 9  
5
Float  
Float  
Float  
Float  
R
0
Float  
R
1000  
1000  
1000  
1000  
1200  
1200  
1200  
1200  
1100  
1300  
1100  
1300  
0
6
- 3.5  
- 6  
7
8
1
- 9  
9
0
- 0  
10  
11  
12  
13  
14  
15  
16  
R
Float  
R
- 3.5  
- 6  
R
R
1
- 9  
1
0
0
1
Float  
R
- 1.5  
- 1.5  
- 3.5  
1
1
1
Note: When VOD_SEL is in the Logic 1 state (1K resistor to VIN/VDD) the DS100BR210 will support 10G-KR back-channel  
communication using pin control.  
Note: In SMBus Mode if VOD_SEL is in the Logic 1 state (1K resistor to VIN/VDD) the DS100BR210 AD0-AD3 pins are internally  
forced to 0'h  
Table 5: Signal Detect Threshold Level  
SMBus REG bit  
[3:2] and [1:0]  
SD_TH  
Assert Level (Typical)  
De-assert Level (Typical)  
0
10  
01  
00  
11  
210 mV  
160 mV  
180 mV  
190 mV  
150 mV  
100 mV  
110 mV  
130 mV  
20K to GND  
Float (Default)  
1
Note: VDD = 2.5V, 25°C, and 010101 pattern at 10 Gbps  
www.ti.com  
14  
 
APPLICATIONS INFORMATION  
rically for each side of a given differential pair. Whenever  
differential vias are used the layout must also provide for a  
low inductance path for the return currents as well. Route the  
differential signals away from other signals and noise sources  
on the printed circuit board. See AN-1187 for additional infor-  
mation on LLP packages.  
4-Level Input Configuration Guidelines  
The 4-level input pins utilize a resistor divider to help set the  
4 valid levels. There is an internal 30K pull-up and a 60K pull-  
down connected to the package pin. These resistors, together  
with the external resistor connection combine to achieve the  
desired voltage level. Using the 1K pull-up, 1K pull-down, no  
connect, and 20K pull-down provide the optimal voltage levels  
for each of the four input states.  
Different transmission line topologies can be used in various  
combinations to achieve the optimal system performance.  
Impedance discontinuities at vias can be minimized or elimi-  
nated by increasing the swell around each hole and providing  
for a low inductance return current path. When the via struc-  
ture is associated with thick backplane PCB, further optimiza-  
tion such as back drilling is often used to reduce the  
detrimental high frequency effects of stubs on the signal path.  
Table 6: 4-Level Input Voltage  
Level  
Setting  
01K to GND  
20K to GND  
FLOAT  
3.3V Mode  
0.1 V  
2.5V Mode  
0.08 V  
0
R
F
1
0.33 * VIN  
0.67 * VIN  
VIN - 0.05V  
0.33 * VDD  
0.67 * VDD  
VIN - 0.04V  
Power Supply Configuration Guidelines  
The DS100BR210 can be configured for 2.5V operation or  
3.3V operation. The lists below outline required connections  
for each supply selection.  
1K to VDD/VIN  
Typical 4-Level Input Thresholds  
3.3V Mode of Operation  
1. Tie VDD_SEL = 0 with 1K resistor to GND.  
Level 1 - 2 = 0.2 VIN or VDD  
Level 2 - 3 = 0.5 VIN or VDD  
Level 3 - 4 = 0.8 VIN or VDD  
2. Feed 3.3V supply into VIN pin. Local 1.0 uF decoupling  
at VIN is recommended.  
In order to minimize the startup current associated with the  
integrated 2.5V regulator the 1K pull-up / pull-down resistors  
are recommended. If several 4 level inputs require the same  
setting, it is possible to combine two or more 1K resistors into  
a single lower value resistor. As an example; combining two  
inputs with a single 500resistor is a good way to save board  
space.  
3. See information on VDD bypass below.  
4. SDA and SCL pins should connect pull-up resistor to VIN  
5. Any 4-Level input which requires a connection to "Logic  
1" should use a 1K resistor to VIN  
2.5V Mode of Operation  
1. VDD_SEL = Float  
10G-KR Configuration Guidelines  
2. VIN = Float  
When configured in "KR Mode", using eith the VOD_SEL pin  
setting or SMBus register control, the DS100BR210 is de-  
signed to operate transparently within a KR backplance chan-  
nel environment. Installing a DS100 repeater within the KR  
backplane channel splits the total channel attenuation into  
two parts. Ideally the repeater can be placed near the middle  
of the channel maximizing the signal to noise ratio across the  
bidirectional interface.  
3. Feed 2.5V supply into VDD pins.  
4. See information on VDD bypass below.  
5. SDA and SCL pins connect pull-up resistor to VDD for  
2.5V uC SMBus IO  
6. SDA and SCL pins connect pull-up resistor to 3.3V for  
3.3V uC SMBus IO  
7.  
Any 4-Level input which requires a connection to "Logic  
1" should use a 1K resistor to VDD  
In order to maximize the 10G-KR solution space, the 802.3ap  
specification calls for an optimization of the transmit signal  
conditioning coefficients based on feedback for the KR re-  
ceiver. Setting the DS100BR210 active CTLE to compensate  
for the channel loss from each of the KR transmitters will re-  
duce the transmit and receive equalization settings required  
on the KR physical layer devices. This central location keeps  
a larger S/N raito at all points in the channel, extending the  
available solution space and increasing the overall margin of  
almost any channel.  
Note: The DAP (bottom solder pad) is the GND connection.  
Power Supply Bypass  
Two approaches are recommended to ensure that the  
DS100BR210 is provided with an adequate power supply.  
First, the supply (VDD) and ground (GND) pins should be  
connected to power planes routed on adjacent layers of the  
printed circuit board. The layer thickness of the dielectric  
should be minimized so that the VDD and GND planes create  
a low inductance supply with distributed capacitance. Sec-  
ond, careful attention to supply bypassing through the proper  
use of bypass capacitors is required. A 0.1 μF bypass capac-  
itor should be connected to each VDD pin such that the ca-  
pacitor is placed as close as possible to the device. Smaller  
body size capacitors can help facilitate proper component  
placement.  
PCB Layout Guidelines  
The CML inputs and outputs have been optimized to work with  
interconnects using a controlled differential impedance of 85  
- 100. It is preferable to route differential lines exclusively on  
one layer of the board, particularly for the input traces. The  
use of vias should be avoided if possible. If vias must be used,  
they should be used sparingly and must be placed symmet-  
15  
www.ti.com  
 
System Management Bus (SMBus) and Configuration  
Registers  
IDLE: If SCL and SDA are both High for a time exceeding  
tBUF from the last detected STOP condition or if they are High  
for a total exceeding the maximum specification for tHIGH then  
the bus will transfer to the IDLE state.  
The System Management Bus interface is compatible to SM-  
Bus 2.0 physical layer specification. ENSMB must be pulled  
high to enable SMBus mode and allow access to the config-  
uration registers.  
SMBus TRANSACTIONS  
The device supports WRITE and READ transactions. See  
Register Description table for register address, type (Read/  
Write, Read Only), default value and function information.  
The DS100BR210 has AD[3:0] inputs in SMBus mode. These  
pins are the user set SMBus slave address inputs. When  
pulled low the AD[3:0] = 0000'b, the device default address  
byte is B0'h. Based on the SMBus 2.0 specification, this con-  
figuration results in a 7-bit slave address of 1011000'b. The  
LSB is set to 0'b (for a WRITE), thus the 8-bit value is 1011  
0000'b or B0'h. The device address byte can be set with the  
use of the AD[3:0] inputs.  
WRITING A REGISTER  
To write a register, the following protocol is used (see SMBus  
2.0 specification).  
1. The Host drives a START condition, the 7-bit SMBus  
address, and a “0” indicating a WRITE.  
Shown in the form of an expression:  
2. The Device (Slave) drives the ACK bit (“0”).  
3. The Host drives the 8-bit Register Address.  
4. The Device drives an ACK bit (“0”).  
5. The Host drive the 8-bit data byte.  
6. The Device drives an ACK bit (“0”).  
7. The Host drives a STOP condition.  
Slave Address [7:4] = The DS100BR210 hardware address  
(1011'b) + Address pin AD[3]  
Slave Address [3:1] = Address pins AD[2:0]  
Slave Address [0] = 0'b for a WRITE or 1'b for a READ  
Slave Address Examples:  
AD[3:0] = 0001'b, the device slave address byte is B2'h  
The WRITE transaction is completed, the bus goes IDLE and  
communication with other SMBus devices may now occur.  
Slave Address [7:4] = 1011'b + 0'b = 1011'b or B'h  
Slave Address [3:1] = 001'b  
READING A REGISTER  
Slave Address [0] = 0'b for a WRITE  
To read a register, the following protocol is used (see SMBus  
2.0 specification).  
AD[3:0] = 0010'b, the device slave address byte is B4'h  
Slave Address [7:4] = 1011'b + 0'b = 1011'b or B'h  
Slave Address [3:1] = 010'b  
1. The Host drives a START condition, the 7-bit SMBus  
address, and a “0” indicating a WRITE.  
Slave Address [0] = 0'b for a WRITE  
2. The Device (Slave) drives the ACK bit (“0”).  
3. The Host drives the 8-bit Register Address.  
4. The Device drives an ACK bit (“0”).  
AD[3:0] = 0100'b, the device slave address byte is B8'h  
Slave Address [7:4] = 1011'b + 0'b = 1011'b or B'h  
Slave Address [3:1] = 100'b  
5. The Host drives a START condition.  
Slave Address [0] = 0'b for a WRITE  
6. The Host drives the 7-bit SMBus Address, and a “1”  
indicating a READ.  
AD[3:0] = 1000'b, the device slave address byte is C0'h  
Slave Address [7:4] = 1011'b + 1'b = 1100'b or C'h  
Slave Address [3:1] = 000'b  
7. The Device drives an ACK bit “0”.  
8. The Device drives the 8-bit data value (register contents).  
Slave Address [0] = 0'b for a WRITE  
9. The Host drives a NACK bit “1”indicating end of the  
READ transfer.  
TRANSFER OF DATA VIA THE SMBus  
10. The Host drives a STOP condition.  
During normal operation the data on SDA must be stable dur-  
ing the time when SCL is High.  
The READ transaction is completed, the bus goes IDLE and  
communication with other SMBus devices may now occur.  
There are three unique states for the SMBus:  
Please see SMBus Register Map Table for more information.  
START: A High-to-Low transition on SDA while SCL is High  
indicates a message START condition.  
STOP: A Low-to-High transition on SDA while SCL is High  
indicates a message STOP condition.  
30175305  
FIGURE 5. Typical SMBus Write Operation  
www.ti.com  
16  
EEPROM Modes in the DS100BR210  
The DS100BR210 device supports reading directly from an external EEPROM device by implementing SMBus Master mode. When  
using the SMBus master mode, the DS100 will read directly from specific location in the external EEPROM. When designing a  
system for using the external EEPROM, the user needs to follow these specific guidelines.  
Set the DS100BR210 into SMBus Master Mode  
Float ENSMB (PIN 3)  
The external EEPROM device must support 400 KHz operation  
The external EEPROM device address byte must be 0xA0'h  
Set the AD[3:0] inputs for SMBus address byte. When the AD[3:0] = 0000'b, the device address byte is B0'h.  
Based on the SMBus 2.0 specification, a device can have a 7-bit slave address of 1010 000'b. The LSB is set to 0'b (for a  
WRITE). The bit mapping for SMBus is listed below:  
[7:5] = Reserved Bits from the SMBus specification  
[4:1] = Usable SMBus Address Bits  
[0] = Write Bit  
The DS100BR210 device has AD[3:0] inputs in SMBus mode (pins 1, 2, 9, 10). These pins set SMBus slave address. When  
the AD[3:0] = 0001'b, the device address byte is B2'h.  
[7:5] = Default to 3b'101  
[4:1] = Address of 4'b0001  
[0] = Write Bit, 1'b0  
The device address can be set with the use of the AD[3:0] input up to 16 different addresses. Use the example below to set  
each of the SMBus addresses.  
AD[3:0] = 0001'b, the device address byte is B2'h  
AD[3:0] = 0010'b, the device address byte is B4'h  
AD[3:0] = 0011'b, the device address byte is B6'h  
AD[3:0] = 0100'b, the device address byte is B8'h  
The master implementation in the DS100BR210, supports multiple devices reading from 1 EEPROM. When tying multiple  
devices to the SDA and SCL pins, use these guidelines:  
Use adjacent SMBus addresses for the 4 devices  
Use a pull-up resistor on SDA; value = 4.7KΩ  
Use a pull-up resistor on SCL: value = 4.7KΩ  
Daisy-chain READEN# (pin 17) and DONE# (pin18) from one device to the next device in the sequence  
1. Tie READEN# of the 1st device in the chain (U1) to GND  
2. Tie DONE# of U1 to READEN# of U2  
3. Tie DONE# of U2 to READEN# of U3  
4. Tie DONE# of U3 to READEN# of U4  
5. Optional: Tie DONE# of U4 to a LED to show each of the devices have been loaded successfully  
17  
www.ti.com  
Master EEPROM Mode in the DS100BR210  
Below is an example of a 2 kbits (256 x 8-bit) EEPROM in hex format for the DS100BR210 device. The first 3 bytes of the EEPROM  
always contain a header common and necessary to control initialization of all devices connected to the I2C bus. CRC enable flag  
to enable/disable CRC checking. There is a MAP bit to flag the presence of an address map that specifies the configuration data  
start in the EEPROM. If the MAP bit is not present the configuration data start address is derived from the DS100BR210 address  
and the configuration data size. A bit to indicate an EEPROM size > 256 bytes is necessary to properly address the EEPROM.  
There are 37 bytes of data size for each DS100BR210 device.  
30175315  
FIGURE 6. Typical EEPROM Data Set  
The CRC-8 calculation is performed on the first 3 bytes of header information plus the 37 bytes of data for the DS100BR210 or 40  
bytes in total. The result of this calculation is placed immediately after the DS100BR210 data in the EEPROM which ends with  
"5454". The CRC-8 in the DS100BR210 uses a polynomial = x8 + x2 + x + 1  
In SMBus master mode the DS100BR210 reads its initial configuration from an external EEPROM upon power-up. Some of the  
pins of the DS100BR210 perform the same functions in SMBus master and SMBus slave mode. Once the DS100BR210 has  
finished reading its initial configuration from the external EEPROM in SMBus master mode it reverts to SMBus slave mode and  
can be further configured by an external controller over the SMBus. The connection to an external SMBus master is optional and  
can be omitted for applications were additional security is desirable. There are two pins that provide unique functions in SMBus  
master mode.  
DONE#  
READEN#  
www.ti.com  
18  
When the DS100BR210 is powered up in SMBus master mode, it reads its configuration from the external EEPROM when the  
READEN# pin goes low. When the DS100BR210 is finished reading its configuration from the external EEPROM, it drives the  
DONE# pin low. In applications where there is more than one DS100BR210 on the same SMBus, bus contention can result if more  
than one DS100BR210 tries to take control of the SMBus at the same time. The READEN# and DONE# pins prevent this bus  
contention. The system should be designed so that the READEN# pin from one DS100BR210 in the system is driven low on power-  
up. This DS100BR210 will take command of the SMBus on power-up and will read its initial configuration from the external  
EEPROM. When it is finished reading its configuration, it will drive the DONE# pin low. This pin should be connected to the  
READEN# pin of another DS100BR210. When this DS100BR210 senses its READEN# pin driven low, it will take command of the  
SMBus and read its initial configuration from the external EEPROM, after which it will set its DONE# pin low. By connecting the  
DONE# pin of each DS100BR210 to the READEN# pin of the next DS100BR210, each DS100BR210 can read its initial configu-  
ration from the EEPROM without causing bus contention.  
30175316  
FIGURE 7. Typical multi-device EEPROM connection diagram  
19  
www.ti.com  
Table 7: Multi-Device EEPROM Register Map Overview  
Addr Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
BIt 0  
0
CRC EN  
Address  
Map  
EEPROM > Reserved  
256 Bytes  
COUNT[3]  
COUNT[2]  
COUNT[1]  
COUNT[0]  
Header  
1
2
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
EE Burst[7] EE Burst[6] EE Burst[5] EE Burst[4] EE Burst[3] EE Burst[2] EE Burst[1] EE Burst[0]  
CRC[7] CRC[6] CRC[5] CRC[4] CRC[3] CRC[2] CRC[1] CRC[0]  
EE AD0 [7] EE AD0 [6] EE AD0 [5] EE AD0 [4] EE AD0 [3] EE AD0 [2] EE AD0 [1] EE AD0 [0]  
CRC[7] CRC[6] CRC[5] CRC[4] CRC[3] CRC[2] CRC[1] CRC[0]  
EE AD1 [7] EE AD1 [6] EE AD1 [5] EE AD1 [4] EE AD1 [3] EE AD1 [2] EE AD1 [1] EE AD1 [0]  
CRC[7] CRC[6] CRC[5] CRC[4] CRC[3] CRC[2] CRC[1] CRC[0]  
EE AD2 [7] EE AD2 [6] EE AD2 [5] EE AD2 [4] EE AD2 [3] EE AD2 [2] EE AD2 [1] EE AD2 [0]  
CRC[7] CRC[6] CRC[5] CRC[4] CRC[3] CRC[2] CRC[1] CRC[0]  
EE AD3 [7] EE AD3 [6] EE AD3 [5] EE AD3 [4] EE AD3 [3] EE AD3 [2] EE AD3 [1] EE AD3 [0]  
Device 0 3  
Info  
Device 1 5  
Info  
Device 2 7  
Info  
Device 3 9  
Info  
4
6
8
10  
Device 0 11  
Addr 3  
RES  
RES  
RES  
DRES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
Device 0 12  
Addr 4  
PDWN Inp PDWN OSC RES  
eSATA CHA eSATA CHB Ovrd TX_DIS  
Device 0 46  
Addr 38  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
Device 0 47  
Addr 39  
Device 1 48  
Addr 3  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
Device 1 49  
Addr 4  
PDWN Inp PDWN OSC RES  
eSATA CHA eSATA CHB Ovrd TX_DIS  
Device 1 83  
Addr 38  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
Device 1 84  
Addr 39  
Device 2 85  
Addr 3  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
Device 2 86  
Addr 4  
PDWN Inp PDWN OSC RES  
eSATA CHA eSATA CHB Ovrd TX_DIS  
Device 2 120 RES  
Addr 38  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
Device 2 121 RES  
Addr 39  
Device 3 122 RES  
Addr 3  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
Device 3 123 RES  
Addr 4  
PDWN Inp PDWN OSC RES  
eSATA CHA eSATA CHB Ovrd TX_DIS  
Device 3 157 RES  
Addr 38  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
Device 3 158 RES  
Addr 39  
CRC EN = 1; Address Map = 1  
EEPROM > 256 Bytes = 0  
COUNT[3:0] = 0011'b  
Note: Multiple DS100BR210 devices may point at the same address space if they have identical programming values.  
www.ti.com  
20  
Table 8: Single EEPROM Header + Register Map with Default Value  
EEPROM  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
BIt 0  
Address Byte  
0
CRC EN  
Address  
Map  
EEPROM > RES  
256 Bytes  
COUNT[3]  
COUNT[2]  
COUNT[1]  
COUNT[0]  
Description  
Value  
Present  
0
0
0
0
0
0
0
0
Description 1 RES  
RES  
0
RES  
0
RES  
0
RES  
0
RES  
0
RES  
0
RES  
0
Value  
0
2
Max  
Max  
Max  
Max  
Max  
Max  
Max  
Max  
Description  
Value  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
Burst size[7] Burst size[6] Burst size[5] Burst size[4] Burst size[3] Burst size[2] Burst size[1] Burst size[0]  
0
0
0
0
0
0
0
0
Description 3 Reserved  
Reserved  
0x01 [6]  
0
Reserved  
0x01 [5]  
0
Reserved  
0x01 [4]  
0
Reserved  
0x01 [3]  
0
Reserved  
0x01 [2]  
0
Reserved  
0x01 [1]  
0
Reserved  
0x01 [0]  
0
Register  
Value  
0x01 [7]  
0
Description 4 Ovrd_LOS LOS_Value PDWN Inp PWDN Osc Reserved  
eSATA  
eSATA  
Ovrd  
Enable A  
Enable B  
TX_DIS  
Register  
Value  
0x02 [5]  
0
0x02 [4]  
0
0x02 [3]  
0
0x02 [2]  
0
0x02 [0]  
0
0x04 [7]  
0
0x04 [6]  
0
0x04 [5]  
0
Description 5 TX_DIS  
CHA  
TX_DIS  
CHB  
Reserved  
EQ Stage 4 EQ Stage 4 Reserved  
Overide  
IDLE_th  
Reserved  
CHB  
CHA  
Register  
Value  
0x04 [4]  
0
0x04 [3]  
0
0x04 [2]  
0
0x04 [1]  
0
0x04 [0]  
0
0x06 [4]  
1
0x08 [6]  
0
0x08 [5]  
0
Description 6 Ovrd_IDLE Reserved  
Ovrd_Out  
Mode  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Register  
Value  
0x08 [4]  
0
0x08 [3]  
0
0x08 [2]  
0
0x08 [1]  
0
0x08 [0]  
0x0B [6]  
1
0x0B [5]  
1
0x0B [4]  
1
0
Description 7 Reserved  
Reserved  
0x0B [2]  
0
Reserved  
0x0B [1]  
0
Reserved  
0x0B [0]  
0
Idle auto A  
0x0E [5]  
0
Idle sel A  
0x0E [4]  
0
Reserved  
0x0E [3]  
0
Reserved  
0x0E [2]  
0
Register  
Value  
0x0B [3]  
0
Description 8 CHA EQ[7] CHA EQ[6] CHA EQ[5] CHA EQ[4] CHA EQ[3] CHA EQ[2] CHA EQ[1] CHA EQ[0]  
Register  
Value  
0x0F [7]  
0
0x0F [6]  
0
0x0F [5]  
1
0x0F [4]  
0
0x0F [3]  
1
0x0F [2]  
1
0x0F [1]  
1
0x0F [0]  
1
Description 9 A Sel scp  
A Out Mode Reserved  
Reserved  
0x10 [4]  
0
Reserved  
0x10 [3]  
1
Reserved  
0x10 [2]  
1
Reserved  
0x10 [1]  
0
Reserved  
0x10 [0]  
1
Register  
Value  
0x10 [7]  
1
0x10 [6]  
1
0x10 [5]  
1
Description 1 DEMA[2]  
DEMA[1]  
0x11 [1]  
1
DEMA[0]  
0x11 [0]  
0
CHA Slow IDLE thA[1] IDLE thA[0] IDLE thD[1] IDLE thD[0]  
0
Register  
Value  
0x11 [2]  
0
0x12 [7]  
0
0x12 [3]  
0
0x12 [2]  
0
0x12 [1]  
0
0x12 [0]  
0
Description 1 Idle auto B Idle sel B  
Reserved  
0x15 [3]  
0
Reserved  
0x15 [2]  
0
CHB EQ[7] CHB EQ[6] CHB EQ[5] CHB EQ[4]  
1
Register  
Value  
0x15 [5]  
0
0x15 [4]  
0
0x16 [7]  
0
0x16 [6]  
0
0x16 [5]  
1
0x16 [4]  
0
Description 1 CHB EQ[3] CHB EQ[2] CHB EQ[1] CHB EQ[0] B Sel scp  
B Out Mode Reserved  
Reserved  
0x17 [4]  
0
2
Register  
Value  
0x16 [3]  
1
0x16 [2]  
1
0x16 [1]  
1
0x16 [0]  
1
0x17 [7]  
1
0x17 [6]  
1
0x17 [5]  
1
Description 1 Reserved  
Reserved  
0x17 [2]  
1
Reserved  
0x17 [1]  
0
Reserved  
0x17 [0]  
1
CHB DEM[2] CHB DEM[1] CHB DEM[0] CHB Slow  
3
Register  
Value  
0x17 [3]  
1
0x18 [2]  
0
0x18 [1]  
1
0x18 [0]  
0
0x19 [7]  
0
21  
www.ti.com  
1
4
Description  
Register  
Value  
IDLE thA[1] IDLE thA[0] IDLE thD[1] IDLE thD[0] Reserved  
Reserved  
Reserved  
Reserved  
0x19 [3]  
0
0x19 [2]  
0
0x19 [1]  
0
0x19 [0]  
0
0
0
0
0
Description 1 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
5
Register  
Value  
0
0
1
0
1
1
1
1
Description 1 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6
Register  
Value  
1
0
1
0
1
1
0
1
Description 1 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7
Register  
Value  
0
1
0
0
0
0
0
0
Description 1 Reserved  
Reserved  
0x23 [4]  
0
Reserved  
0x23 [3]  
0
Reserved  
0x23 [2]  
0
Reserved  
Reserved  
Reserved  
Reserved  
8
Register  
Value  
0
0
0
1
0
Description 1 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
A VOD[2]  
0x25 [4]  
0
9
Register  
Value  
1
1
1
1
1
0
1
Description 2 A VOD[1]  
A VOD[0]  
0x25 [2]  
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
Register  
Value  
0x25 [3]  
1
0
1
0
1
0
0
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
ovrd fst idle en hi idle th A en hi idle th B en fst idle A  
1
Register  
Value  
0x28 [6]  
0
0x28 [5]  
0
0x28 [4]  
0
0x28 [3]  
0
0
0
0
0
Description 2 en fst idle B Reserved  
Reserved  
0x28 [0]  
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2
Register  
Value  
0x28 [2]  
1
0x28 [1]  
0
0
0
0
0
0
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
3
Register  
Value  
0
1
0
1
1
1
1
1
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
B VOD[2]  
0x2D [4]  
0
B VOD[1]  
0x2D 3]  
1
B VOD[0]  
0x2D [2]  
1
Reserved  
4
Register  
Value  
0
1
0
1
0
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
5
Register  
Value  
1
0
0
0
0
0
0
0
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6
Register  
Value  
0
0
0
0
0
1
0
1
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7
Register  
Value  
1
1
1
1
0
1
0
1
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
8
Register  
Value  
1
0
1
0
1
0
0
0
Description 2 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
9
Register  
Value  
0
0
0
0
0
0
0
0
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
Register  
Value  
0
1
0
1
1
1
1
1
www.ti.com  
22  
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1
Register  
Value  
0
1
0
1
1
0
1
0
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2
Register  
Value  
1
0
0
0
0
0
0
0
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
3
Register  
Value  
0
0
0
0
0
1
0
1
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
4
Register  
Value  
1
1
1
1
0
1
0
1
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
5
Register  
Value  
1
0
1
0
1
0
0
0
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6
Register  
Value  
0
0
0
0
0
0
0
0
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7
Register  
Value  
0
0
0
0
0
0
0
0
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
8
Register  
Value  
0
1
0
1
0
1
0
0
Description 3 Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
9
Register  
Value  
0
1
0
1
0
1
0
0
23  
www.ti.com  
Below is an example of a 2 kbits (256 x 8-bit) EEPROM Register Dump in hex format for a multi-device DS100BR210 application.  
Table 9: Multi DS100BR210 EEPROM Data  
EEPROM  
Address  
Address  
(Hex)  
EEPROM  
Data  
Comments  
0
1
2
3
4
5
6
7
8
9
00  
0x43  
CRC_EN = 0, Address Map = 1, Device Count = 3 (Devices 0, 1, 2, and 3)  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
0x00  
0x08  
0x00  
0x0B  
0x00  
0x30  
0x00  
0x30  
0x00  
0x0B  
0x00  
0x00  
0x04  
0x07  
0x00  
0x2F  
0xED  
0x40  
0x02  
0xFE  
0xD4  
0x00  
0x2F  
0xAD  
0x40  
0x02  
0xFA  
0xD4  
0x01  
0x80  
0x5F  
0x56  
0x80  
0x05  
0xF5  
0xA8  
0x00  
0x5F  
0x5A  
0x80  
0x05  
0xF5  
0xA8  
0x00  
0x00  
EEPROM Burst Size  
CRC not used  
Device 0 Address Location  
CRC not used  
Device 1 Address Location  
CRC not used  
Device 2 Address Location  
CRC not used  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
Device 3 Address Location  
Begin Device 0 and Device 3 - Address Offset 3  
Default EQ CHA  
Default EQ CHB  
Default EQ CHB  
BR210 CHA VOD = 1000 mV  
BR210 CHA VOD = 1000 mV  
BR210 CHB VOD = 1000 mV  
www.ti.com  
24  
EEPROM  
Address  
Address  
(Hex)  
EEPROM  
Data  
Comments  
46  
2E  
0x54  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
0x54  
0x00  
0x00  
0x04  
0x07  
0x00  
0x2F  
0xED  
0x40  
0x02  
0xFE  
0xD4  
0x00  
0x2F  
0xAD  
0x40  
0x02  
0xFA  
0xD4  
0x01  
0x80  
0x5F  
0x56  
0x80  
0x05  
0xF5  
0xA8  
0x00  
0x5F  
0x5A  
0x80  
0x05  
0xF5  
0xA8  
0x00  
0x00  
0x54  
0x54  
End Device 0 and Device 3 - Address Offset 39  
Begin Device 1 and Device 2 - Address Offset 3  
Default EQ CHA  
Default EQ CHB  
Default EQ CHB  
BR210 CHA VOD = 1000 mV  
BR210 CHA VOD = 1000 mV  
BR210 CHB VOD = 1000 mV  
End Device 1 and Device 2 - Address Offset 39  
25  
www.ti.com  
TABLE 1. Table 10: SMBus Register Map  
EEPROM  
Register  
Name  
Address  
Bits Field  
Type  
Default  
Description  
Reg Bit  
0x00  
Device ID  
7
Reserved  
R/W  
R
0x00  
set bit to 0  
6:3  
2
I2C Address [3:0]  
[6:3] SMBus strap observation  
EEPROM reading  
done  
R
1: EEPROM Loading  
0: EEPROM Done Loading  
1
Reserved  
Reserved  
Idle Control  
RWSC  
RWSC  
R/W  
set bit to 0  
set bit to 0  
0
0x01  
Control 1  
7:6  
0x00  
Yes  
Control  
[7]: Continuous talk ENABLE (Channel A)  
[6]: Continuous talk ENABLE (Channel B)  
5:3  
2
Reserved  
R/W  
R/W  
Set bits to 0  
LOS Select  
LOS Monitor Selection  
1: Use LOS from CH B  
0: Use LOS from CH A  
1:0  
7
Reserved  
Reserved  
Reserved  
LOS override  
R/W  
R/W  
Set bits to 00'b  
Set bit to 0  
0x02  
Control 2  
0x00  
6
Set bit to 0  
5
Yes  
Yes  
LOS pin override enable (1);  
Use Normal Signal Detection (0)  
4
LOS override  
value  
1: Normal Operation  
0: Output LOS  
3
PWDN Inputs  
PWDN Oscillator  
Reserved  
Yes  
Yes  
1: PWDN  
0: Normal Operation  
2
1
0
Reserved  
Yes  
Yes  
Set bit to 0  
0x04  
Control 3  
7:6  
eSATA Mode  
Enable  
R/W  
0x00  
[7] Channel A (1)  
[6] Channel B (1)  
5
4
3
TX_DIS Override  
Enable  
1: Override Use Reg 0x04[4:3]  
0: Normal Operation - uses pin  
TX_DIS Value  
Channel A  
1: TX Disabled  
0: TX Enabled  
TX_DIS Value  
Channel B  
2
Reserved  
Set bit to 0  
1:0  
EQ CONTROL  
[1]: Channel B - EQ Stage 4 ON/OFF  
[0]: Channel A - EQ Stage 4 ON/OFF  
0x05  
0x06  
CRC 1  
CRC 2  
7:0  
7
CRC[7:0]  
R/W  
0x00  
0x10  
Slave Mode CRC Bits  
Disable EEPROM R/W  
CFG  
Disable Master Mode EEPROM Configuration  
6:5  
4
Reserved  
Reserved  
Set bits to 0  
Set bit to 1  
Yes  
3
CRC Slave Mode  
Disable  
[1]: CRC Disable (No CRC Check)  
[0]: CRC Check ENABLE  
Note: With CRC check DISABLED register  
updates take immediate effect on high speed  
data path. With CRC check ENABLED  
register updates will NOT take effect until  
correct CRC value is loaded  
2:1  
0
Reserved  
Set bits to 0  
CRC Enable  
Slave CRC Trigger  
www.ti.com  
26  
0x07  
Digital Reset  
and Control  
R/W  
0x01  
7
6
Reserved  
Set bit to 0  
Reset Regs  
Self clearing reset for registers.  
Writing a [1] will return register settings to  
default values.  
5
Reset SMBus  
Master  
Self clearing reset for SMBus master state  
machine  
4:0  
Reserved  
Reserved  
Set bits to '0001b  
Set bit to 0  
0x08  
Pin Override 7  
6
R/W  
0x00  
Override Idle  
Threshold  
Yes  
[1]: Override by Channel - see Reg 0x13 and  
0x19  
[0]: SD_TH pin control  
5
4
Reserved  
Yes  
Yes  
Set bit to 0  
Override IDLE  
[1]: Force IDLE by Channel - see Reg 0x0E  
and 0x15  
[0]: Normal Operation  
3
2
Reserved  
Yes  
Set bit to 0  
[1]: Enable Output Mode control for individual  
outputs. See register locations 0x10[6] and  
0x17[6].  
Override Out  
Mode  
[0]: Disable - Outputs are kept in the normal  
mode of operation allowing VOD and DE ad-  
justments.  
1
0
Override DEM  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Yes  
Yes  
Set bit to 0  
0x0C  
CH A  
7
R/W  
0x00  
Set bit to 0  
Analog  
Override 1  
6
Set bit to 0  
5
Set bit to 0  
4
Set bit to 0  
3:0  
7:0  
Set bits to 0000'b.  
Set bits to 00'h.  
0x0D  
0x0E  
CH A  
Reserved  
R/W  
R/W  
0x00  
0x00  
CH A  
7:6  
5
Reserved  
Idle Auto  
Set bits to 00'b.  
Idle Control  
Yes  
Yes  
Yes  
Auto IDLE value when override bit is set (reg  
0x08 [4] = 1)  
4
Idle Select  
Force IDLE value when override bit is set (reg  
0x08 [4] = 1)  
3
Reserved  
Set bit to 0.  
Set bits to 0.  
2:0  
7:0  
Reserved  
0x0F  
0x10  
CH A  
EQ Setting  
BOOST [7:0]  
R/W  
R/W  
0x2F  
0xED  
Yes  
Yes  
Yes  
EQ Boost Default to 24 dB  
See EQ Table for Information  
CH A  
7
6
Sel_scp  
[1]: Short Circuit Protection ON  
[0]: Short Circuit Protection OFF  
Control 1  
Output Mode  
[1]: Normal operation  
[0]: 10G-KR operation  
5:3  
2:0  
Reserved  
Reserved  
Yes  
Yes  
Set bits to = 101'b  
Set bits to = 101'b  
27  
www.ti.com  
0x11  
CH A  
Control 2  
0x82  
7:5  
4
Reserved  
Reserved  
Reserved  
DEM [2:0]  
R
Set bits to = 100'b  
Set bit to 0  
R/W  
3
Set bit to 0  
2:0  
Yes  
De-Emphasis (Default = -3.5 dB)  
000'b = -0.0 dB  
001'b = -1.5 dB  
010'b = -3.5 dB  
011'b = -6.0 dB  
100'b = -8.0 dB  
101'b = -9.0 dB  
110'b = -10.5 dB  
111'b = -12.0 dB  
0x12  
CH A  
Idle  
Threshold  
7
Slow OOB  
Reserved  
R/W  
0x00  
Yes  
Yes  
Slow OOB Enable (1); Disable (0)  
Set bits to 000'b.  
6:4  
3:2  
IDLE thA[1:0]  
Assert Thresholds  
Use only if register 0x08 [6] = 1  
00 = 180 mV (Default)  
01 = 160 mV  
10 = 210 mV  
11= 190 mV  
1:0  
IDLE thD[1:0]  
Yes  
De-assert Thresholds  
Use only if register 0x08 [6] = 1  
00 = 110 mV (Default)  
01 = 100 mV  
10 = 150 mV  
11= 130 mV  
0x13  
CH B  
Analog  
Override 1  
7
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
R/W  
0x00  
Set bit to 0  
6
Set bit to 0  
5
Set bit to 0  
4
Set bit to 0  
3:0  
7:0  
Set bits to 0000'b.  
Set bits to 00'h.  
0x14  
0x15  
CH B  
Reserved  
R/W  
R/W  
0x00  
0x00  
CH B  
Idle Control  
7:6  
5
Reserved  
Idle Auto  
Set bits to 00'b  
Yes  
Yes  
Yes  
Auto IDLE value when override bit is set (reg  
0x08 [4] = 1)  
4
Idle Select  
Force IDLE value when override bit is set (reg  
0x08 [4] = 1)  
3:2  
1:0  
7:0  
Reserved  
Set bits to 00'b.  
Set bits to 00'b.  
Reserved  
0x16  
0x17  
CH B  
EQ Setting  
BOOST [7:0]  
R/W  
R/W  
0x2F  
0xED  
Yes  
Yes  
Yes  
Yes  
EQ Boost Default to 24 dB  
See EQ Table for Information  
CH B  
Control 1  
7
6
Sel_scp  
1 = Short Circuit Protection ON  
0 = Short Circuit Protection OFF  
Output Mode  
[1]: Normal operation  
[0]: 10G-KR operation  
5:3  
2:0  
Reserved  
Reserved  
Set bits to = 101'b  
Set bits to = 101'b  
www.ti.com  
28  
0x18  
CH B  
Control 2  
0x82  
7:5  
4
Reserved  
Reserved  
Reserved  
DEM [2:0]  
R
Set bits to = 100'b  
Set bit to 0  
R/W  
3
Set bit to 0  
2:0  
Yes  
De-Emphasis (Default = -3.5 dB)  
000'b = -0.0 dB  
001'b = -1.5 dB  
010'b = -3.5 dB  
011'b = -6.0 dB  
100'b = -8.0 dB  
101'b = -9.0 dB  
110'b = -10.5 dB  
111'b = -12.0 dB  
0x19  
CH B  
Idle  
Threshold  
7
Slow OOB  
Reserved  
R/W  
0x00  
Yes  
Yes  
Slow OOB Enable (1); Disable (0)  
Set bits to 000'b.  
6:4  
3:2  
IDLE thA[1:0]  
Assert Thresholds  
Use only if register 0x08 [6] = 1  
00 = 180 mV (Default)  
01 = 160 mV  
10 = 210 mV  
11= 190 mV  
1:0  
IDLE thD[1:0]  
Yes  
De-assert Thresholds  
Use only if register 0x08 [6] = 1  
00 = 110 mV (Default)  
01 = 100 mV  
10 = 150 mV  
11= 130 mV  
0x23  
0x25  
Reserved  
7:6  
4:2  
1:0  
Reserved  
R/W  
R/W  
0x00  
Set bits to 00'b.  
Set bits to 000'b.  
Set bits to 00'b.  
Set bits to 101'b.  
Reserved  
Yes  
Yes  
Reserved  
CH A VOD 7:5  
Control  
Reserved  
0xAD  
4:2  
VOD_CHA[2:0]  
VOD Controls for CH A  
(Default = 011'b)  
000'b = 700 mV  
001'b = 800 mV  
010'b = 900 mV  
011'b = 1000 mV  
100'b = 1100 mV  
101'b = 1200 mV  
110'b = 1300 mV  
1:0  
7
Reserved  
Set bits to 01'b.  
0x28  
Idle Control  
Reserved  
R/W  
0x00  
6
Override Fast Idle  
Yes  
Yes  
5:4  
en_high_idle_th  
[1:0]  
Enable high SD thresholds  
[5]: CH A  
[4]: CH B  
3:2  
1:0  
en_fast_idle[1:0]  
Reserved  
Yes  
Yes  
Enable Fast IDLE  
[3]: CH A  
[2]: CH B  
Set bits to 00'b.  
29  
www.ti.com  
0x2D  
CH B VOD  
Control  
R/W  
0xAD  
7:5  
4:2  
Reserved  
Set bits to 101'b.  
VOD_CHB[2:0]  
Yes  
VOD Controls for CH B  
(Default = 011'b)  
000'b = 700 mV  
001'b = 800 mV  
010'b = 900 mV  
011'b = 1000 mV  
100'b = 1100 mV  
101'b = 1200 mV  
110'b = 1300 mV  
1:0  
7:5  
4:0  
Reserved  
Set bits to = 01'b  
Read bits = 011'b  
BR210 = 0 0110'b  
0x51  
Device  
Information  
Version[2:0]  
Device ID[4:0]  
R
0x66  
www.ti.com  
30  
Typical DC Performance  
Characteristics  
The following data was collected at 25°C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.3V Mode  
2.5V Mode  
700 800 900 1000 1100 1200 1300  
OUTPUT VOLTAGE (mV)  
30175393  
FIGURE 8. Supply Current vs. Output Voltage Setting  
60  
VOD = 700 mV  
Temp = 25°C  
56  
52  
2.5V Mode  
48  
44  
40  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
SUPPLY VOLTAGE (V)  
30175394  
FIGURE 9. Supply Current vs. Supply Voltage  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
0
1
2
3
4
5
6
7
VOD SETTING  
30175395  
FIGURE 10. Output Voltage vs. Output Voltage Setting  
31  
www.ti.com  
Typical AC Performance Characteristics  
NO MEDIA:  
Device  
Random Jitter (Rj)  
Deterministic Jitter  
(Dj)  
Dj Component Breakdown Total Jitter (Tj @  
1E-12)  
DS100BR210 @  
10.3125 Gbps  
280 fs  
9.8 ps  
DDJ = 7.6 ps  
DCD = 2.1 ps  
DDPWS = 5.4 ps  
PJ = 0.25 ps  
13.7 ps  
30175363  
FIGURE 11. No Media; D3186 driving device directly  
www.ti.com  
32  
The following lab setups were used to collect typical performance data on FR4 and Cable media.  
30175371  
FIGURE 12. Equalization Test Setup for FR4  
EQUALIZATION RESULTS:  
30175342  
FIGURE 13. Equalization Performance with 10" of 4 mil FR4 using EQ settting 0x01  
30175357  
FIGURE 14. Equalization Performance with 30" of 4 mil FR4 using EQ settting 0x16  
33  
www.ti.com  
 
30175372  
FIGURE 15. Equalization Test Setup for Cables  
CABLE TRANSMIT and RECEIVE RESULTS:  
30175361  
FIGURE 16. 8M 30AWG Cable Performance with 700mV Launch VOD and Rx EQ setting 0x0F  
www.ti.com  
34  
 
30175370  
FIGURE 17. De-Emphasis Test Setup  
DE-EMPHASIS RESULTS:  
30175339  
FIGURE 18. De-Emphasis Performance with 5" of 4 mil FR4 using DE settting 0x01  
30175338  
FIGURE 19. 5" of 4 mil FR4 Without De-Emphasis  
35  
www.ti.com  
 
30175341  
FIGURE 20. De-Emphasis Performance with 10" of 4 mil FR4 using DE settting 0x02  
30175340  
FIGURE 21. 10" of 4 mil FR4 Without De-Emphasis  
www.ti.com  
36  
Physical Dimensions inches (millimeters) unless otherwise noted  
Order Number DS100BR210SQ (Tape and Reel 1000 units)  
Order Number DS100BR210SQE (Tape and Reel 250 units)  
NS Package Number SQA24A  
(See AN-1187 for PCB Design and Assembly Recommendations)  
37  
www.ti.com  
Notes  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY