DS160PR410RNQR [TI]

4 通道 PCI Express 第 4 代线性转接驱动器 | RNQ | 40 | -40 to 85;
DS160PR410RNQR
型号: DS160PR410RNQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4 通道 PCI Express 第 4 代线性转接驱动器 | RNQ | 40 | -40 to 85

PC 驱动 驱动器
文件: 总32页 (文件大小:1214K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DS160PR410  
ZHCSK36 AUGUST 2019  
DS160PR410 四通道 PCI-Express 4 代线性转接驱动器  
1 特性  
3 说明  
1
四通道线性均衡器,可支持第 1/2/3/4 PCIe 传输  
速率高达 16Gbps 的接口  
DS160PR410 器件是一款低功耗高性能线性中继器/转  
接驱动器,专为支持第 123 4 PCIe 而设  
计。接收器的连续时间线性均衡器 (CTLE) 提供可编程  
高频增强功能,后接一个线性输出驱动器。CTLE 接收  
器能够打开一个因码间串扰 (ISI)(由 PC 电路板引线  
或铜质同轴电缆等互连介质引起)而完全关闭的输入眼  
型状态。可编程的均衡能够可在互连通道内的实体布局  
方面实现最大限度的灵活性并提高通道的总体性能。  
提供均衡功能,以处理高达 45dB PCIe 通道  
8GHz 下高达 18dB CTLE 升压有助于扩展通道  
长度  
针对 PCIe 用例的自动接收器检测  
与协议无关的线性转接驱动器可无缝支持 PCIe 链  
接训练  
支持高达 25Gbps 的数据速率,包括超级路径互联  
DS160PR410 保留了发射预设信号的特性,因此允许  
主机控制器和终点协商发射均衡器系数。这种链路协商  
协议的透明管理有助于实现系统级互操作性并最大程度  
地减小延迟。  
(UPI)  
100ps 的超低延迟  
160fs 的低附加随机抖动  
3.3V 单电源  
130mW/通道的低有功功率支持在无散热器的情况  
下运行  
可通过软件(SMBus I2C)、直接从外部  
EEPROM 加载或使用引脚控制来轻松应用可编程设  
置。在 EEPROM 模式下,配置信息在加电时自动加  
载,这样就免除了对于外部微控制器或软件驱动程序的  
需要。  
引脚搭接、SMBus EEPROM 编程  
通过一个或多个 DS160PR410 支持 x2x4x8、  
x16 PCIe 总线宽度  
–40ºC 85ºC 的工业温度范围  
4mm × 6mm 40 引脚 WQFN 封装  
器件信息(1)  
器件型号  
封装  
WQFN (40)  
封装尺寸(标称值)  
2 应用  
DS160PR410  
4.00mm × 6.00mm  
机架式服务器  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
高性能计算  
微服务器和塔式服务器  
网络附加存储、存储附加网络  
硬件加速器  
主机总线适配器、网络接口卡  
台式计算机/主板  
典型应用  
PCIe  
End Point  
PCIe Root  
Complex  
Pre-Channel  
Post-Channel  
DS160PR410  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNLS645  
 
 
 
DS160PR410  
ZHCSK36 AUGUST 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 12  
7.5 Programming........................................................... 12  
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Applications ................................................ 15  
Power Supply Recommendations...................... 22  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 DC Electrical Characteristics .................................... 6  
6.6 High Speed Electrical Characteristics....................... 7  
6.7 SMBUS/I2C Timing Charateristics............................ 8  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
8
9
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 23  
11 器件和文档支持 ..................................................... 24  
11.1 文档支持 ............................................................... 24  
11.2 接收文档更新通知 ................................................. 24  
11.3 社区资源................................................................ 24  
11.4 ....................................................................... 24  
11.5 静电放电警告......................................................... 24  
11.6 Glossary................................................................ 24  
12 机械、封装和可订购信息....................................... 24  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
8 2019 年  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
DS160PR410  
www.ti.com.cn  
ZHCSK36 AUGUST 2019  
5 Pin Configuration and Functions  
RNQ Package  
40-Pin WQFN  
Top View  
NC  
1
28  
27  
26  
25  
24  
23  
22  
21  
NC  
NC  
EN_SMB  
SCL  
2
3
RX_DET  
PWDN2  
RSVD  
SDA  
GAIN  
4
5
6
7
8
Thermal  
Pad  
EQ1_ADDR1  
EQ0_ADDR0  
ALL_DONE_N  
VOD  
READ_EN_N  
PWDN1  
Not to scale  
Pin Functions  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
ALL_DONE_N  
NO.  
Indicates the completion of a valid EEPROM register load operation when in SMBus/I2C  
Master Mode (EN_SMB = L1):  
High: External EEPROM load failed or incomplete  
Low: External EEPROM load successful and complete  
When in SMBus/I2C slave mode (EN_SMB = L3), this output will be High-Z until  
READ_EN_N is driven low, at which point ALL_DONE_N will be driven low.  
External pullup required for operation. TI recommends a 4.7k value.  
O, 3.3-V open  
drain  
8
EN_SMB  
Four-level control input used to select SMBus / I2C or Pin control.  
The four defined levels are:  
L0: Pin mode  
L1: I2C or SMBus Master Mode  
L2: RESERVED  
2
I, 4-level  
L3: I2C or SMBus Slave Mode  
EQ0_ADDR0  
EQ1_ADDR1  
7
6
I, 4-level  
I, 4-level  
The 4-Level Control Input pins of DS160PR410 is defined according to 3.  
If EN_SMB = L1 or L3, the pins are used to set the I2C or SMBus address of the device. The  
pin state is read on power up and decoded according to 4.  
If EN_SMB = L0, the pins are decoded at power up to control the CTLE boost setting  
according to 1.  
GAIN  
Sets DC gain of CTLE at power up.  
L0: Reserved  
5
I, 4-level  
L1: Reserved  
L2: 0 dB  
L3: 3.5 dB  
GND  
NC  
EP is the Exposed Pad at the bottom of the WQFN package. It is used as the GND return for  
the device. The EP should be connected to ground plane(s) through low resistance path. A  
via array provides a low impedance path to GND, and also improves thermal dissipation.  
EP  
P
1, 14, 15,  
27, 28  
No connect  
Copyright © 2019, Texas Instruments Incorporated  
3
 
DS160PR410  
ZHCSK36 AUGUST 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
PWDN1  
Two-level logic controlling the operating state of the redriver.  
High: Power down for channels 0 and 1  
Low: Power up, normal operation for channels 0 and 1.  
I, 3.3-V  
LVCMOS  
21  
25  
PWDN2  
Two-level logic controlling the operating state of the redriver.  
High: Power down for channels 2 and 3  
Low: Power up, normal operation for channels 2 and 3.  
I, 3.3-V  
LVCMOS  
READ_EN_N  
SMBus / I2C Master Mode (with EN_SMB = L1): When asserted low, initiates the SMBus /  
I2C master mode EEPROM read function. When the EEPROM read is complete (indicated  
by assertion of ALL_DONE_N low), this pin can be held low for normal device operation.  
SMBus / I2C Slave Mode (with EN_SMB = L3): When asserted low, this causes the device to  
be held in reset (I2C state machine reset and register reset). This pin should be pulled high  
to 3.3 V with a external 4.7-kpullup for normal operation in SMBus / I2C Slave Mode or in  
pin control mode.  
I, 3.3-V  
LVCMOS  
22  
RSVD  
24  
26  
Reserved use for TI. The pin must be left floating (NC).  
RX_DET  
The RX_DET pin controls the receiver detect function. Depending on the input level, a 50-Ω  
or >50-kΩ termination to the power rail is enabled. See 2 for details.  
I, 4-level  
RX0N  
RX0P  
RX1N  
RX1P  
RX2N  
RX2P  
RX3N  
RX3P  
SCL  
Inverting differential inputs to the equalizer. An on-chip, 100-Ω termination resistor connects  
RXP to RXN. Channel 0.  
30  
29  
33  
32  
37  
36  
40  
39  
I
I
I
I
I
I
I
I
Noninverting differential inputs to the equalizer. An on-chip, 100-Ω termination resistor  
connects RXP to RXN. Channel 0.  
Inverting differential inputs to the equalizer. An on-chip, 100-Ω termination resistor connects  
RXP to RXN. Channel 1.  
Noninverting differential inputs to the equalizer. An on-chip, 100-Ω termination resistor  
connects RXP to RXN. Channel 1.  
Inverting differential inputs to the equalizer. An on-chip, 100-Ω termination resistor connects  
RXP to RXN. Channel 2.  
Noninverting differential inputs to the equalizer. An on-chip, 100-Ω termination resistor  
connects RXP to RXN. Channel 2.  
Inverting differential inputs to the equalizer. An on-chip, 100-Ω termination resistor connects  
RXP to RXN. Channel 3.  
Noninverting differential inputs to the equalizer. An on-chip, 100-Ω termination resistor  
connects RXP to RXN. Channel 3.  
I/O, 3.3-V  
LVCMOS,  
open drain  
SMBus / I2C clock input / open-drain output. External 1-kto 5-kpullup resistor is required  
as per SMBus / I2C interface standard. This pin is 3.3-V tolerant.  
3
4
SDA  
I/O, 3.3-V  
LVCMOS,  
open drain  
SMBus / I2C data input / open-drain clock output. External 1-kto 5-kpullup resistor is  
required as per SMBus interface standard. This pin is 3.3-V tolerant.  
TX0N  
TX0P  
TX1N  
TX1P  
TX2N  
TX2P  
TX3N  
TX3P  
VDD  
Inverting 50-driver outputs. Compatible with AC-coupled differential inputs. Also used for  
RX detection at power up. Channel 0.  
19  
20  
16  
17  
12  
13  
9
O
O
O
O
O
O
O
O
P
Noninverting 50-driver outputs. Compatible with AC-coupled differential inputs. Also used  
for RX detection at power up. Channel 0.  
Inverting 50-driver outputs. Compatible with AC-coupled differential inputs. Also used for  
RX detection at power up. Channel 1.  
Noninverting 50-driver outputs. Compatible with AC-coupled differential inputs. Also used  
for RX detection at power up. Channel 1.  
Inverting 50-driver outputs. Compatible with AC-coupled differential inputs. Also used for  
RX detection at power up. Channel 2.  
Noninverting 50-driver outputs. Compatible with AC-coupled differential inputs. Also used  
for RX detection at power up. Channel 2.  
Inverting 50-driver outputs. Compatible with AC-coupled differential inputs. Also used for  
RX detection at power up. Channel 3.  
Noninverting 50-driver outputs. Compatible with AC-coupled differential inputs. Also used  
for RX detection at power up. Channel 3.  
10  
31, 34, 35,  
38  
Power supply pins. VDD = 3.3 V ±10%. The VDD pins on this device should be connected  
through a low-resistance path to the board VDD plane.  
4
Copyright © 2019, Texas Instruments Incorporated  
DS160PR410  
www.ti.com.cn  
ZHCSK36 AUGUST 2019  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
VOD  
Sets TX VOD setting at power up.  
L0: –6 dB  
23  
I, 4-level  
P
L1: –3.5 dB  
L2: 0 dB  
L3: –1.6 dB  
VREG  
Internal voltage regulator output. Must add decoupling caps of 0.1 µF near each pins. The  
regulator is only for internal use. Do not use to power any external components.  
11, 18  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
4.0  
UNIT  
V
VDDABSMAX  
VIOCMOS,ABSMAX  
VIO4LVL,ABSMAX  
VIOHS,ABSMAX  
TJ,ABSMAX  
Supply Voltage (VDD)  
3.3 V LVCMOS and Open Drain I/O voltage  
4-level Input I/O voltage  
4.0  
V
2.75  
2.75  
150  
150  
V
High-speed I/O voltage (RXnP, RXnN, TXnP, TXnN)  
Junction temperature  
V
°C  
°C  
Tstg  
Storage temperature range  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2 kV  
may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
DC plus AC power should not  
exceed these limits  
VDD  
NVDD  
Supply voltage, VDD to GND  
Supply noise tolerance  
3.0  
3.3  
3.6  
V
Supply noise, DC to <50 Hz,  
sinusoidal1  
250  
20  
mVpp  
mVpp  
mVpp  
Supply noise, 50 Hz to 10 MHz,  
sinusoidal1  
Supply noise, >10 MHz,  
sinusoidal1  
10  
TRampVDD  
VDD supply ramp time  
From 0 V to 3.0 V  
0.150  
–40  
100  
125  
85  
ms  
C
TJ  
Operating junction temperature  
Operating ambient temperature  
Minimum pulse width required for  
TA  
–40  
C
PWLVCMOS the device to detect a valid signal PWDN1/2, READ_EN_N  
on LVCMOS inputs  
100  
uS  
SMBus SDA and SCL Open  
Drain Termination Voltage  
Supply voltage for open drain  
pull-up resistor  
VDDSMBUS  
3.6  
V
SMBus clock (SCL) frequency in  
SMBus slave mode  
FSMBus  
10  
400  
kHz  
Copyright © 2019, Texas Instruments Incorporated  
5
 
DS160PR410  
ZHCSK36 AUGUST 2019  
www.ti.com.cn  
Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
800  
1
NOM  
MAX  
1200  
25  
UNIT  
mVpp  
Gbps  
Source differential launch  
VIDLAUNCH  
amplitude  
DR  
Data rate  
6.4 Thermal Information  
DS160PR410  
THERMAL METRIC(1)  
UNIT  
RNQ, 40 Pins  
RθJA-High  
Junction-to-ambient thermal resistance  
31.1  
/W  
K
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
21.4  
12.1  
0.3  
/W  
/W  
/W  
/W  
/W  
ψJT  
ψJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
12.1  
4.1  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
6.5 DC Electrical Characteristics  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power  
Device current consumption when all  
four channels are active  
All four channels enabled with VOD =  
L2  
IACTIVE  
150  
85  
200  
110  
33  
mA  
mA  
Device current consumption when two Two channels enabled with VOD = L2,  
channels are active PWDN1 or PWDN2=L  
IACTIVE-HALF  
ISTBY  
Device current consumption in standby All four channels disabled (PWDN1,2  
power mode  
26  
mA  
V
= H)  
VREG  
Internal regulator output  
2.5  
Control IO  
SDA, SCL, PWDN1, PWDN2,  
READ_EN_N pins  
VIH  
VIL  
High level input voltage  
Low level input voltage  
High level output voltage  
Low level output voltage  
Input high leakage current  
2.1  
2
V
V
SDA, SCL, PWDN1, PWDN2,  
READ_EN_N pins  
1.08  
Rpull-up = 100K (SDA, SCL,  
ALL_DONE_N pins)  
VOH  
VOL  
IIH  
V
IOL = –4 mA (SDA, SCL,  
ALL_DONE_N pins)  
0.4  
10  
V
VInput = VDD, (SCL, SDA, PWDN1,  
PWDN2, READ_EN_N pins)  
µA  
VInput = 0 V, (SCL, SDA, PWDN1,  
PWDN2, READ_EN_N pins)  
IIL  
Input low leakage current  
Input capacitance  
-10  
µA  
pF  
CIN-CTRL  
1.5  
4 Level IOs (EQ0_ADDR0, EQ1_ADDR1, EN_SMB, RX_DET, VOD, GAIN pins)  
IIH_4L  
Input high leakage current, 4 level IOs VIN=2.5V  
Input low leakage current, , 4 level IOs VIN=GND  
10  
µA  
µA  
IIL_4L  
-150  
Receiver  
ZRX-DC  
Rx DC Single-Ended Impedance  
Rx DC Differential Impedance  
50  
ZRX-DIFF-DC  
Transmitter  
100  
Impedance of Tx during active  
signaling, VID,diff=1Vpp  
ZTX-DIFF-DC  
DC Differential Tx Impedance  
100  
6
Copyright © 2019, Texas Instruments Incorporated  
DS160PR410  
www.ti.com.cn  
ZHCSK36 AUGUST 2019  
DC Electrical Characteristics (continued)  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MIN  
TYP  
MAX  
UNIT  
Total current the Tx can supply when  
shorted to GND  
ITX-SHORT  
Tx Short Circuit Current  
90  
mA  
6.6 High Speed Electrical Characteristics  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TYP  
MAX  
UNIT  
Receiver  
XTRX  
Minimum pair-to-pair isolation  
(SDD21) between two adjacent  
receiver pairs from 10 MHz to 8 GHz.  
Receive-side pair-to-pair isolation  
-45  
dB  
Transmitter  
Measured with lowest EQ, VOD = L2;  
PRBS-7, 16 Gbps, over at least  
106 bits using a bandpass-Pass Filter  
from 30Khz-500Mhz  
Tx AC Peak-to-Peak Common Mode  
Voltage  
VTX-AC-CM-PP  
50  
mVpp  
VTX-CM-DC = |VOUTn+ + VOUTn–|/2,  
Measured by taking the absolute  
difference of VTX-CM-DC during PCIe  
state L0 and Electrical Idle  
VTX-CM-DC-  
ACTIVE-IDLE-  
DELTA  
Absolute Delta of DC Common Mode  
Voltage during L0 and Electrical Idle  
0
0
100  
10  
mV  
mV  
Absolute Delta of DC Common Mode  
Voltage between VOUTn+ and VOUTn–  
during L0  
Measured by taking the absolute  
difference of VOUTn+ and VOUTn– during  
PCIe state L0  
VTX-CM-DC-  
LINE-DELTA  
Measured by taking the absolute  
difference of VOUTn+ and VOUTn– during  
Electrical Idle, Measured with a band-  
pass filter consisting of two first-order  
filters. The High-Pass and Low-  
Pass –3-dB bandwidths are 10 kHz  
and 1.25 GHz, respectively - zero at  
input  
VTX-IDLE-DIFF- AC Electrical Idle Differential Output  
0
10  
mV  
mV  
Voltage  
AC-p  
Measured by taking the absolute  
difference of VOUTn+ and VOUTn– during  
Electrical Idle, Measured with a first-  
order Low-Pass Filter with –3-dB  
bandwidth of 10 kHz  
VTX-IDLE-DIFF- DC Electrical Idle Differential Output  
0
0
5
Voltage  
DC  
Measured while Tx is sensing whether  
a low-impedance Receiver is present.  
No load is connected to the driver  
output  
VTX-RCV-  
DETECT  
Amount of Voltage change allowed  
during Receiver Detection  
600  
mV  
dB  
Minimum pair-to-pair isolation  
(SDD21) between two adjacent  
transmitter pairs from 10 MHz to 8  
GHz.  
XTTX  
Transmit-side pair-to-pair isolation  
-45  
Device Datapath  
Input-to-output latency (propagation  
Measured by observing propagation  
delay during either Low-to-High or  
High-to-Low transition  
TPLHD/PHLD  
100  
14  
130  
20  
ps  
ps  
delay) through a channel  
Measured between any two lanes  
within a single transmitter  
LTX-SKEW  
Lane-to-Lane Output Skew  
Difference between measurement  
through redriver and baseline setup  
with 16Gbps PRBS15 with minimum  
input and output channels with  
minimum EQ setting.  
TTX-DJ-ADD  
Added Deterministic Jitter  
2.5  
5
ps  
Copyright © 2019, Texas Instruments Incorporated  
7
DS160PR410  
ZHCSK36 AUGUST 2019  
www.ti.com.cn  
High Speed Electrical Characteristics (continued)  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Difference between measurement  
through redriver and baseline setup  
with 16Gbps PRBS15 with minimum  
input and output channels with  
minimum EQ setting.  
TTX-RJ-ADD  
Additive Random Jitter  
160  
200  
fs RMS  
DCGAINVAR,  
max  
Maximum DC gain variation  
Maximum EQ boost variation  
Input amplitude linear range. The  
VOD=L2, GAIN=L2, min EQ setting  
-1.5  
-3.0  
1.5  
3.0  
dB  
dB  
ACGAINVAR,  
max  
VOD=L2, GAIN=L2, max EQ setting,  
at 8Ghz  
Measured with the highest wide-band  
gain setting (VOD = L2,). Measured  
with minimal input channel and  
minimum EQ using 128T pattern at 2.5  
Gbps.  
LINEARITYD maximum VID for which the repeater  
C
800  
750  
mVpp  
mVpp  
remains linear, defined as 1 dB  
compression of Vout/Vin.  
Measured with the highest wide-band  
gain setting (VOD = L2,). Measured  
with minimal input channel and  
minimum EQ using 1T pattern at 16  
Gbps  
Input amplitude linear range. The  
LINEARITYA maximum VID for which the repeater  
C
remains linear, defined as 1 dB  
compression of Vout/Vin.  
Difference between measurement  
through redriver and baseline setup  
with 8Ghz clock signals, lowest EQ  
JITTERINTRIN Redriver intrinsic additive Random  
160  
0.4  
2.5  
190  
1.2  
3.5  
fs  
Jitter (RMS)  
SIC-RJ  
Difference between measurement  
through redriver and baseline setup  
with 8Ghz clock signals, lowest EQ  
JITTERINTRIN Redriver intrinsic additive Deterministic  
ps  
ps  
Jitter  
SIC-DJ  
Difference between measurement  
through redriver and baseline setup  
with 8Ghz clock signals, lowest EQ  
JITTERINTRIN  
SIC-TOTAL  
Redriver intrinsic additive Total Jitter  
6.7 SMBUS/I2C Timing Charateristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Slave Mode  
TSDA-HD  
TSDA-SU  
TSDA-R  
Data hold time  
0.75  
100  
150  
4.5  
ns  
ns  
ns  
ns  
Data setup time  
SDA rise time, read operation  
SDA fall time, read operation  
Pull-up resistor = 1 kΩ, Cb = 50pF  
Pull-up resistor = 1 kΩ, Cb = 50pF  
TSDA-F  
Master Mode  
fSCL  
SCL clock frequency  
SCL low period  
EN_SMB = L3 (Master Mode)  
260  
1.66  
1.22  
303  
1.90  
1.40  
0.6  
346  
2.21  
1.63  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
TSCL-LOW  
TSCL-HIGH  
THD-START  
TSU-START  
TSDA-HD  
TSDA-SU  
TSU-STOP  
TBUF  
SCL high period  
Hold time start operation  
Setup time start operation  
Data hold time  
0.6  
0.9  
Data setup time  
0.1  
Stop condition setup time  
Bus free time between Stop-Start  
SCL rise time  
0.6  
1.3  
TSDC-R  
Pull-up resistor = 1 kΩ  
Pull-up resistor = 1 kΩ  
300  
300  
TSDC-F  
SCL fall time  
EEPROM Timing  
8
Copyright © 2019, Texas Instruments Incorporated  
DS160PR410  
www.ti.com.cn  
ZHCSK36 AUGUST 2019  
SMBUS/I2C Timing Charateristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Time to assert ALL_DONE_N after  
READ_EN_N has been asserted.  
Single device reading its configuration  
from an EEPROM with common  
channel configuration. This time scales  
with the number of devices reading  
from the same EEPROM. Does not  
include power-on reset time.  
TEEPROM  
EEPROM configuration load time  
4
ms  
Time to assert ALL_DONE_N after  
READ_EN_N has been  
asserted. Single device reading its  
configuration from an EEPROM. Non-  
common channel configuration. This  
time scales with the number of devices  
reading from the same EEPROM.  
Does not include power-on reset time.  
TEEPROM  
EEPROM configuration load time  
7
ms  
ms  
Internal power-on reset (PoR) stretch  
between stable power supply and de-  
assertion of internal PoR. The SMBus  
address is latched on the completion  
of the PoR stretch, and SMBus  
accesses are permitted once PoR  
completes.  
TPOR  
Power-on reset assertion time  
30  
版权 © 2019, Texas Instruments Incorporated  
9
DS160PR410  
ZHCSK36 AUGUST 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DS160PR410 is a four-channel multi-rate linear repeater with integrated signal conditioning. The four  
channels operate independently from one another. Each channel includes a continuous-time linear equalizer  
(CTLE) and a linear output driver, which together compensate for a lossy transmission channel between the  
source transmitter and the final receiver. The linearity of the data path is specifically designed to preserve any  
transmit equalization while keeping receiver equalization effective.  
The DS160PR410 can be configured three different ways: through control pins (pin mode), SMBus/I2C, or  
EEPROM. The device is configurable through a single SMBus or I2C port. The DS160PR410 can also act as a  
SMBus master to configure itself from an EEPROM. Pin-only control can also be used for most applications.  
7.2 Functional Block Diagram  
One Channel of Four  
Term  
Term  
RXnP  
RXnN  
TXnP  
TXnN  
CTLE  
Linear Driver  
Receiver  
Detect  
Shared Digital  
EQ1_ADDR1  
EQ0_ADDR0  
Power-On  
Reset  
Always-On  
10MHz  
Shared Digital Core  
SCL  
SDA  
READ_EN_N  
ALL_DONE_N  
EN_SMB  
PWDN  
7.3 Feature Description  
7.3.1 Linear Equalization  
The DS160PR410 receivers feature a continuous-time linear equalizer (CTLE) that applies high-frequency boost  
and low-frequency attenuation to help equalize the frequency-dependent insertion loss effects of the passive  
channel. 1 shows available equalization boost through EQ0_ADDR0 and EQ1_ADDR1 control pins, when in  
Pin Control mode (EN_SMB=L0).  
1. Equalization Control Settings  
EQUALIZATION SETTING  
TYPICAL EQ BOOST  
INDEX  
EQ1_ADDR1  
EQ0_ADDR0  
@ 4 GHz  
–0.3  
0.4  
@ 8 GHz  
–0.8  
1.3  
0
1
2
3
L0  
L0  
L0  
L0  
L0  
L1  
L2  
L3  
3.3  
5.7  
3.8  
7.1  
10  
版权 © 2019, Texas Instruments Incorporated  
 
DS160PR410  
www.ti.com.cn  
ZHCSK36 AUGUST 2019  
Feature Description (接下页)  
1. Equalization Control Settings (接下页)  
EQUALIZATION SETTING  
EQ1_ADDR1  
TYPICAL EQ BOOST  
INDEX  
4
EQ0_ADDR0  
@ 4 GHz  
4.9  
@ 8 GHz  
8.4  
L1  
L1  
L1  
L1  
L2  
L2  
L2  
L2  
L3  
L3  
L3  
L3  
L0  
L1  
L2  
L3  
L0  
L1  
L2  
L3  
L0  
L1  
L2  
L3  
5
5.2  
9.1  
6
5.4  
9.8  
7
6.5  
10.7  
11.3  
12.6  
13.6  
14.4  
15.0  
15.9  
16.5  
17.8  
8
6.7  
9
7.7  
10  
11  
12  
13  
14  
15  
8.7  
9.1  
9.4  
10.3  
10.6  
11.8  
The equalization of the device can also be set by writing to SMBus/I2C registers in slave or master mode. Refer  
to the DS160PR410 Programming Guide (SNLU255) for details.  
7.3.2 DC Gain  
The VOD or GAIN pins can be used to set the overall datapath DC (low frequency) gain of the DS160PR410 as  
outlined in the Pin Configuration and Functions section.  
It is advised that the DC gain and equalization of the DS160PR410 are set such that the signal swing at DC and  
high frequency does not exceed the DC and AC linearity ranges of the devices, respectively.  
7.3.3 Receiver Detect State Machine  
The DS160PR410 deploys an RX detect state machine that governs the RX detection cycle as defined in the PCI  
express specifications. At power up, after a manually triggered event through PWDN1 and PWDN2 pins (in pin  
mode), or writing to the relevant I2C / SMBus register, the redriver determines whether or not a valid PCI express  
termination is present at the far end of the link. The RX_DET pin of DS160PR410 provides additional flexibility  
for system designers to appropriately set the device in desired mode according to 2.  
If all four channels of DS160PR410 is used for same PCI express link, the PRWDN1 and PWDN2 pin can be  
shorted and driven together.  
2. Receiver Detect State Machine Settings  
PWDN1 and PWDN2  
RXDET  
COMMENTS  
PCI Express RX detection state machine is  
enabled. RX detection is asserted after 2x valid  
detections.  
L
L0  
Pre Detect: Hi-Z, Post Detect: 50 Ω.  
PCI Express RX detection state machine is  
enabled. RX detection is asserted after 3x valid  
detections.  
L
L
L1  
Pre Detect: Hi-Z, Post Detect: 50 Ω.  
PCI Express RX detection state machine is  
enabled. RX detection is asserted after 1x valid  
detection.  
L2 (Float)  
Pre Detect: Hi-Z, Post Detect: 50 Ω.  
版权 © 2019, Texas Instruments Incorporated  
11  
 
DS160PR410  
ZHCSK36 AUGUST 2019  
www.ti.com.cn  
2. Receiver Detect State Machine Settings (接下页)  
PWDN1 and PWDN2  
RXDET  
COMMENTS  
PCI Express RX detection state machine is  
disabled.  
Recommended for non PCI Express interface use  
case where the DS160PR410 is used as buffer  
with equalization.  
L
L3  
X
Always 50 Ω.  
H
Manual reset, input is high impedance.  
7.4 Device Functional Modes  
7.4.1 Active PCIe Mode  
The device is in normal operation with PCIe state machine enabled by RX_DET=L0/L1/L2. In this mode  
PWDN1/PWDN2 pins are driven low in a system (for example by PCIE connector "PRSNT" signal). In this mode,  
the DS160PR410 redrives and equalizes PCIe RX or TX signals to provide better signal integrity.  
7.4.2 Active Buffer Mode  
The device is in normal operation with PCIe state machine disabled by RX_DET=L3. This mode is recommended  
for non-PCIe use cases. In this mode the device is working as a buffer to provide linear equalization to improve  
signal integrity.  
7.4.3 Standby Mode  
The device is in standby mode invoked by PWDN1/PWDN2=H. In this mode, the device is in standby mode  
conserving power.  
7.5 Programming  
7.5.1 Control and Configuration Interface  
7.5.1.1 Pin Mode  
The DS160PR410 can be fully configured through GPIO/Pin-strap pins. In this mode the device uses 2-level and  
4-level pins for device control and signal integrity optimum settings. The Pin Configuration and Functions section  
defines the control pins.  
7.5.1.1.1 Four-Level Control Inputs  
The DS160PR410 has six (GAIN, VOD, EQ1_ADDR1, EQ0_ADDR0, EN_SMB, and RX_DET) 4-level inputs pins  
that are used to control the configuration of the device. These 4-level inputs use a resistor divider to help set the  
4 valid levels and provide a wider range of control settings. External resistors must be of 10% tolerance or better.  
3. 4-Level Control Pin Settings  
LEVEL  
L0  
SETTING  
1 kto GND  
13 kto GND  
F (Float)  
L1  
L2  
L3  
59 kto GND  
7.5.1.2 SMBUS/I2C Register Control Interface  
If EN_SMB=L3 (SMBus / I2C control mode), the DS160PR410 is configured through a standard I2C or SMBus  
interface that may operate up to 400 kHz. The slave address of the DS160PR410 is determined by the pin strap  
settings on the EQ1_ADDR1 and EQ0_ADDR0 pins. The device can be configured for best signal integrity and  
power settings in the system using the I2C or SMBus interface. The sixteen possible slave addresses (8-bit) for  
the DS160PR410 are shown in 4.  
12  
版权 © 2019, Texas Instruments Incorporated  
DS160PR410  
www.ti.com.cn  
ZHCSK36 AUGUST 2019  
4. SMBUS/I2C Slave Address Settings  
EQ1_ADDR1  
EQ0_ADDR0  
ADDRESS (DEC)  
ADDRESS (HEX)  
L0  
L0  
L0  
L0  
L1  
L1  
L1  
L1  
L2  
L2  
L2  
L2  
L3  
L3  
L3  
L3  
L0  
L1  
L2  
L3  
L0  
L1  
L2  
L3  
L0  
L1  
L2  
L3  
L0  
L1  
L2  
L3  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
30  
32  
34  
36  
38  
3A  
3C  
3E  
40  
42  
44  
46  
48  
4A  
4C  
4E  
The DS160PR410 can also be configured by reading from EEPROM. To enter into this mode SMB_EN must be  
set to L1. Refer to the Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4 Redriver  
application report (SNLA320) for details.  
7.5.1.3 SMBus/I2C Master Mode Configuration (EEPROM Self Load)  
To configure the DS16PR410 for SMBus master mode, set the EN_SMB pin to L1. If the DS160PR410 is  
configured for SMBus master mode, it will remain in the SMBus IDLE state until the READ_EN_N pin is asserted  
to LOW. After the READ_EN_N pin is driven LOW, the DS160PR410 becomes an SMBus master and attempts  
to self-configure by reading device settings stored in an external EEPROM (SMBus 8-bit address 0xA0). When  
the DS160PR410 has finished reading from the EEPROM successfully, it will drive the ALL_DONE_N pin LOW  
and then change from a SMBus master to a SMBus slave. Not all bits in the register map can be configured  
through an EEPROM load. Refer to the Understanding EEPROM Programming for DS160PR410 PCI-Express  
Gen-4 Redriver application report (SNLA320) for more information.  
When designing a system for using the external EEPROM, the user must follow these specific guidelines:  
EEPROM size of 2 kb (256 × 8-bit) is recommended.  
Set EN_SMB = L1, configure for SMBus master mode  
The external EEPROM device address byte must be 0xA0 and capable of 400-kHz operation at 3.3-V supply  
1 outlines how multiple devices can be configured through single external EEPROM device. 1 shows a use  
case with four DS160PR410, but the user can cascade and number of DS160PR410 devices in a similar way, for  
brevity pullup resistors (for open-drain outputs) are not shown in the block diagram. Tie first device’s  
READ_EN_N pin low to automatically initiate EEPROM read at power up. Alternately the READ_EN_N pin of the  
first device can also be controlled by a microcontroller to initiate the EEPROM read manually. Leave the final  
device’s ALL_DONE_N pin floating, or connect the pin to a microcontroller input to monitor the completion of the  
final EEPROM read.  
版权 © 2019, Texas Instruments Incorporated  
13  
DS160PR410  
ZHCSK36 AUGUST 2019  
www.ti.com.cn  
EN_SMB  
EN_SMB  
EN_SMB  
EN_SMB  
DS160PR410  
DS160PR410  
DS160PR410  
DS160PR410  
SDA  
SDA  
SDA  
SDA  
SCL  
SCL  
SCL  
SCL  
SDA  
SCL  
8-bit SMBus  
address: 0xA0  
EEPROM  
1. Example Daisy Chain for Multiple Device Single EEPROM Configuration  
14  
版权 © 2019, Texas Instruments Incorporated  
DS160PR410  
www.ti.com.cn  
ZHCSK36 AUGUST 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DS160PR410 is a high-speed linear repeater which extends the reach of differential channels impaired by  
loss from transmission media like PCBs and cables. It can be deployed in a variety of different systems. The  
following sections outline typical applications and their associated design considerations.  
8.2 Typical Applications  
The DS160PR410 is a PCI Express linear redriver that can also be configured as interface agnostic redriver by  
disabling its RX detect feature. The device can be used in wide range of interfaces including:  
PCI Express  
Ultra Path Interconnect (UPI)  
SATA  
SAS  
Display Port  
版权 © 2019, Texas Instruments Incorporated  
15  
DS160PR410  
ZHCSK36 AUGUST 2019  
www.ti.com.cn  
Typical Applications (接下页)  
The DS160PR410 is a protocol agnostic 4-channel linear redriver with PCI Express receiver-detect capability. Its  
protocol agnostic nature allows it to be used in PCI Express x2, x4, x8, and x16 applications. 2 shows how a  
number of DS160PR410 devices can be used to obtain signal conditioning for PCI Express buses of varying  
widths. Note all four channels of the DS160PR410 flow in same direction. Therefore, if the device is used for x2  
configuration, careful layout consideration is needed. In x2 configuration, the two-channel grouping can be used  
for PCIe receiver detect. PWDN1 pin puts channels 1 and 2, and PWDN2 pin puts channels 3 and 4 into  
standby.  
CPU/  
Root  
Complex  
DS160PR410  
DS160PR410  
CPU/  
Root  
X2 PCIe  
Complex  
DS160PR410  
DS160PR410  
Two X2 PCIe  
DS160PR410  
DS160PR410  
CPU/  
Root  
DS160PR410  
Complex  
DS160PR410  
DS160PR410  
X4 PCIe  
CPU/  
Root  
Complex  
DS160PR410  
DS160PR410  
DS160PR410  
DS160PR410  
DS160PR410  
DS160PR410  
DS160PR410  
DS160PR410  
CPU/  
Root  
Complex  
X8 PCIe  
X16 PCIe  
2. PCI Express x2, x4, x8, and x16 Use Cases Using DS160PR410  
16  
版权 © 2019, Texas Instruments Incorporated  
 
DS160PR410  
www.ti.com.cn  
ZHCSK36 AUGUST 2019  
Typical Applications (接下页)  
8.2.1 PCIE x4 Lane Configuration  
The DS160PR410 can be used in server or motherboard applications to boost transmit and receive signals to  
increase the reach of the host or root complex processor to PCI Express slots/connectors. The following design  
recommendations can be used in any lane configuration. 3 shows a simplified schematic for x4 configuration.  
DS160PR410  
TX Repeater  
RX0P  
RX0N  
TX0P  
TX0N  
.
.
.
.
.
.
.
.
.
.
.
.
RX3P  
RX3N  
TX3P  
TX3N  
GPIO mode  
EN_SMB  
Optional pin strap  
control for best  
signal integrity  
VOD  
GAIN  
1 kΩ  
GND  
Pin strap to fine  
tune EQ gain  
settings  
EQ0_ADDR0  
EQ1_ADDR1  
SDA  
SDC  
RX_DET  
ALL_DONE_N  
System level  
power control  
PWDN1,2  
READ_EN_N  
VREG  
GND  
0.1F  
(2x)  
3.3V  
Minimum  
recommended  
decoupling  
VDD  
0.1F  
(4x)  
1F  
(2x)  
Host/Root  
complex side  
Connector/  
Socket Side  
DS160PR410  
RX Repeater  
TX0P  
TX0N  
RX0P  
RX0N  
.
.
.
.
.
.
.
.
.
.
.
.
TX3P  
TX3N  
RX3P  
RX3N  
GPIO mode  
EN_SMB  
Optional pin strap  
control for best  
signal integrity  
VOD  
GAIN  
1 kΩ  
GND  
Pin strap to fine  
tune EQ gain  
settings  
EQ0_ADDR0  
EQ1_ADDR1  
SDA  
SDC  
RX_DET  
PWDN1,2  
ALL_DONE_N  
System level  
power control  
VREG  
GND  
READ_EN_N  
0.1F  
(2x)  
3.3V  
Minimum  
recommended  
decoupling  
VDD  
0.1F  
(4x)  
1F  
(2x)  
3. Simplified Schematic for PCIe x4 Lane Configuration  
版权 © 2019, Texas Instruments Incorporated  
17  
 
DS160PR410  
ZHCSK36 AUGUST 2019  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.1.1 Design Requirements  
As with any high-speed design, there are many factors which influence the overall performance. The following list  
indicates critical areas for consideration during design.  
Use 85-Ω impedance traces when interfacing with PCIe CEM connectors. Length matching on the P and N  
traces should be done on the single-end segments of the differential pair.  
Use a uniform trace width and trace spacing for differential pairs.  
Place AC-coupling capacitors near to the receiver end of each channel segment to minimize reflections.  
For Gen-3 and Gen-4, AC-coupling capacitors of 220 nF are recommended, set the maximum body size to  
0402, and add a cutout void on the GND plane below the landing pad of the capacitor to reduce parasitic  
capacitance to GND.  
Back-drill connector vias and signal vias to minimize stub length.  
Use reference plane vias to ensure a low inductance path for the return current.  
8.2.1.2 Detailed Design Procedure  
In PCIe Gen-4 and Gen-3 applications, the specification requires Rx-Tx link training to establish and optimize  
signal conditioning settings at 16 Gbps and 8 Gbps, respectively. In link training, the Rx partner requests a series  
of FIR – preshoot and deemphasis coefficients (10 Presets) from the Tx partner. The Rx partner includes 7-levels  
(6 dB to 12 dB) of CTLE followed by a single tap DFE. The link training would pre-condition the signal, with an  
equalized link between the root-complex and endpoint.  
Note that there is no link training in PCIe Gen-1 (2.5 Gbps) or PCIe Gen-2 (5.0 Gbps) applications. The  
DS160PR410 is placed in between the Tx and Rx. It helps extend the PCB trace reach distance by boosting the  
attenuated signals with its equalization, which allows the user to recover the signal by the downstream Rx more  
easily.  
For operation in Gen-4 and Gen-3 links, the DS160PR410 transmit outputs are designed to pass the Tx Preset  
signaling onto the Rx for the PCIe Gen-4 or Gen-3 link to train and optimize the equalization settings. The  
suggested setting for the DS160PR410 are VOD = 0 dB and DC GAIN = 3.5 dB. Adjustments to the EQ setting  
should be performed based on the channel loss to optimize the eye opening in the Rx partner. The available EQ  
gain settings are provided in 1.  
The Tx equalization presets or CTLE and DFE coefficients in the Rx can also be adjusted to further improve the  
eye opening.  
18  
版权 © 2019, Texas Instruments Incorporated  
DS160PR410  
www.ti.com.cn  
ZHCSK36 AUGUST 2019  
Typical Applications (接下页)  
4 shows as an example for DS160PR410 Typical Connection Schematic.  
3.3 V (filtered)  
3.3 V (filtered)  
VDD  
3.3 V  
VDD  
10µF  
1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
VDD  
VDD  
0.1µF  
0.1µF  
VREG  
VREG  
C9  
C1  
TX0P  
TX0N  
TX1P  
RX0P  
RX0N  
RX1P  
C10  
C11  
C2  
C3  
C12  
C13  
C4  
C5  
TX1N  
TX2P  
RX1N  
RX2P  
High-speed  
inputs  
High-speed  
outputs  
C14  
C15  
C16  
C6  
C7  
C8  
TX2N  
TX3P  
TX3N  
RX2N  
RX3P  
RX3N  
3.3 V  
3.3 V  
4.7k  
4.7k  
4.7k  
ALL_DONE_N  
READ_EN_N  
SDA  
SCL  
I2C  
Control  
PWDN1  
PWDN2  
RSVD  
EN_SMB  
RX_DET  
R1  
NC (x5)  
DAP  
R2  
VOD  
R3  
GAIN  
R4  
R5  
R6  
EQ0_ADDR0  
EQ1_ADDR1  
NOTES:  
C1 œ C16 = 220 nF (10 V / X7R / 0402)  
R1 (see EN_SMB Resistor Values Table)  
R2 (see RX_DET Resistor Values Table)  
R3 (see VOD Resistor Values Table)  
R4 (see GAIN Resistor Values Table)  
R5, R6 (see EQ Control or I2C Slave Address  
Settings Table)  
DS160PR410  
R3  
4. DS160PR410 Typical Connection Schematic  
版权 © 2019, Texas Instruments Incorporated  
19  
 
DS160PR410  
ZHCSK36 AUGUST 2019  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.1.3 Application Curves  
The DS160PR410 is a linear redriver that can be used to extend channel reach of a PCIe link. Normally, PCIe-  
compliant TX and RX are equipt with signal-conditioning functions and can handle channel losses of up to 28 dB  
at 8 GHz. With the DS160PR410, the total channel loss between a PCIe root complex and an end point can be  
up to 45 dB at 8 GHz.  
5 shows an electric link that models a single channel of a PCIe link and eye diagrams measured at different  
locations along the link. The source that models a PCIe TX sends a 16-Gbps PRBS-15 signal with P7 presets.  
After a transmission channel with –30 dB at 8-GHz insertion loss, the eye diagram is fully closed. The  
DS160PR410 with its CTLE set to the maximum (18-dB boost) together with the source TX equalization  
compensates for the losses of the pre-channel (TL1) and opens the eye at the output of the DS160PR410.  
The post-channel (TL2) losses mandate the use of PCIe RX equalization functions such as CTLE and DFE that  
are normally available in PCIe-compliant receivers.  
RX CTLE: 12 dB  
PCIe Root  
Complex  
DS160PR410  
PCIe  
End Point  
TL1  
-30 dB @ 8 GHz  
TL2  
-15 dB @ 8 GHz  
Pre-Cursor: 3.5 dB  
Post-Cursor: -6 dB  
RX EQ Boost: 18 dB  
5. PCIe Gen-4 Link Reach Extension Using DS160PR410  
20  
版权 © 2019, Texas Instruments Incorporated  
 
DS160PR410  
www.ti.com.cn  
ZHCSK36 AUGUST 2019  
Typical Applications (接下页)  
8.2.2 DisplayPort Application  
The DS160PR410 can be used as a 4 channel DIsplayPort (DP) redriver for data rates up to 20 Gbps. To use  
the device in a non-PCIe application, the RX_DET pin must be pin-strapped to VDD with 59-kΩ resistor (L3).  
The DS160PR410 is a linear redriver which is agnostic to DP link training. The DP link training negotiation  
between a display source and sink stays effective through the DS160PR410. The redriver becomes part of the  
electrical channel along with passive traces, cables, and so forth, resulting into optimum source and sink  
parameters for best electrical link.  
6 shows a simplified schematic for DisplayPort application. Auxiliary and Hot plug detect (HPD) are bypassed  
outside of DS160PR410. If system use case requires implementing DP power states, the device must be  
controlled by the I2C or the pin-strap pins.  
DS160PR410  
DP Main Link Redriver  
ML0p  
RX0P  
RX0N  
.
.
.
TX0P  
TX0N  
.
.
.
ML0n  
.
.
.
.
.
.
.
.
.
ML3p  
RX3P  
RX3N  
TX3P  
TX3N  
ML3n  
GPIO mode  
EN_SMB  
Optional pin strap  
control for best  
signal integrity  
VOD  
GAIN  
1 kΩ  
GND  
Pin strap to fine  
tune EQ gain  
settings  
EQ0_ADDR0  
EQ1_ADDR1  
SDA  
SDC  
3.3V 3.3V  
59k  
RX_DET  
ALL_DONE_N  
59kꢁ  
DisplayPort  
Source  
DisplayPort  
Sink  
PWDN1,2  
READ_EN_N  
VREG  
GND  
0.1F  
(2x)  
3.3V  
VDD  
0.1F  
(4x)  
1F  
(2x)  
0.1F  
Minimum  
recommended  
decoupling  
100kꢁ  
HPD  
For brevity AUX  
biasing is not shown  
AUXp  
AUXn  
6. Simplified Schematic for DisplayPort Application  
版权 © 2019, Texas Instruments Incorporated  
21  
 
DS160PR410  
ZHCSK36 AUGUST 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
Follow these general guidelines when designing the power supply:  
1. The power supply should be designed to provide the operating conditions outlined in the Recommended  
Operating Conditions table in terms of DC voltage, AC noise, and start-up ramp time.  
2. The DS160PR410 does not require any special power supply filtering, such as ferrite beads, provided that  
the recommended operating conditions are met. Only standard supply decoupling is required. Typical supply  
decoupling consists of a 0.1-µF capacitor per VDD pin, one 1.0-µF bulk capacitor per device, and one 10-µF  
bulk capacitor per power bus that delivers power to one or more DS160PR410 devices. The local decoupling  
(0.1 µF) capacitors must be connected as close to the VDD pins as possible and with minimal path to the  
DS160PR410 ground pad.  
10 Layout  
10.1 Layout Guidelines  
The following guidelines should be followed when designing the layout:  
1. Decoupling capacitors should be placed as close to the VDD pins as possible. Placing the decoupling  
capacitors directly underneath the device is recommended if the board design permits.  
2. High-speed differential signals TXnP/TXnN and RXnP/RXnN should be tightly coupled, skew matched, and  
impedance controlled.  
3. Vias should be avoided when possible on the high-speed differential signals. When vias must be used, take  
care to minimize the via stub, either by transitioning through most/all layers or by back drilling.  
4. GND relief can be used (but is not required) beneath the high-speed differential signal pads to improve signal  
integrity by counteracting the pad capacitance.  
5. GND vias should be placed directly beneath the device connecting the GND plane attached to the device to  
the GND planes on other layers. This has the added benefit of improving thermal conductivity from the  
device to the board.  
22  
版权 © 2019, Texas Instruments Incorporated  
DS160PR410  
www.ti.com.cn  
ZHCSK36 AUGUST 2019  
10.2 Layout Example  
Top Layer  
Use ac-coupling  
capacitors with 0201  
package  
Ensure high-speed  
trace length is  
matched with 5 mils  
intra-pair; pair-pair  
skew is less critical  
Route high-speed  
traces as differential  
coupled microstrips  
(S=2W*) with tight  
impedance control  
( 10%)  
Avoid acute angles  
when routing high-  
speed traces  
Bottom Layer  
Use recommended  
package footprint and  
ground via placement  
Place decoupling  
capacitors close to  
VDD and VREG pins;  
minimize ground  
loops  
Ensure pair-pair gap  
is > 5W* for minimal  
pair-pair coupling  
Add ground pours for  
additional isolation  
Follow connector  
manufacturer  
guidelines  
*W is a trace width. S is a  
gap between adjacent  
traces.  
7. DS160PR410 Layout Example - Sub-Section of a PCIe Riser Card With CEM Connectors  
版权 © 2019, Texas Instruments Incorporated  
23  
DS160PR410  
ZHCSK36 AUGUST 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)DS160PR410 编程指南》(SNLU255)  
德州仪器 (TI)《了解 DS160PR410 4 PCI-Express 转接驱动器的 EEPROM 编程》(SNLA320)  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS160PR410RNQR  
DS160PR410RNQT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RNQ  
RNQ  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
PX410  
PX410  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS160PR410RNQR  
DS160PR410RNQT  
WQFN  
WQFN  
RNQ  
RNQ  
40  
40  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.3  
4.3  
6.3  
6.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS160PR410RNQR  
DS160PR410RNQT  
WQFN  
WQFN  
RNQ  
RNQ  
40  
40  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNQ0040A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
4.7±0.1  
2X 4.4  
(0.2) TYP  
9
20  
EXPOSED  
THERMAL PAD  
36X 0.4  
8
21  
2X  
2.8  
2.7±0.1  
1
28  
0.25  
40X  
0.15  
29  
40  
PIN 1 ID  
0.1  
C A  
B
0.5  
0.3  
(OPTIONAL)  
40X  
0.05  
4222125/B 01/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(4.7)  
2X (2.1)  
6X (0.75)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
4X  
(1.1)  
(3.8)  
(2.7)  
36X (0.4)  
8
21  
(R0.05) TYP  
9
20  
SYMM  
(5.8)  
(
0.2) TYP  
VIA  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222125/B 01/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
4X (1.5)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
6X  
(0.695)  
(3.8)  
6X  
(1.19)  
36X (0.4)  
8
21  
(R0.05) TYP  
METAL  
TYP  
9
20  
6X (1.3)  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
73% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222125/B 01/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY