DS80PCI810NJYT [TI]

具有均衡功能的 2.5/5.0/8.0Gbps 8 通道线性转接驱动器 | NJY | 54 | -40 to 85;
DS80PCI810NJYT
型号: DS80PCI810NJYT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有均衡功能的 2.5/5.0/8.0Gbps 8 通道线性转接驱动器 | NJY | 54 | -40 to 85

驱动 接口集成电路 驱动器
文件: 总60页 (文件大小:5063K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
DS80PCI810 低功耗 8Gbps 8 通道线性中继器  
1 特性  
3 说明  
1
每通道 70mW(典型值)的低功耗,可选择关闭不  
使用的通道  
DS80PCI810 是一款超低功耗高性能中继器/转接驱动  
器,专用于支持高速接口速率高达 8Gbps 的八个通  
道,例如 PCIe 1 代、2 代和 3 代。接收器的连续时间  
线性均衡器 (CTLE) 后接一个线性输出驱动器,可在  
4GHz (8Gbps) 时提供 2.7dB 9.5dB 的可编程高频  
增强功能。 CTLE 接收器能够打开一个因码间干扰  
(ISI)(由电路板迹线或铜质同轴电缆等互连介质引起)  
而完全关闭的输入眼型状态。 可编程的均衡能够可在  
互连通道内的实体布局方面实现最大限度的灵活性并提  
高通道的总体性能。  
支持无缝链路协商  
高级可配置信号调节 I/O  
4GHz 时,接收高达约 10dB 的连续时间线性均  
衡器 (CTLE)  
线性输出驱动器  
可变输出电压范围高达 1200mVp-p  
自动接收器检测(热插拔)  
输入至输出超低延迟:80ps(典型值)  
可通过引脚选择 EEPROM SMBus 接口进行编  
当在 PCIe 应用中运行时,DS80PCI810 保留发射信号  
特性,从而使得主机控制器和端点能够协商发射均衡器  
系数。 这个链路协商协议的透明管理有助于实现系统  
级互用性并最大限度缩短延迟。  
单电源电压:2.5V 3.3V  
4kV 人体模型 (HBM) 静电放电 (ESD) 额定电压  
-40°C 85°C 工作温度范围  
10mm x 5.5mm 54 引脚超薄型四方扁平无引线  
(WQFN) 封装内的直通引脚分配  
可通过引脚控制、软件(SMBus I2C)来轻松应用  
相关可编程设置,或者通过外部 EEPROM 直接加载设  
置。 在 EEPROM 模式下,配置信息在加电时自动加  
载,这样就免除了对于外部微控制器或软件驱动程序的  
需要。  
DS80PCI800 引脚兼容  
2 应用  
PCI Express 1 代、2 代和 3 代  
器件信息(1)  
其它速率高达 8Gbps 的专有高速接口  
部件号  
封装  
WQFN (54)  
封装尺寸(标称值)  
简化功能框图  
DS80PCI810  
10mm x 5.5mm  
INB_0+  
OUTB_0+  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
INB_0-  
OUTB_0-  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
典型应用方框图  
INB_3+  
INB_3-  
OUTB_3+  
OUTB_3-  
INA_0+  
OUTA_0+  
8
INA_0-  
OUTA_0-  
TX  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
ASIC  
or  
INA_3+  
INA_3-  
OUTA_3+  
OUTA_3-  
PCIe EP  
Connector  
8
RX  
AD0  
DS80PCI810  
Address  
straps  
AD1  
(pull-up or  
pull-down)  
VDD  
AD2  
AD3  
SMBus  
Slave Mode(1)  
8
RX  
SMBus  
READ_EN  
ENSMB  
Slave Mode(1)  
System Board  
DS80PCI810  
Root Complex  
SDA(2)  
SCL(2)  
To system  
SMBus  
Connector  
VIN  
2.5 V  
8
Mode(3)  
TX  
ALL_DONE  
GND  
VDD_SEL  
2.5V  
VDD  
10F  
1F  
0.1F  
(5x)  
(1) Schematic requires different connections for SMBus Master Mode and Pin Mode  
(2) SMBus signals need to be pulled up elsewhere in the system.  
(3) Schematic requires different connections for 3.3 V mode  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNLS493  
 
 
 
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
目录  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 14  
7.5 Programming........................................................... 17  
7.6 Register Maps......................................................... 26  
Applications and Implementation ...................... 42  
8.1 Application Information............................................ 42  
8.2 Typical Applications ................................................ 43  
Power Supply Recommendations...................... 51  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 7  
6.1 Absolute Maximum Ratings ...................................... 7  
6.2 Handling Ratings ...................................................... 7  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information ................................................. 7  
6.5 Electrical Characteristics........................................... 8  
8
9
10 Layout................................................................... 52  
10.1 Layout Guidelines ................................................. 52  
10.2 Layout Example .................................................... 52  
11 器件和文档支持 ..................................................... 53  
11.1 ....................................................................... 53  
11.2 静电放电警告......................................................... 53  
11.3 术语表 ................................................................... 53  
12 机械封装和可订购信息 .......................................... 53  
6.6 Electrical Characteristics — Serial Management Bus  
Interface .................................................................. 10  
6.7 Timing Requirements Serial Bus Interface ............. 10  
6.8 Typical Characteristics............................................ 12  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7
4 修订历史记录  
日期  
修订版本  
注释  
2014 10 月  
*
最初发布。  
2
Copyright © 2014, Texas Instruments Incorporated  
 
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
5 Pin Configuration and Functions  
WQFN  
54-Lead  
Top View  
SMBUS AND CONTROL  
1
2
3
4
OUTB_0+  
OUTB_0-  
OUTB_1+  
OUTB_1-  
VDD  
INB_0+  
INB_0-  
INB_1+  
INB_1-  
45  
44  
43  
42  
INB_2+  
INB_2-  
5
6
7
8
41  
40  
39  
38  
OUTB_2+  
OUTB_2-  
OUTB_3+  
OUTB_3-  
VDD  
INB_3+  
INB_3-  
VDD  
9
DAP = GND  
37  
36  
35  
34  
33  
32  
31  
10  
11  
12  
13  
14  
15  
16  
17  
INA_0+  
INA_0-  
INA_1+  
OUTA_0+  
OUTA_0-  
OUTA_1+  
OUTA_1-  
OUTA_2+  
OUTA_2-  
OUTA_3+  
OUTA_3-  
INA_1-  
VDD  
INA_2+  
INA_2-  
30  
29  
28  
INA_3+  
INA_3-  
18  
NOTE: Above 54-lead WQFN graphic is a TOP VIEW, looking down through the package.  
Copyright © 2014, Texas Instruments Incorporated  
3
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Pin Functions(1)  
PIN NAME  
PIN NUMBER  
I/O, TYPE  
DESCRIPTION  
DIFFERENTIAL HIGH SPEED I/O  
INB_0+, INB_0- ,  
INB_1+, INB_1-,  
INB_2+, INB_2-,  
INB_3+, INB_3-  
1, 2  
3, 4  
5, 6  
7, 8  
Inverting and non-inverting CML differential inputs to the equalizer.  
On-chip 50 Ω termination resistor connects INB_n+ to VDD and INB_n-  
to VDD depending on the state of RXDET. See Table 2.  
AC coupling required on high-speed I/O  
I, CML  
OUTB_0+, OUTB_0-,  
OUTB_1+, OUTB_1-,  
OUTB_2+, OUTB_2-,  
OUTB_3+, OUTB_3-  
45, 44  
43, 42  
41, 40  
39, 38  
Inverting and non-inverting 50 Ω driver outputs. Compatible with AC  
coupled CML inputs.  
AC coupling required on high-speed I/O  
O, CML  
I, CML  
INA_0+, INA_0- ,  
INA_1+, INA_1-,  
INA_2+, INA_2-,  
INA_3+, INA_3-  
10, 11  
12, 13  
15, 16  
17, 18  
Inverting and non-inverting CML differential inputs to the equalizer.  
On-chip 50 Ω termination resistor connects INA_n+ to VDD and INA_n-  
to VDD depending on the state of RXDET. See Table 2.  
AC coupling required on high-speed I/O  
OUTA_0+, OUTA_0-,  
OUTA_1+, OUTA_1-,  
OUTA_2+, OUTA_2-,  
OUTA_3+, OUTA_3-  
35, 34  
33, 32  
31, 30  
29, 28  
Inverting and non-inverting 50 Ω driver outputs. Compatible with AC  
coupled CML inputs.  
AC coupling required on high-speed I/O  
O, CML  
CONTROL PINS — SHARED (LVCMOS)  
System Management Bus (SMBus) Enable Pin  
Tie 1 kΩ to VDD (2.5 V mode) or VIN (3.3 V mode) = Register Access  
SMBus Slave Mode  
FLOAT = Read External EEPROM (SMBus Master Mode)  
Tie 1 kΩ to GND = Pin Mode  
ENSMB  
48  
I, LVCMOS  
I, LVCMOS,  
ENSMB = 1 (SMBus SLAVE MODE)  
In SMBus Slave Mode, this pin is the SMBus clock I/O. Clock input or  
open drain output.  
SCL  
50  
O, OPEN Drain External 2 kΩ to 5 kΩ pull-up resistor required as per SMBus interface  
standards(2)  
In both SMBus Modes, this pin is the SMBus data I/O. Data input or  
I, LVCMOS,  
open drain output.  
SDA  
49  
O, OPEN Drain External 2 kΩ to 5 kΩ pull-up resistor required as per SMBus interface  
standards(2)  
SMBus Slave Address Inputs. In both SMBus Modes, these pins are the  
user set SMBus slave address inputs.  
External 1 kΩ pull-up or pull-down recommended.  
AD0-AD3  
54, 53, 47, 46  
I, LVCMOS  
Note: In Pin Mode, AD2 must be tied via external 1 kΩ to GND.  
Reserved  
For applications requiring Signal Detect status register read-back:  
I, 4-LEVEL,  
LVCMOS  
Leave Pin 21 floating.  
RESERVED2  
RESERVED3  
21  
19  
Write Reg 0x08[2] = 1 if Pin 21 is floating.  
Otherwise, tie Pin 21 via external 1 kΩ to GND (External 1 kΩ to VDD  
(2.5 V mode) or VIN (3.3 V mode) is also acceptable).  
Reserved  
I, 4-LEVEL,  
LVCMOS  
This input may be left floating, tied via 1 kΩ to VDD (2.5 V mode) or VIN  
(3.3 V mode), or tied via 1 kΩ to GND.  
(1) LVCMOS inputs without the “Float” conditions must be driven to a logic low or high at all times or operation is not ensured.  
Input edge rate for LVCMOS/FLOAT inputs must be faster than 50 ns from 10–90%.  
For 3.3 V mode operation, VIN pin input = 3.3 V and the logic "1" or "high" reference for the 4-level input is 3.3 V.  
For 2.5 V mode operation, VDD pin output= 2.5 V and the logic "1" or "high" reference for the 4-level input is 2.5 V.  
(2) SCL and SDA pins can be tied either to 3.3 V or 2.5 V, regardless of whether the device is operating in 2.5 V mode or 3.3 V mode.  
4
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Pin Functions(1) (continued)  
PIN NAME  
PIN NUMBER  
I/O, TYPE  
DESCRIPTION  
ENSMB = Float (SMBus MASTER MODE)  
Clock output when loading EEPROM configuration, reverting to SMBus  
clock input when EEPROM load is complete (ALL_DONE = 0).  
I, LVCMOS,  
SCL  
SDA  
50  
49  
O, OPEN Drain External 2 kΩ to 5 kΩ pull-up resistor required as per SMBus interface  
standards(2)  
In both SMBus Modes, this pin is the SMBus data I/O. Data input or  
open drain output.  
I, LVCMOS,  
O, OPEN Drain External 2 kΩ to 5 kΩ pull-up resistor required as per SMBus interface  
standards(2)  
SMBus Slave Address Inputs. In both SMBus Modes, these pins are the  
user set SMBus slave address inputs.  
External 1 kΩ pull-up or pull-down recommended.  
Note: In Pin Mode, AD2 must be tied via external 1 kΩ to GND.  
A logic low on this pin starts the load from the external EEPROM(3)  
Once EEPROM load is complete (ALL_DONE = 0), this pin functionality  
remains as READ_EN. It does not revert to an SD_TH input.  
AD0-AD3  
54, 53, 47, 46  
26  
I, LVCMOS  
.
READ_EN  
I, LVCMOS  
Reserved  
For applications requiring Signal Detect status register read-back:  
Leave Pin 21 floating.  
Write Reg 0x08[2] = 1 if Pin 21 is floating.  
Otherwise, tie Pin 21 via external 1 kΩ to GND (External 1 kΩ to VDD  
(2.5 V mode) or VIN (3.3 V mode) is also acceptable).  
I, 4-LEVEL,  
LVCMOS  
RESERVED2  
21  
19  
Reserved  
I, 4-LEVEL,  
LVCMOS  
RESERVED3  
This input may be left floating, tied via 1 kΩ to VDD (2.5 V mode) or VIN  
(3.3 V mode), or tied via 1 kΩ to GND.  
ENSMB = 0 (PIN MODE)  
EQA and EQB pins control the level of equalization for the A-channels  
and B-channels, respectively. The pins are defined as EQA and EQB  
only when ENSMB is de-asserted (low). Each of the four A-channels  
have the same level unless controlled by the SMBus control registers.  
Likewise, each of the four B-channels have the same level unless  
controlled by the SMBus control registers.  
EQA  
EQB  
20  
46  
I, 4-LEVEL,  
LVCMOS  
When the device operates in Slave or Master Mode, the SMBus registers  
independently control each lane, and the EQB pin is converted to an  
AD3 input. See Table 4.  
VODB[1:0] controls the output amplitude of the B-channels. The pins are  
defined as VODB[1:0] only when ENSMB is de-asserted (low). Each of  
the four B-channels have the same level unless controlled by the SMBus  
control registers. When the device operates in Slave or Master Mode, the  
SMBus registers provide independent control of each lane, and  
VODB[1:0] pins are converted to AD0, AD1 inputs. See Table 5.  
VODB0  
VODB1  
53  
54  
I, 4-LEVEL,  
LVCMOS  
VODA[1:0] controls the output amplitude of the A-channels. The pins are  
defined as VODA[1:0] only when ENSMB is de-asserted (low). Each of  
the four A-channels have the same level unless controlled by the SMBus  
control registers. When the device operates in Slave or Master Mode, the  
SMBus registers provide independent control of each lane and the  
VODA[1:0] pins are converted to SCL and SDA. See Table 5.  
VODA0  
VODA1  
49  
50  
I, 4-LEVEL,  
LVCMOS  
Reserved in Pin Mode (ENSMB = 0)  
This input must be tied via external 1 kΩ to GND.  
AD2  
47  
26  
I, LVCMOS  
Controls the internal Signal Detect Status Threshold value when in Pin  
Mode and SMBus Slave Mode. This pin is to be used for system  
debugging only, as the signal detect threshold has no impact on the data  
path. See Table 3 for more information.  
I, 4-LEVEL,  
LVCMOS  
SD_TH  
For final designs, input can be left floating, tied via 1 kΩ to VDD (2.5 V  
mode) or VIN (3.3 V mode), or tied via 1 kΩ to GND.  
Reserved  
I, 4-LEVEL,  
LVCMOS  
RESERVED2  
21  
Tie via external 1 kΩ to GND (External 1 kΩ to VDD (2.5 V mode) or VIN  
(3.3 V mode) is also acceptable).  
(3) When READ_EN is asserted low, the device attempts to load EEPROM. If EEPROM cannot be loaded successfully, for example due to  
an invalid or blank hex file, the DS80PCI810 waits indefinitely in an unknown state where SMBus access is not possible. ALL_DONE pin  
remains high in this situation.  
Copyright © 2014, Texas Instruments Incorporated  
5
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Pin Functions(1) (continued)  
PIN NAME  
PIN NUMBER  
19  
I/O, TYPE  
DESCRIPTION  
I, 4-LEVEL,  
LVCMOS  
Reserved  
This input must be tied via external 1 kΩ to GND.  
RESERVED3  
CONTROL PINS — BOTH PIN AND SMBUS MODES (LVCMOS)  
The RXDET pin controls the RX detection function. Depending on the  
input level, a 50 Ω or >50 kΩ termination to the power rail is enabled.  
Keep this input floating for normal PCIe operation.  
See Table 2.  
I, 4-LEVEL,  
LVCMOS  
RXDET  
22  
23  
25  
I, 4-LEVEL,  
LVCMOS  
Reserved  
This input must be left floating.  
RESERVED1  
VDD_SEL  
Controls the internal regulator  
Float = 2.5 V mode  
Tie to GND = 3.3 V mode  
See Figure 31.  
I, FLOAT  
Tie High = Low power - Power Down  
Tie to GND = Normal Operation  
See Table 2.  
PWDN  
52  
27  
I, LVCMOS  
O, LVCMOS  
Valid Register Load Status Output  
HIGH = External EEPROM load failed or incomplete  
LOW = External EEPROM load passed  
ALL_DONE  
POWER  
In 3.3 V mode, feed 3.3 V to VIN  
In 2.5 V mode, leave floating.  
VIN  
24  
Power  
Power Supply for CML and Analog Pins  
In 2.5 V mode, connect to 2.5 V  
In 3.3 V mode, connect 0.1 µF cap to each VDD Pin and GND  
See Figure 31 for proper power supply decoupling .  
VDD  
GND  
9, 14, 36, 41, 51  
DAP  
Power  
Power  
Ground pad (DAP - die attach pad).  
6
Copyright © 2014, Texas Instruments Incorporated  
 
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
-0.5  
-0.5  
-0.5  
-0.5  
-30  
MAX  
+2.75  
+4.0  
UNIT  
V
Supply Voltage (VDD to GND, 2.5 V Mode)  
Supply Voltage (VIN to GND, 3.3 V Mode)  
LVCMOS Input/Output Voltage  
CML Input Voltage  
V
+4.0  
V
VDD + 0.5  
+30  
V
CML Input Current  
mA  
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other  
conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions  
indicate conditions at which the device is functional and the device should not be operated beyond such conditions. Absolute Maximum  
Numbers are ensured for a junction temperature range of -40°C to +125°C. Models are validated to Maximum Operating Voltages only.  
6.2 Handling Ratings  
MIN  
MAX  
125  
UNIT  
°C  
Tstg  
Storage temperature range  
-40  
Tsolder  
Lead Temperature Range Soldering (4 sec.)(1)  
260  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
-4000  
-1000  
4000  
pins(2)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(3)  
1000  
(1) For soldering specifications: See application note SNOA549.  
(2) JEDEC document JEP155 states that 4000-V HBM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC document JEP157 states that 1000-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
2.5  
MAX  
UNIT  
2.37  
5
Supply Voltage (2.5 V mode)(1)  
2.625  
V
Supply Voltage (3.3 V mode)(1)  
Ambient Temperature  
3.0  
-40  
3.3  
3.6  
+85  
3.6  
V
°C  
SMBus (SDA, SCL)  
V
Supply Noise up to 50 MHz(2)  
100  
mVp-p  
(1) DC plus AC power should not exceed these limits.  
(2) Allowed supply noise (mVp-p sine wave) under typical conditions.  
6.4 Thermal Information  
DS80PCI810  
WQFN  
54 PINS  
26.6  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJCtop  
RθJB  
10.8  
4.4  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
4.3  
RθJCbot  
1.5  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2014, Texas Instruments Incorporated  
7
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
6.5 Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER  
EQ = Level 4, VOD = Level 6  
RXDET = 1, PWDN = 0  
Current Consumption, 2.5 V Mode  
220  
220  
280  
280  
mA  
mA  
IDD  
EQ = Level 4, VOD = Level 6  
RXDET = 1, PWDN = 0  
Current Consumption, 3.3 V Mode  
Power Down Current Consumption  
Integrated LDO Regulator  
PWDN = 1  
14  
27  
mA  
V
VDD  
VIN = 3.0 - 3.6 V  
2.375  
2.5  
2.625  
LVCMOS / LVTTL DC SPECIFICATIONS  
VIH25  
VIH33  
VIL  
High Level Input Voltage  
High Level Input Voltage  
Low Level Input Voltage  
2.5 V Supply Mode  
3.3 V Supply Mode  
1.7  
1.7  
0
VDD  
VIN  
0.7  
V
V
V
High Level Output Voltage  
(ALL_DONE pin)  
VOH  
VOL  
IIH  
IOH = 4mA  
2.0  
V
V
Low Level Output Voltage  
(ALL_DONE pin)  
IOL = 4mA  
0.4  
+15  
+15  
VIN = 3.6 V,  
LVCMOS = 3.6 V  
Input High Current (PWDN pin)  
Input Low Current (PWDN pin)  
-15  
-15  
µA  
µA  
VIN = 3.6 V,  
LVCMOS = 0 V  
IIL  
4-LEVEL INPUT DC SPECIFICATIONS  
Input High Current with internal  
resistors  
VIN = 3.6 V,  
LVCMOS = 3.6 V  
IIH  
+20  
+150  
-40  
µA  
µA  
(4–level input pin)  
Input Low Current with internal  
resistors  
VIN = 3.6 V,  
LVCMOS = 0 V  
IIL  
-160  
(4–level input pin)  
Voltage Threshold from Pin Mode  
Level 0 to R  
0.50  
1.25  
2.00  
0.66  
1.65  
2.64  
VDD = 2.5 V (2.5 V supply mode)  
Internal LDO Disabled  
See Table 1 for details  
Voltage Threshold from Pin Mode  
Level R to F  
V
V
Voltage Threshold from Pin Mode  
Level F to 1  
VTH  
Voltage Threshold from Pin Mode  
Level 0 to R  
VIN = 3.3 V (3.3 V supply mode)  
Internal LDO Enabled  
See Table 1 for details.  
Voltage Threshold from Pin Mode  
Level R to F  
Voltage Threshold from Pin Mode  
Level F to 1  
CML RECEIVER INPUTS (IN_n+, IN_n-)  
ZRx-DIFF-DC Rx DC differential mode impedance  
ZRx-DC  
Tested at VDD = 2.5 V  
Tested at VDD = 2.5 V  
SDD11 10 MHz  
80  
40  
100  
50  
120  
60  
Rx DC single ended impedance  
Rx Differential Input return loss  
Rx Common mode return loss  
-19  
-14  
-8  
RLRx-DIFF  
SDD11 2 GHz  
dB  
SDD11 6-11.1 GHz  
SCC11 0.05 - 5 GHz  
RLRx-CM  
-10  
dB  
Signal detect assert level for active  
data signal  
SD_TH = F (float),  
1010 pattern at 12 Gbps  
VRx-ASSERT-DIFF-PP  
57  
44  
mVp-p  
VRx-DEASSERT-DIFF- Signal detect de-assert for inactive  
SD_TH = F (float),  
1010 pattern at 12 Gbps  
mVp-p  
signal level  
PP  
8
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Electrical Characteristics (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
HIGH SPEED OUTPUTS  
SDD22 10 MHz - 2 GHz  
SDD22 5.5 GHz  
-15  
-12  
-10  
-8  
dB  
RLTx-DIFF  
Tx Differential return loss  
SDD22 11.1 GHz  
dB  
dB  
RLTx-CM  
Tx Common mode return loss  
DC differential Tx impedance  
SCC22 50 MHz- 2.5 GHz  
ZTx-DIFF-DC  
100  
Total current when output is  
shorted to VDD or GND  
ITx-SHORT  
Transmitter short circuit current limit  
20  
mA  
mV  
VTx-CM-DC-LINE-  
DELTA  
Absolute delta of DC common mode  
voltage between Tx+ and Tx-  
25  
Differential measurement with  
OUT_n+ and OUT_n-,  
AC-Coupled and terminated by  
50 to GND,  
VTx-DIFF1-PP  
VTx-DIFF2-PP  
VTx-DIFF3-PP  
Output Voltage Differential Swing  
Output Voltage Differential Swing  
Output Voltage Differential Swing  
Inputs AC-Coupled,  
Measured with 8T Pattern at 12  
Gbps(1)  
615  
mVp-p  
mVp-p  
mVp-p  
VID = 600 mVp-p  
VOD = Level 6(2)(3)  
Differential measurement with  
OUT_n+ and OUT_n-,  
AC-Coupled and terminated by  
50 to GND,  
Inputs AC-Coupled,  
Measured with 8T Pattern at 12  
Gbps(1)  
950  
VID = 1000 mVp-p  
VOD = Level 6(2)(3)  
Differential measurement with  
OUT_n+ and OUT_n-,  
AC-Coupled and terminated by  
50 to GND,  
Inputs AC-Coupled,  
Measured with 8T Pattern at 12  
Gbps(1)  
1100  
VID = 1200 mVp-p  
VOD = Level 6(2)(3)  
TPDEQ  
Differential propagation delay  
AC common mode voltage  
EQ = Level 1 to Level 4  
80  
20  
ps  
EQ = Level 4, VOD = Level 6,  
PRBS-7, 8 Gbps  
VTx-CM-AC-PP  
Measured over >106 bits using a  
low pass filter with a -3 dB corner  
frequency at 4 GHz(4)  
mVp-p  
VDISABLE-OUT  
Tx disable output voltage  
Driver disabled via PWDN  
1
8
mVp-p  
mV  
Driver enabled, EQ = Level 4,  
VOD = Level 7 (Max)(5)  
VTx-IDLE-DIFF-AC-p  
Tx idle differential peak output voltage  
TTx-IDLE-SET-TO-  
IDLE  
Time to transition to idle after  
differential signal  
VID = 1.0 Vp-p, 1.5 Gbps  
VID = 1.0 Vp-p, 1.5 Gbps  
0.70  
0.04  
ns  
ns  
TTx-IDLE-TO-DIFF-  
DATA  
Time to transition to valid differential  
signal after idle  
(1) 8T pattern is defined as a 1111111100000000'b pattern bit sequence.  
(2) ATE measurements for production are tested at DC.  
(3) In PCIe applications, the output VOD level is not fixed. It adjusts automatically based on the VID input amplitude level. The output VOD  
level set by VODA/B[1:0] depends on the VID level and the frequency content. The DS80PCI810 repeater is designed to be transparent  
in this mode, so the Tx-FIR (de-emphasis) is passed to the Rx to support the handshake negotiation link training.  
(4) Tx Common Mode AC noise decreases at lower levels of EQ gain.  
(5) Tested with a valid idle signal on the input with peak differential voltage of 6 mV.  
Copyright © 2014, Texas Instruments Incorporated  
9
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Evaluation Module (EVM) Only,  
FR4,  
VID = 800 mVp-p, EQ = Level 1  
PRBS15, 12 Gbps  
RJADD  
Additive Random Jitter  
0.36  
ps rms  
VOD = Level 6  
All other channels active(6)  
EQUALIZATION  
5” Differential Stripline, 5mil trace  
width, FR4,  
DJE1  
Residual deterministic jitter at 6 Gbps VID = 800 mVp-p,  
PRBS15, EQ = Level 2,  
0.06  
0.12  
UIp-p  
UIp-p  
VOD = Level 6  
5” Differential Stripline, 5mil trace  
width, FR4,  
Residual deterministic jitter at 12  
Gbps  
DJE2  
VID = 800 mVp-p,  
PRBS15, EQ = Level 2,  
VOD = Level 6  
(6) Additive random jitter is given in RMS value by the following equation: RJADD = [(Output Jitter)2 - (Input Jitter)2]. Typical input jitter for  
these measurements is 150 fs rms.  
6.6 Electrical Characteristics — Serial Management Bus Interface  
Over recommended operating supply and temperature ranges unless other specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SERIAL BUS INTERFACE DC SPECIFICATIONS  
VIL  
Data, Clock Input Low Voltage  
Data, Clock Input High Voltage  
Output Low Voltage  
0.8  
3.6  
V
V
VIH  
2.1  
0
VOL  
VDD  
IIH-Pin  
IIL-Pin  
CI  
SDA or SCL, IOL = 1.25 mA  
0.36  
3.6  
V
Nominal Bus Voltage  
2.375  
+20  
-160  
V
Input Leakage Per Device Pin  
Input Leakage Per Device Pin  
Capacitance for SDA and SCL  
+150  
-40  
µA  
µA  
pF  
See(1)(2)  
Pullup VDD = 3.3 V(1)(2)(3)  
Pullup VDD = 2.5 V(1)(2)(3)  
< 5  
External Termination Resistance  
pull to VDD = 2.5 V ± 5% OR 3.3 V  
± 10%  
2000  
RTERM  
1000  
(1) Recommended value.  
(2) Recommended maximum capacitance load per bus segment is 400 pF.  
(3) Maximum termination voltage should be identical to the device supply voltage.  
6.7 Timing Requirements Serial Bus Interface  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SERIAL BUS INTERFACE TIMING SPECIFICATIONS  
ENSMB = VDD (Slave Mode)  
400  
520  
kHz  
kHz  
FSMB  
Bus Operating Frequency  
ENSMB = FLOAT (Master Mode)  
280  
400  
60  
Read operation  
RPU = 4.7 kΩ, Cb < 50 pF  
tFALL  
tRISE  
SCL or SDA Fall Time  
SCL or SDA Rise Time  
ns  
ns  
Read operation  
RPU = 4.7 kΩ, Cb < 50 pF  
140  
tF  
Clock/Data Fall Time  
Clock/Data Rise Time  
See(1)  
See(1)  
300  
ns  
ns  
tR  
1000  
Time in which a device must be  
operational after power-on reset  
tPOR  
See(1)  
500  
ms  
(1) Compliant to SMBus 2.0 physical layer specification. See System Management Bus (SMBus) Specification Version 2.0, section 3.1.1  
SMBus common AC specifications for details.  
10  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
80%  
80%  
0V  
20%  
VOD = [Out+ - Out-]  
20%  
t
t
RISE  
FALL  
Figure 1. Output Rise And Fall Transition Time  
+
IN  
0V  
-
t
t
PHLD  
PLHD  
+
OUT  
0V  
-
Figure 2. Propagation Delay Timing Diagram  
+
0V  
IN  
DATA  
t
-
t
DATA-IDLE  
IDLE-DATA  
+
0V  
OUT  
DATA  
-
IDLE  
IDLE  
Figure 3. Transmit Idle-Data and Data-Idle Response Time  
t
LOW  
t
R
t
HIGH  
SCL  
t
t
t
t
SU:STA  
F
HD:STA  
HD:DAT  
t
t
BUF  
SU:STO  
t
SU:DAT  
SDA  
ST  
SP  
SP  
ST  
Figure 4. SMBus Timing Parameters  
Copyright © 2014, Texas Instruments Incorporated  
11  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
6.8 Typical Characteristics  
1.4  
1.3  
1.2  
1.1  
1
VID = 0.6Vpp  
VID = 0.8Vpp  
VID = 1.0Vpp  
VID = 1.2Vpp  
590  
VDD = 2.5 V  
570  
550  
530  
510  
490  
470  
450  
430  
410  
390  
370  
350  
0.9  
0.8  
0.7  
0.6  
2.325  
2.5  
2.675  
1
2
3
4
5
6
VDD (V)  
VOD Level  
C003  
C006  
Test Conditions  
Test Conditions  
Data Rate, Test Pattern 1.5625 Gbps, 1010 Pattern  
EQ Level 4  
VOD Level 6  
EQ Level 1  
VOD_DB 000'b  
25°C  
T
T
25°C  
Figure 5. Typical Power Dissipation vs. VOD  
Figure 6. Typical VOD vs. VDD  
1.4  
1.3  
1.2  
1.1  
1
1.4  
1.2  
1
VID = 0.6Vpp  
VID = 0.8Vpp  
VID = 1.0Vpp  
VID = 1.2Vpp  
Level 1  
Level 2  
Level 3  
Level 4  
Level 5  
Level 6  
0.8  
0.6  
0.4  
0.2  
0.9  
0.8  
0.7  
0.6  
-40  
-15  
10  
35  
60  
85  
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
Temperature (ƒC)  
Input Differential Voltage (Vpp)  
C001  
C005  
Test Conditions  
Test Conditions  
Data Rate, Test Pattern 1.5625 Gbps, 1010 Pattern  
Data Rate, Test Pattern 1.5625 Gbps, 1010 Pattern  
EQ Level 1  
VOD Level 6  
EQ Level 1  
VDD 2.5 V  
T
25°C  
VDD 2.5 V  
Figure 7. Typical VOD vs. Temperature  
Figure 8. Typical VOD vs. VID  
12  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
7 Detailed Description  
7.1 Overview  
The DS80PCI810 provides linear equalization for lossy printed circuit board backplanes and balanced cables.  
The DS80PCI810 operates in three modes: Pin Control Mode (ENSMB = 0), SMBus Slave Mode (ENSMB = 1),  
and SMBus Master Mode (ENSMB = Float) to load register information from external EEPROM.  
7.2 Functional Block Diagram  
One channel of four A Channels  
Term  
RXDET  
INA_n+  
INA_n-  
OUTA_n+  
OUTA_n-  
EQ  
Driver  
EN_SMB  
EQA  
VODA[1:0]  
READ_EN  
AD[3:0]  
ALL_DONE  
SCL  
SDA  
Internal voltage  
regulator  
Digital Core and SMBus Registers  
PWDN  
VDD_SEL  
VIN  
Term  
RXDET  
INB_n+  
INB_n-  
OUTB_n+  
OUTB_n-  
EQ  
Driver  
EN_SMB  
EQB  
VODB[1:0]  
One channel of four B Channels  
7.2.1 Functional Datapath Blocks  
In an increasing number of high speed applications, transparency between Tx and Rx endpoints is essential to  
ensure high signal integrity. The DS80PCI810 channel datapath uses one gain stage input equalization coupled  
with a linear output driver. This combination provides a high level of transparency, thereby achieving greater  
drive distance in PCIe applications where Rx-Tx auto-negotiation and link-training are required. Refer to the  
Typical Applications section for more application information regarding recommended settings and placement.  
Copyright © 2014, Texas Instruments Incorporated  
13  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
7.3 Feature Description  
The 4-level input pins use a resistor divider to set the four valid control levels and provide a wider range of  
control settings when ENSMB = 0. There is an internal 30 kΩ pull-up and a 60 kΩ pull-down connected to the  
package pin. These resistors, together with the external resistor connection, combine to achieve the desired  
voltage level. By using the 1 kΩ pull-down, 20 kΩ pull-down, no connect, and 1 kΩ pull-up, the optimal voltage  
levels for each of the four input states are achieved as shown in Table 1.  
Table 1. 4–Level Control Pin Settings  
Resulting Pin Voltage  
LEVEL  
SETTING  
3.3-V MODE  
0.10 V  
2.5-V MODE  
0.08 V  
0
R
F
1
Tie 1 kΩ to GND  
Tie 20 kΩ to GND  
Float (leave pin open)  
Tie 1 kΩ to VIN or VDD  
1/3 x VIN  
1/3 x VDD  
2/3 x VDD  
VDD - 0.04 V  
2/3 x VIN  
VIN - 0.05 V  
7.3.1 Typical 4-Level Input Thresholds  
Internal Threshold between 0 and R = 0.2 * VIN or VDD  
Internal Threshold between R and F = 0.5 * VIN or VDD  
Internal Threshold between F and 1 = 0.8 * VIN or VDD  
In order to minimize the startup current associated with the integrated 2.5 V regulator, the 1 kΩ pull-up / pull-  
down resistors are recommended. If several 4-level inputs require the same setting, it is possible to combine two  
or more 1 kΩ resistors into a single lower value resistor. As an example, combining two inputs with a single 500  
Ω resistor is a valid way to save board space.  
7.4 Device Functional Modes  
7.4.1 Pin Control Mode:  
When in Pin Mode (ENSMB = 0), equalization and VOD (output amplitude) can be selected via pin control for  
both the A-channels and B-channels per Table 4 and Table 5. The RXDET pin provides either automatic or  
manual control for input termination (50 or > 50 kto VDD). The receiver electrical signal detect status  
threshold is adjustable via the SD_TH pin. By setting signal-detect threshold level via the SD_TH pin, status  
information about a valid signal detect assert/de-assert can be read back via SMBus registers. Pin control mode  
is ideal in situations where neither MCU or EEPROM is available to access the device via SMBus SDA/SCL  
lines.  
7.4.2 Slave SMBus Mode:  
When in Slave SMBus Mode (ENSMB = 1), the VOD (output amplitude), equalization, and termination disable  
features are all programmable on an individual channel basis, rather than in collective A-channel and B-channel  
groups. Upon assertion of ENSMB, the EQx and VODx settings are controlled by SMBus immediately. It is  
important to note that SMBus settings can only be changed from their defaults after asserting Register Enable by  
setting Reg 0x06[3] = 1. The EQx and VODx pins are subsequently converted to AD0-AD3 SMBus address  
inputs. The other external control pins (RXDET and SD_TH) remain active unless their respective registers are  
written to and the appropriate override bit is set. If the user overrides a pin control, the input voltage level of that  
control pin is ignored until ENSMB is driven low (Pin Mode). In the event that channels are powered down via the  
PWDN pin, the state of all register settings are not affected.  
14  
Copyright © 2014, Texas Instruments Incorporated  
 
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Device Functional Modes (continued)  
Table 2. RX Detect Settings  
PWDN(1)  
(Pin 52)  
RXDET  
(Pin 22)  
SMBus REG  
Bit[3:2]  
INPUT  
TERMINATION  
RECOMMENDED  
USE  
COMMENTS  
0
0
00  
Hi-Z  
Manual Rx-Detect, input is Hi-Z  
Auto Rx-Detect, outputs test every 12 ms for 600  
ms then stops; termination is Hi-Z until Rx  
detection; once detected input termination is 50 Ω  
Reset function by pulsing PWDN high for 5 µs then  
low again  
Pre Detect: Hi-Z  
Post Detect: 50 Ω  
0
R
01  
PCIe  
PCIe  
Auto Rx-Detect, outputs test every 12 ms until  
detection occurs; termination is Hi-Z until Rx  
detection; once detected input termination is 50 Ω  
F
Pre Detect: Hi-Z  
Post Detect: 50 Ω  
0
0
10  
11  
(Default)  
1
50 Ω  
Manual Rx-Detect, input is 50 Ω  
Power Down mode, input is Hi-Z, output drivers  
are disabled  
1
X
X
Hi-Z  
Used to reset Rx-Detect State Machine when held  
high for 5 µs  
(1) In SMBus Slave Mode, the Rx Detect State Machine can be manually reset in software by overriding the device PRSNT function. This is  
accomplished by setting the Override PRSNT bit (Reg 0x02[7]) and then toggling the PRSNT value bit (Reg 0x02[6]). See Table 9 for  
more information about resetting the Rx Detect State Machine.  
Table 3. Signal Detect Status Threshold Level(1)(2)  
SD_TH  
(PIN 26)  
SMBus REG BIT[3:2]  
and[1:0]  
[3:2] ASSERT LEVEL  
(mVp-p)  
[1:0] DE-ASSERT LEVEL  
(mVp-p)  
LEVEL  
3 Gbps  
18  
12 Gbps  
3 Gbps  
12 Gbps  
1
2
3
4
0
10  
01  
00  
11  
75  
40  
50  
58  
14  
8
55  
22  
37  
45  
R
F (default)  
1
12  
15  
11  
12  
16  
(1) VDD = 2.5 V, 25°C, 1010 pattern at 1.5 Gbps and 101010 pattern at 12 Gbps  
(2) Signal detect status threshold sets the value at which a signal detect status is flagged via SMBus Reg 0x0A. Regardless of the threshold  
level, the output always remains enabled unless manually powered down.  
7.4.3 SMBus Master Mode  
When in SMBus Master Mode (ENSMB = Float), the VOD (output amplitude), equalization, and termination  
disable features for multiple devices can be loaded via external EEPROM. By asserting a Float condition on the  
ENSMB pin, an external EEPROM writes register settings to each device in accordance with its SMBus slave  
address. The settings programmable by external EEPROM provide only a subset of all the register bits available  
via SMBus Slave Mode, and the bit-mapping between SMBus Slave Mode registers and EEPROM addresses  
can be referenced in Table 6. Once the EEPROM successfully finishes loading each device's register settings,  
the device reverts back to SMBus Slave Mode and releases SDA/SCL control to an external master MCU. If the  
EEPROM fails to load settings to a particular device, for example due to an invalid or blank hex file, the device  
waits indefinitely in an unknown state where access to the SMBus lines is not possible.  
7.4.4 Signal Conditioning Settings  
Equalization and VOD settings accessible via the pin controls are chosen to meet the needs of most high speed  
applications. These settings can also be controlled via the SMBus registers. Each pin input has a total of four  
possible voltage level settings. Table 4 and Table 5 show both the Pin Mode and SMBus Mode settings that are  
used in order to program the equalization and VOD gain for each DS80PCI810 channel.  
Copyright © 2014, Texas Instruments Incorporated  
15  
 
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Table 4. Equalizer Settings(1)(2)  
EQUALIZATION BOOST RELATIVE TO DC  
EQA(3)  
dB at  
dB at  
2.5 GHz  
dB at  
4 GHz  
LEVEL  
EQB  
EQ – 8 bits[7:0]  
1.5 GHz  
1
2
3
4
0
R
F
1
xxxx xx00 = 0x00  
xxxx xx01 = 0x01  
xxxx xx10 = 0x02  
xxxx xx11 = 0x03  
2.1  
4.0  
5.5  
6.8  
2.5  
5.1  
7.0  
8.3  
2.7  
6.4  
8.3  
9.5  
(1) Optimal EQ setting should be determined via simulation and prototype verification.  
(2) Equalization boost values are inclusive of package loss.  
(3) To program EQ Level 1-4 correctly in Pin Mode, RESERVED3 and AD2 pins must be tied via 1 kΩ resistor to GND.  
Table 5. Output Voltage Settings(1)  
VODA1  
VODB1  
VODA0  
VODB0  
VOD_DB - 3  
bits[2:0]  
LEVEL  
VOD - 3 bits[2:0]  
VID Vp-p  
VOD/VID Ratio(1)  
--  
1
2
3
4
5
6
--  
--  
0
--  
0
000'b  
001'b  
010'b  
011'b  
100'b  
101'b  
110'b  
111'b  
000'b  
000'b  
000'b  
000'b  
000'b  
000'b  
000'b  
000'b  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
0.57(2)  
0.65  
0
R
1
0.71  
0
0.77  
R
F
1
F
R
0
0.83  
0.90  
1.00  
1.04(2)(3)  
--  
--  
(1) For PCIe operation, it is important to keep the output amplitude and dynamic range as large as possible. When operating in Pin Mode, it  
is recommended to use VODA[1:0] = VODB[1:0] = Level 6. In SMBus Mode, it is also recommended to use Level 6 (that is, VOD =  
110'b and VOD_DB = 000'b).  
(2) These VOD settings are only accessible via SMBus Modes.  
(3) VOD = 111'b setting in SMBus Mode is not recommended.  
16  
Copyright © 2014, Texas Instruments Incorporated  
 
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
7.5 Programming  
The DS80PCI810 device supports reading directly from an external EEPROM device by implementing SMBus  
Master Mode. When using SMBus Master Mode, the DS80PCI810 reads directly from specific location in the  
external EEPROM. When designing a system for using the external EEPROM, the user must follow these  
specific guidelines.  
Maximum EEPROM size is 8K (1024 x 8-bit).  
Set ENSMB = Float — enable the SMBus Master Mode.  
The external EEPROM device address byte must be 0xA0 and capable of 1 MHz operation at 2.5 V and 3.3  
V supply.  
Set the AD[3:0] inputs for SMBus address byte. When the AD[3:0] = 0000'b, the device address byte is 0xB0.  
When tying multiple DS80PCI810 devices to the SDA and SCL bus, use these guidelines to configure the  
devices:  
Use SMBus AD[3:0] address bits so that each device can load its configuration from the EEPROM. Example  
below is for four devices. The first device in the sequence is conventionally address 0xB0, while subsequent  
devices follow the address order listed below.  
U1: AD[3:0] = 0000 = 0xB0,  
U2: AD[3:0] = 0001 = 0xB2,  
U3: AD[3:0] = 0010 = 0xB4,  
U4: AD[3:0] = 0011 = 0xB6  
Use a pull-up resistor on SDA and SCL; value = 2 kΩ to 5 kΩ  
Daisy-chain READ_EN (Pin 26) and ALL_DONE (Pin 27) from one device to the next device in the sequence  
so that they do not compete for the EEPROM at the same time.  
1. Tie READ_EN of the first device in the chain (U1) to GND.  
2. Tie ALL_DONE of U1 to READ_EN of U2.  
3. Tie ALL_DONE of U2 to READ_EN of U3.  
4. Tie ALL_DONE of U3 to READ_EN of U4.  
5. Optional: Tie ALL_DONE output of U4 to a LED to show the devices have been loaded successfully.  
Once the ALL_DONE status pin of the last device is flagged to indicate that all devices sharing the SMBus line  
have been successfully programmed, control of the SMBus line is released by the repeater and the device  
reverts back to SMBus Slave Mode. At this point, an external MCU can perform any additional Read or Write  
operations.  
Below is an example of a 2 kbits (256 x 8-bit) EEPROM in hex format for the DS80PCI810 device. The first three  
bytes of the EEPROM always contain a base header common and necessary to control initialization of all  
devices connected to the I2C bus. The CRC enable flag is used to enable or disable CRC checking. If CRC  
checking is disabled, the CRC byte in each device's address map header is ignored to simplify control. There is a  
MAP bit to flag the presence of an address map that specifies the configuration data start address in the  
EEPROM. If the MAP bit is not present, the configuration data start address is assumed to follow the base  
header directly. Lastly, one bit in the base header is used to indicate whether EEPROM size > 256 bytes. This bit  
ensures that EEPROM slot addresses are formatted properly as one byte (EEPROM 256 bytes) or two bytes  
(EEPROM > 256 bytes) for subsequent address map headers. There are 37 bytes of data for each DS80PCI810  
device.  
:2000000000001000000407002FAD4002FAD4002FAD4002FAD409805F5A8005F5A8005F5AD0  
:200020008005F5A800005454000000000000000000000000000000000000000000000000F6  
:20006000000000000000000000000000000000000000000000000000000000000000000080  
:20008000000000000000000000000000000000000000000000000000000000000000000060  
:2000A000000000000000000000000000000000000000000000000000000000000000000040  
:2000C000000000000000000000000000000000000000000000000000000000000000000020  
:2000E000000000000000000000000000000000000000000000000000000000000000000000  
:200040000000000000000000000000000000000000000000000000000000000000000000A0  
Note: The maximum EEPROM size supported is 8 kbits (1024 x 8 bits).  
7.5.1 EEPROM Address Map for Single Device  
A detailed EEPROM Address Map for a single device is shown in Table 6. For instances where multiple devices  
are written to EEPROM, the device starting address definitions align starting with Table 6 Address 0x03.  
Copyright © 2014, Texas Instruments Incorporated  
17  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Bit 0  
Table 6. EEPROM Address Map - Single Device With Default Value  
EEPROM Address Byte  
Bit 7  
CRC_EN  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
DEVICE  
COUNT[1]  
Address Map  
Present  
EEPROM > 256  
Bytes  
DEVICE  
DEVICE  
DEVICE  
COUNT[0]  
Description  
0x00  
Reserved  
COUNT[3]  
0
COUNT[2]  
0
Default  
0x00  
0
0
0
0
0
0
Value  
Description  
Reserved  
0
Reserved  
0
Reserved  
0
Reserved  
0
Reserved  
0
Reserved  
0
Reserved  
0
Reserved  
0
0x01  
0x02  
Default  
Value  
0x00  
0x00  
Max EEPROM  
Burst size[7]  
Max EEPROM  
Burst size[6]  
Max EEPROM  
Burst size[5]  
Max EEPROM  
Burst size[4]  
Max EEPROM  
Burst size[3]  
Max EEPROM  
Burst size[2]  
Max EEPROM  
Burst size[1]  
Max EEPROM  
Burst size[0]  
Description  
Default  
Value  
0
0
0
0
0
0
0
0
Description  
PWDN_CH7  
0x01[7]  
PWDN_CH6  
0x01[6]  
PWDN_CH5  
0x01[5]  
PWDN_CH4  
0x01[4]  
PWDN_CH3  
0x01[3]  
PWDN_CH2  
0x01[2]  
PWDN_CH1  
0x01[1]  
PWDN_CH0  
0x01[0]  
SMBus Register  
Default  
Value  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x00  
0
0
0
0
0
0
0
0
Description  
SMBus Register  
Default  
Reserved  
0x02[5]  
Reserved  
0x02[4]  
Reserved  
0x02[3]  
Reserved  
0x02[2]  
Ovrd_PWDN  
0x02[0]  
Reserved  
0x04[7]  
Reserved  
0x04[6]  
Reserved  
0x04[5]  
0x00  
0
0
0
0
0
0
0
0
Value  
Description  
SMBus Register  
Default  
Reserved  
0x04[4]  
Reserved  
0x04[3]  
Reserved  
0x04[2]  
Reserved  
0x04[1]  
Reserved  
0x04[0]  
Reserved  
0x06[4]  
Ovrd_SD_TH  
0x08[6]  
Reserved  
0x08[5]  
0x04  
0
0
0
0
0
1
0
0
Value  
Description  
SMBus Register  
Default  
Reserved  
0x08[4]  
Ovrd_RXDET  
0x08[3]  
Reserved  
0x08[2]  
Reserved  
0x08[1]  
Reserved  
0x08[0]  
Reserved  
0x0B[6]  
Reserved  
0x0B[5]  
Reserved  
0x0B[4]  
0x07  
0
0
0
0
0
1
1
1
Value  
Description  
SMBus Register  
Default  
Reserved  
0x0B[3]  
Reserved  
0x0B[2]  
Reserved  
0x0B[1]  
Reserved  
0x0B[0]  
Reserved  
0x0E[5]  
Reserved  
0x0E[4]  
CH0_RXDET_1  
0x0E[3]  
CH0_RXDET_0  
0x0E[2]  
0x00  
0
0
0
0
0
0
0
0
Value  
Description  
SMBus Register  
Default  
Reserved  
0x0F[7]  
Reserved  
0x0F[6]  
Reserved  
0x0F[5]  
Reserved  
0x0F[4]  
Reserved  
0x0F[3]  
Reserved  
0x0F[2]  
CH0_EQ_1  
0x0F[1]  
CH0_EQ_0  
0x0F[0]  
0x2F  
0
0
1
0
1
1
1
1
Value  
18  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Table 6. EEPROM Address Map - Single Device With Default Value (continued)  
EEPROM Address Byte  
Bit 7  
CH0_SCP  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
CH0_VOD_2  
0x10[2]  
CH0_VOD_1  
0x10[1]  
CH0_VOD_0  
0x10[0]  
SMBus Register  
0x10[7]  
0x10[6]  
0
0x10[5]  
1
0x10[4]  
0
0x10[3]  
1
0x09  
Default  
0xAD  
1
1
0
1
Value  
Description  
CH0_VOD_DB_2 CH0_VOD_DB_1 CH0_VOD_DB_0 Reserved  
CH0_THa_1  
0x12[3]  
CH0_THa_0  
0x12[2]  
CH0_THd_1  
0x12[1]  
CH0_THd_0  
0x12[0]  
SMBus Register  
0x11[2]  
0x11[1]  
0x11[0]  
0x12[7]  
0x0A  
Default  
0x40  
0
1
0
0
0
0
0
0
Value  
Description  
Reserved  
0x15[5]  
Reserved  
0x15[4]  
CH1_RXDET_1  
0x15[3]  
CH1_RXDET_0  
0x15[2]  
Reserved  
0x16[7]  
Reserved  
0x16[6]  
Reserved  
0x16[5]  
Reserved  
0x16[4]  
SMBus Register  
0x0B  
Default  
0x02  
0
0
0
0
0
0
1
0
Value  
Description  
Reserved  
0x16[3]  
Reserved  
0x16[2]  
CH1_EQ_1  
0x16[1]  
CH1_EQ_0  
0x16[0]  
CH1_SCP  
0x17[7]  
Reserved  
0x17[6]  
Reserved  
0x17[5]  
Reserved  
0x17[4]  
SMBus Register  
0x0C  
Default  
0xFA  
1
1
1
1
1
0
1
0
Value  
Description  
Reserved  
0x17[3]  
CH1_VOD_2  
0x17[2]  
CH1_VOD_1  
0x17[1]  
CH1_VOD_0  
0x17[0]  
CH1_VOD_DB_2 CH1_VOD_DB_1 CH1_VOD_DB_0 Reserved  
SMBus Register  
0x18[2]  
0x18[1]  
0x18[0]  
0x19[7]  
0x0D  
Default  
0xD4  
1
1
0
1
0
1
0
0
Value  
Description  
CH1_THa_1  
0x19[3]  
CH1_THa_0  
0x19[2]  
CH1_THd_1  
0x19[1]  
CH1_THd_0  
0x19[0]  
Reserved  
0x1C[5]  
Reserved  
0x1C[4]  
CH2_RXDET_1  
0x1C[3]  
CH2_RXDET_0  
0x1C[2]  
SMBus Register  
0x0E  
Default  
0x00  
0
0
0
0
0
0
0
0
Value  
Description  
Reserved  
0x1D[7]  
Reserved  
0x1D[6]  
Reserved  
0x1D[5]  
Reserved  
0x1D[4]  
Reserved  
0x1D[3]  
Reserved  
0x1D[2]  
CH2_EQ_1  
0x1D[1]  
CH2_EQ_0  
0x1D[0]  
SMBus Register  
0x0F  
Default  
0x2F  
0
0
1
0
1
1
1
1
Value  
Description  
CH2_SCP  
0x1E[7]  
Reserved  
0x1E[6]  
Reserved  
0x1E[5]  
Reserved  
0x1E[4]  
Reserved  
0x1E[3]  
CH2_VOD_2  
0x1E[2]  
CH2_VOD_1  
0x1E[1]  
CH2_VOD_0  
0x1E[0]  
SMBus Register  
0x10  
Default  
0xAD  
1
0
1
0
1
1
0
1
Value  
Copyright © 2014, Texas Instruments Incorporated  
19  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Bit 0  
Table 6. EEPROM Address Map - Single Device With Default Value (continued)  
EEPROM Address Byte  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
CH2_THa_1  
0x20[3]  
Bit 2  
CH2_THa_0  
0x20[2]  
Bit 1  
CH2_THd_1  
0x20[1]  
Description  
CH2_VOD_DB_2 CH2_VOD_DB_1 CH2_VOD_DB_0 Reserved  
CH2_THd_0  
SMBus Register  
0x1F[2]  
0
0x1F[1]  
1
0x1F[0]  
0
0x20[7]  
0
0x20[0]  
0x11  
Default  
0x40  
0
0
0
0
Value  
Description  
Reserved  
0x23[5]  
Reserved  
0x23[4]  
CH3_RXDET_1  
0x23[3]  
CH3_RXDET_0  
0x23[2]  
Reserved  
0x24[7]  
Reserved  
0x24[6]  
Reserved  
0x24[5]  
Reserved  
0x24[4]  
SMBus Register  
0x12  
Default  
0x02  
0
0
0
0
0
0
1
0
Value  
Description  
Reserved  
0x24[3]  
Reserved  
0x24[2]  
CH3_EQ_1  
0x24[1]  
CH3_EQ_0  
0x24[0]  
CH3_SCP  
0x25[7]  
Reserved  
0x25[6]  
Reserved  
0x25[5]  
Reserved  
0x25[4]  
SMBus Register  
0x13  
Default  
0xFA  
1
1
1
1
1
0
1
0
Value  
Description  
Reserved  
0x25[3]  
CH3_VOD_2  
0x25[2]  
CH3_VOD_1  
0x25[1]  
CH3_VOD_0  
0x25[0]  
CH3_VOD_DB_2 CH3_VOD_DB_1 CH3_VOD_DB_0 Reserved  
SMBus Register  
0x26[2]  
0x26[1]  
0x26[0]  
0x27[7]  
0x14  
Default  
0xD4  
1
1
0
1
0
1
0
0
Value  
Description  
CH3_THa_1  
0x27[3]  
CH3_THa_0  
0x27[2]  
CH3_THd_1  
0x27[1]  
CH3_THd_0  
0x27[0]  
Reserved  
0x28[6]  
hi_idle_SD CH0-3 hi_idle_SD CH4-7 fast_SD CH0-3  
SMBus Register  
0x28[5]  
0x28[4]  
0x28[3]  
0x15  
Default  
0x09  
0
0
0
0
1
0
0
1
Value  
Description  
fast_SD CH4-7  
0x28[2]  
lo_gain_SD CH0-3 lo_gain_SD CH4-7 Reserved  
Reserved  
0x2B[4]  
CH4_RXDET_1  
0x2B[3]  
CH4_RXDET_0  
0x2B[2]  
Reserved  
0x2C[7]  
SMBus Register  
0x28[1]  
0x28[0]  
0x2B[5]  
0x16  
Default  
0x80  
1
0
0
0
0
0
0
0
Value  
Description  
Reserved  
0x2C[6]  
Reserved  
0x2C[5]  
Reserved  
0x2C[4]  
Reserved  
0x2C[3]  
Reserved  
0x2C[2]  
CH4_EQ_1  
0x2C[1]  
CH4_EQ_0  
0x2C[0]  
CH4_SCP  
0x2D[7]  
SMBus Register  
0x17  
Default  
0x5F  
0
1
0
1
1
1
1
1
Value  
Description  
Reserved  
0x2D[6]  
Reserved  
0x2D[5]  
Reserved  
0x2D[4]  
Reserved  
0x2D[3]  
CH4_VOD_2  
0x2D[2]  
CH4_VOD_1  
0x2D[1]  
CH4_VOD_0  
0x2D[0]  
CH4_VOD_DB_2  
0x2E[2]  
SMBus Register  
0x18  
Default  
0x5A  
0
1
0
1
1
0
1
0
Value  
20  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Table 6. EEPROM Address Map - Single Device With Default Value (continued)  
EEPROM Address Byte  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
CH4_THa_1  
0x2F[3]  
Bit 3  
CH4_THa_0  
0x2F[2]  
Bit 2  
CH4_THd_1  
0x2F[1]  
Bit 1  
CH4_THd_0  
0x2F[0]  
Bit 0  
Reserved  
0x32[5]  
Description  
CH4_VOD_DB_1 CH4_VOD_DB_0 Reserved  
SMBus Register  
0x2E[1]  
1
0x2E[0]  
0
0x2F[7]  
0
0x19  
Default  
0x80  
0
0
0
0
0
Value  
Description  
Reserved  
0x32[4]  
CH5_RXDET_1  
0x32[3]  
CH5_RXDET_0  
0x32[2]  
Reserved  
0x33[7]  
Reserved  
0x33[6]  
Reserved  
0x33[5]  
Reserved  
0x33[4]  
Reserved  
0x33[3]  
SMBus Register  
0x1A  
Default  
0x05  
0
0
0
0
0
1
0
1
Value  
Description  
Reserved  
0x33[2]  
CH5_EQ_1  
0x33[1]  
CH5_EQ_0  
0x33[0]  
CH5_SCP  
0x34[7]  
Reserved  
0x34[6]  
Reserved  
0x34[5]  
Reserved  
0x34[4]  
Reserved  
0x34[3]  
SMBus Register  
0x1B  
Default  
0xF5  
1
1
1
1
0
1
0
1
Value  
Description  
CH5_VOD_2  
0x34[2]  
CH5_VOD_1  
0x34[1]  
CH5_VOD_0  
0x34[0]  
CH5_VOD_DB_2 CH5_VOD_DB_1 CH5_VOD_DB_0 Reserved  
CH5_THa_1  
0x36[3]  
SMBus Register  
0x35[2]  
0x35[1]  
0x35[0]  
0x36[7]  
0x1C  
Default  
0xA8  
1
0
1
0
1
0
0
0
Value  
Description  
CH5_THa_0  
0x36[2]  
CH5_THd_1  
0x36[1]  
CH5_THd_0  
0x36[0]  
Reserved  
0x39[5]  
Reserved  
0x39[4]  
CH6_RXDET_1  
0x39[3]  
CH6_RXDET_0  
0x39[2]  
Reserved  
0x3A[7]  
SMBus Register  
0x1D  
Default  
0x00  
0
0
0
0
0
0
0
0
Value  
Description  
Reserved  
0x3A[6]  
Reserved  
0x3A[5]  
Reserved  
0x3A[4]  
Reserved  
0x3A[3]  
Reserved  
0x3A[2]  
CH6_EQ_1  
0x3A[1]  
CH6_EQ_0  
0x3A[0]  
CH6_SCP  
0x3B[7]  
SMBus Register  
0x1E  
Default  
0x5F  
0
1
0
1
1
1
1
1
Value  
Description  
Reserved  
0x3B[6]  
Reserved  
0x3B[5]  
Reserved  
0x3B[4]  
Reserved  
0x3B[3]  
CH6_VOD_2  
0x3B[2]  
CH6_VOD_1  
0x3B[1]  
CH6_VOD_0  
0x3B[0]  
CH6_VOD_DB_2  
0x3C[2]  
SMBus Register  
0x1F  
Default  
0x5A  
0
1
0
1
1
0
1
0
Value  
Description  
CH6_VOD_DB_1 CH6_VOD_DB_0 Reserved  
CH6_THa_1  
0x3D[3]  
CH6_THa_0  
0x3D[2]  
CH6_THd_1  
0x3D[1]  
CH6_THd_0  
0x3D[0]  
Reserved  
0x40[5]  
SMBus Register  
0x3C[1]  
0x3C[0]  
0x3D[7]  
0x20  
Default  
0x80  
1
0
0
0
0
0
0
0
Value  
Copyright © 2014, Texas Instruments Incorporated  
21  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Bit 0  
Table 6. EEPROM Address Map - Single Device With Default Value (continued)  
EEPROM Address Byte  
Bit 7  
Reserved  
Bit 6  
CH7_RXDET_1  
0x40[3]  
Bit 5  
CH7_RXDET_0  
0x40[2]  
Bit 4  
Reserved  
Bit 3  
Reserved  
Bit 2  
Reserved  
Bit 1  
Reserved  
Description  
Reserved  
SMBus Register  
0x40[4]  
0x41[7]  
0x41[6]  
0x41[5]  
0x41[4]  
0x41[3]  
0x21  
Default  
0x05  
0
0
0
0
0
1
0
1
Value  
Description  
Reserved  
0x41[2]  
CH7_EQ_1  
0x41[1]  
CH7_EQ_0  
0x41[0]  
CH7_SCP  
0x42[7]  
Reserved  
0x42[6]  
Reserved  
0x42[5]  
Reserved  
0x42[4]  
Reserved  
0x42[3]  
SMBus Register  
0x22  
Default  
0xF5  
1
1
1
1
0
1
0
1
Value  
Description  
CH7_VOD_2  
0x42[2]  
CH7_VOD_1  
0x42[1]  
CH7_VOD_0  
0x42[0]  
CH7_VOD_DB_2 CH7_VOD_DB_1 CH7_VOD_DB_0 Reserved  
CH7_THa_1  
0x44[3]  
SMBus Register  
0x43[2]  
0x43[1]  
0x43[0]  
0x44[7]  
0x23  
Default  
0xA8  
1
0
1
0
1
0
0
0
Value  
Description  
CH7_THa_0  
0x44[2]  
CH7_THd_1  
0x44[1]  
CH7_THd_0  
0x44[0]  
Reserved  
0x47[3]  
Reserved  
0x47[2]  
Reserved  
0x47[1]  
Reserved  
0x47[0]  
Reserved  
0x48[7]  
SMBus Register  
0x24  
Default  
0x00  
0
0
0
0
0
0
0
0
Value  
Description  
Reserved  
0x48[6]  
Reserved  
0x4C[7]  
Reserved  
0x4C[6]  
Reserved  
0x4C[5]  
Reserved  
0x4C[4]  
Reserved  
0x4C[3]  
Reserved  
0x4C[0]  
Reserved  
0x59[0]  
SMBus Register  
0x25  
Default  
0x00  
0
0
0
0
0
0
0
0
Value  
Description  
Reserved  
0x5A[7]  
Reserved  
0x5A[6]  
Reserved  
0x5A[5]  
Reserved  
0x5A[4]  
Reserved  
0x5A[3]  
Reserved  
0x5A[2]  
Reserved  
0x5A[1]  
Reserved  
0x5A[0]  
SMBus Register  
0x26  
Default  
0x54  
0
1
0
1
0
1
0
0
Value  
Description  
Reserved  
0x5B[7]  
Reserved  
0x5B[6]  
Reserved  
0x5B[5]  
Reserved  
0x5B[4]  
Reserved  
0x5B[3]  
Reserved  
0x5B[2]  
Reserved  
0x5B[1]  
Reserved  
0x5B[0]  
SMBus Register  
0x27  
Default  
0x54  
0
1
0
1
0
1
0
0
Value  
22  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Table 7. Example Of EEPROM For Four Devices Using Two Address Maps  
EEPROM  
Address  
Address (Hex)  
EEPROM Data  
Comments  
0
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
0x43  
0x00  
0x10  
0x00  
0x0B  
0x00  
0x0B  
0x00  
0x30  
0x00  
0x30  
0x00  
0x00  
0x04  
0x07  
0x00  
0x01  
0xAD  
0x00  
0x00  
0x1A  
0xD0  
0x00  
0x01  
0xAD  
0x00  
0x00  
0x1A  
0xD0  
0x09  
0x80  
0x07  
0x5C  
0x00  
0x00  
0x15  
0xC0  
0x00  
0x07  
0x5C  
0x00  
0x00  
0x75  
0xC0  
0x00  
0x00  
0x54  
CRC_EN = 0, Address Map = 1, >256 bytes = 0, Device Count[3:0] = 3  
1
2
EEPROM Burst Size  
CRC not used  
3
4
Device 0 Address Location  
CRC not used  
5
6
Device 1 Address Location  
CRC not used  
7
8
Device 2 Address Location  
CRC not used  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
Device 3 Address Location  
Begin Device 0, 1 - Address Offset 3  
EQ CHB0 = 0x01  
VOD CHB0 = 101'b  
VOD_DB CHB0 = 000'b  
EQ CHB1 = 0x01  
VOD CHB1 = 101'b, VOD_DB CHB1 = 000'b  
EQ CHB2 = 0x01  
VOD CHB2 = 101'b  
VOD_DB CHB2 = 000'b  
EQ CHB3 = 0x01  
VOD CHB3 = 101'b, VOD_DB CHB3 = 000'b  
Signal Detect Status Threshold Control  
Signal Detect Status Threshold Control  
EQ CHA0 = 0x03  
VOD CHA0 = 110'b  
VOD_DB CHA0 = 000'b  
EQ CHA1 = 0x00  
VOD CHA1 = 110'b, VOD_DB CHA1 = 000'b  
EQ CHA2 = 0x03  
VOD CHA2 = 110'b  
VOD_DB CHA2 = 000'b  
EQ CHA3 = 0x00  
VOD CHA3 = 110'b, VOD_DB CHA3 = 000'b  
Copyright © 2014, Texas Instruments Incorporated  
23  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Table 7. Example Of EEPROM For Four Devices Using Two Address Maps (continued)  
EEPROM  
Address  
Address (Hex)  
EEPROM Data  
Comments  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
0x54  
0x00  
0x00  
0x04  
0x07  
0x00  
0x01  
0xAB  
0x00  
0x00  
0x1A  
0xB0  
0x00  
0x01  
0xAB  
0x00  
0x00  
0x1A  
0xB0  
0x09  
0x80  
0x07  
0x5C  
0x00  
0x00  
0x15  
0xA0  
0x00  
0x07  
0x5C  
0x00  
0x00  
0x15  
0xA0  
0x00  
0x00  
0x54  
0x54  
End Device 0, 1 - Address Offset 39  
Begin Device 2, 3 - Address Offset 3  
EQ CHB0 = 0x01  
VOD CHB0 = 011'b  
VOD_DB CHB0 = 000'b  
EQ CHB1 = 0x01  
VOD CHB1 = 011'b, VOD_DB CHB1 = 000'b  
EQ CHB2 = 0x01  
VOD CHB2 = 011'b  
VOD_DB CHB2 = 000'b  
EQ CHB3 = 0x01  
VOD CHB3 = 011'b, VOD_DB CHB3 = 000'b  
Signal Detect Status Threshold Control  
Signal Detect Status Threshold Control  
EQ CHA0 = 0x03  
VOD CHA0 = 110'b  
VOD_DB CHA0 = 000'b  
EQ CHA1 = 0x00  
VOD CHA1 = 101'b, VOD_DB CHA1 = 000'b  
EQ CHA2 = 0x03  
VOD CHA2 = 110'b  
VOD_DB CHA2 = 000'b  
EQ CHA3 = 0x00  
VOD CHA3 = 101'b, VOD_DB CHA3 = 000'b  
End Device 2, 3 - Address Offset 39  
Note: CRC_EN = 0, Address Map = 1, >256 byte = 0, Device Count[3:0] = 3. Multiple devices can point to the  
same address map. Maximum EEPROM size is 8 kbits (1024 x 8-bits).  
7.5.2 SMBus  
The System Management Bus interface is compatible to SMBus 2.0 physical layer specification. Tie ENSMB = 1  
kΩ to VDD (2.5 V mode) or VIN (3.3 V mode) to enable SMBus Slave Mode and allow access to the  
configuration registers.  
24  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
The DS80PCI810 uses AD[3:0] inputs in both SMBus Modes. These AD[3:0] pins are the user set SMBus slave  
address inputs and have internal pull-downs. Based on the SMBus 2.0 specification, the DS80PCI810 has a 7-bit  
slave address. The LSB is set to 0'b (for a WRITE). When AD[3:0] pins are left floating or pulled low, AD[3:0] =  
0000'b, and the device default address byte is 0xB0. The device supports up to 16 address bytes, as shown in  
Table 8:  
Table 8. Device Slave Address Bytes  
Full Slave Address Byte  
(7-Bit Address + Write Bit)  
7-Bit Slave Address  
(Hex)  
AD[3:0] Settings  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
B0  
B2  
B4  
B6  
B8  
BA  
BC  
BE  
C0  
C2  
C4  
C6  
C8  
CA  
CC  
CE  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
The SDA/SCL pins are 3.3 V tolerant, but are not 5 V tolerant. An external pull-up resistor is required on the SDA  
and SCL line. The resistor value can be from 2 kΩ to 5 kΩ depending on the voltage, loading, and speed.  
7.5.3 Transfer Of Data Via The SMBus  
During normal operation, the data on SDA must be stable during the time when SCL is High.  
There are three unique states for the SMBus:  
START: A High-to-Low transition on SDA while SCL is High indicates a message START condition.  
STOP: A Low-to-High transition on SDA while SCL is High indicates a message STOP condition.  
IDLE: If SCL and SDA are both High for a time exceeding tBUF from the last detected STOP condition or if they  
are High for a total exceeding the maximum specification for tHIGH, then the bus transfers to the IDLE state.  
7.5.4 SMBus Transactions  
The device supports WRITE and READ transactions. See Table 9 for register address, type (Read/Write, Read  
Only), default value, and function information.  
Copyright © 2014, Texas Instruments Incorporated  
25  
 
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
7.6 Register Maps  
26  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Register Maps (continued)  
7.6.1 Writing a Register  
To write a register, the following protocol is used (see SMBus 2.0 specification).  
1. The Host drives a START condition, the 7-bit SMBus address, and a “0” indicating a WRITE.  
2. The Device (Slave) drives the ACK bit (“0”).  
3. The Host drives the 8-bit Register Address.  
4. The Device drives an ACK bit (“0”).  
5. The Host drive the 8-bit data byte.  
6. The Device drives an ACK bit (“0”).  
7. The Host drives a STOP condition.  
The WRITE transaction is completed, the bus goes IDLE, and communication with other SMBus devices may  
now occur.  
7.6.2 Reading a Register  
To read a register, the following protocol is used (see SMBus 2.0 specification).  
1. The Host drives a START condition, the 7-bit SMBus address, and a “0” indicating a WRITE.  
2. The Device (Slave) drives the ACK bit (“0”).  
3. The Host drives the 8-bit Register Address.  
4. The Device drives an ACK bit (“0”).  
5. The Host drives a START condition.  
6. The Host drives the 7-bit SMBus Address, and a “1” indicating a READ.  
7. The Device drives an ACK bit “0”.  
8. The Device drives the 8-bit data value (register contents).  
9. The Host drives a NACK bit “1”indicating end of the READ transfer.  
10. The Host drives a STOP condition.  
The READ transaction is completed, the bus goes IDLE, and communication with other SMBus devices may now  
occur.  
Copyright © 2014, Texas Instruments Incorporated  
27  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Register Maps (continued)  
7.6.3 Detailed Register Map  
Table 9. SMBus Slave Mode Register Map  
Register  
Name  
EEPROM  
Reg Bit  
Address  
Bit  
Field  
Type Default  
Description  
7
Reserved  
R/W  
Set bit to 0  
Observation of AD[3:0] bits  
[6]: AD3  
[5]: AD2  
Address Bit  
AD[3:0]  
6:3  
R
[4]: AD1  
0x00  
Observation  
0x00  
[3]: AD0  
EEPROM  
Read Done  
2
R
1 = Device completed the read from external EEPROM  
1
0
Reserved  
Reserved  
R/W  
R/W  
Set bit to 0  
Set bit to 0  
Power Down per Channel  
[7]: CH7 – CHA_3  
[6]: CH6 – CHA_2  
[5]: CH5 – CHA_1  
[4]: CH4 – CHA_0  
[3]: CH3 – CHB_3  
[2]: CH2 – CHB_2  
[1]: CH1 – CHB_1  
PWDN  
Channels  
0x01  
7:0  
PWDN CHx  
R/W  
0x00  
Yes  
[0]: CH0 – CHB_0  
0x00 = all channels enabled  
0xFF = all channels disabled  
Note: Override PWDN pin and enable register control  
via Reg 0x02[0]  
Override  
PRSNT  
7
6
1 = Override Automatic Rx Detect State Machine Reset  
1 = Set Rx Detect State Machine Reset  
0 = Clear Rx Detect State Machine Reset  
PRSNT Value  
Override  
PWDN, PRSNT 5:2  
0x02  
R/W  
0x00  
Reserved  
Reserved  
Yes  
Yes  
Yes  
Set bits to 0  
Set bit to 0  
1
Override  
PWDN  
1 = Block PWDN pin control (Register control enabled)  
0 = Allow PWDN pin control (Register control disabled)  
0
0x03  
0x04  
0x05  
Reserved  
Reserved  
Reserved  
7:0  
7:0  
7:0  
7:5  
4
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bit to 1  
Yes  
1 = Enable SMBus Slave Mode Register Control  
Note: In order to change VOD, VOD_DB, and EQ of  
the channels in slave mode, this bit must be set to  
1.  
Slave Register  
Control  
0x06  
0x07  
R/W  
R/W  
0x10  
0x01  
Register  
Enable  
3
2:0  
7
Reserved  
Reserved  
Set bits to 0  
Set bit to 0  
Reset  
Registers  
1 = Self clearing reset for SMBus registers (register  
settings return to default values)  
6
Digital Reset  
and Control  
Reset SMBus  
Master  
5
1 = Self clearing reset to SMBus master state machine  
Set bits to 0 0001'b  
4:0  
Reserved  
28  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Register Maps (continued)  
Table 9. SMBus Slave Mode Register Map (continued)  
Register  
Name  
EEPROM  
Reg Bit  
Address  
Bit  
7
Field  
Type Default  
Description  
Reserved  
Set bit to 0  
Override  
SD_TH  
1 = Block SD_TH pin control (Register control enabled)  
0 = Allow SD_TH pin control (Register control disabled)  
6
Yes  
Yes  
Yes  
Yes  
Override  
Pin Control  
0x08  
0x09  
5:4  
3
Reserved  
R/W  
R/W  
0x00  
0x00  
Set bits to 0  
Override  
RXDET  
1 = Block RXDET pin control (Register control enabled)  
0 = Allow RXDET pin control (Register control disabled)  
2:0  
7:0  
Reserved  
Reserved  
Set bits to 0  
Set bits to 0  
Reserved  
CH7 - CH0 Internal Signal Detect Indicator  
[7]: CH7 – CHA_3  
[6]: CH6 – CHA_2  
[5]: CH5 – CHA_1  
[4]: CH4 – CHA_0  
[3]: CH3 – CHB_3  
[2]: CH2 – CHB_2  
[1]: CH1 – CHB_1  
Signal Detect  
Monitor  
0x0A  
7:0 SD_TH Status  
R
0x00  
[0]: CH0 – CHB_0  
0 = Signal detected at input  
1 = Signal not detected at input  
Note: These bits only function when RESERVED2 pin =  
FLOAT  
7
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
R/W  
R/W  
R/W  
R/W  
0x00  
0x70  
0x00  
0x00  
Set bit to 0  
0x0B  
Reserved  
6:0  
7:0  
7:0  
7:6  
5:4  
Yes  
Yes  
Set bits to 111 0000'b  
Set bits to 0  
0x0C  
0x0D  
Reserved  
Reserved  
Set bits to 0  
Set bits to 0  
Set bits to 0  
00'b = Input is Hi-Z impedance  
01'b = Auto Rx-Detect,  
outputs test every 12 ms for 600 ms (50 times) then  
stops; termination is Hi-Z until detection; once detected  
input termination is 50 Ω  
CH0 - CHB_0  
RXDET  
0x0E  
R/W  
0x00  
10'b = Auto Rx-Detect,  
3:2  
RXDET  
Yes  
outputs test every 12 ms until detection occurs;  
termination is Hi-Z until detection; once detected input  
termination is 50 Ω  
11'b = Input is 50 Ω  
Note: Override RXDET pin and enable register control  
via Reg 0x08[3]  
1:0  
7:0  
Reserved  
Set bits to 0  
CH0 - CHB_0  
EQ  
INB_0 EQ Control - total of four levels.  
See Table 4.  
0x0F  
0x10  
EQ Control  
R/W  
R/W  
0x2F  
0xAD  
Yes  
Short Circuit  
Protection  
1 = Enable the short circuit protection  
0 = Disable the short circuit protection  
7
Yes  
Yes  
6:3  
Reserved  
Set bits to 0101'b  
OUTB_0 VOD Control: VOD / VID Ratio  
000'b = 0.57  
001'b = 0.65  
CH0 - CHB_0  
VOD  
010'b = 0.71  
2:0  
VOD Control  
Yes  
011'b = 0.77  
100'b = 0.83  
101'b = 0.90 (default)  
110'b = 1.00 (recommended)  
111'b = 1.04  
Copyright © 2014, Texas Instruments Incorporated  
29  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 9. SMBus Slave Mode Register Map (continued)  
Register  
Name  
EEPROM  
Reg Bit  
Address  
Bit  
Field  
Type Default  
Description  
Observation bit for RXDET CH0 - CHB_0  
1 = Input 50 Ω terminated to VDD  
0 = Input is Hi-Z  
7
RXDET Status  
R
6:5  
4:3  
Reserved  
Reserved  
Set bits to 0  
Set bits to 0  
OUTB_0 VOD_DB Control  
000'b = 0 dB (recommended)  
001'b = –1.5 dB  
010'b = –3.5 dB (default)  
011'b = –5 dB  
CH0 - CHB_0  
VOD_DB  
0x11  
0x02  
R/W  
VOD_DB  
Control  
100'b = –6 dB  
101'b = –8 dB  
2:0  
Yes  
110'b = –9 dB  
111'b = –12 dB  
Note: Changing VOD_DB bits effectively lowers the  
output VOD dynamic range by a factor of the  
corresponding amount of dB reduction.  
7
Reserved  
Reserved  
Yes  
Yes  
Set bit to 0  
6:4  
Set bits to 0  
Status Assert threshold (1010 pattern 12 Gbps)  
00'b = 50 mVp-p (default)  
01'b = 40 mVp-p  
10'b = 75 mVp-p  
11'b = 58 mVp-p  
Signal Detect  
Status Assert  
Threshold  
3:2  
1:0  
CH0 - CHB_0  
SD_TH  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
0x12  
R/W  
0x00  
Status De-assert threshold (1010 pattern 12 Gbps)  
00'b = 37 mVp-p (default)  
01'b = 22 mVp-p  
10'b = 55 mVp-p  
11'b = 45 mVp-p  
Signal Detect  
Status  
De-assert  
Threshold  
Yes  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
0x13  
0x14  
Reserved  
Reserved  
7:0  
7:0  
7:6  
5:4  
Reserved  
Reserved  
Reserved  
Reserved  
R/W  
R/W  
0x00  
0x00  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Yes  
Yes  
00'b = Input is Hi-Z impedance  
01'b = Auto Rx-Detect,  
outputs test every 12 ms for 600 ms (50 times) then  
stops; termination is Hi-Z until detection; once detected  
input termination is 50 Ω  
CH1 - CHB_1  
RXDET  
0x15  
R/W  
0x00  
10'b = Auto Rx-Detect,  
3:2  
RXDET  
outputs test every 12 ms until detection occurs;  
termination is Hi-Z until detection; once detected input  
termination is 50 Ω  
11'b = Input is 50 Ω  
Note: Override RXDET pin and enable register control  
via Reg 0x08[3]  
1:0  
7:0  
Reserved  
Set bits to 0  
CH1 - CHB_1  
EQ  
INB_1 EQ Control - total of four levels.  
See Table 4.  
0x16  
EQ Control  
R/W  
0x2F  
Yes  
30  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Register Maps (continued)  
Table 9. SMBus Slave Mode Register Map (continued)  
Register  
Name  
EEPROM  
Reg Bit  
Address  
Bit  
Field  
Type Default  
Description  
Short Circuit  
Protection  
1 = Enable the short circuit protection  
0 = Disable the short circuit protection  
7
Yes  
Yes  
6:3  
Reserved  
Set bits to 0101'b  
OUTB_1 VOD Control: VOD / VID Ratio  
000'b = 0.57  
001'b = 0.65  
CH1 - CHB_1  
VOD  
0x17  
R/W  
0xAD  
010'b = 0.71  
2:0  
VOD Control  
Yes  
011'b = 0.77  
100'b = 0.83  
101'b = 0.90 (default)  
110'b = 1.00 (recommended)  
111'b = 1.04  
Observation bit for RXDET CH1 - CHB_1  
1 = Input 50 Ω terminated to VDD  
0 = Input is Hi-Z  
7
RXDET Status  
R
6:5  
4:3  
Reserved  
Reserved  
Set bits to 0  
Set bits to 0  
OUTB_1 VOD_DB Control  
000'b = 0 dB (recommended)  
001'b = –1.5 dB  
010'b = –3.5 dB (default)  
011'b = –5 dB  
CH1 - CHB_1  
VOD_DB  
0x18  
0x02  
R/W  
VOD_DB  
Control  
100'b = –6 dB  
101'b = –8 dB  
2:0  
Yes  
110'b = –9 dB  
111'b = –12 dB  
Note: Changing VOD_DB bits effectively lowers the  
output VOD dynamic range by a factor of the  
corresponding amount of dB reduction.  
7
Reserved  
Reserved  
Yes  
Yes  
Set bit to 0  
6:4  
Set bits to 0  
Status Assert threshold (1010 pattern 12 Gbps)  
00'b = 50 mVp-p (default)  
01'b = 40 mVp-p  
10'b = 75 mVp-p  
11'b = 58 mVp-p  
Signal Detect  
Status Assert  
Threshold  
3:2  
1:0  
CH1 - CHB_1  
SD_TH  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
0x19  
R/W  
0x00  
Status De-assert threshold (1010 pattern 12 Gbps)  
00'b = 37 mVp-p (default)  
01'b = 22 mVp-p  
10'b = 55 mVp-p  
11'b = 45 mVp-p  
Signal Detect  
Status  
De-assert  
Threshold  
Yes  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
0x1A  
0x1B  
Reserved  
Reserved  
7:0  
7:0  
Reserved  
Reserved  
R/W  
R/W  
0x00  
0x00  
Set bits to 0  
Set bits to 0  
Copyright © 2014, Texas Instruments Incorporated  
31  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 9. SMBus Slave Mode Register Map (continued)  
Register  
Name  
EEPROM  
Reg Bit  
Address  
Bit  
Field  
Type Default  
Description  
7:6  
5:4  
Reserved  
Reserved  
Set bits to 0  
Set bits to 0  
Yes  
00'b = Input is Hi-Z impedance  
01'b = Auto Rx-Detect,  
outputs test every 12 ms for 600 ms (50 times) then  
stops; termination is Hi-Z until detection; once detected  
input termination is 50 Ω  
CH2 - CHB_2  
RXDET  
0x1C  
R/W  
0x00  
10'b = Auto Rx-Detect,  
3:2  
RXDET  
Yes  
outputs test every 12 ms until detection occurs;  
termination is Hi-Z until detection; once detected input  
termination is 50 Ω  
11'b = Input is 50 Ω  
Note: Override RXDET pin and enable register control  
via Reg 0x08[3]  
1:0  
7:0  
Reserved  
Set bits to 0  
CH2 - CHB_2  
EQ  
INB_2 EQ Control - total of four levels.  
See Table 4.  
0x1D  
0x1E  
EQ Control  
R/W  
R/W  
0x2F  
0xAD  
Yes  
Short Circuit  
Protection  
1 = Enable the short circuit protection  
0 = Disable the short circuit protection  
7
Yes  
Yes  
6:3  
Reserved  
Set bits to 0101'b  
OUTB_2 VOD Control: VOD / VID Ratio  
000'b = 0.57  
001'b = 0.65  
CH2 - CHB_2  
VOD  
010'b = 0.71  
2:0  
VOD Control  
Yes  
011'b = 0.77  
100'b = 0.83  
101'b = 0.90 (default)  
110'b = 1.00 (recommended)  
111'b = 1.04  
Observation bit for RXDET CH2 - CHB_2  
1 = Input 50 Ω terminated to VDD  
0 = Input is Hi-Z  
7
RXDET Status  
R
6:5  
4:3  
Reserved  
Reserved  
Set bits to 0  
Set bits to 0  
OUTB_2 VOD_DB Control  
000'b = 0 dB (recommended)  
001'b = –1.5 dB  
010'b = –3.5 dB (default)  
011'b = –5 dB  
CH2 - CHB_2  
VOD_DB  
0x1F  
0x02  
R/W  
VOD_DB  
Control  
100'b = –6 dB  
101'b = –8 dB  
2:0  
Yes  
110'b = –9 dB  
111'b = –12 dB  
Note: Changing VOD_DB bits effectively lowers the  
output VOD dynamic range by a factor of the  
corresponding amount of dB reduction.  
32  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Register Maps (continued)  
Table 9. SMBus Slave Mode Register Map (continued)  
Register  
Name  
EEPROM  
Reg Bit  
Address  
Bit  
Field  
Type Default  
Description  
7
Reserved  
Reserved  
Yes  
Set bit to 0  
6:4  
Set bits to 0  
Status Assert threshold (1010 pattern 12 Gbps)  
00'b = 50 mVp-p (default)  
01'b = 40 mVp-p  
10'b = 75 mVp-p  
11'b = 58 mVp-p  
Signal Detect  
Status Assert  
Threshold  
3:2  
1:0  
Yes  
CH2 - CHB_2  
SD_TH  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
0x20  
R/W  
0x00  
Status De-assert threshold (1010 pattern 12 Gbps)  
00'b = 37 mVp-p (default)  
01'b = 22 mVp-p  
10'b = 55 mVp-p  
11'b = 45 mVp-p  
Signal Detect  
Status  
De-assert  
Threshold  
Yes  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
0x21  
0x22  
Reserved  
Reserved  
7:0  
7:0  
7:6  
5:4  
Reserved  
Reserved  
Reserved  
Reserved  
R/W  
R/W  
0x00  
0x00  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Yes  
Yes  
00'b = Input is Hi-Z impedance  
01'b = Auto Rx-Detect,  
outputs test every 12 ms for 600 ms (50 times) then  
stops; termination is Hi-Z until detection; once detected  
input termination is 50 Ω  
CH3 - CHB_3  
RXDET  
0x23  
R/W  
0x00  
10'b = Auto Rx-Detect,  
3:2  
RXDET  
outputs test every 12 ms until detection occurs;  
termination is Hi-Z until detection; once detected input  
termination is 50 Ω  
11'b = Input is 50 Ω  
Note: Override RXDET pin and enable register control  
via Reg 0x08[3]  
1:0  
7:0  
Reserved  
Set bits to 0  
CH3 - CHB_3  
EQ  
INB_3 EQ Control - total of four levels.  
See Table 4.  
0x24  
0x25  
EQ Control  
R/W  
R/W  
0x2F  
0xAD  
Yes  
Short Circuit  
Protection  
1 = Enable the short circuit protection  
0 = Disable the short circuit protection  
7
Yes  
Yes  
6:3  
Reserved  
Set bits to 0101'b  
OUTB_3 VOD Control: VOD / VID Ratio  
000'b = 0.57  
001'b = 0.65  
CH3 - CHB_3  
VOD  
010'b = 0.71  
2:0  
VOD Control  
Yes  
011'b = 0.77  
100'b = 0.83  
101'b = 0.90 (default)  
110'b = 1.00 (recommended)  
111'b = 1.04  
Copyright © 2014, Texas Instruments Incorporated  
33  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 9. SMBus Slave Mode Register Map (continued)  
Register  
Name  
EEPROM  
Reg Bit  
Address  
Bit  
Field  
Type Default  
Description  
Observation bit for RXDET CH3 - CHB_3  
1 = Input 50 Ω terminated to VDD  
0 = Input is Hi-Z  
7
RXDET Status  
R
6:5  
4:3  
Reserved  
Reserved  
Set bits to 0  
Set bits to 0  
OUTB_3 VOD_DB Control  
000'b = 0 dB (recommended)  
001'b = –1.5 dB  
010'b = –3.5 dB (default)  
011'b = –5 dB  
CH3 - CHB_3  
VOD_DB  
0x26  
0x02  
R/W  
VOD_DB  
Control  
100'b = –6 dB  
101'b = –8 dB  
2:0  
Yes  
110'b = –9 dB  
111'b = –12 dB  
Note: Changing VOD_DB bits effectively lowers the  
output VOD dynamic range by a factor of the  
corresponding amount of dB reduction.  
7
Reserved  
Reserved  
Yes  
Yes  
Set bit to 0  
6:4  
Set bits to 0  
Status Assert threshold (1010 pattern 12 Gbps)  
00'b = 50 mVp-p (default)  
01'b = 40 mVp-p  
10'b = 75 mVp-p  
11'b = 58 mVp-p  
Signal Detect  
Status Assert  
Threshold  
3:2  
1:0  
CH3 - CHB_3  
SD_TH  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
0x27  
R/W  
0x00  
Status De-assert threshold (1010 pattern 12 Gbps)  
00'b = 37 mVp-p (default)  
01'b = 22 mVp-p  
10'b = 55 mVp-p  
11'b = 45 mVp-p  
Signal Detect  
Status  
De-assert  
Threshold  
Yes  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
7
6
Reserved  
Reserved  
Set bit to 0  
Set bit to 1  
Yes  
Yes  
Enable Higher Range of Signal Detect Status  
Thresholds  
[5]: CH0 - CH3  
High SD_TH  
Status  
5:4  
[4]: CH4 - CH7  
Signal Detect  
Status Control  
Enable Fast Signal Detect Status  
[3]: CH0 - CH3  
[2]: CH4 - CH7  
Note: In Fast Signal Detect, assert/de-assert response  
occurs after approximately 3-4 ns  
0x28  
R/W  
0x4C  
Fast Signal  
Detect Status  
3:2  
1:0  
Yes  
Yes  
Enable Reduced Signal Detect Status Gain  
[1]: CH0 - CH3  
[0]: CH4 - CH7  
Reduced SD  
Status Gain  
0x29  
0x2A  
Reserved  
Reserved  
7:0  
7:0  
Reserved  
Reserved  
R/W  
R/W  
0x00  
0x00  
Set bits to 0  
Set bits to 0  
34  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Register Maps (continued)  
Table 9. SMBus Slave Mode Register Map (continued)  
Register  
Name  
EEPROM  
Reg Bit  
Address  
Bit  
Field  
Type Default  
Description  
7:6  
5:4  
Reserved  
Reserved  
Set bits to 0  
Set bits to 0  
Yes  
00'b = Input is Hi-Z impedance  
01'b = Auto Rx-Detect,  
outputs test every 12 ms for 600 ms (50 times) then  
stops; termination is Hi-Z until detection; once detected  
input termination is 50 Ω  
CH4 - CHA_0  
RXDET  
0x2B  
R/W  
0x00  
10'b = Auto Rx-Detect,  
3:2  
RXDET  
Yes  
outputs test every 12 ms until detection occurs;  
termination is Hi-Z until detection; once detected input  
termination is 50 Ω  
11'b = Input is 50 Ω  
Note: Override RXDET pin and enable register control  
via Reg 0x08[3]  
1:0  
7:0  
Reserved  
Set bits to 0  
CH4 - CHA_0  
EQ  
INA_0 EQ Control - total of four levels.  
See Table 4.  
0x2C  
0x2D  
EQ Control  
R/W  
R/W  
0x2F  
0xAD  
Yes  
Short Circuit  
Protection  
1 = Enable the short circuit protection  
0 = Disable the short circuit protection  
7
Yes  
Yes  
6:3  
Reserved  
Set bits to 0101'b  
OUTA_0 VOD Control: VOD / VID Ratio  
000'b = 0.57  
001'b = 0.65  
CH4 - CHA_0  
VOD  
010'b = 0.71  
2:0  
VOD Control  
Yes  
011'b = 0.77  
100'b = 0.83  
101'b = 0.90 (default)  
110'b = 1.00 (recommended)  
111'b = 1.04  
Observation bit for RXDET CH4 - CHA_0  
1 = Input 50 Ω terminated to VDD  
0 = Input is Hi-Z  
7
RXDET Status  
R
6:5  
4:3  
Reserved  
Reserved  
Set bits to 0  
Set bits to 0  
OUTA_0 VOD_DB Control  
000'b = 0 dB (recommended)  
001'b = –1.5 dB  
010'b = –3.5 dB (default)  
011'b = –5 dB  
CH4 - CHA_0  
VOD_DB  
0x2E  
0x02  
R/W  
VOD_DB  
Control  
100'b = –6 dB  
101'b = –8 dB  
2:0  
Yes  
110'b = –9 dB  
111'b = –12 dB  
Note: Changing VOD_DB bits effectively lowers the  
output VOD dynamic range by a factor of the  
corresponding amount of dB reduction.  
Copyright © 2014, Texas Instruments Incorporated  
35  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 9. SMBus Slave Mode Register Map (continued)  
Register  
Name  
EEPROM  
Reg Bit  
Address  
Bit  
Field  
Type Default  
Description  
7
Reserved  
Reserved  
Yes  
Set bit to 0  
6:4  
Set bits to 0  
Status Assert threshold (1010 pattern 12 Gbps)  
00'b = 50 mVp-p (default)  
01'b = 40 mVp-p  
10'b = 75 mVp-p  
11'b = 58 mVp-p  
Signal Detect  
Status Assert  
Threshold  
3:2  
1:0  
Yes  
CH4 - CHA_0  
SD_TH  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
0x2F  
R/W  
0x00  
Status De-assert threshold (1010 pattern 12 Gbps)  
00'b = 37 mVp-p (default)  
01'b = 22 mVp-p  
10'b = 55 mVp-p  
11'b = 45 mVp-p  
Signal Detect  
Status  
De-assert  
Threshold  
Yes  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
0x30  
0x31  
Reserved  
Reserved  
7:0  
7:0  
7:6  
5:4  
Reserved  
Reserved  
Reserved  
Reserved  
R/W  
R/W  
0x00  
0x00  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Yes  
Yes  
00'b = Input is Hi-Z impedance  
01'b = Auto Rx-Detect,  
outputs test every 12 ms for 600 ms (50 times) then  
stops; termination is Hi-Z until detection; once detected  
input termination is 50 Ω  
CH5 - CHA_1  
RXDET  
0x32  
R/W  
0x00  
10'b = Auto Rx-Detect,  
3:2  
RXDET  
outputs test every 12 ms until detection occurs;  
termination is Hi-Z until detection; once detected input  
termination is 50 Ω  
11'b = Input is 50 Ω  
Note: Override RXDET pin and enable register control  
via Reg 0x08[3]  
1:0  
7:0  
Reserved  
Set bits to 0  
CH5 - CHA_1  
EQ  
INA_1 EQ Control - total of four levels.  
See Table 4.  
0x33  
0x34  
EQ Control  
R/W  
R/W  
0x2F  
0xAD  
Yes  
Short Circuit  
Protection  
1 = Enable the short circuit protection  
0 = Disable the short circuit protection  
7
Yes  
Yes  
6:3  
Reserved  
Set bits to 0101'b  
OUTA_1 VOD Control: VOD / VID Ratio  
000'b = 0.57  
001'b = 0.65  
CH5 - CHA_1  
VOD  
010'b = 0.71  
2:0  
VOD Control  
Yes  
011'b = 0.77  
100'b = 0.83  
101'b = 0.90 (default)  
110'b = 1.00 (recommended)  
111'b = 1.04  
36  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Register Maps (continued)  
Table 9. SMBus Slave Mode Register Map (continued)  
Register  
Name  
EEPROM  
Reg Bit  
Address  
Bit  
Field  
Type Default  
Description  
Observation bit for RXDET CH5 - CHA1  
1 = Input 50 Ω terminated to VDD  
0 = Input is Hi-Z  
7
RXDET Status  
R
6:5  
4:3  
Reserved  
Reserved  
Set bits to 0  
Set bits to 0  
OUTA_1 VOD_DB Control  
000'b = 0 dB (recommended)  
001'b = –1.5 dB  
010'b = –3.5 dB (default)  
011'b = –5 dB  
CH5 - CHA_1  
VOD_DB  
0x35  
0x02  
R/W  
VOD_DB  
Control  
100'b = –6 dB  
101'b = –8 dB  
2:0  
Yes  
110'b = –9 dB  
111'b = –12 dB  
Note: Changing VOD_DB bits effectively lowers the  
output VOD dynamic range by a factor of the  
corresponding amount of dB reduction.  
7
Reserved  
Reserved  
Yes  
Yes  
Set bit to 0  
6:4  
Set bits to 0  
Status Assert threshold (1010 pattern 12 Gbps)  
00'b = 50 mVp-p (default)  
01'b = 40 mVp-p  
10'b = 75 mVp-p  
11'b = 58 mVp-p  
Signal Detect  
Status Assert  
Threshold  
3:2  
1:0  
CH5 - CHA_1  
SD_TH  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
0x36  
R/W  
0x00  
Status De-assert threshold (1010 pattern 12 Gbps)  
00'b = 37 mVp-p (default)  
01'b = 22 mVp-p  
10'b = 55 mVp-p  
11'b = 45 mVp-p  
Signal Detect  
Status  
De-assert  
Threshold  
Yes  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
0x37  
0x38  
Reserved  
Reserved  
7:0  
7:0  
7:6  
5:4  
Reserved  
Reserved  
Reserved  
Reserved  
R/W  
R/W  
0x00  
0x00  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Yes  
Yes  
00'b = Input is Hi-Z impedance  
01'b = Auto Rx-Detect,  
outputs test every 12 ms for 600 ms (50 times) then  
stops; termination is Hi-Z until detection; once detected  
input termination is 50 Ω  
CH6 - CHA_2  
RXDET  
0x39  
R/W  
0x00  
10'b = Auto Rx-Detect,  
3:2  
RXDET  
outputs test every 12 ms until detection occurs;  
termination is Hi-Z until detection; once detected input  
termination is 50 Ω  
11'b = Input is 50 Ω  
Note: Override RXDET pin and enable register control  
via Reg 0x08[3]  
1:0  
7:0  
Reserved  
Set bits to 0  
CH6 - CHA_2  
EQ  
INA_2 EQ Control - total of four levels.  
See Table 4.  
0x3A  
EQ Control  
R/W  
0x2F  
Yes  
Copyright © 2014, Texas Instruments Incorporated  
37  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 9. SMBus Slave Mode Register Map (continued)  
Register  
Name  
EEPROM  
Reg Bit  
Address  
Bit  
Field  
Type Default  
Description  
Short Circuit  
Protection  
1 = Enable the short circuit protection  
0 = Disable the short circuit protection  
7
Yes  
Yes  
6:3  
Reserved  
Set bits to 0101'b  
OUTA_2 VOD Control: VOD / VID Ratio  
000'b = 0.57  
001'b = 0.65  
CH6 - CHA_2  
VOD  
0x3B  
R/W  
0xAD  
010'b = 0.71  
2:0  
VOD Control  
Yes  
011'b = 0.77  
100'b = 0.83  
101'b = 0.90 (default)  
110'b = 1.00 (recommended)  
111'b = 1.04  
Observation bit for RXDET CH6 - CHA_2  
1 = Input 50 Ω terminated to VDD  
0 = Input is Hi-Z  
7
RXDET Status  
R
6:5  
4:3  
Reserved  
Reserved  
Set bits to 0  
Set bits to 0  
OUTA_2 VOD_DB Control  
000'b = 0 dB (recommended)  
001'b = –1.5 dB  
010'b = –3.5 dB (default)  
011'b = –5 dB  
CH6 - CHA_2  
VOD_DB  
0x3C  
0x02  
R/W  
VOD_DB  
Control  
100'b = –6 dB  
101'b = –8 dB  
2:0  
Yes  
110'b = –9 dB  
111'b = –12 dB  
Note: Changing VOD_DB bits effectively lowers the  
output VOD dynamic range by a factor of the  
corresponding amount of dB reduction.  
7
Reserved  
Reserved  
Yes  
Yes  
Set bit to 0  
6:4  
Set bits to 0  
Status Assert threshold (1010 pattern 12 Gbps)  
00'b = 50 mVp-p (default)  
01'b = 40 mVp-p  
10'b = 75 mVp-p  
11'b = 58 mVp-p  
Signal Detect  
Status Assert  
Threshold  
3:2  
1:0  
CH6 - CHA_2  
SD_TH  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
0x3D  
R/W  
0x00  
Status De-assert threshold (1010 pattern 12 Gbps)  
00'b = 37 mVp-p (default)  
01'b = 22 mVp-p  
10'b = 55 mVp-p  
11'b = 45 mVp-p  
Signal Detect  
Status  
De-assert  
Threshold  
Yes  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
0x3E  
0x3F  
Reserved  
Reserved  
7:0  
7:0  
Reserved  
Reserved  
R/W  
R/W  
0x00  
0x00  
Set bits to 0  
Set bits to 0  
38  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Register Maps (continued)  
Table 9. SMBus Slave Mode Register Map (continued)  
Register  
Name  
EEPROM  
Reg Bit  
Address  
Bit  
Field  
Type Default  
Description  
7:6  
5:4  
Reserved  
Reserved  
Set bits to 0  
Set bits to 0  
Yes  
00'b = Input is Hi-Z impedance  
01'b = Auto Rx-Detect,  
outputs test every 12 ms for 600 ms (50 times) then  
stops; termination is Hi-Z until detection; once detected  
input termination is 50 Ω  
CH7 - CHA_3  
RXDET  
0x40  
R/W  
0x00  
10'b = Auto Rx-Detect,  
3:2  
RXDET  
Yes  
outputs test every 12 ms until detection occurs;  
termination is Hi-Z until detection; once detected input  
termination is 50 Ω  
11'b = Input is 50 Ω  
Note: Override RXDET pin and enable register control  
via Reg 0x08[3]  
1:0  
7:0  
Reserved  
Set bits to 0  
CH7 - CHA_3  
EQ  
INA_3 EQ Control - total of four levels.  
See Table 4.  
0x41  
0x42  
EQ Control  
R/W  
R/W  
0x2F  
0xAD  
Yes  
Short Circuit  
Protection  
1 = Enable the short circuit protection  
0 = Disable the short circuit protection  
7
Yes  
Yes  
6:3  
Reserved  
Set bits to 0101'b  
OUTA_3 VOD Control: VOD / VID Ratio  
000'b = 0.57  
001'b = 0.65  
CH7 - CHA_3  
VOD  
010'b = 0.71  
2:0  
VOD Control  
Yes  
011'b = 0.77  
100'b = 0.83  
101'b = 0.90 (default)  
110'b = 1.00 (recommended)  
111'b = 1.04  
Observation bit for RXDET CH7 - CHA_3  
1 = Input 50 Ω terminated to VDD  
0 = Input is Hi-Z  
7
RXDET Status  
R
6:5  
4:3  
Reserved  
Reserved  
Set bits to 0  
Set bits to 0  
OUTA_3 VOD_DB Control  
000'b = 0 dB (recommended)  
001'b = –1.5 dB  
010'b = –3.5 dB (default)  
011'b = –5 dB  
CH7 - CHA_3  
VOD_DB  
0x43  
0x02  
R/W  
VOD_DB  
Control  
100'b = –6 dB  
101'b = –8 dB  
2:0  
Yes  
110'b = –9 dB  
111'b = –12 dB  
Note: Changing VOD_DB bits effectively lowers the  
output VOD dynamic range by a factor of the  
corresponding amount of dB reduction.  
Copyright © 2014, Texas Instruments Incorporated  
39  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 9. SMBus Slave Mode Register Map (continued)  
Register  
Name  
EEPROM  
Reg Bit  
Address  
Bit  
Field  
Type Default  
Description  
7
Reserved  
Reserved  
Yes  
Set bit to 0  
6:4  
Set bits to 0  
Status Assert threshold (1010 pattern 12 Gbps)  
00'b = 50 mVp-p (default)  
01'b = 40 mVp-p  
10'b = 75 mVp-p  
11'b = 58 mVp-p  
Signal Detect  
Status Assert  
Threshold  
3:2  
1:0  
Yes  
CH7 - CHA_3  
SD_TH  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
0x44  
R/W  
0x00  
Status De-assert threshold (1010 pattern 12 Gbps)  
00'b = 37 mVp-p (default)  
01'b = 22 mVp-p  
10'b = 55 mVp-p  
11'b = 45 mVp-p  
Signal Detect  
Status  
De-assert  
Threshold  
Yes  
Note: Override SD_TH pin and enable register control  
via Reg 0x08[6]  
0x45  
0x46  
Reserved  
Reserved  
7:0  
7:0  
7:4  
3:0  
7:6  
5:0  
7:0  
7:0  
7:0  
7:3  
2:1  
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VERSION  
ID  
R/W  
R/W  
0x00  
0x38  
Set bits to 0  
Set bits to 0x38  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 00 0101'b  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 0  
100'b  
0x47  
0x48  
Reserved  
Reserved  
R/W  
0x00  
0x05  
Yes  
Yes  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x49  
0x4A  
0x4B  
Reserved  
Reserved  
Reserved  
0x00  
0x00  
0x00  
Yes  
Yes  
0x4C  
Reserved  
0x00  
0x4D  
0x4E  
0x4F  
0x50  
Reserved  
Reserved  
Reserved  
Reserved  
7:0  
7:0  
7:0  
7:0  
7:5  
4:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:1  
0
0x00  
0x00  
0x00  
0x00  
0x51  
Device ID  
R
0x85  
0 0101'b  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
0x00  
0x10  
0x64  
0x21  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 0x10  
Set bits to 0x64  
Set bits to 0x21  
Set bits to 0  
Set bit to 0  
0x59  
Reserved  
R/W  
0x00  
Yes  
Yes  
Yes  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x54  
0x54  
0x00  
0x00  
0x00  
0x00  
Set bits to 0x54  
Set bits to 0x54  
Set bits to 0  
Set bits to 0  
Set bits to 0  
Set bits to 0  
40  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Register Maps (continued)  
Table 9. SMBus Slave Mode Register Map (continued)  
Register  
Name  
EEPROM  
Reg Bit  
Address  
Bit  
Field  
Type Default  
Description  
0x60  
0x61  
Reserved  
Reserved  
7:0  
7:0  
Reserved  
Reserved  
R/W  
R/W  
0x00  
0x00  
Set bits to 0  
Set bits to 0  
Copyright © 2014, Texas Instruments Incorporated  
41  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
8 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 DS80PCI810 vs. DS80PCI800  
The DS80PCI810 and DS80PCI800 are pin compatible, and both can be used for PCIe Gen-1, 2, and 3  
applications. The DS80PCI810 features several design enhancements to improve PCIe system interoperability  
and performance over the previous generation DS80PCI800 design. The DS80PCI810 has a more linear input  
equalizer and output driver to enhance signal transparency for protocols requiring link training. This transparency  
is important, because it preserves subtle pre-cursor and post-cursor information from the Tx signal prior to the  
repeater. As a result of these enhancements, the DS80PCI810 is easier to tune and increases flexibility of IC  
placement along the signal path. The DS80PCI810 is ideal for open PCIe systems. An open system is defined as  
an environment where a PCIe connector accepts any compliant PCIe Add-In Card (AIC). The DS80PCI810 can  
extend the reach of a PCIe system by up to 10 dB beyond the max allowable PCIe channel loss.  
The DS80PCI800 may still be used for closed PCIe systems where significant insertion losses (> -35 dB @ 4  
GHz) are expected in the signal path. In contrast to open PCIe systems, a closed system is defined as a PCIe  
environment with a limited number of possible Host-to-Endpoint combinations. Due to larger CTLE gain, the  
DS80PCI800 is able to compensate insertion loss over longer transmission lines before the repeater. In addition,  
the DS80PCI800 is able to produce de-emphasis levels up to -12 dB to support significant trace losses after the  
repeater (> -15 dB @ 4 GHz).  
8.1.2 Signal Integrity in PCIe Applications  
In PCIe Gen-3 applications, specifications require Rx-Tx link training to establish and optimize signal conditioning  
settings at 8 Gbps. In link training, the Rx partner requests a series of FIR coefficients from the Tx partner at  
speed. This training sequence is designed to pre-condition the signal path with an optimized link between the  
endpoints. Note that there is no link training with Tx FIR coefficients for PCIe Gen-1 (2.5 Gbps) or PCIe Gen-2  
(5.0 Gbps) applications.  
The DS80PCI810 works to extend the reach possible by using active linear equalization on the channel, boosting  
attenuated signals so that they can be more easily recovered at the Rx. The repeater outputs are specially  
designed to be transparent to Tx FIR signaling in order to pass information critical for optimal link training to the  
Rx. Suggested settings for the A-channels and B-channels are given in Table 10 and Table 11. Further  
adjustments to EQx and VODx settings may optimize signal margin on the link for different system applications:  
Table 10. Suggested Device Settings in Pin Mode  
CHANNEL SETTINGS  
EQx  
PIN MODE  
Level 4  
VODx[1:0]  
Level 6 (1, 0)  
Table 11. Suggested Device Settings in SMBus Modes  
CHANNEL SETTINGS  
SMBus MODES  
0x03  
EQx  
VODx  
110'b  
VOD_DB  
000'b  
42  
Copyright © 2014, Texas Instruments Incorporated  
 
 
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
The SMBus Slave Mode code example in Table 12 may be used to program the DS80PCI810 with the  
recommended device settings.  
Table 12. SMBus Example Sequence  
REGISTER  
0x06  
0x0F  
0x10  
0x11  
0x16  
0x17  
0x18  
0x1D  
0x1E  
0x1F  
0x24  
0x25  
0x26  
0x2C  
0x2D  
0x2E  
0x33  
0x34  
0x35  
0x3A  
0x3B  
0x3C  
0x41  
0x42  
0x43  
WRITE VALUE  
0x18  
COMMENTS  
Set SMBus Slave Mode Register Enable.  
0x03  
Set CHB_0 EQ to 0x03.  
0xAE  
0x00  
Set CHB_0 VOD to 110'b.  
Set CHB_0 VOD_DB to 000'b.  
Set CHB_1 EQ to 0x03.  
0x03  
0xAE  
0x00  
Set CHB_1 VOD to 110'b.  
Set CHB_1 VOD_DB to 000'b.  
Set CHB_2 EQ to 0x03.  
0x03  
0xAE  
0x00  
Set CHB_2 VOD to 110'b.  
Set CHB_2 VOD_DB to 000'b.  
Set CHB_3 EQ to 0x03.  
0x03  
0xAE  
0x00  
Set CHB_3 VOD to 110'b.  
Set CHB_3 VOD_DB to 000'b.  
Set CHA_0 EQ to 0x03.  
0x03  
0xAE  
0x00  
Set CHA_0 VOD to 110'b.  
Set CHA_0 VOD_DB to 000'b.  
Set CHA_1 EQ to 0x03.  
0x03  
0xAE  
0x00  
Set CHA_1 VOD to 110'b.  
Set CHA_1 VOD_DB to 000'b.  
Set CHA_2 EQ to 0x03.  
0x03  
0xAE  
0x00  
Set CHA_2 VOD to 110'b.  
Set CHA_2 VOD_DB to 000'b.  
Set CHA_3 EQ to 0x03.  
0x03  
0xAE  
0x00  
Set CHA_3 VOD to 110'b.  
Set CHA_3 VOD_DB to 000'b.  
8.1.3 Rx Detect Functionality in PCIe Applications  
In PCIe systems, specifications require the Tx to implement Rx detection in order to determine whether an Rx  
endpoint is present. Since the DS80PCI810 is designed for placement between an ASIC Tx and endpoint Rx, the  
DS80PCI810 implements automatic polling for valid Rx detection when the RXDET pin is left floating or tied low  
via 20 kΩ to GND. If 50 Ω impedances are seen on both positive and negative outputs of a DS80PCI810  
channel, the Rx detect state machine asserts Rx detection, and a 50 Ω termination to VDD is provided at the  
respective channel's positive and negative input. For open PCIe systems where users may swap multiple cards  
in and out of a given PCIe slot, it is recommended to keep the RXDET pin floating. For closed systems where an  
endpoint Rx is present in a PCIe slot at all times, the RXDET pin may be left floating or tied high via 1 kΩ to VDD  
(2.5 V mode) or VIN (3.3 V mode).  
For more details about DS80PCI810 Rx detection, refer to Table 2.  
8.2 Typical Applications  
8.2.1 Generic High Speed Repeater  
The DS80PCI810 extends PCB and cable reach in multiple applications by using active linear equalization. The  
high linearity of this device aids specifically in protocols requiring link training and can be used in line cards,  
backplanes, and motherboards, thereby improving margin and overall eye performance. The capability of the  
repeater can be explored across a range of data rates and ASIC-to-link-partner signaling, as shown in the  
following two test setup connections.  
Copyright © 2014, Texas Instruments Incorporated  
43  
 
 
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Typical Applications (continued)  
Pattern  
Generator  
Scope  
BW = 60 GHz  
TL  
IN  
OUT  
DS80PCI810  
V
= 1.0 Vp-p,  
Lossy Channel  
OD  
DE = 0 dB  
PRBS15  
Figure 9. Test Setup Connections Diagram  
Pattern  
Generator  
Scope  
BW = 60 GHz  
TL1  
Lossy Channel  
TL2  
Lossy Channel  
IN  
OUT  
DS80PCI810  
V
= 1.0 Vp-p,  
OD  
DE = -6 dB  
PRBS15  
Figure 10. Test Setup Connections Diagram  
8.2.1.1 Design Requirements  
As with any high speed design, there are many factors that influence the overall performance. Below are a list of  
critical areas for consideration and study during design.  
Use 100 Ω impedance traces. Generally these are very loosely coupled to ease routing length differences.  
Place AC-coupling capacitors near to the receiver end of each channel segment to minimize reflections.  
The maximum body size for AC-coupling capacitors is 0402.  
Back-drill connector vias and signal vias to minimize stub length.  
Use reference plane vias to ensure a low inductance path for the return current.  
8.2.1.2 Detailed Design Procedure  
The DS80PCI810 is designed to be placed at an offset location with respect to the overall channel attenuation. In  
order to optimize performance, the repeater requires tuning to extend the reach of the cable or trace length while  
also recovering a solid eye opening. To tune the repeater, the settings mentioned in Table 10 (for Pin Mode) and  
Table 11 (for SMBus Modes) are recommended as a default starting point for most applications. Once these  
settings are configured, additional tuning of the EQ and, to a lesser extent, VOD may be required to optimize the  
repeater performance for each specific application environment.  
Examples of the repeater performance as a generic high speed datapath repeater are illustrated in the  
performance curves in the next section.  
44  
Copyright © 2014, Texas Instruments Incorporated  
 
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Typical Applications (continued)  
8.2.1.3 Application Performance Plots  
8.2.1.3.1 Pre-Channel Only Setup  
No Repeater Used  
TJ (1.0E-12) = 21.6 ps  
DS80PCI810 Settings: EQA = Level 2, VODA = Level 6  
TJ (1.0E-12) = 13.6 ps  
Figure 12. TL = 5 Inch 5–Mil FR4 Trace,  
Figure 11. TL = 5 Inch 5–Mil FR4 Trace,  
No Repeater, 8 Gbps  
DS80PCI810 CHA_0, 8 Gbps  
No Repeater Used  
TJ (1.0E-12) = 43.7 ps  
DS80PCI810 Settings: EQA = Level 3, VODA = Level 6  
TJ (1.0E-12) = 18.1 ps  
Figure 13. TL = 10 Inch 5–Mil FR4 Trace,  
No Repeater, 8 Gbps  
Figure 14. TL= 10 Inch 5–Mil FR4 Trace,  
DS80PCI810 CHA_0, 8 Gbps  
Copyright © 2014, Texas Instruments Incorporated  
45  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Typical Applications (continued)  
No Repeater Used  
DS80PCI810 Settings: EQA = Level 4, VODA = Level 6  
TJ (1.0E-12) = 35.5 ps  
Figure 16. TL = 20 Inch 5–Mil FR4 Trace,  
TJ (1.0E-12) = Not Available Due to Closed Eye  
Figure 15. TL = 20 Inch 5–Mil FR4 Trace,  
No Repeater, 8 Gbps  
DS80PCI810 CHA_0, 8 Gbps  
No Repeater  
DS80PCI810 Settings: EQA = Level 4, VODA = Level 6  
TJ (1.0E-12) = 41.4 ps  
TJ (1.0E-12) = Not Available Due to Closed Eye  
Figure 17. TL = 5-Meter 30-AWG 100 Ω Twin-Axial Cable,  
No Repeater, 8 Gbps  
Figure 18. TL = 5-Meter 30-AWG 100 Ω Twin-Axial Cable,  
DS80PCI810 CHA_0, 8 Gbps  
46  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Typical Applications (continued)  
8.2.1.3.2 Pre-Channel and Post-Channel Setup  
No Repeater Used  
DS80PCI810 Settings: EQA = Level 4, VODA = Level 6  
TJ (1.0E-12) = 33.0 ps  
Figure 20. TL1 = 15 Inch 5–Mil FR4 Trace,  
TJ (1.0E-12) = Not Available Due to Closed Eye  
Figure 19. TL1 = 15 Inch 5–Mil FR4 Trace,  
TL2 = 10 Inch 5–Mil FR4 Trace,  
No Repeater, 8 Gbps  
TL2 = 10 Inch 5–Mil FR4 Trace,  
DS80PCI810 CHA_0, 8 Gbps  
8.2.2 PCIe Board Applications (PCIe Gen-3)  
The DS80PCI810 can be used to extend trace length on motherboards and line cards in PCIe Gen-3  
applications. The high linearity of the DS80PCI810 aids in the link training protocol required by PCIe Gen-3 at 8  
Gbps in accordance with PCI-SIG standards. For PCIe Gen-3, preservation of the pre-cursor and post-cursor Tx  
FIR presets (P0-P10) is crucial to successful signal transmission from motherboard system root complex to line  
card ASIC or Embedded Processor. Below is a typical example of the DS80PCI810 used in a PCIe application:  
8
TX  
ASIC  
or  
PCIe EP  
Connector  
8
RX  
DS80PCI810  
8
RX  
System Board  
Root Complex  
DS80PCI810  
Connector  
8
TX  
Figure 21. Typical PCIe Gen-3 Configuration Diagram  
Copyright © 2014, Texas Instruments Incorporated  
47  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Typical Applications (continued)  
8.2.2.1 Design Requirements  
As with any high speed design, there are many factors that influence the overall performance. Please reference  
Design Requirements in the Generic High Speed Repeater application section for a list of critical areas for  
consideration and study during design.  
8.2.2.2 Design Procedure  
In PCIe Gen-3 applications, there is a large range of flexibility regarding the placement of the DS80PCI810 in the  
signal path due to the high linearity of the device. If the PCIe slot must also support lower speeds like PCIe Gen-  
1 (2.5 Gbps) and Gen-2 (5.0 Gbps), it is recommended to place the DS80PCI810 closer to the endpoint Rx.  
Once the DS80PCI810 is placed on the signal path, the repeater must be tuned. To tune the repeater, the  
settings mentioned in Table 10 (for Pin Mode) and Table 11 (for SMBus Modes) are recommended as a default  
starting point for most applications. Once these settings are configured, additional tuning of the EQ and, to a  
lesser extent, VOD may be required to optimize the repeater performance to pass link training preset  
requirements for PCIe Gen-3.  
An example of a test configuration used to evaluate the DS80PCI810 in this application can be seen in  
Figure 22. For more information about DS80PCI810 PCIe applications, please refer to application note SNLA227.  
PCIe Gen-3  
Compliance  
Lane Under  
Test TX  
Base Board Riser  
Scope  
Tektronix  
DSA71604  
PC Testing  
Signal Test 3.2.0  
Software  
FR4 Trace  
TL2  
FR4 Trace  
DS80PCI810EVM  
TL1  
PCIe Gen 3.0 (x16 Lane)  
^<v}Ávꢀ'}}ꢀ_ꢀ  
Golden Graphics Card  
TX: Front Side  
RX: Back Side  
PCIe Connector  
Lane Under  
Test RX  
PCIe Gen-3 Preset  
Configuration Control  
PCIe Gen-3  
Compliance  
Base Board  
(CBB)  
Figure 22. Typical PCIe Gen-3 Add-In Card Test Diagram  
48  
Copyright © 2014, Texas Instruments Incorporated  
 
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
Typical Applications (continued)  
8.2.2.3 Application Performance Plots  
No Repeater Used  
DS80PCI810 Settings: EQA = Level 4, VODA = Level 6  
Composite Eye Height: 50.39 mV  
Minimum Eye Width: 49.87 ps  
Overall SigTest Result: Fail  
Composite Eye Height: 112.2 mV  
Minimum Eye Width: 83.82 ps  
Overall SigTest Result: Pass  
Figure 23. PCIe Gen-3, Preset 7, Transition Eye  
TL1 = 10 Inch 4-Mil FR4 Trace, No TL2  
No Repeater, 8 Gbps  
Figure 24. PCIe Gen-3, Preset 7, Transition Eye  
TL1 = 10 Inch 4-Mil FR4 Trace, No TL2  
DS80PCI810, 8 Gbps  
No Repeater Used  
DS80PCI810 Settings: EQA = Level 4, VODA = Level 6  
Composite Eye Height: 112.2 mV  
Minimum Eye Width: 83.82 ps  
Composite Eye Height: 50.39 mV  
Minimum Eye Width: 49.87 ps  
Overall SigTest Result: Fail  
Overall SigTest Result: Pass  
Figure 25. PCIe Gen-3, Preset 7, Non-Transition Eye  
TL1 = 10 Inch 4-Mil FR4 Trace, No TL2  
No Repeater, 8 Gbps  
Figure 26. PCIe Gen-3, Preset 7, Non-Transition Eye  
TL1 = 10 Inch 4-Mil FR4 Trace, No TL2  
DS80PCI810, 8 Gbps  
Copyright © 2014, Texas Instruments Incorporated  
49  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
Typical Applications (continued)  
No Repeater Used  
DS80PCI810 Settings: EQA = Level 4, VODA = Level 6  
Composite Eye Height: 0.057 mV  
Minimum Eye Width: 37.66 ps  
Overall SigTest Result: Fail  
Composite Eye Height: 77.26 mV  
Minimum Eye Width: 78.24 ps  
Overall SigTest Result: Pass  
Figure 27. PCIe Gen-3, Preset 7, Transition Eye  
Figure 28. PCIe Gen-3, Preset 7, Transition Eye  
TL1 = 10 Inch 4-Mil FR4 Trace,  
TL2 = 5 Inch 4-Mil FR4 Trace  
No Repeater, 8 Gbps  
TL1 = 10 Inch 4-Mil FR4 Trace,  
TL2 = 5 Inch 4-Mil FR4 Trace  
DS80PCI810, 8 Gbps  
No Repeater Used  
DS80PCI810 Settings: EQA = Level 4, VODA = Level 6  
Composite Eye Height: 77.26 mV  
Minimum Eye Width: 78.24 ps  
Composite Eye Height: 0.057 mV  
Minimum Eye Width: 37.66 ps  
Overall SigTest Result: Fail  
Overall SigTest Result: Pass  
Figure 29. PCIe Gen-3, Preset 7, Non-Transition Eye  
Figure 30. PCIe Gen-3, Preset 7, Non-Transition Eye  
TL1 = 10 Inch 4-Mil FR4 Trace,  
TL1 = 10 Inch 4-Mil FR4 Trace,  
TL2 = 5 Inch 4-Mil FR4 Trace  
No Repeater, 8 Gbps  
TL2 = 5 Inch 4-Mil FR4 Trace  
DS80PCI810, 8 Gbps  
50  
Copyright © 2014, Texas Instruments Incorporated  
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
9 Power Supply Recommendations  
Two approaches are recommended to ensure that the DS80PCI810 is provided with an adequate power supply.  
First, the supply (VDD) and ground (GND) pins should be connected to power planes routed on adjacent layers  
of the printed circuit board. The layer thickness of the dielectric should be minimized so that the VDD and GND  
planes create a low inductance supply with distributed capacitance. Second, careful attention to supply  
bypassing through the proper use of bypass capacitors is required. A 0.1 μF bypass capacitor should be  
connected to each VDD pin such that the capacitor is placed as close as possible to the DS80PCI810. Smaller  
body size capacitors can help facilitate proper component placement. Additionally, capacitor with capacitance in  
the range of 1 μF to 10 μF should be incorporated in the power supply bypassing design as well. These  
capacitors can be either tantalum or an ultra-low ESR ceramic.  
The DS80PCI810 has an optional internal voltage regulator to provide the 2.5 V supply to the device. In 3.3 V  
mode operation, the VIN pin = 3.3 V is used to supply power to the device. The internal regulator then provides  
the 2.5 V to the VDD pins of the device, and a 0.1 μF cap is needed at each of the five VDD pins for power  
supply de-coupling (total capacitance should equal 0.5 μF). The VDD_SEL pin must be tied to GND to enable the  
internal regulator. In 2.5 V mode operation, the VIN pin should be left open and 2.5 V supply must be applied to  
the five VDD pins to power the device. The VDD_SEL pin must be left open (no connect) to disable the internal  
regulator.  
3.3 V mode  
2.5 V mode  
VDD_SEL  
VDD_SEL  
open  
open  
Enable  
Disable  
3.3 V  
Internal  
voltage  
regulator  
Internal  
Capacitors can be  
either tantalum or an  
ultra-low ESR ceramic.  
voltage  
VIN  
VDD  
VDD  
VDD  
VDD  
VDD  
VIN  
VDD  
VDD  
VDD  
VDD  
VDD  
regulator  
2.5 V  
2.5 V  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
Capacitors can be  
either tantalum or an  
ultra-low ESR ceramic.  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
Place 0.1 µF close to VDD Pin  
Place capacitors close to VDD Pin  
Total capacitance should be 7 0.5 µF  
Figure 31. 3.3 V or 2.5 V Supply Connection Diagram  
Copyright © 2014, Texas Instruments Incorporated  
51  
DS80PCI810  
ZHCSCW4 OCTOBER 2014  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The CML inputs and outputs have been optimized to work with interconnects using a controlled differential  
impedance of 100 . It is preferable to route differential lines exclusively on one layer of the board, particularly  
for the input traces. The use of vias should be avoided if possible. If vias must be used, they should be used  
sparingly and must be placed symmetrically for each side of a given differential pair. Whenever differential vias  
are used, the layout must also provide for a low inductance path for the return currents as well. Route the  
differential signals away from other signals and noise sources on the printed circuit board. To minimize the  
effects of crosstalk, a 5:1 ratio or greater should be maintained between inter-pair and intra-pair spacing. See  
AN-1187 “Leadless Leadframe Package (LLP) Application Report” (literature number SNOA401) for additional  
information on QFN (WQFN) packages.  
10.2 Layout Example  
Figure 32 depicts different transmission line topologies which can be used in various combinations to achieve the  
optimal system performance. Impedance discontinuities at the differential via can be minimized or eliminated by  
increasing the swell around each hole and by providing for a low inductance return current path. When the via  
structure is associated with a thick backplane PCB, further optimization such as back drilling is often used to  
reduce the detrimental high frequency effects of stubs on the signal path.  
20 mils  
EXTERNAL MICROSTRIP  
100 mils  
20 mils  
INTERNAL STRIPLINE  
VDD  
VDD  
1
2
12  
10  
8
6
5
4
3
18  
16  
14 13  
15  
11  
9
7
17  
54  
53  
52  
19  
20  
21  
22  
23  
24  
25  
26  
27  
51  
50  
49  
BOTTOM OF PKG  
GND  
48  
47  
46  
VDD  
44  
29  
32  
36 37  
39 40 41 42  
38  
43  
45  
28  
30 31  
33 34  
35  
VDD  
VDD  
Figure 32. Typical Routing Options  
52  
版权 © 2014, Texas Instruments Incorporated  
 
DS80PCI810  
www.ti.com.cn  
ZHCSCW4 OCTOBER 2014  
11 器件和文档支持  
11.1 商标  
All trademarks are the property of their respective owners.  
11.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014, Texas Instruments Incorporated  
53  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2014, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS80PCI810NJYR  
DS80PCI810NJYT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
NJY  
NJY  
54  
54  
2000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
80PCI810A0  
80PCI810A0  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
NJY0054A  
WQFN  
SCALE 2.000  
WQFN  
5.6  
5.4  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
0.3  
0.2  
10.1  
9.9  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
2X 4  
3.51±0.1  
(0.1)  
SEE TERMINAL  
DETAIL  
19  
27  
28  
18  
50X 0.5  
7.5±0.1  
2X  
8.5  
1
45  
54  
46  
0.3  
54X  
0.2  
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
54X  
0.1  
C A  
C
B
0.05  
4214993/A 07/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NJY0054A  
WQFN  
WQFN  
(3.51)  
SYMM  
54X (0.6)  
54X (0.25)  
SEE DETAILS  
54  
46  
1
45  
50X (0.5)  
(7.5)  
(9.8)  
SYMM  
(1.17)  
TYP  
2X  
(1.16)  
28  
18  
(
0.2) TYP  
VIA  
19  
27  
(1) TYP  
(5.3)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214993/A 07/2013  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NJY0054A  
WQFN  
WQFN  
SYMM  
METAL  
TYP  
(0.855) TYP  
46  
54  
54X (0.6)  
54X (0.25)  
1
45  
50X (0.5)  
(1.17)  
TYP  
SYMM  
(9.8)  
12X (0.97)  
18  
28  
19  
27  
12X (1.51)  
(5.3)  
SOLDERPASTE EXAMPLE  
BASED ON 0.125mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
4214993/A 07/2013  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY