DS160PR1601ZDGR [TI]

PCIe® 4.0 16-Gbps 16-Lane linear redriver | ZDG | 354 | -40 to 85;
DS160PR1601ZDGR
型号: DS160PR1601ZDGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

PCIe® 4.0 16-Gbps 16-Lane linear redriver | ZDG | 354 | -40 to 85

PC
文件: 总39页 (文件大小:2423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
DS160PR1601 16Gbps 16 通道线性转接驱动器  
1 特性  
3 说明  
• 支PCIe 4.0 UPI 2.0 16 通道线性转接驱动  
• 支持高16Gbps 的数据速率  
Intel 重定时器通用封装引脚对引脚兼容  
• 封装TX 引脚上64 个集成交流耦合电容器可  
节省布板空间  
CTLE 8GHz 时提16dB  
• 模EyeScan 以帮助转接驱动器进行调谐、调试和  
远程监控  
DS160PR1601 是一款 32 通道每个方向 16 通道)  
x1616 通道低功耗高性能线性中继器或转接驱动  
设计用于支持 PCIe 4.0UPI 2.0 和其他接口最  
高可支16Gbps 的传输速率。  
DS160PR1601 收器部署了连续时间线性均衡器  
(CTLE)用以提供可编程高频增强功能。均衡器可以  
打开由于 PCB 布线等互连介质引起的码间串扰 (ISI)  
而完全关闭的输入眼图。CTLE 接收器后跟一个线性输  
出驱动器。DS160PR1601 的线性数据路径保留了发射  
预设信号特性。线性转接驱动器成为无源通道的一部  
该通道作为一个整体进行链路训练可获得更优发  
送和接收均衡设置。对这种链路训练协议进行透明管理  
可实现更优的电气链路和尽可能低的延迟。该器件具有  
低通道间串扰、低附加抖动和超低的回波损耗因此在  
链路中几乎可用作无源元件而又具有均衡功能。  
130 ps 的超低延迟  
PRBS 数据100 fs 低附加随机抖动  
8GHz 时具13dB 的超RX/TX 回波损耗  
3.3V 单电源  
160mW/通道的低有功功率  
I2C/SMBus EEPROM 编程  
• 针PCIe 用例的自动接收器检测  
• 无缝支PCIe 链路训练  
封装信息(1)  
封装尺寸标称值)  
器件型号  
封装  
• 内部稳压器具有抗电源噪声能力  
• 高速量产测试可确保制造可靠性  
• 支x4x8x16 总线宽度  
8.90mm × 22.80mm BGA 封装  
DS160PR1601  
22.89 mm x 8.90 mm  
ZDGnfBGA354)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
.
.
机架式服务器微服务器和塔式服务器  
高性能计算  
硬件加速器  
网络连接存储  
存储区域网(SAN) 和主机总线适配(HBA) 卡  
网络接口(NIC)  
台式计算机或主板  
x16  
PR1601  
16 Tx Ch  
PCIe x16 Network Interface Card  
PCIe  
X16  
x16  
CPU  
Riser Card  
Root  
Complex  
End  
Point  
Connector  
CPU  
x16  
16 Rx Ch  
Server Motherboard  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNLS732  
 
 
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
Table of Contents  
7.3 Control and Configuration Interface..........................22  
7.4 Feature Description...................................................25  
7.5 Device Functional Modes..........................................26  
8 Application and Implementation..................................27  
8.1 Application Information............................................. 27  
8.2 Typical Applications.................................................. 27  
8.3 Power Supply Recommendations.............................31  
8.4 Layout....................................................................... 31  
9 Device and Documentation Support............................33  
9.1 Documentation Support............................................ 33  
9.2 接收文档更新通知..................................................... 33  
9.3 支持资源....................................................................33  
9.4 Trademarks...............................................................33  
9.5 静电放电警告............................................................ 33  
9.6 术语表....................................................................... 33  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications................................................................ 15  
6.1 Absolute Maximum Ratings...................................... 15  
6.2 ESD and Latchup Ratings.........................................15  
6.3 Recommended Operating Conditions.......................15  
6.4 Thermal Information..................................................16  
6.5 DC Electrical Characteristics.................................... 16  
6.6 High Speed Electrical Characteristics.......................17  
6.7 SMBUS/I2C Timing Charateristics............................18  
6.8 Typical Characteristics..............................................20  
6.9 Typical Jitter Characteristics..................................... 20  
7 Detailed Description......................................................21  
7.1 Overview...................................................................21  
7.2 Functional Block Diagram.........................................21  
Information.................................................................... 33  
4 Revision History  
DATE  
REVISION  
NOTES  
February 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DS160PR1601  
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
5-1. ZDG Package, 354-Pin BGA (Top View 1/3)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DS160PR1601  
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
5-2. ZDG Package, 354-Pin BGA (Top View 2/3)  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DS160PR1601  
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
5-3. ZDG Package 354-Pin BGA Top View 3/3  
Legend  
Ground  
Power  
IOs, RSVD /NC  
Differential Input  
Differential Output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DS160PR1601  
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
A1  
NAME  
N/C  
No internal connection.  
A35  
B12  
B16  
B19  
B23  
N/C  
No internal connection.  
RSVD8  
RSVD7  
GND  
Reserved for future use. No internal connection.  
Reserved for future use. No internal connection.  
Ground  
Ground  
Input  
A_ADDR0_7-0  
5-level input strap pins as defined in 7-2. Sets SMBus/I2C secondary address  
according to 7-1 and 7-3.  
B25  
B28  
B_ADDR0_7-0  
SDA  
Input  
5-level input strap pins as defined in 7-2. Sets SMBus/I2C secondary address  
according to 7-1 and 7-3.  
Input /Output  
3.3 V SMBus/I2C data IO pin SDA. External 1 kto 5 kpullup resistor is required as  
per SMBus / I2C interface standard. The device can alter between SMBus/I2C  
primary and secondary mode through exercising MODE pin.  
B3  
RSVD11  
SCL  
Reserved for future use. No internal connection.  
B31  
Input /Output  
3.3 V SMBus/I2C clock IO pin SCL. External 1 kto 5 kpullup resistor is required  
as per SMBus / I2C interface standard. The device can alter between SMBus/I2C  
primary and secondary mode through exercising MODE pin.  
B6  
RSVD10  
RSVD9  
N/C  
Reserved for future use. No internal connection.  
Reserved for future use. No internal connection.  
No internal connection.  
B9  
C2  
C34  
D1  
N/C  
No internal connection.  
N/C  
No internal connection.  
D35  
E11  
E14  
E18  
E27  
E30  
E33  
E8  
N/C  
No internal connection.  
RSVD13  
GND  
Reserved for future use. No internal connection.  
Ground  
Ground  
RSVD14  
GND  
Reserved for future use. No internal connection.  
Ground  
Ground  
Ground  
Ground  
GND  
Ground  
GND  
Ground  
RSVD12  
RSVD3  
B_ADDR1_7-0  
Reserved for future use. No internal connection.  
Reserved for future use. No internal connection.  
F2  
F34  
Input  
5-level input strap pins as defined in 7-2. Sets SMBus/I2C secondary address  
according to 7-1 and 7-3.  
G1  
A_ADDR1_7-0  
Input  
5-level input strap pins as defined in 7-2. Sets SMBus/I2C secondary address  
according to 7-1 and 7-3.  
G35  
H12  
H16  
H19  
H31  
J22  
J4  
RSVD4  
GND  
Reserved for future use. No internal connection.  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Diff Output  
Ground  
GND  
Ground  
GND  
Ground  
GND  
Ground  
GND  
Ground  
GND  
Ground  
K2  
GND  
Ground  
K34  
L1  
GND  
Ground  
GND  
Ground  
L35  
M26  
GND  
Ground  
A_PETp0  
Differential transmit signal, channel A, lane 0, positive  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DS160PR1601  
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
PIN  
5-1. Pin Functions (continued)  
TYPE  
DESCRIPTION  
NO.  
NAME  
M7  
B_PETn0  
A_PERp0  
B_PERn0  
B_PETp0  
A_PETn0  
A_PERn0  
B_PERp0  
GND  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Ground  
Differential transmit signal, channel B, lane 0, negative  
N2  
Differential receive signal, channel A, lane 0, positive  
N34  
P10  
Differential receive signal, channel B, lane 0, negative  
Differential transmit signal, channel B, lane 0, positive  
P29  
Differential transmit signal, channel A, lane 0, negative  
R1  
Differential receive signal, channel A, lane 0, negative  
R35  
T13  
Differential receive signal, channel B, lane 0, positive  
Ground  
T17  
VCC1  
Power  
3.3 V Supply Voltage  
T20  
VCC1  
Power  
3.3 V Supply Voltage  
T22  
GND  
Ground  
Ground  
T32  
GND  
Ground  
Ground  
T4  
GND  
Ground  
Ground  
U2  
GND  
Ground  
Ground  
U34  
V1  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
V35  
GND  
Ground  
Ground  
W26  
W7  
A_PETp1  
B_PETn1  
A_PERp1  
B_PERn1  
B_PETp1  
A_PETn1  
A_PERn1  
B_PERp1  
GND  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Ground  
Differential transmit signal, channel A, lane 1, positive  
Differential transmit signal, channel B, lane 1, negative  
Differential receive signal, channel A, lane 1, positive  
Differential receive signal, channel B, lane 1, negative  
Differential transmit signal, channel B, lane 1, positive  
Differential transmit signal, channel B, lane 1, negative  
Differential receive signal, channel A, lane 1, negative  
Differential receive signal, channel B, lane 1, positive  
Ground  
Y2  
Y34  
AA10  
AA29  
AB1  
AB35  
AC13  
AC17  
AC20  
AC22  
AC32  
AC4  
AD2  
AD34  
AE1  
AE35  
AF26  
AF7  
AG2  
AG34  
AH10  
AH29  
AJ1  
VCC1  
Power  
3.3 V Supply Voltage  
VCC1  
Power  
3.3 V Supply Voltage  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
A_PETp2  
B_PETn2  
A_PERn2  
B_PERp2  
B_PETp2  
A_PETn2  
A_PERp2  
B_PERn2  
GND  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Ground  
Differential transmit signal, channel A, lane 2, positive  
Differential transmit signal, channel B, lane 2, negative  
Differential receive signal, channel A, lane 2, negative  
Differential receive signal, channel B, lane 2, positive  
Differential transmit signal, channel B, lane 2, positive  
Differential transmit signal, channel A, lane 2, negative  
Differential receive signal, channel A, lane 2, positive  
Differential receive signal, channel B, lane 2, negative  
Ground  
AJ35  
AK13  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DS160PR1601  
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
VCC1  
AK17  
AK20  
AK22  
AK32  
AK4  
Power  
3.3 V Supply Voltage  
3.3 V Supply Voltage  
Ground  
VCC1  
Power  
GND  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
GND  
Ground  
GND  
Ground  
AL2  
GND  
Ground  
AL34  
AM1  
GND  
Ground  
GND  
Ground  
AM35  
AN26  
AN7  
GND  
Ground  
A_PETp3  
B_PETn3  
A_PERn3  
B_PERp3  
B_PETp3  
A_PETn3  
A_PERp3  
B_PERn3  
GND  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Ground  
Differential transmit signal, channel A, lane 3, positive  
Differential transmit signal, channel B, lane 3, negative  
AP2  
Differential receive signal, channel A, lane 3, negative  
AP34  
AR10  
AR29  
AT1  
Differential receive signal, channel B, lane 3, positive  
Differential transmit signal, channel B, lane 3, positive  
Differential transmit signal, channel A, lane 3, negative  
Differential receive signal, channel A, lane 3, positive  
AT35  
AU13  
AU17  
AU20  
AU22  
AU32  
AU4  
Differential receive signal, channel B, lane 3, negative  
Ground  
VCC1  
Power  
3.3 V Supply Voltage  
VCC2  
Power  
3.3 V Supply Voltage  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
AV2  
GND  
Ground  
Ground  
AV34  
AW1  
AW35  
AY26  
AY7  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
A_PETp4  
B_PETn4  
A_PERp4  
B_PERn4  
B_PETp4  
A_PETn4  
A_PERn4  
B_PERp4  
GND  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Ground  
Differential transmit signal, channel A, lane 4, positive  
Differential transmit signal, channel B, lane 4, negative  
BA2  
Differential receive signal, channel A, lane 4, positive  
BA34  
BB10  
BB29  
BC1  
Differential receive signal, channel B, lane 4, negative  
Differential transmit signal, channel B, lane 4, positive  
Differential transmit signal, channel A, lane 4, negative  
Differential receive signal, channel A, lane 4, negative  
BC35  
BD13  
BD17  
BD20  
BD22  
BD32  
BD4  
Differential receive signal, channel B, lane 4, positive  
Ground  
VCC2  
Power  
3.3 V Supply Voltage  
3.3 V Supply Voltage  
Ground  
VCC2  
Power  
GND  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
BE2  
GND  
Ground  
Ground  
BE34  
BF1  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DS160PR1601  
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
PIN  
5-1. Pin Functions (continued)  
TYPE  
DESCRIPTION  
NO.  
NAME  
BF35  
BG26  
BG7  
GND  
Ground  
Ground  
A_PETp5  
B_PETn5  
A_PERp5  
B_PERn5  
B_PETp5  
A_PETn5  
A_PERn5  
B_PERp5  
GND  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Ground  
Differential transmit signal, channel A, lane 5, positive  
Differential transmit signal, channel B, lane 5, negative  
BH2  
Differential receive signal, channel A, lane 5, positive  
BH34  
BJ10  
BJ29  
BK1  
Differential receive signal, channel B, lane 5, negative  
Differential transmit signal, channel B, lane 5, positive  
Differential transmit signal, channel A, lane 5, negative  
Differential receive signal, channel A, lane 5, negative  
BK35  
BL13  
BL17  
BL20  
BL22  
BL32  
BL4  
Differential receive signal, channel B, lane 5, positive  
Ground  
VCC2  
Power  
3.3 V Supply Voltage  
VCC2  
Power  
3.3 V Supply Voltage  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
BM2  
GND  
Ground  
Ground  
BM34  
BN1  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
BN35  
BP26  
BP7  
GND  
Ground  
Ground  
A_PETp6  
B_PETn6  
A_PERn6  
B_PERp6  
B_PETp6  
A_PETn6  
A_PERp6  
B_PERn6  
GND  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Ground  
Differential transmit signal, channel A, lane 6, positive  
Differential transmit signal, channel B, lane 6, negative  
Differential receive signal, channel A, lane 6, negative  
Differential receive signal, channel B, lane 6, positive  
Differential transmit signal, channel B, lane 6, positive  
Differential transmit signal, channel A, lane 6, negative  
Differential receive signal, channel A, lane 6, positive  
Differential receive signal, channel B, lane 6, negative  
Ground  
BR2  
BR34  
BT10  
BT29  
BU1  
BU35  
BV13  
BV17  
BV20  
BV22  
BV32  
BV4  
VCC2  
Power  
3.3 V Supply Voltage  
VCC2  
Power  
3.3 V Supply Voltage  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
BW2  
BW34  
BY1  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
BY35  
CA26  
CA7  
GND  
Ground  
Ground  
A_PETp7  
B_PETn7  
A_PERn7  
B_PERp7  
B_PETp7  
A_PETn7  
A_PERp7  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Diff Output  
Diff Input  
Differential transmit signal, channel A, lane 7, positive  
Differential transmit signal, channel B, lane 7, negative  
Differential receive signal, channel A, lane 7, negative  
Differential receive signal, channel B, lane 7, positive  
Differential transmit signal, channel B, lane 7, positive  
Differential transmit signal, channel A, lane 7, negative  
Differential receive signal, channel A, lane 7, positive  
CB2  
CB34  
CC10  
CC29  
CD1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DS160PR1601  
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
B_PERn7  
GND  
CD35  
CE13  
CE17  
CE20  
CE22  
CE32  
CE4  
Diff Input  
Ground  
Power  
Differential receive signal, channel B, lane 7, negative  
Ground  
VCC2  
3.3 V Supply Voltage  
3.3 V Supply Voltage  
Ground  
VCC3  
Power  
GND  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
GND  
Ground  
GND  
Ground  
CF2  
GND  
Ground  
CF34  
CG1  
GND  
Ground  
GND  
Ground  
CG35  
CH26  
CH7  
GND  
Ground  
A_PETp8  
B_PETn8  
A_PERp8  
B_PERn8  
B_PETp8  
A_PETn8  
A_PERn8  
B_PERp8  
GND  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Ground  
Differential transmit signal, channel A, lane 8, positive  
Differential transmit signal, channel B, lane 8, negative  
CJ2  
Differential receive signal, channel A, lane 8, positive  
CJ34  
CK10  
CK29  
CL1  
Differential receive signal, channel B, lane 8, negative  
Differential transmit signal, channel B, lane 8, positive  
Differential transmit signal, channel A, lane 8, negative  
Differential receive signal, channel A, lane 8, negative  
CL35  
CM13  
CM17  
CM20  
CM22  
CM32  
CM4  
Differential receive signal, channel B, lane 8, positive  
Ground  
VCC3  
Power  
3.3 V Supply Voltage  
VCC3  
Power  
3.3 V Supply Voltage  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
CN2  
GND  
Ground  
Ground  
CN34  
CP1  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
CP35  
CR26  
CR7  
GND  
Ground  
Ground  
A_PETp9  
B_PETn9  
A_PERp9  
B_PERn9  
B_PETp9  
A_PETn9  
A_PERn9  
B_PERp9  
GND  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Ground  
Differential transmit signal, channel A, lane 9, positive  
Differential transmit signal, channel B, lane 9, negative  
Differential receive signal, channel A, lane 9, positive  
Differential receive signal, channel B, lane 9, negative  
Differential transmit signal, channel B, lane 9, positive  
Differential transmit signal, channel A, lane 9, negative  
Differential receive signal, channel A, lane 9, negative  
Differential receive signal, channel B, lane 9, positive  
Ground  
CT2  
CT34  
CU10  
CU29  
CV1  
CV35  
CW13  
CW17  
CW20  
CW22  
CW32  
CW4  
CY2  
VCC3  
Power  
3.3 V Supply Voltage  
VCC3  
Power  
3.3 V Supply Voltage  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DS160PR1601  
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
PIN  
5-1. Pin Functions (continued)  
TYPE  
DESCRIPTION  
NO.  
NAME  
CY34  
DA1  
GND  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
GND  
DA35  
DB26  
DB7  
GND  
A_PETp10  
B_PETn10  
A_PERn10  
B_PERp10  
B_PETp10  
A_PETn10  
A_PERp10  
B_PERn10  
GND  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Ground  
Differential transmit signal, channel A, lane 10, positive  
Differential transmit signal, channel B, lane 10, negative  
DC2  
Differential receive signal, channel A, lane 10, negative  
DC34  
DD10  
DD29  
DE1  
Differential receive signal, channel B, lane 10, positive  
Differential transmit signal, channel B, lane 10, positive  
Differential transmit signal, channel A, lane 10, negative  
Differential receive signal, channel A, lane 10, positive  
DE35  
DF13  
DF17  
DF20  
DF22  
DF32  
DF4  
Differential receive signal, channel B, lane 10, negative  
Ground  
VCC3  
Power  
3.3 V Supply Voltage  
VCC3  
Power  
3.3 V Supply Voltage  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
DG2  
GND  
Ground  
Ground  
DG34  
DH1  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
DH35  
DJ26  
DJ7  
GND  
Ground  
Ground  
A_PETp11  
B_PETn11  
A_PERn11  
B_PERp11  
B_PETp11  
A_PETn11  
A_PERp11  
B_PERn11  
GND  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Ground  
Differential transmit signal, channel A, lane 11, positive  
Differential transmit signal, channel B, lane 11, negative  
Differential receive signal, channel A, lane 11, negative  
Differential receive signal, channel B, lane 11, positive  
Differential transmit signal, channel B, lane 11, positive  
Differential transmit signal, channel A, lane 11, negative  
Differential receive signal, channel A, lane 11, positive  
Differential receive signal, channel B, lane 11, negative  
Ground  
DK2  
DK34  
DL10  
DL29  
DM1  
DM35  
DN13  
DN17  
DN20  
DN22  
DN32  
DN4  
VCC3  
Power  
3.3 V Supply Voltage  
VCC4  
Power  
3.3 V Supply Voltage  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
DP2  
GND  
Ground  
Ground  
DP34  
DR1  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
DR35  
DT26  
DT7  
GND  
Ground  
Ground  
A_PETp12  
B_PETn12  
A_PERp12  
B_PERn12  
B_PETp12  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Differential transmit signal, channel A, lane 12, positive  
Differential transmit signal, channel B, lane 12, negative  
Differential receive signal, channel A, lane 12, positive  
Differential receive signal, channel B, lane 12, negative  
Differential transmit signal, channel B, lane 12, positive  
DU2  
DU34  
DV10  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DS160PR1601  
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
DV29  
DW1  
DW35  
DY13  
DY17  
DY20  
DY22  
DY32  
DY4  
A_PETn12  
A_PERn12  
B_PERp12  
GND  
Diff Output  
Diff Input  
Diff Input  
Ground  
Differential transmit signal, channel A, lane 12, negative  
Differential receive signal, channel A, lane 12, negative  
Differential receive signal, channel B, lane 12, positive  
Ground  
VCC4  
Power  
3.3 V Supply Voltage  
VCC4  
Power  
3.3 V Supply Voltage  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
EA2  
GND  
Ground  
Ground  
EA34  
EB1  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
EB35  
EC26  
EC7  
GND  
Ground  
Ground  
A_PETp13  
B_PETn13  
A_PERp13  
B_PERn13  
B_PETp13  
A_PETn13  
A_PERn13  
B_PERp13  
GND  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Ground  
Differential transmit signal, channel A, lane 13, positive  
Differential transmit signal, channel B, lane 13, negative  
ED2  
Differential receive signal, channel A, lane 13, positive  
ED34  
EE10  
EE29  
EF1  
Differential receive signal, channel B, lane 13, negative  
Differential transmit signal, channel B, lane 13, positive  
Differential transmit signal, channel A, lane 13, negative  
Differential receive signal, channel A, lane 13, negative  
EF35  
EG13  
EG17  
EG20  
EG22  
EG32  
EG4  
Differential receive signal, channel B, lane 13, positive  
Ground  
VCC4  
Power  
3.3 V Supply Voltage  
VCC4  
Power  
3.3 V Supply Voltage  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
EH2  
GND  
Ground  
Ground  
EH34  
EJ1  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
EJ35  
EK26  
EK7  
GND  
Ground  
Ground  
A_PETp14  
B_PETn14  
A_PERn14  
B_PERp14  
B_PETp14  
A_PETn14  
A_PERp14  
B_PERn14  
GND  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Ground  
Differential transmit signal, channel A, lane 14, positive  
Differential transmit signal, channel B, lane 14, negative  
Differential receive signal, channel A, lane 14, negative  
Differential receive signal, channel B, lane 14, positive  
Differential transmit signal, channel B, lane 14, positive  
Differential transmit signal, channel A, lane 14, negative  
Differential receive signal, channel A, lane 14, positive  
Differential receive signal, channel B, lane 14, negative  
Ground  
EL2  
EL34  
EM10  
EM29  
EN1  
EN35  
EP13  
EP17  
EP20  
EP22  
EP32  
VCC4  
Power  
3.3 V Supply Voltage  
VCC4  
Power  
3.3 V Supply Voltage  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DS160PR1601  
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
PIN  
5-1. Pin Functions (continued)  
TYPE  
DESCRIPTION  
NO.  
NAME  
EP4  
GND  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
ER2  
GND  
ER34  
ET1  
GND  
GND  
ET35  
EU26  
EU7  
GND  
A_PETp15  
B_PETn15  
A_PERn15  
B_PERp15  
B_PETp15  
A_PETn15  
A_PERp15  
B_PERn15  
GND  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Diff Output  
Diff Output  
Diff Input  
Diff Input  
Ground  
Differential transmit signal, channel A, lane 15, positive  
Differential transmit signal, channel B, lane 15, negative  
EV2  
Differential receive signal, channel A, lane 15, positive  
EV34  
EW10  
EW29  
EY1  
Differential receive signal, channel B, lane 15, positive  
Differential transmit signal, channel B, lane 15, negative  
Differential transmit signal, channel A, lane 15, negative  
Differential receive signal, channel A, lane 15, positive  
EY35  
FA15  
FA32  
FB2  
Differential receive signal, channel B, lane 15, negative  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
FB34  
FC19  
FC23  
FC25  
FC28  
FC3  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
GND  
Ground  
Ground  
FC6  
GND  
Ground  
Ground  
FC9  
GND  
Ground  
Ground  
FD1  
GND  
Ground  
Ground  
FD35  
FE2  
GND  
Ground  
Ground  
N/C  
No internal connection.  
FE34  
FF11  
FF14  
FF18  
FF21  
FF24  
N/C  
No internal connection.  
RSVD2  
GND  
Reserved for future use. No internal connection.  
Ground  
Ground  
RSVD6  
GND  
Reserved for future use. No internal connection.  
Ground  
Ground  
Input  
MODE  
5-level input strap pin. Sets device control configuration modes. The pin can be  
exercised at device power up or in normal operation mode.  
L1: SMBus/I2C Primary Mode - device control configuration is read from external  
EEPROM. When the device has finished reading from the EEPROM successfully, it  
will drive the ALL_DONE_N pin LOW. SMBus/I2C secondary operation is available in  
this mode before, during or after EEPROM reading. Note during EEPROM reading if  
the external SMBus/I2C primary wants to access the device registers it must support  
arbitration. To set the pin for L1 pull-down with 2.062 k±10% resistor.  
L2: SMBus/I2C Secondary Mode device control configuration is done by an  
external controller with SMBus/I2C primary. To set the pin for L1 pull-down with 18.75  
k±10% resistor.  
L0, L3 and L4: RESERVED TI internal test modes.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DS160PR1601  
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
FF27  
ALL_DONE#  
Output  
EEPROM loading is done. Active low 3.3 V open drain output pin. The pin can be left  
unconnected.  
In SMBus/I2C Primary Mode: Indicates the completion of a valid EEPROM register  
load operation. External pullup resistor such as 4.7 krequired for operation.  
High: External EEPROM load failed or incomplete  
Low: External EEPROM load successful and complete  
In SMBus/I2C secondary: The pin is High-Z.  
FF30  
B_ADDR1_15-8  
Input  
5-level input strap pins as defined in 7-2. Sets SMBus/I2C secondary address  
according to 7-1 and 7-3.  
FF33  
FF5  
PD_3-0  
Input  
Input  
3.3 V LVCMOS input. Implements device power-down /reset according to 7-1.  
A_ADDR0_15-8  
5-level input strap pins as defined in 7-2. Sets SMBus/I2C secondary address  
according to 7-1 and 7-3.  
FF8  
PD_15-12  
N/C  
Input  
3.3 V LVCMOS input. Implements device power-down /reset according to 7-1.  
FG1  
No internal connection.  
No internal connection.  
No internal connection.  
No internal connection.  
Ground  
FG35  
FH2  
N/C  
N/C  
FH34  
FJ12  
FJ16  
FJ19  
FJ23  
N/C  
GND  
RSVD5  
GND  
Ground  
Reserved for future use. No internal connection.  
Ground  
Ground  
Input  
RSVD1  
TI internal use. Leave unconnected.  
FJ25  
READ_EN_#  
Input  
Initiate EEPROM load. Active low 3.3 V LVCMOS input..  
In SMBus/I2C Primary Mode: After device power up, when the pin is low, it initiates  
the EEPROM read function. Once EEPROM read is complete (indicated by  
ALL_DONE# asserted low), this pin can be held low for normal device operation.  
During the EEPROM load process the devices signal path is disabled.  
In SMBus/I2C Secondary: In these modes the pin is not used. The pin can be left  
floating. The pin has internal 1-Mweak pulldown resistor.  
FJ28  
FJ3  
B_ADDR0_15-8  
A_ADDR1_15-8  
Input  
Input  
5-level input strap pins as defined in 7-2. Sets SMBus/I2C secondary address  
according to 7-1 and 7-3.  
5-level input strap pins as defined in 7-2. Sets SMBus/I2C secondary address  
according to 7-1 and 7-3.  
FJ31  
FJ6  
PD_7-4  
Input  
Input  
Input  
3.3 V LVCMOS input. Implements device power-down /reset according to 7-1.  
3.3 V LVCMOS input. Implements device power-down /reset according to 7-1.  
TI internal use. Leave unconnected.  
PD_11-8  
FJ9  
RSVD0  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DS160PR1601  
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
4.0  
UNIT  
V
VCCABSMAX  
VIOCMOS,ABSMAX  
VIO5LVL,ABSMAX  
VIOHS-RX,ABSMAX  
VIOHS-TX,ABSMAX  
TJ,ABSMAX  
Supply Voltage (VCC)  
3.3 V LVCMOS and Open Drain I/O voltage  
5-level Input I/O voltage  
4.0  
V
2.75  
3.2  
V
High-speed I/O voltage (RXnP, RXnN)  
High-speed I/O voltage (TXnP, TXnN)  
Junction temperature  
V
2.75  
150  
150  
V
°C  
°C  
Tstg  
Storage temperature range  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD and Latchup Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
+100  
-100  
V(Signal+) Positive signal pin latch-up Signal pin test, per JESD78F class II, immunity level A (all signal pins)  
Signal pin test, per JESD78F class II, immunity level A (all signal pins  
except RX pins)  
V(Signal-) Negative signal pin latch-up  
mA  
Signal pin test, per JESD78F class II, immunity level B, annex A flow 1F  
-100  
(RX pins are connected through 75nF - 265 nF capacitors)(3)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2 kV  
may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) Per annex A flow 1F, negative pulse immunity on RX pins is 50 mA without series capacitors.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
DC plus AC power should not  
exceed these limits  
VCC  
NVCC  
Supply voltage, VCC to GND  
Supply noise tolerance  
3.0  
3.3  
3.6  
V
DC to <50 Hz, sinusoidal1  
250  
100  
33  
mVpp  
mVpp  
mVpp  
50 Hz to 500 kHz, sinusoidal1  
500 kHz to 2.5 MHz, sinusoidal1  
Supply noise, >2.5 MHz,  
sinusoidal1  
10  
mVpp  
TRampVCC  
TJ  
VCC supply ramp time  
From 0 V to 3.0 V  
0.150  
100  
120  
ms  
°C  
Operating junction temperature  
Minimum pulse width required for  
40  
PWLVCMOS the device to detect a valid signal PD1/0, and READ_EN_N  
on LVCMOS inputs  
200  
10  
μs  
SMBus/I2C SDA and SCL Open Supply voltage for open drain  
VCCSMBUS  
3.6  
V
Drain Termination Voltage  
pull-up resistor  
SMBus/I2C clock (SCL) frequency  
in secondary mode  
FSMBus  
400  
kHz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DS160PR1601  
 
 
 
 
 
 
 
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
6.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
800  
1
NOM  
MAX  
1200  
16  
UNIT  
mVpp  
Gbps  
Source differential launch  
VIDLAUNCH  
amplitude  
DR  
Data rate  
6.4 Thermal Information  
DSPR16  
NJX, 64  
THERMAL METRIC(1)  
UNIT  
Pins  
17.4  
6.5  
RθJA-High K  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
/W  
/W  
/W  
/W  
/W  
/W  
Junction-to-board thermal resistance  
6.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.6  
ψJT  
5.9  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
6.5 DC Electrical Characteristics  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power  
PACT  
Device active power  
Device active power  
32-channels (16-lanes), EQ = 0-3  
32-channels (16-lanes), EQ = 4-19  
4.7  
5.8  
6.0  
7.0  
W
W
PACT  
Device power consumption while  
waiting for far end receiver  
terminations  
All channels enabled but no far end  
receiver detected  
PRXDET  
660  
92  
mW  
mW  
Device power consumption in standby  
power mode  
PSTBY  
All channels disabled  
Control IO  
VOH  
Rpull-up = 4.7 k(SDA, SCL,  
High level output voltage  
Low level output voltage  
Input high leakage current  
Input low leakage current  
2.1  
-40  
V
V
ALL_DONE_N pins)  
IOL = 4 mA (SDA, SCL,  
ALL_DONE_N pins)  
VOL  
IIH  
0.4  
40  
VInput = VCC, (SCL, SDA, PD,  
READ_EN_N pins)  
µA  
µA  
VInput = 0 V, (SCL, SDA, PD,  
READ_EN_N pins)  
IIL  
Input high leakage current for fail safe VInput = 3.6 V, VCC = 0 V, (SCL, SDA,  
IIH,FS  
800  
40  
µA  
pF  
input pins  
PD, READ_EN_N pins)  
CIN-CTRL  
Input capacitance  
SDA, SCL, PD, READ_EN_Npins  
1.2  
5 Level IOs (MODE, A/B_ADDR pins)  
IIH_5L Input high leakage current, 4 level IOs VIN = 2.5 V  
µA  
µA  
Input low leakage current for all 4 level  
IOs except MODE.  
IIL_5L  
VIN = GND  
VIN = GND  
-40  
Input low leakage current for MODE  
pin  
IIL_5L,MODE  
-800  
µA  
V
Receiver  
VRX-DC-CM  
RX DC Common Mode Voltage  
Device is in active or standby state  
1.4  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DS160PR1601  
 
 
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
6.5 DC Electrical Characteristics (continued)  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ZRX-DC  
Rx DC Single-Ended Impedance  
50  
ZRX-HIGH-IMP- DC input CM input impedance during  
Inputs are at VRX-DC-CM voltage  
15  
kΩ  
Reset or power-down  
DC-POS  
Transmitter  
Impedance of Tx during active  
signaling, VID,diff = 1Vpp  
ZTX-DIFF-DC  
VTX-DC-CM  
ITX-SHORT  
DC Differential Tx Impedance  
Tx DC common mode Voltage  
Tx Short Circuit Current  
100  
1.0  
70  
V
Total current the Tx can supply when  
shorted to GND  
mA  
6.6 High Speed Electrical Characteristics  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Receiver  
50 MHz to 1.25 GHz  
-20  
-19  
-16  
-12  
-15  
-15  
dB  
dB  
dB  
dB  
dB  
dB  
1.25 GHz to 2.5 GHz  
2.5 GHz to 4.0 GHz  
4.0 GHz to 8.0 GHz  
50 MHz to 2.5 GHz  
2.5 GHz to 8.0 GHz  
RLRX-DIFF  
Input differential return loss  
RLRX-CM  
Input common-mode return loss  
Receive-side pair-to-pair isolation  
Pair-to-pair isolation (SDD21) between  
two adjacent receiver pairs from 10  
MHz to 8 GHz.  
XTRX  
-50  
dB  
Transmitter  
Tx AC Peak-to-Peak Common Mode  
Voltage  
Measured with lowest EQ, flat_gain =  
101  
VTX-AC-CM-PP  
50  
mVpp  
mV  
Measured while Tx is sensing whether  
a low-impedance Receiver is present.  
No load is connected to the driver  
output  
VTX-RCV-  
Amount of Voltage change allowed  
during Receiver Detection  
0
600  
DETECT  
50 MHz to 1.25 GHz  
1.25 GHz to 2.5 GHz  
2.5 GHz to 4.0 GHz  
4.0 GHz to 8.0 GHz  
50 MHz to 2.5 GHz  
2.5 GHz to 8.0 GHz  
-19  
-17  
-12  
-10  
-14  
-12  
dB  
dB  
dB  
dB  
dB  
dB  
RLTX-DIFF  
Output differential return loss  
RLTX-CM  
Output Common-mode return loss  
Transmit-side pair-to-pair isolation  
Minimum pair-to-pair isolation  
(SDD21) between two adjacent  
transmitter pairs from 10 MHz to 8  
GHz.  
XTTX  
-50  
dB  
nF  
AC coupling capacitors on transmit  
pins  
CAC,TX  
220  
Device Datapath  
Input-to-output latency (propagation  
For either Low-to-High or High-to-Low  
transition.  
TPLHD/PHLD  
130  
170  
24  
ps  
ps  
delay) through a data channel  
Between any two lanes within a single  
transmitter.  
LTX-SKEW  
Lane-to-Lane Output Skew  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DS160PR1601  
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
6.6 High Speed Electrical Characteristics (continued)  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Jitter through redriver minus the  
calibration trace. 16 Gbps PRBS15.  
800 mVpp-diff input swing.  
TRJ-DATA  
Additive Random Jitter with data  
100  
fs  
Jitter through redriver minus the  
calibration trace. 8 Ghz CK. 800  
mVpp-diff input swing.  
Intrinsic additive Random Jitter with  
clock  
TRJ-INTRINSIC  
100  
2.0  
1.3  
fs  
Jitter through redriver minus the  
calibration trace. 16 Gbps PRBS15.  
800 mVpp-diff input swing.  
JITTERTOTAL-  
Additive Total Jitter with data  
ps  
ps  
DATA  
Jitter through redriver minus the  
Intrinsic additive Total Jitter with clock calibration trace. 8 Ghz CK. 800  
mVpp-diff input swing.  
JITTERTOTAL-  
INTRINSIC  
EQ boost at min setting (EQ INDEX = AC gain at 8 GHz relative to gain at  
EQ-MIN8G  
EQ-MAX8G  
1.7  
16  
dB  
dB  
0)  
100 MHz.  
EQ boost at max setting (EQ INDEX = AC gain at 8 GHz relative to gain at  
19)  
100 MHz.  
Flat_gain = 000, 001, 011, 101 or 111,  
at minimum EQ setting. Max-Min for a  
single channel.  
FLAT-  
GAINVAR  
Flat gain variation across PVT  
measured at DC  
-1.0  
-1.5  
1.0  
1.5  
dB  
dB  
At 8 Ghz. Flat_gain = 101, maximum  
EQ setting. Max-Min for a single  
channel.  
EQ-  
GAINVAR,8G  
EQ boost variation across PVT  
LINEARITY-  
DC  
Flat_gain = 101. 128T pattern at 2.5  
Gbps.  
Output DC Linearity  
Output AC Linearity  
1800  
1000  
mVpp  
mVpp  
LINEARITY-  
AC  
Flat_gain = 101. 1T pattern at 16  
Gbps.  
6.7 SMBUS/I2C Timing Charateristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Secondary Mode  
Pulse width of spikes which must be  
suppressed by the input filter  
tSP  
50  
ns  
µs  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated  
tHD-STA  
0.6  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
1.3  
0.6  
µs  
µs  
THIGH  
Set-up time for a repeated START  
condition  
tSU-STA  
0.6  
µs  
tHD-DAT  
TSU-DAT  
Data hold time  
Data setup time  
0
µs  
µs  
0.1  
Rise time of both SDA and SCL  
signals  
tr  
120  
2
ns  
Pull-up resistor = 4.7 kΩ, Cb = 10pF  
Pull-up resistor = 4.7 kΩ, Cb = 10pF  
tf  
Fall time of both SDA and SCL signals  
Set-up time for STOP condition  
ns  
µs  
tSU-STO  
0.6  
1.3  
Bus free time between a STOP and  
START condition  
tBUF  
µs  
tVD-DAT  
tVD-ACK  
Cb  
Data valid time  
0.9  
0.9  
µs  
µs  
pF  
Data valid acknowledge time  
Capacitive load for each bus line  
400  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DS160PR1601  
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
6.7 SMBUS/I2C Timing Charateristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Primary Mode  
fSCL-M  
SCL clock frequency  
SCL low period  
MODE = L1 (Primary Mode)  
303  
1.90  
1.40  
kHz  
µs  
tLOW-M  
THIGH-M  
SCL high period  
µs  
Set-up time for a repeated START  
condition  
tSU-STA-M  
2
µs  
µs  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated  
tHD-STA-M  
1.5  
TSU-DAT-M  
tHD-DAT-M  
Data setup time  
Data hold time  
1.4  
0.5  
µs  
µs  
Rise time of both SDA and SCL  
signals  
tR-M  
120  
ns  
Pull-up resistor = 4.7 kΩ, Cb = 10pF  
Pull-up resistor = 4.7 kΩ, Cb = 10pF  
TF-M  
Fall time of both SDA and SCL signals  
Stop condition setup time  
2
ns  
µs  
tSU-STO-M  
1.5  
EEPROM Timing  
TEEPROM EEPROM configuration load time  
TPOR Time to first SMBus access  
Time to assert ALL_DONE_N after  
READ_EN_N has been asserted.  
30  
50  
ms  
ms  
Power supply stable after initial ramp.  
Includes initial power-on reset time.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DS160PR1601  
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
6.8 Typical Characteristics  
6-1 shows typical EQ gain curves versus frequency for different EQ settings for the DS160PR1601. 6-2  
shows typical differential return loss for Rx and Tx pins.  
28  
24  
20  
16  
12  
8
-8  
-12  
-16  
-20  
-24  
EQ = 0  
EQ = 1  
EQ = 2  
EQ = 3  
EQ = 4  
EQ = 5  
EQ = 6  
EQ = 7  
EQ = 8  
EQ = 9  
EQ = 10  
EQ = 11  
EQ = 12  
EQ = 13  
EQ = 14  
EQ = 15  
EQ = 16  
EQ = 17  
EQ = 18  
EQ = 19  
Rx  
Tx  
4
0
-4  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
Frequency (GHz)  
Frequency (GHz)  
6-1. Typical EQ Boost vs Frequency  
6-2. Typical Differential Return Loss  
6.9 Typical Jitter Characteristics  
6-3 and 6-4 show eye diagrams through calibration traces, and through the DS160PR1601 respectively.  
Note: DS160PR1601 adds little to no random or deterministic jitter.  
6-3. Through Baseline Calibration Trace Setup 6-4. Through the DS160PR1601 with DUT EQ = 0  
(10.26 ps Total Jitter Including Source)  
(12.08ps Total Jitter Very Little Added Jitter Due  
to Redriver)  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DS160PR1601  
 
 
 
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DS160PR1601 is a 16-lane multi-rate linear repeater with integrated signal conditioning. The device's signal  
channels operate independently from one another. Each channel includes a continuous-time linear equalizer  
(CTLE) and a linear output driver, which together compensate for a lossy transmission channel between the  
source transmitter and the final receiver. The linearity of the data path is specifically designed to preserve any  
transmit equalization while keeping receiver equalization effective.  
The DS160PR1601 can be configured two different ways:  
SMBus/I2C Primary mode device control configuration is read from external EEPROM. When the  
DS160PR1601 has finished reading from the EEPROM successfully, it will drive the ALL_DONE_N pin LOW.  
SMBus/I2C secondary operation is available in this mode before, during or after EEPROM reading. Note during  
EEPROM reading if the external SMBus/I2C primary wants to access DS160PR1601 registers it must support  
arbitration. The mode is prefferred when software implementation is not desired.  
SMBus/I2C Secondary mode provides most flexibility. Requires a SMBus/I2C primary device to configure  
DS160PR1601 though writing to its secondary address.  
7.2 Functional Block Diagram  
1-Channel of 16  
Term  
Term  
A_PERp_xx  
A_PERn_xx  
A_PETp_xx  
A_PETn_xx  
Linear  
Driver  
CTLE  
Receiver  
Detect  
Analog  
EyeScan  
READ_EN_x  
ALL_DONE_x  
Analog Bias  
Circuits  
GND  
VCC  
Linear Voltage  
A_ADDRx_x  
Power-On  
Reset  
Regulators  
(Datapath &  
logic)  
B_ADDRx_x  
MODE  
Digital Core  
Design for  
Production  
Testing  
Always-On  
10MHz  
PD_x  
SDA  
SCL  
1-Channel of 16  
Term  
Term  
B_PETp_xx  
B_PETn_xx  
B_PERp_xx  
B_PERn_xx  
Linear  
Driver  
CTLE  
Receiver  
Detect  
Analog  
EyeScan  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DS160PR1601  
 
 
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
7.3 Control and Configuration Interface  
7.3.1 Pin Configurations for Lanes  
The DS160PR1601 has 16 data lanes with 16-Tx channels and 16-Rx channels. The data channels are grouped  
for I2C configurations and PCIe state machine grouping as shown in 7-1 using xADDRx and PDx pins. 7-1  
defines the channel grouping.  
Side A  
Side B  
A_PER  
B_PET  
Ln15-12 Ln 11-8  
Ln 7-4  
Ln 3-0  
Ln15-12 Ln 11-8  
Ln 7-4  
Ln 3-0  
A_PET  
B_PER  
Side A  
Side B  
7-1. Pin Configurations for Lanes  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DS160PR1601  
 
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
Pin Name  
7-1. Definition of PDx and xADDRx pins  
Description  
PD_15-12  
PD_11-8  
PD_7-4  
Active in all device control modes. The pin has internal 1-Mweak pulldown resistor. The pin triggers  
PCIe RX detect state machine when toggled.  
High: power down  
PD_3-0  
Low: power up normal operation.  
Each PD pin sets control for a bank of 8 lanes (4 from Side A and 4 from Side B) to provide flexibility  
for x4 and x8 bifurcation:  
PD_15-12: Lanes 15-12, both Side A and B  
PD_11-8: Lanes 11-8, both Side A and B  
PD_7-4: Lanes 7-4, both Side A and B  
PD_3-0: Lanes 3-0, both Side A and B  
PCIe hot plug insertion implementation varies from system to system. One way to implement will be to  
use CEM interface PRSNT# signal. For PCIe x16 application all four PD signals can be shorted  
together and connect to CEM interface PRSNT# signal.  
A_ADDR1_15-8  
A_ADDR0_15-8  
A_ADDR1_7-0  
A_ADDR0_7-0  
B_ADDR1_15-8  
B_ADDR0_15-8  
B_ADDR1_7-0  
B_ADDR0_7-0  
5-level input pins as implemented by pull-down resistor on the pin according to 7-2.  
These pins are sampled at device power-up only. Sets SMBus / I2C secondary address according to  
7-3. Each set of ADDR1 and ADDR0 pins defines the addresses for bank of 8 lanes:  
A_ADDR1_15-8, A_ADDR0_15-8: Lanes 15-8 of Side A  
A_ADDR1_7-0, A_ADDR0_7-0: Lanes 7-0 of Side A  
B_ADDR1_15-8, B_ADDR0_15-8: Lanes 15-8 of Side B  
B_ADDR1_7-0, B_ADDR0_7-0: Lanes 7-0 of Side B  
7-1 shows how I2C secondary addresses are accessed for specific lanes.  
7.3.1.1 Five-Level Control Inputs  
The has 5-level inputs pins that are used to control the configuration of the device. These 5-level inputs use a  
resistor divider to help set the 5 valid levels and provide a wider range of control settings. External resistors must  
be of 10% tolerance or better. The pins are sampled at power-up only.  
7-2. 5-level Control Pin Settings  
LEVEL  
L0  
SETTING  
1 kto GND  
8.25 kto GND  
24.9 kto GND  
75 kto GND  
F (Float)  
L1  
L2  
L3  
L4  
7.3.2 SMBUS/I2C Register Control Interface  
If MODE = L2 (SMBus / I2C secondary control mode), the DS160PR1601 is configured through a standard I2C or  
SMBus interface that may operate up to 400 kHz. The device also can be configured through loading settings  
from EEPROM. The SMBus / I2C primary / secondary address of the DS160PR1601 is determined by the pin  
strap settings on the xADDRx pins. Note addresses to access differental channels are different. To illustrate  
A_ADDR1_15_8 and A_ADDR0_15_8 sets the primary / secondary address for bank of lanes 15-12 and 11-8 of  
Side A, while A_ADDR1_7_0 and A_ADDR0_7_0 sets for bank of lanes 7-4 and 3-0 of Side A. B side address is  
also set similarly. 7-3 show SMBus / I2C primary / secondary addresses.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DS160PR1601  
 
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
7-3. SMBus / I2C Primary / Secondary Address  
x_ADDR1_x  
x_ADDR0_x  
7-bit address  
7-bit address  
Upper (for Side A) / Lower (for Side B) 4 Lower (for Side A) / Upper (for Side B) 4  
Lanes of each Bank  
Lanes of each Bank  
L0  
L0  
L0  
L0  
L0  
L1  
L1  
L1  
L1  
L1  
L2  
L2  
L2  
L2  
L2  
L3  
L3  
L3  
L3  
L3  
L0  
L1  
L2  
L3  
L4  
L0  
L1  
L2  
L3  
L4  
L0  
L1  
L2  
L3  
L4  
L0  
L1  
L2  
L3  
L4  
0x19  
0x18  
0x1B  
0x1A  
0x1D  
0x1C  
0x1F  
0x1E  
Reserved  
0x21  
Reserved  
0x20  
0x23  
0x22  
0x25  
0x24  
0x27  
0x26  
Reserved  
0x29  
Reserved  
0x28  
0x2B  
0x2A  
0x2D  
0x2C  
0x2F  
0x2E  
Reserved  
0x31  
Reserved  
0x30  
0x33  
0x32  
0x35  
0x34  
0x37  
0x36  
Reserved  
Reserved  
In SMBus/I2C modes the SCL, SDA pins must be pulled up to a 3.3 V supply with a pull-up resistor. The value of  
the resistor depends on total bus capacitance. 4.7 kΩ is a good first approximation for a bus capacitance of 50  
pF.  
Refer to the DS160PR1601 Programming Guide for detail register sets and control configuration procedures.  
7.3.3 SMBus/I2C Primary Mode Configuration (EEPROM Self Load)  
The DS160PR1601 can also be configured by reading from EEPROM. To enter into this mode MODE pin must  
be set to L1. The EEPROM load operation only happens once after device's initial power-up. If the  
DS160PR1601 is configured for SMBus primary mode, it will remain in the SMBus IDLE state until the  
READ_EN_N pin is asserted to LOW. After the READ_EN_N pin is driven LOW, the DS160PR1601 becomes an  
SMBus primary and attempts to self-configure by reading device settings stored in an external EEPROM  
(SMBus 8-bit address 0xA0). When the DS160PR1601 has finished reading from the EEPROM successfully, it  
will drive the ALL_DONE_N pin LOW. SMBus/I2C secondary operation is available in this mode before, during or  
after EEPROM reading. Note during EEPROM reading if the external SMBus/I2C primary wants to access  
DS160PR1601 registers it must support arbitration.  
When designing a system for using the external EEPROM, the user must follow these specific guidelines:  
EEPROM size of 2 kb (256 × 8-bit) is recommended.  
Set MODE = L1, configure for SMBus primary mode  
The external EEPROM device address byte must be 0xA0 and capable of 400 kHz operation at 3.3 V supply  
In SMBus/I2C modes the SCL, SDA pins must be pulled up to a 3.3 V supply with a pull-up resistor. The value  
of the resistor depends on total bus capacitance. 4.7 kΩis a good first approximation for a bus capacitance  
of 10 pF.  
Refer to the DS160PR1601 Programming Guide for detail register sets and control configuration procedures.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DS160PR1601  
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
7.4 Feature Description  
7.4.1 Linear Equalization  
The DS160PR1601 receivers feature a continuous-time linear equalizer (CTLE) that applies high-frequency  
boost and low-frequency attenuation to help equalize the frequency-dependent insertion loss effects of the  
passive channel. The device has 20 available equalization boost settings that can be set though SMBus/I2C  
registers. 7-4 shows the device EQ settings.  
Refer to the DS160PR1601 Programming Guide for detail register sets and control configuration procedures.  
7-4. Equalization Control Settings  
EQ INDEX  
TYPICAL EQ BOOST (dB) at 8 GHz  
0
1
2.0  
3.5  
2
5.0  
3
7.0  
4
8.0  
5
9.0  
6
9.8  
7
10.2  
10.8  
11.2  
11.8  
12.2  
12.8  
13.2  
13.8  
14.2  
14.8  
15.2  
15.6  
16.0  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
7.4.2 Flat-Gain  
The overall datapath Flat-Gain (DC and AC) of the DS160PR1601 can be programmed through SMBus/I2C  
registers. 7-5 shows five available flat gain settings to configure the DS160PR1601 datapaths.  
7-5. Flat Gain Settings  
Flat_gain  
SETTING  
000  
-6 dB  
001  
-4 dB  
011  
-2 dB  
0 dB (default and recommended)  
+2dB  
101  
111  
The default recommendation for most systems will be 0 dB.  
The Flat-Gain and equalization of the DS160PR1601 must be set such that the output signal swing at DC and  
high frequency does not exceed the DC and AC linearity ranges of the devices, respectively.  
Refer to the DS160PR1601 Programming Guide for detail register sets and control configuration procedures.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DS160PR1601  
 
 
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
7.4.3 Analog EyeScan  
The DS160PR1601 implements Analog EyeScan feature that enables monitoring of the internal eye for each  
data channel after the receiver CTLE stage. It provides a measure of vertical eye opening estimation using  
signal statistics. The Analog EyeScan feature is useful for redriver tuning to choose CTLE and Flat-Gain settings  
to optimize an electrical link between a transmitter and a receiver. This is also useful for hardware engineers for  
initial system bring-up and at field system diagnostics. The EyeScan feature can be invoked by I2C or SMBus  
interface.  
7.4.4 Receiver Detect State Machine  
The DS160PR1601 deploys an RX detect state machine that governs the RX detection cycle as defined in the  
PCI express specifications. At power up, after a manually triggered event through PDx pins, or writing to the  
relevant I2C/SMBus register, the redriver determines whether or not a valid PCI express termination is present at  
the far end of the link. The Rx Detect Registers provide additional flexibility for system designers to appropriately  
set the device in desired mode through SMBus/I2C control interface.  
7.4.5 Integrated Capacitors  
The DS160PR1601 has intergrated AC coupling caps for all TX pins (64 count). The capacitors are 220 nF each  
with 2.5 V voltage rating and 20% tolerance.  
7.5 Device Functional Modes  
7.5.1 Active PCIe Mode  
The device is in normal operation with PCIe state machine enabled through SMBus/I2C registers. In this mode  
PDx pins are driven low in a system (for example by PCIE connector "PRSNT" or inverted "PERST" signal). In  
this mode, the DS160PR1601 redrives and equalizes PCIe RX or TX signals to provide better signal integrity.  
7.5.2 Active Buffer Mode  
The device is in normal operation with PCIe state machine disabled through I2C registers. This mode is  
recommended for non-PCIe use cases. In this mode the device is working as a buffer to provide linear  
equalization to improve signal integrity.  
7.5.3 Standby Mode  
The device is in standby mode invoked by PDx pins. In this mode, the device is in standby mode conserving  
power.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DS160PR1601  
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The DS160PR1601 is a high-speed linear repeater which extends the reach of differential channels impaired by  
loss from transmission media like PCBs and cables. It can be deployed in a variety of different systems. The  
following sections outline typical applications and their associated design considerations.  
8.2 Typical Applications  
The DS160PR1601 is a 16-lane protocol agnostic PCI Express linear redriver. Its protocol agnostic nature allows  
it to be used in PCI Express x4, x8, and x16 applications. 8-1 shows how single DS160PR1601 can be used  
in four x4, two x8 or single x16 links.  
Riser Card  
SSD  
x4  
x4  
SSD  
x4  
PR1601 x4  
SSD  
x4  
x4  
x4  
SSD  
x4  
Connector  
CPU  
x16  
Server Motherboard  
Four x4 PCIe link using single PR1601  
x8  
PCIe x8 EP  
x8  
PR1601  
x8  
PCIe x8 EP  
Riser Card  
x8  
Connector  
CPU  
Server Motherboard  
Two x8 PCIe link using single PR1601  
x16  
PR1601  
PCIe x16 Network Interface Card  
x16  
Riser Card  
Connector  
CPU  
x16  
Server Motherboard  
x16 PCIe link using single PR1601  
8-1. PCI Express x4, x8, and x16 Implementation Using DS160PR1601  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DS160PR1601  
 
 
 
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
8.2.1 PCIe x16 Lane Configuration  
The DS160PR1601 can be used in server or motherboard applications to boost transmit and receive signals to  
increase the reach of the host or root complex processor to PCI Express slots or connectors. The section  
outlines detailed procedure and design requirement for a typical PCIe x16 lane confuration. However, the design  
recommendations can also be used in x4 or x8 lane configuration.  
8.2.1.1 Design Requirements  
As with any high-speed design, there are many factors which influence the overall performance. The following  
list indicates critical areas for consideration during design.  
Use 85 Ωimpedance traces when interfacing with PCIe CEM connectors. Length matching on the P and N  
traces should be done on the single-end segments of the differential pair.  
Use a uniform trace width and trace spacing for differential pairs.  
Back-drill connector vias and signal vias to minimize stub length.  
Use reference plane vias to ensure a low inductance path for the return current.  
8.2.1.2 Detailed Design Procedure  
In PCIe Gen 3.0 and 4.0 applications, the specification requires Rx-Tx (of root-complex and endpoint) link  
training to establish and optimize signal conditioning settings. In link training, the Rx partner requests a series of  
FIR preshoot and deemphasis coefficients (10 Presets) from the Tx partner. The Rx partner includes 7-levels  
of CTLE followed by a single tap DFE. The link training would pre-condition the signal, with an equalized link  
between the root-complex and endpoint resulting an optimized link. Note that there is no link training in PCIe  
Gen 1.0 (2.5 Gbps) or PCIe Gen 2.0 (5.0 Gbps) applications.  
The DS160PR1601 is designed with linear datapth to pass the Tx Preset signaling (by root complex and end  
point) onto the Rx (of root complex and end point) for a PCIe link to train and optimize for the Rx equalization  
settings. The linear redriver helps extend the PCB trace reach distance by boosting the attenuated signals with  
its own equalization, which allows the Rx to recover signals more easily. The device must be placed in between  
the Tx and Rx (of root complex and end point) such a way that signal swing of both upstream and downstream  
signals stays within the linearity range of the device. Adjustments to the DS160PR1601 EQ setting should be  
performed based on the channel loss to optimize the eye opening in the Rx partner. The available EQ gain  
settings are provided in 7-4. For most PCIe systems the default Flat gain setting of 0 dB (flat_gain = 101)  
would be sufficient.  
The DS160PR1601 can be optimized for a given system utlizing its two configuration modes SMBus/I2C  
Primary mode and SMBus/I2C Secondary mode. In SMBus/I2C modes the SCL, SDA pins must be pulled up to a  
3.3 V supply with a pull-up resistor. The value of the resistor depends on total bus capacitance. 4.7 kΩis a good  
first approximation for a bus capacitance of 10 pF.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DS160PR1601  
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
8-2 shows a simplified schematic for x16 lane configuration in SMBus/I2C Primary mode.  
1-Channel of 16  
Term  
A_PETp_xx  
A_PETn_xx  
Term  
A_PERp_xx  
A_PERn_xx  
Linear  
Driver  
CTLE  
Receiver  
Detect  
Analog  
EyeScan  
Pin strap to set SMBus  
Secondary address for  
group of channels.  
Initiates  
EEPROM read  
READ_EN_x  
ALL_DONE_x  
A_ADDRx_x  
B_ADDRx_x  
GND  
GND  
Indicates  
EEPROM read  
complete  
Minimum  
recommended  
decoupling  
0.1 F  
3.3V  
(multiple)  
1 F  
VCC  
13 k  
MODE  
Digital Core  
Analog Core  
GND  
Sets SMBus  
Primary Mode  
Drive all PD pins with the  
appropriate PRSNT# or  
PERST with polarity  
reversal for appropriate  
system behavior. Group PD  
pins based on x4, x8 or x16  
operation.  
4.7 k  
SDA  
SCL  
PD_x  
VCC  
VCC  
I2C data and clock pins. Same  
pins serve as both secondary  
and primary interface  
4.7 k  
1-Channel of 16  
Term  
Term  
B_PETp_xx  
B_PETn_xx  
B_PERp_xx  
B_PERn_xx  
Linear  
Driver  
CTLE  
Receiver  
Detect  
Analog  
EyeScan  
8-2. Simplified Schematic for PCIe x16 Lane Configuration in SMBus/I2C Primary Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DS160PR1601  
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
8.2.1.3 Application Curves  
The DS160PR1601 is a linear redriver that can be used to extend channel reach of a PCIe link. Normally, PCIe-  
compliant Tx and Rx are equipped with signal-conditioning functions and can handle channel losses of up to 28  
dB at 16 Gbps (8 GHz) PCIe 4.0. With the DS160PR1601, the total channel loss between a PCIe root complex  
and an end point can be extended up to 42 dB (16 dB additional) at 8 GHz.  
To demonstrate the reach extension capability of the DS160PR1601, two comparative setups are constructed. In  
first setup as shown in 8-3 there is no redriver in the PCIe 5.0 link. 8-4 shows eye diagram at the end of the  
link using SigTest. In second setup as shown in 8-5, the DS160PR1601 is inserted in the middle to extend link  
reach. 8-6 shows SigTest eye diagram.  
Keysight  
M8040  
BERT  
Tek 33GHz  
Scope  
PCIe  
Comp pa ern  
P9 800mV  
SigTest  
Phoenix  
PCIe  
PCIe  
Loss Board  
Loss Board  
PCIe  
Baseboard  
(CBB)  
PCIe  
Load Board  
(CLB)  
8-3. PCIe 4.0 Link Baseline Setup Without  
Redriver Link Elements  
8-4. PCIe 4.0 link Baseline Setup Without  
Redriver Eye Diagram Using SigTest  
Keysight  
M8040  
BERT  
Tek 33GHz  
Scope  
PCIe  
SigTest  
Comp pa ern  
P9 800mV  
Phoenix  
PCIe  
PCIe  
Loss Board  
Loss Board  
PCIe  
Baseboard  
(CBB)  
PCIe  
Load Board  
(CLB)  
DS160PR1601  
Redriver  
Riser card  
8-5. PCIe 4.0 Link Setup with the DS160PR1601  
the Link Elements  
8-6. PCIe 4.0 Link Setup with the DS160PR1601  
Eye Diagram Using SigTest  
8-1 summarizes the PCIe 4.0 links without and with the DS160PR1601. The illustration shows that redriver is  
capable of 16 dB (additional) reach extension at PCIe 4.0 speed with EQ = 15 and flat_gain = 101. Note: actual  
reach extension depends on various signal integrity factors. It is recommended to run signal intergrity  
simulations with all the components in the link to get any guidance.  
8-1. PCIe 4.0 Reach Extension Using the DS160PR1601  
Setup  
Pre Channel Loss  
Post Channel Loss  
Total Loss  
Eye at BER 1E-12 SigTest Pass?  
29 ps, 48 mV  
30 ps, 55 mV  
Pass  
Pass  
Baseline no DUT  
With DUT (DS160PR1601)  
27 dB  
25 dB  
18 dB  
43 dB  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DS160PR1601  
 
 
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
8.3 Power Supply Recommendations  
Follow these general guidelines when designing the power supply:  
1. The power supply should be designed to provide the operating conditions outlined in the recommended  
operating conditions section in terms of DC voltage, AC noise, and start-up ramp time.  
2. The DS160PR1601 does not require any special power supply filtering, such as ferrite beads, provided that  
the recommended operating conditions are met. Only standard supply decoupling is required. Typical supply  
decoupling consists of adequate numbers of 0.1 µF capacitors near device VCC pins, several 1.0 µF and  
10.0 bulk capacitors on VCC power plane. The local decoupling (0.1 µF) capacitors must be connected as  
close to the VCC pins as possible and with minimal path to the DS160PR1601 ground pad. For more  
specific guidance, refer to DS320PR1601RSC-EVM User's Guide.  
8.4 Layout  
8.4.1 Layout Guidelines  
The following guidelines should be followed when designing the layout:  
1. Decoupling capacitors should be placed as close to the VCC pins as possible. Placing the decoupling  
capacitors directly underneath the device is recommended if the board design permits.  
2. High-speed differential signals TXnP/TXnN and RXnP/RXnN should be tightly coupled, skew matched, and  
impedance controlled.  
3. Vias should be avoided when possible on the high-speed differential signals. When vias must be used, take  
care to minimize the via stub, either by transitioning through most/all layers or by back drilling.  
4. GND relief can be used (but is not required) beneath the high-speed differential signal pads to improve  
signal integrity by counteracting the pad capacitance.  
5. GND vias should be placed directly beneath the device connecting the GND plane attached to the device to  
the GND planes on other layers. This has the added benefit of improving thermal conductivity from the  
device to the board.  
8.4.2 Layout Example  
8-7. Top Layer View of TI PCIe Riser Card Using DS160PR1601 with CEM Connectors  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DS160PR1601  
 
 
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
8-8. Bottom Layer View of TI PCIe Riser Card Using DS160PR1601 with CEM Connectors  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DS160PR1601  
DS160PR1601  
ZHCSRO2 FEBRUARY 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, DS320PR1601RSC-EVM User's Guide  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DS160PR1601  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS160PR1601ZDGR  
DS160PR1601ZDGT  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
ZDG  
ZDG  
354  
354  
1000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
PR16X  
PR16X  
Samples  
Samples  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Feb-2023  
Addendum-Page 2  
PACKAGE OUTLINE  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
ZDG0354A  
A
9
8.8  
B
BALL A1 CORNER  
22.9  
22.7  
1.4  
1.237  
C
SEATING PLANE  
C
BALL TYP  
0.6 TYP  
0.26  
0.16  
0.15  
(0.3) TYP  
0.6 TYP  
FJ9  
FJ12  
FJ16  
FJ19  
FJ23  
FJ25  
FJ28  
FJ31  
FH34  
FE34  
FB34  
FH  
FJ3  
FJ6  
FH  
2
FG1  
FG35  
FD35  
FF8  
FF11  
FF14  
FF18  
FF21  
FF24  
FF27  
FF30  
FF33  
FE  
2
FF5  
FC  
FD1  
3
FC  
6
FC9  
FC19  
FC23  
FC25  
FC28  
FB  
2
FA15  
FA32  
EY35  
EY1  
E
W
10  
EW29  
EV34  
EV2  
0.6 TYP  
E
U
7
ET35  
ET1  
EU26  
ER  
2
ER34  
E
P
4
E
P
13  
E
P
17  
E
P
20  
E
P
22  
EP32  
E
N
1
EN35  
E
M
10  
E
M
29  
EL2  
EL34  
(0.3) TYP  
E
K
7
EK26  
E
J1  
EJ35  
E
H
2
EH34  
E
G
4
E
G
13  
13  
E
G
17  
17  
E
G
20  
20  
E
G
22  
22  
E
G
32  
EF1  
EF35  
E
E
10  
E
E
29  
0.6 TYP  
E
E
D
2
E
D
34  
EC  
7
EC26  
EB  
1
EB35  
A
2
E
A
34  
DY  
4
D
D
Y
D
D
Y
D
D
Y
D
D
Y
DY  
32  
DW  
1
DW35  
DV  
10  
DV29  
D
D
U
2
D
U
34  
DT7  
DT26  
DR  
1
D
R
35  
P
2
D
P
34  
N
13  
N
17  
N
20  
N
22  
DN32  
DN4  
DM  
1
D
M
35  
DL10  
DL29  
DK  
2
D
K
34  
1.2 TYP  
D
J26  
D
H
1
D
H
35  
D
J7  
D
G
2
D
G
34  
D
F13  
D
F17  
D
F20  
D
F22  
DF32  
D
F4  
DD29  
DE  
1
DE  
35  
DD10  
DC  
2
DC  
34  
0.8 TYP  
D
B7  
DB26  
DA  
1
DA  
35  
CY  
2
CY  
34  
CW  
4
CW  
13  
CW  
17  
CW  
20  
CW  
22  
C
W
32  
C
V
1
C
V
35  
(0.4) TYP  
C
U
10  
CU29  
C
T2  
CT34  
C
R
7
7
C
R
26  
CP  
1
CP35  
CN  
2
CN34  
C
M
4
C
M
13  
13  
C
M
17  
17  
C
C
M
20  
C
M
22  
22  
C
M
32  
CL1  
CL35  
C
C
K
10  
C
K
29  
CJ2  
CJ34  
PKG  
CH  
CH  
26  
CG  
1
CG35  
CF2  
CF34  
C
B
E
4
C
B
E
C
B
E
E20  
C
B
E
C
E32  
21.9  
CD  
1
CD  
35  
C
10  
CC29  
CB  
2
CB34  
CA  
7
7
CA  
26  
BY  
1
BY  
35  
BW  
2
B
W
34  
V
4
V
13  
V
17  
BV  
20  
V
22  
BV32  
BU  
1
BU  
35  
BT10  
BT29  
BR  
2
B
R
34  
BP  
BP  
26  
BN  
1
BN  
35  
B
B
M
2
B
M
34  
BL4  
BL13  
BL17  
BL20  
BL22  
BL32  
B
K
1
BK35  
BJ10  
BJ29  
H2  
BH  
34  
B
G
7
B
G
26  
BF1  
BF35  
B
B
E
2
B
E
34  
B
D
4
B
D
13  
B
D
17  
B
D
20  
B
D
22  
BD32  
B
C
1
BC35  
B
B
10  
BB29  
A2  
BA  
34  
A
Y
7
A
Y
26  
A
W
1
AW35  
A
A
V
2
A
V
34  
A
U
4
A
U
13  
A
U
17  
A
U
20  
A
U
22  
A
U
32  
(9.6)  
A
T1  
A
T35  
A
R
10  
A
R
29  
P2  
AP  
34  
A
N
7
AN26  
AM  
1
AM35  
(10.89)  
A
L2  
AL34  
A
K
4
A
K
13  
A
K
17  
A
K
20  
A
K
22  
A
K
32  
AJ1  
AJ35  
A
H
10  
A
H
29  
AG  
2
AG34  
AF7  
AF26  
A
E
1
A
E
35  
A
D
2
AD34  
A
C
4
A
C
17  
A
C
20  
A
C
22  
AC32  
AC13  
A
B
1
AB35  
A
A
10  
AA29  
Y2  
Y34  
1.2 TYP  
W7  
W26  
V
1
V35  
U
2
U34  
T4  
T20  
T22  
T32  
T13  
T17  
R1  
R35  
P10  
P29  
N2  
N34  
M7  
L1  
L35  
M26  
K2  
K34  
J22  
J4  
G1  
H12  
H16  
H19  
H31  
G35  
F2  
F34  
E8  
E11  
E14  
E18  
E27  
E30  
E33  
D1  
D35  
C2  
C34  
0.37  
0.27  
B6  
B9  
B12  
B16  
B19  
B23  
B
25  
B
28  
B31  
B3  
354X Ø  
A1  
A
35  
A
1
35  
0.15  
0.05  
C
C
A B  
(1.34)  
BALL A1 CORNER  
(0.8)  
0.5 TYP  
(2.82)  
(2.89)  
(3.94)  
4226484/D 08/2021  
NanoFree is a trademark of Texas Instruments.  
7.88  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
ZDG0354A  
(7.88)  
(0.6) TYP  
(0.3) TYP  
(0.6) TYP  
A1  
A35  
C34  
B3  
B12  
B16  
B19  
B23  
B25  
B28  
B6  
B9  
B31  
C2  
F2  
K2  
N2  
U2  
D1  
D35  
E11  
E14  
E18  
E27  
E30  
E33  
E8  
F34  
G
1
H12  
H16  
H19  
H31  
G35  
J4  
J22  
K34  
N34  
L1  
L35  
R35  
M7  
M26  
(0.3) TYP  
P10  
AA10  
AH10  
AR10  
BB10  
BJ10  
BT10  
CC10  
CK10  
CU10  
DD10  
DL10  
DV10  
EE10  
EM10  
P29  
R1  
T4  
AC4  
AK4  
AU4  
BD4  
T13  
T17  
T20  
T22  
T32  
U34  
V35  
W
AF7  
AN7  
AY7  
7
W26  
V1  
Y34  
Y2  
AA29  
AH29  
AR29  
BB29  
BJ29  
BT29  
CC29  
CK29  
CU29  
DD29  
AB35  
AE35  
AJ35  
AM35  
AT35  
AW35  
BC35  
BF35  
BK35  
BN35  
BU35  
BY35  
CD35  
CG35  
CL35  
CP35  
CV35  
DA35  
DE35  
DH35  
DM35  
DR35  
DW35  
EB35  
EF35  
EJ35  
EN35  
ET35  
EY35  
FD35  
FG35  
AB1  
AC13  
AC17  
AC20  
AC22  
AK22  
AU22  
BD22  
BL22  
BV22  
CE22  
CM22  
CW22  
DF22  
DN22  
DY22  
AC32  
AK32  
AU32  
BD32  
BL32  
BV32  
CE32  
AD2  
AD34  
AG34  
AL34  
AP34  
AV34  
BA34  
BE34  
BH34  
BM34  
BR34  
BW34  
CB34  
CF34  
CJ34  
CN34  
CT34  
CY34  
DC34  
DG34  
DK34  
DP34  
DU34  
EA34  
ED34  
EH34  
EL34  
ER34  
EV34  
FB34  
FE34  
FH34  
AE1  
AF26  
AN26  
AY26  
BG26  
BP26  
CA26  
CH26  
CR26  
DB26  
DJ26  
DT26  
EC26  
EK26  
(0.6) TYP  
AG  
2
(0.6) TYP  
AJ1  
AK13  
AU13  
BD13  
BL13  
AK17  
AU17  
BD17  
BL17  
AK20  
AU20  
BD20  
BL20  
AL2  
AP2  
AV2  
BA2  
BE2  
BH2  
AM  
1
AT1  
(10.89)  
AW  
1
BC1  
BF1  
BK1  
BN1  
BU1  
BY1  
CD1  
(0.4) TYP  
BG7  
BM  
2
BL4  
BP7  
(0.8) TYP  
BR2  
BV4  
CE4  
BV13  
CE13  
CM13  
CW13  
DF13  
DN13  
DY13  
EG13  
EP13  
BV17  
CE17  
CM17  
CW17  
DF17  
DN17  
DY17  
EG17  
EP17  
BV20  
CE20  
CM20  
CW20  
DF20  
DN20  
DY20  
EG20  
BW  
CB2  
CF2  
CJ2  
CN2  
CT2  
CY2  
DC2  
2
CA7  
CH7  
CR7  
DB7  
DJ7  
DT7  
EC7  
EK7  
EU7  
(1.2) TYP  
(21.9)  
PKG  
CG  
1
CL1  
CP1  
CV1  
DA1  
DE1  
DH1  
CM4  
CM32  
CW32  
DF32  
DN32  
DY32  
EG32  
EP32  
CW4  
DF4  
DN4  
DY4  
DG  
2
DK2  
DP2  
DU2  
EA2  
ED2  
EH2  
EL2  
ER2  
EV2  
(8.4)  
DL29  
DV29  
EE29  
EM29  
EW29  
DM  
1
(9.2)  
(9.6)  
DR1  
(10.85)  
DW  
EB1  
EF1  
EJ1  
EN1  
ET1  
EY1  
1
EG4  
EG22  
EP4  
EP20  
EP22  
EU26  
FC25  
FJ25  
(1.2) TYP  
EW10  
FA15  
FF14  
FB2  
FE2  
FA32  
FC19  
FJ19  
FC23  
FC28  
FC3  
FC6  
FC9  
FD1  
FF8  
FF18  
FF21  
FF24  
FF27  
FF30  
FF33  
FF5  
FF11  
FG1  
FH2  
FJ3  
FJ6  
FJ9  
FJ16  
FJ23  
FJ28  
FJ31  
FJ12  
354X (Ø0.3)  
(1.43)  
(3.42)  
(0.5) TYP  
(0.7)  
(2.72)  
LAND PATTERN EXAMPLE  
SCALE: 5X  
METAL UNDER  
SOLDER MASK  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
EXPOSED  
METAL  
(Ø0.30)  
SOLDER MASK  
OPENING  
(Ø0.30)  
METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
(PREFERRED)  
NOT TO SCALE  
4226484/D 08/2021  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments  
Literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
ZDG0354A  
(7.88)  
(0.6) TYP  
(0.3) TYP  
(0.6) TYP  
A1  
A35  
C34  
B3  
B12  
B16  
B19  
B23  
B25  
B28  
B6  
B9  
B31  
C2  
F2  
K2  
N2  
U2  
D1  
D35  
E11  
E14  
E18  
E27  
E30  
E33  
E8  
F34  
K34  
G
1
H12  
H16  
H19  
H31  
G35  
J4  
J22  
L1  
L35  
M7  
M26  
N34  
(0.3) TYP  
P10  
AA10  
AH10  
AR10  
BB10  
BJ10  
BT10  
CC10  
CK10  
CU10  
DD10  
DL10  
DV10  
EE10  
EM10  
P29  
R1  
R35  
T4  
AC4  
AK4  
AU4  
BD4  
T13  
T17  
T20  
T22  
T32  
AC32  
AK32  
AU32  
BD32  
BL32  
BV32  
CE32  
U34  
V35  
W
7
W
26  
V1  
Y34  
Y2  
AA29  
AH29  
AR29  
BB29  
BJ29  
BT29  
CC29  
CK29  
AB35  
AE35  
AJ35  
AM35  
AT35  
AW35  
BC35  
BF35  
BK35  
BN35  
BU35  
BY35  
CD35  
CG35  
CL35  
CP35  
CV35  
DA35  
DE35  
DH35  
DM35  
DR35  
DW35  
EB35  
EF35  
EJ35  
EN35  
ET35  
EY35  
FD35  
FG35  
AB1  
AC13  
AC17  
AC20  
AC22  
AK22  
AU22  
BD22  
BL22  
BV22  
CE22  
CM22  
CW22  
DF22  
DN22  
DY22  
AD2  
AD34  
AG34  
AL34  
AP34  
AV34  
BA34  
BE34  
BH34  
BM34  
BR34  
BW34  
CB34  
CF34  
CJ34  
CN34  
CT34  
CY34  
DC34  
DG34  
DK34  
DP34  
DU34  
EA34  
ED34  
EH34  
EL34  
ER34  
EV34  
FB34  
FE34  
FH34  
AE1  
AF7  
AN7  
AY7  
AF26  
AN26  
AY26  
BG26  
BP26  
CA26  
CH26  
CR26  
DB26  
DJ26  
DT26  
EC26  
EK26  
(0.6) TYP  
AG  
2
(0.6) TYP  
AJ1  
AK13  
AU13  
BD13  
BL13  
AK17  
AU17  
BD17  
BL17  
AK20  
AU20  
BD20  
BL20  
AL2  
AP2  
AV2  
BA2  
BE2  
BH2  
AM  
1
AT1  
(10.89)  
AW  
1
BC1  
BF1  
BK1  
BN1  
BU1  
BY1  
CD1  
(0.4) TYP  
BG7  
BM  
2
BL4  
BP7  
(0.8) TYP  
BR2  
BV4  
CE4  
BV13  
CE13  
CM13  
CW13  
DF13  
DN13  
DY13  
EG13  
EP13  
BV17  
CE17  
CM17  
CW17  
DF17  
DN17  
DY17  
EG17  
EP17  
BV20  
CE20  
CM20  
CW20  
DF20  
DN20  
DY20  
EG20  
BW  
CB2  
CF2  
CJ2  
CN2  
CT2  
CY2  
DC2  
2
CA7  
CH7  
CR7  
DB7  
DJ7  
DT7  
EC7  
EK7  
EU7  
(1.2) TYP  
(21.9)  
PKG  
CG  
1
CL1  
CP1  
CV1  
DA1  
DE1  
DH1  
CM4  
CM32  
CW32  
DF32  
DN32  
DY32  
EG32  
EP32  
CU29  
DD29  
CW4  
DF4  
DN4  
DY4  
DG  
2
DK2  
DP2  
DU2  
EA2  
ED2  
EH2  
EL2  
ER2  
EV2  
(8.4)  
DL29  
DV29  
EE29  
EM29  
EW29  
DM  
1
(9.2)  
(9.6)  
DR1  
(10.85)  
DW  
EB1  
EF1  
EJ1  
EN1  
ET1  
EY1  
1
EG4  
EG22  
EP4  
EP20  
EP22  
EU26  
FC25  
FJ25  
(1.2) TYP  
EW10  
FA15  
FF14  
FB2  
FE2  
FA32  
FC19  
FJ19  
FC23  
FC28  
FC3  
FC6  
FC9  
FD1  
FF8  
FF18  
FF21  
FF24  
FF27  
FF30  
FF33  
FF5  
FF11  
FG1  
FH2  
FJ3  
FJ6  
FJ9  
FJ16  
FJ23  
FJ28  
FJ31  
FJ12  
354X (Ø0.3)  
(1.43)  
(3.42)  
(0.5) TYP  
(0.7)  
(2.72)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
SCALE: 5X  
4226484/D 08/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DS160PR1601ZDGT

PCIe® 4.0 16-Gbps 16-Lane linear redriver | ZDG | 354 | -40 to 85
TI

DS160PR410

4 通道 PCI Express 第 4 代线性转接驱动器
TI

DS160PR410RNQR

4 通道 PCI Express 第 4 代线性转接驱动器 | RNQ | 40 | -40 to 85
TI

DS160PR410RNQT

4 通道 PCI Express 第 4 代线性转接驱动器 | RNQ | 40 | -40 to 85
TI

DS160PR412

具有集成式 1:2 多路信号分离器的 PCIe® 4.0 16Gbps 4 通道线性转接驱动器
TI

DS160PR412RUAR

具有集成式 1:2 多路信号分离器的 PCIe® 4.0 16Gbps 4 通道线性转接驱动器

| RUA | 42 | -40 to 85
TI

DS160PR412RUAT

具有集成式 1:2 多路信号分离器的 PCIe® 4.0 16Gbps 4 通道线性转接驱动器

| RUA | 42 | -40 to 85
TI

DS160PR421

具有集成式 2:1 多路复用器的 PCIe® 4.0、16Gbps、4 通道线性转接驱动器
TI

DS160PR421RUAR

具有集成式 2:1 多路复用器的 PCIe® 4.0、16Gbps、4 通道线性转接驱动器 | RUA | 42 | -40 to 85
TI

DS160PR421RUAT

具有集成式 2:1 多路复用器的 PCIe® 4.0、16Gbps、4 通道线性转接驱动器 | RUA | 42 | -40 to 85
TI

DS160PR810

PCIe® 4.0、16Gbps、8 通道线性转接驱动器
TI

DS160PR810NJXR

PCIe® 4.0、16Gbps、8 通道线性转接驱动器 | NJX | 64 | -40 to 85
TI