DS125DF1610 [TI]

9.8 至 12.5Gbps 16 通道重定时器;
DS125DF1610
型号: DS125DF1610
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

9.8 至 12.5Gbps 16 通道重定时器

文件: 总85页 (文件大小:1932K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
DS125DF1610 9.8 12.5Gbps 16 通道重定时器  
1 特性  
3 说明  
1
引脚兼容系列  
DS125DF1610 是一款具有集成信号调节功能的十六通  
道多速率 重定时器。该器件包含完全自适应性连续时  
间线性均衡器 (CTLE)、判决反馈均衡器 (DFE)、时钟  
和数据恢复 (CDR) 锁定检测以及发送 FIR 滤波器,可  
延长在有损且存在串扰的高速串行链路中的发送距离并  
DS150DF161012.5 15G  
DS125DF16109.8 12.5G  
DS110DF16108.5 11.3G  
4x4 模拟交叉点开关(每个四通道)  
提高稳定性,从而实现比特误差率 (BER) < 1×10-15  
完全自适应性连续时间线性均衡器 (CTLE)  
自调谐判决反馈均衡器 (DFE),可选配连续调节装  
DS125DF1610 每个通道的串行数据速率均可独立锁定  
9.8 12.5Gbps 范围内,并且可进行 2 分频、4 分  
频和 8 分频。与输入数据流同步或异步的简单外部振  
荡器 (±100ppm) 可用作基准时钟。集成的 4x4 交叉点  
开关可在 DS125DF1610 的每个四通道内实现无阻塞  
路由或广播。  
可配置的可变增益放大器 (VGA)  
可调发送 VOD  
可调 3 抽头发送有限脉冲响应 (FIR) 滤波器  
接收输入上的片上交流耦合  
锁定传统支持的二分频/四分频/八分频数据速率  
可编程的发送 FIR 滤波器可控制前体、主抽头和后  
体,从而实现发送均衡。利用完全自适应接收均衡  
CTLE DFE),可以延长在因使用多个连接器而  
受损的铜缆和背板上的发送距离。  
片上眼图监视器 (EOM),伪随机二进制序列  
(PRBS) 校验器,图案信号发生器  
支持 JTAG 边界扫描  
可编程的输出极性反转  
输入信号检测,CDR 锁定检测  
单路 2.5V ±5% 电源  
配备的非破坏性任务模式眼图监视器可从内部对接收器  
进行链路监视。内置的 PRBS 发生器和校验器对内部  
诊断功能进行了 补充, 以完成独立 BERT 测量。内置  
JTAG 支持制造测试。  
基于 SMBus 的寄存器配置  
可选 EEPROM 配置  
15mm × 15mm 196 引脚 FCBGA 封装  
工作温度范围:–40°C +85°C  
器件信息 (1)  
部件号  
封装  
封装尺寸标称值  
DS125DF1610  
FCBGA (196)  
15.00mm x 15.00mm  
2 应用  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
SFF-8431  
CPRI  
简化电路原理图  
DS125DF1610  
10G/40G 以太网  
背板  
100nF  
RX_0A_P  
TX_0A_P  
RX_0A_N  
TX_0A_N  
.
.
.
.
.
.
.
.
.
.
.
.
100nF  
100nF  
2.5V or 3.3V  
RX_7B_P  
RX_7B_N  
TX_7B_P  
TX_7B_N  
__________  
2kW  
2kW  
2kW  
2kW  
100nF  
TDI_IO  
INTERR_IO  
_________  
TDO_IO  
TRST_IO  
TMS_IO  
TCK_IO  
RESET_IO  
SDA_IO  
SCL_IO  
1F  
1F  
25 MHz  
CLK_MON_P  
CLK_MON_N  
EN_SMB  
READ_EN  
ADDR0  
REF_CLK_P  
REF_CLK_N  
2.5V  
22F  
(1x)  
0.1F  
(8x)  
VDD  
GND  
ADDR1  
1kW  
1kW  
1kW  
1kW  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNLS482  
 
 
 
 
 
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 8  
6.1 Absolute Maximum Ratings ..................................... 8  
6.2 Handling Ratings ...................................................... 8  
6.3 Recommended Operating Conditions....................... 8  
6.4 Thermal Information ................................................. 8  
6.5 Additional Thermal Information ................................ 8  
6.6 Electrical Characteristics........................................... 9  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 24  
7.5 Programming........................................................... 26  
8
9
Application and Implementation ........................ 69  
8.1 Application Information............................................ 69  
8.2 Typical Applications ................................................ 70  
8.3 Initialization Setup................................................... 73  
Power Supply Recommendations...................... 75  
9.1 Power Supply Filtering............................................ 75  
10 Layout................................................................... 75  
10.1 Layout Guidelines ................................................. 75  
10.2 Layout Example .................................................... 76  
11 器件和文档支持 ..................................................... 77  
11.1 器件支持 ............................................................... 77  
11.2 文档支持 ............................................................... 77  
11.3 接收文档更新通知 ................................................. 77  
11.4 社区资源................................................................ 77  
11.5 ....................................................................... 77  
11.6 静电放电警告......................................................... 77  
11.7 Glossary................................................................ 77  
12 机械、封装和可订购信息....................................... 77  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (December 2015) to Revision B  
Page  
已更改 最低温度为 -20°C -40°C......................................................................................................................................... 1  
Changed the minimum temperature from -20°C to -40°C ..................................................................................................... 8  
Changes from Original (April 2014) to Revision A  
Page  
已添加 完整的数据表 .............................................................................................................................................................. 1  
2
Copyright © 2014–2017, Texas Instruments Incorporated  
 
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
5 Pin Configuration and Functions  
Plastic Ball Grid Array  
196 Balls  
Bottom View  
P
TX_6B_N  
GND  
N
TX_6B_P  
GND  
M
GND  
L
K
TX_4B_N  
GND  
J
TX_4B_P  
GND  
H
GND  
G
F
TX_3A_N  
GND  
E
TX_3A_P  
GND  
D
GND  
C
GND  
B
TX_1A_N  
GND  
A
GND  
GND  
TX_1A_P  
01  
02  
01  
02  
TX_5B_N  
GND  
TX_5B_P  
GND  
TX_4A_N  
GND  
TX_4A_P  
GND  
TX_2A_N  
GND  
TX_2A_P  
GND  
GND  
TX_7A_N  
GND  
TX_7A_P  
GND  
TX_5A_N  
GND  
TX_5A_P  
GND  
TX_2B_N  
GND  
TX_2B_P  
GND  
TX_0B_N  
GND  
TX_0B_P  
GND  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
TX_6A_N  
GND  
TX_6A_P  
TX_3B_N  
GND  
TX_3B_P  
TX_1B_N  
ADDR1  
TCK_IO  
TDI_IO  
N/C  
TX_1B_P  
GND  
ALL_DON  
E
READ_E  
N
TX_7B_N  
GND  
TX_7B_P  
GND  
VDD  
VDD  
VDD  
VDD  
TX_0A_N  
ADDR0  
TMS_IO  
N/C  
TX_0A_P  
GND  
N/C  
SCL_IO  
N/C  
VDD  
GND  
VDD  
GND  
VDD  
VDD  
GND  
N/C  
REF_CLK  
_P  
CLK_MO  
N_P  
N/C  
SDA_IO  
GND  
VDD  
GND  
GND  
VDD  
TDO_IO  
TRST_IO  
N/C  
REF_CLK  
_N  
INTERR#  
_IO  
RESET#_  
IO  
CLK_MO  
N_N  
EN_SMB  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
GND  
RX_7B_N  
GND  
N/C  
GND  
N/C  
GND  
GND  
VDD  
GND  
VDD  
GND  
VDD  
N/C  
GND  
GND  
RX_0A_P  
GND  
RX_7B_P  
GND  
VDD  
VDD  
GND  
GND  
VDD  
VDD  
GND  
GND  
RX_0A_N  
GND  
RX_6A_N  
GND  
RX_6A_P  
GND  
GND  
GND  
RX_3B_N  
GND  
RX_3B_P  
GND  
GND  
GND  
RX_1B_N  
GND  
RX_1B_P  
GND  
RX_7A_N  
GND  
RX_7A_P  
GND  
RX_5A_N  
GND  
RX_5A_P  
GND  
RX_2B_N  
GND  
RX_2B_P  
GND  
RX_0B_N  
GND  
RX_0B_P  
GND  
RX_5B_N  
GND  
RX_5B_P  
GND  
RX_4A_N  
GND  
RX_4A_P  
GND  
RX_2A_N  
GND  
RX_2A_P  
GND  
RX_6B_N  
RX_6B_P  
RX_4B_N  
RX_4B_P  
RX_3A_N  
RX_3A_P  
RX_1A_N  
RX_1A_P  
P
N
M
L
K
J
H
G
F
E
D
C
B
A
(TOP VIEW)  
Copyright © 2014–2017, Texas Instruments Incorporated  
3
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Pin Functions  
DS110DF1610,  
DS150DF1610  
DS125DF1610  
PIN NAME  
PIN  
I/O  
DESCRIPTION  
PIN NAME  
HIGH SPEED DIFFERENTIAL I/O  
RX_1A_P  
RX_1A_N  
RX_0_0P  
RX_0_0N  
A14  
B14  
I, CML  
I, CML  
I, CML  
I, CML  
I, CML  
I, CML  
I, CML  
I, CML  
I, CML  
I, CML  
I, CML  
I, CML  
I, CML  
I, CML  
I, CML  
I, CML  
O, CML  
O, CML  
O, CML  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
RX_0B_P  
Rx_0B_N  
RX_0_1P  
RX_0_1N  
A12  
B12  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
RX_0A_P  
RX_0A_N  
RX_0_2P  
RX_0_2N  
A10  
B10  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
RX_2A_P  
RX_2A_N  
RX_0_3P  
RX_0_3N  
C13  
D13  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
RX_1B_P  
RX_1B_N  
RX_0_4P  
RX_0_4N  
C11  
D11  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
RX_3A_P  
RX_3A_N  
RX_0_5P  
RX_0_5N  
E14  
F14  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
RX_2B_P  
RX_2B_N  
RX_0_6P  
RX_0_6N  
E12  
F12  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
RX_4A_P  
RX_4A_N  
RX_0_7P  
RX_0_7N  
G13  
H13  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
RX_3B_P  
RX_3B_N  
RX_1_0P  
RX_1_0N  
G11  
H11  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
RX_4B_P  
Rx_4B_N  
RX_1_1P  
RX_1_1N  
J14  
K14  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
RX_5A_P  
RX_5A_N  
RX_1_2P  
RX_1_2N  
J12  
K12  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
RX_5B_P  
RX_5B_N  
RX_1_3P  
RX_1_3N  
L13  
M13  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
RX_6A_P  
RX_6A_N  
RX_1_4P  
RX_1_4N  
L11  
M11  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
RX_6B_P  
RX_6B_N  
RX_1_5P  
RX_1_5N  
N14  
P14  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
RX_7A_P  
RX_7A_N  
RX_1_6P  
RX_1_6N  
N12  
P12  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
RX_7B_P  
RX_7B_N  
RX_1_7P  
RX_1_7N  
N10  
P10  
Inverting and non-inverting CML-compatible, AC coupled  
differential inputs. An on-chip 100 Ohm differential termination  
resistor connects these inputs.  
TX_1A_P  
TX_1A_N  
TX_0_0P  
TX_0_0N  
A1  
B1  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
TX_0B_P  
TX_0B_N  
TX_0_1P  
TX_0_1N  
A3  
B3  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
TX_0A_P  
TX_0A_N  
TX_0_2P  
TX_0_2N  
A5  
B5  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
4
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Pin Functions (continued)  
DS110DF1610,  
DS125DF1610  
PIN NAME  
DS150DF1610  
PIN NAME  
PIN  
I/O  
DESCRIPTION  
TX_2A_P  
TX_2A_N  
TX_0_3P  
TX_0_3N  
C2  
D2  
O, CML  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
TX_1B_P  
TX_1B_N  
TX_0_4P  
TX_0_4N  
C4  
D4  
O, CML  
O, CML  
O, CML  
O, CML  
O, CML  
O, CML  
O, CML  
O, CML  
O, CML  
O, CML  
O, CML  
O, CML  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
TX_3A_P  
TX_3A_N  
TX_0_5P  
TX_0_5N  
E1  
F1  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
TX_2B_P  
TX_2B_N  
TX_0_6P  
TX_0_6N  
E3  
F3  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
TX_4A_P  
TX_4A_N  
TX_0_7P  
TX_0_7N  
G2  
H2  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
TX_3B_P  
TX_3B_N  
TX_1_0P  
TX_1_0N  
G4  
H4  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
TX_4B_P  
TX_4B_N  
TX_1_1P  
TX_1_1N  
J1  
K1  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
TX_5A_P  
TX_5A_N  
TX_1_2P  
TX_1_2N  
J3  
K3  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
TX_5B_P  
TX_5B_N  
TX_1_3P  
TX_1_3N  
L2  
M2  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
TX_6A_P  
TX_6A_N  
TX_1_4P  
TX_1_4N  
L4  
M4  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
TX_6B_P  
TX_6B_N  
TX_1_5P  
TX_1_5N  
N1  
P1  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
TX_7A_P  
TX_7A_N  
TX_1_6P  
TX_1_6N  
N3  
P3  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
TX_7B_P  
TX_7B_N  
TX_1_7P  
TX_1_7N  
N5  
P5  
Inverting and non-inverting CML-compatible differential  
outputs. Driver presents an output impedance of 100 ohms  
between these outputs when switching.  
CLOCK PINS  
REF_CLK_P  
REF_CLK_N  
P7  
P8  
I, LVDS/  
LVCMOS  
Inverting and non-inverting  
CML-compatible differential inputs for 25 MHz, 125 MHz, or  
312.5 MHz clock. These differential signals are typically AC  
coupled with 1 µF capacitors  
When configured for single-ended input operation, apply  
LVCMOS ref clock to REF_CLK_P and float REF_CLK_N.  
Single-ended signals should be DC coupled.  
CLK_MON_P  
CLK_MON_N  
A7  
A8  
O, LVDS  
Inverting and non-inverting  
CML-compatible differential outputs to monitor system  
differential clock.  
When daisy chaining to another retimer the output frequency  
should be set to 25 MHz.  
SMBUS INTERFACE  
SDA_IO  
M7  
I/O,  
Data Input / Open Drain Output  
Open Drain External pull-up resistor is required, typically in the 2kΩ to 5kΩ  
range. Pull-up value should be selected according to system  
implementation.  
Pin is 3.3 V LVCMOS tolerant.  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Pin Functions (continued)  
DS110DF1610,  
DS150DF1610  
DS125DF1610  
PIN NAME  
PIN  
I/O  
DESCRIPTION  
PIN NAME  
SCL_IO  
L6  
I/O,  
Clock input/output  
Open Drain  
External pull-up resistor is required, typically in the 2kΩ to 5kΩ  
range. Pull-up value should be selected according to system  
implementation.  
Pin is 3.3 V LVCMOS tolerant  
EEPROM configuration (SMBus Master mode)  
JTAG INTERFACE(1)  
TMS_IO  
B7  
C7  
C8  
D6  
D7  
I, LVCMOS JTAG Test Mode Select, internal pull-up  
O, LVCMOS JTAG Test Data Out  
TDO_IO  
TRST_IO  
I, LVCMOS JTAG Test Reset, internal pull-up  
I, LVCMOS JTAG Test clock, internal pull-up  
I, LVCMOS JTAG Test Data Input, internal pull-up  
TCK_IO  
TDI_IO  
OTHER PINS  
RESET_IO  
L8  
I, LVCMOS Resets registers and state machines on rising edge. Pulse  
LOW for minimum of 10µs to perform reset. Pin should be  
pulled HIGH during power on.  
INTERR_IO  
ADDR0  
M8  
B6  
D5  
G5  
O, Open  
Drain  
Active Low interrupt signal. Pin goes low when an interrupt  
event occurs. Interrupts must be enabled via SMBus.  
I, LVCMOS 4 level input strap pin for SMBus address code LSB. Standard  
LVCMOS output.  
ADDR1  
I, LVCMOS 4 level input strap pin for SMBus address code MSB.  
Standard LVCMOS output.  
READ_EN  
I, LVCMOS Tie LOW for SMBus slave mode normal operation. Pin has  
internal pull down.  
In SMBus slave mode, tie HIGH to force SMBus address =  
0x30.  
ALL_DONE  
EN_SMB  
L5  
O, LVCMOS EEPROM load status. Pin goes LOW when EEPROM load is  
complete.  
N8  
I, LVCMOS Connect to GND through 1kΩ resistor for SMBus slave  
operation.  
Connect to VDD through 1kΩ resistor for EEPROM  
configuration  
POWER  
VDD  
E5, E7, E9,  
E10, F5, F6,  
Power  
VDD = 2.5 V +/- 5%  
F8, F10, G7,  
G9, H6, H8,  
J5, J7, J9,  
J10, K5, K6,  
K8, K10  
(1) Refer to the DS125DF1610 Programming Guide for additional information  
6
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Pin Functions (continued)  
DS110DF1610,  
DS125DF1610  
PIN NAME  
DS150DF1610  
PIN NAME  
PIN  
I/O  
DESCRIPTION  
GND  
A2, A4, A6,  
A9, A11, A13,  
B2, B4, B9,  
B11, B13,  
Power  
Ground reference  
C1, C3, C5,  
C10, C12,  
C14, D1, D3,  
D10, D12,  
D14, E2, E4,  
E6, E8, E11,  
E13, F2, F4,  
F7, F9, F11,  
F13, G1, G3,  
G6, G8, G10,  
G12, G14,  
H1, H3, H5,  
H7, H9, H10,  
H12, H14, J2,  
J4, J6, J8,  
J11, J13, K2,  
K4, K7, K9,  
K11, K13, L1,  
L3, L10, L12,  
L14, M1, M3,  
M5, M10,  
M12, M14,  
N2, N4, N6,  
N9, N11,  
N13, P2, P4,  
P6, P9, P11,  
P13  
N/C  
B8, C6, C9,  
D8, D9, L7,  
L9, M6, M9,  
N7  
No Connect, leave floating  
Copyright © 2014–2017, Texas Instruments Incorporated  
7
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–30  
-40  
MAX  
2.75  
UNIT  
V
Supply Voltage (VDD)  
LVCMOS Input/Output Voltage  
Open Drain I/O Supply Voltage  
CML Input Voltage  
2.75  
V
4.0  
V
(VDD + 0.5)  
30  
V
CML Input Current  
mA  
°C  
Storage temperature range, Tstg  
150  
(1) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications  
6.2 Handling Ratings  
VALUE  
±4,000  
±1,000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
2.375  
–40  
TYP  
2.5  
25  
MAX  
2.625  
85  
UNIT  
V
Supply Voltage  
Ambient Temperature  
°C  
V
SMBus (SDA, SCL), INTERR_IO  
Maximum Continuous Junction Temperature while Device is Operational  
2.5  
3.6  
115  
°C  
6.4 Thermal Information  
DS125DF1610  
FCBGA ABB  
(196) PINS  
THERMAL METRIC(1) (2)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
18.2  
0.7  
5.3  
0.8  
5.3  
N/A  
RθJC(top)  
RθJB  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Thermal model available upon request  
6.5 Additional Thermal Information  
BOARD  
θJC (°C / W)  
θJA (°C / W)  
ψJT(°C / W)  
ψJB(°C / W)  
JEDEC 4 layer board, no airflow  
8x6 inches 10 layer, no airflow  
8x6 inches 20 layer, no airflow  
8x6 inches 30 layer, no airflow  
0.7  
0.7  
0.7  
0.7  
18.2  
7.2  
0.8  
0.3  
0.3  
0.3  
5.3  
3.2  
3.2  
3.2  
6.4  
6.3  
8
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
6.6 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
SYMBOL  
PARAMETER  
CONDITIONS  
Full Rate  
MIN  
9.8  
TYP  
MAX  
12.5  
UNIT  
Gbps  
Gbps  
Gbps  
Gbps  
Half Rate  
4.9  
6.25  
R_baud  
Input Data Rate  
Quarter Rate  
Eighth Rate  
2.45  
1.225  
3.125  
1.5625  
POWER SUPPLY  
CTLE only, 800mVp-p  
VOD, per channel,  
CDR locked  
175  
325  
mW  
mW  
CDR Locking with CTLE  
only, 800mVp-p VOD,  
per channel  
Power Consumption per  
Active Channel  
CTLE and DFE, 800mVp-  
p VOD, per channel,  
CDR locked  
W
200  
350  
323  
mW  
mW  
CDR Locking with CTLE  
and DFE, 800mVp-p VOD  
535.5  
PRBS Checker  
100  
105  
mW  
mW  
PRBS Generator  
Device Static Power  
Consumption  
Power Applied to Device,  
No Signals Present  
WSTATIC  
325  
1325  
mW  
50 Hz to 100 Hz  
100 Hz to 10 MHz  
10 MHz to 5.0 GHz  
100  
40  
Power Supply Noise  
Tolerance  
NTPS  
mVPP  
10  
LVCMOS  
V IH  
High level input voltage  
Low level input voltage  
High level output voltage  
Low level output voltage  
1.75  
GND  
2
VDD  
0.7  
V
V
V
V
VIL  
VOH  
IOH = 4mA  
IOL = -4mA  
VOL  
0.4  
30  
Vinput = VDD,  
Open Drain terminals  
µA  
Vinput = VDD,  
JTAG terminals, Ref_CLK  
terminals  
25  
75  
µA  
Input High Leakage  
current  
IIH  
Vinput = VDD,  
ADDR, READ_EN,  
ALL_DONE terminals,  
EN_SMB terminal  
µA  
Vinput = 0V,  
Open drain terminals  
-15  
-45  
µA  
µA  
Vinput = 0V,  
JTAG terminals, Ref_CLK  
terminals  
Input Low Leakage  
current  
IIL  
Vinput = 0V,  
ADDR, READ_EN,  
ALL_DONE terminals,  
EN_SMB terminal  
-120  
µA  
Copyright © 2014–2017, Texas Instruments Incorporated  
9
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)  
SYMBOL  
RX INPUTS  
RRD  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC Input Resistance  
80  
100  
120  
Differential voltage seen  
at the high speed input  
terminals  
VRX-IN  
Input Differential Voltage  
1600  
mVPP  
(1)  
Default setting  
1T pattern, 12.5 Gbps  
110  
24  
Signal Detect Assert  
Threshold  
VSDAT  
mVPP  
Default setting  
PRBS-31, 12.5 Gbps  
Default setting  
1T pattern, 12.5 Gbps  
70  
Signal Detect De-Assert  
Threshold  
VSDDT  
mVPP  
Default setting  
PRBS-31, 12.5 Gbps  
21  
VDD - (VRX-  
IN/ 4)  
Vcm-RX  
Input common mode  
Internal coupling cap  
VRX-IN / 4  
V
TX OUTPUTS  
drv_sel_vod[5:0] = 31,  
DEM, FIR = default  
725  
350  
935  
470  
50  
1135  
595  
VOD  
Output Differential Voltage  
mVPP  
drv_sel_vod[5:0] = 15,  
DEM, FIR = default  
Step Size for drv_sel_vod Default DEM, and FIR  
ΔVOD  
mVPP  
mVPP  
Control  
settings  
Change in Output  
Differential Voltage due to  
Change in Temperature  
and Voltage  
ΔVODVT  
<15  
Output Differential  
Resistance  
TRd  
tr, tf  
IOS  
100  
35  
ps  
20% - 80% using 8T  
Pattern, fir_sel_edge =  
default  
Output Rise/Fall Time  
Output Short Circuit  
Current  
Differential Driver Output  
Pin Short to GND  
-16  
mA  
(1) Parameter is not tested at final production  
10  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RETIMER JITTER SPECS  
PRBS-15 pattern,  
measured to 1e-12  
10.3125 Gbps  
JTJ  
Total Output Jitter  
0.08  
UI  
PRBS-15 pattern,  
measured to 1e-12  
10.3125 Gbps  
JRJ  
Output Random Jitter  
3.6  
0.03  
<1  
mUIRMS  
PRBS-15  
10.3125 Gbps  
JDJ  
Output Deterministic Jitter  
UI  
Data Rate = 9.8 Gbps,  
Peaking Frequency =  
1 - 3 MHz  
JPEAK  
Jitter Peaking  
dB  
Data Rate = 12.5 Gbps  
Peaking Frequency =  
3 - 8 MHz  
<1  
Data Rate = 9.8 Gbps  
Data Rate = 12.5 Gbps  
5
BWPLL  
PLL Bandwidth at -3 dB  
Input Jitter Tolerance  
MHz  
UI  
10  
Jitter per SFF-8431  
Appendix D.11  
Combination of DJ PJ and  
RJ  
JTOL  
>0.7  
RETIMER TIMING SPECS  
No Cross Point  
3UI + 220ps  
3UI + 230ps  
Propagation Delay from  
Rx inputs to Tx outputs  
tD  
ps  
ps  
Cross Point enabled  
Channel To Channel  
Skew  
tSK  
<80  
RECOMMENDED REFERENCE CLOCK SPECS  
25  
Input Reference Clock  
Frequency  
REFf  
125  
MHz  
PPM  
312.5  
Reference Clock PPM  
Tolerance  
REFPPM  
REFf = 25 MHz(2)  
-100  
40%  
100  
Input Reference Clock  
Duty Cycle  
REFIDC  
REFf = 25 MHz(2)  
Intrinsic Duty Cycle  
50%  
±1%  
60%  
Intrinsic Reference Clock Distortion of the reference  
Duty Cycle Distortion  
REFODC  
REFVID  
REFVIH  
clock output from the  
CLK_MON pins  
Reference Clock Input  
Differential Voltage  
Differential mode(2)  
200  
1200  
mVPP  
Single-ended mode.  
Signal DC coupled to  
REF_CLK_P,  
Reference Clock Signle-  
Ended Input High  
Threshold  
1.75  
0.7  
V
REF_CLK_N is float  
Single-ended mode.  
Signal DC coupled to  
REF_CLK_P,  
Reference Clock Single-  
Ended Input Low  
Threshold  
REFVIL  
V
REF_CLK_N is float  
(2) Parameter is specified by design and not tested at final production  
Copyright © 2014–2017, Texas Instruments Incorporated  
11  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SMBus ELECTRICAL CHARACTERISTICS (SLAVE MODE)  
VIH  
VIL  
CIN  
Input High Level Voltage  
Input Low Level Voltage  
Input Pin Capacitance  
SDA and SCL  
1.75  
3.6  
0.8  
V
V
SDA and SCL  
GND  
<5  
pF  
SDA or SCL  
IOL = 1.25 mA  
VOL  
IIN  
Low Level Output Voltage  
Input Current  
0.4  
15  
V
SDA or SCL, VINPUT  
VIN, VDD, GND  
=
-15  
µA  
ns  
ns  
SDA Rise Time Read  
Operation  
SDA, pullup resistor = 1  
kΩ, Cb = 50pF  
TR  
TF  
150  
4.5  
SDA Fall Time Read  
Operation  
SDA, pullup resistor = 1  
kΩ, Cb = 50pF  
RECOMMENDED SMBus SWITCHING CHARACTERISTICS (SLAVE MODE)  
fSCL  
SCL Clock Frequency  
Data Hold Time  
10  
100  
0.75  
100  
400  
kHz  
ns  
tHD:DAT  
tSU:DAT  
Data Setup Time  
ns  
RECOMMENDED SMBus SWITCHING CHARACTERISTICS (MASTER MODE)  
FSCL  
SCL Clock Frequency  
SCL Low Period  
400  
1.25  
1.25  
0.6  
kHz  
µs  
TLOW  
THIGH  
THD:STA  
SCL High Period  
µs  
Hold Time Start Operation  
µs  
Setup Time Start  
Operation  
TSU:STA  
0.6  
µs  
THD:DAT  
TSD:DAT  
Data Hold Time  
Data Setup Time  
0.9  
0.1  
µs  
µs  
Stop Condition Setup  
Time  
TSU:STO  
TBUF  
0.6  
1.3  
µs  
µs  
Bus Free Time between  
Stop-Start  
TR  
TF  
SCL and SDA Rise Time  
SCL and SDA Fall Time  
300  
300  
ns  
ns  
RECOMMENDED JTAG SWITCHING CHARACTERISTICS  
tTCK  
TCK Clock Period  
100  
50  
ns  
ns  
TDI, TMI Setup Time to  
TCK  
tSU  
TDI, TMS Hold Time to  
TCK  
tHD  
50  
50  
ns  
ns  
tDLY  
TCK Falling Edge to TDO  
12  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
7 Detailed Description  
7.1 Overview  
The DS125DF1610 is a multi-rate, 16-channel retimer with integrated 4x4 cross point switches and receiver AC  
coupling capacitors. There is 1 cross point switch per 4 channels (quad). Each channel in the DS125DF1610  
operates independently even if the cross point switch routing is enabled. All channels include a Continuous Time  
Linear Equalizer (CTLE), Decision Feedback Equalizer (DFE), Variable Gain Amplifier (VGA), Clock and Data  
Recovery circuit (CDR) and a differential driver with a 3-tap transmit Finite Impulse Response (FIR) filter. Each  
channel also has its own Eye Opening Monitor (EOM) and configurable Pseudo-Random Bit Sequence (PRBS)  
pattern checker and pattern generator that can be used for debug purposes.  
The DS125DF1610 also supports JTAG boundary scan. The DS125DF1610 is configurable through a single  
SMBus port. The DS125DF1610 can also act as an SMBus master to configure itself from an EEPROM.  
The sections below describe the functionality of the various circuits and features within the DS125DF1610. For  
more information about how to program or operate these features please consult the DS125DF1610  
Programming Guide.  
7.2 Functional Block Diagram  
Quad 0 -- 1 of 4 Quads  
EQ  
EQ  
CrossPoint  
DFE  
DFE  
CDR  
CDR  
Driver  
Driver  
RX_0A+  
RX_0A-  
TX_0A+  
TX_0A-  
TX_0B+  
TX_0B-  
RX_0B+  
RX_0B-  
EQ  
EQ  
DFE  
DFE  
CDR  
CDR  
Driver  
Driver  
RX_1A+  
RX_1A-  
TX_1A+  
TX_1A-  
RX_1B+  
RX_1B-  
TX_1B+  
TX_1B-  
Figure 1. DS125DF1610 Simplified Cross Point Diagram  
Copyright © 2014–2017, Texas Instruments Incorporated  
13  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Functional Block Diagram (continued)  
Retimer/CDR  
EQ  
Driver  
Cross Point  
VGA/DFE  
FIR Filter  
IN+  
IN-  
OUT+  
OUT-  
100  
100W  
Eye  
Opening  
Monitor  
PRBS  
Check  
Patt.  
Gen  
Signal  
Detect  
VCO  
Digital Core  
REFCLK_IN  
SMBus  
1.2V  
Regulator  
2V  
Regulator  
2.5V  
Figure 2. DS125DF1610 Simplified Data Path Diagram  
7.3 Feature Description  
7.3.1 Device Data Path Operation  
The DS125DF1610 data path consists of several key blocks as shown in Figure 2. These key circuits are:  
AC-coupled Receiver with Signal Detect  
CTLE  
Cross Point Switch  
DFE with VGA  
CDR  
Differential Driver with FIR Filter  
7.3.2 AC-Coupled Receiver with Signal Detect  
The differential receiver for each DS125DF1610 channel contains on chip AC coupling capacitors. The minimum  
bandwidth for this AC coupled receiver is 16kHz. The receiver also contains a signal detect circuit.  
The signal detect circuit monitors the energy level on the receiver inputs and powers on or off the rest of the high  
speed data path if a signal is detected or not. By default, each channel allows the signal detect circuit to  
automatically power on or off the rest of the high speed data path depending on if a signal is present. The signal  
detect block can be manually controlled in the SMBus channel registers. This can be useful if it is desired  
manually force channels to be disabled. For information on how to manually operate the signal detect circuit  
please see the DS125DF1610 Programming Guide and channel register 0x14 information.  
7.3.3 CTLE  
The CTLE in the DS125DF1610 is a fully adaptive equalizer with adjustable bandwidth and optional limiting  
stage. The CTLE adapts according to a Figure of Merit (FOM) calculation during the lock acquisition process.  
Once the CDR has locked and the CTLE has been adapted, the CTLE boost level will be frozen until a manual  
re-adapt command is issued or until the CDR re-enters the lock acquisition state. The CTLE is typically re-  
adapted by resetting the CDR, set and then clear channel register 0x0A[3:2].  
14  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Feature Description (continued)  
The CTLE consists of 4 stages, with each stage having 2-bit boost control. This allows for 256 different stage-  
boost combinations. The CTLE adaption algorithm allows the CTLE to adapt through 32 of these stage-boost  
combinations. These 32 stage-boost combinations comprise the EQ Table in the channel registers; see channel  
registers 0x40 through 0x5F. This EQ Table can be reprogrammed to support up to 32 of the 256 stage-boost  
settings. Users also have the option of limiting the EQ table length to any value between a minimum value of 1  
and a maximum value of 32.  
CTLE boost levels are determined by summing the boosts levels of the 4 stages. Different stage-boost  
combinations that sum to the same number will have approximately the same boost level, but will result in a  
different shape for the EQ transfer function (boost curve). The boost levels can be set between 0 dB and 31 dB.  
The CTLE bandwidth can be adjusted through SMBus control to 3 different levels:  
Table 1. CTLE Bandwidth Settings  
CTLE BANDWIDTH SETTING  
Full Rate (default)  
Mid Rate  
BANDWDITH (GHz) (TYP)  
9
7
5
Half Rate  
The fourth stage in the CTLE can be programmed through the SMBus interface to become a limiting stage rather  
than a linear stage. This is useful in some applications, but it should not be typically used in combination with the  
DFE.  
7.3.4 Cross Point Switch  
Each quad has a 4x4 non-blocking analog cross point switch. This allows for full switching or broadcasting of  
data between any input within the quad to any output within the quad. Since the cross point switch is an analog  
implementation, all of the channels are allowed to operate asynchronously. The analog implementation also  
minimizes added latency through the device.  
As shown in Figure 3, the cross point switch connections for each quad are located between CTLE and DFE in  
each channel.  
The cross point switch consists of 4 sets of MUXs and buffers. In each channel there is a local buffer and a multi-  
drive buffer. The local buffer transmits data from the CTLE to the DFE of the same channel. The multi drive  
buffer transmits data from the CTLE to the DFE(s) of other channels within the quad. Each channel has two  
MUXs:  
1. Data path mux – Selects whether to get data from the local buffer or from the other channel’s multi-driver  
buffer  
2. Control bus mux – Selects where the signal detect and EQ control bus should be connected. This setting  
should mirror the data path mux setting. Note, when an EQ is connected to another channel’s CDR the EQ  
becomes associated with that CDR’s register set. For example, if the cross point was configured to do point  
to point switching from the inputs of channel 0 to the output of channel 1 and the inputs of channel 1 to the  
outputs of channel 0, the EQ physically located at the pins for inputs of channel 0 would be accessible  
through the register set of channel 1.  
A simplified diagram of the cross point switch is shown in Figure 3.  
Copyright © 2014–2017, Texas Instruments Incorporated  
15  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Local  
Buffer  
Data and Control  
Bus Muxs  
VGA, DFE, CDR,  
CH A TX  
CH A RX  
CH B RX  
CTLE  
CTLE  
CTLE  
CTLE  
Multi-Point  
Buffer  
2
Local  
Buffer  
Data and Control  
Bus Muxs  
VGA, DFE, CDR,  
CH B TX  
Multi-Point  
Buffer  
2
Local  
Buffer  
Data and Control  
Bus Muxs  
CH C RX  
CH D RX  
VGA, DFE, CDR,  
CH C TX  
Multi-Point  
Buffer  
2
Local  
Buffer  
Data and Control  
Bus Muxs  
VGA, DFE, CDR,  
CH D TX  
Multi-Point  
Buffer  
2
Figure 3. Cross Point Switch Diagram  
Table 2. Cross Point Switch Channel Map  
QUAD  
Ch A  
TX/RX_0A  
Ch B  
Ch C  
Ch D  
0
1
2
3
TX/RX_0B  
TX/RX_2B  
TX/RX_4B  
TX/RX_6B  
TX/RX_1A  
TX/RX_3A  
TX/RX_5A  
TX/RX_7A  
TX/RX_1B  
TX/RX_3B  
TX/RX_5B  
TX/RX_7B  
TX/RX_2A  
TX/RX_4A  
TX/RX_6A  
16  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
In a typical point-to-point switching application users must configure the following for each channel:  
1. Control bus mux setting (ch reg 0x9B)  
2. Data path mux setting (ch reg 0x96)  
3. Enabling/Disabling the local or multi-drive buffers for each channel (ch reg 0x96)  
4. Cross point enable bit (ch reg 0x96)  
5. Perform a CDR reset and reset release (ch reg 0x0A)  
Note, when using the cross point switch the local and multi-drive buffer should both be enabled regardless of the  
desired configuration.  
The cross point switch can also be used to replicate data or perform a broadcast function. The options for this  
type of configuration include:  
1:2 – any channel input to any 2 channels output  
1:3 – any channel input to any 3 channels output  
1:4 – any channel input to all 4 channels output  
When the cross point switch is configured to replicate/broadcast data a master must be assigned during the  
cross point configuration. The master channel will have control over the CTLE adaption. All of the slave channels  
will be able to adapt their own DFE, but will not have control to adapt the CTLE. In this type of configuration there  
must be 1 channel assigned as a master. All other channels in the broadcast network must be assigned as  
slaves. There cannot be more than one master channel in a broadcast network. In a broadcast configuration, the  
straight through path connecting the broadcasting input to its own output needs to be enabled and set to have  
master control.  
In a typical data replication/broadcast application users must configure the following for each channel:  
1. Control bus mux setting (ch reg 0x9B)  
2. Data path mux setting (ch reg 0x96)  
3. Enabling/Disabling the local or multi-drive buffers for each channel (ch reg 0x96)  
4. Master/Slave assignment (ch reg 0x96) -- master/slave bit set to master, master function assigned by mux  
setting  
5. Cross point enable bit (ch reg 0x96)  
6. Perform a CDR reset and reset release (ch reg 0x0A)  
7.3.5 DFE with VGA  
A 5-tap DFE with a VGA can be enabled within the data path of each channel to assist with reducing the effects  
of cross talk, reflections, or post cursor inter-symbol interference (ISI). The DFE must be manually enabled,  
regardless of the selected adapt mode. Once the DFE has been enabled it can be configured to adapt only  
during lock acquisition or to adapt continuously. The DFE can also be manually configured to specified tap  
polarities and tap weights. However, when the DFE is configured manually the DFE auto-adaption should be  
disabled.  
The DFE taps are all feedback taps with 1UI spacing. Each tap has a specified boost weight range and polarity  
bit.  
Table 3. DFE Tap Weights  
DFE Parameter  
Tap 1 Weight Range  
Tap 2-5 Weight Range  
Tap Weight Step Size  
Polarity  
VALUE (mV) (TYP)  
0 - 224  
0 - 112  
7
+ (positive): Signal is attenuated by the tap weight, register bit = 0  
- (negative): Signal is boosted by the tap weight, register bit = 1  
Copyright © 2014–2017, Texas Instruments Incorporated  
17  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
The VGA is located within the DFE block. The VGA has 2-bit control and allows for 3 levels of boost. The VGA  
can be used to assist in the recovery of extremely small signals. Note that the default VGA should be used for  
most applications.  
Table 4. VGA Boost Settings  
VGA BOOST Setting (CH REG 0x8E[1:0])  
BOOST (dB) (TYP)  
00 (default)  
0
6
01  
10  
11  
6
12  
7.3.6 Clock and Data Recovery  
The CDR block consists of a Phase Locked Loop (PLL), reference clock based PPM counter, Input and Output  
Data Multiplexers (mux) and circuits to monitor single bit transitions and detect false locking. The CDR sampling  
position is fixed at the 0.5UI location for each bit.  
By default, the equalized data is fed into the CDR for clock and data recovery. The recovered data is then output  
to the FIR filter and differential driver. Users can configure the CDR data to route the recovered clock and data to  
the PRBS checker. Users also have the option of configuring the output of the CDR to send raw non-retimed  
data, or data from the pattern generator.  
The CDR requires the following in order to be properly configured:  
Input reference clock with proper reference clock divider setting to run the PPM counter.  
Expected data rates must be programmed into the CDR either through the rate/sub-rate 18 or entered  
manually with the corrected divider settings.  
7.3.7 Reference Clock  
The reference clock is not part of the CDR’s PLL. The reference clock is connected only to the PPM counter for  
each CDR. The PPM counter constrains the allowable lock ranges of the CDR according to the programmed  
values in the rate/sub-rate 18 or the manually entered data rates.  
The reference clock can be set to any of the 3 allowable frequencies independent of the data rate of the high  
speed channel. The input reference clock can be single-ended or differential for the 25 MHz or 125 MHz settings.  
If the 312.5 MHz setting is used, the input signaling type should be differential. The reference clock can be output  
through the CLK_MON pins for observation or daisy chaining the reference clock to the next device. If the  
CLK_MON port is used for daisy chaining then the output frequency should be set to 25 MHz.  
If the reference clock port is configured to operate in single-ended mode, the 2.5V LVCMOS clock signal should  
be applied to the REF_CLK_P pin. In this configuration the REF_CLK_N pin should be floated (N/C). In this case  
the LVCMOS clock signal should be DC coupled into the REF_CLK_P pin. If the reference clock port is  
configured for differential mode, it is recommended to AC couple the clock signal into the DS125DF1610 device.  
Configuring the reference clock frequency is done in share register 0x02[6:5]. Configuring the reference clock  
input port for single-ended or differential mode operation is done in share register 0x0B[4]. Enabling or disabling  
the CLK_MON port is done in share reg 0x0A[0]. Selecting the CLK_MON outputs to transmit the divided (25  
MHz) or undivided (input frequency) clock frequency is done in share register 0x04[7].  
Table 5. REF_CLK and CLK_MON Configurations  
INPUT FREQUENCE  
INPUT CONFIGURATION  
DEFAULT CLK_MON  
FREQUENCY  
RECOMMENDED CLK_MON  
OUTPUT FREQUENCY FOR  
DAISY CHAINING  
25 MHz  
125 MHz  
312.5 MHz  
Single-ended or Differential  
Single-ended or Differential  
Differential  
25 MHz  
125 MHz  
312.5 MHz  
25 MHz  
25 MHz  
25 MHz  
18  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
7.3.8 Differential Driver with FIR Filter  
The DS125DF1610 uses a 3-tap FIR filter to assist with transmit equalization. The FIR filter consists of a pre  
cursor tap, a main cursor tap and a post cursor tap. Each tap has a polarity bit and 64 available levels. By  
default, the main cursor tap is set to a positive polarity, while the pre cursor and post cursor taps are set to a  
negative polarity. Users can invert the polarity of all 3 FIR taps to invert the polarity of the output data.  
The DS125DF1610 output driver can be manually powered off through SMBus register control.  
7.3.9 Setting the Output VOD  
The output differential voltage (VOD) of the driver is controlled by manipulating the drv_sel_vod bits, DEM bits,  
and FIR main cursor tap. The Table 6 below shows various settings for VOD settings ranging from 150mVPP to  
1200 mVPP. Using the FIR, DEM and drv_sel_vod bits is the recommended method for configuring the output  
VOD for the best signal integrity.  
Table 6. Typical VOD Settings  
VOD (mVPP  
)
DEM SETTING  
drv_sel_vod  
SETTING  
FIR  
PRE  
0
MAIN  
56  
52  
49  
45  
54  
56  
52  
46  
42  
56  
46  
40  
50  
50  
52  
50  
52  
51  
51  
55  
56  
57  
POST  
-4  
-4  
-4  
-4  
-3  
-2  
-2  
-1  
-1  
-3  
-2  
-1  
-2  
-3  
-3  
-3  
-3  
-3  
-3  
-3  
-3  
-3  
1200  
1150  
1100  
1050  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
0
0
0
0
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
31  
31  
31  
31  
31  
31  
31  
31  
31  
25  
25  
25  
21  
19  
17  
15  
13  
12  
10  
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
4
0
7.3.10 Output Driver Polarity Inversion  
In some applications it may be necessary to invert the polarity of the data transmitted from the retimer. To invert  
the polarity of the data read back the FIR polarity settings for the pre, main and post cursor taps and then invert  
these bits.  
7.3.11 Driver Output Rise/Fall Time  
In some applications, a longer rise/fall time for the output signal is desired. This can reduce electromagnetic  
interference (EMI) generated by fast switching waveforms. This is necessary in some applications for regulatory  
compliance. In others, it can reduce the crosstalk in the system.  
Copyright © 2014–2017, Texas Instruments Incorporated  
19  
 
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
The DS125DF1610 can be configured to operate with a nominal rise/fall time corresponding to the maximum  
slew rate of the output drivers into the load capacitance. Alternatively, the DS125DF1610 can be configured to  
operate with a slightly greater rise/fall time if desired. By default the DS125DF1610 is configured to use the  
fastest edge rate.  
Table 7. Differential Driver Edge Rate Settings  
EDGE RATE SETTING (CH REG 0x8E[4:2])  
20-80 TYPICAL EDGE RATE (ps) (TYP)  
111 (Default)  
110  
35  
40  
45  
50  
55  
60  
65  
70  
101  
100  
011  
010  
001  
000  
20  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
7.3.12 Debug Features  
7.3.12.1 Pattern Generator  
Each channel in the DS125DF1610 can be configured to generate a 16-bit user defined data pattern or a pseudo  
random bit sequence (PRBS). The user defined pattern can also be set to automatically invert every other 16-bit  
symbol for DC balancing purposes. The DS125DF1610 pattern generator supports the following PRBS  
sequences:  
PRBS – 27 - 1  
PRBS – 29 - 1  
PRBS – 215 - 1  
PRBS – 231 - 1  
7.3.12.2 Pattern Checker  
The pattern checker can be manually set to look for specific PRBS sequences and polarities or it can be set to  
automatically detect the incoming pattern and polarity.  
The pattern checker consists of a 47-bit word counter and an 11-bit error counter. The pattern checker uses 32-  
bit words.  
In order to read out the bit and error counters, the pattern checker must first be frozen. Continuous operation with  
simultaneous read out of the bit and error counters is not supported in this implementation.  
7.3.12.3 Eye Opening Monitor  
The DS125DF1610’s Eye Opening Monitor (EOM) measures the internal data eye at the input of the CDR and  
can be used for 2 functions:  
1. Horizontal Eye Opening (HEO) and Vertical Eye Opening (VEO) measurement  
2. Full Eye Diagram Capture  
The HEO measurement is made at the 0V crossing and is read in channel register 0x27. The VEO measurement  
is made at the 0.5 UI mark and is read in channel register 0x28. The HEO and VEO registers can be read from  
channel registers 0x27 and 0x28 at any time while the CDR is locked. The following equations are used to  
convert the contents of channel registers 0x27 and 0x28 into their appropriate units:  
HEO [UI] = ch reg 0x27 ÷ 64  
VEO [mV] = ch reg 0x28 x 3.125  
A full eye diagram capture can be performed when the CDR is locked. The eye diagram is constructed within a  
64 x 64 array, where each cell in the matrix consists of an 16-bit word. Users can manually adjust the vertical  
scaling of the EOM or allow the state machine to control the scaling which is the default option. The horizontal  
scaling controlled by the state machine and is always directly proportional to the data rate.  
When a full eye diagram plot is captured, the retimer will shift out 4 16-bit words of junk data that should be  
discarded followed by 4096 16-bit words that make up the 64 x 64 eye plot. The first actual word of the eye plot  
from the retimer is for (X, Y) position (0,0). Each time the eye plot data is read out the voltage position is  
incremented. Once the voltage position has incremented to position 63, the next read will cause the voltage  
position to reset to 0 and the phase position to increment. This process will continue until the entire 64 x 64  
matrix is read out. Figure 4 shows the EOM read out sequence overlaid on top of a simple eye opening plot. In  
this plot any hits are shown in green. This type of plot is helpful for quickly visualizing the HEO and VEO. Users  
can apply different algorithms to the output data to plot density or color gradients to the output data.  
Copyright © 2014–2017, Texas Instruments Incorporated  
21  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
63  
127 191  
4095  
63  
64 128  
4032  
63  
0
0
0
Phase Position  
Figure 4. EOM Full Eye Capture Readout  
To manually control the EOM vertical range, remove scaling control from the state machine then select the  
desired range:  
1. Channel Reg 0x2C[6] 0  
2. See Table 8  
Table 8. Eye Opening Monitor Vertical Range Settings  
CH REG 0x11[7:6] VALUE  
EOM VERTICAL RANGE [mV]  
2’b00  
2'b01  
2'b10  
2'b11  
±100  
±200  
±300  
±400  
The EOM operates as an under-sampled circuit. This allows the EOM to be useful in identifying over  
equalization, ringing and other gross signal conditioning issues. However, the EOM cannot be correlated to a bit  
error rate.  
The EOM can be accessed in two ways to read out the entire eye plot:  
Multi-byte reads can be used such that data is repeatedly latched out from channel register 0x25.  
Or single byte reads. With single byte reads, the MSB are located in register 0x25 and the LSB are located in  
register 0x26. In this mode, the device must be addressed each time a new byte is read.  
22  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
To perform a full eye capture with the EOM, follow these steps within the desired channel register set:  
Table 9. Eye Opening Monitor Full Eye Capture Instructions  
REGISTER  
STEP  
VALUE  
DESCRIPTION  
[bits]  
1
2
0x67[5]  
0
Disable lock EOM lock monitoring  
Set the desired EOM vertical range  
0x2C[6]  
0x11[7:6]  
0
2'b--  
3
4
0x11[5]  
0x24[7]  
0
1
Power on the EOM  
Enable fast EOM  
Begin read out of the 64 x 64 array, discard first 4 words  
Ch reg 0x24[0] is self clearing.  
0x25 is the MSB of the 16-bit word  
0x24[0]  
0x25  
0x26  
5
1
0x26 is the LSB of the 16-bit word  
0x25  
0x26  
6
7
Continue reading information until the 64 x 64 array is complete.  
Return the EOM to its original state. Undo steps 1-4  
0x67[5]  
0x2C[6]  
0x11[5]  
1
1
1
0
0x24[7,1]  
7.3.13 Interrupt Signals  
The DS125DF1610 can be configured to report different events as interrupt signals. These interrupt signals do  
not impact the operation of the device, but merely report that the selected event has occurred. The interrupt bits  
in the register sets are all sticky bits. This means that when an event triggers an interrupt the status bit for that  
interrupt is set to logic HIGH. This interrupt status bit will remain at logic HIGH until the bit has been read. Once  
the bit has been read it will be automatically cleared, which allows for new interrupts to be detected. The  
DS125DF1610 will report the occurrence of an interrupt through the INTERR_IO pin. The INTERR_IO pin is an  
open drain output that will pull the line low when an interrupt signal is triggered.  
Note that all available interrupts are disabled by default. Users must activate the various interrupts before they  
can be used.  
The interrupts available in the DS125DF1610 are:  
CDR loss of lock  
CDR locked  
Signal detect loss  
Signal detected  
PRBS pattern checker bit error detected  
HEO/VEO threshold violation  
When an interrupt occurs, share register 0x08 and 0x09 report which channel generated the interrupt request.  
Users can then select the channel(s) that generated the interrupt request and service the interrupt by reading the  
appropriate interrupt status bits in the corresponding channel registers.  
7.3.14 Other Features  
7.3.14.1 Lock Sequencer  
A channel will temporarily consume a higher amount of power while its CDR is attempting to lock, compared to  
when the CDR is locked. In order to reduce the impact of a power consumption spike when data is transmitted to  
a DS125DF1610, the internal lock sequencer will limit the number of active channels that are simultaneously  
allowed to attempt to lock.  
The lock sequencer grants tokens to various channels that have detected a signal at the input to the CTLE. Once  
a channel has achieved CDR lock, it returns its token to the lock sequencer. The lock sequencer will distribute  
any available tokens on a first come first serve basis to any channel that is allowed to attempt lock and that has  
detected a valid signal.  
Copyright © 2014–2017, Texas Instruments Incorporated  
23  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
The lock sequencer is configurable in the share registers. Users can control which channels are allowed to  
attempt lock when a signal is present by configuring share registers 0x0F and 0x10. Users can also limit the  
number of channels that are allowed to simultaneously attempt to lock by configuring share register 0x05.  
7.3.14.2 RESET_IO Pin  
The RESET_IO pin in the DS125DF1610 emulates a power on reset (POR). This type of reset re-initializes the  
entire device including the SMBus address strap settings and restores both share and channel register defaults.  
The RESET_IO pin triggers a reset on the rising edge of the signal. It is not recommended to hold the  
RESET_IO terminal at a logic LOW state for an extended period of time. RESET_IO should be held at logic  
HIGH during power on. After power on, the RESET_IO terminal should be pulsed low for a minimum of 10 µs to  
perform a reset. After power on, the RESET_IO terminal can be held low longer than 10µs, but the device will  
only be in a partial reset state for the during this time. Note, reset and partial reset states are not sleep or power  
down states.  
7.4 Device Functional Modes  
7.4.1 SMBus Master Mode  
SMBus master mode allows the DS125DF1610 to program itself by reading directly from an external EEPROM.  
When using the SMBus master mode, the DS125DF1610 will read directly from specific location in the external  
EEPROM. When designing a system for using the external EEPROM, the user needs to follow these specific  
guidelines:  
Maximum EEPROM size is 2048 Bytes  
Minimum EEPROM size for a single DS125DF1610 with individual channel configuration is 1417 Bytes (3  
base header bytes + 3 address map bytes + 16 x 88 channel register bytes + 3 share register bytes; bytes  
are defined to be 8-bits)  
Set ENSMB = VDD through 1kΩ resistor, enable SMBus master mode  
The external EEPROM device address byte must be 0xA0  
The external EEPROM device must support 400kHz operation at 2.5V supply  
Set the SMBus address of the DS125DF1610 by configuring the ADDR0 and ADDR1 terminals.  
When loading multiple DS125DF1610 devices from the same EEPROM, use these guidelines to configure the  
devices:  
Configure the SMBus addresses for each DS125DF1610 to be sequential. The first device in the sequence  
must have an address of 0x30.  
Daisy chain READEN and ALL_DONE from one device to the next device in the sequence so that they do not  
compete for the EEPROM at the same time.  
All DS125DF1610 devices sharing the same EEPROM must be configured with the common channel bit set  
to 1. With common channel configuration enabled, each DS125DF1610 device will configure all 16 channels  
with the same settings.  
When loading a single DS125DF1610 from an EEPROM, use these guidelines to configure the device:  
Set the common channel bit to 0 to allow for individual channel configuration. Or set the common channel bit  
to 1 to load the same configuration settings to all channels.  
When configuring individual channels, a 2048 Byte EEPROM must be used.  
If there are multiple DS125DF1610 devices on a PCB that require individual channel configuration, then each  
device must have its own EEPROM.  
7.4.2 SMBus Slave Mode  
7.4.2.1 SDA and SDC  
In both SMBus master and SMBus slave mode, the DS125DF1610 is configured using the SMBus. The SMBus  
consists of two lines, the SDA or serial data line and the SCL or serial clock line. In the DS125DF1610 these pins  
are 3.3V tolerant. The SDA and SCL lines are both open-drain. They require a pull-up resistor to a supply  
voltage, which may be either 2.5V or 3.3V. A pull-up resistor in the 2kΩ to 5kΩ range will provide reliable SMBus  
operation.  
24  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Device Functional Modes (continued)  
7.4.2.2 SMBus Address Configuration  
In either SMBus mode the DS125DF1610 must be assigned a unique SMBus address.  
The DS125DF1610 can be configured to respond to one of the sixteen SMBus addresses listed in the Table 10  
below. GPIO1 and GPIO0 are configured to be four level inputs immediately after the device powers on. Logic 0  
can be set by tying the pin to ground through a 1kΩ resistor. Logic R is set by tying the pin to ground through a  
20kΩ resistor. Logic F is set by floating the pin. Logic 1 is set by tying the pin to VCC = 2.5V through a 1kΩ  
resistor.  
Table 10. SMBus Address Configuration  
ADDR1(GPIO1) (pin D5)  
ADDR0(GPIO0) (pin B6)  
7-BIT ADDRESS  
7’h18  
8-BIT WRITE ADDRESS  
0
0
0
R
F
1
0x30  
0x32  
0x34  
0x36  
0x38  
0x3A  
0x3C  
0x3E  
0x40  
0x42  
0x44  
0x46  
0x48  
0x4A  
0x4C  
0x4E  
7’h19  
0
7’h1A  
7’h1B  
7’h1C  
7’h1D  
7’h1E  
7’h1F  
0
R
R
R
R
F
F
F
F
1
0
R
F
1
0
7’h20  
R
F
1
7’h21  
7’h22  
7’h23  
0
7’h24  
1
R
F
1
7’h25  
1
7’h26  
1
7’h27  
When an SMBus device is addressed for reading or writing a bit is appended to the address a the least  
significant bit space. This bit is set to 0 for a write or to 1 for a read.  
7.4.3 Device Configuration in SMBus Slave Mode  
The configurable settings of the DS125DF1610 may be set independently for each channel at any time after  
power up using the SMBus. A register write is accomplished when the controller sends a START condition on the  
SMBus followed by the Write address of the DS125DF1610 to be configured. After sending the Write address of  
the DS125DF1610, the controller sends the register address byte followed by the register data byte. The  
DS125DF1610 acknowledges each byte written to the controller according to the data link protocol of the SMBus  
Version 2.0 Specification. See this specification for additional information on the operation of the SMBus.  
There are 3 types of device registers in the DS125DF1610. These are the global registers, shared registers and  
the channel registers. The global registers are programmed to access the various channel registers or the shared  
registers. The shared registers control or allow observation of settings which affect the operation of all channels  
of the DS125DF1610 at the greater device level.  
The channel registers are used to set all the configuration settings of the DS125DF1610. They provide  
independent control for each channel of the DS125DF1610 for all the settable device characteristics. Any  
registers not described in the tables that follow should be treated as reserved. The user should not try to write  
new values to these registers. The user-accessible registers described in the tables that follow provide a  
complete capability for customizing the operation of the DS125DF1610 on a channel-by-channel basis.  
Copyright © 2014–2017, Texas Instruments Incorporated  
25  
 
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
7.5 Programming  
7.5.1 Bit Fields in the Register Set  
Many of the registers in the DS125DF1610 are divided into bit fields. This allows a single register to serve  
multiple purposes, which may be unrelated. Often configuring the DS125DF1610 requires writing a bit field that  
makes up only part of a register value while leaving the remainder of the register value unchanged.  
The procedure for accomplishing this is to read in the current value of the register to be written, modify only the  
desired bits in this value, and write the modified value back to the register. Of course, if the entire register is to  
be changed, rather than just a bit field within the register, it is not necessary to read in the current value of the  
register first. In all the register configuration procedures described in the following sections, this procedure should  
be kept in mind. In some cases, the entire register is to be modified. When only a part of the register is to be  
changed, however, the procedure described above should be used.  
Most register bits can be read or written to. However, some register bits are constrained to specific interface  
instructions. Register bits can have the following interface constraints:  
R - Read only  
RW - Read/Write  
RWSC - Read/Write, self clearing  
W - Write only  
7.5.2 Writing to and Reading from the Global/Shared/Channel Registers  
Global registers can be accessed from the shared register page and also the channel register pages. There are  
three global registers in the DS125DF1610:  
1. Register 0xFC  
2. Register 0xFD  
3. Register 0xFF  
Registers 0xFC and 0xFD are used to select the channel registers to be written to. To select a channel write a 1  
to its corresponding bit in these global registers. Note more than one channel may be written to by setting  
multiple bits in registers 0xFC and 0xFD. However, when performing an SMBus read transaction only one  
channel can be selected at a time. If multiple channels are selected when attempting to perform an SMBus read,  
the device will return 0x00.  
Register 0xFF bit 1 can be used to perform broadcast register writes to all channels. A single channel read-  
modify broadcast write type commands can be accomplished by setting register 0xFF to 0x03 and selecting a  
single channel in the 0xFC or 0xFD registers. This type of configuration allows for the reading of a single  
channel's register information and then writing to all channels with the modified value.  
Table 11. Channel Select Global Registers  
GLOBAL  
REGISTER  
BIT  
DESCRIPTION  
CDR/TX PIN ASSIGNMENT  
7
6
5
4
3
2
1
0
Channel 15– Quad 3 Channel 3 – Cross Point Ch D  
Channel 14– Quad 3 Channel 2 – Cross Point Ch C  
Channel 13– Quad 3 Channel 1 – Cross Point Ch B  
Channel 12– Quad 3 Channel 0 – Cross Point Ch A  
Channel 11– Quad 2 Channel 3 – Cross Point Ch D  
Channel 10– Quad 2 Channel 2 – Cross Point Ch C  
Channel 9– Quad 2 Channel 1 – Cross Point Ch B  
Channel 8– Quad 2 Channel 0 – Cross Point Ch A  
TX_7B  
TX_7A  
TX_6B  
TX_6A  
TX_5B  
TX_5A  
TX_4B  
TX_4A  
0xFD  
26  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Programming (continued)  
Table 11. Channel Select Global Registers (continued)  
GLOBAL  
REGISTER  
BIT  
DESCRIPTION  
CDR/TX PIN ASSIGNMENT  
7
6
5
4
3
2
1
0
Channel 7– Quad 1 Channel 3 – Cross Point Ch D  
Channel 6– Quad 1 Channel 2 – Cross Point Ch C  
Channel 5– Quad 1 Channel 1 – Cross Point Ch B  
Channel 4– Quad 1 Channel 0 – Cross Point Ch A  
Channel 3– Quad 0 Channel 3 – Cross Point Ch D  
Channel 2– Quad 0 Channel 2 – Cross Point Ch C  
Channel 1– Quad 0 Channel 1 – Cross Point Ch B  
Channel 0 – Quad 0 Channel 0 – Cross Point Ch A  
TX_3B  
TX_3A  
TX_2B  
TX_2A  
TX_1B  
TX_1A  
TX_0B  
TX_0A  
0xFC  
Table 12. Shared-Channel Select Global Register  
GLOBAL REGISTER  
BIT  
DESCRIPTION  
0xFF  
7:2  
These bits are not used and default to 0  
1: Broadcast write to all channels, 0xFF[0] must be set to 1.  
0: Normal operation, select channel register as defined in 0xFC and 0xFD  
1
0
1: Select Channel Registers  
0: Select Share Registers  
Table 13. Shared Registers  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
SMBus Address  
Strapped 7-bit addres is 0x18 +  
SMBus_Addr[3:0]  
0
7
6
0
0
0
0
0
0
0
1
1
1
0
0
0
1
0
0
0
R
R
N
N
N
N
Y
N
N
N
N
N
N
N
N
N
N
Y
Y
SMBus_Addr3  
SMBus_Addr2  
SMBus_Addr1  
SMBus_Addr0  
RESERVED  
RESERVED  
Version2  
5
R
4
R
3
R
2:0  
7
R
1
R
Device version  
6
R
Version1  
5
R
Version0  
4
R
Device_ID4  
Device_ID3  
Device_ID2  
Device_ID1  
Device_ID0  
RESERVED  
REFCLK_SEL1  
REFCLK_SEL0  
Device ID code for  
DS125DF1610  
3
R
2
R
1
R
0
R
2
7
RW  
RW  
RW  
6
Sets the REFCLK input  
frequency  
00: 25 MHz  
5
01: 125 MHz  
10: 312.5MHz  
11: Reserved  
4:0  
7:3  
2
0
0
0
0
RW  
R
N
N
Y
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
3
R
1:0  
R
Copyright © 2014–2017, Texas Instruments Incorporated  
27  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 13. Shared Registers (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
4
7
0
RW  
N
SEL_REF_CLK_DIG_OUT_AN 1: Selects the divided clock  
A
0: Selects the undivided clock  
1: Resets share registers  
6
5
0
0
RWSC  
RWSC  
N
N
RST_SMB_REGS  
RST_SMB_MAS  
1: Resets SMBus Master  
controller  
4
3
0
0
RW  
RW  
N
N
RESERVED  
MR_DIS_LOCK_SEQR  
1: Disables the lock sequencer  
circuit  
0: Normal operation, lock  
sequencer is enabled  
2
1
0
7
6
5
4
0
0
1
0
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
R
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
5
RESERVED  
CRC_EN  
1: Slave CRC Trigger  
RESERVED  
EEPROM_READ_DONE  
This bit is set to 1 when read  
from EEPROM is done  
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
LIMIT_CONC_LOCKS3  
LIMIT_CONC_LOCKS2  
LIMIT_CONC_LOCKS1  
LIMIT_CONC_LOCKS0  
RESERVED  
RESERVED  
INT_Q1C3  
Sets max number of channels  
that can lock at any given time,  
defaults to 8 channels.  
1
0
6
7
8
7:0  
7:0  
7
Interrupt from quad 1, ch 3  
Interrupt from quad 1, ch 2  
Interrupt from quad 1, ch 1  
Interrupt from quad 1, ch 0  
Interrupt from quad 0, ch 3  
Interrupt from quad 0, ch 2  
Interrupt from quad 0, ch 1  
Interrupt from quad 0, ch 0  
Interrupt from quad 3, ch 3  
Interrupt from quad 3, ch 2  
Interrupt from quad 3, ch 1  
Interrupt from quad 3, ch 0  
Interrupt from quad 2, ch 3  
Interrupt from quad 2, ch 2  
Interrupt from quad 2, ch 1  
Interrupt from quad 2, ch 0  
6
R
INT_Q1C2  
5
R
INT_Q1C1  
4
R
INT_Q1C0  
3
R
INT_Q0C3  
2
R
INT_Q0C2  
1
R
INT_Q0C1  
0
R
INT_Q0C0  
9
7
R
INT_Q3C3  
6
R
INT_Q3C2  
5
R
INT_Q3C1  
4
R
INT_Q3C0  
3
R
INT_Q2C3  
2
R
INT_Q2C2  
1
R
INT_Q2C1  
0
R
INT_Q2C0  
28  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 13. Shared Registers (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
A
7
0
RW  
N
SEL_CLK_FROM_DIG  
1: selects ref clk from digital to  
transmit out  
0: selects ref clk from analog  
loop chain to transmit out. All  
channels’ analog blocks must  
have ref clk loop through  
enabled to transmit ref clk out  
of device  
6
5
0
0
RW  
RW  
N
N
SEL_REFCLK_TX_VCM1  
SEL_REFCLK_TX_VCM0  
Sets the output common-mode  
voltage:  
00: 800mV  
01: 1000mV  
10: 1200mV  
11: Tracks VCC, bias at 1.2V  
4
3
0
0
RW  
RW  
N
N
SEL_REFCLK_TX_VOD1  
SEL_REFCLK_TX_VOD0  
Sets the output differential  
peak-to-peak voltage:  
00: 400mV  
01: 533mV  
10: 667mV  
11: 800mV  
2
1
0
0
RW  
RW  
N
N
RESERVED  
SEL_REFCLK_TX_SCP  
1:disable  
0:Ref-clk TX short-circuit  
protection  
0
1
RW  
Y
DIS_REFCLK_OUT  
1: Disable REFCLK_OUT (TRI-  
STATE)  
0: Enable REFCLK_OUT  
B
7
6
0
0
RW  
R
N
N
RESERVED  
REFCLK_DET  
This bit is set to 1 when refclk  
has been detected  
5
4
0
0
RW  
RW  
N
N
RESERVED  
REFCLK_SINGLE_END  
1: Reference clock input port  
configured as single-ended  
input  
0: Normal operation, reference  
clock input port configured as  
differential input  
3:0  
7:3  
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
C
D
RESERVED  
SAR_ADC_RST  
SAR_ADC_EN  
RESERVED  
Resets SAR ADC  
Enables SAR ADC  
1
0
7
SAR_ADC_OUT7  
SAR_ADC_OUT6  
SAR_ADC_OUT5  
SAR_ADC_OUT4  
SAR_ADC_OUT3  
SAR_ADC_OUT2  
SAR_ADC_OUT1  
SAR_ADC_OUT0  
RESERVED  
10-bit SAR ADC Output[7:0]  
6
5
4
3
2
1
0
E
7:2  
1
SAR_ADC_OUT9  
SAR_ADC_OUT8  
10-bit SAR ADC Output[9:8]  
0
R
Copyright © 2014–2017, Texas Instruments Incorporated  
29  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 13. Shared Registers (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
7
Mode  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
EEPROM  
Field Name  
EN_CH_LOCK15  
Description  
F
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
1: Allows channel to lock  
0: Channel not allowed to lock  
6
EN_CH_LOCK14  
EN_CH_LOCK13  
EN_CH_LOCK12  
EN_CH_LOCK11  
EN_CH_LOCK10  
EN_CH_LOCK9  
EN_CH_LOCK8  
EN_CH_LOCK7  
EN_CH_LOCK6  
EN_CH_LOCK5  
EN_CH_LOCK4  
EN_CH_LOCK3  
EN_CH_LOCK2  
EN_CH_LOCK1  
EN_CH_LOCK0  
EEPRM_LOAD_STATUS  
1: Allows channel to lock  
0: Channel not allowed to lock  
5
1: Allows channel to lock  
0: Channel not allowed to lock  
4
1: Allows channel to lock  
0: Channel not allowed to lock  
3
1: Allows channel to lock  
0: Channel not allowed to lock  
2
1: Allows channel to lock  
0: Channel not allowed to lock  
1
1: Allows channel to lock  
0: Channel not allowed to lock  
0
1: Allows channel to lock  
0: Channel not allowed to lock  
10  
7
1: Allows channel to lock  
0: Channel not allowed to lock  
6
1: Allows channel to lock  
0: Channel not allowed to lock  
5
1: Allows channel to lock  
0: Channel not allowed to lock  
4
1: Allows channel to lock  
0: Channel not allowed to lock  
3
1: Allows channel to lock  
0: Channel not allowed to lock  
2
1: Allows channel to lock  
0: Channel not allowed to lock  
1
1: Allows channel to lock  
0: Channel not allowed to lock  
0
1: Allows channel to lock  
0: Channel not allowed to lock  
11  
7:6  
11: Not valid  
10: EEPROM load completed  
successfully  
01: EEPROM load failed after  
64 attempts  
00: EEPROM load in progress  
5
4
3
2
1
0
0
0
0
0
0
0
R
R
R
R
R
R
N
N
N
N
N
N
EEPRM_ATMPT5  
EEPRM_ATMPT4  
EEPRM_ATMPT3  
EEPRM_ATMPT2  
EEPRM_ATMPT1  
EEPRM_ATMPT0  
Number of attempts made to  
load EEPROM image  
30  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 13. Shared Registers (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
7
Mode  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
EEPROM  
Field Name  
Description  
FC  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Channel 7– Quad 1 Channel 3 1: Enables SMBus access  
to channel 7  
6
Channel 6– Quad 1 Channel 2 1: Enables SMBus access  
to channel 6  
5
Channel 5– Quad 1 Channel 1 1: Enables SMBus access  
to channel 5  
4
Channel 4– Quad 1 Channel 0 1: Enables SMBus access  
to channel 4  
3
Channel 3– Quad 0 Channel 3 1: Enables SMBus access  
to channel 3  
2
Channel 2– Quad 0 Channel 2 1: Enables SMBus access  
to channel 2  
1
Channel 1– Quad 0 Channel 1 1: Enables SMBus access  
to channel 1  
0
Channel 0– Quad 0 Channel 0 1: Enables SMBus access  
to channel 0  
FD  
7
Channel 15– Quad 3 Channel 3 1: Enables SMBus access  
to channel 15  
6
Channel 14– Quad 3 Channel 2 1: Enables SMBus access  
to channel 14  
5
Channel 13– Quad 3 Channel 1 1: Enables SMBus access  
to channel 13  
4
Channel 12– Quad 3 Channel 0 1: Enables SMBus access  
to channel 12  
3
Channel 11– Quad 2 Channel 3 1: Enables SMBus access  
to channel 11  
2
Channel 10– Quad 2 Channel 2 1: Enables SMBus access  
to channel 10  
1
Channel 9– Quad 2 Channel 1 1: Enables SMBus access  
to channel 9  
0
Channel 8– Quad 2 Channel 0 1: Enables SMBus access  
to channel 8  
FE  
7
6
0
0
0
0
0
0
1
1
0
0
R
R
N
N
N
N
N
N
N
N
N
N
VENDOR_ID7  
VENDOR_ID6  
VENDOR_ID5  
VENDOR_ID4  
VENDOR_ID3  
VENDOR_ID2  
VENDOR_ID1  
VENDOR_ID0  
RESERVED  
5
R
4
R
3
R
2
R
1
R
0
R
FF  
7:2  
1
RW  
RW  
WRITE_ALL_CH  
1: Write to all channels as if  
they are the same, but only  
allows to read back from a  
single channel specified in  
0xFC and 0xFD.  
Note: EN_CH_SMB must be  
set to 1, or else this function is  
invalid.  
0
0
RW  
N
EN_CH_SMB  
1: Enables SMBus access to  
the channels specified in 0xFC  
and 0xFD.  
0: Enables SMBus access to  
the shared registers  
Copyright © 2014–2017, Texas Instruments Incorporated  
31  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 14. Channel Registers, 0 to 1F  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
CLK_CORE_DIS  
Description  
0
7
0
RW  
N
1: Disables the primary digital  
clock, resets all state machines  
0: Normal operation  
6:4  
3
0
0
RW  
RW  
N
N
RESERVED  
RST_CORE  
1: Reset core state machine  
0: Normal Operation  
2
1
0
0
RW  
RW  
N
N
RST_REGS  
RST_VCO  
1: Resets channel registers,  
restores default values  
0: Normal Operation  
1: Resets PPM counter, EOM  
counter, FLD counter, SBT  
counter  
0: Normal Operation  
0
7
0
0
RW  
R
N
N
RST_REFCLK  
SIG_DET  
1: Reset PPM counter  
0: Normal Operation  
1
1: Signal is present on high speed  
inputs  
0: No signal is detected on high  
speed inputs  
6
5
0
0
R
R
N
N
POL_INV_DET  
1: PRBS checker detected polarity  
inversion 0: No pattern inversion  
detected  
CDR_LOCK_LOSS_INT  
1: indicates loss of CDR lock after  
having acquired it.  
Bit clears on read.  
4
3
2
1
0
0
0
0
0
0
R
R
R
R
R
N
N
N
N
N
PRBS_SEQ_DET3  
PRBS_SEQ_DET2  
PRBS_SEQ_DET1  
PRBS_SEQ_DET0  
SIG_DET_LOSS_INT  
1: Indicates if the PRBS-31  
sequence is locked  
1: Indicates if the PRBS-15  
sequence is locked  
1: Indicates if the PRBS-9  
sequence is locked  
1: Indicates if the PRBS-7  
sequence is locked  
Loss of signal indicator.  
Bit is set once signal is acquired  
and then lost.  
2
3
7:0  
0
R
N
MULTI_PURP_STATUS  
Register configured by setting  
channel register 0x0C[7:4]  
7
6
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
N
N
N
N
EQ_BST0[1]  
EQ_BST0[0]  
EQ_BST1[1]  
EQ_BST1[0]  
EQ_BST2[1]  
EQ_BST2[0]  
EQ_BST3[1]  
EQ_BST3[0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
This register can be used to force  
an EQ boost setting if used in  
conjuntion with channel register  
0x2D[3]  
0
5
0
0
4
3
0
2
0
1
0
0
0
4
7:4  
3
0
0
2:0  
7:0  
7:0  
7:0  
0x01  
0x01  
0x01  
0x01  
5
6
7
32  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
Address  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 14. Channel Registers, 0 to 1F (continued)  
Default  
Value  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
(Hex)  
8
7
6
5
4
3
2
1
0
7
0
1
1
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
9
DIVSEL_VCO_CAP_OV  
SET_CP_LVL_LPF_OV  
BYPASS_PFD_OV  
Enable bit to override cap_cnt with  
value in register 0x0B[4:0]  
6
5
0
0
RW  
RW  
Y
Y
Enable bit to override lpf_dac_val  
with value in register 0x1F[4:0]  
Enable bit to override  
sel_retimed_loopthru and  
sel_raw_loopthru with values in  
reg 0x1E[7:5]  
4
0
RW  
Y
EN_FD_PD_VCO_PDIQ_OV  
Enable bit to override en_fd,  
pd_pd, pd_vco, pd_pdiq with reg  
0x1E[0], reg 0x1E[2], reg 0x1C[0],  
reg 0x1C[1]  
3
2
0
0
RW  
RW  
Y
Y
EN_PD_CP_OV  
DIVSEL_OV  
Enable bit to override pd_fd_cp  
and pd_pd_cp with value in reg  
0x1B[1:0]  
Enable bit to override divsel with  
value in reg 0x18[6:4]  
1: Override enable  
0: Normal operation  
1
0
7
6
0
0
0
1
RW  
RW  
RW  
RW  
Y
Y
Y
Y
EN_FLD_OV  
Enable to override pd_fld with  
value in reg 0x1E[1]  
PFD_LOCK_  
MODE_SM  
Enable FD in lock state  
A
SBT_EN  
Enable bit to override sbt_en with  
value in reg 0x1D[7]  
EN_IDAC_PD_CP_OV  
EN_IDAC_FD_CP_OV  
Enable bit to overridephase  
detector charge pump settings  
with reg 0x1C[7:5]  
Enable bit to override frequency  
detector charge pump settings  
with reg 0x1C[4:2]  
5
0
RW  
Y
DAC_LPF_HIGH_  
PHASE_OV  
DAC_LPF_LOW_  
PHASE_OV  
Enable bit to override loop filter  
comparator trip voltage with reg  
0x16[7:0]  
4
3
2
1
0
1
0
0
0
0
RW  
RW  
RW  
RW  
RW  
Y
N
N
N
N
EN150_LPF_OV  
CDR_RESET_OV  
CDR_RESET_SM  
CDR_LOCK_OV  
CDR_LOCK  
Enable bit to override en150_lpf  
with value in reg 0x1F[6]  
Enable bit to override CDR reset  
with reg 0x0A[2]  
1: CDR is put into reset  
0: normal CDR operation  
Enable CDR lock signal override  
with reg 0x0A[0]  
CDR lock signal override bit  
Copyright © 2014–2017, Texas Instruments Incorporated  
33  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 14. Channel Registers, 0 to 1F (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
B
7
6
0
1
1
0
1
1
1
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
5
4
3
2
1
0
C
7:4  
STATUS_CONTROL  
These bits repurpose channel  
register 0x02 to report different  
status signals  
3
1
RW  
Y
SINGLE_BIT_LIMIT_CHECK_ON  
1: Normal operation, device  
checks for single bit transitions as  
a gate to achieving CDR lock  
2
1
0
0
RW  
RW  
N
Y
RESERVED  
EN_IDAC_FD_CP3  
Frequency detector charge pump  
setting bit 3 (MSB)  
LSB located in channel register  
0x1C  
0
0
RW  
Y
EN_IDAC_PD_CP3  
DES_PD  
Phase detector charge pump  
setting bit 3 (MSB)  
LSB located in channel register  
0x1C  
D
7
1
RW  
N
1: Deserializer is powered down  
0: Deserializer is enabled  
6
5
4
0
1
1
RW  
RW  
RW  
N
Y
Y
RESERVED  
DRV_SEL_VOD4  
DRV_SEL_VOD3  
Used in conjunction with 0x2D[2:0]  
to control the VOD levels of the  
high speed drivers  
3
0
1
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
N
N
N
Y
FIR_RLOAD_MAX  
FIR_SEL_NEG_GM  
RESERVED  
2
1:0  
7:0  
7:0  
7:0  
0
E
0x93  
0x69  
0x3A  
RESERVED  
F
RESERVED  
10  
RESERVED  
34  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
Address  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 14. Channel Registers, 0 to 1F (continued)  
Default  
Value  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
(Hex)  
11  
7
6
0
0
RW  
RW  
Y
Y
EOM_SEL_VRANGE1  
EOM_SEL_VRANGE1  
Manually set the EOM vertical  
range, used with channel register  
0x2C[6]  
00: ±100 mV  
01: ±200 mV  
10: ±300 mV  
11: ±400 mV  
5
4
3
1
0
0
RW  
RW  
RW  
Y
N
Y
EOM_PD  
1: Normal operation  
RESERVED  
DFE_TAP2_POL  
Bit forces DFE tap 2 polarity  
1: Negative, boosts by the  
specified tap weight  
0: Positive, attenuates by the  
specified tap weight  
2
1
0
7
0
0
0
1
RW  
RW  
RW  
RW  
Y
Y
Y
Y
DFE_TAP3_POL  
DFE_TAP4_POL  
DFE_TAP5_POL  
DFE_TAP1_POL  
Bit forces DFE tap 3 polarity  
1: Negative, boosts by the  
specified tap weight  
0: Positive, attenuates by the  
specified tap weight  
Bit forces DFE tap 4 polarity  
1: Negative, boosts by the  
specified tap weight  
0: Positive, attenuates by the  
specified tap weight  
Bit forces DFE tap 5 polarity  
1: Negative, boosts by the  
specified tap weight  
0: Positive, attenuates by the  
specified tap weight  
12  
Bit forces DFE tap 1 polarity  
1: Negative, boosts by the  
specified tap weight  
0: Positive, attenuates by the  
specified tap weight  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
1
0
0
0
0
0
1
0
0
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
Y
Y
Y
Y
Y
Y
N
N
N
Y
Y
Y
SD_SEL_MUTEZ  
DFE_SEL_NEG_GM  
DFE_WT1[4]  
DFE_WT1[3]  
DFE_WT1[2]  
DFE_WT1[1]  
DFE_WT1[0]  
RESERVED  
Bits force DFE tap 1 weight,  
manual DFE operation required to  
take effect  
13  
RESERVED  
RESERVED  
EQ_EN_DC_OFF  
RESERVED  
1: Normal operation  
EQ_LIMIT_EN  
1: Configures the final stage of the  
equalizer to be a limiting stage.  
0: Normal operation, final stage of  
the equalizer is configured to be a  
linear stage.  
1
0
0
0
RW  
RW  
N
N
RESERVED  
RESERVED  
Copyright © 2014–2017, Texas Instruments Incorporated  
35  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 14. Channel Registers, 0 to 1F (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
EQ_SD_PRESET  
Description  
14  
7
0
RW  
Y
1: Forces signal detect HIGH, and  
force enables the channel. Should  
not be set if bit 6 is set.  
0: Normal Operation.  
6
0
RW  
Y
EQ_SD_RESET  
1: Forces signal detect LOW and  
force disables the channel. Should  
not be set if bit 7 is set.  
0: Normal Operation.  
5
4
0
0
0
0
0
0
0
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
N
Y
N
Y
Y
N
EQ_REFA_SEL1  
EQ_REFA_SEL0  
EQ_REFD_SEL1  
EQ_REFD_SEL0  
RESERVED  
Controls the signal detect assert  
levels.  
3
Controls the signal detect de-  
assert levels.  
2
1:0  
7
15  
RESERVED  
6
RESERVED  
5
RESERVED  
4
RESERVED  
3
DRV_PD  
1: Powers down the high speed  
driver  
0: Normal operation  
2
1
0
0
1
0
RW  
RW  
RW  
Y
Y
Y
RESERVED  
DRV_DEM1  
DRV_DEM0  
Degenerates the pre-driver  
degeneration  
00: 0 dB  
01: 1 dB  
10: 2 dB  
11: 3 dB  
16  
17  
18  
7:0  
7:0  
7
0x7A  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
N
Y
Y
Y
RESERVED  
0x25  
RESERVED  
0
1
0
0
RESERVED  
6
PDIQ_SEL_DIV2  
PDIQ_SEL_DIV1  
PDIQ_SEL_DIV0  
These bits will force the divider  
setting if 0x09[2] is set.  
000: Divide by 1  
001: Divide by 2  
010: Divide by 4  
5
4
011: Divide by 8  
All other values are reserved.  
3
2
0
0
RW  
RW  
N
N
RESERVED  
DRV_PD_R_EN  
1: Enables the shut down  
termination resistor to be present  
when the driver is powered down  
with channel register 0x15[3]  
0: Normal operation, resistor is  
disconnected from output for  
propper driver operation  
1:0  
7:6  
5:0  
7:4  
3
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
Y
Y
Y
Y
N
RESERVED  
19  
1A  
0x20  
RESERVED  
RESERVED  
0xA  
0
RESERVED  
DRV_SEL_VCM1  
DRV_SEL_VCM0  
RESERVED  
This feature is reserved for future  
use.  
2
0
1:0  
0
36  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
Address  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 14. Channel Registers, 0 to 1F (continued)  
Default  
Value  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
(Hex)  
1B  
7:2  
1
0
1
1
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
N
Y
Y
Y
Y
Y
RESERVED  
CP_EN_CP_PD  
1: Normal operation  
0
CP_EN_CP_FD  
1: Normal operation  
1C  
7
EN_IDAC_PD_CP2  
EN_IDAC_PD_CP1  
EN_IDAC_PD_CP0  
Phase detector charge pump  
setting  
MSB located in channel register  
0x0C[0]  
Override bit required for these bits  
to take effect  
6
5
4
3
2
1
0
0
RW  
RW  
RW  
Y
Y
Y
EN_IDAC_FD_CP2  
EN_IDAC_FD_CP1  
EN_IDAC_FD_CP0  
Frequency detector charge pump  
setting  
MSB located in channel register  
0x0C[1]  
Override bit required for these bits  
to take effect  
1:0  
7
0
0
RW  
RW  
N
Y
RESERVED  
SBT_EN  
1D  
1E  
SBT enable override  
0: Normal operation  
6:0  
7
0
1
1
1
RW  
RW  
RW  
RW  
N
Y
Y
Y
RESERVED  
PFD_SEL_DATA_MUX2  
PFD_SEL_DATA_MUX1  
PFD_SEL_DATA_MUX0  
For these values to take effect,  
register 0x09[5] must be set to 1.  
000: Raw Data*  
6
5
001: Retimed Data  
100: Pattern Generator  
111: Mute  
All other values are reserved.  
*Note in this mode the FIR filter  
will not function. Data is routed  
only through the pre cursor tap.  
See Functional Description section  
for more information.  
4
3
0
1
RW  
RW  
N
Y
SER_EN  
DFE_PD  
1: Enables the serializer for  
pattern generation  
0: Disables the serializer  
This bit must be cleared for the  
DFE to be functional in any adapt  
mode.  
0: DFE enabled  
1: DFE disabled  
2
0
RW  
Y
PFD_PD_PD  
PFD phasee detector power down  
override  
1
0
0
1
RW  
RW  
Y
Y
PFD_EN_FLD  
PFD_EN_FD  
PFD enable FLD override  
PFD enable frequency detector  
override  
1F  
7:6  
5:0  
0x55  
RW  
RW  
Y
Y
RESERVED  
RESERVED  
Copyright © 2014–2017, Texas Instruments Incorporated  
37  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 15. Channel Registers, 20 to 39  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
20  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
DFE_WT5[3]  
DFE_WT5[2]  
DFE_WT5[1]  
DFE_WT5[0]  
DFE_WT4[3]  
DFE_WT4[2]  
DFE_WT4[1]  
DFE_WT4[0]  
DFE_WT3[3]  
DFE_WT3[2]  
DFE_WT3[1]  
DFE_WT3[0]  
DFE_WT2[3]  
DFE_WT2[2]  
DFE_WT2[1]  
DFE_WT2[0]  
EOM_OV  
Bits force DFE tap 5 weight,  
manual DFE operation  
required to take effect  
Bits force DFE tap 4 weight,  
manual DFE operation  
required to take effect  
21  
Bits force DFE tap 3 weight,  
manual DFE operation  
required to take effect  
Bits force DFE tap 2 weight,  
manual DFE operation  
required to take effect  
22  
23  
1: Override enable for EOM  
manual control  
0: Normal operation  
6
0
RW  
N
EOM_SEL_RATE_OV  
1: Override enable for EOM  
rate selection  
0: Normal operation  
5:0  
7
0
0
RW  
RW  
N
N
RESERVED  
EOM_GET_HEO_VEO_OV  
1: Override enable for  
manual control of the  
HEO/VEO trigger  
0: Normal operation  
6
1
0
RW  
RW  
Y
N
DFE_OV  
1: Normal operation, DFE  
must be enabled in channel  
register 0x1E[3]  
5:0  
RESERVED  
38  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 15. Channel Registers, 20 to 39 (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
24  
7
0
RW  
N
FAST_EOM  
1: Enables fast EOM mode  
for fully eye capture. In this  
mode the phase DAC and  
voltage DAC of the EOM are  
automatically incremented  
through a 64 x 64 matrix.  
Values for each point are  
stored in channel registers  
25 and 26.  
6
5
4
0
0
0
R
R
R
N
N
N
DFE_EQ_ERROR_NO_LOCK  
DFE/CTLE SM quit due to  
loss of lock  
GET_HEO_VEO_ERROR_  
NO_HITS  
GET_HEO_VEO sees no  
hits at zero crossing  
GET_HEO_VEO_ERROR_  
NO_OPENING  
GET_HEO_VEO cannot see  
a vertical eye opening  
3
2
0
0
RW  
N
N
RESERVED  
DFE_ADAPT  
RWSC  
1: Manually start DFE  
adaption, self clearing.  
0: Normal operation  
1
0
RWSC  
N
EOM_GET_HEO_VEO  
1: Manually triggers a  
HEO/VEO measurement.  
Must be enabled with  
channel register 0x23[7].  
0
0
RWSC  
N
EOM_START  
1: Starts EOM counter, self  
clearing  
25  
26  
27  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
EOM_COUNT15  
EOM_COUNT14  
EOM_COUNT13  
EOM_COUNT12  
EOM_COUNT11  
EOM_COUNT10  
EOM_COUNT9  
EOM_COUNT8  
EOM_COUNT7  
EOM_COUNT6  
EOM_COUNT5  
EOM_COUNT4  
EOM_COUNT3  
EOM_COUNT2  
EOM_COUNT1  
EOM_COUNT0  
HEO7  
MSBs of EOM counter  
LSBs of EOM counter  
HEO value, requires CDR to  
be locked for valid  
measurement  
HEO6  
HEO5  
HEO4  
HEO3  
HEO2  
HEO1  
HEO0  
Copyright © 2014–2017, Texas Instruments Incorporated  
39  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 15. Channel Registers, 20 to 39 (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
28  
7
6
5
4
3
2
1
0
7
6
5
0
0
0
0
0
0
0
0
0
0
0
R
R
N
N
N
N
N
N
N
N
N
N
N
VEO7  
VEO value, requires CDR to  
be locked for valid  
measurement  
VEO6  
R
VEO5  
R
VEO4  
R
VEO3  
R
VEO2  
R
VEO1  
R
VEO0  
29  
RW  
R
RESERVED  
EOM_VRANGE_SETTING1  
EOM_VRANGE_SETTING0  
Use these bits to read back  
the EOM voltage range  
setting  
R
00: ±100 mV  
01: ±200 mV  
10: ±300 mV  
11: ±400 mV  
4
0
RW  
N
EN_FOM_RESET  
1: Enables resetting the FOM  
before issuing a manual  
adaption  
3
2
0
0
RW  
RW  
N
N
VEO_MIN_HITS_1  
VEO_MIN_HITS_0  
These bits set the number of  
hits for a particular phase  
and voltage location in the  
EOM before the EOM will  
indicate a hit has occured.  
This filtering only affects the  
VEO measurement.  
Filter thresholds:  
00: 0 hits  
01: 15 hits  
10, 11: 255 hits  
1:0  
7
0
0
0
1
1
0
0
0
0
0
0
1
1
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
RESERVED  
2A  
EOM_TIMER_THR7  
EOM_TIMER_THR6  
EOM_TIMER_THR5  
EOM_TIMER_THR4  
EOM_TIMER_THR3  
EOM_TIMER_THR2  
EOM_TIMER_THR1  
EOM_TIMER_THR0  
RESERVED  
Controls the amount of time  
the EOM samples each point  
in the eye for. The total  
counter bit width is 16-bits,  
this register is the upper 8-  
bits. The counter counts in  
32-bit words, therefore, the  
total number of bits counted  
is 32 times this value.  
6
5
4
3
2
1
0
2B  
7:6  
5:4  
3
RESERVED  
EOM_MIN_REQ_HITS3  
EOM_MIN_REQ_HITS2  
EOM_MIN_REQ_HITS1  
EOM_MIN_REQ_HITS0  
These bits set the number of  
hits for a particular phase  
and voltage location in the  
EOM before the EOM will  
indicate a hit has occured.  
This filtering only affects the  
HEO measurement.  
2
1
0
Filter threshold ranges from  
0 to 15 hits.  
40  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 15. Channel Registers, 20 to 39 (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
7
Mode  
RW  
EEPROM  
Field Name  
RELOAD_DFE_TAPS  
VEO_SCALE  
Description  
2C  
1
N
Y
1: Reload DFE taps from last  
adapted value  
6
1
RW  
1: Scale VEO based on EOM  
vertical range  
0: Manual control of vertical  
range  
5
4
1
1
RW  
RW  
Y
Y
DFE_SM_FOM1  
DFE_SM_FOM0  
00: not valid  
01: SM uses only HEO  
10: SM uses only VEO  
11: SM uses both HEO and  
VEO  
3
2
1
0
7
0
0
1
0
0
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
DFE_ADAPT_COUNTER3  
DFE_ADAPT_COUNTER2  
DFE_ADAPT_COUNTER1  
DFE_ADAPT_COUNTER0  
PD_SCP  
DFE look-beyond count.  
2D  
1: Power down the short  
circuit protection for the high  
speed driver outputs  
0: Normal operation, short  
circuit protection is enabled  
for the high speed driver  
outputs  
6
5
4
3
0
0
0
0
RW  
RW  
RW  
RW  
Y
Y
Y
Y
SD_EN_FAST_OOB  
SD_REF_HIGH  
SD_GAIN  
Feature is reserved for future  
use.  
Feature is reserved for future  
use.  
Feature is reserved for future  
use.  
EQ_BST_OV  
Allow override control of the  
EQ setting by writing to  
channel register 0x03. Not  
recommended for normal  
operation.  
2
1
1
1
1
0
0
0
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
N
Y
Y
Y
Y
DRV_SEL_VOD2  
DRV_SEL_VOD1  
DRV_SEL_VOD0  
RESERVED  
RATE1  
Used in conjunction with  
0x0D[5:4] to control the VOD  
levels of the high speed  
drivers  
0
2E  
2F  
7:0  
7
4 bits determine standard.  
0x6: 11.5 Gbps  
0x7: 12.5, 6.5, 3.125 Gbps  
0x8: 9.8304, 4.9152, 2.4576  
Gbps  
0x9: 6.144, 3.072 Gbps  
0xA: 10, 5, 2.5 Gbps  
0xB: 10.3125, 1.25  
6
RATE0  
5
SUBRATE1  
SUBRATE0  
4
3
0
RW  
Y
INDEX_OV  
If this bit is set to 1, reg 0x13  
is to be used as a 5 bit index  
to the [31:0] array of EQ  
settings.  
2
1
0
1
1
0
RW  
RW  
Y
Y
N
EN_PPM_CHECK  
EN_FLD_CHECK  
CTLE_ADAPT  
1: PPM check to be used as  
a qualifier when performing  
lock detect  
1: False lock detector is used  
as a qualifier when  
performing lock detect  
RWSC  
Starts CTLE adaption, self  
clearing  
Copyright © 2014–2017, Texas Instruments Incorporated  
41  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 15. Channel Registers, 20 to 39 (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
FREEZE_PPM_CNT  
Description  
30  
7
0
0
0
RW  
N
1: Freeze PPM counter to  
allow safe read  
asynchronously  
6
5
RW  
RW  
Y
N
EQ_SEARCH_OV_EN  
EN_PATT_INV  
Enables the EQ search bit to  
be force by channel register  
0x13[2]  
1: Enables automatic pattern  
inversion of successive 16-  
bit words when using the  
user defined pattern  
generator option.  
4
3
0
0
RW  
RW  
N
N
RELOAD_PRBS_CHKR  
PRBS_EN_DIG_CLK  
Feature is reserved for future  
use.  
This bit enables the clock to  
operate the PRBS generator  
and/or the PRBS checker.  
Toggling this bit is the  
primary method to reset the  
PRBS pattern generator and  
PRBS checker.  
2
0
RW  
N
PRBS_PROGPATT_EN  
1: Enable a fixed user  
defined pattern. Requires  
that the pattern generator be  
configured properly to be  
enabled  
1
0
0
0
RW  
RW  
N
N
PRBS_PATTERN_SEL1  
PRBS_PATTERN_SEL0  
Selects the PRBS generator  
pattern to output. Requires  
that the pattern generator be  
configured properly.  
00: PRBS-7  
01: PRBS-9  
10: PRBS-15  
11: PRBS-31  
31  
7
0
RW  
N
PRBS_INT_EN  
1: Enables interrupt for  
detection of PRBS errors.  
The PRBS checker must be  
properly configured for this  
feature to work  
6
5
0
0
RW  
RW  
Y
Y
ADAPT_MODE1  
ADAPT_MODE0  
00: no adaption  
01: adapt CTLE only  
10: adapt CTLE until optimal,  
then DFE, then CTLE again  
11: adapt CTLE until  
HEO/VEO threshold in reg  
0x33 are met, then DFE,  
then EQ until optimal  
4
3
0
0
RW  
RW  
Y
Y
EQ_SM_FOM1  
EQ_SM_FOM0  
Sets the desired FoM for EQ  
adaption  
00: not valid  
01: SM uses HEO only  
10: SM uses VEO only  
11: SM uses both HEO and  
VEO  
2
1
0
0
RW  
RW  
N
N
RESERVED  
CDR_LOCK_LOSS_INT_EN  
1: enables loss of CDR lock  
interrupt  
0
0
RW  
N
SIG_DET_LOSS_INT_EN  
1: enable loss of signal  
detect interrupt  
42  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 15. Channel Registers, 20 to 39 (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
32  
33  
34  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
0
0
1
0
0
0
1
1
0
0
0
1
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
HEO_INT_THRESH3  
These bits set the threshold  
for the HEO and VEO  
interrupt. Each threshold bit  
represents 8 counts of HEO  
or VEO.  
HEO_INT_THRESH2  
HEO_INT_THRESH1  
HEO_INT_THRESH0  
VEO_INT_THRESH3  
VEO_INT_THRESH2  
VEO_INT_THRESH1  
VEO_INT_THRESH0  
HEO_THRESH3  
In adapt mode 3, this register  
sets the minimum HEO and  
VEO required for CTLE  
adaption, before starting  
DFE adaption. This can be a  
max of 15  
HEO_THRESH2  
HEO_THRESH1  
HEO_THRESH0  
VEO_THRESH3  
VEO_THRESH2  
VEO_THRESH1  
VEO_THRESH0  
PPM_ERR_RDY  
1: Indicates that a PPM error  
count is read to be read from  
channel register 0x3B and  
0x3C  
6
0
RW  
Y
LOW_POWER_MODE_DISABLE  
By default, all blocks (except  
signal detect) power down  
after 100ms after signal  
detect goes low.  
5
4
1
1
RW  
RW  
Y
Y
LOCK_COUNTER1  
LOCK_COUNTER0  
After achieving lock, the  
CDR continues to monitor  
the lock criteria.If the lock  
criteria fail, the lock is  
checked for a total of N  
number of times before  
declaring an out of lock  
condition, where N is set by  
this the value in these  
registers, with a max value  
of +3, for a total of 4. If  
during the N lock checks,  
lock is regained, then the  
lock condition is left HI, and  
the counter is reset back to  
zero.  
3
2
1
0
1
1
1
1
RW  
RW  
RW  
RW  
Y
Y
Y
Y
DFE_MAX_TAP2_5[3]  
DFE_MAX_TAP2_5[2]  
DFE_MAX_TAP2_5[1]  
DFE_MAX_TAP2_5[0]  
These 4 bits are used to set  
the maximum value by which  
DFE taps 2-5 are able to  
adapt with each subsequent  
adaptation. Same used for  
both polarities.  
Copyright © 2014–2017, Texas Instruments Incorporated  
43  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 15. Channel Registers, 20 to 39 (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
35  
7
6
0
0
RW  
RW  
Y
Y
DATA_LOCK_PPM1  
DATA_LOCK_PPM0  
Modifies the value of the  
ppm delta tolerance from  
channel register 0x64  
00 - ppm_delta[7:0] =1 x  
ppm_delta[7:0]  
01 - ppm_delta[7:0] =1 x  
ppm_delta[7:0] +  
ppm_delta[3:1]  
10 - ppm_delta[7:0] =2 x  
ppm_delta[7:0]  
11 - ppm_delta[7:0] =2 x  
ppm_delta[7:0] +  
ppm_delta[3:1]  
5
0
RW  
N
GET_PPM_ERROR  
Get ppm error from  
ppm_count - clears when  
done. Normally updates  
continuously, but can be  
manually triggered with read  
value from channel register  
0x3B and 0x3C  
4
3
2
1
0
7
1
1
1
1
1
0
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
N
DFE_MAX_TAP1[4]  
DFE_MAX_TAP1[3]  
DFE_MAX_TAP1[2]  
DFE_MAX_TAP1[1]  
DFE_MAX_TAP1[0]  
UNCORR_ERR_INT_EN  
Determines max tap limit for  
DFE tap 1  
36  
Feature is reserved for future  
use.  
6
0
RW  
N
HEO_VEO_INT_EN  
1: Enable HEO/VEO interrupt  
capability  
5
4
1
1
RW  
RW  
Y
Y
REF_MODE1  
REF_MODE0  
11: Fast_lock all cap dac ref  
clock enabled  
(recommended)  
10: Reserved  
01: Reserved  
00: referenceless all cap dac,  
for debug use only  
3
2
1
0
0
0
0
0
RW  
RW  
RW  
RW  
Y
Y
N
N
EN_6466B_LOCK_GATE  
CDR_CAP_DAC_RNG_OV  
EN_6466B_RESTART  
K28P5_6466_INT_EN  
Feautre is reserved for future  
use.  
Override enable for cap dac  
range  
Feature is reserved for future  
use.  
Feature is reserved for future  
use.  
37  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
CTLE_STATUS7  
CTLE_STATUS6  
CTLE_STATUS5  
CTLE_STATUS4  
CTLE_STATUS3  
CTLE_STATUS2  
CTLE_STATUS1  
CTLE_STATUS0  
Feature is reserved for future  
use.  
44  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 15. Channel Registers, 20 to 39 (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
38  
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
0
0
0
R
R
N
N
N
N
N
N
N
N
N
DFE_STATUS7  
Feature is reserved for future  
use.  
DFE_STATUS6  
DFE_STATUS5  
DFE_STATUS4  
DFE_STATUS3  
DFE_STATUS2  
DFE_STATUS1  
DFE_STATUS0  
R
R
R
R
R
R
39  
RW  
PRELOCK_COMPARATOR_  
ABRT_MODE  
Feature is reserved for future  
use.  
6
5
0
0
RW  
RW  
Y
Y
EOM_RATE1  
EOM_RATE0  
With eom_ov=1, these bits  
control the Eye Monitor Rate.  
11: Use for Full Rate,  
Fastest  
10 : Use for 1/2 Rate  
01: Use for 1/4 Rate  
00: Use for 1/8 Rate,  
Slowest  
4
3
2
1
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
START_INDEX4  
START_INDEX3  
START_INDEX2  
START_INDEX1  
START_INDEX0  
Start index for EQ adaptation  
Table 16. Channel Registers, 3A to 59  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
3A  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
FIXED_EQ_BST0[1]  
FIXED_EQ_BST0[0]  
FIXED_EQ_BST1[1]  
FIXED_EQ_BST1[0]  
FIXED_EQ_BST2[1]  
FIXED_EQ_BST2[0]  
FIXED_EQ_BST3[1]  
FIXED_EQ_BST3[0]  
PPM_COUNT15  
During adaptation, if the  
divider setting is >2, then a  
fixed EQ setting from this  
register will be used.  
However, if channel register  
0x6F[7] is enabled, then an  
EQ adaptation will be  
performed instead.  
3B  
PPM count MSB  
R
PPM_COUNT14  
R
PPM_COUNT13  
R
PPM_COUNT12  
R
PPM_COUNT11  
R
PPM_COUNT10  
R
PPM_COUNT9  
R
PPM_COUNT8  
Copyright © 2014–2017, Texas Instruments Incorporated  
45  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 16. Channel Registers, 3A to 59 (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
3C  
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
0
0
0
R
R
N
N
N
N
N
N
N
N
Y
PPM_COUNT7  
PPM_COUNT6  
PPM_COUNT5  
PPM_COUNT4  
PPM_COUNT3  
PPM_COUNT2  
PPM_COUNT1  
PPM_COUNT0  
FIR_PD_pd  
PPM count LSB  
R
R
R
R
R
R
3D  
RW  
FIR_C0_SGN  
FIR main cursor polarity  
1: negative  
6
0
RW  
Y
0: positive  
5
4
3
2
1
0
7
1
1
0
1
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
FIR_C0[5]  
FIR_C0[4]  
FIR_C0[3]  
FIR_C0[2]  
FIR_C0[1]  
FIR_C0[0]  
FIR_PD_TX  
FIR_CN1_SGN  
FIR main cursor setting  
3E  
3F  
40  
FIR pre cursor polarity  
1: negative  
0: positive  
6
1
RW  
Y
5
4
3
2
1
0
7
0
0
0
0
1
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
FIR_CN1[5]  
FIR_CN1[4]  
FIR_CN1[3]  
FIR_CN1[2]  
FIR_CN1[1]  
FIR_CN1[0]  
FIR_SEL_I_MAX  
FIR_CP1_SGN  
FIR pre cursor setting  
FIR post cursor polarity  
1: negative  
0: positive  
6
1
RW  
Y
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
FIR_CP1[5]  
FIR post cursor setting  
FIR_CP1[4]  
FIR_CP1[3]  
FIR_CP1[2]  
FIR_CP1[1]  
FIR_CP1[0]  
EQ_ARRAY_INDEX_0_BST0[1]  
EQ_ARRAY_INDEX_0_BST0[0]  
EQ_ARRAY_INDEX_0_BST1[1]  
EQ_ARRAY_INDEX_0_BST1[0]  
EQ_ARRAY_INDEX_0_BST2[1]  
EQ_ARRAY_INDEX_0_BST2[0]  
EQ_ARRAY_INDEX_0_BST3[1]  
EQ_ARRAY_INDEX_0_BST3[0]  
46  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
Address  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 16. Channel Registers, 3A to 59 (continued)  
Default  
Value  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
(Hex)  
41  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
EQ_ARRAY_INDEX_1_BST0[1]  
EQ_ARRAY_INDEX_1_BST0[0]  
EQ_ARRAY_INDEX_1_BST1[1]  
EQ_ARRAY_INDEX_1_BST1[0]  
EQ_ARRAY_INDEX_1_BST2[1]  
EQ_ARRAY_INDEX_1_BST2[0]  
EQ_ARRAY_INDEX_1_BST3[1]  
EQ_ARRAY_INDEX_1_BST3[0]  
EQ_ARRAY_INDEX_2_BST0[1]  
EQ_ARRAY_INDEX_2_BST0[0]  
EQ_ARRAY_INDEX_2_BST1[1]  
EQ_ARRAY_INDEX_2_BST1[0]  
EQ_ARRAY_INDEX_2_BST2[1]  
EQ_ARRAY_INDEX_2_BST2[0]  
EQ_ARRAY_INDEX_2_BST3[1]  
EQ_ARRAY_INDEX_2_BST3[0]  
EQ_ARRAY_INDEX_3_BST0[1]  
EQ_ARRAY_INDEX_3_BST0[0]  
EQ_ARRAY_INDEX_3_BST1[1]  
EQ_ARRAY_INDEX_3_BST1[0]  
EQ_ARRAY_INDEX_3_BST2[1]  
EQ_ARRAY_INDEX_3_BST2[0]  
EQ_ARRAY_INDEX_3_BST3[1]  
EQ_ARRAY_INDEX_3_BST3[0]  
EQ_ARRAY_INDEX_4_BST0[1]  
EQ_ARRAY_INDEX_4_BST0[0]  
EQ_ARRAY_INDEX_4_BST1[1]  
EQ_ARRAY_INDEX_4_BST1[0]  
EQ_ARRAY_INDEX_4_BST2[1]  
EQ_ARRAY_INDEX_4_BST2[0]  
EQ_ARRAY_INDEX_4_BST3[1]  
EQ_ARRAY_INDEX_4_BST3[0]  
EQ_ARRAY_INDEX_5_BST0[1]  
EQ_ARRAY_INDEX_5_BST0[0]  
EQ_ARRAY_INDEX_5_BST1[1]  
EQ_ARRAY_INDEX_5_BST1[0]  
EQ_ARRAY_INDEX_5_BST2[1]  
EQ_ARRAY_INDEX_5_BST2[0]  
EQ_ARRAY_INDEX_5_BST3[1]  
EQ_ARRAY_INDEX_5_BST3[0]  
42  
43  
44  
45  
Copyright © 2014–2017, Texas Instruments Incorporated  
47  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 16. Channel Registers, 3A to 59 (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
46  
47  
48  
49  
4A  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
EQ_ARRAY_INDEX_6_BST0[1]  
EQ_ARRAY_INDEX_6_BST0[0]  
EQ_ARRAY_INDEX_6_BST1[1]  
EQ_ARRAY_INDEX_6_BST1[0]  
EQ_ARRAY_INDEX_6_BST2[1]  
EQ_ARRAY_INDEX_6_BST2[0]  
EQ_ARRAY_INDEX_6_BST3[1]  
EQ_ARRAY_INDEX_6_BST3[0]  
EQ_ARRAY_INDEX_7_BST0[1]  
EQ_ARRAY_INDEX_7_BST0[0]  
EQ_ARRAY_INDEX_7_BST1[1]  
EQ_ARRAY_INDEX_7_BST1[0]  
EQ_ARRAY_INDEX_7_BST2[1]  
EQ_ARRAY_INDEX_7_BST2[0]  
EQ_ARRAY_INDEX_7_BST3[1]  
EQ_ARRAY_INDEX_7_BST3[0]  
EQ_ARRAY_INDEX_8_BST0[1]  
EQ_ARRAY_INDEX_8_BST0[0]  
EQ_ARRAY_INDEX_8_BST1[1]  
EQ_ARRAY_INDEX_8_BST1[0]  
EQ_ARRAY_INDEX_8_BST2[1]  
EQ_ARRAY_INDEX_8_BST2[0]  
EQ_ARRAY_INDEX_8_BST3[1]  
EQ_ARRAY_INDEX_8_BST3[0]  
EQ_ARRAY_INDEX_9_BST0[1]  
EQ_ARRAY_INDEX_9_BST0[0]  
EQ_ARRAY_INDEX_9_BST1[1]  
EQ_ARRAY_INDEX_9_BST1[0]  
EQ_ARRAY_INDEX_9_BST2[1]  
EQ_ARRAY_INDEX_9_BST2[0]  
EQ_ARRAY_INDEX_9_BST3[1]  
EQ_ARRAY_INDEX_9_BST3[0]  
EQ_ARRAY_INDEX_10_BST0[1]  
EQ_ARRAY_INDEX_10_BST0[0]  
EQ_ARRAY_INDEX_10_BST1[1]  
EQ_ARRAY_INDEX_10_BST1[0]  
EQ_ARRAY_INDEX_10_BST2[1]  
EQ_ARRAY_INDEX_10_BST2[0]  
EQ_ARRAY_INDEX_10_BST3[1]  
EQ_ARRAY_INDEX_10_BST3[0]  
48  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
Address  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 16. Channel Registers, 3A to 59 (continued)  
Default  
Value  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
(Hex)  
4B  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
1
0
0
0
0
0
1
0
1
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
1
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
EQ_ARRAY_INDEX_11_BST0[1]  
EQ_ARRAY_INDEX_11_BST0[0]  
EQ_ARRAY_INDEX_11_BST1[1]  
EQ_ARRAY_INDEX_11_BST1[0]  
EQ_ARRAY_INDEX_11_BST2[1]  
EQ_ARRAY_INDEX_11_BST2[0]  
EQ_ARRAY_INDEX_11_BST3[1]  
EQ_ARRAY_INDEX_11_BST3[0]  
EQ_ARRAY_INDEX_12_BST0[1]  
EQ_ARRAY_INDEX_12_BST0[0]  
EQ_ARRAY_INDEX_12_BST1[1]  
EQ_ARRAY_INDEX_12_BST1[0]  
EQ_ARRAY_INDEX_12_BST2[1]  
EQ_ARRAY_INDEX_12_BST2[0]  
EQ_ARRAY_INDEX_12_BST3[1]  
EQ_ARRAY_INDEX_12_BST3[0]  
EQ_ARRAY_INDEX_13_BST0[1]  
EQ_ARRAY_INDEX_13_BST0[0]  
EQ_ARRAY_INDEX_13_BST1[1]  
EQ_ARRAY_INDEX_13_BST1[0]  
EQ_ARRAY_INDEX_13_BST2[1]  
EQ_ARRAY_INDEX_13_BST2[0]  
EQ_ARRAY_INDEX_13_BST3[1]  
EQ_ARRAY_INDEX_13_BST3[0]  
EQ_ARRAY_INDEX_14_BST0[1]  
EQ_ARRAY_INDEX_14_BST0[0]  
EQ_ARRAY_INDEX_14_BST1[1]  
EQ_ARRAY_INDEX_14_BST1[0]  
EQ_ARRAY_INDEX_14_BST2[1]  
EQ_ARRAY_INDEX_14_BST2[0]  
EQ_ARRAY_INDEX_14_BST3[1]  
EQ_ARRAY_INDEX_14_BST3[0]  
EQ_ARRAY_INDEX_15_BST0[1]  
EQ_ARRAY_INDEX_15_BST0[0]  
EQ_ARRAY_INDEX_15_BST1[1]  
EQ_ARRAY_INDEX_15_BST1[0]  
EQ_ARRAY_INDEX_15_BST2[1]  
EQ_ARRAY_INDEX_15_BST2[0]  
EQ_ARRAY_INDEX_15_BST3[1]  
EQ_ARRAY_INDEX_15_BST3[0]  
4C  
4D  
4E  
4F  
Copyright © 2014–2017, Texas Instruments Incorporated  
49  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 16. Channel Registers, 3A to 59 (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
50  
51  
52  
53  
54  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
1
0
1
0
0
0
0
0
0
1
0
0
0
1
1
0
0
1
0
1
0
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
EQ_ARRAY_INDEX_16_BST0[1]  
EQ_ARRAY_INDEX_16_BST0[0]  
EQ_ARRAY_INDEX_16_BST1[1]  
EQ_ARRAY_INDEX_16_BST1[0]  
EQ_ARRAY_INDEX_16_BST2[1]  
EQ_ARRAY_INDEX_16_BST2[0]  
EQ_ARRAY_INDEX_16_BST3[1]  
EQ_ARRAY_INDEX_16_BST3[0]  
EQ_ARRAY_INDEX_17_BST0[1]  
EQ_ARRAY_INDEX_17_BST0[0]  
EQ_ARRAY_INDEX_17_BST1[1]  
EQ_ARRAY_INDEX_17_BST1[0]  
EQ_ARRAY_INDEX_17_BST2[1]  
EQ_ARRAY_INDEX_17_BST2[0]  
EQ_ARRAY_INDEX_17_BST3[1]  
EQ_ARRAY_INDEX_17_BST3[0]  
EQ_ARRAY_INDEX_18_BST0[1]  
EQ_ARRAY_INDEX_18_BST0[0]  
EQ_ARRAY_INDEX_18_BST1[1]  
EQ_ARRAY_INDEX_18_BST1[0]  
EQ_ARRAY_INDEX_18_BST2[1]  
EQ_ARRAY_INDEX_18_BST2[0]  
EQ_ARRAY_INDEX_18_BST3[1]  
EQ_ARRAY_INDEX_18_BST3[0]  
EQ_ARRAY_INDEX_19_BST0[1]  
EQ_ARRAY_INDEX_19_BST0[0]  
EQ_ARRAY_INDEX_19_BST1[1]  
EQ_ARRAY_INDEX_19_BST1[0]  
EQ_ARRAY_INDEX_19_BST2[1]  
EQ_ARRAY_INDEX_19_BST2[0]  
EQ_ARRAY_INDEX_19_BST3[1]  
EQ_ARRAY_INDEX_19_BST3[0]  
EQ_ARRAY_INDEX_20_BST0[1]  
EQ_ARRAY_INDEX_20_BST0[0]  
EQ_ARRAY_INDEX_20_BST1[1]  
EQ_ARRAY_INDEX_20_BST1[0]  
EQ_ARRAY_INDEX_20_BST2[1]  
EQ_ARRAY_INDEX_20_BST2[0]  
EQ_ARRAY_INDEX_20_BST3[1]  
EQ_ARRAY_INDEX_20_BST3[0]  
50  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
Address  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 16. Channel Registers, 3A to 59 (continued)  
Default  
Value  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
(Hex)  
55  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
1
0
0
0
1
1
0
0
1
0
1
1
0
0
0
0
1
1
0
0
1
0
0
0
0
1
0
1
0
1
1
1
0
1
0
1
1
1
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
EQ_ARRAY_INDEX_21_BST0[1]  
EQ_ARRAY_INDEX_21_BST0[0]  
EQ_ARRAY_INDEX_21_BST1[1]  
EQ_ARRAY_INDEX_21_BST1[0]  
EQ_ARRAY_INDEX_21_BST2[1]  
EQ_ARRAY_INDEX_21_BST2[0]  
EQ_ARRAY_INDEX_21_BST3[1]  
EQ_ARRAY_INDEX_21_BST3[0]  
EQ_ARRAY_INDEX_22_BST0[1]  
EQ_ARRAY_INDEX_22_BST0[0]  
EQ_ARRAY_INDEX_22_BST1[1]  
EQ_ARRAY_INDEX_22_BST1[0]  
EQ_ARRAY_INDEX_22_BST2[1]  
EQ_ARRAY_INDEX_22_BST2[0]  
EQ_ARRAY_INDEX_22_BST3[1]  
EQ_ARRAY_INDEX_22_BST3[0]  
EQ_ARRAY_INDEX_23_BST0[1]  
EQ_ARRAY_INDEX_23_BST0[0]  
EQ_ARRAY_INDEX_23_BST1[1]  
EQ_ARRAY_INDEX_23_BST1[0]  
EQ_ARRAY_INDEX_23_BST2[1]  
EQ_ARRAY_INDEX_23_BST2[0]  
EQ_ARRAY_INDEX_23_BST3[1]  
EQ_ARRAY_INDEX_23_BST3[0]  
EQ_ARRAY_INDEX_24_BST0[1]  
EQ_ARRAY_INDEX_24_BST0[0]  
EQ_ARRAY_INDEX_24_BST1[1]  
EQ_ARRAY_INDEX_24_BST1[0]  
EQ_ARRAY_INDEX_24_BST2[1]  
EQ_ARRAY_INDEX_24_BST2[0]  
EQ_ARRAY_INDEX_24_BST3[1]  
EQ_ARRAY_INDEX_24_BST3[0]  
EQ_ARRAY_INDEX_25_BST0[1]  
EQ_ARRAY_INDEX_25_BST0[0]  
EQ_ARRAY_INDEX_25_BST1[1]  
EQ_ARRAY_INDEX_25_BST1[0]  
EQ_ARRAY_INDEX_25_BST2[1]  
EQ_ARRAY_INDEX_25_BST2[0]  
EQ_ARRAY_INDEX_25_BST3[1]  
EQ_ARRAY_INDEX_25_BST3[0]  
56  
57  
58  
59  
Copyright © 2014–2017, Texas Instruments Incorporated  
51  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 17. Channel Registers, 5A to 9B  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
5A  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
1
1
0
1
0
0
1
0
1
1
1
0
1
0
1
1
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
EQ_ARRAY_INDEX_26_BST0[1]  
EQ_ARRAY_INDEX_26_BST0[0]  
EQ_ARRAY_INDEX_26_BST1[1]  
EQ_ARRAY_INDEX_26_BST1[0]  
EQ_ARRAY_INDEX_26_BST2[1]  
EQ_ARRAY_INDEX_26_BST2[0]  
EQ_ARRAY_INDEX_26_BST3[1]  
EQ_ARRAY_INDEX_26_BST3[0]  
EQ_ARRAY_INDEX_27_BST0[1]  
EQ_ARRAY_INDEX_27_BST0[0]  
EQ_ARRAY_INDEX_27_BST1[1]  
EQ_ARRAY_INDEX_27_BST1[0]  
EQ_ARRAY_INDEX_27_BST2[1]  
EQ_ARRAY_INDEX_27_BST2[0]  
EQ_ARRAY_INDEX_27_BST3[1]  
EQ_ARRAY_INDEX_27_BST3[0]  
EQ_ARRAY_INDEX_28_BST0[1]  
EQ_ARRAY_INDEX_28_BST0[0]  
EQ_ARRAY_INDEX_28_BST1[1]  
EQ_ARRAY_INDEX_28_BST1[0]  
EQ_ARRAY_INDEX_28_BST2[1]  
EQ_ARRAY_INDEX_28_BST2[0]  
EQ_ARRAY_INDEX_28_BST3[1]  
EQ_ARRAY_INDEX_28_BST3[0]  
EQ_ARRAY_INDEX_29_BST0[1]  
EQ_ARRAY_INDEX_29_BST0[0]  
EQ_ARRAY_INDEX_29_BST1[1]  
EQ_ARRAY_INDEX_29_BST1[0]  
EQ_ARRAY_INDEX_29_BST2[1]  
EQ_ARRAY_INDEX_29_BST2[0]  
EQ_ARRAY_INDEX_29_BST3[1]  
EQ_ARRAY_INDEX_29_BST3[0]  
EQ_ARRAY_INDEX_30_BST0[1]  
EQ_ARRAY_INDEX_30_BST0[0]  
EQ_ARRAY_INDEX_30_BST1[1]  
EQ_ARRAY_INDEX_30_BST1[0]  
EQ_ARRAY_INDEX_30_BST2[1]  
EQ_ARRAY_INDEX_30_BST2[0]  
EQ_ARRAY_INDEX_30_BST3[1]  
EQ_ARRAY_INDEX_30_BST3[0]  
5B  
5C  
5D  
5E  
52  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
Address  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
(Hex)  
5F  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
1
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
EQ_ARRAY_INDEX_31_BST0[1]  
EQ_ARRAY_INDEX_31_BST0[0]  
EQ_ARRAY_INDEX_31_BST1[1]  
EQ_ARRAY_INDEX_31_BST1[0]  
EQ_ARRAY_INDEX_31_BST2[1]  
EQ_ARRAY_INDEX_31_BST2[0]  
EQ_ARRAY_INDEX_31_BST3[1]  
EQ_ARRAY_INDEX_31_BST3[0]  
GRP0_OV_CNT7  
60  
Group 0 count LSB  
GRP0_OV_CNT6  
GRP0_OV_CNT5  
GRP0_OV_CNT4  
GRP0_OV_CNT3  
GRP0_OV_CNT2  
GRP0_OV_CNT1  
GRP0_OV_CNT0  
61  
CNT_DLTA_OV_0  
Override enable for group 0  
manual data rate selection  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
GRP0_OV_CNT14  
GRP0_OV_CNT13  
GRP0_OV_CNT12  
GRP0_OV_CNT11  
GRP0_OV_CNT10  
GRP0_OV_CNT9  
GRP0_OV_CNT8  
GRP1_OV_CNT7  
GRP1_OV_CNT6  
GRP1_OV_CNT5  
GRP1_OV_CNT4  
GRP1_OV_CNT3  
GRP1_OV_CNT2  
GRP1_OV_CNT1  
GRP1_OV_CNT0  
CNT_DLTA_OV_1  
Group 0 count MSB  
62  
Group 1 count LSB  
63  
Override enable for group 1  
manual data rate selection  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
GRP1_OV_CNT14  
GRP1_OV_CNT13  
GRP1_OV_CNT12  
GRP1_OV_CNT11  
GRP1_OV_CNT10  
GRP1_OV_CNT9  
GRP1_OV_CNT8  
Group 1 count MSB  
Copyright © 2014–2017, Texas Instruments Incorporated  
53  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
64  
7
6
0
0
0
0
0
0
0
0
0
0
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
N
N
Y
Y
Y
GRP0_OV_DLTA3  
GRP0_OV_DLTA2  
GRP0_OV_DLTA1  
GRP0_OV_DLTA0  
GRP1_OV_DLTA3  
GRP1_OV_DLTA2  
GRP1_OV_DLTA1  
GRP1_OV_DLTA0  
RESERVED  
Sets the PPM delta tolerance  
for the PPM counter lock  
check for group 0. Must also  
program channel register  
0x67[7].  
5
4
3
Sets the PPM delta tolerance  
for the PPM counter lock  
check for group 1. Must also  
program channel register  
0x67[6].  
2
1
0
65  
66  
67  
7:0  
7:00  
7
RESERVED  
GRP0_OV_DLTA4  
GRP1_OV_DLTA4  
HV_LOCKMON_EN  
6
5
1: Normal operation,  
HEO/VEO measurements are  
used for lock monitoring  
4:1  
0
0
0
RW  
RW  
N
N
RESERVED  
LOCKMON_FRC_EN  
This feature is reserved for  
future use.  
68  
69  
6A  
7:5  
4
0
0
RW  
RW  
N
N
RESERVED  
ADPT_FRC_EN  
This feature is reserved for  
future use.  
3
2
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
SCN_OBS_CTRL3  
SCN_OBS_CTRL2  
SCN_OBS_CTRL1  
SCN_OBS_CTRL0  
RESERVED  
This feature is reserved for  
future use.  
1
0
7:5  
4
CTLE_ADPT_FRC_EN  
This feature is reserved for  
future use.  
3
2
1
0
7
6
5
4
3
2
1
0
1
0
1
0
0
0
1
0
0
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
HV_LCKMON_CNT_MS3  
HV_LCKMON_CNT_MS2  
HV_LCKMON_CNT_MS1  
HV_LCKMON_CNT_MS0  
VEO_LCK_THRSH3  
VEO_LCK_THRSH2  
VEO_LCK_THRSH1  
VEO_LCK_THRSH0  
HEO_LCK_THRSH3  
HEO_LCK_THRSH2  
HEO_LCK_THRSH1  
HEO_LCK_THRSH0  
This feature is reserved for  
future use.  
VEO threshold to meet before  
lock is established. The LSB  
step size is 4 counts of VEO.  
HEO threshold to meet before  
lock is established. The LSB  
step size is 4 counts of HEO.  
54  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
Address  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
(Hex)  
6B  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
FOM_A7  
FOM_A6  
FOM_A5  
FOM_A4  
FOM_A3  
FOM_A2  
FOM_A1  
FOM_A0  
FOM_B7  
FOM_B6  
FOM_B5  
FOM_B4  
FOM_B3  
FOM_B2  
FOM_B1  
FOM_B0  
FOM_C7  
FOM_C6  
FOM_C5  
FOM_C4  
FOM_C3  
FOM_C2  
FOM_C1  
FOM_C0  
EN_NEW_FOM_CTLE  
Alternate Figure of Merit  
variable A  
Max value for this register is  
128, do not use the MSB  
6C  
6D  
6E  
HEO adjustment for Alternate  
FoM, variable B  
VEO adjustment for alternate  
FoM, variable C  
1: CTLE adaption state  
machine will use the alternate  
FoM  
HEO_ALT = (HEO-B)*A*2  
VEO_ALT = (VEO-C)*(1-A)*2  
The values of A,B,C are set  
in channel register 0x6B,  
0x6C, and 0x6D. The value of  
A is equal to the register  
value divided by 128  
The Alternate FoM = (HEO-  
B)*A*2 + (VEO-C)*(1-A)*2  
6
0
RW  
Y
EN_NEW_FOM_DFE  
1: DFE adaption state  
machine will use the alternate  
FoM  
HEO_ALT = (HEO-B)*A*2  
VEO_ALT = (VEO-C)*(1-A)*2  
The values of A,B,C are set  
in channel register 0x6B,  
0x6C, and 0x6D. The value of  
A is equal to the register  
value divided by 128  
The Alternate FoM = (HEO-  
B)*A*2 + (VEO-C)*(1-A)*2  
5:1  
0
0
0
RW  
RW  
N
N
RESERVED  
GET_HV_ST_FRC_EN  
This feature is reserved for  
future use.  
Copyright © 2014–2017, Texas Instruments Incorporated  
55  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
6F  
7
0
RW  
Y
EN_LOW_DIVSEL_EQ  
1: EQ adaption will be  
performed for all divider  
settings  
0: EQ adaption will only be  
performed for dividers of 1  
and 2  
6:5  
4:0  
7:4  
3
0
0
0
0
0
1
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
Y
N
N
Y
Y
Y
Y
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EQ_LB_CNT2  
EQ_LB_CNT1  
EQ_LB_CNT0  
PRBS_INT  
70  
71  
2
CTLE look beyond count for  
adaption.  
1
0
7
1: Indicates that a PRBS  
error has been detected.  
Requires the PRBS checker  
to be properly configured.  
This bit will stay set until it  
has been cleared by being  
read.  
This bit will clear after reading  
6
5
0
0
R
R
N
N
K28P5_6466_COND_MET_INT  
DFE_POL_1_OBS  
This feature is reserved for  
future use.  
Primary observation point for  
DFE tap 1 polarity  
4
3
0
0
0
0
0
0
0
R
R
N
N
N
N
N
N
N
DFE_WT1_OBS4  
DFE_WT1_OBS3  
DFE_WT1_OBS2  
DFE_WT1_OBS1  
DFE_WT1_OBS0  
RESERVED  
Primary observation point for  
DFE tap 1 weight  
2
R
1
R
0
R
72  
73  
74  
7:5  
4
RW  
R
DFE_POL_2_OBS  
Primary observation point for  
DFE tap 2 polarity  
3
2
0
0
0
0
0
0
R
R
N
N
N
N
N
N
DFE_WT2_OBS3  
DFE_WT2_OBS2  
DFE_WT2_OBS1  
DFE_WT2_OBS0  
RESERVED  
Primary observation point for  
DFE tap 2 weight  
1
R
0
R
7:5  
4
RW  
R
DFE_POL_3_OBS  
Primary observation point for  
DFE tap 3 polarity  
3
2
0
0
0
0
0
0
R
R
N
N
N
N
N
N
DFE_WT3_OBS3  
DFE_WT3_OBS2  
DFE_WT3_OBS1  
DFE_WT3_OBS0  
RESERVED  
Primary observation point for  
DFE tap 3 weight  
1
R
0
R
7:5  
4
RW  
R
DFE_POL_4_OBS  
Primary observation point for  
DFE tap 4 polarity  
3
2
1
0
0
0
0
0
R
R
R
R
N
N
N
N
DFE_WT4_OBS3  
DFE_WT4_OBS2  
DFE_WT4_OBS1  
DFE_WT4_OBS0  
Primary observation point for  
DFE tap 4 weight  
56  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
Address  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
(Hex)  
75  
7:5  
4
0
0
RW  
R
N
N
RESERVED  
DFE_POL_5_OBS  
Primary observation point for  
DFE tap 5 polarity  
3
2
1
0
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
1
0
0
0
1
0
0
R
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
N
DFE_WT5_OBS3  
Primary observation point for  
DFE tap 5 weight  
R
DFE_WT5_OBS2  
R
DFE_WT5_OBS1  
R
DFE_WT5_OBS0  
76  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
POST_LOCK_VEO_THR3  
POST_LOCK_VEO_THR2  
POST_LOCK_VEO_THR1  
POST_LOCK_VEO_THR0  
POST_LOCK_HEO_THR3  
POST_LOCK_HEO_THR2  
POST_LOCK_HEO_THR1  
POST_LOCK_HEO_THR0  
PRBS_GEN_POL_EN  
VEO threshold after lock is  
established. The LSB step  
size is 4 counts of VEO.  
HEO threshold after lock is  
established. The LSB step  
size is 4 counts of HEO.  
77  
This feature is reserved for  
future use. To invert the  
polarity of the PRBS data use  
the normal method of  
inverting of the sign bits for  
the FIR taps.  
6
5
4
3
2
1
0
0
0
1
1
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
CDR_CAP_DAC_START1[5]  
CDR_CAP_DAC_START0[5]  
POST_LOCK_SBTTHR4  
POST_LOCK_SBTTHR3  
POST_LOCK_SBTTHR2  
POST_LOCK_SBTTHR1  
POST_LOCK_SBTTHR0  
This feature is reserved for  
future use  
SBT threshold after lock is  
established.  
Copyright © 2014–2017, Texas Instruments Incorporated  
57  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
7
Mode  
EEPROM  
Field Name  
Description  
78  
0
0
0
0
0
R
R
R
R
R
N
N
N
N
N
UNCORR_ERR_INT  
PRBS_LOCKUP_STATUS  
SD_STATUS  
This feature is reserved for  
future use.  
6
This feature is reserved for  
future use.  
5
Primary observation point for  
signal detect status  
4
CDR_LOCK_STATUS  
CDR_LOCK_INT  
Primary observation point for  
CDR lock status  
3
Requires that channel  
register 0x79[1] be set.  
1: Indicates CDR has  
achieved lock, lock goes from  
LOW to HIGH. This bit is  
cleared after reading. This bit  
will stay set until it has been  
cleared by reading.  
2
0
R
N
SD_INT  
Requires that channel  
register 0x79[0] be set.  
1: Indicates signal detect  
status has changed. This will  
trigger when signal detect  
goes from LOW to HIGH or  
HIGH to LOW. This bit is  
cleared after reading. This bit  
will stay set until it has been  
cleared by reading.  
1
0
0
0
R
R
N
N
EOM_VRANGE_LIMIT_ERROR  
HEO_VEO_INT  
This feature is reserved for  
future use.  
Requires that channel  
register 0x36[6] be set.  
1: Indicates that HEO/VEO  
dropped below the limits set  
in channel register 0x76 This  
bit is cleared after reading.  
This bit will stay set until it  
has been cleared by reading.  
58  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
Address  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
(Hex)  
79  
7
6
5
0
0
0
R
R
R
N
N
N
PWDN_SD  
This feature is reserved for  
future use.  
PRBS_CHKR_EN  
PRBS_GEN_EN  
1: Enable the PRBS checker.  
0: Disable the PRBS checker  
1: Enable the pattern  
generator  
0: Disable the pattern  
generator  
4
3
1
0
RW  
R
N
Y
PRBS_LCKUP_EXIT_EN  
EN_K285  
This feature is reserved for  
future use.  
1: Enables K28.5 checking as  
a requirement for lock  
0: Normal operation  
2
1
0
0
R
R
Y
N
CAL_OVERRIDE  
This feature is reserved for  
future use.  
CDR_LOCK_INT_EN  
1: Enable CDR lock interrupt,  
observable in channel  
register 0x78[3]  
0: Disable CDR lock interrupt  
0
0
R
N
SD_INT_EN  
1: Enable signal detect  
interrupt, observable in  
channel register 0x78[3]  
0: Disable signal detect  
interrupt  
7A  
7B  
7C  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
W
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
SEL_A7  
This feature is reserved for  
future use.  
SEL_A6  
SEL_A5  
SEL_A4  
SEL_A3  
SEL_A2  
SEL_A1  
SEL_A0  
SEL_D7  
This feature is reserved for  
future use.  
SEL_D6  
SEL_D5  
SEL_D4  
SEL_D3  
SEL_D2  
SEL_D1  
SEL_D0  
PRBS_FIXED7  
PRBS_FIXED6  
PRBS_FIXED5  
PRBS_FIXED4  
PRBS_FIXED3  
PRBS_FIXED2  
PRBS_FIXED1  
PRBS_FIXED0  
Pattern generator user  
defined pattern LSB. MSB  
located at channel register  
0x97.  
W
W
W
W
W
W
W
Copyright © 2014–2017, Texas Instruments Incorporated  
59  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
7D  
7E  
7F  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
1
0
0
1
0
0
0
0
0
0
1
0
0
1
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
CONT_ADAPT_HEO_CHNG_THRS3 Limit for HEO change before  
triggering a DFE adaption  
while continous DFE adaption  
CONT_ADAPT_HEO_CHNG_THRS2  
CONT_ADAPT_HEO_CHNG_THRS1  
CONT_ADAPT_HEO_CHNG_THRS0  
is enabled.  
CONT_ADAPT_VEO_CHNG_THRS3 Limit for VEO change before  
triggering a DFE adaption  
while continous DFE adaption  
CONT_ADAPT_VEO_CHNG_THRS2  
CONT_ADAPT_VEO_CHNG_THRS1  
CONT_ADAPT_VEO_CHNG_THRS0  
CONT_ADPT_TAP_INCR3  
is enabled.  
Limit of allowable DFE tap  
weight change from the  
previous base point  
CONT_ADPT_TAP_INCR2  
CONT_ADPT_TAP_INCR1  
CONT_ADPT_TAP_INCR0  
CONT_ADPT_FOM_CHNG_THRS3  
CONT_ADPT_FOM_CHNG_THRS2  
CONT_ADPT_FOM_CHNG_THRS1  
CONT_ADPT_FOM_CHNG_THRS0  
EN_OBS_ALT_FOM  
This feature is reserved for  
future use.  
1: Allows for alternate FoM  
calculation to be shown in  
channel registers 0x27, 0x28  
and 0x29 instead of HEO and  
VEO  
6
5
0
1
RW  
RW  
N
Y
RESERVED  
DIS_HV_CHK_FOR_CONT_ADAPT  
1: Ignore HEO/VEO lock  
condition checks during  
continous adaption. Normal  
operation for continous DFE  
adaption  
4
3
1
1
RW  
RW  
Y
Y
EN_DFE_CONT_ADAPT  
CONT_ADPT_CMP_BOTH  
1: Continous DFE adaption is  
enabled  
0: DFE adapts only during  
lock and then freezes  
1: If continous DFE adaption  
is enabled, a DFE adaption  
will trigger if either HEO or  
VEO degrades  
2
1
0
1
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
R
Y
Y
Y
N
N
N
N
N
N
N
N
N
CONT_ADPT_COUNT2  
CONT_ADPT_COUNT1  
CONT_ADPT_COUNT0  
HEO_CENTER7  
HEO_CENTER6  
HEO_CENTER5  
HEO_CENTER4  
HEO_CENTER3  
HEO_CENTER2  
HEO_CENTER1  
HEO_CENTER0  
RESERVED  
Limit for number of weights  
the DFE can look ahead in  
continous adaption  
0
80  
7
This feature is reserved for  
future use.  
6
R
5
R
4
R
3
R
2
R
1
R
0
R
81  
7:0  
R
60  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
Address  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
(Hex)  
82  
7
0
RW  
N
FREEZE_PRBS_CNTR  
1: Freeze the PRBS bit and  
error counts to allow for read  
back  
0: Normal operation. Both bit  
and error counters are  
allowed to increment if the  
PRBS checker is properly  
configured.  
6
0
RW  
N
RST_PRBS_CNTS  
1: Reset PRBS bit and error  
counts  
0: Normal operation, counters  
are released from reset  
5
4
0
0
RW  
RW  
N
N
RESERVED  
PRBS_PATT_OV  
1: Override PRBS pattern  
auto detection. Forces the  
pattern checker to only lock  
onto the pattern defined in  
bits 3 and 2 of this register.  
0: Normal operation, pattern  
checker will automatically  
detect the PRBS pattern  
3
2
0
0
RW  
RW  
N
N
PRBS_PATT1  
PRBS_PATT0  
Usage is enabled with  
channel reg 0x82[4]  
Select PRBS pattern to be  
checked 00: PRBS-7  
01: PRBS-9  
10: PRBS-15  
11: PRBS-31  
1
0
RW  
N
PRBS_POL_OV  
1: Override PRBS pattern  
auto polarity detection.  
Forces the pattern checker to  
only lock onto the polarity  
defined in bit 0 of this  
register.  
0: Normal operation, pattern  
checker will automatically  
detect the PRBS pattern  
polarity  
0
0
RW  
N
PRBS_POL  
Usage is enabled with  
channel register 0x82[1]  
0: Forced polarity = true  
1 - Forced polarity = inverted  
83  
84  
7:3  
2
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
PRBS_ERR_CNT10  
PRBS_ERR_CNT9  
PRBS_ERR_CNT8  
PRBS_ERR_CNT7  
PRBS_ERR_CNT6  
PRBS_ERR_CNT5  
PRBS_ERR_CNT4  
PRBS_ERR_CNT3  
PRBS_ERR_CNT2  
PRBS_ERR_CNT1  
PRBS_ERR_CNT0  
PRBS error count MSB  
PRBS error count LSB  
1
0
7
6
5
4
3
2
1
0
Copyright © 2014–2017, Texas Instruments Incorporated  
61  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
85  
86  
87  
88  
89  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
PRBS_DATA_CNT46  
PRBS_DATA_CNT45  
PRBS_DATA_CNT44  
PRBS_DATA_CNT43  
PRBS_DATA_CNT42  
PRBS_DATA_CNT41  
PRBS_DATA_CNT40  
PRBS_DATA_CNT39  
PRBS_DATA_CNT38  
PRBS_DATA_CNT37  
PRBS_DATA_CNT36  
PRBS_DATA_CNT35  
PRBS_DATA_CNT34  
PRBS_DATA_CNT33  
PRBS_DATA_CNT32  
PRBS_DATA_CNT31  
PRBS_DATA_CNT30  
PRBS_DATA_CNT29  
PRBS_DATA_CNT28  
PRBS_DATA_CNT27  
PRBS_DATA_CNT26  
PRBS_DATA_CNT25  
PRBS_DATA_CNT24  
PRBS_DATA_CNT23  
PRBS_DATA_CNT22  
PRBS_DATA_CNT21  
PRBS_DATA_CNT20  
PRBS_DATA_CNT19  
PRBS_DATA_CNT18  
PRBS_DATA_CNT17  
PRBS_DATA_CNT16  
PRBS_DATA_CNT15  
PRBS_DATA_CNT14  
PRBS_DATA_CNT13  
PRBS_DATA_CNT12  
PRBS_DATA_CNT11  
PRBS_DATA_CNT10  
PRBS_DATA_CNT9  
PRBS_DATA_CNT8  
PRBS bit count, 47-bit word  
from channel registers 0x85  
to 0x8A  
PRBS bit count, 47-bit word  
from channel registers 0x85  
to 0x8A  
PRBS bit count, 47-bit word  
from channel registers 0x85  
to 0x8A  
PRBS bit count, 47-bit word  
from channel registers 0x85  
to 0x8A  
PRBS bit count, 47-bit word  
from channel registers 0x85  
to 0x8A  
62  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
Address  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
(Hex)  
8A  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
PRBS_DATA_CNT7  
PRBS bit count, 47-bit word  
from channel registers 0x85  
to 0x8A  
R
PRBS_DATA_CNT6  
R
PRBS_DATA_CNT5  
R
PRBS_DATA_CNT4  
R
PRBS_DATA_CNT3  
R
PRBS_DATA_CNT2  
R
PRBS_DATA_CNT1  
R
PRBS_DATA_CNT0  
8B  
8C  
8D  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
UNCORR_ERR_PATT15  
UNCORR_ERR_PATT14  
UNCORR_ERR_PATT13  
UNCORR_ERR_PATT12  
UNCORR_ERR_PATT11  
UNCORR_ERR_PATT10  
UNCORR_ERR_PATT9  
UNCORR_ERR_PATT8  
UNCORR_ERR_PATT7  
UNCORR_ERR_PATT6  
UNCORR_ERR_PATT5  
UNCORR_ERR_PATT4  
UNCORR_ERR_PATT3  
UNCORR_ERR_PATT2  
UNCORR_ERR_PATT1  
UNCORR_ERR_PATT0  
RESERVED  
This feature is reserved for  
future use.  
This feature is reserved for  
future use.  
EQ_EN_HR_MODE  
Used with bit 2 to set Full  
rate, Mid rate or Half rate EQ  
bandwidth. Bit 6 is MSB. Bit 2  
is LSB.  
00: Full rate  
01: Mid rate  
11: Half rate  
5
4
3
2
0
0
0
1
RW  
RW  
RW  
RW  
Y
Y
Y
Y
PFD_EN_HR_MODE  
DIV_EN_HR_MODE  
DIV_EN_HR_MODE  
EQ_EN_MR_MODE  
Used with bit 6 to set Full  
rate, Mid rate or Half rate EQ  
bandwidth. Bit 6 is MSB. Bit 2  
is LSB.  
00: Full rate  
01: Mid rate  
10: Alternate mid rate  
11: Half rate  
1
0
1
0
RW  
RW  
Y
Y
SD_DC_EN  
This feature is reserved for  
future use.  
EQ_SEL_LOOP_OUT  
This feature is reserved for  
future use.  
Copyright © 2014–2017, Texas Instruments Incorporated  
63  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
7
Mode  
RW  
EEPROM  
Field Name  
Description  
8E  
0
N
N
SD_CAL_RESET_LV  
SEL_DIV48_LV  
This feature is reserved for  
future use.  
6
0
RW  
Output reference clock  
selection  
1: Selects reference clock  
from in channel digital  
0: Selects reference clock  
from adjacent channel output  
5
0
RW  
Y
EN_CLK_LOOPTHRU_LV  
1: Enable the reference clock  
loop through mux  
4
3
2
1
0
7
6
5
4
3
2
1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
R
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
FIR_SEL_EDGE2  
FIR_SEL_EDGE1  
FIR_SEL_EDGE0  
DFE_SEL_GAIN1  
DFE_SEL_GAIN0  
EQ_BST_TO_ANA7  
EQ_BST_TO_ANA6  
EQ_BST_TO_ANA5  
EQ_BST_TO_ANA4  
EQ_BST_TO_ANA3  
EQ_BST_TO_ANA2  
EQ_BST_TO_ANA1  
EQ_BST_TO_ANA0  
Edge rate (slew rate) control  
VGA gain control  
8F  
Primary observation point for  
the EQ boost setting.  
R
R
R
R
R
R
R
64  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
Address  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
(Hex)  
90  
7
6
5
4
0
0
0
0
RW  
RW  
RW  
RW  
Y
Y
Y
Y
K28P5_COMPR_PERIOD3  
K28P5_COMPR_PERIOD2  
K28P5_COMPR_PERIOD1  
K28P5_COMPR_PERIOD0  
Used when one of these  
modes are enabled, k28.5  
lock check(channel register  
0x79[5]), 64b66b lock  
check(channel register  
0x36[3]), k28.5 or 64b66b  
Interrupt(register 0x36[0])  
k28.5_compr_period defines  
period within which k28.5 is  
expected to be seen.  
Also used for expected  
frequency of 64B66B  
transitions  
The number of bits to check  
is equal to  
2^(min_k28.5_reqd[11:0]) *  
32  
Enable K28.5 checking with  
reg_79[3]  
3
2
1
0
0
0
0
0
RW  
RW  
RW  
RW  
Y
Y
Y
Y
MIN_K28P5_REQD11  
MIN_K28P5_REQD10  
MIN_K28P5_REQD9  
MIN_K28P5_REQD8  
Used when one of these  
modes are enabled, k28.5  
lock check(channel register  
0x79[5]), 64b66b lock  
check(channel register  
0x36[3]), k28.5 or 64b66b  
Interrupt(register 0x36[0])  
Channel register 0x90[3:0]  
together with channel register  
0x91[7:0] defines number of  
k28.5+ patterns that need to  
be detected in the number of  
bits checked(set by channel  
register 0x90[7:4]  
Also used for expected  
frequency of 64B66B  
transitions  
Enable k28.5 checking with  
channel register 0x79[3]  
91  
7
6
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
N
N
MIN_K28P5_REQD7  
MIN_K28P5_REQD6  
MIN_K28P5_REQD5  
MIN_K28P5_REQD4  
MIN_K28P5_REQD3  
MIN_K28P5_REQD2  
MIN_K28P5_REQD1  
MIN_K28P5_REQD0  
RESERVED  
See channel register  
0x90[3:0]  
5
4
3
2
1
0
92  
93  
7:0  
7:0  
RESERVED  
Copyright © 2014–2017, Texas Instruments Incorporated  
65  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
7
Mode  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
EEPROM  
Field Name  
DFE_EN  
Description  
94  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
This feature is reserved for  
future use.  
6
DFE_DIS  
This feature is reserved for  
future use.  
5
EOM_EN  
This feature is reserved for  
future use.  
4
EOM_DIS  
DRV_EN  
This feature is reserved for  
future use.  
3
This feature is reserved for  
future use.  
2
DRV_DIS  
This feature is reserved for  
future use.  
1
PEAK_DET_EN  
PEAK_DET_DIS  
SD_EN  
This feature is reserved for  
future use.  
0
This feature is reserved for  
future use.  
95  
7
This feature is reserved for  
future use.  
6
SD_DIS  
This feature is reserved for  
future use.  
5
DC_OFF_EN  
DC_OFF_DIS  
EQ_EN  
This feature is reserved for  
future use.  
4
This feature is reserved for  
future use.  
3
This feature is reserved for  
future use.  
2
EQ_DIS  
This feature is reserved for  
future use.  
1
COMP_EN  
COMP_DIS  
This feature is reserved for  
future use.  
0
This feature is reserved for  
future use.  
66  
Copyright © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
Address  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Bits  
Mode  
EEPROM  
Field Name  
Description  
(Hex)  
96  
7
6
5
0
0
0
RW  
RW  
RW  
N
N
Y
RESERVED  
RESERVED  
XPNT_SLAVE  
Always configure this bit to be  
master. Master control is  
assigned by mux selection  
1: Channel is a slave  
0: Channel is a master  
(recommended)  
4
0
RW  
Y
XPNT_EN  
1: Cross Point is enabled  
0: Cross Point is disabled  
3
2
0
1
RW  
RW  
Y
Y
EQ_BUFFER_EN[1]  
EQ_BUFFER_EN[0]  
Enable EQ output buffers:  
00: Neither buffer in ON (not  
recommended)  
01: Only local buffer is ON  
10: Only multi-drive buffer is  
ON  
11: Both buffers are ON  
1
0
0
0
RW  
RW  
Y
Y
EQ_DATA_MUX_IN[1]  
EQ_DATA_MUX_IN[0]  
Select EQ data and signal  
detect bus from one channel:  
00: channel A  
01: Channel B  
10: Channel C  
11: Channel D  
Channel A = 0,4,8,12  
Channel B = 1,5,9,13  
Channel C = 2,6,10,14  
Channel D = 3,7,11,15  
97  
7
6
0
W
W
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
PRBS_FIXED15  
PRBS_FIXED14  
PRBS_FIXED13  
PRBS_FIXED12  
PRBS_FIXED11  
PRBS_FIXED10  
PRBS_FIXED9  
PRBS_FIXED8  
RESERVED  
Pattern generator user  
defined pattern MSB. LSB  
located at channel register  
0x7C.  
0
5
0
W
4
0
W
3
0
W
2
0
W
1
0
W
0
0
W
98  
99  
7:6  
5:0  
7
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x0C0  
RESERVED  
0
0
1
1
1
1
1
1
DIVSEL_START1_OV  
DIVSEL_STOP1_OV  
DIVSEL_START2  
DIVSEL_START1  
DIVSEL_START0  
DIVSEL_STOP2  
DIVSEL_STOP1  
DIVSEL_STOP0  
This feature is reserved for  
future use.  
6
5
This feature is reserved for  
future use.  
4
3
2
This feature is reserved for  
future use.  
1
0
Copyright © 2014–2017, Texas Instruments Incorporated  
67  
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Table 17. Channel Registers, 5A to 9B (continued)  
Default  
Value  
(Hex)  
Address  
(Hex)  
Bits  
7
Mode  
RW  
EEPROM  
Field Name  
Description  
9A  
0
Y
Y
DIVSEL_START0_OV  
DIVSEL_STOP0_OV  
This feature is reserved for  
future use.  
6
0
RW  
This feature is reserved for  
future use.  
5
4
1
1
1
1
1
1
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
DIVSEL_START0[2]  
DIVSEL_START0[1]  
DIVSEL_START0[0]  
DIVSEL_STOP0[2]  
DIVSEL_STOP0[1]  
DIVSEL_STOP0[0]  
RESERVED  
This feature is reserved for  
future use.  
3
2
This feature is reserved for  
future use.  
1
0
9B  
7:3  
2
RESERVED  
1
EQ_CTRL_MUX_IN[1]  
EQ_CTRL_MUX_IN[0]  
Select EQ control bus from  
one channel:  
00: channel A  
0
01: Channel B  
10: Channel C  
11: Channel D  
Channel A = 0,4,8,12  
Channel B = 1,5,9,13  
Channel C = 2,6,10,14  
Channel D = 3,7,11,15  
68  
版权 © 2014–2017, Texas Instruments Incorporated  
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DS125DF1610 is a 16 channel retimer that support many different data rates and application spaces. The  
following sections describe the typical use cases and common implementation practices.  
5. DS125DF1610 Example Application  
版权 © 2014–2017, Texas Instruments Incorporated  
69  
 
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.2 Typical Applications  
5 shows a typical implementation for the DS125DF1610 in a back plane application. The DS125DF1610 can  
also be used for front port applications. The DS125DF1610 supports data rates for CPRI, Infiniband, Ethernet,  
Interlaken and other custom data rates.  
6 and 7 show a typical application of the DS125DF1610. In these diagrams, the DS125DF1610 is  
configured for SMBus slave mode programming. Power is supplied to the device through a single 2.5 V plane.  
The power supply filtering shown in these diagrams may need to be adjusted to accommodate additional system  
power noise. The SMBus and LVCMOS signals in this example use 2.5 V logic. A differential reference clock for  
the digital block is applied to the device through 1 µF AC-coupling capacitors. In this example, the high speed  
signals are connected to the device in groups of four to allow for the system designer to make use of the 4x4  
cross point switches. Note that since the device contains AC-coupling capacitors on the high speed receiver  
inputs, the signals can be directly connected to the device. The transmitter outputs of this device should connect  
to AC-coupling capacitors placed near the receive inputs of the receiving ASIC.  
2.5V  
TMS_IO  
TDO_IO  
TRST_IO  
TCK_IO  
TDI_IO  
VDD  
C2  
C2  
C2  
C1  
C2  
C2  
C2  
C2  
GND  
5{12ꢀ5C1610  
tower and /onꢁrol  
tin /onnecꢁions  
2.5V  
2.5V  
R2  
R3  
R1  
ADDR0  
ADDR1  
INTERR_IO  
Populate as needed to set  
desired SMBus address  
R2  
R3  
ALL_DONE  
RESET_IO  
READ_EN  
EN_SMB  
R2  
R2  
C3  
C3  
REF_CLK_P  
REF_CLK_N  
2.5V  
CLK_MON_P  
CLK_MON_N  
R1  
R1  
SDA_IO  
SCL_IO  
R1 = 4.7 kW  
R2 = 1 kW  
R3 = 1 kW or 20 kW  
C1 = 22 mF  
C2 = 0.1 mF  
C3 = 1 mF  
6. Typical Connection Diagram: Power and Control Pins  
70  
版权 © 2014–2017, Texas Instruments Incorporated  
 
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
Typical Applications (接下页)  
5{12ꢀ5C1610 Iigh  
{peed /onnections  
RX_0A  
RX_0B  
TX_0A  
TX_0B  
Quad 0  
Cross Point Switch  
RX_1A  
RX_1B  
TX_1A  
TX_1B  
Quad 1  
Cross Point Switch  
RX_2A  
RX_2B  
TX_2A  
TX_2B  
RX_3A  
RX_3B  
TX_3A  
TX_3B  
RX_4A  
RX_4B  
TX_4A  
TX_4B  
Quad 2  
Cross Point Switch  
RX_5A  
RX_5B  
TX_5A  
TX_5B  
RX_6A  
RX_6B  
TX_6A  
TX_6B  
Quad 3  
Cross Point Switch  
RX_7A  
RX_7B  
TX_7A  
TX_7B  
7. Typical Connection Diagram: High Speed Signals  
8.2.1 Design Requirements  
This section lists some critical areas for high speed printed circuit board design consideration and study.  
Utilize 100Ω differential impedance traces.  
Back-drill connector vias and signal vias to minimize stub length.  
Use reference plane vias to ensure a low inductance path for the return current.  
Place AC-Coupling capacitors for the transmitter links near the receiver for that channel.  
The maximum body size for AC-coupling capacitors is 0402.  
8.2.2 Detailed Design Procedure  
To begin the design process determine the following:  
Maximum power draw for PCB regulator selection. For this calculation use the CDR locking power number  
版权 © 2014–2017, Texas Instruments Incorporated  
71  
 
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
Typical Applications (接下页)  
specified in the datasheet, multiplied by the number of channels allowed to lock at a time by the lock  
sequencer. Then add the static power. The lock sequencer defaults to 8 channels allowed to lock at a time.  
To ease the peak power draw, the lock sequencer can be set to allow for only 1 channel to lock at a time.  
The lock time for each channel is typically very short, so this power calculation should not be used for the  
thermal simulations of the PCB.  
Maximum operational power for thermal calculations. For this calculation use the CDR locked power numbers  
specified in the datasheet, multiplied by the number of channels that will be active in the device. Then add the  
static power. If it is desired to use the Pattern Generator or PRBS checker, add these powers per channel.  
Note that a channel's PRBS Checker and Pattern Generator cannot both be active at the same time. So the  
total count of active PRBS Checkers and Pattern Generators should not be more than 16 per device.  
Select a reference clock frequency and routing scheme.  
Plan out channel connectivity. Be sure to note any desired cross point routing in the board schematics.  
Ensure that each device has a unique SMBus address if the control bus is shared with other devices or  
components.  
Use the IBIS-AMI model for simple channel simulations before PCB layout is complete.  
Compare schematic against the typical connection diagrams in the datasheet, 6 and 7  
8.2.3 Typical Application Performance Plots  
9. FIR Transmit Equalization Example, 10.3125Gbps  
8. Typical Transmit Eye Diagram, 10.3125 Gbps  
8 shows a typical output eye diagram for the DS125DF1610 operating at 10.3125 Gbps with the 1VPP VOD  
settings. All other device settings are left at default.  
9 shows an example of FIR transmit equalization for a DS125DF1610 operating at 10.3125 Gbps. In this  
example, the high speed output is configured for 1VPP VOD. The FIR filter is then further adjusted such that the  
pre cursor tap is set to -5, the main cursor tap is set to +42, and the post cursor tap is set to -10. An 8T pattern is  
used to evaluate the FIR filter, which consists of 0xFF00. All other device settings are left at default.  
72  
版权 © 2014–2017, Texas Instruments Incorporated  
 
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
8.3 Initialization Setup  
The typical device initialization sequence for a DS125DF1610 includes the following:  
Shared Register Configurations:  
Reference Clock Divider Setting (default is 25MHz)  
Lock Sequencer Configuration (default is 8 channels allowed lock concurrently)  
Channel Register Configurations repeated for all desired channels:  
CDR reset  
Adapt Mode Configuration  
Data rate selection  
Output driver VOD and FIR configuration  
Optional Continuous DFE adaption configuration  
Optional Interrupt enable  
Optional Reference clock loop through enable  
Optional Cross point switch configuration  
CDR reset release  
8.3.1 Data Rate Selection (Rate/Sub-Rate Table)  
The data rates for the DS125DF1610 must be known and programmed into each desired channel. The  
DS125DF1610 will only lock to programmed data rates and the programmed divider settings. For ease of use  
several common data rates have been preprogrammed into the DS125DF1610 along with the associated sub-  
rates for those various standards. These rate/sub-rate settings comprise the Rate/Sub-rate 18. Note that each  
channel operates independently, so different channels in the DS125DF1610 can operate at different data rates at  
the same time.  
The Rate/Sub-rate 18 for the DS125DF1610 shown below includes all of the available preprogrammed data  
rates and associated divider groupings.  
18. Rate/Sub-Rate Options  
CHANNEL REGISTER  
0x2F[7:4] SETTING  
FIRST GROUP DIVIDER  
SETTINGS  
SECOND GROUP  
DIVIDER SETTINGS  
STANDARD  
DATA RATES (Gbps)  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
Custom  
Interlaken  
CPRI 1  
11.5  
12.5, 6.25, 3.125  
9.8304, 4.9152, 2.4576  
6.144, 3.072  
1
1
1, 2, 4  
1, 2, 4  
2, 4  
1, 2, 4  
1, 2, 4  
2, 4  
CPRI 2  
Infiniband  
Ethernet  
10, 5, 2.5  
1, 2, 4  
8
1, 2, 4  
1
10.3125, 1.25  
8.3.2 Data Rate Selection (Manual Programming)  
The DS125DF1610 is capable of supporting any data rate within the specified range of 9.8 Gbps to 12.5 Gbps  
including the divide by 2, 4, and 8 sub-rates of this range. If it is desired to operate the DS125DF1610 at a data  
rate or data rate and sub-rate combination that is not available in the Rate/Sub-rate 18, then these desired  
data rates can be programmed into the device manually.  
版权 © 2014–2017, Texas Instruments Incorporated  
73  
 
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
The following procedure describes how to calculate and manually program data rates into the DS125DF1610.  
1. Select a divider grouping from the Rate/Sub-rate Table and program that value to channel register 0x2F.  
When manually programming the data rate into the device, other rate/sub-rate values may be used to allow  
for different divider and group combinations. A list of all preprogrammed divider, group combinations is  
shown in the 19 below.  
19. Divider Options  
CHANNEL REGISTER  
0x2F[7:4] SETTING  
FIRST GROUP DIVIDER SETTINGS  
SECOND GROUP DIVIDER SETTINGS  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
2, 4  
1
2, 4  
1
1, 2, 4  
1, 2, 4  
1
1, 2, 4  
1, 2, 4  
1
1
1
1
1
1, 2, 4  
1, 2, 4  
2, 4  
1, 2, 4  
8
1, 2, 4  
1, 2, 4  
2, 4  
1, 2, 4  
1
8
1
1, 2, 4  
1
1
1
1, 2  
1, 2  
2. Calculate the first group settings:  
20. Manual Data Rate Configuration -- 1STGroup Instructions  
PARAMETER  
VALUE/EQUATION  
F0 = 25e6  
COMMENT  
Reference Clock  
Internally the reference clock always operates at 25 MHz  
F1 is the frequency of the VC0 which is equal to the  
desired data rate. If the desired data rate uses dividers, be  
sure to multiply the data rate by the divide setting to get  
the correct VCO frequency  
Desired VCO Frequency  
F1  
Number of Reference Clocks  
VCO Freq ÷ 32  
N = 1024  
F2 = F1 ÷ 32  
F3 = F2 x N ÷ F0  
Counts of VCO Freq ÷ 32 required  
Round F3 to the nearest integer value. Convert this value  
to binary. Program the upper 8 bits to ch register 0x61 and  
the lower 8 bits to ch register 0x60. Be sure to set channel  
register 0x61[7] to 1 to enable the override function for  
manual programming.  
Counts of VCO Freq ÷ 32 required rounded F4  
PPM error due to rounding  
Required PPM tolerance  
Err = 1e6 x (F4 – F3) ÷ F3  
T
Enter the desired PPM tolerance  
VCO Freq ÷ 32 +PPM tolerance  
F5 = (1+ T÷1e6) * F2  
Rounded Counts of the VCO Freq ÷ 32  
+PPM tolerance required  
F6 = F5 x N ÷ F0  
Round F6 to the nearest integer value  
Convert this value to binary. Program the most significant  
bit channel register 0x67[7] and the rest of the bits to  
channel register 0x64[7:4]  
PPM Counts delta  
F7 = F6 – F3  
74  
版权 © 2014–2017, Texas Instruments Incorporated  
 
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
3. Calculate the second group settings:  
21. Manual Data Rate Configuration -- 2ndGroup Instructions  
PARAMETER  
VALUE/EQUATION  
F0 = 25e6  
COMMENT  
Reference Clock  
Internally the reference clock always operates at 25 MHz  
F1 is the frequency of the VC0 which is equal to the  
desired data rate. If the desired data rate uses dividers, be  
sure to multiply the data rate by the divide setting to get  
the correct VCO frequency  
Desired VCO Frequency  
F1  
Number of Reference Clocks  
VCO Freq ÷ 32  
N = 1024  
F2 = F1 ÷ 32  
F3 = F2 x N ÷ F0  
Counts of VCO Freq ÷ 32 required  
Round F3 to the nearest integer value. Convert this value  
to binary. Program the upper 8 bits to ch register 0x63 and  
the lower 8 bits to ch register 0x62. Be sure to set channel  
register 0x63[7] to 1 to enable the override function for  
manual programming.  
Counts of VCO Freq ÷ 32 required rounded F4  
PPM error due to rounding  
Required PPM tolerance  
Err = 1e6 x (F4 – F3) ÷ F3  
T
Enter the desired PPM tolerance  
VCO Freq ÷ 32 +PPM tolerance  
F5 = (1+ T÷1e6) * F2  
Rounded Counts of the VCO Freq ÷ 32  
+PPM tolerance required  
F6 = F5 x N ÷ F0  
Round F6 to the nearest integer value  
Convert this value to binary. Program the most significant  
bit channel register 0x67[6] and the rest of the bits to  
channel register 0x64[3:0]  
PPM Counts delta  
F7 = F6 – F3  
An example for setting group 0 and group 1 to 11.3 Gbps is shown in the 22 below.  
22. Manual Data Rate Configuration Example  
CHANNEL REGISTER (HEX)  
VALUE  
0x80  
0x60  
0x61  
0xB8  
0x80  
0x62  
0x63  
0xB8  
0xEE  
2'b00  
0x64  
0x67[7:6]  
9 Power Supply Recommendations  
9.1 Power Supply Filtering  
The power pins on the DS125DF1610 are all internally shorted together on the BGA substrate. This allows board  
designers to more easily distribute the bypass capacitors for power supply filtering.  
Power supply filtering typically consists of a bulk 22 µF capacitor with an array of 0.1 µF capacitors all placed  
near the device. Additional bypass capacitors or capacitors of different values may be required depending on  
system conditions. An example array of power supply filtering capacitors is shown in 6.  
10 Layout  
10.1 Layout Guidelines  
The high speed inputs and outputs have been optimized to work with interconnects using a controlled differential  
impedance of 100Ω. Vias should be used sparingly and must be placed symmetrically for each side of a given  
differential pair. Whenever differential vias are used the layout must also provide for a low inductance path for  
the return currents as well. Route the differential signals away from other signals and noise sources on the  
printed circuit board.  
版权 © 2014–2017, Texas Instruments Incorporated  
75  
 
DS125DF1610  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
www.ti.com.cn  
10.2 Layout Example  
Common BGA routing techniques such as trace necking, using blind vias and buried vias, are OK as long as the  
differential traces are balanced in their routing and the signals see few impedance changes. For example,  
necking lengths should be the same for the differential traces and implemented symmetrically for both traces. 图  
10 shows general Dos and Don'ts for high speed layout, such as differential trace gathering, differential trace  
necking, and high speed signal and return via implementation.  
Do:  
Don‘t  
10. Layout Guidelines  
76  
版权 © 2014–2017, Texas Instruments Incorporated  
 
DS125DF1610  
www.ti.com.cn  
ZHCSCD5B APRIL 2014REVISED JANUARY 2017  
11 器件和文档支持  
11.1 器件支持  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可收到任意产  
品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械封装、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据发生变化时,  
我们可能不会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
版权 © 2014–2017, Texas Instruments Incorporated  
77  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
126  
126  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS125DF1610FB/NOPB  
DS125DF1610FBE/NOPB  
ACTIVE  
FCBGA  
FCBGA  
ABB  
196  
196  
RoHS & Green  
RoHS & Green  
SNAGCU  
Level-4-245C-72 HR  
Level-4-245C-72 HR  
-40 to 85  
-40 to 85  
DS125  
DF1610  
ACTIVE  
ABB  
SNAGCU  
DS125  
DF1610  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
DS125DF1610FB/NOPB  
ABB  
ABB  
FCBGA  
FCBGA  
196  
196  
126  
126  
18 X 7  
18 X 7  
150  
150  
322.6 135.9 7620 17.2  
322.6 135.9 7620 17.2  
11.3 16.32  
11.3 16.32  
DS125DF1610FBE/  
NOPB  
Pack Materials-Page 1  
PACKAGE OUTLINE  
ABB0196A  
FCBGA - 2.94 mm max height  
SCALE 0.900  
BALL GRID ARRAY  
15.2  
14.9  
A
B
BALL A1 CORNER  
PIN 1 ID  
(OPTIONAL)  
(
11)  
15.2  
14.9  
(
9)  
C
2.94 MAX  
SEATING PLANE  
0.2 C  
0.6  
BALL TYP  
TYP  
0.4  
13 TYP  
(1) TYP  
(1) TYP  
SYMM  
1
TYP  
P
N
M
L
K
J
SYMM  
13  
H
G
F
TYP  
E
D
C
B
A
0.7  
0.5  
C A B  
196X  
0.25  
0.1  
C
1
2
3
4
5
6
7
8
9 10  
11 12 13 14  
1
TYP  
4218164/A 05/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Pb-Free die bump and solder ball.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ABB0196A  
FCBGA - 2.94 mm max height  
BALL GRID ARRAY  
(1) TYP  
1
2
3
4
5
6
7
8
9
10 11 12 13  
14  
A
B
C
(1) TYP  
196X ( 0.45)  
D
E
F
G
H
SYMM  
J
K
L
M
N
P
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SNOWN  
SCALE:6X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.45)  
METAL  
EXPOSED METAL  
(
0.45)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4218164/A 05/2017  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ABB0196A  
FCBGA - 2.94 mm max height  
BALL GRID ARRAY  
(1) TYP  
1
2
3
4
5
6
7
8
9
10 11 12 13  
14  
A
B
C
(1) TYP  
D
E
F
196X ( 0.45)  
SYMM  
G
H
J
K
L
M
N
P
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE:6X  
4218164/A 05/2017  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DS125DF1610FB/NOPB

9.8 至 12.5Gbps 16 通道重定时器 | ABB | 196 | -40 to 85
TI

DS125DF1610FBE/NOPB

9.8 至 12.5Gbps 16 通道重定时器 | ABB | 196 | -40 to 85
TI

DS125DF410

Low Power Multi-Rate Quad Channel Retimer
TI

DS125DF410SQ/NOPB

DS125DF410 Low Power Multi-Rate Quad Channel Retimer
TI

DS125DF410SQE/NOPB

DS125DF410 Low Power Multi-Rate Quad Channel Retimer
TI

DS125DF410_13

DS125DF410 Low Power Multi-Rate Quad Channel Retimer
TI

DS125DF410_14

Low Power Multi-Rate Quad Channel Retimer
TI

DS125MB203

Low-Power 12.5-Gbps Dual-Lane 2:1/1:2 Mux/Buffer With Equalization and De-Emphasis
TI

DS125MB203SQ

Low-Power 12.5-Gbps Dual-Lane 2:1/1:2 Mux/Buffer With Equalization and De-Emphasis
TI

DS125MB203SQ/NOPB

12.5Gbps 双端口多路复用器和扇出缓冲器 | NJY | 54 | -40 to 85
TI

DS125MB203SQE

Low-Power 12.5-Gbps Dual-Lane 2:1/1:2 Mux/Buffer With Equalization and De-Emphasis
TI

DS125MB203SQE/NOPB

12.5Gbps 双端口多路复用器和扇出缓冲器 | NJY | 54 | -40 to 85
TI