DS250DF230RTVT [TI]

DS250DF230 25-Gbps Multi-Rate 2-Channel Retimer;
DS250DF230RTVT
型号: DS250DF230RTVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DS250DF230 25-Gbps Multi-Rate 2-Channel Retimer

文件: 总105页 (文件大小:2771K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
DS250DF230 25-Gbps Multi-Rate 2-Channel Retimer  
1 Features  
2 Applications  
1
Dual-channel multi-rate retimer with integrated  
Jitter cleaning for front-port optical interface in  
signal conditioning  
wireless and wired systems  
Backplane/mid-plane reach extension  
Active cable assemblies  
All channels lock independently from 19.6 to 25.8  
Gbps (including sub-rates, such as 12.16512  
Gbps, 9.8304 Gbps, 6.144 Gbps, and more)  
802.3bj 100GbE, InfiniBand EDR, and OIF-CEI-  
25G-LR/MR/SR/VSR electrical interfaces  
Ultra-low latency: <500 ps Typical for 25.78125-  
Gbps data rate  
SFP28, QSFP28, CFP2/CFP4, CDFP  
Adaptive continuous time linear equalizer (CTLE)  
Continuous adaptive decision feedback equalizer  
(DFE), capable of compensating large channel  
loss variation over temperature  
3 Description  
The DS250DF230 is a dual-channel multi-rate retimer  
with integrated signal conditioning. The device is  
used to extend the reach and robustness of long,  
lossy, crosstalk-impaired high-speed serial links and  
while achieving a bit error rate (BER) of 10–15 or less.  
Combined equalization supporting 35-dB channel  
loss at 12.9 GHz  
On-chip eye-opening monitor (EOM), PRBS  
pattern checker and generator  
Each channel of the DS250DF230 independently  
locks to serial data rates in a continuous range from  
19.6 Gbps to 25.8 Gbps or to any supported sub-rate  
(÷2 and ÷4), including key data rates such as  
12.16512 Gbps, 9.8304 Gbps, 6.144 Gbps.  
Low-jitter transmitter with 3-Tap FIR filter  
Integrated 2×2 cross-point  
Recovered clock available for system clock  
synchronization applications on channel 0  
Device Information(1)  
Single power supply, no low-jitter reference clock  
required  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
DS250DF230  
NFBGA (36)  
5.00 mm × 5.00 mm  
Wide stay-in-lock temperature range  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Simplified Schematic  
RX0P  
RX0N  
TX0P  
TX0N  
CDR  
X
RX  
TX  
RX1P  
RX1N  
TX1P  
TX1N  
CDR  
RX  
TX  
2.5V or 3.3V  
VDD  
SMBus  
Slave mode  
1 kΩ  
To other open-drain  
interrupt pins  
EN_SMB  
INT_N  
SDA(1)  
TEST0 /RCK0  
THR /TEST1  
To system  
SMBus  
SDC(1)  
Address straps  
ADDR0  
(pull-up, pull-  
ADDR1  
down, or float)  
30.72 MHz or 25 MHz  
To next device‘s  
CAL_CLK_IN  
CAL_CLK_IN  
READ_EN_N  
CAL_CLK_OUT  
ALL_DONE_N  
SMBus Slave  
mode  
2.5 V  
Float for SMBus Slave  
mode, or connect to next  
device‘s READ_EN_N for  
SMBus Master mode  
GND  
VDD  
0.01 F  
(2x)  
0.1 F  
(2x)  
(1) SMBus signals need to be pulled up elsewhere in the system.  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table of Contents  
8.5 Programming........................................................... 30  
8.6 Register Maps......................................................... 32  
Application and Implementation ........................ 78  
9.1 Application Information............................................ 78  
9.2 Typical Applications ............................................... 78  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Description (continued)......................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 8  
7.5 Electrical Characteristics........................................... 8  
7.6 Timing Requirements.............................................. 13  
7.7 Switching Characteristics........................................ 14  
7.8 Typical Characteristics ........................................... 15  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 17  
8.4 Device Functional Modes........................................ 28  
9
10 Power Supply Recommendations ..................... 91  
11 Layout................................................................... 92  
11.1 Layout Guidelines ................................................. 92  
11.2 Layout Examples................................................... 92  
12 Device and Documentation Support ................. 94  
12.1 Device Support...................................................... 94  
12.2 Documentation Support ........................................ 94  
12.3 Receiving Notification of Documentation Updates 94  
12.4 Support Resources ............................................... 94  
12.5 Trademarks........................................................... 94  
12.6 Electrostatic Discharge Caution............................ 94  
12.7 Glossary................................................................ 94  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 94  
13.1 Package Option Addendum .................................. 95  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (December 2018) to Revision B  
Page  
Initial Public Release ............................................................................................................................................................. 1  
Changed Reg_0x79[4] definition, marking this as RESERVED........................................................................................... 67  
Changed Reg_0x7E[3:0] definition, marking this as RESERVED........................................................................................ 68  
Changed Reg_0x7F[5] definition, marking this as RESERVED. ......................................................................................... 69  
Changed Reg_0x8C definition, marking this register as RESERVED. ............................................................................... 72  
Added expanded Reg_0x95 definition.................................................................................................................................. 73  
2
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
 
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
5 Description (continued)  
The DS250DF230 has a single power supply and minimal need for external components. These features reduce  
PCB routing complexity and BOM cost.  
The advanced equalization features of the DS250DF230 include a low-jitter 3-tap transmit finite impulse  
response (FIR) filter, an adaptive continuous-time linear equalizer (CTLE), and an adaptive decision feedback  
equalizer (DFE). This enables reach extension for lossy interconnect and backplanes with multiple connectors  
and crosstalk. The integrated CDR function is available for front-port optical module applications to reset the jitter  
budget and retime the high-speed serial data. The DS250DF230 supplies 2x2 cross-point that gives the host lane  
crossing, fanout, and multiplexing options.  
The DS250DF230 can be configured either through the SMBus or through an external EEPROM. Up to 16  
devices can share an EEPROM using common-channel configuration. A non-disruptive on-chip eye monitor and  
a PRBS generator and checker is available for in-system diagnostics.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
6 Pin Configuration and Functions  
ZLS Package  
36-Pin NFBGA  
Top View  
Pin Functions  
PIN  
NAME  
HIGH-SPEED DIFFERENTIAL I/Os  
INTERNAL  
PULL-UP/  
PULL-  
TYPE  
DESCRIPTION  
NO.  
DOWN  
A6  
A5  
A2  
A1  
RX0P  
RX0N  
RX1P  
RX1N  
Input  
Input  
Input  
Input  
None  
None  
None  
None  
Inverting and noninverting differential inputs to the equalizer. An on-chip,  
100-Ω termination resistor connects RXP to RXN. These inputs must be  
AC-coupled.  
Inverting and noninverting differential inputs to the equalizer. An on-chip,  
100-Ω termination resistor connects RXP to RXN. These inputs must be  
AC-coupled.  
F6  
F5  
F2  
F1  
TX0P  
TX0N  
TX1P  
TX1N  
Output  
Output  
Output  
Output  
None  
None  
None  
None  
Inverting and noninverting 50driver outputs. These outputs must be AC-  
coupled.  
Inverting and noninverting 50driver outputs. These outputs must be AC-  
coupled.  
CALIBRATION CLOCK PINS  
30.72-MHz (±100 PPM), 2.5-V single-ended clock from external oscillator.  
No stringent phase noise or jitter requirements on this clock. Also supports  
25-MHZ (±100 PPM) clock by programming the corresponding registers.  
Input, 2.5V  
LVCMOS  
D6  
D1  
CAL_CLK_IN  
None  
None  
Output, 2.5V  
LVCMOS  
2.5-V buffered replica of calibration clock input (CAL_CLK_IN) for  
connecting multiple (up to 20 or more) devices in a daisy-chained fashion.  
CAL_CLK_OUT  
4
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
 
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Pin Functions (continued)  
PIN  
NAME  
SYSTEM MANAGEMENT BUS (SMBus) PINS  
INTERNAL  
PULL-UP/  
PULL-  
TYPE  
DESCRIPTION  
NO.  
DOWN  
C1  
ADDR0  
Input, 4-level  
None  
None  
4-level strap pins used to set the SMBus address of the device. The pin  
state is read on power-up. The multi-level nature of these pins allows for 16  
unique device addresses. The four strap options include:  
0: 1 kto GND  
R: 10 kto GND  
F: Float  
B4  
ADDR1  
Input, 4-level  
1: 1 kto VDD  
Refer to Device SMBus Address for more information.  
Four-level, 2.5-V input used to select between SMBus master mode (float)  
and SMBus slave mode (high). The three defined levels are:  
R: 10 kto GND - RESERVED, TI test mode  
F: Float - SMBus Master Mode (2.5-V/3.3-V SMBUS interface only)  
1: 1 kto VDD - SMBus Slave Mode  
C6  
D5  
EN_SMB  
Input, 4-level  
Input, 4-level  
None  
None  
Select the electrical voltage of SMBus interface. 2.5-V/3.3-V or 1.8-V:  
1: 1 kto VDD - 1.8-V SMBus interface  
F: Float - 1.8-V SMBus interface  
THR /TEST1  
0: 1 kto GND - 2.5-V/3.3-V SMBus interface  
In TI test mode (EN_SMB = 10k Ohm to GND), this is reserved TI test pin.  
SMBus data input / open-drain output. External 2-kto 5-kpullup resistor  
is required as per SMBus interface standard. This pin is 3.3-V tolerant.  
D2  
C2  
SDA  
SDC  
I/O, Open Drain  
I/O, Open Drain  
None  
None  
SMBus clock input / open-drain clock output. External 2-kto 5-kpullup  
resistor is required as per SMBus interface standard. This pin is 3.3-V  
tolerant.  
SMBus MASTER MODE PINS  
Indicates the completion of a valid EEPROM register load operation when in  
SMBus Master Mode (EN_SMB=Float):  
Output, 2.5-V  
LVCMOS  
High = External EEPROM load failed or incomplete  
Low = External EEPROM load successful and complete  
When in SMBus slave mode (EN_SMB=1), this output reflects the status of  
the READ_EN_N input.  
E3  
E4  
ALL_DONE_N  
READ_EN_N  
None  
SMBus Master Mode (EN_SMB=Float): When asserted low, initiates the  
SMBus master mode EEPROM read function. Once EEPROM read is  
complete (indicated by assertion of ALL_DONE_N low), this pin can be held  
low for normal device operation.  
SMBus Slave Mode (EN_SMB=1): When asserted low, this causes the  
device to be held in reset (SMBus state machine reset and register reset).  
This pin must be pulled high or left floating for normal operation in SMBus  
Slave Mode.  
Input, 3.3-V  
LVCMOS  
Weak pullup  
to VDD  
This pin is 3.3-V tolerant.  
MISCELLANEOUS PINS  
Open-drain, 3.3-V tolerant active-low interrupt output. It pulls low when an  
interrupt occurs. The events which trigger an interrupt are programmable  
through SMBus registers. This pin can be connected in a wired-OR fashion  
with other device's interrupt pin. A single pullup resistor in the 2-kto 5-kΩ  
range is adequate for the entire INT_N net.  
Output, Open-  
Drain  
B3  
INT_N  
None  
None  
In TI test mode (EN_SMB = 10k Ohm to GND), this is reserved TI test pin.  
During normal (non-test-mode) operation, this pin is configured as input by  
default and therefore is not affected by the presence of a signal. This pin  
may be left floating, tied to GND, or connected to a 2.5-V (max) output.  
This pin can be configured to offer the recovered clock for CH0 by  
programming the corresponding registers. The signal is 2.5-V LVCMOS.  
I/O, 2.5-V  
LVCMOS  
C5  
TEST0 /RCK0  
POWER  
Power supply, VDD = 2.5 V ±5%. TI recommends connecting at least four  
de-coupling capacitors between the Retimer VDD plane and GND as close  
to the Retimer as possible. For example, two 0.1-µF capacitors, and two  
0.01-µF capacitors directly beneath the device or as close to the VDD pins  
as possible. The VDD pins on this device must be connected through a low-  
resistance path to the board VDD plane.  
C3,C4,  
D3,D4  
VDD  
Power  
None  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Pin Functions (continued)  
PIN  
INTERNAL  
PULL-UP/  
PULL-  
TYPE  
DESCRIPTION  
NO.  
NAME  
DOWN  
A3,A4,  
B1,B2,  
B5,B6,  
E1,E2,  
E5,E6,F  
3,F4  
Ground reference. The GND pins on this device must be connected through  
a low-resistance path to the board GND plane.  
GND  
Power  
None  
6
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
2.75  
2.75  
4
UNIT  
V
VDDABSMAX  
Supply Voltage, VDD to GND  
VIO2.5V-ABSMAX 2.5V I/O voltage (LVCMOS and Analog)  
V
VIO3.3V-ABSMAX 3.3V I/O Voltage (SDA, SDC, INT_N, READ_EN)  
V
VINABSMAX  
VOUTABSMAX  
TJABSMAX  
Tstg  
Signal Input voltage(RXnP, RXnN)  
Signal Output voltage(TXnP, TXnN)  
Junction Temperature  
2.75  
2.75  
150  
150  
V
V
°C  
°C  
Storage Temperature range  
–40  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Supply voltage, VDD to GND.DC plus AC power should not exceed these  
limits.  
VDD  
2.375  
2.5  
2.625  
V
NVDD  
NVDD  
NVDD  
Tramp  
TJ  
Supply noise, DC to <50 Hz, sinusoidal(1)  
Supply noise, 50 Hz to 10 MHz, sinusoidal(1)  
Supply noise, >10 MHz, sinusoidal(1)  
VDD supply ramp time, from 0 V to 2.375 V  
Operating junction temperature  
250  
20  
mVpp  
mVpp  
mVpp  
us  
10  
150  
–40  
110  
85(2)  
2.625  
3.6  
°C  
TA  
Operating ambient temperature  
–40  
°C  
VIO2.5V  
2.5 V LVCMOS  
2.375  
2.5  
V
VIO3.3V,INT_N Open Drain I/O voltage(INT_N)  
VIO3.3V  
Open Drain I/O voltage(SDA,SDC)(3)  
(1) Steps must be taken to ensure the combined AC plus DC noise meets the VDD supply voltage limits.  
V
3.6  
V
(2) Steps must be taken to ensure the operating junction temperature range and stay-in-lock range (TEMPLOCK+ ,TEMPLOCK-) are met. Refer  
to the Electrical Characteristics for more details concerning TEMPLOCK+ and TEMPLOCK-.  
(3) Set THR pin to select SMBUS electrical voltage  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: DS250DF230  
 
 
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
7.4 Thermal Information  
DS250DF230  
ZLS (NFBGA)  
36 PINS  
49.3  
THERMAL METRIC(1)  
CONDITIONS(2)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
4-layer JEDEC board  
4-layer JEDEC board  
4-layer JEDEC board  
4-layer JEDEC board  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
20.7  
24.5  
0.5  
ΨJB  
Junction-to-board characterization parameter 4-layer JEDEC board  
24.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) No heat sink or airflow was assumed for these estimations. Depending on the application, a heat sink, faster airflow, and/or reduced  
ambient temperature (<85 C) may be required in order to meet the maximum junction temperature specification per the Recommended  
Operating Conditions.  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
POWER CONSUMPTION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Active mode with CTLE, Tx FIR, full DFE  
and Crosspoint enabled. Idle power  
consumption not included.  
256  
248  
347  
mW  
mW  
Active mode with CTLE, Tx FIR, and full  
DFE enabled. Crosspoint disabled. Idle  
power consumption not included.  
Active mode with CTLE, Tx FIR, and  
partial DFE enabled(taps 1-2 only).  
Crosspoint and DFE taps 3-5 disabled. Idle  
power consumption not included.  
235  
226  
380  
mW  
mW  
mW  
Power Consumption Per  
Active Channel  
WChannel  
Active mode with CTLE, and Tx FIR  
enabled. DFE and crosspoint disabled. Idle  
power consumption not included.  
Assuming CDR acquiring lock with CTLE,  
full DFE, Tx FIR, Driver, and Crosspoint  
enabled. Idle power consumption not  
included.  
445  
Assuming CDR acquiring lock with CTLE,  
full DFE, Tx FIR, Driver, and Crosspoint  
disabled. Idle power consumption not  
included.  
333  
mW  
PRBS Checker Power  
Consumption only Per Channel  
200  
190  
mW  
mW  
WPRBS  
PRBS Generator Power  
Consumption only Per Channel  
Idle/Static mode. Power supplied, no high-  
speed data present at inputs, channel  
automatically powered down.  
WStatic_Total Total Idle Power Consumption  
165  
66  
mW  
mA  
Idle/Static mode. Power supplied, no high-  
speed data present at inputs, channel  
automatically powered down.  
Idle mode total device supply  
IStatic_Total  
100  
361  
current consumption  
Active mode with CTLE, Tx FIR, full DFE  
and Crosspoint enabled.  
271  
265  
mA  
mA  
Active mode with CTLE, Tx FIR, and full  
DFE enabled. Crosspoint disabled.  
Active Mode Total Device Supply  
Current Consumption  
ITotal  
Active mode with CTLE, Tx FIR, and  
partial DFE enabled(taps 1-2 only).  
Crosspoint and DFE taps 3-5 disabled.  
255  
247  
mA  
mA  
Active mode with CTLE, and Tx FIR  
enabled. DFE and crosspoint disabled.  
8
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
 
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GENERAL DEVICE-LEVEL SPECIFICATIONS  
Full-rate (divide-by-1) mode of operation.  
Half-rate (divide-by-2) mode of operation.  
19.6  
9.8  
25.8  
12.9  
Gbps  
Gbps  
Rbaud  
Supported input data rate  
Quarter-rate (divide-by-4) mode of  
operation.  
4.9  
6.45  
Gbps  
Single device reading its configuration  
from an EEPROM. Common channel  
EEPROM configuration load time configuration. This time scales with the  
number of devices reading from the same  
EEPROM.  
15(1)  
ms  
tEEPROM  
Single device reading its configuration  
from an EEPROM. Unique-channel  
EEPROM configuration load time configuration. This time scales with the  
number of devices reading from the same  
40(1)  
ms  
ms  
EEPROM.  
Internal power-on reset (PoR) stretch  
between stable power supply and de-  
assertion of internal PoR. The SMBus  
address is latched on the completion of the  
tPOR  
Power-on reset assertion-time  
50  
PoR stretch, and SMBus accesses are  
permitted.  
HIGH-SPEED DIFFERENTIAL OUTPUTS (TXnP, TXnN)  
Measured with c(0)=4 setting  
(REG_0x3D[6:0]=0x04,  
REG_0x3E[6:0]=0x40,  
Output differential voltage  
amplitude  
REG_0x3F[6:0]=0x40). Differential  
measurement using an 8T pattern (eight  
1s followed by eight 0s) at 25.78125 Gbps  
with TXPn and TXNn terminated by 50  
Ohms to GND.  
392  
mVppd  
VOD  
Measured with c(0)=31 setting  
(REG_0x3D[6:0]=0x1F,  
REG_0x3E[6:0]=0x40,  
Output differential voltage  
amplitude  
REG_0x3F[6:0]=0x40). Differential  
measurement using an 8T pattern (eight  
1s followed by eight 0s) at 25.78125 Gbps  
with TXPn and TXNn terminated by 50  
Ohms to GND.  
1195  
mVppd  
mVppd  
Raw Mode(CDR Bypassed), low swing  
setting(REG_0xD[0]=0), differential  
measurement using 8T pattern(eight 1s  
followed by eight 0s) at 25.78125Gbps and  
9.8304Gbps with TXPn and TXNn  
terminated by 50 Ohms to GND.  
RPH=REG_0x1A[7:6]=0  
Output differential voltage  
amplitude under Raw Mode, low  
swing setting  
VOD_Raw_L  
602  
Raw Mode(CDR Bypassed), high swing  
setting(REG_0xD[0]=1),,differential  
measurement using 8T pattern(eight 1s  
followed by eight 0s) at 25.78125Gbps and  
9.8304Gbps with TXPn and TXNn  
terminated by 50 Ohms to GND.  
Output differential voltage  
amplitude under Raw Mode,  
high swing setting  
VOD_Raw_H  
919  
6.1  
mVppd  
mVppd  
RPH=REG_0x1A[7:6]=0x3  
Differential output amplitude with  
TX disabled  
VOD_Idle  
(1) From low assertion of READ_EN_N to low_assertion of ALL_DONE_N. Does not include Power-On Reset time  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
With respect to signal ground. Measured  
using an 8T pattern (eight 1s followed by  
eight 0s) at 25.78125 Gbps with TXPn and  
TXNn terminated by 50 Ohms to GND.  
Measured for c(-1)=c(1)=0 and VOD  
settings in the range of 600 mVppd to  
1200 mVppd.  
DC common-mode output  
voltage  
Vcm_TX  
1.01  
V
With respect to signal ground. Measured  
Common-mode AC output noise with PRBS9 data pattern. Measured with a  
33GHz (-3dB) low-pass filter.  
mV,  
RMS  
Vcm_TX_AC  
7.4  
20%-to-80% rise time and 80%-to-20% fall  
time on a clock-like {11111 00000} data  
pattern at 25.78125 Gbps. Measured for  
~750 mVppd output amplitude and no  
equalization: REG_0x3D=+13,  
REG_0x3E=0, REG_0x3F=0  
Output transition-time  
17.5  
ps  
ps  
tr, tf  
Slow slew rate setting(REG_0x3D[5]=1),  
20%-to-80% rise time and 80%-to-20% fall  
time on a clock-like {11111 00000} data  
Output transition-time, Low slew  
pattern at 9.8304 Gbps. Measured for  
rate setting  
24  
~750 mVppd output amplitude and no  
equalization: REG_0x3D=+13,  
REG_0x3E=0, REG_0x3F=0  
Differential output return loss,  
Between 50 MHz and 5 GHz  
SDD22(2)  
-15.9  
-13  
-24  
-24  
-8  
dB  
dB  
dB  
dB  
dB  
dB  
RLSDD22  
Differential output return loss,  
Between 5 GHz and 12.9 GHz  
SDD22(2)  
Differential to common-mode  
Between 50 MHz and 12.9 GHz  
output return loss, SCD22(2)  
RLSCD22  
RLSDC22  
Common-mode to differential  
Between 50 MHz and 12.9 GHz  
output return loss, SDC22(2)  
Common-mode output return  
Between 50 MHz and 10 GHz  
loss, SCC22(2)  
RLSCC22  
Common-mode output return  
Between 10 GHz and 12.9 GHz  
loss, SCC22(2)  
-8.5  
RETIMER TIMING SPECIFICATIONS  
4.5 UI +  
175 ps  
No Crosspoint; CDR enabled and locked.  
ps  
Input-to-output latency  
tD  
(propagation delay) through a  
channel  
Crosspoint enabled; CDR enabled and  
locked.  
4.5 UI +  
220 ps  
ps  
ps  
ps  
No crosspoint; CDR in raw mode.  
140  
Variation of Input-to-output  
latency  
Crosspoint enabled; CDR enabled and  
locked.  
tD_V  
tSK  
± 50  
Channel-to-channel interpair  
skew  
Latency difference between channels at  
full-rate.  
30  
ps  
Measured at 25.78125 Gbps, Adapt mode  
2(REG_0x31[6:5]=0x2)  
CDR lock acquisition-time  
<100  
ms  
Measured at 25.78125 Gbps, Adapt mode  
2(REG_0x31[6:5]=0x2). Fast Lock Mode  
Enabled(REG_0xAC[7] = 1). Adaptation  
process still runs to find the best  
CDR lock acquisition-time, Fast  
Lock Mode  
<10  
<2  
ms  
ms  
tLock  
CTLE/DFE values after CDR lock declares  
Measured at 25.78125 Gbps, Adapt mode  
0(Reg_0x31[6:5]=0x0), Fast Lock Mode  
Enabled(REG_0xAC[7] = 1)  
CDR lock acquisition-time, Fast  
Lock Mode  
(2) Measured with an evaluation board which uses microstrip traces and low-loss dielectric with approximately 4 dB insertion loss at 12.9  
GHZ between DS250DF230 and the measurement instrument.  
10  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.16  
6.8  
MAX  
UNIT  
RETIMER JITTER SPECIFICATIONS  
Measured at 25.78125 Gbps to a  
probability level of 1E-12 with PRBS11  
data pattern an evaluation board traces  
de-embedded  
UIpp @  
1E-12  
JTJ  
Output Total jitter (TJ)  
Measured at 25.78125 Gbps to a  
probability level of 1E-12 with PRBS11  
data pattern an evaluation board traces  
de-embedded  
mUI  
RMS  
JRJ  
Output Random Jitter (RJ)  
Measured at 25.78125 Gbps to a  
probability level of 1E-12 with PRBS11  
data pattern an evaluation board traces  
de-embedded  
Output Duty Cycle Distortion  
(DCD)  
JDCD  
3.7  
mUIpp  
HIGH-SPEED DIFFERENTIAL INPUTS (RXnP, RXnN)  
Maximum tolerable input  
differential voltage  
VIDMax  
Vcm-Self  
For normal operation  
1200  
1.79  
-20  
-13  
-23  
-23  
-11  
-8  
mVppd  
V
Self-generated input common  
mode  
Differential input return loss,  
SDD11(3)  
Between 50 MHz and 3.69 GHz  
Between 3.69 GHz and 12.9 GHz  
Between 50 MHz and 12.9 GHz  
Between 50 MHz and 12.9 GHz  
Between 150 MHz and 10 GHz  
Between 10 GHz and 12.9 GHz  
dB  
RLSDD11  
Differential input return loss,  
SDD11(3)  
dB  
Common-mode to differential  
input return loss, SDC11(3)  
RLSDC11  
RLSCD11  
dB  
Differential to common-mode  
input return loss, SCD11(3)  
dB  
Common-mode input return loss,  
SCC11(3)  
dB  
RLSCC11  
Common-mode input return loss,  
SCC11(3)  
dB  
Minimum input peak-to-peak amplitude  
level at device pins required to assert  
signal detect. Assumes default assert  
threshold setting. Measured at 25.78125  
Gbps with PRBS7.  
AC signal detect assert (ON)  
threshold level  
VSDAT  
145  
84  
mVppd  
mVppd  
Maximum input peak-to-peak amplitude  
level at device pins which causes signal  
detect to de-assert. Assumes default de-  
assert threshold setting . Measured at  
25.78125 Gbps with PRBS7.  
AC signal detect de-assert (OFF)  
threshold level  
VSDDT  
RETIMER CLOCK AND DATA RECOVERY SPECIFICATIONS  
Measured at 9.8304 Gbps with PRBS7  
data pattern  
PLL bandwidth  
PLL bandwidth  
Jitter peaking  
Jitter peaking  
4
4.7  
0.5  
0.5  
MHz  
MHz  
dB  
BWPLL  
Measured at 25.78125 Gbps with PRBS7  
data pattern  
Measured at 9.8304 Gbps with PRBS7  
data pattern.  
JPEAK  
Measured at 25.78125 Gbps with PRBS7  
data pattern.  
dB  
(3) Measured with an evaluation board which uses microstrip traces and low-loss dielectric with approximately 4 dB insertion loss at 12.9  
GHZ between DS250DF230 and the measurement instrument.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured at 25.78125 Gbps with SJ  
frequency = 190 KHz, 30dB input channel  
loss, PRBS31 data pattern, ~800 mVppd  
launch amplitude, and 0.18 UIpp total  
uncorrelated output jitter in addition to the  
applied SJ. BER < 1E-12.  
Input jitter tolerance  
9
UIpp  
Measured at 25.78125 Gbps with SJ  
frequency = 940 KHz, 30dB input channel  
loss, PRBS31 data pattern, ~800 mVppd  
launch amplitude, and 0.18 UIpp total  
uncorrelated output jitter in addition to the  
applied SJ. BER < 1E-12.  
JTOL  
Input jitter tolerance  
Input jitter tolerance  
1
0.33  
150  
150  
UIpp  
UIpp  
°C  
Measured at 25.78125 Gbps with SJ  
frequency > 15MHz, 30dB input channel  
loss, PRBS31 data pattern, ~800 mVppd  
launch amplitude, and 0.18 UIpp total  
uncorrelated output jitter in addition to the  
applied SJ. BER < 1E-12.  
CDR stay-in-lock junction  
temperature range, negative  
ramp. Maximum junction  
110 °C junction temperature starting, ramp  
temperature change below initial rate -3°C/minute, 12 layer PCB  
TEMPLOCK-  
CDR lock acquisition  
temperature  
CDR stay-in-lock junction  
temperature range, positive  
ramp. Maximum junction  
-40 °C junction temperature starting, ramp  
temperature change above initial rate +3°C/minute, 12 layer PCB  
TEMPLOCK+  
°C  
CDR lock acquisition  
temperature  
RECOVERED CLOCK SPECIFICATIONS  
Measured with input data rate as 24.33024  
Gbps or 12.16512 Gbps or 10.1376 Gbps  
9.8304 Gbps or 6.144 Gbps or 4.9152  
Gbps  
Recovered Clock frequency on  
RCK0 pin  
30.72  
MHz  
MHz  
RCKf  
Recovered Clock frequency on  
RCK0 pin  
Measured with input data rate as  
25.78125Gbps or 10.3125Gbps  
32.2265625  
<=100 Hz  
< -59  
< -84  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Between 100 Hz and 1 kHz  
Between 1 kHz and 10 kHz  
>10 kHz  
RCKf Phase Noise  
RCKPhase  
Performance(4)  
< -103  
< -122  
CALIBRATION CLOCK SPECIFICATIONS  
Calibration clock frequency  
CLKf  
Option 1: 30.72 MHZ  
Option 2: 25 MHZ  
30.72  
25  
MHz  
MHz  
PPM  
Calibration clock frequency  
CLKppm  
CLKIDC  
Calibration clock PPM tolerance  
Calibration clock input duty cycle  
-100  
40  
100  
50  
50  
60 Percent  
Intrinsic duty cycle distortion of chip  
calibration clock output at the  
CAL_CLK_OUT pin, assuming 50% duty  
cycle on CAL_CLK_IN pin.  
Intrinsic calibration clock duty  
cycle distortion  
CLKODC  
45  
55 Percent  
Assumes worst-case 60%/40% input duty  
Number of devices which can be cycle on the first device. CAL_CLK_OUT  
CLKnum  
cascaded from CAL_CLK_OUT  
to CAL_CLK_IN  
from first device connects to CAL_CLK_IN  
of second device, and so on until the last  
device.  
20  
N/A  
(4) Measured with input data from DS280DF810 evaluation board, at 24.33024 Gbps or 10.1376 Gbps or 25.78125Gbps or 10.3125 Gbps  
12  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LVCMOS DC SPECIFICATIONS  
2.5 V LVCMOS pins  
1.75  
1.75  
VDD  
3.6  
V
V
V
V
VIH  
VIL  
Input high-level voltage  
Input low-level voltage  
3.3 V LVCMOS pin (READ_EN_N)  
2.5 V LVCMOS pins  
GND  
GND  
0.7  
3.3 V LVCMOS pin (READ_EN_N)  
0.8  
4-level pins ADDR0, ADDR1, EN_SMB  
and THR  
High-level(1) input voltage  
Float level input voltage  
10K to GND input voltage  
Low-level (0) input voltage  
0.98 x VDD  
0.69 x VDD  
0.25 x VDD  
0.1  
V
V
V
V
4-level pins ADDR0, ADDR1, EN_SMB  
and THR  
Vth  
4-level pins ADDR0, ADDR1, EN_SMB  
and THR  
4-level pins ADDR0, ADDR1, EN_SMB  
and THR  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
Input high leakage current  
Input high leakage current  
IOH = 4mA  
2
V
V
IOL = -4mA  
0.4  
70  
65  
Vinput = VDD, Open drain pins  
Vinput = VDD and CAL_CLK_IN pins  
uA  
uA  
IIH  
Vinput = VDD, ADDR[1:0] and EN_SMB  
pins  
Input high leakage current  
65  
15  
uA  
Input high leakage current  
Input low leakage current  
Input low leakage current  
Vinput = VDD, READ_EN_N  
Vinput = 0V, Open drain pins  
Vinput = 0V, CAL_CLK_IN pins  
uA  
uA  
uA  
–15  
–15  
IIL  
Vinput = 0V, ADDR[1:0], READ_EN_N,  
and EN_SMB pins  
Input low leakage current  
–115  
uA  
7.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
SMBus ELECTRICAL CHARACTERISTICS (SLAVE MODE)  
Input high-level voltage  
1.8 V SMBUS Interface  
VIH  
VIH  
SDA and SDC  
1.35  
3.6  
V
V
Input high-level voltage  
2.5 V/3.3 V SMBUS Interface  
SDA and SDC  
SDA and SDC  
1.75  
3.6  
0.8  
VIL  
CIN  
VOL  
IIN  
Input low-level voltage  
Input pin capacitance  
Low-level output voltage  
Input current  
GND  
V
pF  
V
2
SDA or SDC or INT, IOL = 1.25 mA  
SDA or SDC, VINPUT = VIN, VDD, GND  
Pull up resistor = 1 kΩ, Cb = 50pF  
Pull up resistor = 1 kΩ, Cb = 50pF  
0.4  
15  
–15  
10  
uA  
ns  
ns  
TR  
SDA rise time, read operation  
SDA fall time, read operation  
150  
4.5  
TF  
RECOMMENDED SMBus SWITCHING CHARACTERISTICS (SLAVE MODE)  
fSDC  
SDC clock frequency  
Data hold time  
100  
0.75  
100  
400  
kHz  
ns  
tHD_DAT  
tSU_DAT  
Data setup time  
ns  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
UNIT  
7.7 Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
SMBus SWITCHING CHARACTERISTICS (2.5 V and 3.3 V MASTER MODE)  
fSDC  
SDC clock frequency  
SDC low period  
260  
303  
1.90  
1.40  
1.3  
1.3  
0.5  
1.3  
1.4  
1.8  
70  
346  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
TLOW  
THIGH  
THD_STA  
TSU_STA  
THD_DAT  
TSD-DAT  
TSU_STO  
TBUF  
SDC high period  
Hold time start operation  
Setup time start operation  
Data hold time  
Data setup time  
Stop condition setup time  
Bus free time between Stop-Start  
SDC rise time  
TR  
Pull up resistor = 1 kΩ  
Pull up resistor = 1 kΩ  
TF  
SDC fall time  
8
14  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
7.8 Typical Characteristics  
21  
1.5  
1.4  
1.3  
1.2  
1.1  
1
C(0) = 7  
C(0) = 16  
C(0) = 31  
C(0) = 7  
C(0) = 16  
C(0) = 31  
20.5  
20  
19.5  
19  
18.5  
18  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
17.5  
17  
16.5  
16  
15.5  
15  
-50  
-30  
-10  
10  
Temperature(°C)  
30  
50  
70  
90  
110  
-50  
-30  
-10  
10  
Temperature(°C)  
30  
50  
70  
90  
110  
D001  
D001  
Figure 1. Output Transition-time vs Ambient Temperature  
Figure 2. Typical VOD vs Ambient Temperature  
1.4  
0.24  
0.21  
0.18  
0.15  
0.12  
0.09  
0.06  
0.03  
T = 85°C, VDD = 2.65V  
T = 85°C, VDD = 2.35V  
T = -40°C, VDD = 2.65V  
T = -40°C, VDD = 2.35V  
TJ, VDD = 2.35V  
DJ, VDD = 2.35V  
TJ, VDD = 2.65V  
DJ, VDD = 2.65V  
1.2  
1
0.8  
0.6  
0.4  
0.2  
3
6
9
12  
15  
Main Cursor C(0)  
18  
21  
24  
27  
30  
-40  
-25  
-10  
5
20 35  
Temperature °C  
50  
65  
80  
95  
D001  
D001  
Figure 3. Typical VOD vs FIR Main-Cursor  
Figure 4. Typical Output Jitter vs Ambient Temperature  
at 25.78125 Gbps  
18  
16  
14  
12  
10  
8
1.4  
T = 95 °C, VDD = 2.35V  
T = 95 °C, VDD = 2.65V  
T = -40 °C, VDD = 2.35V  
T = -40 °C, VDD = 2.65V  
T = 95 °C, VDD = 2.35V  
T = 95 °C, VDD = 2.65V  
T = -40 °C, VDD = 2.35V  
T = -40 °C, VDD = 2.65V  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
6
4
2
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Frequency(MHz)  
1
1
11  
21  
31  
41  
51  
61  
Frequency(MHz)  
71  
81  
91 100  
D001  
D001  
0.1 MHz to 1 MHz  
Input Random Jitter = 0.078 UIpp  
1 MHz to 100 MHz  
Input Random Jitter = 0.078 UIpp  
Figure 5. Typical Sinusoidal Input Jitter Tolerance for  
30-dB Channel at 25.78125 Gbps  
Figure 6. Typical Input Jitter Tolerance for  
30-dB Channel at 25.78125 Gbps  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The DS250DF230 is a dual-channel multi-rate retimer with integrated signal conditioning. Each of the two  
channels operates independently. Each channel includes a continuous-time linear equalizer (CTLE) and a  
Decision Feedback Equalizer (DFE), which together compensate for the presence of a dispersive transmission  
channel between the source transmitter and the DS250DF230 receiver. The CTLE and DFE are self-adaptive.  
Each channel includes an independent voltage-controlled oscillator (VCO) and phase-locked loop (PLL) which  
produce a clean clock that is frequency-locked to the clock embedded in the input data stream. The high-  
frequency jitter on the incoming data is attenuated by the PLL, producing a clean clock with substantially reduced  
jitter. This clean clock is used to re-time the incoming data, removing high-frequency jitter from the data stream  
and reproducing the data on the output with significantly reduced jitter.  
Each channel of the DS250DF230 features an output driver with adjustable differential output voltage and output  
equalization in the form of a three-tap finite impulse response (FIR) filter. The output FIR compensates for  
dispersion in the transmission channel at the output of the DS250DF230.  
A full 2x2 cross-point switch is integrated inside. This allows multiplexing and de-multiplexing/fanout applications  
for fail-over redundancy, as well as cross-over applications to aid PCB routing.  
Each channel also includes diagnostic features such as a Pseudo-Random Bit Sequence (PRBS) pattern  
generator and checker, as well as a non-destructive, eye-opening monitor (EOM). The EOM can be used to plot  
the post-equalized eye at the input to the decision slicer or simply to read the horizontal eye opening (HEO) and  
vertical eye opening (VEO).  
The DS250DF230 is configurable through a single SMBus port. The DS250DF230 can also act as an SMBus  
master to configure itself from an external EEPROM. Up to sixteen DS250DF230 devices can share a single  
SMBus.  
The sections which follow describe the functionality of various circuits and features within the DS250DF230. For  
more information about how to program or operate these features, consult the DS250DF230 Programmer's  
Guide (SNLU182).  
8.2 Functional Block Diagram  
To adjacent  
channel  
One of two channels  
DFE  
Term  
Raw  
Retimed  
PRBS  
RXnP  
RXnN  
TXnP  
TXnN  
X-  
point  
CTLE+VGA  
Sampler  
TX FIR  
Driver  
+
PRBS  
Gen  
Signal  
Detect  
Voltage  
Regulator  
Eye  
Monitor  
PRBS  
Checker  
Voltage  
Regulator  
PFD, CDR,  
and Divider  
VCO  
Channel Digital Core  
CAL_CLK_IN  
ADDRn  
Buffer  
CAL_CLK_OUT  
SCL  
SDA  
Power-On  
Reset  
Always-On  
10MHz  
Shared Digital Core  
READ_EN_N  
EN_SMB  
ALL_DONE_N  
INT_N  
Shared Digital Core  
16  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
8.3 Feature Description  
8.3.1 Device Data Path Operation  
The DS250DF230 data path consists of several key blocks as shown in the functional block diagram. These key  
circuits are:  
Signal Detect  
Continuous Time Linear Equalizer (CTLE)  
Variable Gain Amplifier (VGA)  
Cross-Point Switch  
Decision Feedback Equalizer (DFE)  
Clock and Data Recovery (CDR)  
Calibration Clock  
Differential Driver With FIR Filter  
8.3.2 Signal Detect  
The DS250DF230 receiver contains a signal detect circuit. The signal detect circuit monitors the energy level on  
the receiver inputs and powers on or off the rest of the high-speed data path if a signal is detected or not. By  
default, each channel allows the signal detect circuit to automatically power on or off the rest of the high-speed  
data path depending on the presence of an input signal. The signal detect block can be manually controlled in  
the SMBus channel registers. This can be useful if it is desired to manually force channels to be disabled. For  
information on how to manually operate the signal detect circuit, refer to the DS250DF230 Programmer's Guide  
(SNLU182).  
8.3.3 Continuous Time Linear Equalizer (CTLE)  
The CTLE in the DS250DF230 is a fully-adaptive equalizer. The CTLE adapts according to a Figure of Merit  
(FOM) calculation during the lock acquisition process. The FOM calculation is based upon the horizontal eye  
opening (HEO) and vertical eye opening (VEO). Once the CDR locks and the CTLE adapts, the CTLE boost  
level is frozen until a manual re-adapt command is issued or until the CDR re-enters the lock acquisition state.  
The CTLE can be re-adapted by resetting the CDR.  
The CTLE consists of 4 stages, with each stage having 2-bit boost control. This allows for many boost  
combinations, including bypassing the first three stages EQs. The CTLE adaption algorithm allows the CTLE to  
adapt through 20 of these boost combinations. These 20 boost combinations comprise the EQ Table in the  
channel registers. See channel registers 0x40 through 0x53.  
The boost levels can be set between approximately 0 dB and 25 dB (at 12.89 GHz.)  
8.3.4 Variable Gain Amplifier (VGA)  
The DS250DF230 receiver implements a VGA. The VGA assists in the recovery of extremely small signals,  
working in conjunction with the CTLE to equalize and scale amplitude. The VGA has 1-bit control through  
Reg_0x8E[0], and the VGA is in the low-gain state (Reg_0x8E[0]=0) by default. In addition to the VGA, the CTLE  
implements its own gain control through Reg_0x13[5] to adjust the DC amplitude similar to the VGA. For more  
information on how to configure the VGA and EQ gain, refer to the DS250DF230 Programmer's Guide  
(SNLU182).  
8.3.5 Cross-Point Switch  
DS250DF230 has a 2×2 cross-point that may be enabled to implement a 2-to-1 mux, a 1-to-2 fanout, or an A-to-  
B/B-to-A lane cross.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: DS250DF230  
 
 
 
 
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Feature Description (continued)  
8.3.6 Decision Feedback Equalizer (DFE)  
A 5-tap DFE can be enabled within the data path of each channel to assist in reducing the effects of crosstalk,  
reflections, or post-cursor, inter-symbol interference (ISI). The DFE must be manually enabled, regardless of the  
selected adapt mode. Once the DFE is enabled, it can be configured to adapt only during lock acquisition or to  
adapt continuously. The DFE can also be manually configured to specified tap polarities and tap weights.  
However, when the DFE is configured manually, the DFE auto-adaption must be disabled. For many applications  
with lower insertion loss (that is, < 30 dB) lower crosstalk, and/or lower reflections, part or all of the DFE can be  
disabled to reduce power consumption. The DFE can either be fully enabled (taps 1-5), partially enabled (taps 1-  
2 only), or fully disabled (no taps). The DFE taps support continuous adaptation, the device is capable of  
compensating large channel loss variation over temperature  
The DFE taps are all feedback taps with 1UI spacing. Each tap has a specified boost weight range and polarity  
bit.  
Table 1. DFE Tap Weights  
DFE PARAMETER  
Tap 1 Weight Range  
Tap 2-5 Weight Range  
Tap Weight Step Size  
DECIMAL (REGISTER VALUE)  
VALUE (mV) (TYP)  
0 - 31  
0 - 15  
NA  
0 – 217  
0 – 105  
7
0: (+) positive; feedback value creates a low-pass filter response, thus providing attenuation to  
correct for negative-sign, post-cursor ISI  
Polarity  
1: (-) negative; Feedback value creates a high-pass filter response, thus providing boost to correct  
for positive-sign, post-cursor ISI.  
8.3.7 Clock and Data Recovery (CDR)  
The CDR consists of a Phase-Locked Loop (PLL), PPM counter, and Input and Output Data Multiplexers (mux)  
that allow for retimed data, non-retimed data, a PRBS generator, and output muted modes.  
By default, the equalized data is fed into the CDR for clock and data recovery. The recovered data is then output  
to the FIR filter and differential driver together with the recovered clock that was cleaned of any high-frequency  
jitter outside the bandwidth of the CDR clock recovery loop. The bandwidth of the CDR defaults to 4.7 MHz  
(typical) in full-rate (divide-by-1) mode and 4 MHz (typical) in sub-rate mode. The CDR bandwidth is adjustable.  
Refer to the DS250DF230 Programmer's Guide (SNLU182) for more information on adjusting the CDR  
bandwidth. Users can configure the CDR data to route the recovered clock and data to the PRBS checker. Users  
also have the option of configuring the output of the CDR to send raw non-retimed data, or data from the pattern  
generator.  
The CDR requires these items for proper configuration:  
A 30.72-MHZ or 25-MHz calibration clock to run the PPM counter (CAL_CLK_IN).  
Expected data rates must be programmed into the CDR either through the rate table or entered manually with  
the corrected divider settings. Refer to the DS250DF230 Programmer's Guide (SNLU182) for more  
information on configuring the CDR for different data rates.  
The DS250DF230 offers a low-speed recovered clock for channel 0. This feature is useful for the cases when  
recovered clock from FPGA or ASIC has in-band spurs on the phase noise plot because of the digital switching  
noise. See the Table 6 for the recovered clock frequency versus input data rate.  
The DS250DF230 offers fast lock option, so that the CDR Lock time can be as fast as 2 ms. See CDR lock time  
parameter in Electrical Characteristics  
When DS250DF230 is configured to Raw mode(CDR bypassed), the output differential voltage amplitude of the  
transmitter is adjustable. See the VOD_Raw_L and VOD_Raw_H parameters from Electrical Characteristics. When  
switching from Raw mode to Retimed mode(CDR Enabled), REG_0x1A[7:6] and REG_0x0D[0] values need to  
be changed back to default. Refer to the DS250DF230 Programmer's Guide (SNLU182) for more information.  
18  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
8.3.8 Calibration Clock  
The calibration clock is not part of the CDR’s PLL and thus is not used for clock and data recovery. The  
calibration clock is connected only to the PPM counter for each CDR. The PPM counter constrains the allowable  
lock ranges of the CDR according to the programmed values in the rate table or the manually entered data rates.  
The host must provide an input calibration clock signal of 30.72-MHZ or 25-MHz frequency. This clock is not  
used for clock and data recovery, thus there are no stringent jitter requirements placed on this calibration clock.  
8.3.9 Differential Driver With FIR Filter  
The DS250DF230 output driver has a three-tap finite impulse response (FIR) filter which allows for pre- and post-  
cursor equalization to compensate for a wide variety of output channel media. The filter consists of a weighted  
sum of three consecutive retimed bits as shown in Figure 7. C[0] can take on values in the range [-31, +31]. C[-1]  
and C[+1] can take on values in the range [-15, 15].  
Retimed  
Data  
FIR filter  
output  
x
+
1 UI  
Delay  
C[-1]  
Pre-cursor  
x
+
1 UI  
Delay  
C[0]  
Main-curosr  
x
C[+1]  
Post-cursor  
Figure 7. FIR Filter Functional model  
When using the FIR filter, it is important to abide by these general rules:  
|C[-1]| + |C[0]| + |C[+1]| 31; the FIR tap coefficients absolute sum must be less or equal to 31  
sgn(C[-1]) = sgn(C[+1]) sgn(C[0]), for high-pass filter effect; the sign for the pre-cursor and/or post-cursor  
tap must be different from main-cursor tap to realize boost effect  
sgn(C[-1]) = sgn(C[+1]) = sgn(C[0]), for low-pass filter effect; the sign for the pre-cursor and/or post-cursor tap  
must be equal to the main-cursor tap to realize attenuation effect  
The FIR filter is used to pre-distort the transmitted waveform to compensate for frequency-dependant loss in the  
output channel. The most common way of pre-distorting the signal is to accentuate the transitions and de-  
emphasize the non-transitions. The bit before a transition is accentuated through the pre-cursor tap, and the bit  
after the transition is accentuated through the post-cursor tap. The waveforms in Figure 8 through Figure 10 give  
a conceptual illustration of how the FIR filter affects the output waveform. These characteristics can be derived  
from the example waveforms:  
VODpk-pk= v7 – v8  
VODlow-frequency = v2 – v5  
RpredB = 20 × log10 (v3 v2 )  
RpstdB = 20 × log10 (v1 v2 )  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: DS250DF230  
 
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Transmitted  
Bits: 0  
0
1
1
1
1
0
0
0
0
1
0
1
Differential  
Voltage  
v1  
v7  
v2  
v3  
0V  
Time [UI]  
v5  
v6  
v4  
v8  
Figure 8. Conceptual FIR Waveform With Post-Cursor Only  
Transmitted  
Bits: 0  
0
1
1
1
1
0
0
0
0
1
0
1
Differential  
Voltage  
v3  
v7  
v1  
v2  
0V  
Time [UI]  
v4  
v5  
v6  
v8  
Figure 9. Conceptual FIR Waveform With Pre-Cursor Only  
Transmitted  
Bits: 0  
0
1
1
1
1
0
0
0
0
1
0
1
Differential  
Voltage  
v7  
v1  
v3  
v2  
0V  
Time [UI]  
v5  
v6  
v4  
v8  
Figure 10. Conceptual FIR Waveform With Both Pre- and Post-Cursor  
20  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
8.3.9.1 Setting the Output VOD, Pre-Cursor, and Post-Cursor Equalization  
The output differential voltage (VOD), pre-cursor, and post-cursor equalization of the driver is controlled by  
manipulating the FIR tap settings. The main cursor tap is the primary knob for amplitude adjustment. The pre-  
and post-cursor FIR tap settings can then be adjusted to provide equalization. To maintain a constant peak-to-  
peak VOD, the user must adjust the main cursor tap value relative to the pre- and post-cursor tap changes so as  
to maintain a constant absolute sum of the FIR tap values. Table 2 shows various settings for VOD settings  
ranging from 350 mVpp to 1195 mVpp (typical). Note that the output peak-to-peak amplitude is a function of the  
sum of the absolute values of the taps, whereas the low-frequency amplitude is purely a function of the main-  
cursor value.  
Table 2. Typical VOD and FIR Values  
FIR SETTINGS  
Peak-to Peak  
RPRE(dB)  
RPST(dB)  
PRE-CURSOR:  
REG_0x3E[6:0]  
MAIN-CURSOR:  
REG_0x3D[6:0]  
POST-CURSOR:  
REG_0x3F[6:0]  
VOD(V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
+3  
0
0
0.350  
0.392  
0.436  
0.482  
0.524  
0.562  
0.602  
0.638  
0.678  
0.710  
0.748  
0.782  
0.816  
0.846  
0.880  
0.910  
0.944  
0.968  
0.998  
1.028  
1.056  
1.076  
1.096  
1.120  
1.140  
1.155  
1.175  
1.185  
1.195  
0.880  
0.880  
0.880  
0.880  
0.880  
0.880  
0.880  
0.880  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
2.0  
2.7  
3.4  
4.3  
5.4  
6.7  
8.4  
11  
+4  
+5  
0
+6  
0
+7  
0
+8  
0
+9  
0
+10  
+11  
+12  
+13  
+14  
+15  
+16  
+17  
+18  
+19  
+20  
+21  
+22  
+23  
+24  
+25  
+26  
+27  
+28  
+29  
+30  
+31  
+16  
+15  
+14  
+13  
+12  
+11  
+10  
+9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: DS250DF230  
 
 
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 2. Typical VOD and FIR Values (continued)  
FIR SETTINGS  
Peak-to Peak  
VOD(V)  
RPRE(dB)  
RPST(dB)  
PRE-CURSOR:  
REG_0x3E[6:0]  
MAIN-CURSOR:  
REG_0x3D[6:0]  
POST-CURSOR:  
REG_0x3F[6:0]  
-1  
-2  
-3  
-4  
0
+16  
+15  
+14  
+13  
+30  
+29  
+28  
+27  
+26  
+25  
+24  
+23  
+22  
+21  
+20  
+19  
+30  
+29  
+28  
+27  
+26  
+25  
+24  
0
0
0.880  
0.880  
0.880  
0.880  
1.195  
1.195  
1.195  
1.195  
1.195  
1.195  
1.195  
1.195  
1.195  
1.195  
1.195  
1.195  
1.195  
1.195  
1.195  
1.195  
1.195  
1.195  
1.195  
0.7  
1.5  
2.5  
3.5  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
0.4  
0.6  
0.9  
1.3  
1.7  
2.1  
2.7  
NA  
NA  
NA  
NA  
0.6  
0.8  
1.1  
1.4  
1.8  
2.3  
2.8  
3.4  
4.1  
4.9  
5.9  
6.9  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–11  
–12  
0
0
0
0
0
0
0
0
0
0
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
0
0
0
0
0
0
The recommended pre-cursor and post-cursor settings for a given channel will depend on the channel  
characteristics (mainly insertion loss) as well as the equalization capabilities of the downstream receiver. The  
DS250DF230 receiver, with its highly-capable CTLE and DFE, does not require a significant amount of pre- or  
post-cursor. The guidelines in Figure 11 through Figure 13 give general recommendations for pre- and post-  
cursor for different channel loss conditions. The insertion loss (IL) in these plots refers to the total loss between  
the link partner transmitter and the DS250DF230 receiver.  
22  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Figure 11. Guideline for Link Partner FIR Settings When IL 15 dB  
Figure 12. Guideline for Link Partner FIR Settings When IL 25 dB  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Figure 13. Guideline for Link Partner FIR Settings When IL 35 dB  
8.3.9.2 Output Driver Polarity Inversion  
In some applications, it may be necessary to invert the polarity of the data transmitted from the retimer. To invert  
the polarity of the data, read back the FIR polarity settings for the pre-, main and post-cursor taps and then invert  
these bits.  
8.3.9.3 Slow Slew Rate  
In some low speed applications, it may be needed to adjust the slew rate of the data transmitted from the  
retimer. DS250DF230 does offer this option. See output transition-time parameter from Electrical Characteristics.  
It is not recommended to use the slow rate setting for divide-by-1 data rate applications.  
8.3.10 Debug Features  
8.3.10.1 Pattern Generator  
Each channel in the DS250DF230 can be configured to generate a 16-bit user-defined data pattern or a pseudo-  
random bit sequence (PRBS). The user defined pattern can also be set to automatically invert every other 16-bit  
symbol for DC balancing purposes. The DS250DF230 pattern generator supports the following PRBS  
sequences:  
PRBS – 27 – 1  
PRBS – 29 – 1  
PRBS – 211 – 1  
PRBS – 215 – 1  
PRBS – 223 – 1  
PRBS – 231 – 1  
24  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
8.3.10.2 Pattern Checker  
The pattern checker can be manually set to look for specific PRBS sequences and polarities or it can be set to  
automatically detect the incoming pattern and polarity. The PRBS checker supports the same set of PRBS  
patterns as the PRBS generator.  
The pattern checker consists of an 11-bit error counter. The pattern checker uses 32-bit words, but every bit in  
the word is checked for error, so the error count represents the count of single bit errors.  
To read out the bit and error counters, the pattern checker must first be frozen. Continuous operation with  
simultaneous read out of the bit and error counters is not supported in this implementation. Once the bit and  
error counter is read, they can be unfrozen to continue counting.  
8.3.10.3 Eye-Opening Monitor  
The DS250DF230’s Eye-Opening Monitor (EOM) measures the internal data eye at the input of the decision  
slicer and can be used for 2 functions:  
1. Horizontal Eye Opening (HEO) and Vertical Eye Opening (VEO) measurement  
2. Full Eye Diagram Capture  
The HEO measurement is made at the 0 V crossing and is read in channel register 0x27. The VEO  
measurement is made at the 0.5 UI mark and is read in channel register 0x28. The HEO and VEO registers can  
be read from channel registers 0x27 and 0x28 at any time while the CDR is locked. The following equations are  
used to convert the contents of channel registers 0x27 and 0x28 into their appropriate units:  
HEO [UI] = Reg_0x27 ÷ 32  
VEO [mV] = Reg_0x28 × 3.125  
A full eye diagram capture can be performed when the CDR is locked. The eye diagram is constructed within a  
64 × 64 array, where each cell in the matrix consists of an 16-bit word representing the total number of hits  
recorded at that particular phase and voltage offset. Users can manually adjust the vertical scaling of the EOM or  
allow the state machine to control the scaling which is the default option. The horizontal scaling controlled by the  
state machine is always directly proportional to the data rate.  
When a full eye diagram plot is captured, the retimer will shift out four 16-bit words of residual data that must be  
discarded followed by 4096 16-bit words that make up the 64 × 64 eye plot. The first actual word of the eye plot  
from the retimer is for (X, Y) position (0,0), which is the earliest position in time and the most negative position in  
voltage. Each time the eye plot data is read out, the voltage position is incremented. Once the voltage position  
has incremented to position 63 (the most positive voltage), the next read will cause the voltage position to reset  
to 0 (the most negative voltage) and the phase position to increment. This process will continue until the entire  
64 × 64 matrix is read out. Figure 14 shows the EOM read out sequence overlaid on top of a simple eye opening  
plot. In this plot any hits are shown in green. This type of plot is helpful for quickly visualizing the HEO and VEO.  
Users can apply different algorithms to the output data to plot density or color gradients to the output data.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
63  
127  
63  
4095  
0
64  
4032  
63  
Phase Position  
Figure 14. EOM Full Eye Capture Readout  
26  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
To manually control the EOM vertical range, remove scaling control from the state machine then select the  
desired range:  
Channel Reg 0x2C[6] 0 (see Table 3).  
Table 3. Eye-Opening Monitor Vertical Range Settings  
CH REG 0x11[7:6] VALUE  
EOM VERTICAL RANGE [mV]  
2’b00  
2'b01  
2'b10  
2'b11  
±100  
±200  
±300  
±400  
The EOM operates as an under-sampled circuit. This allows the EOM to be useful in identifying over  
equalization, ringing and other gross signal conditioning issues. However, the EOM cannot be correlated to a bit  
error rate.  
The EOM can be accessed in two ways to read out the entire eye plot:  
Multi-byte reads can be used such that data is repeatedly latched out from channel register 0x25.  
With single byte reads, the MSB are located in register 0x25 and the LSB are located in register 0x26. In this  
mode, the device must be addressed each time a new byte is read.  
To perform a full eye capture with the EOM, follow the steps listed in Table 4 within the desired channel register  
set:  
Table 4. Eye-Opening Monitor Full Eye Capture Instructions  
STEP  
REGISTER [bits]  
0x67[5]  
Operation  
Write  
VALUE  
DESCRIPTION  
Disable lock EOM lock monitoring  
1
0
0
0x2C[6]  
Write  
2
Set the desired EOM vertical range  
0x11[7:6]  
0x11[5]  
Write  
2'b--  
0
3
4
Write  
Power on the EOM  
Enable fast EOM  
0x24[7]  
Write  
1
Begin read out of the 64 × 64 array, discard first 4 words  
Ch reg 0x24[0] is self-clearing.  
0x24[0]  
0x25  
0x26  
5
6
Read  
1
0x25 is the MSB of the 16-bit word  
0x26 is the LSB of the 16-bit word  
0x25  
0x26  
Continue reading information until the 64 × 64 array is  
complete.  
Read  
0x67[5]  
0x2C[6]  
0x11[5]  
0x24[7]  
Write  
Write  
Write  
Write  
1
1
1
0
7
Return the EOM to its original state. Undo steps 1-4  
8.3.11 Interrupt Signals  
The DS250DF230 can be configured to report different events as interrupt signals. These interrupt signals do not  
impact the operation of the device, but merely report that the selected event has occurred. The interrupt bits in  
the register sets are all sticky bits. This means that when an event triggers an interrupt the status bit for that  
interrupt is set to logic HIGH. This interrupt status bit will remain at logic HIGH until the bit has been read. Once  
the bit has been read it will be automatically cleared, which allows for new interrupts to be detected. The  
DS250DF230 will report the occurrence of an interrupt through the INT_N pin. The INT_N pin is an open-drain  
output that will pull the line low when an interrupt signal is triggered.  
Note that all available interrupts are disabled by default. Users must activate the various interrupts before they  
can be used.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: DS250DF230  
 
 
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
The interrupts available in the DS250DF230 are:  
CDR loss of lock  
CDR locked  
Signal detect loss  
Signal detected  
PRBS pattern checker bit error detected  
HEO/VEO threshold violation  
When an interrupt occurs, share register 0x08 reports which channel generated the interrupt request. Users can  
then select the channel(s) that generated the interrupt request and service the interrupt by reading the  
appropriate interrupt status bits in the corresponding channel registers. For more information on reading interrupt  
status, refer to the DS250DF230 Programmer's Guide (SNLU182).  
8.4 Device Functional Modes  
8.4.1 Supported Data Rates  
The DS250DF230 supports a wide range of input data rates, including divide-by-2 and divide-by-4 sub-rates. The  
supported data rates are listed in Table 5.  
Table 5. Supported Data Rates  
DATA RATE RANGE  
DIVIDER  
CDR MODE  
COMMENT  
MIN  
MAX  
19.6 Gbps  
> 12.9 Gbps  
9.8 Gbps  
> 6.45 Gbps  
4.9 Gbps  
25.8 Gbps  
<19.6 Gbps  
12.9 Gbps  
< 9.8 Gbps  
6.45 Gbps  
< 4.9 Gbps  
1
N/A  
2
Enabled  
Bypassed  
Enabled  
Output jitter will be higher with CDR bypassed.  
Output jitter will be higher with CDR bypassed.  
Output jitter will be higher with CDR bypassed.  
N/A  
4
Bypassed  
Enabled  
N/A  
Bypassed  
The device can be configured to operate at different standard data rates by programming the Rate/Sub-Rate  
register Reg_2F[7:4], For more information on data rate programming, refer to the DS250DF230 Programmer's  
Guide (SNLU182).  
Table 6. Rate/Sub-Rate Table(1)  
RATE Reg_0x2F[7:4]  
Standard  
CPRI Option 9  
CPRI Option 7  
CPRI Option 8  
CPRI Option 10  
CPRI Option 5  
100GbE  
Input Data Rates [Gbps]  
12.16512  
Recovered Clock Frequency [MHZ]  
0
30.72  
30.72  
1
9.83040  
2
10.13760  
30.72  
3
4
24.33024  
30.72  
4.91520  
30.72  
5 (Default)  
25.78125  
32.2265625  
32.2265625  
32.2265625  
32.2265625  
30.72  
25.78125  
6
100GbE/ 40GbE/ 10GbE  
10.31250  
7
8
40GbE/ 10GbE  
CPRI Option 6  
10.31250  
6.14400  
(1) This table is valid only when the calibration clock is 30.72-MHZ. Refer to the DS250DF230 Programmer's Guide (SNLU182) for more  
information.  
28  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
 
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
8.4.2 SMBus Master Mode  
SMBus master mode allows the DS250DF230 to program itself by reading directly from an external EEPROM.  
When using the SMBus master mode, the DS250DF230 will read directly from specific location in the external  
EEPROM. When designing a system for using the external EEPROM, the user must follow these specific  
guidelines:  
Maximum EEPROM size is 2048 Bytes  
Minimum EEPROM size for a single DS250DF230 with individual channel configuration is 161 Bytes (3 base  
header bytes + 12 address map bytes + 2 × 72 channel register bytes + 2 share register bytes; bytes are  
defined to be 8-bits)  
Set ENSMB = Float, for SMBus master mode  
The external EEPROM device address byte must be 0xA0  
The external EEPROM device must support 400kHz operation at 2.5-V or 3.3-V supply  
THR pin is pulled low by 1 kto GND, so that DS250DF230 is working under 2.5-V/3.3-V SMBus interface  
mode  
Set the SMBus address of the DS250DF230 by configuring the ADDR0 and ADDR1 pins  
When loading multiple DS250DF230 devices from the same EEPROM, use these guidelines to configure the  
devices:  
Configure the SMBus addresses for each DS250DF230 to be sequential. The first device in the sequence  
must have an address of 0x30  
Daisy chain READ_EN_N and ALL_DONE_N from one device to the next device in the sequence so that they  
do not compete for the EEPROM at the same time.  
If all of the DS250DF230 devices share the same EEPROM channel and share register settings, configure  
the common channel bit in the base header to 1. With common channel configuration enabled, each  
DS250DF230 device will configure all 2 channels with the same settings.  
When loading a single DS250DF230 from an EEPROM, use these guidelines to configure the device:  
Set the common channel bit to 0 to allow for individual channel configuration, or set the common channel bit  
to 1 to load the same configuration settings to all channels.  
When configuring individual channels, a 512, 1024 or 2048 Byte EEPROM must be used.  
If there are more than three DS250DF230 devices on a PCB that require individual channel configuration,  
then each device must have its own EEPROM.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: DS250DF230  
 
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
8.4.3 Device SMBus Address  
The DS250DF230’s SMBus slave address is strapped at power up using the ADDR[1:0] pins. The pin state is  
read on power up, after the internal power-on reset signal is de-asserted. The ADDR[1:0] pins are four-level  
LVCMOS IOs, which provides for 16 unique SMBus addresses. The four levels are achieved by pin strap options  
as follows:  
0: 1 kto GND  
R: 10 kto GND (20 kΩ also acceptable)  
F: Float  
1: 1 kto VDD  
Table 7. SMBus Address Map  
REQUIRED ADDRESS PIN STRAP VALUE  
8-BIT WRITE ADDRESS [HEX]  
ADDR1  
ADDR0  
0x30  
0x32  
0x34  
0x36  
0x38  
0x3A  
0x3C  
0x3E  
0x40  
0x42  
0x44  
0x46  
0x48  
0x4A  
0x4C  
0x4E  
0
0
0
R
F
1
0
0
R
R
R
R
F
F
F
F
1
0
R
F
1
0
R
F
1
0
1
R
F
1
1
1
8.5 Programming  
8.5.1 Bit Fields in the Register Set  
Many of the registers in the DS250DF230 are divided into bit fields. This allows a single register to serve multiple  
purposes which may be unrelated. Often, configuring the DS250DF230 requires writing a bit field that makes up  
only part of a register value while leaving the remainder of the register value unchanged. The procedure for  
accomplishing this task is to read in the current value of the register to be written, modify only the desired bits in  
this value, and write the modified value back to the register. Of course, if the entire register is to be changed,  
rather than just a bit field within the register, it is not necessary to read in the current value of the register first. In  
all register configuration procedures described in the following sections, this procedure must be kept in mind. In  
some cases, the entire register is to be modified. When only a part of the register is to be changed, however, the  
procedure described above must be used.  
Most register bits can be read or written to. However, some register bits are constrained to specific interface  
instructions.  
Register bits can have the following interface constraints:  
R - Read only  
RW - Read/Write  
RWSC - Read/Write, self-clearing  
30  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Programming (continued)  
8.5.2 Writing to and Reading from the Global/Shared/Channel Registers  
The DS250DF230 has 3 types of registers:  
1. Global Registers – These registers can be accessed at any time and are used to select individual channel  
registers, the shared registers or to read back the TI ID and version information.  
2. Shared Registers – These registers are used for device-level configuration, status read back or control.  
3. Channel Registers – These registers are used to control and configure specific features for each individual  
channel. All channels have the same channel register set and can be configured independent of each other.  
The global registers can be accessed at any time, regardless of whether the shared or channel register set is  
selected. The DS250DF230 global registers are located on addresses 0xEF-0xFF. The function of the global  
registers falls into the following categories:  
Channel selection and share enabling – Registers 0xFC and 0xFF  
Device and version information – Registers 0xEF-0xF3  
Reserved/unused registers – all other addresses  
Register 0xFC is used to select the channel registers to be written to. To select a channel, write a 1 to its  
corresponding bit in register 0xFC. Note that more than one channel may be written to by setting multiple bits in  
register 0xFC. However, when performing an SMBus read transaction only one channel can be selected at a  
time. If multiple channels are selected in register 0xFC when attempting to perform an SMBus read, the device  
will return 0xFF.  
Register 0xFF bit 1 can be used to perform broadcast register writes to all channels. A single channel read-  
modify broadcast write type commands can be accomplished by setting register 0xFF to 0x03 and selecting a  
single channel in register 0xFC. This type of configuration allows for the reading of a single channel's register  
information and then writing to all channels with the modified value. Register 0xFF bit 0 is used to select the  
shared register page or the channel register page for the channels selected in register 0xFC.  
TI repeaters/retimers have a vendor ID register (0xFE) which will always read back 0x03. In addition, there are  
three device ID registers (0xF0, 0xF1, and 0xF3). These are useful to verify that there is a good SMBus  
connection between the SMBus master and the DS250DF230.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
8.6 Register Maps  
Table 8. Global Registers  
DEFAULT  
ADDRESS  
(HEX)  
BITS  
VALUE  
(HEX)  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
EF  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
SPARE  
SPARE  
SPARE  
SPARE  
R
R
R
CHAN_CONFIG_ID[3]  
CHAN_CONFIG_ID[2]  
CHAN_CONFIG_ID[1]  
CHAN_CONFIG_ID[0]  
VERSION[7]  
TI device ID (Quad count).  
DS250DF230: 0x0E  
R
R
R
F0  
F1  
F3  
FB  
FC  
R
TI version ID  
DS250DF230: 0x01  
R
VERSION[6]  
R
VERSION[5]  
R
VERSION[4]  
R
VERSION[3]  
R
VERSION[2]  
R
VERSION[1]  
R
VERSION[0]  
R
DEVICE_ID[7]  
DEVICE_ID[6]  
DEVICE_ID[5]  
DEVICE_ID[4]  
DEVICE_ID[3]  
DEVICE_ID[2]  
DEVICE_ID[1]  
DEVICE_ID[0]  
CHAN_VERSION[3]  
CHAN_VERSION[2]  
CHAN_VERSION[1]  
CHAN_VERSION[0]  
SHARE_VERSION[3]  
SHARE_VERSION[2]  
SHARE_VERSION[1]  
SHARE_VERSION[0]  
RESERVED  
Device ID DS250DF230: 0x15  
R
R
R
R
R
R
R
R
Digital Share Version  
Digital Share Version  
R
R
R
R
R
R
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EN_CH7  
EN_CH6  
EN_CH5  
EN_CH4  
32  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Register Maps (continued)  
Table 8. Global Registers (continued)  
DEFAULT  
ADDRESS  
(HEX)  
BITS  
VALUE  
(HEX)  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
EN_CH3  
EN_CH2  
EN_CH1  
EN_CH0  
Select channel 1  
Select channel 0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
TI vendor ID  
FD  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
FE  
VENDOR_ID[7]  
VENDOR_ID[6]  
VENDOR_ID[5]  
VENDOR_ID[4]  
VENDOR_ID[3]  
VENDOR_ID[2]  
VENDOR_ID[1]  
VENDOR_ID[0]  
RESERVED  
R
R
R
R
R
R
R
FF  
RW  
RW  
RESERVED  
RESERVED  
RESERVED  
EN_SHARE_Q1  
Select shared registers for quad 1  
(DS250DF810, DS280DF810 only)  
DS250DF230: 0  
5
0
RW  
N
4
3
2
0
0
0
RW  
RW  
RW  
N
N
N
EN_SHARE_Q0  
RESERVED  
Select shared registers for quad 0  
RESERVED  
RESERVED  
RESERVED  
WRITE_ALL_CH  
Allows user to write to all channels as  
if they are the same, but only allows  
read back from the channel specified  
in 0xFC.  
1
0
0
0
RW  
RW  
N
N
Note: EN_CH_SMB must be = 1 or  
else this function is invalid.  
EN_CH_SMB  
1: Enables SMBUS access to the  
channels specified in Reg_0xFC  
0: The shared registers are selected  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 9. Shared Registers  
DEFAULT  
ADDRESS  
(HEX)  
FIELD  
BITS  
VALUE  
(HEX)  
MODE  
EEPROM  
NAME  
DESCRIPTION  
SMBus Address  
Strapped 7-bit address is 0x18 +  
SMBus_Addr[3:0]  
00  
7
6
0
0
0
0
0
0
0
0
1
0
1
0
1
0
0
0
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
SMBUS_ADDR[3]  
SMBUS_ADDR[2]  
SMBUS_ADDR[1]  
SMBUS_ADDR[0]  
RESERVED  
5
R
4
R
3:0  
7
R
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
01  
R
RESERVED  
6
R
RESERVED  
5
R
RESERVED  
4
R
RESERVED  
3
R
RESERVED  
2
R
RESERVED  
1
R
RESERVED  
0
R
RESERVED  
02  
03  
04  
7:0  
7:0  
7
RW  
RW  
RW  
RESERVED  
RESERVED  
RESERVED  
RST_I2C_REGS  
1: Reset shared registers. This bit is  
self-clearing.  
6
0
RWSC  
N
0: Normal operation  
RST_I2C_MAS  
1: Reset for SMBus/I2C Master. This  
bit is self-clearing.  
5
4
0
0
RWSC  
RW  
N
N
0: Normal operation  
FRC_EEPRM_RD  
1: Force EEPROM Configuration  
0: Normal operation  
3
2
1
0
1
0
0
1
RW  
RW  
RW  
RW  
Y
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
05  
DISAB_EEPRM_CFG  
1: Disable Master Mode EEPROM  
configuration (if not started; this bit is  
not effective if EEPROM configuration  
is already started)  
7
0
RW  
N
0: Normal operation  
6:5  
4
0
1
RW  
R
N
N
RESERVED  
RESERVED  
EEPROM_READ_DONE  
1: SMBus Master mode EEPROM  
read complete  
0: SMBus Master mode EEPROM  
read not started or not complete  
TEST0_AS_CAL_CLK_IN  
CAL_CLK_INV_DIS  
1: Use TEST0 as the input for the  
25MHz CAL_CLK instead of  
CAL_CLK_IN. This must be configured  
for quad0 only.  
0: Normal operation. Use  
CAL_CLK_IN as the input for the  
25MHz CAL_CLK.  
3
2
0
RW  
N
1: Disable the inversion of  
CAL_CLK_OUT  
0: Normal operation. CAL_CLK_OUT  
is inverted with respect to  
CAL_CLK_IN.  
0
RW  
Y
1
0
0
1
0
RW  
RW  
RW  
Y
Y
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
06  
7:0  
34  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 9. Shared Registers (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
FIELD  
NAME  
BITS  
MODE  
EEPROM  
DESCRIPTION  
08  
7
6
5
4
0
0
0
0
R
R
R
R
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
INT_Q0C3  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Interrupt from channel 3. For  
DS250DF810 and DS280DF810, this  
applies to the quad selected by  
Reg_0xFF[5:4]. Not applicable to  
DS250DF210  
3
2
0
0
R
R
N
N
INT_Q0C2  
Interrupt from channel 2. For  
DS250DF810 and DS280DF810, this  
applies to the quad selected by  
Reg_0xFF[5:4]. Not applicable to  
DS250DF210  
INT_Q0C1  
INT_Q0C0  
RESERVED  
Interrupt from channel 1. For  
DS250DF810 and DS280DF810, this  
applies to the quad selected by  
Reg_0xFF[5:4].  
1
0
0
0
R
R
N
N
Interrupt from channel 0. For  
DS250DF810 and DS280DF810, this  
applies to the quad selected by  
Reg_0xFF[5:4].  
0A  
0B  
7:1  
0
0
0
R
Y
Y
RESERVED  
DIS_REFCLK_OUT  
1: Disable CAL_CLK_OUT (high-Z)  
RW  
0: Normal operation. Enable  
CAL_CLK_OUT  
7
6
5
4
0
0
0
1
RW  
R
N
N
N
N
RESERVED  
RESERVED  
REFCLK_DET  
1: 25MHz clock detected on  
CAL_CLK_IN  
0: No clock detected on CAL_CLK_IN  
RW  
RW  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230:  
Other Devices: RESERVED, 0  
MR_REFCLK_DET_DIS  
0: CAL_CLK_IN detection and status  
reporting enabled (default)  
3
0
RW  
N
1: CAL_CLK_IN detection disabled  
2
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
RW  
RW  
RW  
RW  
R
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0C  
0D  
0E  
7:0  
7:0  
7:2  
1:0  
7:0  
7
RW  
R
0F  
10  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
6
5
4
3
2
1
0
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 9. Shared Registers (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
FIELD  
NAME  
BITS  
MODE  
EEPROM  
DESCRIPTION  
11: Not valid  
11  
7
0
R
N
EECFG_CMPLT  
10: EEPROM load completed  
successfully  
EECFG_FAIL  
01: EEPROM load failed after 64  
attempts  
6
0
R
N
00: EEPROM load in progress  
5
4
3
2
1
0
0
0
0
0
0
0
R
R
R
R
R
R
N
N
N
N
N
N
EECFG_ATMPT[5]  
EECFG_ATMPT[4]  
EECFG_ATMPT[3]  
EECFG_ATMPT[2]  
EECFG_ATMPT[1]  
EECFG_ATMPT[0]  
REG_I2C_FAST  
Number of attempts made to load  
EEPROM image  
12  
1: EEPROM load uses Fast I2C Mode  
(400 kHz)  
7
1
RW  
N
0: EEPROM load uses Standard I2C  
Mode (100 kHz)  
6
5
4
3
2
1
0
0
0
1
0
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
36  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
00  
7
6
5
4
3
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RST_CORE  
1: Reset the 10M core clock domain.  
This is the main clock domain for all  
the state machines  
0: Normal operation  
2
1
0
0
0
0
RW  
RW  
RW  
N
N
N
RST_REGS  
RST_VCO  
1: Reset channel registers to power-up  
defaults.  
0: Normal operation  
1: Resets the CDR S2P clock domain,  
includes PPM counter, EOM counter.  
0: Normal operation  
RST_REFCLK  
1: Resets the 25MHz reference clock  
domain, includes PPM counter. Does  
not work if 25MHz clock is not present.  
0: Normal operation  
01  
7
6
0
0
R
R
N
N
SIGDET  
Raw Signal Detect observation  
POL_INV_DET  
Indicates PRBS checker detected  
polarity inversion in the locked data  
sequence.  
5
4
0
0
R
R
N
N
CDR_LOCK_LOSS_INT  
PRBS_SEQ_DET[3]  
1: Indicates loss of CDR lock after  
having acquired it. Bit clears on read.  
Feature must be enabled with  
Reg_0x31[1]  
Indicates the pattern detected on the  
input serial stream  
0xxx: No detect  
3
2
1
0
0
0
R
R
R
N
N
N
PRBS_SEQ_DET[2]  
PRBS_SEQ_DET[1]  
PRBS_SEQ_DET[0]  
1000: 7 bits PRBS sequence  
1001: 9 bits PRBS sequence  
1010: 11 bits PRBS sequence  
1011: 15 bits PRBS sequence  
1100: 23 bits PRBS sequence  
1101: 31 bits PRBS sequence  
1110: 58 bits PRBS sequence  
1111: 63 bits PRBS sequence  
0
7
0
0
R
R
N
N
SIG_DET_LOSS_INT  
CDR_STATUS[7]  
Loss of signal indicator, set once  
signal is acquired and then lost. Clears  
on read. Feature must be enabled with  
reg_31[0]  
02  
This register is used to read the status  
of internal signal.  
Select what is observable on this bus  
using Reg_0x0C[7:4]  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
N
N
N
N
N
N
N
CDR_STATUS[6]  
CDR_STATUS[5]  
CDR_STATUS[4]  
CDR_STATUS[3]  
CDR_STATUS[2]  
CDR_STATUS[1]  
CDR_STATUS[0]  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
03  
04  
05  
06  
07  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
EQ_BST0[1]  
This register can be used to force an  
EQ boost setting if used in conjunction  
with channel Reg_0x2D[3].  
EQ_BST0[0]  
EQ_BST1[1]  
EQ_BST1[0]  
EQ_BST2[1]  
EQ_BST2[0]  
EQ_BST3[1]  
EQ_BST3[0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
38  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
08  
7
6
5
4
3
2
1
0
7
0
1
1
1
0
0
1
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
REG_VCO_CAP_OV  
09  
Enable bit to override cap_cnt with  
value in Reg_0x0B[4:0]  
6
0
RW  
Y
REG_SET_CP_LVL_LPF_OV  
Enable bit to override lpf_dac_val with  
value in Reg_0x1F[4:0]  
5
4
0
0
RW  
RW  
Y
Y
REG_BYPASS_PFD_OV  
0: Normal operation.  
REG_EN_FD_PD_VCO_PDIQ_ Enable bit to override en_fd, pd_pd,  
OV  
pd_vco, pd_pdiq with Reg_0x1E[0],  
Reg_0x1E[2], Reg_0x1C[0],  
Reg_0x1C[1]  
3
2
0
0
RW  
RW  
Y
Y
REG_EN_PD_CP_OV  
REG_DIVSEL_OV  
Enable bit to override pd_fd_cp and  
pd_pd_cp with value in Reg_0x1B[1:0]  
Enable bit to override divsel with value  
in Reg_0x18[6:4]  
1
0
7
6
0
0
0
0
RW  
RW  
RW  
RW  
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0A  
RESERVED  
RESERVED  
REG_EN_IDAC_PD_CP_OV_  
Enable bit to override phase detector  
AND_REG_EN_IDAC_FD_CP_ charge pump settings with  
OV  
Reg_0x1C[7:5]  
Enable bit to override frequency  
detector charge pump settings with  
Reg_0x1C[4:2]  
5
0
RW  
Y
REG_DAC_LPF_HIGH_PHASE_ Enable bit to loop filter comparator trip  
OV_  
voltages with Reg_0x16[7:0]  
AND_REG_DAC_LPF_LOW_PH  
ASE_OV  
4
3
0
0
RW  
RW  
Y
N
RESERVED  
RESERVED  
REG_CDR_RESET_OV  
Enable CDR Reset override with  
Reg_0x0A[2]  
2
1
0
0
RW  
RW  
N
N
REG_CDR_RESET_SM  
REG_CDR_LOCK_OV  
CDR Reset override bit  
Enable CDR lock signal override with  
Reg_0x0A[0]  
0
7
6
5
4
3
2
1
0
0
0
1
1
0
0
0
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
Y
Y
Y
Y
Y
Y
Y
Y
REG_CDR_LOCK  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CDR lock signal override bit  
RESERVED  
0B  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
0C  
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DES_PD  
0D  
1: De-serializer (for PRBS checker) is  
powered down  
0: De-serializer (for PRBS checker) is  
enabled  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
Y
Y
Y
Y
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RAW_TX_SWING  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230 A1 Only:  
0: Low Swing(Default)  
1: High Swing, only when CDR is  
bypassed. Not Recommended when  
CDR is enabled  
0E  
0F  
10  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
1
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
40  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
11  
7
6
0
0
RW  
RW  
Y
Y
EOM_SEL_VRANGE[1]  
EOM_SEL_VRANGE[0]  
Manually set the EOM vertical range,  
used with channel Reg_0x2C[6]:  
00: ±100 mV  
01: ±200 mV  
10: ±300 mV  
11: ±400 mV  
5
1
RW  
Y
EOM_PD  
1: Normal operation. Eye opening  
monitor (EOM) is automatically duty-  
cycled.  
0: EOM is force-enabled  
4
3
0
0
RW  
RW  
N
Y
RESERVED  
RESERVED  
DFE_TAP2_POL  
Bit forces DFE tap 2 polarity  
1: Negative, boosts by the specified  
tap weight  
0: Positive, attenuates by the specified  
tap weight  
2
1
0
7
0
0
0
1
RW  
RW  
RW  
RW  
Y
Y
Y
Y
DFE_TAP3_POL  
DFE_TAP4_POL  
DFE_TAP5_POL  
DFE_TAP1_POL  
Bit forces DFE tap 3 polarity  
1: Negative, boosts by the specified  
tap weight  
0: Positive, attenuates by the specified  
tap weight  
Bit forces DFE tap 4 polarity  
1: Negative, boosts by the specified  
tap weight  
0: Positive, attenuates by the specified  
tap weight  
Bit forces DFE tap 5 polarity  
1: Negative, boosts by the specified  
tap weight  
0: Positive, attenuates by the specified  
tap weight  
12  
Bit forces DFE tap 1 polarity  
1: Negative, boosts by the specified  
tap weight  
0: Positive, attenuates by the specified  
tap weight  
6
5
4
3
2
1
0
0
0
0
0
0
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
DFE_WT1[4]  
DFE_WT1[3]  
DFE_WT1[2]  
DFE_WT1[1]  
DFE_WT1[0]  
RESERVED  
RESERVED  
These bits force DFE tap 1 weight.  
Manual DFE operation is required for  
this to take effect by setting  
Reg_0x15[7]=1.  
If Reg_0x15[7]=0, the value defined  
here is used as the initial DFE tap 1  
weight during adaptation.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
13  
7
1
0
1
RW  
N
EQ_PD_PEAKDETECT  
1: Normal operation. Power down test  
mode.  
0: Test mode.  
6
5
RW  
RW  
Y
Y
EQ_PD_SD  
1: Power down signal detect.  
0: Normal operation. Enable signal  
detect.  
EQ_HI_GAIN  
1: Enable high DC gain mode in the  
equalizer  
0: Enable low DC gain mode in the  
equalizer  
(Refer to the Programming Guide for  
more details)  
4
1
RW  
Y
EQ_EN_DC_OFF  
1: Normal operation.  
0: Disable DC offset compensation.  
3
2
0
0
RW  
RW  
Y
Y
RESERVED  
RESERVED  
EQ_LIMIT_EN  
1: Configures the final stage of the  
equalizer to be a limiting stage.  
0: Normal operation, final stage of the  
equalizer is configured to be a non-  
limiting stage.  
1
0
7
0
0
0
RW  
RW  
RW  
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
14  
EQ_SD_PRESET  
1: Forces signal detect HIGH, and  
force enables the channel. Should not  
be set if bit 6 is set.  
0: Normal Operation.  
6
0
RW  
Y
EQ_SD_RESET  
1: Forces signal detect LOW and force  
disables the channel. Should not be  
set if bit 7 is set.  
0: Normal Operation.  
5
4
0
0
RW  
RW  
Y
Y
EQ_REFA_SEL1  
EQ_REFA_SEL0  
Controls the signal detect assert  
levels.  
(Refer to the Programming Guide for  
more details)  
3
2
0
1
RW  
RW  
Y
Y
EQ_REFD_SEL1  
EQ_REFD_SEL0  
Controls the signal detect de-assert  
levels.  
(Refer to the Programming Guide for  
more details)  
1
0
7
0
0
0
RW  
RW  
RW  
N
N
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
15  
DFE_FORCE_EN  
1: Enables manual DFE tap settings  
0: Normal operation  
6
5
4
3
0
0
1
0
RW  
RW  
RW  
RW  
N
N
Y
Y
RESERVED  
RESERVED  
RESERVED  
DRV_PD  
RESERVED  
RESERVED  
RESERVED  
1: Powers down the high speed driver  
0: Normal operation  
2
0
RW  
Y
RESERVED  
DS250DF230 Alpha Version Only:  
EQ_EN_BYPASS: CTLE (EQ) stage  
1-3 bypass  
1: CTLE stages 1-3 are bypassed  
0: CTLE stage 1-3 are not bypassed  
(default)  
1
0
0
0
RW  
RW  
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
42  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
16  
17  
18  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
0
1
1
1
1
0
1
0
0
0
1
1
0
1
1
0
0
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PDIQ_SEL_DIV[2]  
PDIQ_SEL_DIV[1]  
PDIQ_SEL_DIV[0]  
These bits will force the divider setting  
if 0x09[2] is set.  
000: Divide by 1  
001: Divide by 2  
010: Divide by 4  
011: Divide by 8  
100: Divide by 16  
All other values are reserved.  
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
Y
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
BG_SEL_RPH_LV[1]  
BG_SEL_RPH_LV[0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RPH  
19  
1A  
RPH  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: en_rclk_lv  
1: Enable Recovered clock output on  
IO pin  
0: Disable Recovered clock output on  
IO pin  
1
0
0
0
RW  
RW  
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
1B  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CP_EN_CP_PD  
1: Normal operation, phase detector  
charge pump enabled  
0
1
RW  
Y
CP_EN_CP_FD  
1: Normal operation, frequency  
detector charge pump enabled  
1C  
1D  
1E  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
Y
Y
Y
EN_IDAC_PD_CP2  
EN_IDAC_PD_CP1  
EN_IDAC_PD_CP0  
EN_IDAC_FD_CP2  
EN_IDAC_FD_CP1  
EN_IDAC_FD_CP0  
RESERVED  
Phase detector charge pump setting.  
Override bit required for these bits to  
take effect  
Frequency detector charge pump  
setting. Override bit required for these  
bits to take effect  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PFD_SEL_DATA_PRELCK[2]  
PFD_SEL_DATA_PRELCK[1]  
PFD_SEL_DATA_PRELCK[0]  
Output mode for when the CDR is not  
locked. For these values to take effect,  
Reg_0x09[5] must be set to 0, which is  
the default.  
000: Raw Data  
111: Mute (Default)  
All other values are reserved. (Refer to  
the Programming Guide for more  
details)  
4
3
0
1
RW  
RW  
N
Y
SER_EN  
DFE_PD  
1: Enable serializer (used for PRBS  
Generator)  
0: Normal operation. Disable serializer.  
This bit must be cleared for the DFE to  
be functional in any adapt mode.  
1: (Default) DFE disabled.  
0: DFE enabled  
2
1
0
0
0
1
RW  
RW  
RW  
Y
Y
Y
PFD_PD_PD  
1: Power down PFD phase detector.  
0: Normal operation. Enable PFD  
phase detector.  
EN_PARTIAL_DFE  
PFD_EN_FD  
1: Enable DFE taps 3-5. DFE_PD  
must also be set to 0.  
0: (Default) Disable DFE taps 3-5.  
1: Normal operation. Enable PFD  
frequency detector.  
0: Disable PFD frequency detector.  
44  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
1F  
7
6
5
4
3
0
0
0
0
1
RW  
RW  
RW  
RW  
RW  
N
N
N
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
MR_LPF_AUTO_ADJST_EN  
1: Normal operation. Allow LPF to tune  
to optimum value during fast-cap  
search routine.  
0: Otherwise LPF value is determined  
by the Reg_0x9D.  
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
RESERVED  
RESERVED  
RESERVED  
DFE_WT5[3]  
DFE_WT5[2]  
DFE_WT5[1]  
DFE_WT5[0]  
DFE_WT4[3]  
DFE_WT4[2]  
DFE_WT4[1]  
DFE_WT4[0]  
DFE_WT3[3]  
DFE_WT3[2]  
DFE_WT3[1]  
DFE_WT3[0]  
DFE_WT2[3]  
DFE_WT2[2]  
DFE_WT2[1]  
DFE_WT2[0]  
EOM_OV  
RESERVED  
RESERVED  
RESERVED  
20  
21  
22  
Bits force DFE tap 5 weight, manual  
DFE operation required to take effect  
by setting 0x15[7]=1.  
Bits force DFE tap 4 weight, manual  
DFE operation required to take effect  
by setting 0x15[7]=1.  
Bits force DFE tap 3 weight, manual  
DFE operation required to take effect  
by setting 0x15[7]=1.  
Bits force DFE tap 2 weight, manual  
DFE operation required to take effect  
by setting 0x15[7]=1.  
1: Override enable for EOM manual  
control  
0: Normal operation  
6
0
RW  
N
EOM_SEL_RATE_OV  
1: Override enable for EOM rate  
selection  
0: Normal operation  
5
4
3
2
1
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
23  
7
0
RW  
N
EOM_GET_HEO_VEO_OV  
1: Override enable for manual control  
of the HEO/VEO trigger  
0: Normal operation  
6
1
RW  
Y
DFE_OV  
1: Normal operation; DFE must be  
enabled in Reg_0x1E[3].  
5
4
3
2
1
0
7
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
FAST_EOM  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
24  
1: Enables fast EOM for full eye  
capture. In this mode the phase DAC  
and voltage DAC or the EOM are  
automatically incremented through a  
64 x 64 matrix. Values for each point  
are stored in Reg_0x25 and  
Reg_0x26.  
0: Normal operation.  
6
5
0
0
R
R
N
N
DFE_EQ_ERROR_NO_LOCK  
DFE/CTLE SM quit due to loss of lock  
GET_HEO_VEO_ERROR_NO_ get_heo_veo sees no hits at zero  
HITS crossing  
4
0
R
N
GET_HEO_VEO_ERROR_NO_ get_heo_veo cannot see a vertical eye  
OPENING  
opening  
3
2
0
0
RW  
N
N
RESERVED  
DFE_ADAPT  
RESERVED  
RWSC  
1: Manually start DFE adaption (self-  
clearing).  
0: Normal operation.  
1
0
R
N
EOM_GET_HEO_VEO  
1: Manually triggers HEO/VEO  
measurement; feature must be  
enabled with Reg_0x23[7]; the  
HEO/VEO values are read from  
Reg_0x27, Reg_0x28  
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RWSC  
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
EOM_START  
1: Starts EOM counter, self-clearing  
MSBs of EOM counter  
25  
EOM_COUNT15  
EOM_COUNT14  
EOM_COUNT13  
EOM_COUNT12  
EOM_COUNT11  
EOM_COUNT10  
EOM_COUNT9  
EOM_COUNT8  
EOM_COUNT7  
EOM_COUNT6  
EOM_COUNT5  
EOM_COUNT4  
EOM_COUNT3  
EOM_COUNT2  
EOM_COUNT1  
EOM_COUNT0  
R
R
R
R
R
R
R
26  
R
LSBs of EOM counter  
R
R
R
R
R
R
R
46  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
27  
28  
29  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
HEO7  
HEO6  
HEO5  
HEO4  
HEO3  
HEO2  
HEO1  
HEO0  
VEO7  
VEO6  
VEO5  
VEO4  
VEO3  
VEO2  
VEO1  
VEO0  
HEO value, requires CDR to be locked  
for valid measurement  
R
R
R
R
R
R
R
VEO value, requires CDR to be locked  
for valid measurement  
R
R
R
R
R
R
R
RW  
R
RESERVED  
RESERVED  
EOM_VRANGE_SETTING[1]  
EOM_VRANGE_SETTING[0]  
Read the currently set Eye Monitor  
Voltage Range:  
11 - +/-400mV  
R
10 - +/- 300mV  
01 - +/- 200mV  
00 - +/- 100mV"  
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
0
1
1
0
1
0
RW  
RW  
RW  
R
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
VEO[8]  
VEO MSB value  
HEO MSB value  
R
HEO[8]  
2A  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
EOM_TIMER_THR[3]  
EOM_TIMER_THR[2]  
EOM_TIMER_THR[1]  
EOM_TIMER_THR[0]  
VEO_MIN_REQ_HITS[3]  
VEO_MIN_REQ_HITS[2]  
VEO_MIN_REQ_HITS[1]  
VEO_MIN_REQ_HITS[0]  
The value of EOM_TIMER_THR[7:4]  
controls the amount of time the Eye  
Monitor samples each point in the eye.  
(Refer to the Programming Guide for  
more details)  
Whenever the Eye Monitor is used to  
measure HEO and VEO, the data is  
sampled for some number of bits, set  
by Reg_0x2A[7:4]. This register sets  
the number of hits within that sample  
size that is required before the EOM  
will indicate a hit has occurred. This  
filtering only affects the VEO  
measurement.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
2B  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EOM_MIN_REQ_HITS[3]  
EOM_MIN_REQ_HITS[2]  
EOM_MIN_REQ_HITS[1]  
EOM_MIN_REQ_HITS[0]  
Whenever the Eye Monitor is used to  
measure HEO and VEO, the data is  
sampled for some number of bits, set  
by Reg_0x2A[7:4]. This register sets  
the number of hits within that sample  
size that is required before the EOM  
will indicate a hit has occurred. This  
filtering only affects the HEO  
measurement.  
2C  
7
6
1
1
RW  
RW  
N
Y
RELOAD_DFE_TAPS  
VEO_SCALE  
Causes DFE taps to load from last  
adapted values  
1: Normal operation. Scale VEO  
based on EOM vrange.  
5
4
1
1
RW  
RW  
Y
Y
DFE_SM_FOM1  
DFE_SM_FOM0  
This register defines the Figure of  
Merit used when adapting the DFE:  
00: not valid  
01: SM uses only HEO  
10: SM uses only VEO  
11: SM uses both HEO and VEO  
Additionally, if Reg_0x6E[6] is set to  
'1', the Alternate FOM is used. This bit  
takes precedence over DFE_SM_FOM  
3
2
1
0
7
6
5
4
3
0
1
1
0
0
0
1
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
DFE_ADAPT_COUNTER[3]  
DFE_ADAPT_COUNTER[2]  
DFE_ADAPT_COUNTER[1]  
DFE_ADAPT_COUNTER[0]  
RESERVED  
DFE look-beyond count.  
2D  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
REG_EQ_BST_OV  
1: Allow override control of the EQ  
setting by writing to Reg_0x03  
0: Normal operation.  
2
0
RW  
Y
RESERVED  
DS250DF230:  
1: Set CTLE bypass Enabled when  
REG_RQ_BST_OV=1  
0: Normal operation.  
1
0
0
0
RW  
RW  
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
48  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
2E  
7
6
5
0
0
0
RW  
RW  
R
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EQ_BST3_BIT2_TO_EQ  
Read-back of eq_BST3[2] driving the  
EQ  
4
3
2
0
0
0
RW  
RW  
RW  
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PRBS_PATTERN_SEL[2]  
MSB for the PRBS_PATTERN_SEL  
field. Lower bits are found on  
Reg_0x30[1:0]. Refer to the Reg_0x30  
description on this table.  
1
0
7
6
5
4
3
0
0
0
1
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RATE[2]  
RESERVED  
RESERVED  
RESERVED  
2F  
Configure PPM register and divider for  
a standard data rate.  
(Refer to the Programming Guide for  
more details)  
RATE[1]  
RATE[0]  
INDEX_OV  
If this bit is 1, then Reg_0x39 is to be  
used as 4-bit index to the [15:0] array  
of EQ settings. The EQ setting at that  
index is loaded to the EQ boost  
registers going to the analog and is  
used as the starting point for adaption.  
2
1
RW  
Y
EN_PPM_CHECK  
1: (Default) Enable the PPM to be  
used as a qualifier when performing  
Lock Detect  
0: Remove the PPM check as a lock  
qualifier.  
1
0
0
0
RW  
Y
N
RESERVED  
DS250DF230:  
1: Disable eq_bypass for first 4 indices  
0: Enable eq_bypass for first 4 indices  
RWSC  
CTLE_ADAPT  
1: Re-starts CTLE adaptation, self-  
clearing  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
RW  
EEPROM  
FIELD NAME  
FREEZE_PPM_CNT  
EQ_SEARCH_OV_EN  
EN_PATT_INV  
DESCRIPTION  
30  
7
6
5
0
0
0
N
Y
N
1: Freeze the PPM counter to allow  
safe read asynchronously  
RW  
1: Enables the EQ 'search" bit to be  
forced by Reg_0x13[2]  
RW  
1: Enable automatic pattern inversion  
of successive 16 bit words when using  
the "Fixed Pattern" generator option.  
4
3
0
0
RW  
RW  
N
N
RELOAD_PRBS_CHKR  
PRBS_EN_DIG_CLK  
1: Force reload of seed into PRBS  
checker LFSR without holding the  
checker in reset.  
This bit enables the clock to operate  
the PRBS generator and/or the PRBS  
checker. Toggling this bit is the  
primary method to reset the PRBS  
pattern generator and PRBS checker.  
2
0
RW  
N
PRBS_PROGPATT_EN  
Enable a fixed data pattern output.  
Requires that serializer is enabled with  
Reg_0x1E[4]. PRBS generator and  
checker should be disabled,  
Reg_0x30[3]. The fixed data pattern is  
set by Reg_0x7C and Reg_0x97.  
Enable inversion of the pattern every  
16 bits with Reg_0x30[5].  
1
0
0
0
RW  
RW  
N
N
PRBS_PATTERN_SEL[1]  
PRBS_PATTERN_SEL[0]  
Selects the pattern output when using  
the PRBS generator. Requires the  
pattern generator to be configured  
properly. The MSB for the  
PRBS_PATTERN_SEL field is in  
Reg_0x2E[2].  
Use Reg_0x30[3] to enable the PRBS  
generator.  
000: 2^7-1 bits PRBS sequence  
001: 2^9-1 bits PRBS sequence  
010: 2^11-1 bits PRBS sequence  
011: 2^15-1 bits PRBS sequence  
100: 2^23-1 bits PRBS sequence  
101: 2^31-1 bits PRBS sequence  
110: 2^58-1 bits PRBS sequence  
111: 2^63-1 bits PRBS sequence  
50  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
PRBS_INT_EN  
DESCRIPTION  
31  
7
0
RW  
N
1: Enables interrupt for detection of  
PRBS errors. The PRBS checker must  
be properly configured for this feature  
to work.  
6
5
0
1
RW  
RW  
Y
Y
ADAPT_MODE[1]  
ADAPT_MODE[0]  
00: no adaption  
01: adapt CTLE only  
10: adapt CTLE until optimal, then  
DFE, then CTLE again  
11: adapt CTLE until lock, then DFE,  
then EQ until optimal  
Note: for ADAPT_MODE=2 or 3, the  
DFE must be enabled by setting  
Reg_0x1E[3]=0 and Reg_0x1E[1]=1.  
(Refer to the Programming Guide for  
more details)  
4
3
0
0
RW  
RW  
Y
Y
EQ_SM_FOM[1]  
EQ_SM_FOM[0]  
CTLE (EQ) adaption state machine  
figure of merit.  
00: (Default) SM uses both HEO and  
VEO  
01: SM uses HEO only  
10: SM uses VEO only  
11: SM uses both HEO and VEO  
Additionally, if Reg_0x6E[7]=1, the  
Alternate FOM is used. Reg_0x6E[7]  
takes precedence over EQ_SM_FOM.  
2
1
0
0
RW  
RW  
N
Y
RESERVED  
RESERVED  
CDR_LOCK_LOSS_INT_EN  
Enable for CDR Lock Loss Interrupt.  
Observable in Reg_0x01[5]  
0
0
RW  
Y
SIGNAL_DET_LOSS_INT_EN  
Enable for Signal Detect Loss  
Interrupt. Observable in Reg_0x01[0]  
32  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
1
0
0
0
1
1
0
0
0
1
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
HEO_INT_THRESH[3]  
HEO_INT_THRESH[2]  
HEO_INT_THRESH[1]  
HEO_INT_THRESH[0]  
VEO_INT_THRESH[3]  
VEO_INT_THRESH[2]  
VEO_INT_THRESH[1]  
VEO_INT_THRESH[0]  
HEO_THRESH[3]  
These bits set the threshold for the  
HEO and VEO interrupt. Each  
threshold bit represents 8 counts of  
HEO or VEO.  
33  
In adapt mode 3, the register sets the  
minimum HEO and VEO required for  
CTLE adaption, before starting DFE  
adaption. This can be a max of 15.  
HEO_THRESH[2]  
HEO_THRESH[1]  
HEO_THRESH[0]  
VEO_THRESH[3]  
VEO_THRESH[2]  
VEO_THRESH[1]  
VEO_THRESH[0]  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
PPM_ERR_RDY  
DESCRIPTION  
34  
7
0
R
N
1: Indicates that a PPM error count is  
read to be read from channel  
Reg_0x3B and Reg_0x3C  
6
0
RW  
Y
LOW_POWER_MODE_DISABL By default, all blocks (except signal  
E
detect) power down after 100 ms after  
signal detect goes low. If set high, all  
blocks get powered on after the signal  
detect initially goes high.  
5
4
1
1
RW  
RW  
Y
Y
LOCK_COUNTER[1]  
LOCK_COUNTER[0]  
After achieving lock, the CDR  
continues to monitor the lock criteria. If  
the lock criteria fail, the lock is  
checked for a total of N number of  
times before declaring an out of lock  
condition, where N is set by this the  
value in these registers, with a max  
value of +3, for a total of 4. If during  
the N lock checks, lock is regained,  
then the lock condition is left HI, and  
the counter is reset back to zero.  
3
2
1
0
7
6
1
1
1
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
DFE_MAX_TAP2_5[3]  
DFE_MAX_TAP2_5[2]  
DFE_MAX_TAP2_5[1]  
DFE_MAX_TAP2_5[0]  
DATA_LOCK_PPM[1]  
DATA_LOCK_PPM[0]  
These four bits are used to set the  
maximum value by which DFE taps 2-  
5 are able to adapt with each  
subsequent adaptation. Same used for  
both polarities.  
35  
Modifies the value of the PPM delta  
tolerance from channel Reg_0x64:  
00 - ppm_delta[7:0] =1 x  
ppm_delta[7:0]  
01 - ppm_delta[7:0] =1 x  
ppm_delta[7:0] + ppm_delta[3:1]  
10 - ppm_delta[7:0] =2 x  
ppm_delta[7:0]  
11 - ppm_delta[7:0] =2 x  
ppm_delta[7:0] + ppm_delta[3:1]  
5
0
RW  
N
GET_PPM_ERROR  
Get PPM error from PPM_COUNT -  
clears when done. Normally updates  
continuously, but can be manually  
triggered with read value from  
Reg_0x3B and Reg_0x3C  
4
3
2
1
0
7
6
0
1
1
1
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
N
Y
DFE_MAX_TAP1[4]  
DFE_MAX_TAP1[3]  
DFE_MAX_TAP1[2]  
DFE_MAX_TAP1[1]  
DFE_MAX_TAP1[0]  
RESERVED  
Limits DFE tap 1 maximum magnitude.  
36  
RESERVED  
HEO_VEO_INT_EN  
1: Enable HEO/VEO interrupt  
capability  
5
4
3
2
1
0
1
1
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
N
Y
N
N
REF_MODE[1]  
REF_MODE[0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
11: Normal Operation. Refererence  
mode 3.  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
52  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
37  
38  
39  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
CTLE_STATUS[7]  
Feature is reserved for future use  
CTLE_STATUS[6]  
CTLE_STATUS[5]  
CTLE_STATUS[4]  
CTLE_STATUS[3]  
CTLE_STATUS[2]  
CTLE_STATUS[1]  
CTLE_STATUS[0]  
DFE_STATUS[7]  
DFE_STATUS[6]  
DFE_STATUS[5]  
DFE_STATUS[4]  
DFE_STATUS[3]  
DFE_STATUS[2]  
DFE_STATUS[1]  
DFE_STATUS[0]  
RESERVED  
R
R
R
R
R
R
R
Feature is reserved for future use  
R
R
R
R
R
R
R
RW  
RW  
RW  
RESERVED  
MR_EOM_RATE[1]  
MR_EOM_RATE[0]  
With eom_ov = 1, these bits control  
the Eye Monitor Rate:  
11: Use for full rate, fastest  
10: Use for 1/2 Rate  
All other values are reserved  
4
3
2
1
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
START_INDEX[3]  
START_INDEX[2]  
START_INDEX[1]  
START_INDEX[0]  
Start index for EQ adaptation  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 11. Channel Registers, 3A to A9  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
3A  
3B  
3C  
3D  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
FIXED_EQ_BST0[1]  
During adaptation, if the divider  
setting is >2, then a fixed EQ setting  
from this register will be used.  
However, if channel Reg_0x6F[7] is  
enabled, then an EQ adaptation will  
be performed instead  
FIXED_EQ_BST0[0]  
FIXED_EQ_BST1[1]  
FIXED_EQ_BST1[0]  
FIXED_EQ_BST2[1]  
FIXED_EQ_BST2[0]  
FIXED_EQ_BST3[1]  
FIXED_EQ_BST3[0]  
PPM_COUNT[15]  
PPM_COUNT[14]  
PPM_COUNT[13]  
PPM_COUNT[12]  
PPM_COUNT[11]  
PPM_COUNT[10]  
PPM_COUNT[9]  
PPM_COUNT[8]  
PPM_COUNT[7]  
PPM_COUNT[6]  
PPM_COUNT[5]  
PPM_COUNT[4]  
PPM_COUNT[3]  
PPM_COUNT[2]  
PPM_COUNT[1]  
PPM_COUNT[0]  
EN_FIR_CURSOR  
PPM count MSB  
R
R
R
R
R
R
R
R
PPM count LSB  
R
R
R
R
R
R
R
RW  
1: Enable Pre- and Post-cursor FIR  
0: Disable Pre- and Post-cursor FIR  
(lower power)  
6
5
0
0
RW  
RW  
Y
Y
FIR_C0_SGN  
Main-cursor sign bit  
0: positive  
1: negative  
DRV_SEL_LOW_RATE_LV  
0: Default  
1: Slow slew rate. Not recommended  
for divided-by-1 data rates  
4
3
2
1
0
7
6
1
1
0
1
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
FIR_C0[4]  
FIR_C0[3]  
FIR_C0[2]  
FIR_C0[1]  
FIR_C0[0]  
FIR_PD_TX  
FIR_CN1_SGN  
Main-cursor magnitude  
(Refer to the Programming Guide for  
more details)  
3E  
Pre-cursor sign bit  
1: negative  
0: positive  
5
4
3
2
1
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
FIR_CN1[3]  
FIR_CN1[2]  
FIR_CN1[1]  
FIR_CN1[0]  
RESERVED  
RESERVED  
Pre-cursor magnitude  
(Refer to the Programming Guide for  
more details)  
54  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
3F  
7
6
0
1
RW  
RW  
Y
Y
RESERVED  
RESERVED  
FIR_CP1_SGN  
RESERVED  
Post-cursor sign bit  
1: negative  
0: positive  
5
0
RW  
Y
DS250DF230: rclk_sel_div_lv[1]  
Valid only inconjuction with  
mr_cipri_clk_div_sel_ov; Otherwise  
decoded from rate table  
Analog Div Digital Div  
00: 30 11  
01: 32 10  
10: 36 11  
11: 40 10  
4
0
RW  
Y
RESERVED  
DS250DF230: rclk_sel_div_lv[0], see  
more on MSB description  
3
2
1
0
7
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
FIR_CP1[3]  
Post-cursor magnitude  
(Refer to the Programming Guide for  
more details)  
FIR_CP1[2]  
FIR_CP1[1]  
FIR_CP1[0]  
40  
EQ_ARRAY_INDEX_0_BST0[1]  
DS250DF230: The first four indices  
use enable_byapss=1.  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
EQ_ARRAY_INDEX_0_BST0[0]  
EQ_ARRAY_INDEX_0_BST1[1]  
EQ_ARRAY_INDEX_0_BST1[0]  
EQ_ARRAY_INDEX_0_BST2[1]  
EQ_ARRAY_INDEX_0_BST2[0]  
EQ_ARRAY_INDEX_0_BST3[1]  
EQ_ARRAY_INDEX_0_BST3[0]  
EQ_ARRAY_INDEX_1_BST0[1]  
EQ_ARRAY_INDEX_1_BST0[0]  
EQ_ARRAY_INDEX_1_BST1[1]  
EQ_ARRAY_INDEX_1_BST1[0]  
EQ_ARRAY_INDEX_1_BST2[1]  
EQ_ARRAY_INDEX_1_BST2[0]  
EQ_ARRAY_INDEX_1_BST3[1]  
EQ_ARRAY_INDEX_1_BST3[0]  
EQ_ARRAY_INDEX_2_BST0[1]  
EQ_ARRAY_INDEX_2_BST0[0]  
EQ_ARRAY_INDEX_2_BST1[1]  
EQ_ARRAY_INDEX_2_BST1[0]  
EQ_ARRAY_INDEX_2_BST2[1]  
EQ_ARRAY_INDEX_2_BST2[0]  
EQ_ARRAY_INDEX_2_BST3[1]  
EQ_ARRAY_INDEX_2_BST3[0]  
DS250DF230: Reg_0x40=0x00  
DS250DF230: Reg_0x41=0x01  
DS250DF230: Reg_0x42=0x02  
41  
42  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
43  
44  
45  
46  
47  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
1
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
EQ_ARRAY_INDEX_3_BST0[1]  
EQ_ARRAY_INDEX_3_BST0[0]  
EQ_ARRAY_INDEX_3_BST1[1]  
EQ_ARRAY_INDEX_3_BST1[0]  
EQ_ARRAY_INDEX_3_BST2[1]  
EQ_ARRAY_INDEX_3_BST2[0]  
EQ_ARRAY_INDEX_3_BST3[1]  
EQ_ARRAY_INDEX_3_BST3[0]  
EQ_ARRAY_INDEX_4_BST0[1]  
EQ_ARRAY_INDEX_4_BST0[0]  
EQ_ARRAY_INDEX_4_BST1[1]  
EQ_ARRAY_INDEX_4_BST1[0]  
EQ_ARRAY_INDEX_4_BST2[1]  
EQ_ARRAY_INDEX_4_BST2[0]  
EQ_ARRAY_INDEX_4_BST3[1]  
EQ_ARRAY_INDEX_4_BST3[0]  
EQ_ARRAY_INDEX_5_BST0[1]  
EQ_ARRAY_INDEX_5_BST0[0]  
EQ_ARRAY_INDEX_5_BST1[1]  
EQ_ARRAY_INDEX_5_BST1[0]  
EQ_ARRAY_INDEX_5_BST2[1]  
EQ_ARRAY_INDEX_5_BST2[0]  
EQ_ARRAY_INDEX_5_BST3[1]  
EQ_ARRAY_INDEX_5_BST3[0]  
EQ_ARRAY_INDEX_6_BST0[1]  
EQ_ARRAY_INDEX_6_BST0[0]  
EQ_ARRAY_INDEX_6_BST1[1]  
EQ_ARRAY_INDEX_6_BST1[0]  
EQ_ARRAY_INDEX_6_BST2[1]  
EQ_ARRAY_INDEX_6_BST2[0]  
EQ_ARRAY_INDEX_6_BST3[1]  
EQ_ARRAY_INDEX_6_BST3[0]  
EQ_ARRAY_INDEX_7_BST0[1]  
EQ_ARRAY_INDEX_7_BST0[0]  
EQ_ARRAY_INDEX_7_BST1[1]  
EQ_ARRAY_INDEX_7_BST1[0]  
EQ_ARRAY_INDEX_7_BST2[1]  
EQ_ARRAY_INDEX_7_BST2[0]  
EQ_ARRAY_INDEX_7_BST3[1]  
EQ_ARRAY_INDEX_7_BST3[0]  
DS250DF230: Reg_0x43=0x03  
DS250DF230: Reg_0x44=0x00  
DS250DF230: Reg_0x45=0x40  
DS250DF230: Reg_0x46=0x50  
DS250DF230: Reg_0x47=0x80  
56  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
48  
49  
4A  
4B  
4C  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
1
0
0
1
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
1
0
0
0
0
1
1
0
1
0
0
0
1
1
1
0
1
0
1
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
EQ_ARRAY_INDEX_8_BST0[1]  
EQ_ARRAY_INDEX_8_BST0[0]  
EQ_ARRAY_INDEX_8_BST1[1]  
EQ_ARRAY_INDEX_8_BST1[0]  
EQ_ARRAY_INDEX_8_BST2[1]  
EQ_ARRAY_INDEX_8_BST2[0]  
EQ_ARRAY_INDEX_8_BST3[1]  
EQ_ARRAY_INDEX_8_BST3[0]  
EQ_ARRAY_INDEX_9_BST0[1]  
EQ_ARRAY_INDEX_9_BST0[0]  
EQ_ARRAY_INDEX_9_BST1[1]  
EQ_ARRAY_INDEX_9_BST1[0]  
EQ_ARRAY_INDEX_9_BST2[1]  
EQ_ARRAY_INDEX_9_BST2[0]  
EQ_ARRAY_INDEX_9_BST3[1]  
EQ_ARRAY_INDEX_9_BST3[0]  
EQ_ARRAY_INDEX_10_BST0[1]  
EQ_ARRAY_INDEX_10_BST0[0]  
EQ_ARRAY_INDEX_10_BST1[1]  
EQ_ARRAY_INDEX_10_BST1[0]  
EQ_ARRAY_INDEX_10_BST2[1]  
EQ_ARRAY_INDEX_10_BST2[0]  
EQ_ARRAY_INDEX_10_BST3[1]  
DS250DF230: Reg_0x48=0x90  
DS250DF230: Reg_0x49=0xC0  
EQ_ARRAY_INDEX_10_BST3[0] DS250DF230: Reg_0x4A=0xD0  
EQ_ARRAY_INDEX_11_BST0[1]  
EQ_ARRAY_INDEX_11_BST0[0]  
EQ_ARRAY_INDEX_11_BST1[1]  
EQ_ARRAY_INDEX_11_BST1[0]  
EQ_ARRAY_INDEX_11_BST2[1]  
EQ_ARRAY_INDEX_11_BST2[0]  
EQ_ARRAY_INDEX_11_BST3[1]  
EQ_ARRAY_INDEX_11_BST3[0] DS250DF230: Reg_0x4B=0xD1  
EQ_ARRAY_INDEX_12_BST0[1]  
EQ_ARRAY_INDEX_12_BST0[0]  
EQ_ARRAY_INDEX_12_BST1[1]  
EQ_ARRAY_INDEX_12_BST1[0]  
EQ_ARRAY_INDEX_12_BST2[1]  
EQ_ARRAY_INDEX_12_BST2[0]  
EQ_ARRAY_INDEX_12_BST3[1]  
EQ_ARRAY_INDEX_12_BST3[0] DS250DF230: Reg_0x4C=0xD5  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
4D  
4E  
4F  
50  
51  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
1
1
0
1
1
0
0
0
1
1
1
0
1
0
1
0
1
1
1
1
0
1
1
1
1
1
1
1
1
1
0
1
1
1
1
0
1
1
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
EQ_ARRAY_INDEX_13_BST0[1]  
EQ_ARRAY_INDEX_13_BST0[0]  
EQ_ARRAY_INDEX_13_BST1[1]  
EQ_ARRAY_INDEX_13_BST1[0]  
EQ_ARRAY_INDEX_13_BST2[1]  
EQ_ARRAY_INDEX_13_BST2[0]  
EQ_ARRAY_INDEX_13_BST3[1]  
EQ_ARRAY_INDEX_13_BST3[0] DS250DF230: Reg_0x4D=0xD8  
EQ_ARRAY_INDEX_14_BST0[1]  
EQ_ARRAY_INDEX_14_BST0[0]  
EQ_ARRAY_INDEX_14_BST1[1]  
EQ_ARRAY_INDEX_14_BST1[0]  
EQ_ARRAY_INDEX_14_BST2[1]  
EQ_ARRAY_INDEX_14_BST2[0]  
EQ_ARRAY_INDEX_14_BST3[1]  
EQ_ARRAY_INDEX_14_BST3[0] DS250DF230: Reg_0x4E=0xEA  
EQ_ARRAY_INDEX_15_BST0[1]  
EQ_ARRAY_INDEX_15_BST0[0]  
EQ_ARRAY_INDEX_15_BST1[1]  
EQ_ARRAY_INDEX_15_BST1[0]  
EQ_ARRAY_INDEX_15_BST2[1]  
EQ_ARRAY_INDEX_15_BST2[0]  
EQ_ARRAY_INDEX_15_BST3[1]  
EQ_ARRAY_INDEX_15_BST3[0] DS250DF230: Reg_0x4F=0xF7  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x50=0xFD  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x51=0xEE  
58  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
52  
53  
54  
55  
56  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x52=0xEF  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x53=0xFF  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x54=0x00  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x55=0x00  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x56=0x00  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
57  
58  
59  
5A  
5B  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x57=0x00  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x58=0x00  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x59=0x00  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x5A=0x00  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x5B=0x00  
60  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
5C  
5D  
5E  
5F  
60  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x5C=0x00  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x5D=0x00  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x5E=0x00  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DS250DF230: Reg_0x5F=0x00  
Group 0 count LSB  
GRP0_OV_CNT[7]  
GRP0_OV_CNT[6]  
GRP0_OV_CNT[5]  
GRP0_OV_CNT[4]  
GRP0_OV_CNT[3]  
GRP0_OV_CNT[2]  
GRP0_OV_CNT[1]  
GRP0_OV_CNT[0]  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
CNT_DLTA_OV_0  
DESCRIPTION  
61  
7
0
RW  
Y
Override enable for group 0 manual  
data rate selection  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
GRP0_OV_CNT[14]  
GRP0_OV_CNT[13]  
GRP0_OV_CNT[12]  
GRP0_OV_CNT[11]  
GRP0_OV_CNT[10]  
GRP0_OV_CNT[9]  
GRP0_OV_CNT[8]  
GRP1_OV_CNT[7]  
GRP1_OV_CNT[6]  
GRP1_OV_CNT[5]  
GRP1_OV_CNT[4]  
GRP1_OV_CNT[3]  
GRP1_OV_CNT[2]  
GRP1_OV_CNT[1]  
GRP1_OV_CNT[0]  
CNT_DLTA_OV_1  
Group 0 count MSB  
62  
Group 1 count LSB  
63  
Override enable for group 1 manual  
data rate selection  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
GRP1_OV_CNT[14]  
GRP1_OV_CNT[13]  
GRP1_OV_CNT[12]  
GRP1_OV_CNT[11]  
GRP1_OV_CNT[10]  
GRP1_OV_CNT[9]  
GRP1_OV_CNT[8]  
GRP0_OV_DLTA[3]  
GRP0_OV_DLTA[2]  
GRP0_OV_DLTA[1]  
GRP0_OV_DLTA[0]  
GRP1_OV_DLTA[3]  
GRP1_OV_DLTA[2]  
GRP1_OV_DLTA[1]  
GRP1_OV_DLTA[0]  
RESERVED  
Group 1 count MSB  
64  
Sets the PPM delta tolerance for the  
PPM counter lock check for group 0.  
Must also program channel  
Reg_0x67[7].  
Sets the PPM delta tolerance for the  
PPM counter lock check for group 1.  
Must also program channel  
Reg_0x67[6].  
65  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
62  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
66  
7
6
5
4
3
2
1
0
7
6
5
0
0
0
0
0
0
0
0
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
67  
GRP0_OV_DLTA[4]  
GRP1_OV_DLTA[4]  
HV_LOCKMON_EN  
1: Enable periodic monitoring of  
HEO/VEO for lock qualification.  
0: Disable periodic HEO/VEO  
monitoring for lock qualification.  
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
1
0
0
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
68  
69  
6A  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
VEO_LCK_THRSH[3]  
VEO_LCK_THRSH[2]  
VEO_LCK_THRSH[1]  
VEO_LCK_THRSH[0]  
HEO_LCK_THRSH[3]  
HEO_LCK_THRSH[2]  
HEO_LCK_THRSH[1]  
HEO_LCK_THRSH[0]  
VEO threshold to meet before lock is  
established. The LSB step size is 4  
counts of VEO.  
HEO threshold to meet before lock is  
established. The LSB step size is 4  
counts of HEO.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
6B  
6C  
6D  
6E  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
FOM_A[6]  
FOM_A[5]  
FOM_A[4]  
FOM_A[3]  
FOM_A[2]  
FOM_A[1]  
FOM_A[0]  
FOM_B[7]  
FOM_B[6]  
FOM_B[5]  
FOM_B[4]  
FOM_B[3]  
FOM_B[2]  
FOM_B[1]  
FOM_B[0]  
FOM_C[7]  
FOM_C[6]  
FOM_C[5]  
FOM_C[4]  
FOM_C[3]  
FOM_C[2]  
FOM_C[1]  
FOM_C[0]  
EN_NEW_FOM_CTLE  
Alternate Figure of Merit variable A.  
Max value for this register is 128.  
HEO adjustment for Alternate FoM,  
variable B  
VEO adjustment for Alternate FoM,  
variable C  
1: CTLE adaption state machine will  
use the alternate FoM  
HEO_ALT = (HEO-B)*A*2VEO_ALT  
= (VEO-C)*(1-A)*2  
The values of A,B,C are set in  
channel Reg_0x6B, 0x6C, and 0x6D.  
The value of A is equal to the  
register value divided by 128.  
The Alternate FoM = (HEOB)*A*2 +  
(VEO-C)*(1-A)*2  
6
0
RW  
Y
EN_NEW_FOM_DFE  
1: DFE adaption state machine will  
use the alternate FoM.  
HEO_ALT = (HEO-B)*A*2VEO_ALT  
= (VEO-C)*(1-A)*2  
The values of A,B,C are set in  
channel Reg_0x6B, 0x6C, and 0x6D.  
The value of A is equal to the  
register value divided by 128  
The Alternate FoM = (HEOB)*A*2 +  
(VEO-C)*(1-A)*2  
5
4
3
2
1
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
64  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
6F  
7
0
RW  
Y
MR_EN_LOW_DIVSEL_EQ  
Normally, during adaptation, if the  
divider setting is >2, then a fixed EQ  
setting, from Reg_0x3A will be used.  
However, if Reg_0x6F[7]=1, then an  
EQ adaptation will be performed  
instead.  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
Y
Y
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EQ_LB_CNT[3]  
EQ_LB_CNT[2]  
EQ_LB_CNT[1]  
EQ_LB_CNT[0]  
PRBS_INT  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
70  
CTLE look-beyond count for  
adaptation  
71  
When enabled by Reg_0x31[7], goes  
HI if a PRBS stream is detected.  
Clears on reading.  
PRBS checker must be enabled with  
Reg_0x30[3].  
Once cleared, if a PRBS error  
occurs, then the interrupt will again  
go HI. Clears on reading.  
If signal detect is lost, this is  
considered a PRBS error, and the  
interrupt will go HI. Clears on  
reading.  
6
5
4
3
2
1
0
7
6
5
4
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
DFE_POL_1_OBS  
DFE_WT1_OBS[4]  
DFE_WT1_OBS[3]  
DFE_WT1_OBS[2]  
DFE_WT1_OBS[1]  
DFE_WT1_OBS[0]  
RESERVED  
DFE tap 1 polarity observation  
DFE tap 1 weight observation  
72  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DFE_POL_2_OBS  
Primary observation point for DFE  
tap 2 polarity  
3
2
1
0
0
0
0
0
R
R
R
R
N
N
N
N
DFE_WT2_OBS[3]  
DFE_WT2_OBS[2]  
DFE_WT2_OBS[1]  
DFE_WT2_OBS[0]  
Primary observation point for DFE  
tap 2 weight  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
73  
74  
75  
7
6
5
4
0
0
0
0
R
R
R
R
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DFE_POL_3_OBS  
Primary observation point for DFE  
tap 3 polarity  
3
2
1
0
7
6
5
4
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
DFE_WT3_OBS[3]  
DFE_WT3_OBS[2]  
DFE_WT3_OBS[1]  
DFE_WT3_OBS[0]  
RESERVED  
Primary observation point for DFE  
tap 3 weight  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DFE_POL_4_OBS  
Primary observation point for DFE  
tap 4 polarity  
3
2
1
0
7
6
5
4
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
DFE_WT4_OBS[3]  
DFE_WT4_OBS[2]  
DFE_WT4_OBS[1]  
DFE_WT4_OBS[0]  
RESERVED  
Primary observation point for DFE  
tap 4 weight  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DFE_POL_5_OBS  
Primary observation point for DFE  
tap 5 polarity  
3
2
1
0
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
1
0
0
0
0
1
0
R
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
N
DFE_WT5_OBS[3]  
Primary observation point for DFE  
tap 5 weight  
R
DFE_WT5_OBS[2]  
R
DFE_WT5_OBS[1]  
R
DFE_WT5_OBS[0]  
76  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
POST_LOCK_VEO_THR[3]  
POST_LOCK_VEO_THR[2]  
POST_LOCK_VEO_THR[1]  
POST_LOCK_VEO_THR[0]  
POST_LOCK_HEO_THR[3]  
POST_LOCK_HEO_THR[2]  
POST_LOCK_HEO_THR[1]  
POST_LOCK_HEO_THR[0]  
PRBS_GEN_POL_EN  
VEO threshold after LOCK is  
established  
HEO threshold after LOCK is  
established  
77  
1: Force polarity inversion on  
generated PRBS data  
6
5
4
3
2
1
0
0
0
1
1
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
66  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
78  
7
6
5
0
0
0
R
R
R
N
N
N
RESERVED  
RESERVED  
RESERVED  
SD_STATUS  
RESERVED  
Primary observation point for signal  
detect status  
4
3
0
0
R
R
N
N
CDR_LOCK_STATUS  
CDR_LOCK_INT  
Primary observation point for CDR  
lock status  
Requires that channel Reg_0x79[1]  
be set.  
1: Indicates CDR has achieved lock,  
lock goes from LOW to HIGH. This  
bit is cleared after reading. This bit  
will stay set until it has been cleared  
by reading.  
2
0
R
N
SD_INT  
Requires that channel Reg_0x79[0]  
be set.  
1: Indicates signal detect status has  
changed. This will trigger when  
signal detect goes from LOW to  
HIGH or HIGH to LOW. This bit is  
cleared after reading. This bit will  
stay set until it has been cleared by  
reading.  
1
0
0
0
R
R
N
N
EOM_VRANGE_LIMIT_ERROR  
HEO_VEO_INT  
Goes high if GET_HEO_VEO  
indicates high during adaptation  
Requires that channel Reg_0x36[6]  
be set.  
1: Indicates that HEO/VEO dropped  
below the limits set in channel  
Reg_0x76 This bit is cleared after  
reading. This bit will stay set until it  
has been cleared by reading.  
79  
7
6
0
0
RW  
RW  
N
N
RESERVED  
RESERVED  
PRBS_CHKR_EN  
1: Enable the PRBS checker.  
0: Disable the PRBS checker  
5
0
RW  
N
PRBS_GEN_EN  
1: Enable the pattern generator  
0: Disable the pattern generator  
4
3
2
1
1
0
0
0
RW  
RW  
RW  
RW  
N
N
N
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CDR_LOCK_INT_EN  
1: Enable CDR lock interrupt,  
observable in channel Reg_0x78[3]  
0: Disable CDR lock interrupt  
0
0
RW  
Y
SD_INT_EN  
1: Enable signal detect interrupt,  
observable in channel Reg_0x78[3]  
0: Disable signal detect interrupt  
7A  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
7B  
7C  
7D  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PRBS_FIXED[7]  
PRBS_FIXED[6]  
PRBS_FIXED[5]  
PRBS_FIXED[4]  
PRBS_FIXED[3]  
PRBS_FIXED[2]  
PRBS_FIXED[1]  
PRBS_FIXED[0]  
Pattern generator user defined  
pattern LSB. MSB located at channel  
Reg_0x97.  
R
R
R
R
R
R
R
RW  
CONT_ADAPT_HEO_CHNG_TH Limit for HEO change before  
RS[3]  
triggering a DFE adaption while  
continuous DFE adaption is enabled.  
6
5
4
3
2
1
0
1
0
0
1
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
CONT_ADAPT_HEO_CHNG_TH  
RS[2]  
CONT_ADAPT_HEO_CHNG_TH  
RS[1]  
CONT_ADAPT_HEO_CHNG_TH  
RS[0]  
CONT_ADAPT_VEO_CHNG_TH Limit for VEO change before  
RS[3]  
triggering a DFE adaption while  
continuous DFE adaption is enabled.  
(Refer to the Programming Guide for  
more details)  
CONT_ADAPT_VEO_CHNG_TH  
RS[2]  
CONT_ADAPT_VEO_CHNG_TH  
RS[1]  
CONT_ADAPT_VEO_CHNG_TH  
RS[0]  
7E  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
CONT_ADPT_TAP_INCR[3]  
CONT_ADPT_TAP_INCR[2]  
CONT_ADPT_TAP_INCR[1]  
CONT_ADPT_TAP_INCR[0]  
RESERVED  
Limit for allowable tap increase from  
the previous base point  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
68  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
EN_OBS_ALT_FOM  
DESCRIPTION  
7F  
7
0
RW  
N
1: Allows for alternate FoM  
calculation to be shown in channel  
registers Reg_0x27, Reg_0x28 and  
Reg_0x29 instead of HEO and VEO  
6
5
4
0
1
0
RW  
RW  
RW  
N
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EN_DFE_CONT_ADAPT  
1: Continuous DFE adaption is  
enabled  
0: DFE adapts only during lock and  
then freezes  
(Refer to the Programming Guide for  
more details)  
3
1
RW  
Y
CONT_ADPT_CMP_BOTH  
1: If continuous DFE adaption is  
enabled, a DFE adaption will trigger  
if either HEO orVEO degrades  
2
1
0
0
1
0
RW  
RW  
RW  
Y
Y
Y
CONT_ADPT_COUNT[2]  
CONT_ADPT_COUNT[1]  
CONT_ADPT_COUNT[0]  
Limit for number of weights the DFE  
can look ahead in continuous  
adaption.  
(Refer to the Programming Guide for  
more details)  
80  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
81  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
82  
7
0
RW  
N
FREEZE_PRBS_CNTR  
1: Freeze the PRBS error count to  
allow for readback.  
0: Normal operation. Error counters  
is allowed to increment if the PRBS  
checker is properly configured  
6
5
0
0
RW  
RW  
N
N
RST_PRBS_CNTS  
PRBS_PATT_OV  
1: Reset the PRBS error counter.  
0: Normal operation. Error counter is  
released from reset.  
1: Override PRBS pattern auto-  
detection. Forces the pattern checker  
to only lock onto the pattern defined  
in Reg_0x82[4:2].  
0: Normal operation. Pattern checker  
will automatically detect the PRBS  
pattern  
4
3
2
0
0
0
RW  
RW  
RW  
N
N
N
PRBS_PATT[2]  
PRBS_PATT[1]  
PRBS_PATT[0]  
Used with the PRBS checker. Usage  
is enabled with Reg_0x82[5]. Select  
PRBS pattern to be checked:  
000 - PRBS7  
001 - PRBS9  
010 - PRBS11  
011 - PRBS15  
100 - PRBS23  
101 - PRBS31  
110 - PRBS58  
111 - PRBS63  
1
0
0
0
RW  
RW  
N
N
PRBS_POL_OV  
PRBS_POL  
1: Override PRBS pattern auto  
polarity detection. Forces the pattern  
checker to only lock onto the polarity  
defined in bit 0 of this register.  
0: Normal operation, pattern checker  
will automatically detect the PRBS  
pattern polarity  
Usage is enabled with  
Reg_0x82[1]=1  
0: Forced polarity = true  
1: Forced polarity = inverted  
83  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PRBS_ERR_CNT[10]  
PRBS_ERR_CNT[9]  
PRBS_ERR_CNT[8]  
PRBS_ERR_CNT[7]  
PRBS_ERR_CNT[6]  
PRBS_ERR_CNT[5]  
PRBS_ERR_CNT[4]  
PRBS_ERR_CNT[3]  
PRBS_ERR_CNT[2]  
PRBS_ERR_CNT[1]  
PRBS_ERR_CNT[0]  
PRBS checker error count  
84  
PRBS checker error count  
70  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
85  
86  
87  
88  
89  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
8A  
8B  
8C  
8D  
8E  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
RESERVED  
RESERVED  
R
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
VGA_SEL_GAIN  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
R
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DS250DF230: RESERVED, 0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
VGA selection bit :  
1: VGA high-gain mode  
0: VGA low-gain mode  
(Refer to the Programming Guide for  
more details)  
72  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
8F  
90  
91  
7
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
EQ_BST_TO_EQ[7]  
Primary observation point for the EQ  
boost setting.  
R
EQ_BST_TO_EQ[6]  
EQ_BST_TO_EQ5]  
EQ_BST_TO_EQ[4]  
EQ_BST_TO_EQ[3]  
EQ_BST_TO_EQ[2]  
EQ_BST_TO_EQ[1]  
EQ_BST_TO_EQ[0]  
RESERVED  
5
R
4
R
3
R
2
R
1
R
0
R
7
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
5
RESERVED  
4
RESERVED  
3
RESERVED  
2
RESERVED  
1
RESERVED  
0
RESERVED  
7
RESERVED  
6
RESERVED  
5
RESERVED  
4
RESERVED  
3
RESERVED  
2
RESERVED  
1
RESERVED  
0
RESERVED  
92  
93  
94  
95  
7:0  
7:0  
7:0  
`
RESERVED  
RESERVED  
RESERVED  
SD_ENABLE  
1: Force enable signal detect  
0: Normal operation  
6
5
0
0
RW  
RW  
N
N
SD_DISABLE  
1: Force disable signal detect  
0: Normal operation  
DC_OFF_ENABLE  
1: Force enable DC offset  
compensation  
0: Normal operation  
4
3
2
0
0
0
RW  
RW  
RW  
N
N
N
DC_OFF_DISABLE  
EQ_ENABLE  
1: Force disable DC offset  
compensation  
0: Normal operation  
DS250DF230: 0  
1: Force enable the CTLE  
0: Normal operation  
EQ_DISABLE  
1: Force disable the CTLE  
0: Normal operation  
1
0
0
0
RW  
RW  
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
96  
7
6
5
4
3
0
0
0
0
1
RW  
RW  
RW  
RW  
RW  
N
N
N
N
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EQ_EN_LOCAL  
RESERVED  
RESERVED  
RESERVED  
1: Enable the ebuf for the local  
output. Can be set independently of  
other controls.  
(Refer to the Programming Guide for  
more details)  
2
1
0
0
0
0
RW  
RW  
RW  
Y
Y
Y
EQ_EN_FANOUT  
EQ_SEL_XPNT  
XPNT_SLAVE  
1: Enable the ebuf for the fanout.  
Can be set independently of other  
controls.  
(Refer to the Programming Guide for  
more details)  
1: Indicates to a channel where it is  
getting its data from. 0 indicates  
local. 1-indicates from the cross.  
(Refer to the Programming Guide for  
more details)  
1: Indicates to a channel if it needs to  
wait for the other channel to  
complete its lock/adaptation. The  
need for this condition comes up  
when input of one channel is routed  
to the other channel or multiple  
channels.  
(Refer to the Programming Guide for  
more details)  
97  
7
6
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
R
R
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
PRBS_FIXED[15]  
PRBS_FIXED[14]  
PRBS_FIXED[13]  
PRBS_FIXED[12]  
PRBS_FIXED[11]  
PRBS_FIXED[10]  
PRBS_FIXED[9]  
PRBS_FIXED[8]  
RESERVED  
Pattern generator user defined  
pattern MSB. LSB located at channel  
Reg_0x7C.  
5
R
4
R
3
R
2
R
1
R
0
R
98  
99  
7:6  
5:0  
7
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
5
RESERVED  
4
RESERVED  
3
RESERVED  
2
RESERVED  
1
RESERVED  
0
RESERVED  
74  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
9A  
9B  
9C  
9D  
9E  
7
6
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0
1
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
Y
Y
Y
Y
Y
Y
N
N
N
N
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CP_EN_IDAC_PD[2]  
CP_EN_IDAC_PD[1]  
CP_EN_IDAC_PD[0]  
CP_EN_IDAC_FD[2]  
CP_EN_IDAC_FD[1]  
CP_EN_IDAC_FD[0]  
RESERVED  
RESERVED  
NOT USED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
Phase detector charge pump setting,  
when override is enabled. See  
reg_0C for other bits.  
6
5
4
Frequency detector charge pump  
setting, when override is enabled.  
See reg_0C for other bits.  
3
2
1
RESERVED  
RESERVED  
0
9F  
A0  
A1  
A2  
A3  
A4  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
R
NOT USED  
R
NOT USED  
R
NOT USED  
R
NOT USED  
R
NOT USED  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
A5  
7
6
5
0
0
1
RW  
RW  
RW  
Y
Y
Y
PFD_SEL_DATA_PSTLCK[2]  
PFD_SEL_DATA_PSTLCK[1]  
PFD_SEL_DATA_PSTLCK[0]  
Output mode for when the CDR is in  
lock. For these values to take effect,  
Reg_0x09[5] must be set to 0, which  
is the default.  
000: Raw Data  
001: Retimed data (default)  
100: PRBS Generator or Fixed  
Pattern Generator Data  
101: 10M clock  
111: Mute  
All other values are reserved. (Refer  
to the Programming Guide for more  
details)  
4
3
2
1
0
7
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
INCR_HIST_TMR  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
A6  
Provides an option to increase EOM  
timer given by 0x2A[7:4] for  
histogram collection by +8 for  
selection values < 8  
6
1
RW  
Y
EOM_TMR_ABRT_ON_HIT  
Enables faster scan through the eye-  
matrix by moving on to the next  
matrix point as soon as hit is  
observed  
Note: This bit does not affect when  
slope measurement are in progress  
5
4
0
0
RW  
RW  
Y
Y
SLP_MIN_REQ_HITS[1]  
SLP_MIN_REQ_HITS[0]  
Minimum required hit count for  
registering a hit during slope  
measurements.  
3
0
RW  
Y
LFT_SLP  
0: allows slope measurement for the  
right side of the eye  
1: allows slope measurement for the  
left side of the eye  
2
0
RW  
Y
TOP_SLP  
0: allows slope measurement for the  
bottom side of the eye  
1: allows slope measurement for the  
top side of the eye  
1
0
1
1
RW  
RW  
Y
Y
DFE_BATHTUB_FOM  
CTLE_BATHTUB_FOM  
Enables slope-based bathtub FoM  
for DFE adaptation  
Enables slope-based bathtub FoM  
for CTLE adaptation  
A7  
A8  
A9  
7:0  
7:0  
7:0  
0
0
0
R
N
N
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RW  
RW  
76  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
RW  
EEPROM  
FIELD NAME  
MR_DIS_PRELCK_HV  
MR_LPF_SAR_ADJST_EN  
DESCRIPTION  
AC  
7
6
0
N
N
Disable heo veo acquisiton before  
lock  
(DS250DF23  
0 Only)  
1
RW  
Enables the use of temperature  
dependent LPF for Fastcap search  
5
4
3
0
1
0
RW  
RW  
RW  
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
MR_CPRI_CLK_DIV_SEL_OV  
clk divider enable for select,  
rclk_sel_div_lv  
2
1
RW  
N
MR_VCO_TLR_EN  
Enable the Cap extension of the  
VCO for TLR  
1
0
0
0
RW  
RW  
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
77  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DS250DF230 is a high-speed retimer which extends the reach of differential channels and cleans jitter and  
other signal impairments in the process. It can be deployed in a variety of different systems from backplanes to  
front ports to active cable assemblies. The following sections outline a few typical applications and their  
associated design considerations.  
9.2 Typical Applications  
The DS250DF230 is typically used in the following application scenarios:  
1. Front-Port Jitter Cleaning Applications  
2. Active Cable Applications  
3. Backplane and Mid-Plane Applications  
Line Card  
Switch Fabric  
25G-LR  
x4  
25G-VSR  
x4  
DS250DF230  
DS250DF230  
Optical  
x4  
25G-LR  
SFP28/QSFP28  
ASIC  
ASIC  
FPGA  
FPGA  
Active Copper  
DS250DF230  
x4  
25G-LR  
x4 25G  
DS250DF230  
QSFP28  
Figure 15. Typical Uses for the DS250DF230 in a System  
78  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Typical Applications (continued)  
9.2.1 Front-Port Jitter Cleaning Applications  
The DS250DF230 has strong equalization capabilities that allow it to equalize insertion loss, reduce jitter, and  
extend the reach of front-port interfaces. Two pieces DS250DF230 can be used to support all four egress  
channels for a 100GbE port. Another two pieces DS250DF230 can be used to support all four ingress channels  
for the same 100GbE ports. Alternatively, a single DS250DF230 can be used to support all egress channels for  
two 25GbE ports, and another DS250DF230 can be used to support all two ingress channels for the same four  
25GbE ports.  
A flow-through pinout for the high-speed signals on DS250DF230 makes placement and routing easy for  
unidirectional application. By using the 2x2 cross point inside the device, DS250DF230 can also be configured  
for Figure 16, where one single device supports both egress and ingress channels.  
RD  
DS250DF230  
SFP28  
TD  
TX0  
TX1  
RX0  
RX1  
ASIC  
FPGA  
Figure 16. Bidirectional Application  
For applications which require IEEE802.3 100GBASE-CR4 or 25GBASE-CR auto-negotiation and link training, a  
linear repeater device such as the DS280BR820 (or similar) is recommended.  
Figure 17 shows this configuration, and Figure 18 shows an example simplified schematic for a typical front-port  
application.  
Network Interface Card (NIC) or Host Bus Adapter (HBA)  
25G/28G-LR  
25G/28G-VSR  
DS250DF230  
x2  
Optical or  
fixed-rate Copper  
x4  
x4  
DS250DF230  
x2  
1 x 100GbE QSFP28  
ASIC  
PCIe  
FPGA  
25G/28G-VSR  
25G/28G-LR  
x2  
DS250DF230  
Optical or Copper  
Optical or Copper  
x2  
DS250DF230  
2 x 25GbE SFP28  
Or  
1 x 50GbE SFP28  
Figure 17. Front-Port Application Block Diagram  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
79  
Product Folder Links: DS250DF230  
 
 
 
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
Typical Applications (continued)  
RX0P  
RX0N  
TX0P  
TX0N  
CDR  
X
RX  
RX  
TX  
TX  
No AC coupling  
capacitors needed  
RX1P  
RX1N  
TX1P  
TX1N  
CDR  
2.5 V or  
3.3 V  
VDD  
SMBus  
Slave mode  
1 kΩ  
To other  
open-drain  
interrupt pins  
EN_SMB  
INT_N  
TEST0 /RCK0  
THR/TEST1  
SDA  
SDC  
To system  
SMBus(1)  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
30.72 MHz or 25 MHz  
SMBus Slave  
CAL_CLK_OUT  
To next device‘s  
CAL_CLK_IN  
CAL_CLK_IN  
READ_EN_N  
ALL_DONE_N  
GND  
Output can float  
in slave mode  
mode  
2.5 V  
VDD  
0.01 F  
(2x)  
0.1 F  
(2x)  
Minimum  
recommended  
decoupling  
Host  
ASIC /  
FPGA  
QSFP28  
or  
SFP28  
TX0P  
TX0N  
RX0P  
RX0N  
CDR  
TX  
RX  
No AC coupling  
capacitors needed  
X
TX1P  
TX1N  
RX1P  
RX1N  
CDR  
TX  
RX  
VDD  
SMBus  
Slave mode  
1 kΩ  
EN_SMB  
INT_N  
TEST0 /RCK0  
THR/TEST1  
SDA  
SDC  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
CAL_CLK_IN  
READ_EN_N  
CAL_CLK_OUT  
ALL_DONE_N  
GND  
SMBus Slave  
mode  
Output can float  
in slave mode  
2.5 V  
VDD  
0.01 F  
(2x)  
0.1 F  
(2x)  
Minimum  
recommended  
decoupling  
(1) SMBus signals need to be pulled up elsewhere in the system.  
Figure 18. Front-Port Application Schematic  
80  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Typical Applications (continued)  
9.2.1.1 Design Requirements  
For this design example, the following guidelines outlined in Table 12 apply.  
Table 12. Front-Port Application Design Guidelines  
DESIGN PARAMETER  
REQUIREMENT  
Egress (ASIC-to-module) direction: AC-coupling capacitors in the  
range of 100 to 220 nF are required for the RX inputs and are NOT  
required for the TX outputs.  
Ingress (module-to-ASIC) direction: AC-coupling capacitors in the  
range of 100 to 220 nF are required for the TX outputs and are NOT  
required for the RX inputs.  
AC-coupling capacitors  
Input channel insertion loss  
Output channel insertion loss  
35 dB at 25.78125-Gbps Nyquist frequency (12.9 GHz)  
Egress (ASIC-to-module) direction: Follow CAUI-4 / CEI-25G-VSR  
host channel requirements (approximately 7 dB at 12.9 GHz).  
Ingress (module-to-ASIC) direction: Depends on downstream ASIC /  
FPGA capabilities. The DS250DF230 has a low-jitter output driver  
with 3-tap FIR filter for equalizing a portion of the output channel.  
Host ASIC TX launch amplitude  
Host ASIC TX FIR filter  
800 mVppd to 1200 mVppd.  
Depends on channel loss. Refer to the Setting the Output VOD, Pre-  
Cursor, and Post-Cursor Equalization section.  
9.2.1.2 Detailed Design Procedure  
The design procedure for front-port applications is as follows:  
1. Determine the total number of channels on the board which require a DS250DF230 for signal conditioning.  
This will dictate the total number of DS250DF230 devices required for the board. It is generally  
recommended that channels connected to the same front-port cage be grouped together in the same  
DS250DF230 device. This will simplify the device settings, as similar loss channels generally use similar  
settings.  
2. Determine the maximum current draw required for all DS250DF230 retimers. This may impact the selection  
of the regulator for the 2.5-V supply rail. To calculate the maximum current draw, multiply the maximum  
transient power supply current by the total number of DS250DF230 devices.  
3. Determine the maximum operational power consumption for the purpose of thermal analysis. There are two  
ways to approach this calculation:  
a. Maximum mission-mode operational power consumption is when all channels are locked and re-  
transmitting the data which is received. PRBS pattern checkers/generators are not used in this mode  
because normal traffic cannot be checked with a PRBS checker. For this calculation, multiply the worst-  
case power consumption in mission mode by the total number of DS250DF230 devices.  
b. Maximum debug-mode operational power consumption is when all channels are locked and re-  
transmitting the data which is received. At the same time, some channels’ PRBS checkers or generators  
may be enabled. For this calculation, multiply the worst-case power consumption in debug mode by the  
total number of DS250DF230 devices.  
4. Determine the SMBus address scheme needed to uniquely address each DS250DF230 device on the board,  
depending on the total number of devices identified in step 2. Each DS250DF230 can be strapped with one  
of 16 unique SMBus addresses. If there are more DS250DF230 devices on the board than the number of  
unique SMBus addresses which can be assigned, then use an I2C expander like the TCA/PCA family of  
I2C/SMBus switches and multiplexers to split up the SMBus into multiple busses.  
5. Determine if the device will be configured from EEPROM (SMBus Master Mode) or from the system I2C bus  
(SMBus Slave Mode).  
a. If SMBus Master Mode will be used, provisions must be made for an EEPROM on the board with 8-bit  
SMBus address 0xA0. Refer to SMBus Master Mode for more details on SMBus Master Mode including  
EEPROM size requirements.  
b. If SMBus Slave Mode will be used for all device configurations, an EEPROM is not needed.  
6. Make provisions in the schematic and layout for standard decoupling capacitors between the device VDD  
supply and GND. Refer to the pin function description in Pin Configuration and Functions for more details.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
81  
Product Folder Links: DS250DF230  
 
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
7. Make provisions in the schematic and layout for a 30.72 MHZ (±100 ppm) or 25 MHz (±100 ppm) single-  
ended CMOS clock. Each DS250DF230 retimer buffers the clock on the CAL_CLK_IN pin and presents the  
buffered clock on the CAL_CLK_OUT pin. This allows multiple (up to 20) retimers’ calibration clocks to be  
daisy chained to avoid the need for multiple oscillators on the board. If the oscillator used on the board has a  
2.5-V CMOS output, then no AC-coupling capacitor or resistor ladder is required at the input to  
CAL_CLK_IN. No AC coupling or resistor ladder is needed between one retimer’s CAL_CLK_OUT output  
and the next retimer’s CAL_CLK_IN input. The final retimer’s CAL_CLK_OUT output can be left floating.  
8. Connect the INT_N open-drain output to an FPGA or CPU if interrupt monitoring is desired. Note that  
multiple retimers’ INT_N outputs can be connected together because this is an open-drain output. The  
common INT_N net must be pulled high.  
9. If the application requires initial CDR lock acquisition at the ambient temperature extremes defined in  
Recommended Operating Conditions, take care to ensure the operating junction temperature is met as well  
as the CDR stay-in-lock junction temperature range defined in Electrical Characteristics. For example, if  
initial CDR lock acquisition occurs at an junction temperature of 110ºC, then maintaining CDR lock would  
require the ambient temperature surrounding the DS250DF230 to be kept above (110ºC – TEMPLOCK–).  
9.2.1.3 Application Curves  
Figure 19 shows a typical output eye diagram for the DS250DF230 operating at 25.78125 Gbps with PRBS9  
pattern using FIR main-cursor of +28, pre-cursor of 0 and post-cursor of +3. All other device settings are left at  
default.  
Figure 20 shows an example of DS250DF230 FIR transmit equalization while operating at 25.78125 Gbps. In this  
example, the Tx FIR filter main-cursor is set to +25, post-cursor to –3 and pre-cursor to –3. An 8T pattern is used  
to evaluate the FIR filter, which consists of 0xFF00. All other device settings are left at default.  
Figure 19. DS250DF230 Operating at 25.78125 Gbps  
Figure 20. DS250DF230 FIR Transmit Equalization While  
Operating at 25.78125 Gbps  
82  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
 
 
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
9.2.2 Active Cable Applications  
The DS250DF230 has strong equalization capabilities that allow it to recover data over long and/or thin-gauge  
copper cables. Two pcs DS250DF230s can be used on a QSFP28 paddle card to create a half-active cable  
assembly which is longer and/or thinner than passive cables. Alternatively, four pcs DS250DF230 devices can be  
used on a QSFP28 paddle card to create a full-active cable assembly and achieve even longer reach and/or  
thinner cables.  
Figure 21 shows these configurations, Figure 22 shows an example simplified schematic for a half-active cable  
application, and Figure 23 shows an example simplified schematic for a full-active cable application.  
Line Card  
Full-Active Cable  
DS250DF230  
DS250DF230  
x2  
DS250DF230  
x2  
x2  
DS250DF230  
x2  
QSFP  
x4 25G VSR  
ASIC  
FPGA  
Half-Active Cable  
DS250DF230  
x2  
QSFP  
x4 25G VSR  
DS250DF230  
x2  
Figure 21. Active Cable Application Block Diagram  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
83  
Product Folder Links: DS250DF230  
 
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
No Retimer and no AC coupling capacitors needed  
RX Retimer  
TX0P  
TX0N  
RX0P  
RX0N  
CDR  
X
TX  
RX  
RX  
TX1P  
TX1N  
RX1P  
RX1N  
CDR  
TX  
Paddle  
card host  
side  
Paddle  
card cable  
side  
VDD  
2.5 V or 3.3 V  
To other open-  
SMBus  
Slave mode  
1 kΩ  
INT_N  
drain interrupt  
pins  
EN_SMB  
TEST0 /RCK0  
THR /TEST1  
To system  
SMBus  
SDA  
SDC  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
CAL_CLK_IN  
READ_EN_N  
CAL_CLK_OUT  
ALL_DONE_N  
GND  
SMBus Slave  
mode  
2.5 V  
Output can float  
in slave mode  
VDD  
0.01 F  
(2x)  
0.1 F  
(2x)  
Minimum  
recommended  
decoupling  
(1) SMBus signals need to be pulled up elsewhere in the system.  
Figure 22. Half-Active Cable Application Schematic  
84  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
TX Retimer  
RX0P  
RX0N  
TX0P  
TX0N  
CDR  
X
RX  
TX  
RX1P  
RX1N  
TX1P  
TX1N  
CDR  
RX  
TX  
2.5 V or  
3.3 V  
VDD  
SMBus  
Slave mode  
1 kΩ  
To other  
open-drain  
interrupt pins  
EN_SMB  
INT_N  
TEST0 /RCK0  
THR /TEST1  
SDA  
SDC  
To system  
SMBus(1)  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
30.72 MHz or 25 MHz  
CAL_CLK_OUT  
To next device‘s  
CAL_CLK_IN  
CAL_CLK_IN  
READ_EN_N  
SMBus Slave  
mode  
ALL_DONE_N  
GND  
Output can float  
in slave mode  
2.5 V  
VDD  
0.01F  
(2x)  
0.1F  
(2x)  
Minimum  
recommended  
decoupling  
Paddle  
card host  
side  
Paddle  
card cable  
side  
RX Retimer  
TX0P  
TX0N  
RX0P  
RX0N  
CDR  
X
TX  
RX  
RX  
TX1P  
TX1N  
RX1P  
RX1N  
CDR  
TX  
VDD  
SMBus  
Slave mode  
1 kΩ  
EN_SMB  
INT_N  
TEST0 /RCK0  
THR /TEST1  
SDA  
SDC  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
CAL_CLK_IN  
READ_EN_N  
CAL_CLK_OUT  
ALL_DONE_N  
GND  
SMBus Slave  
mode  
Output can float  
in slave mode  
2.5 V  
VDD  
0.01F  
(2x)  
0.1F  
(2x)  
Minimum  
recommended  
decoupling  
(1) SMBus signals need to be pulled up elsewhere in the system.  
Figure 23. Full-Active Cable Application Schematic  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
85  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
9.2.2.1 Design Requirements  
For this design example, the following guidelines outlined in Table 13 and Table 14 apply.  
Table 13. Half-Active Cable Application Design Guidelines  
DESIGN PARAMETER  
REQUIREMENT  
Place the DS250DF230s on the receive side of the paddle card such  
that it is receiving data from the cable, and transmitting towards the  
host.  
Device placement  
100-nF, AC-coupling capacitors are required for the RX inputs and  
the TX outputs.  
AC-coupling capacitors  
The raw cable insertion loss including the insertion loss of the paddle  
card must be 27 dB at 25.78125-Gbps Nyquist frequency (12.9  
GHz). This is to ensure that the total loss at the input to the  
DS250DF230 is 35 dB at 12.9 GHz. Assuming a worst-case host-  
side PCB loss of 7 dB, plus a connector loss of 1 dB, the remaining  
loss allocated for the raw cable and paddle cards is 27 dB.  
Cable insertion loss  
Table 14. Full-Active Cable Application Design Guidelines  
DESIGN PARAMETER  
REQUIREMENT  
A full-active QSFP cable will uses 4 pieces of DS250DF230 per  
paddle card. Typically, two devices will be placed on each side of the  
paddle card.  
Device placement  
Transmit-side Retimer: 100-nF, AC coupling capacitors are required  
for the RX inputs and are not required for the TX outputs. This link  
segment will be AC coupled on the paddle card at the opposite end  
of the cable.  
Receive-side Retimer: 100-nF, AC-coupling capacitors are required  
for the RX inputs and the TX outputs.  
AC-coupling capacitors  
Cable insertion loss  
The raw cable insertion loss including the insertion loss of the paddle  
card must be 35 dB at 25.78125-Gbps Nyquist frequency (12.9  
GHz).  
9.2.2.2 Detailed Design Procedure  
The design procedure for active cable applications is as follows:  
1. Determine the maximum current draw required for the DS250DF230 retimer(s) on the paddle card. This may  
impact the selection of the regulator for the 2.5-V supply rail. To calculate the maximum current draw,  
multiply the maximum transient power supply current by the total number of DS250DF230 devices.  
2. Determine the maximum operational power consumption for the purpose of thermal analysis. There are two  
ways to approach this calculation:  
a. Maximum mission-mode operational power consumption is when all channels are locked and re-  
transmitting the data which is received. PRBS pattern checkers/generators are not used in this mode  
because normal traffic cannot be checked with a PRBS checker. For this calculation, multiply the worst-  
case power consumption in mission mode by the total number of DS250DF230 devices.  
b. Maximum debug-mode operational power consumption is when all channels are locked and re-  
transmitting the data which is received. At the same time, some channels’ PRBS checkers or generators  
may be enabled. For this calculation, multiply the worst-case power consumption in debug mode by the  
total number of DS250DF230 devices.  
3. Determine the SMBus address for the DS250DF230 Retimer(s). The ADDR[1:0] pins can be left floating for  
an 8-bit SMBus slave address of 0x44. For the second DS250DF230, a single pullup or pulldown resistor can  
be used on one address pin. For example, with ADDR0 = Float and ADDR1 = 1 kΩ to GNDthe 8-bit  
SMBus slave address will be 0x34.  
86  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
 
 
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
4. Determine if the device will be configured from EEPROM (SMBus Master Mode) or from the system I2C bus  
(SMBus Slave Mode).  
a. If SMBus Master Mode will be used, provisions must be made for an EEPROM on the board with 8-bit  
SMBus address 0xA0. Refer to SMBus Master Mode for more details on SMBus Master Mode including  
EEPROM size requirements.  
b. If SMBus Slave Mode will be used for all device configurations, for example when the Retimer(s) is  
configured with a microcontroller, an EEPROM is not needed.  
5. Make provisions in the schematic and layout for standard decoupling capacitors between the device VDD  
supply and GND. Refer to the pin function description in Pin Configuration and Functions for more details.  
6. Make provisions in the schematic and layout for a 30.72-MHz (±100 ppm) or 25-MHz (±100 ppm) single-  
ended CMOS clock. The DS250DF230 retimer buffers the clock on the CAL_CLK_IN pin and presents the  
buffered clock on the CAL_CLK_OUT pin. When using two Retimers on a paddle card, only one 30.72-MHZ  
or 25-MHz clock is required. The CAL_CLK_OUT pin of one retimer can be connected to the CAL_CLK_IN  
pin of the other retimer.  
7. Connect the INT_N open-drain output to the paddle card MCU if interrupt monitoring is desired, otherwise  
leave it floating. Note that multiple retimers’ INT_N outputs can be connected together because this is an  
open-drain output. The common INT_N net should be pulled high.  
8. If the application requires initial CDR lock acquisition at the ambient temperature extremes defined in  
Recommended Operating Conditions, take care to ensure the operating junction temperature is met as well  
as the CDR stay-in-lock junction temperature range defined in Electrical Characteristics. For example, if  
initial CDR lock acquisition occurs at an junction temperature of 110ºC, then maintaining CDR lock would  
require the junction temperature on DS250DF230 to be kept above (110ºC – TEMPLOCK–).  
9.2.2.3 Application Curves  
See Application Curves in section Front-Port Jitter Cleaning Applications.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
87  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
9.2.3 Backplane and Mid-Plane Applications  
The DS250DF230 has strong equalization capabilities that allow it to recover data over channels up to 35-dB  
insertion loss. As a result, the optimum placement for the DS250DF230 in a backplane/mid-plane application is  
with the higher-loss channel segment at the input and the lower-loss channel segment at the output. This  
reduces the equalization burden on the downstream ASIC/FPGA, as the DS250DF230 is equalizing a majority of  
the overall channel. This type of asymmetric placement is not a requirement, but when an asymmetric placement  
is required due to the presence of a passive backplane or mid-plane, then this becomes the recommended  
placement.  
Passive Backplane/  
Midplane  
Line Card  
Switch Fabric Card  
x2 25G  
ASIC  
FPGA  
x2 25G  
ASIC  
FPGA  
Figure 24. Backplane/Mid-Plane Application Block Diagram  
88  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
RX0P  
RX0N  
TX0P  
TX0N  
CDR  
X
RX  
RX  
TX  
TX  
RX1P  
RX1N  
TX1P  
TX1N  
CDR  
2.5 V or  
3.3 V  
VDD  
SMBus  
Slave mode  
1 kΩ  
To other  
open-drain  
interrupt pins  
EN_SMB  
INT_N  
TEST0 /RCK0  
THR /TEST1  
SDA  
SDC  
To system  
SMBus(1)  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
30.72 MHz or 25 MHz  
SMBus Slave  
CAL_CLK_OUT  
To next device‘s  
CAL_CLK_IN  
CAL_CLK_IN  
READ_EN_N  
ALL_DONE_N  
GND  
Output can float  
in slave mode  
mode  
2.5 V  
VDD  
0.01 F  
(2x)  
0.1 F  
(2x)  
Minimum  
recommended  
decoupling  
Backplane  
/ Mid-  
plane  
ASIC /  
FPGA  
Connector  
TX0P  
TX0N  
RX0P  
RX0N  
CDR  
TX  
RX  
X
TX1P  
TX1N  
RX1P  
RX1N  
CDR  
TX  
RX  
VDD  
SMBus  
Slave mode  
1 kΩ  
EN_SMB  
INT_N  
TEST0 /RCK0  
THR /TEST1  
SDA  
SDC  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
CAL_CLK_IN  
READ_EN_N  
CAL_CLK_OUT  
ALL_DONE_N  
GND  
SMBus Slave  
mode  
Output can float  
in slave mode  
2.5 V  
VDD  
0.01 F  
(2x)  
0.1 F  
(2x)  
Minimum  
recommended  
decoupling  
(1) SMBus signals need to be pulled up elsewhere in the system.  
Figure 25. Backplane/Mid-Plane Application Schematic  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
89  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
9.2.3.1 Design Requirements  
For this design example, the following guidelines outlined in Table 15 apply.  
Table 15. Backplane/Mid-Plane Application Design Guidelines  
DESIGN PARAMETER  
REQUIREMENT  
AC-coupling capacitors in the range of 100 to 220 nF are required  
for the RX inputs and TX outputs.  
AC coupling capacitors  
Input channel insertion loss  
Output channel insertion loss  
35 dB at 25.78125-Gbps Nyquist frequency (12.9 GHz)  
Depends on downstream ASIC / FPGA capabilities. The  
DS250DF230 has a low-jitter output driver with 3-tap FIR filter for  
equalizing a portion of the output channel.  
Link partner TX launch amplitude  
Link partner TX FIR filter  
800 mVppd to 1200 mVppd  
Depends on channel loss. Refer to the Setting the Output VOD, Pre-  
Cursor, and Post-Cursor Equalization section.  
9.2.3.2 Detailed Design Procedure  
The design procedure for backplane/mid-plane applications is as follows:  
1. Determine the total number of channels on the board which require a DS250DF230 for signal conditioning.  
This will dictate the total number of DS250DF230 devices required for the board. It is generally  
recommended that channels with similar total insertion loss on the board be grouped together in the same  
DS250DF230 device. This will simplify the device settings, as similar loss channels generally use similar  
settings.  
2. Determine the maximum current draw required for all DS250DF230 retimers. This may impact the selection  
of the regulator for the 2.5-V supply rail. To calculate the maximum current draw, multiply the maximum  
transient power supply current by the total number of DS250DF230 devices.  
3. Determine the maximum operational power consumption for the purpose of thermal analysis. There are two  
ways to approach this calculation:  
a. Maximum mission-mode operational power consumption is when all channels are locked and re-  
transmitting the data which is received. PRBS pattern checkers/generators are not used in this mode  
because normal traffic cannot be checked with a PRBS checker. For this calculation, multiply the worst-  
case power consumption in mission mode by the total number of DS250DF230 devices.  
b. Maximum debug-mode operational power consumption is when all channels are locked and re-  
transmitting the data which is received. At the same time, some channels’ PRBS checkers or generators  
may be enabled. For this calculation, multiply the worst-case power consumption in debug mode by the  
total number of DS250DF230 devices.  
4. Determine the SMBus address scheme needed to uniquely address each DS250DF230 device on the board,  
depending on the total number of devices identified in step 2. Each DS250DF230 can be strapped with one  
of 16 unique SMBus addresses. If there are more DS250DF230 devices on the board than the number of  
unique SMBus addresses which can be assigned, then use an I2C expander like the TCA/PCA family of  
I2C/SMBus switches and multiplexers to split up the SMBus into multiple busses.  
5. Determine if the device will be configured from EEPROM (SMBus Master Mode) or from the system I2C bus  
(SMBus Slave Mode).  
a. If SMBus Master Mode will be used, provisions must be made for an EEPROM on the board with 8-bit  
SMBus address 0xA0. Refer to SMBus Master Mode for more details on SMBus Master Mode including  
EEPROM size requirements.  
b. If SMBus Slave Mode will be used for all device configurations, an EEPROM is not needed.  
6. Make provisions in the schematic and layout for standard decoupling capacitors between the device VDD  
supply and GND. Refer to the pin function description in Pin Configuration and Functions for more details.  
7. Make provisions in the schematic and layout for a 30.72-MHz (±100 ppm) or 25-MHz (±100 ppm) single-  
ended CMOS clock. Each DS250DF230 retimer buffers the clock on the CAL_CLK_IN pin and presents the  
buffered clock on the CAL_CLK_OUT pin. This allows multiple (up to 20) retimers’ calibration clocks to be  
daisy chained to avoid the need for multiple oscillators on the board. If the oscillator used on the board has a  
2.5-V CMOS output, then no AC-coupling capacitor or resistor ladder is required at the input to  
CAL_CLK_IN. No AC coupling or resistor ladder is needed between one retimer’s CAL_CLK_OUT output  
and the next retimer’s CAL_CLK_IN input. The final retimer’s CAL_CLK_OUT output can be left floating.  
90  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
 
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
8. Connect the INT_N open-drain output to an FPGA or CPU if interrupt monitoring is desired. Note that  
multiple retimers’ INT_N outputs can be connected together because this is an open-drain output. The  
common INT_N net must be pulled high.  
9. If the application requires initial CDR lock acquisition at the ambient temperature extremes defined in  
Recommended Operating Conditions, take care to ensure the operating junction temperature is met as well  
as the CDR stay-in-lock junction temperature range defined in Electrical Characteristics. For example, if  
initial CDR lock acquisition occurs at an junction temperature of 110 ºC, then maintaining CDR lock would  
require the junction temperature on DS250DF230 to be kept above (110ºC - TEMPLOCK-).  
9.2.3.3 Application Curves  
See Application Curves in section Front-Port Jitter Cleaning Applications.  
10 Power Supply Recommendations  
Follow these general guidelines when designing the power supply:  
1. The power supply must be designed to provide the recommended operating conditions outlined in  
Specifications in terms of DC voltage, AC noise, and start-up ramp time.  
2. The maximum current draw for the DS250DF230 is provided in Specifications. This figure can be used to  
calculate the maximum current the power supply must provide. Typical mission-mode current draw can be  
inferred from the typical power consumption in Specifications.  
3. The DS250DF230 does not require any special power supply filtering (that is, ferrite bead), provided the  
recommended operating conditions are met. Only standard supply decoupling is required. Refer to the Pin  
Configuration and Functions section for details concerning the recommended supply decoupling.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
91  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
Follow these guidelines when designing the layout:  
1. Decoupling capacitors must be placed as close to the VDD pins as possible. Placing them directly  
underneath the device is one option if the board design permits.  
2. High-speed differential signals TXnP/TXnN and RXnP/RXnN must be tightly coupled, skew matched, and  
impedance controlled.  
3. Vias must be avoided when possible on the high-speed differential signals. When vias must be used, take  
care to minimize the via stub, either by transitioning through most or all layers, or by back drilling.  
4. GND relief can be used beneath the high-speed differential signal pads to improve signal integrity by  
counteracting the pad capacitance.  
5. GND relief can be used beneath the AC-coupling capacitor pads to improve signal integrity by counteracting  
the pad capacitance.  
6. GND vias must be placed directly beneath the device connecting the GND plane attached to the device to  
the GND planes on other layers. This has the added benefit of improving thermal conductivity from the  
device to the board.  
7. If vias are used for the high-speed signals, the ground via must be implemented adjacent to the signal via to  
provide return path and isolation. For differential pair, the typical via configuration is ground-signal-signal-  
ground.  
11.2 Layout Examples  
The example layouts in Figure 26 through Figure 30 demonstrate how all signals can be escaped from the BGA  
array using microstrip routing on a generic multi-layer stackup.  
Figure 26. Top Layer  
Figure 27. Layer 1 GND  
92  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
 
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
Layout Examples (continued)  
Figure 28. Internal Low-Speed Signal Layers  
Figure 29. VDD Layer  
Figure 30. Bottom Layer  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
93  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
For additional information, see TI’s Surface Mount Technology (SMT) References at:  
http://focus.ti.com/quality/docs under the Quality & Lead (Pb)-Free Data menu.  
For device and channel model simulation, refer to the DS250DF230 IBIS-AMI Model:  
DS250DF230 IBIS-AMI Model (SNLM215)  
Click here to request access to the DS250DF230 IBIS-AMI Model (SNLM215) in the DS250DF230 MySecure  
folder.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation, see the following:  
DS2x0DF810, DS250DFx10, DS250DF230 Programmer's Guide (SNLU182)  
Click here to request access to the DS250DF230 Programming Guide in the DS250DF230 MySecure folder.  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
E2E is a trademark of Texas Instruments.  
12.6 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
94  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
13.1 Package Option Addendum  
13.1.1 Packaging Information  
Package  
Type  
Package  
Drawing  
Package  
Qty  
Lead/Ball  
Finish(3)  
(1)  
(2)  
(4)  
Orderable Device  
DS250DF230ZLSR  
DS250DF230ZLST  
Status  
Pins  
36  
Eco Plan  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking(5)(6)  
D250DF230  
Green (RoHS  
& no Sb/Br)  
PREVIEW  
PREVIEW  
DSBGA  
ZLS  
ZLS  
3000  
250  
SNAGCU  
SNAGCU  
Level-3-260C-168 H  
Level-3-260C-168 H  
Green (RoHS  
& no Sb/Br)  
DSBGA  
36  
-40 to 85  
D250DF230  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material)  
space  
(3) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
space  
(4) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(6) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief  
on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third  
parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for  
release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
95  
Product Folder Links: DS250DF230  
DS250DF230  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
www.ti.com  
13.1.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
P1 Pitch between successive cavity centers  
W
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
DS250DF230ZLSR  
DS250DF230ZLST  
DSBGA  
DSBGA  
ZLS  
ZLS  
36  
36  
3000  
250  
330  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.65  
1.65  
8
8
12  
12  
TBD  
TBD  
TBD  
96  
Submit Documentation Feedback  
Copyright © 2018–2019, Texas Instruments Incorporated  
Product Folder Links: DS250DF230  
DS250DF230  
www.ti.com  
SNLS590B AUGUST 2018REVISED OCTOBER 2019  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
3000  
250  
Length (mm) Width (mm)  
Height (mm)  
TBD  
DS250DF230ZLSR  
DS250DF230ZLST  
DSBGA  
DSBGA  
ZLS  
ZLS  
36  
36  
TBD  
TBD  
TBD  
TBD  
TBD  
Copyright © 2018–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
97  
Product Folder Links: DS250DF230  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS250DF230RTVR  
DS250DF230RTVT  
PREVIEW  
WQFN  
WQFN  
RTV  
32  
32  
3000 RoHS (In work)  
& Non-Green  
Call TI  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
PREVIEW  
RTV  
3000 RoHS (In work)  
& Non-Green  
Call TI  
DS250DF230ZLSR  
DS250DF230ZLST  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
ZLS  
ZLS  
36  
36  
3000 RoHS & Green  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
D250DF230  
D250DF230  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Oct-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS250DF230ZLSR  
DS250DF230ZLST  
NFBGA  
NFBGA  
ZLS  
ZLS  
36  
36  
3000  
250  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.65  
1.65  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Oct-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS250DF230ZLSR  
DS250DF230ZLST  
NFBGA  
NFBGA  
ZLS  
ZLS  
36  
36  
3000  
250  
336.6  
336.6  
336.6  
336.6  
31.8  
31.8  
Pack Materials-Page 2  
PACKAGE OUTLINE  
ZLS0036A  
NFBGA - 1.41 mm max height  
SCALE 2.500  
BALL GRID ARRAY  
5.1  
4.9  
A
B
BALL A1  
CORNER  
5.1  
4.9  
C
1.41 MAX  
SEATING PLANE  
0.1 C  
0.35  
0.23  
TYP  
BALL TYP  
4 TYP  
SYMM  
F
E
D
C
SYMM  
4
TYP  
36X 0.35-0.45  
B
A
0.15  
0.08  
C A B  
C
0.8 TYP  
1
2
3
4
5
6
BALL A1 CORNER  
0.8 TYP  
4220412/A 04/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZLS0036A  
NFBGA - 1.41 mm max height  
BALL GRID ARRAY  
(0.8) TYP  
3
36X ( 0.35)  
(0.8) TYP  
1
5
6
4
2
A
B
C
D
E
F
SYMM  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.35)  
0.05 MIN  
METAL  
EXPOSED METAL  
(
0.35)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4220412/A 04/2017  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments Literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZLS0036A  
NFBGA - 1.41 mm max height  
BALL GRID ARRAY  
36X ( 0.35)  
(0.8) TYP  
A
1
3
4
5
6
2
(0.8) TYP  
B
C
D
E
F
SYMM  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE:15X  
4220412/A 04/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY