DS90CF386MTD/NOPB [TI]

+3.3V LVDS 接收器 24 位平板显示器 (FPD) 链路 - 85MHz | DGG | 56 | -10 to 70;
DS90CF386MTD/NOPB
型号: DS90CF386MTD/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

+3.3V LVDS 接收器 24 位平板显示器 (FPD) 链路 - 85MHz | DGG | 56 | -10 to 70

光电二极管 接口集成电路 显示器
文件: 总43页 (文件大小:1983K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DS90CF366, DS90CF386  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
DS90CF3x6 3.3-V LVDS Receiver 24-Bit Or 18-Bit Flat Panel Display (FPD) Link, 85 MHz  
1 Features  
3 Description  
The DS90CF386 receiver converts four LVDS (Low  
Voltage Differential Signaling) data streams back into  
parallel 28 bits of LVCMOS data. Also available is the  
DS90CF366 receiver that converts three LVDS data  
streams back into parallel 21 bits of LVCMOS data.  
The outputs of both receivers strobe on the falling  
edge. A rising edge or falling edge strobe transmitter  
will interoperate with a falling edge strobe receiver  
without any translation logic.  
1
20-MHz to 85-MHz Shift Clock Support  
Rx Power Consumption <142 mW (Typical) at  
85-MHz Grayscale  
Rx Power-Down Mode <1.44 mW (Maximum)  
ESD Rating >7 kV (HBM), >700 V (EIAJ)  
Supports VGA, SVGA, XGA, and Single Pixel  
SXGA  
PLL Requires No External Components  
The receiver LVDS clock operates at rates from  
20 MHz to 85 MHz. The device phase-locks to the  
input LVDS clock, samples the serial bit streams at  
the LVDS data lines, and converts them into parallel  
output data. At an incoming clock rate of 85 MHz,  
each LVDS input line is running at a bit rate of  
595 Mbps, resulting in a maximum throughput of  
2.38 Gbps for the DS90CF386 and 1.785 Gbps for  
the DS90CF366.  
Compatible With TIA/EIA-644 LVDS Standard  
Low Profile 56-Pin or 48-Pin TSSOP Package  
DS90CF386 Also Available in a 64-Pin, 0.8-mm,  
Fine Pitch Ball Grid Array (NFBGA) Package  
2 Applications  
Video Displays  
Printers and Imaging  
Digital Video Transport  
Machine Vision  
The use of these serial link devices is ideal for  
solving EMI and cable size problems associated with  
transmitting data over wide, high-speed parallel  
LVCMOS interfaces. Both devices are offered in  
TSSOP packages. The DS90CF386 is also offered in  
a 64-pin, 0.8-mm, fine pitch ball grid array (NFBGA)  
package which provides a 44% reduction in PCB  
footprint compared to the 56-pin TSSOP package.  
Open LDI-to-RGB Bridge  
Device Information(1)  
PART NUMBER  
PACKAGE  
TSSOP (48)  
TSSOP (56)  
NFBGA (64)  
BODY SIZE (NOM)  
12.50 mm × 6.10 mm  
14.00 mm × 6.10 mm  
8.00 mm × 8.00 mm  
DS90CF366  
DS90CF386  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Typical Application Block Diagram (DS90CF366)  
ꢀë5{ /able or ꢂ/. Çrace  
5{90/C366 21-.it wx  
18-.it wD. 5isplay Ünit  
wxhÜÇ[20:0]  
ꢀë5{ 5ata  
100 Q  
Graphics Processor Unit  
(GPU)  
100 Q  
100 Q  
21-Bit Tx Data  
(3 LVDS Data, 1 LVDS Clock)  
ꢀë5{ /lock  
wx/ꢀY  
PLL  
100 Q  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
DS90CF366, DS90CF386  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
www.ti.com  
Table of Contents  
7.3 Feature Description................................................. 18  
7.4 Device Functional Modes........................................ 19  
Application and Implementation ........................ 20  
8.1 Application Information............................................ 20  
8.2 Typical Applications ................................................ 20  
Power Supply Recommendations...................... 26  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 7  
6.1 Absolute Maximum Ratings ...................................... 7  
6.2 ESD Ratings.............................................................. 7  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 8  
6.6 Switching Characteristics.......................................... 9  
6.7 Timing Diagrams....................................................... 9  
6.8 Typical Characteristics............................................ 16  
Detailed Description ............................................ 17  
7.1 Overview ................................................................ 17  
7.2 Functional Block Diagrams ..................................... 17  
8
9
10 Layout................................................................... 26  
10.1 Layout Guidelines ................................................. 26  
10.2 Layout Examples................................................... 26  
11 Device and Documentation Support ................. 28  
11.1 Documentation Support ........................................ 28  
11.2 Community Resources.......................................... 28  
11.3 Trademarks........................................................... 28  
11.4 Electrostatic Discharge Caution............................ 28  
11.5 Glossary................................................................ 28  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 28  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision I (April 2013) to Revision J  
Page  
Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation  
section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and  
Mechanical, Packaging, and Orderable Information section .................................................................................................. 1  
Changed Figure 8 and Figure 9 to clarify that TxIN on Tx is the same as RxOUT on Rx .................................................. 12  
Changed title of DS90CF366 mapping to clarify the make-up of the LVDS lines................................................................ 13  
Deleted references to power sequencing requirements for FPD-Link I transmitters .......................................................... 19  
Changes from Revision H (April 2013) to Revision I  
Page  
Changed layout of National Data Sheet to TI format ............................................................................................................. 1  
2
Submit Documentation Feedback  
Copyright © 1999–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CF366 DS90CF386  
 
DS90CF366, DS90CF386  
www.ti.com  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
5 Pin Configuration and Functions  
DGG Package  
48-Pin TSSOP  
Top View  
RxOUT17  
RxOUT18  
GND  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VCC  
2
RxOUT16  
RxOUT15  
RxOUT14  
GND  
3
RxOUT19  
RxOUT20  
NC  
4
5
6
RxOUT13  
VCC  
LVDS_GND  
RxIN0-  
7
8
RxOUT12  
RxOUT11  
RxOUT10  
GND  
RxIN0+  
9
RxIN1-  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
RxIN1+  
LVDS_VCC  
LVDS_GND  
RxIN2-  
RxOUT9  
VCC  
RxOUT8  
RxOUT7  
RxOUT6  
GND  
RxIN2+  
RxCLKIN-  
RxCLKIN+  
LVDS_GND  
PLL_GND  
PLL_VCC  
PLL_GND  
PWR_DWN  
RxCLKOUT  
RxOUT0  
RxOUT5  
RxOUT4  
RxOUT3  
VCC  
RxOUT2  
RxOUT1  
GND  
Not to scale  
Copyright © 1999–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: DS90CF366 DS90CF386  
DS90CF366, DS90CF386  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
www.ti.com  
DGG Package  
56-Pin TSSOP  
Top View  
RxOUT22  
RxOUT23  
RxOUT24  
GND  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
VCC  
2
RxOUT21  
RxOUT20  
RxOUT19  
GND  
3
4
RxOUT25  
RxOUT26  
RxOUT27  
LVDS_GND  
RxIN0-  
5
6
RxOUT18  
RxOUT17  
RxOUT16  
VCC  
7
8
9
RxIN0+  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RxOUT15  
RxOUT14  
RxOUT13  
GND  
RxIN1-  
RxIN1+  
LVDS_VCC  
LVDS_GND  
RxIN2-  
RxOUT12  
RxOUT11  
RxOUT10  
VCC  
RxIN2+  
RxCLKIN-  
RxCLKIN+  
RxIN3-  
RxOUT9  
RxOUT8  
RxOUT7  
GND  
RxIN3+  
LVDS_GND  
PLL_GND  
PLL_VCC  
PLL_GND  
PWR_DWN  
RxCLKOUT  
RxOUT0  
GND  
RxOUT6  
RxOUT5  
RxOUT4  
RxOUT3  
VCC  
RxOUT2  
RxOUT1  
Not to scale  
4
Submit Documentation Feedback  
Copyright © 1999–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CF366 DS90CF386  
DS90CF366, DS90CF386  
www.ti.com  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
NZC Package  
64-Pin NFBGA  
Top View  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
RxOUT17  
VCC  
RxOUT15  
GND  
RxOUT12  
VCC  
RxOUT8  
RxOUT7  
RxOUT6  
GND  
NC  
NC  
RxOUT16  
RxOUT18  
RxOUT19  
GND  
RxOUT11  
RxOUT14  
RxOUT13  
GND  
RxOUT4  
VCC  
RxOUT5  
RxOUT3  
RxOUT1  
GND  
RxOUT21  
VCC  
RxOUT9  
RxOUT10  
LVDS_GND  
RxIN2+  
NC  
RxOUT20  
RxOUT24  
RxOUT26  
NC  
RxOUT2  
RxCLKOUT  
LVDS_  
VCC  
RxOUT22  
RxOUT23  
RxOUT25  
RxOUT27  
PWR_DWN  
PLL_GND  
RxIN3-  
RxOUT0  
PLL_  
VCC  
NC  
RxIN1-  
RxIN1+  
NC  
G
H
LVDS_GND  
RxIN0+  
RxIN2-  
LVDS_GND  
RxCLKIN+  
PLL_GND  
LVDS_  
VCC  
RxIN0-  
LVDS_GND  
RxCLKIN-  
RxIN3+  
Not to scale  
Pin Functions  
PIN  
DS90CF366  
TSSOP  
DS90CF386  
TYPE(1)  
DESCRIPTION  
NAME  
TSSOP  
NFBGA  
3, 25, 32,  
38, 44  
4, 28, 36,  
44, 52  
A4, B1, B6,  
D8, E3  
GND  
G
Ground pins for LVCMOS outputs.  
E5, G3, G7,  
H5  
LVDS GND  
LVDS VCC  
NC  
7, 13, 18  
8, 14, 21  
G
P
Ground pins for LVDS inputs.  
Power supply pin for LVDS inputs.  
Pins not connected.  
12  
6
13  
E4, H4  
B2, C2, C7,  
F3, F8, G2  
PLL GND  
PLL VCC  
19, 21  
20  
22, 24  
23  
F6, G8  
F7  
G
P
Ground pin for PLL.  
Power supply for PLL.  
(1) G = Ground, I = Input, O = Output, and P = Power  
Copyright © 1999–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: DS90CF366 DS90CF386  
DS90CF366, DS90CF386  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
www.ti.com  
Pin Functions (continued)  
PIN  
DS90CF366  
TSSOP  
DS90CF386  
TYPE(1)  
NFBGA  
DESCRIPTION  
NAME  
TSSOP  
LVCMOS level input. When asserted (low input) the receiver  
outputs are low.  
PWR DWN  
22  
25  
E6  
I
RxCLKIN+  
RxCLKIN-  
17  
16  
18  
17  
H7  
H6  
I
I
Positive LVDS differential clock input.  
Negative LVDS differential clock input.  
LVCMOS level clock output. The falling edge acts as data  
strobe.  
RxCLKOUT  
23  
26  
E7  
O
RxIN0+  
9
10  
9
H3  
H2  
G4  
F4  
F5  
G5  
H8  
G6  
E8  
C8  
D7  
B8  
C6  
B7  
A8  
A7  
A6  
C5  
D5  
B4  
A5  
D4  
C4  
A3  
B3  
A1  
C3  
D3  
D2  
C1  
E1  
F1  
E2  
G1  
F2  
H1  
I
Positive LVDS differential data inputs.  
Negative LVDS differential data inputs.  
Positive LVDS differential data inputs.  
Negative LVDS differential data inputs.  
Positive LVDS differential data inputs.  
Negative LVDS differential data inputs.  
Positive LVDS differential data inputs.  
Negative LVDS differential data inputs.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
LVCMOS level data output.  
Power supply pins for LVCMOS outputs.  
RxIN0-  
8
I
RxIN1+  
11  
12  
11  
16  
15  
20  
19  
27  
29  
30  
32  
33  
34  
35  
37  
38  
39  
41  
42  
43  
45  
46  
47  
49  
50  
51  
53  
54  
55  
1
I
RxIN1-  
10  
I
RxIN2+  
15  
I
RxIN2-  
14  
I
RxIN3+  
I
RxIN3-  
I
RxOUT0  
RxOUT1  
RxOUT2  
RxOUT3  
RxOUT4  
RxOUT5  
RxOUT6  
RxOUT7  
RxOUT8  
RxOUT9  
RxOUT10  
RxOUT11  
RxOUT12  
RxOUT13  
RxOUT14  
RxOUT15  
RxOUT16  
RxOUT17  
RxOUT18  
RxOUT19  
RxOUT20  
RxOUT21  
RxOUT22  
RxOUT23  
RxOUT24  
RxOUT25  
RxOUT26  
RxOUT27  
VCC  
24  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
P
26  
27  
29  
30  
31  
33  
34  
35  
37  
39  
40  
41  
43  
45  
46  
47  
1
2
4
5
2
3
5
6
7
28, 36, 42, 48  
31, 40, 48, 56 A2, B5, D1, D6  
6
Submit Documentation Feedback  
Copyright © 1999–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CF366 DS90CF386  
DS90CF366, DS90CF386  
www.ti.com  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
4
UNIT  
Supply voltage, VCC  
V
V
V
CMOS/LVCMOS output voltage  
LVDS receiver input voltage  
DS90CF366, TSSOP package  
VCC + 0.3  
VCC + 0.3  
1.61  
Power dissipation capacity at 25°C  
DS90CF386  
TSSOP package  
NFBGA package  
1.89  
W
2
TSSOP soldering (4 s)  
Lead temperature  
260  
°C  
NFBGA soldering, reflow (20 s)  
220  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±7000  
±700  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
3.6  
UNIT  
VCC  
Supply voltage  
3.3  
V
V
Receiver input  
0
2.4  
VNOISE  
TA  
Supply noise voltage  
Operating free-air temperature  
100  
70  
mVPP  
°C  
–10  
25  
6.4 Thermal Information  
DS90CF366  
DGG (TSSOP)  
48 PINS  
67.8  
DS90CF386  
THERMAL METRIC(1)  
DGG (TSSOP)  
NZC (NFBGA)  
UNIT  
56 PINS  
64.6  
20.6  
33.3  
1
64 PINS  
65.7  
23.8  
44.9  
1
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
22.1  
34.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.1  
ψJB  
34.5  
33  
44.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 1999–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: DS90CF366 DS90CF386  
DS90CF366, DS90CF386  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
www.ti.com  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX  
UNIT  
LVCMOS DC SPECIFICATIONS  
VIH  
High level input voltage  
Low level input voltage  
High level output voltage  
Low level output voltage  
Input clamp voltage  
2
VCC  
0.8  
V
V
VIL  
GND  
VOH  
VOL  
VCL  
IOH = –0.4 mA  
IOL = 2 mA  
2.7  
3.3  
0.06  
–0.79  
1.8  
V
0.3  
–1.5  
15  
V
ICL = –18 mA  
VIN = 0.4 V, 2.5 V or VCC  
VIN = GND  
V
uA  
uA  
mA  
IIN  
Input current  
–10  
0
IOS  
Output short circuit current  
VOUT = 0 V  
–60  
–120  
100  
LVDS RECEIVER DC SPECIFICATIONS  
VTH  
VTL  
Differential input high threshold V CM = 1.2 V  
mV  
mV  
μA  
Differential input low threshold  
–100  
V IN = 2.4 V, VCC = 3.6 V  
V IN = 0 V, VCC = 3.6 V  
±10  
±10  
I IN  
Input current  
μA  
RECEIVER SUPPLY CURRENT  
f = 32.5 MHz  
f = 37.5 MHz  
f = 65 MHz  
f = 85 MHz  
f = 32.5 MHz  
f = 37.5 MHz  
f = 65 MHz  
f = 85 MHz  
f = 32.5 MHz  
f = 37.5 MHz  
f = 65 MHz  
f = 85 MHz  
49  
53  
81  
96  
49  
53  
78  
90  
28  
30  
43  
43  
70  
75  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
CL = 8 pF, worst case pattern,  
DS90CF386, see Figure 1 and  
Figure 4  
114  
135  
60  
Receiver supply current  
worst case  
ICCRW  
CL = 8 pF, worst case pattern,  
DS90CF366, see Figure 1 and  
Figure 4  
65  
100  
115  
45  
CL = 8 pF, 16 grayscale pattern,  
see Figure 2, Figure 3, and  
Figure 4  
47  
Receiver supply current,  
16 grayscale  
ICCRG  
60  
70  
Receiver supply current  
ICCRZ  
Power Down = low receiver outputs stay low during  
power down mode  
140  
400  
μA  
power down(2)  
(1) Typical values are given for VCC = 3.3 V and TA = 25°C.  
(2) Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground  
unless otherwise specified (except VOD and ΔV OD).  
8
Submit Documentation Feedback  
Copyright © 1999–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CF366 DS90CF386  
DS90CF366, DS90CF386  
www.ti.com  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
2
MAX UNIT  
CLHT  
CHLT  
CMOS or LVCMOS low-to-high transition time  
CMOS or LVCMOS high-to-low transition time  
See Figure 4  
See Figure 4  
3.5  
3.5  
ns  
ns  
1.8  
f = 85 MHz, see Figure 11 and  
Figure 12  
RSPos0  
Receiver input strobe position for bit 0  
0.49  
0.84  
1.19  
ns  
RSPos1  
RSPos2  
RSPos3  
RSPos4  
RSPos5  
RSPos6  
RSKM  
Receiver input strobe position for bit 1  
Receiver input strobe position for bit 2  
Receiver input strobe position for bit 3  
Receiver input strobe position for bit 4  
Receiver input strobe position for bit 5  
Receiver input strobe position for bit 6  
RxIN skew margin(2)  
f = 85 MHz  
2.17  
3.85  
5.53  
7.21  
8.89  
10.57  
290  
11.76  
4.5  
2.52  
4.2  
2.87  
4.55  
6.23  
7.91  
9.59  
11.27  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
μs  
f = 85 MHz  
f = 85 MHz  
5.88  
7.56  
9.24  
10.92  
f = 85 MHz  
f = 85 MHz  
f = 85 MHz  
f = 85 MHz, see Figure 13  
See Figure 5  
RCOP  
RxCLK OUT period  
T
5
5
50  
7
RCOH  
RCOL  
RxCLK OUT high time  
f = 85 MHz, see Figure 5  
f = 85 MHz, see Figure 5  
f = 85 MHz, see Figure 5  
f = 85 MHz, see Figure 5  
25°C, VCC = 3.3 V, see Figure 6  
See Figure 7  
RxCLK OUT low time  
4
6.5  
RSRC  
RxOUT setup to RxCLK OUT  
RxOUT hold to RxCLK OUT  
RxCLK IN to RxCLK OUT delay  
Receiver phase lock loop set  
Receiver power down delay  
2
RHRC  
3.5  
RCCD  
5.5  
7
9.5  
10  
1
RPLLS  
RPDD  
See Figure 10  
(1) Typical values are given for VCC = 3.3 V and TA = 25°C.  
(2) Receiver skew margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account the transmitter  
pulse positions (min and max) and the receiver input setup and hold time (internal data sampling window - RSPos). This margin allows  
for LVDS interconnect skew, inter-symbol interference (both dependent on type/length of cable), and clock jitter (less than 150 ps).  
6.7 Timing Diagrams  
Figure 1. Test Pattern, Worst Case  
Copyright © 1999–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: DS90CF366 DS90CF386  
 
DS90CF366, DS90CF386  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
www.ti.com  
Timing Diagrams (continued)  
(1) The worst case test pattern produces a maximum toggling of digital circuits, LVDS I/O, and CMOS or LVCMOS I/O.  
(2) The 16 grayscale test pattern tests device power consumption for a typical LCD display pattern. The test pattern  
approximates signal switching needed to produce groups of 16 vertical stripes across the display.  
(3) Figure 1 and Figure 3 show a falling edge data strobe (TxCLK IN/RxCLK OUT).  
(4) Recommended pin to signal mapping. Customer may choose to define differently.  
Figure 2. Test Pattern, 16 Grayscale (DS90CF386)  
10  
Submit Documentation Feedback  
Copyright © 1999–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CF366 DS90CF386  
DS90CF366, DS90CF386  
www.ti.com  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
Timing Diagrams (continued)  
Device Pin Name  
Signal  
Signal Pattern  
Signal Frequency  
TxCLK IN / RxCLK OUT  
TxIN0 / RxOUT0  
TxIN1 / RxOUT1  
TxIN2 / RxOUT2  
TxIN3 / RxOUT3  
TxIN4 / RxOUT4  
TxIN5 / RxOUT5  
TxIN6 / RxOUT6  
TxIN7 / RxOUT7  
TxIN8 / RxOUT8  
TxIN9 / RxOUT9  
TxIN10 / RxOUT10  
TxIN11 / RxOUT11  
TxIN12 / RxOUT12  
TxIN13 / RxOUT13  
TxIN14 / RxOUT14  
TxIN15 / RxOUT15  
TxIN16 / RxOUT16  
TxIN17 / RxOUT17  
TxIN18 / RxOUT18  
TxIN19 / RxOUT19  
TxIN20 / RxOUT20  
Dot Clk  
R0  
f
f / 16  
R1  
f / 8  
R2  
f / 4  
R3  
f / 2  
R4  
Steady State, Low  
Steady State, Low  
f / 16  
R5  
G0  
G1  
f / 8  
G2  
f / 4  
G3  
f / 2  
G4  
Steady State, Low  
Steady State, Low  
f / 16  
G5  
B0  
B1  
f / 8  
B2  
f / 4  
B3  
f / 2  
B4  
Steady State, Low  
Steady State, Low  
Steady State, High  
Steady State, High  
Steady State, High  
B5  
HSYNC  
VSYNC  
ENA  
(1) The worst case test pattern produces a maximum toggling of digital circuits, LVDS I/O, and CMOS or LVCMOS I/O.  
(2) The 16 grayscale test pattern tests device power consumption for a typical LCD display pattern. The test pattern  
approximates signal switching needed to produce groups of 16 vertical stripes across the display.  
(3) Figure 1 and Figure 3 show a falling edge data strobe (TxCLK IN/RxCLK OUT).  
(4) Recommended pin to signal mapping. Customer may choose to define differently.  
Figure 3. Test Pattern, 16 Grayscale (DS90CF366)  
Figure 4. DS90CF3x6 (Receiver) CMOS or LVCMOS Output Load and Transition Times  
Copyright © 1999–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: DS90CF366 DS90CF386  
 
DS90CF366, DS90CF386  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
www.ti.com  
Timing Diagrams (continued)  
Figure 5. DS90CF3x6 (Receiver) Setup or Hold and High or Low Times  
Figure 6. DS90CF3x6 (Receiver) Clock In to Clock Out Delay  
Figure 7. DS90CF3x6 (Receiver) Phase Lock Loop Set Time  
wx/[Y Lb  
(ꢁifferential)  
wxLb3  
({ingle-ꢀnded)  
wxhÜÇ5-1  
wxhÜÇ20-1  
wxhÜÇ9-1  
wxhÜÇ1-1  
wxhÜÇ23  
wxhÜÇ26  
wxhÜÇ18  
wxhÜÇ7  
wxhÜÇ16  
wxhÜÇ24  
wxhÜÇ14  
wxhÜÇ4  
wxhÜÇ5  
wxhÜÇ20  
wxhÜÇ9  
wxhÜÇ1  
wxhÜÇ27-1  
wxhÜÇ19-1  
wxhÜÇ8-1  
wxhÜÇ0-1  
wxhÜÇ17  
wxhÜÇ25  
wxhÜÇ15  
wxhÜÇ6  
wxhÜÇ11  
wxhÜÇ22  
wxhÜÇ13  
wxhÜÇ3  
wxhÜÇ10  
wxhÜÇ21  
wxhÜÇ12  
wxhÜÇ2  
wxhÜÇ27  
wxhÜÇ19  
wxhÜÇ8  
wxhÜÇ0  
wxLb2  
({ingle-ꢀnded)  
wxLb1  
({ingle-ꢀnded)  
wxLb0  
({ingle-ꢀnded)  
Figure 8. DS90CF386 Mapping of 28 LVCMOS Parallel Data to 4D + C LVDS Serialzied Data  
12  
Submit Documentation Feedback  
Copyright © 1999–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CF366 DS90CF386  
 
DS90CF366, DS90CF386  
www.ti.com  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
Timing Diagrams (continued)  
wx/[Y Lb  
(ꢁifferential)  
wxLb2  
({ingle-ꢀnded)  
wxhÜÇ20  
wxhÜÇ13  
wxhÜÇ6  
wxhÜÇ18  
wxhÜÇ11  
wxhÜÇ4  
wxhÜÇ15  
wxhÜÇ8  
wxhÜÇ1  
wxhÜÇ15-1  
wxhÜÇ8-1  
wxhÜÇ1-1  
wxhÜÇ14-1  
wxhÜÇ19  
wxhÜÇ12  
wxhÜÇ5  
wxhÜÇ17  
wxhÜÇ10  
wxhÜÇ3  
wxhÜÇ16  
wxhÜÇ9  
wxhÜÇ2  
wxhÜÇ14  
wxhÜÇ7  
wxhÜÇ0  
wxLb1  
({ingle-ꢀnded)  
wxhÜÇ7-1  
wxhÜÇ0-1  
wxLb0  
({ingle-ꢀnded)  
Figure 9. DS90CF366 Mapping of 21 LVCMOS Parallel Data to 3D + C LVDS Serialized Data  
Figure 10. DS90CF3x6 (Receiver) Power Down Delay  
Copyright © 1999–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: DS90CF366 DS90CF386  
 
DS90CF366, DS90CF386  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
www.ti.com  
Timing Diagrams (continued)  
Figure 11. DS90CF386 (Receiver) LVDS Input Strobe Position  
14  
Submit Documentation Feedback  
Copyright © 1999–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CF366 DS90CF386  
DS90CF366, DS90CF386  
www.ti.com  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
Timing Diagrams (continued)  
Figure 12. DS90CF366 (Receiver) LVDS Input Strobe Position  
C: Setup and Hold Time (Internal data sampling window) defined by Rspos (receiver input strobe position) min and  
max  
Tppos: Transmitter output pulse position (min and max)  
Cable skew: Typically 10 ps–40 ps per foot, media dependent  
RSKM = Cable skew (type, length) + source clock jitter (cycle-to-cycle)(1) + ISI (inter-symbol interference)(2)  
(1) Cycle-to-cycle jitter depends on the Tx source. Clock jitter should be maintained to less than 250 ps at 85 MHz.  
(2) ISI is dependent on interconnect length; may be zero.  
Figure 13. Receiver LVDS Input Skew Margin  
Copyright © 1999–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: DS90CF366 DS90CF386  
DS90CF366, DS90CF386  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
www.ti.com  
6.8 Typical Characteristics  
Çime (4.0 ns/5Lë)  
Çime (20.0 ns/5Lë)  
Figure 15. Typical RxOUT Strobe Position at 85 MHz  
Figure 14. Parallel PRBS-7 on LVCMOS Outputs at 85 MHz  
Çime (4.0 ns/5Lë)  
Çime (4.0 ns/5Lë)  
Figure 16. Typical RxOUT Setup Time at 85 MHz  
(RSRC = 4.5 ns)  
Figure 17. Typical RxOUT Hold Time at 85 MHz  
(RHRC = 5.9 ns)  
16  
Submit Documentation Feedback  
Copyright © 1999–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CF366 DS90CF386  
DS90CF366, DS90CF386  
www.ti.com  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
7 Detailed Description  
7.1 Overview  
The DS90CF386 is a receiver that converts four LVDS (Low Voltage Differential Signaling) data streams into  
parallel 28 bits of LVCMOS data (24 bits of RGB and 4 bits of HSYNC, VSYNC, DE, and CNTL). The  
DS90CF366 is a receiver that converts three LVDS data streams into parallel 21 bits of LVCMOS data (18 bits of  
RGB and 3 bits of HSYNC, VSYNC, and DE). An internal PLL locks to the incoming LVDS clock ranging from 20  
to 85 MHz. The locked PLL ensures a stable clock to sample the output LVCMOS data on the Receiver Clock  
Out falling edge. These devices feature a PWR DWN pin to put the device into low power mode when there is no  
active input data.  
7.2 Functional Block Diagrams  
100 Ω  
100 Ω  
4 x LVDS Data  
(140 to 595 Mbps on  
Each LVDS Channel)  
28 x LVCMOS  
Outputs  
100 Ω  
100 Ω  
LVDS Clock  
(20 to 85 MHz)  
100 Ω  
PLL  
Receiver Clock Out  
PWR DWN  
Copyright © 2016, Texas Instruments Incorporated  
Figure 18. DS90CF386 Block Diagram  
100 Q  
100 Q  
100 Q  
3 x [ë5{ 5ꢀtꢀ  
(140 to ꢁ9ꢁ abps on ꢂꢀcꢃ  
[ë5{ /ꢃꢀnnel)  
21 x [ë/ah{  
hutputs  
[ë5{ /lock  
(20 to 8ꢁ aIz)  
100 Q  
PLL  
weceiver /lock hut  
ꢄíw 5íꢅ  
Copyright © 2016, Texas Instruments Incorporated  
Figure 19. DS90CF366 Block Diagram  
Copyright © 1999–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: DS90CF366 DS90CF386  
DS90CF366, DS90CF386  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
www.ti.com  
7.3 Feature Description  
The DS90CF386 and DS90CF366 consist of several key blocks:  
LVDS Receivers  
Phase Locked Loop (PLL)  
Serial LVDS-to-Parallel LVCMOS Converter  
LVCMOS Drivers  
7.3.1 LVDS Receivers  
There are five differential LVDS inputs to the DS90CF386 and four differential LVDS inputs to the DS90CF366.  
For the DS90CF386, four of the LVDS inputs contain serialized data originating from a 28-bit source transmitter.  
For the DS90CF366, three of the LVDS inputs contain serialized data originating from a 21-bit source transmitter.  
The remaining LVDS input contains the LVDS clock associated with the data pairs.  
7.3.1.1 LVDS Input Termination  
The DS90CF386 and DS90CF366 require a single 100-Ω terminating resistor across the true and complement  
lines on each differential pair of the receiver input. To prevent reflections due to stubs, this resistor should be  
placed as close to the device input pins as possible. Figure 20 shows an example.  
Figure 20. LVDS Serialized Link Termination  
7.3.2 Phase Locked Loop (PLL)  
The FPD Link I devices use an internal PLL to recover the clock transmitted across the LVDS interface. The  
recovered clock is then used as a reference to determine the sampling position of the seven serial bits received  
per clock cycle. The width of each bit in the serialized LVDS data stream is one-seventh the clock period.  
Differential skew (Δt within one differential pair), interconnect skew (Δt of one differential pair to another), and  
clock jitter will all reduce the available window for sampling the LVDS serial data streams. Individual bypassing of  
each VCC to ground will minimize the noise passed on to the PLL, thus creating a low jitter LVDS clock to  
improve the overall jitter budget.  
7.3.3 Serial LVDS-to-Parallel LVCMOS Converter  
After the PLL locks to the incoming LVDS clock, the receiver deserializes each LVDS differential data pair into  
seven parallel LVCMOS data outputs per clock cycle. For the DS90CF386, the LVDS data inputs map to  
LVCMOS outputs according to Figure 8. For the DS90CF366, the LVDS data inputs map to LVCMOS outputs  
according to Figure 9.  
7.3.4 LVCMOS Drivers  
The LVCMOS outputs from the DS90CF386 and DS90CF366 are the deserialized parallel single-ended data  
from the serialized LVDS differential data pairs. Each LVCMOS output is clocked by the PLL and strobes on the  
RxCLKOUT falling edge. All unused DS90CF386 and DS90CF366 RxOUT outputs can be left floating.  
18  
Submit Documentation Feedback  
Copyright © 1999–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CF366 DS90CF386  
 
DS90CF366, DS90CF386  
www.ti.com  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
7.4 Device Functional Modes  
7.4.1 Power Sequencing and Power-Down Mode  
The DS90CF386 and DS90CF366 may be placed into a power down mode at any time by asserting the PWR  
DWN pin (active low). The DS90CF386 and DS90CF366 are also designed to protect themselves from  
accidental loss of power to either the transmitter or receiver. If power to the transmit board is lost, the receiver  
clocks (input and output) stop. The data outputs (RxOUT) retain the states they were in when the clocks stopped.  
When the receiver board loses power, the receiver inputs are controlled by a failsafe bias circuitry. The LVDS  
inputs are High-Z during initial power on and power off conditions. Current is limited to 5 mA per input, thus  
avoiding the potential for latch-up when powering the device.  
Copyright © 1999–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: DS90CF366 DS90CF386  
DS90CF366, DS90CF386  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DS90F386 and DS90CF366 are designed for a wide variety of data transmission applications. The use of  
serialized LVDS data lines in these applications allows for efficient signal transmission over a narrow bus width,  
thereby reducing cost, power, and space.  
8.2 Typical Applications  
Figure 21 and Figure 22 show typical applications of the DS90CF386 and DS90CF366 for displays when used as  
an OpenLDI-to-RGB bridge.  
LVDS Cable or PCB Trace  
DS90CF386 28-Bit Rx  
24-Bit RGB Display Unit  
RxOUT  
[27:0]  
LVDS Data  
100 Ω  
100 Ω  
100 Ω  
Graphics Processor Unit (GPU)  
28-Bit Tx Data  
(4 LVDS Data, 1 LVDS Clock)  
100 Ω  
LVDS  
Clock  
RxCLK  
100 Ω  
PLL  
100 Ω  
Copyright © 2016, Texas Instruments Incorporated  
Figure 21. Typical DS90CF386 Application Block Diagram  
ꢀë5{ /able or ꢂ/. Çrace  
5{90/C366 21-.it wx  
18-.it wD. 5isplay Ünit  
wxhÜÇ[20:0]  
ꢀë5{ 5ata  
100 Q  
Graphics Processor Unit  
(GPU)  
100 Q  
100 Q  
21-Bit Tx Data  
(3 LVDS Data, 1 LVDS Clock)  
ꢀë5{ /lock  
wx/ꢀY  
PLL  
100 Q  
Copyright © 2016, Texas Instruments Incorporated  
Figure 22. Typical DS90CF366 Application Block Diagram  
20  
Submit Documentation Feedback  
Copyright © 1999–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CF366 DS90CF386  
 
 
DS90CF366, DS90CF386  
www.ti.com  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
Typical Applications (continued)  
8.2.1 Design Requirements  
For this design example, follow the requirements in Table 1.  
Table 1. Design Parameters  
PARAMETER  
DESIGN REQUIREMENTS  
LVDS clock must be within 20 MHz to 85 MHz.  
Operating frequency  
DS90CF386: No higher than 24 bpp. The maximum supported resolution is 8-bit RGB.  
DS90CF366: No higher than 18 bpp. The maximum supported resolution is 6-bit RGB.  
Bit resolution  
Determine the appropriate mapping required by the panel display following the DS90CF386 or  
DS90CF366 outputs.  
Bit data mapping  
RSKM (Receiver skew margin)  
Input termination for RxIN±  
RxIN± board trace impedance  
LVCMOS outputs  
Ensure that there is acceptable margin between Tx pulse position and Rx strobe position.  
Inputs require a 100 Ω ± 10% resistor across each LVDS differential pair. Place as close as  
possible to IC input pins.  
Design differential trace impedance with 100 Ω ±5%  
If unused, leave pins floating. Series resistance on each LVCMOS output optional to reduce  
reflections from long board traces. If used, 33-Ω series resistance is typical.  
Use a 0.1-µF capacitor to minimize power supply noise. Place as close as possible to VCC  
pins.  
DC power supply coupling capacitors  
8.2.2 Detailed Design Procedure  
To design with the DS90CF386 or DS90CF366, determine the following:  
Cable Interface  
Bit Resolution and Operating Frequency  
Bit Mapping from Receiver to Endpoint Panel Display  
RSKM Interoperability with Transmitter Pulse Position Margin  
8.2.2.1 Cables  
A cable interface between the transmitter and receiver needs to support the differential LVDS pairs. The  
DS90CF366 requires four pairs of signal wires and the DS90CF386 requires five pairs of signal wires. The ideal  
cable interface has a constant 100-Ω differential impedance throughout the path. It is also recommended that  
cable skew remain below 120 ps (assuming 85 MHz clock rate) to maintain a sufficient data sampling window at  
the receiver.  
Depending upon the application and data rate, the interconnecting media between Tx and Rx may vary. For  
example, for lower data rate (clock rate) and shorter cable lengths (< 2m), the media electrical performance is  
less critical. For higher speed or long distance applications, the media's performance becomes more critical.  
Certain cable constructions provide tighter skew (matched electrical length between the conductors and pairs).  
For example, twin-coax cables have been demonstrated at distances as long as five meters and with the  
maximum data transfer of 2.38 Gbps (DS90CF366) and 1.785 Gbps (DS90CF386).  
8.2.2.2 Bit Resolution and Operating Frequency Compatibility  
The bit resolution of the endpoint panel display reveals whether there are enough bits available in the  
DS90CF386 or DS90CF366 to output the required data per pixel. The DS90CF386 has 28 parallel LVCMOS  
outputs and can therefore provide a bit resolution up to 24 bpp (bits per pixel). In each clock cycle, the remaining  
bits are the three control signals (HSync, VSync, DE) and one spare bit. The DS90CF366 has 21 parallel  
LVCMOS outputs and can therefore provide a bit resolution up to 18 bpp (bits per pixel). In each clock cycle, the  
remaining bits are the three control signals (HSync, VSync, DE).  
The number of pixels per frame and the refresh rate of the endpoint panel display indicate the required operating  
frequency of the deserializer clock. To determine the required clock frequency, refer to Equation 1.  
f_Clk = [H_Active + H_Blank] × [V_Active + V_Blank] × f_Vertical  
where  
H_Active = Active Display Horizontal Lines  
Copyright © 1999–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: DS90CF366 DS90CF386  
 
 
DS90CF366, DS90CF386  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
www.ti.com  
H_Blank = Blanking Period Horizontal Lines  
V_Active = Active Display Vertical Lines  
V_Blank = Blanking Period Vertical Lines  
f_Vertical = Refresh Rate (in Hz)  
f_Clk = Operating Frequency of LVDS clock  
(1)  
In each frame, there is a blanking period associated with horizontal rows and vertical columns that are not  
actively displayed on the panel. These blanking period pixels must be included to determine the required clock  
frequency. Consider the following example to determine the required LVDS clock frequency:  
H_Active = 640  
H_Blank = 40  
V_Active = 480  
V_Blank = 41  
f_Vertical = 59.95 Hz  
Thus, the required operating frequency is determined with Equation 2.  
[640 + 40] × [480 + 41] × 59.95 = 21239086 Hz 21.24 MHz  
(2)  
Since the operating frequency for the PLL in the DS90CF386 and DS90CF366 ranges from 20 to 85 MHz, the  
DS90CF386 and DS90CF366 can support a panel display with the aforementioned requirements.  
If the specific blanking interval is unknown, the number of pixels in the blanking interval can be approximated to  
20% of the active pixels. Equation 3 can be used as a conservative approximation for the operating LVDS clock  
frequency:  
f_Clk H_Active × V_Active × f_Vertical × 1.2  
(3)  
Using this approximation, the operating frequency for the example in this section is estimated with Equation 4.  
640 × 480 × 59.95 × 1.2 = 22099968 Hz 22.10 MHz  
(4)  
8.2.2.3 Data Mapping between Receiver and Endpoint Panel Display  
Ensure that the LVCMOS outputs are mapped to align with the endpoint display RGB mapping requirements  
following the deserializer. See the following for two popular mapping topologies for 8-bit RGB data.  
1. LSBs are mapped to RxIN3±.  
2. MSBs are mapped to RxIN3±.  
Table 2 and Table 3 depict how these two popular topologies can be mapped to the DS90CF386 outputs.  
Table 2. 8-Bit Color Mapping with LSBs on RxIN3±  
LVDS INPUT  
CHANNEL  
LVDS BIT STREAM  
POSITION  
LVCMOS OUTPUT  
CHANNEL  
COLOR MAPPING  
COMMENTS  
TxIN0  
TxIN1  
TxIN2  
TxIN3  
TxIN4  
TxIN6  
TxIN7  
TxIN8  
TxIN9  
TxIN12  
TxIN13  
TxIN14  
TxIN15  
TxIN18  
RxOUT0  
RxOUT1  
RxOUT2  
RxOUT3  
RxOUT4  
RxOUT6  
RxOUT7  
RxOUT8  
RxOUT9  
RxOUT12  
RxOUT13  
RxOUT14  
RxOUT15  
RxOUT18  
R2  
R3  
R4  
R5  
R6  
R7  
G2  
G3  
G4  
G5  
G6  
G7  
B2  
B3  
RxIN0  
MSB  
MSB  
RxIN1  
22  
Submit Documentation Feedback  
Copyright © 1999–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CF366 DS90CF386  
 
 
 
 
DS90CF366, DS90CF386  
www.ti.com  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
Table 2. 8-Bit Color Mapping with LSBs on RxIN3± (continued)  
LVDS INPUT  
CHANNEL  
LVDS BIT STREAM  
POSITION  
LVCMOS OUTPUT  
CHANNEL  
COLOR MAPPING  
COMMENTS  
TxIN19  
TxIN20  
TxIN21  
TxIN22  
TxIN24  
TxIN25  
TxIN26  
TxIN27  
TxIN5  
RxOUT19  
RxOUT20  
RxOUT21  
RxOUT22  
RxOUT24  
RxOUT25  
RxOUT26  
RxOUT27  
RxOUT5  
B4  
B5  
B6  
RxIN2  
B7  
MSB  
Horizontal sync  
Vertical sync  
Data enable  
LSB  
HSYNC  
VSYNC  
DE  
R0  
R1  
TxIN10  
TxIN11  
TxIN16  
TxIN17  
TxIN23  
RxOUT10  
RxOUT11  
RxOUT16  
RxOUT17  
RxOUT23  
G0  
LSB  
LSB  
RxIN3  
G1  
B0  
B1  
GP  
General purpose  
Table 3. 8-Bit Color Mapping with MSBs on RxIN3±  
LVDS INPUT  
CHANNEL  
LVDS BIT STREAM  
LVCMOS OUTPUT  
CHANNEL  
COLOR MAPPING  
COMMENTS  
POSITION  
TxIN0  
RxOUT0  
RxOUT1  
RxOUT2  
RxOUT3  
RxOUT4  
RxOUT6  
RxOUT7  
RxOUT8  
RxOUT9  
RxOUT12  
RxOUT13  
RxOUT14  
RxOUT15  
RxOUT18  
RxOUT19  
RxOUT20  
RxOUT21  
RxOUT22  
RxOUT24  
RxOUT25  
RxOUT26  
RxOUT27  
RxOUT5  
RxOUT10  
RxOUT11  
RxOUT16  
RxOUT17  
RxOUT23  
R0  
R1  
LSB  
TxIN1  
TxIN2  
R2  
RxIN0  
TxIN3  
R3  
TxIN4  
R4  
TxIN6  
R5  
TxIN7  
G0  
LSB  
LSB  
TxIN8  
G1  
TxIN9  
G2  
TxIN12  
TxIN13  
TxIN14  
TxIN15  
TxIN18  
TxIN19  
TxIN20  
TxIN21  
TxIN22  
TxIN24  
TxIN25  
TxIN26  
TxIN27  
TxIN5  
G3  
RxIN1  
G4  
G5  
B0  
B1  
B2  
B3  
B4  
RxIN2  
B5  
HSYNC  
VSYNC  
DE  
R6  
Horizontal sync  
Vertical sync  
Data enable  
R7  
MSB  
MSB  
TxIN10  
TxIN11  
TxIN16  
TxIN17  
TxIN23  
G6  
RxIN3  
G7  
B6  
B7  
MSB  
GP  
General purpose  
Copyright © 1999–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: DS90CF366 DS90CF386  
DS90CF366, DS90CF386  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
www.ti.com  
In the case where either DS90CF386 or DS90CF366 is used to support 18 bpp, Table 2 is commonly used,  
where RxIN3± (if applicable) is left as No Connect. With this mapping, MSBs of RGB data are retained on  
RXIN0±, RXIN1±, and RXIN2± while the two LSBs for the original 8-bit RGB resolution are ignored from RxIN3±.  
8.2.2.4 RSKM Interoperability  
One of the most important factors when designing the receiver into a system application is assessing how much  
RSKM (Receiver Skew Margin) is available. In each LVDS clock cycle, the LVDS data stream carries seven  
serialized data bits. Ideally, the Transmit Pulse Position for each bit will occur every (n × T)/7 seconds, where  
n = Bit Position and T = LVDS Clock Period. Likewise, ideally the Rx Strobe Position for each bit will occur every  
((n + 0.5) × T)/7 seconds. However, in real systems, both LVDS Tx and Rx will have non-ideal pulse and strobe  
position for each bit position due to the effects of cable skew, clock jitter, and ISI. This concept is illustrated in  
Figure 23.  
wspos1  
wspos0  
max  
min  
max  
min  
Çppos0  
.it 0 [eft aꢀrgin  
.it 0 wight aꢀrgin  
Çppos1  
.it 1 [eft aꢀrgin  
.it 1 wight aꢀrgin  
Çppos2  
Ldeal wx {trobe  
ꢀosition  
Ldeal wx {trobe  
ꢀosition  
max  
max  
min  
min  
max  
min  
.it0  
.it1  
Figure 23. RSKM Measurement Example  
All left and right margins for Bits 0-6 must be considered in order to determine the absolute minimum for the  
whole LVDS bit stream. This absolute minimum corresponds to the RSKM.  
To improve RSKM performance between LVDS transmitter and receiver, designers often either advance or delay  
the LVDS clock compared to the LVDS data. Moving the LVDS clock compared to the LVDS data can improve  
the location of the setup and hold time for the transmitter compared to the setup and hold time for the receiver.  
If there is less left bit margin than right bit margin, the LVDS clock can be delayed so that the Rx strobe position  
for incoming data appears to be delayed. If there is less right bit margin than left bit margin, all the LVDS data  
pairs can be delayed uniformly so that the LVDS clock and Rx strobe position for incoming data appear to  
advance. To delay an LVDS data or clock pair, designers either add more PCB trace length or install a capacitor  
between the LVDS transmitter and receiver. It is important to note that when using these techniques, all  
serialized bit positions are shifted right or left uniformly.  
When designing the DS90CF386 or DS90CF366 receiver with a third-party OpenLDI transmitter, users must  
calculate the skew margin budget (RSKM) based on the Tx pulse position and the Rx strobe position to ensure  
error-free transmission. For more information about calculating RSKM, refer to Application Note, Receiver Skew  
Margin for Channel Link I and FPD Link I Devices (SNLA249).  
24  
Submit Documentation Feedback  
Copyright © 1999–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CF366 DS90CF386  
 
DS90CF366, DS90CF386  
www.ti.com  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
8.2.3 Application Curves  
The following application curves are examples taken with a DS90C385A serializer interfacing to a DS90CF386  
deserializer with nominal temperature (25ºC) and voltage supply (3.3 V) at an operating frequency of 85 MHz.  
Çime (4.0 ns/5Lë)  
Çime (2.0 ns/5Lë)  
Figure 25. LVDS CLKIN Aligned With LVCMOS RxCLKOUT  
Figure 24. LVDS RxIN0± Aligned With LVCMOS  
RxCLKOUT  
Çime (4.0 ns/5Lë)  
Çime (20.0 ns/5Lë)  
Figure 26. RxOUT Strobe On Falling Edge Of RxCLKOUT  
Figure 27. PRBS-7 Output On RxOUT Channels  
Copyright © 1999–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: DS90CF366 DS90CF386  
DS90CF366, DS90CF386  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
www.ti.com  
9 Power Supply Recommendations  
Proper power supply decoupling is important to ensure a stable power supply with minimal power supply noise.  
Bypassing capacitors are needed to reduce the impact of switching noise which could limit performance. For a  
conservative approach, three parallel-connected decoupling capacitors (multi-layered ceramic type in surface  
mount form factor) between each VCC (VCC, PLL VCC, LVDS VCC) and the ground plane(s) are recommended.  
The three capacitor values are 0.1 μF, 0.01 μF, and 0.001 μF. The preferred capacitor size is 0402. An example  
is shown in Figure 28. The designer should employ wide traces for power and ground and ensure each capacitor  
has its own via to the ground plane. This helps to reduce overall inductance with regards to power supply  
filtering. If board space is limiting the number of bypass capacitors, the PLL VCC should receive the most filtering.  
Next would be the LVDS VCC pins and finally the logic VCC pins.  
Figure 28. Recommended Bypass Capacitor Decoupling  
Configuration for VCC, PLL VCC, and LVDS VCC  
10 Layout  
10.1 Layout Guidelines  
As with any high speed design, board designers must maximize signal integrity by limiting reflections and  
crosstalk that can adversely affect high frequency and EMI performance. The following practices are  
recommended layout guidelines to optimize device performance.  
Ensure that differential pair traces are always closely coupled to eliminate noise interference from other  
signals and take full advantage of the common mode noise canceling effect of the differential signals.  
Maintain equal length on signal traces for a given differential pair.  
Limit impedance discontinuities by reducing the number of vias on signal traces.  
Eliminate any 90º angles on traces and use 45º bends instead.  
If a via must exist on one signal polarity, mirror the via implementation on the other polarity of the differential  
pair.  
Match the differential impedance of the selected physical media. This impedance should also match the value  
of the termination resistor that is connected across the differential pair at the receiver's input.  
When possible, use short traces for LVDS inputs.  
10.2 Layout Examples  
The following images show an example layout of the DS90CF386. Traces in blue correspond to the top layer and  
the traces in green correspond to the bottom layer. Note that differential pair inputs to the DS90CF386 are tightly  
coupled and close to the connector pins. In addition, observe that the power supply decoupling capacitors are  
placed as close as possible to the power supply pins with through vias in order to minimize inductance. The  
principles illustrated in this layout can also be applied to the 48-pin DS90CF366.  
26  
Submit Documentation Feedback  
Copyright © 1999–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CF366 DS90CF386  
 
DS90CF366, DS90CF386  
www.ti.com  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
Layout Examples (continued)  
Figure 29. Example Layout With DS90CF386 (U1)  
100-Q [ë5{  
Çerminations close to  
wxLb pins  
33 Q {ꢀŒ]ꢀ• wꢀ•]•š}Œ•  
occasionally used to  
reduce reflections  
Figure 30. Example Layout Close-Up  
Copyright © 1999–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: DS90CF366 DS90CF386  
DS90CF366, DS90CF386  
SNLS055J NOVEMBER 1999REVISED MAY 2016  
www.ti.com  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Application Note, Receiver Skew Margin for Channel Link I and FPD Link I Devices, SNLA249  
11.2 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
28  
Submit Documentation Feedback  
Copyright © 1999–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CF366 DS90CF386  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
DGG  
DGG  
DGG  
DGG  
DGG  
NZC  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90CF366MTD/NOPB  
DS90CF366MTDX/NOPB  
DS90CF386MTD  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
NFBGA  
48  
48  
56  
56  
56  
64  
38  
RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-235C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-4-260C-72 HR  
-10 to 70  
-10 to 70  
-10 to 70  
-10 to 70  
-10 to 70  
-10 to 70  
DS90CF366MTD  
>B  
ACTIVE  
NRND  
1000 RoHS & Green  
SN  
Call TI  
SN  
DS90CF366MTD  
>B  
34  
34  
Non-RoHS  
& Green  
DS90CF386MTD  
>B  
DS90CF386MTD/NOPB  
DS90CF386MTDX/NOPB  
DS90CF386SLC/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
RoHS & Green  
DS90CF386MTD  
>B  
1000 RoHS & Green  
360 RoHS & Green  
SN  
DS90CF386MTD  
>B  
SNAGCU  
DS90CF386  
SLC  
>B  
DS90CF386SLCX/NOPB  
ACTIVE  
NFBGA  
NZC  
64  
2000 RoHS & Green  
SNAGCU  
Level-4-260C-72 HR  
-10 to 70  
DS90CF386  
SLC  
>B  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90CF366MTDX/NOPB TSSOP  
DS90CF386MTDX/NOPB TSSOP  
DS90CF386SLCX/NOPB NFBGA  
DGG  
DGG  
NZC  
48  
56  
64  
1000  
1000  
2000  
330.0  
330.0  
330.0  
24.4  
24.4  
16.4  
8.6  
8.6  
8.3  
13.2  
14.5  
8.3  
1.6  
1.8  
2.3  
12.0  
12.0  
12.0  
24.0  
24.0  
16.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90CF366MTDX/NOPB  
DS90CF386MTDX/NOPB  
DS90CF386SLCX/NOPB  
TSSOP  
TSSOP  
NFBGA  
DGG  
DGG  
NZC  
48  
56  
64  
1000  
1000  
2000  
367.0  
367.0  
356.0  
367.0  
367.0  
356.0  
45.0  
45.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DS90CF366MTD/NOPB  
DS90CF386MTD  
DGG  
DGG  
DGG  
DGG  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
48  
56  
56  
56  
38  
34  
34  
34  
495  
495  
495  
495  
10  
10  
10  
10  
2540  
2540  
2540  
2540  
5.79  
5.79  
5.79  
5.79  
DS90CF386MTD  
DS90CF386MTD/NOPB  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
DS90CF386SLC/NOPB  
NZC  
NFBGA  
64  
360  
12 x 30  
150  
322.6 135.9 7620  
10  
12.5 12.95  
Pack Materials-Page 4  
MECHANICAL DATA  
NZC0064A  
SLC64A (Rev C)  
www.ti.com  
PACKAGE OUTLINE  
DGG0056A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
2
0
0
SMALL OUTLINE PACKAGE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
54X 0.5  
56  
1
14.1  
13.9  
NOTE 3  
2X  
13.5  
28  
B
29  
0.27  
0.17  
6.2  
6.0  
56X  
1.2 MAX  
0.08  
C A  
B
(0.15) TYP  
0.25  
GAGE PLANE  
0 - 8  
SEE DETAIL A  
0.15  
0.05  
0.75  
0.50  
DETAIL A  
TYPICAL  
4222167/A 07/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05)  
TYP  
SYMM  
28  
29  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222167/A 07/2015  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05) TYP  
SYMM  
28  
29  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4222167/A 07/2015  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DGG0048A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
3
5
0
SMALL OUTLINE PACKAGE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
46X 0.5  
48  
1
12.6  
12.4  
NOTE 3  
2X  
11.5  
24  
B
25  
0.27  
0.17  
48X  
6.2  
6.0  
1.2  
1.0  
0.08  
C A B  
(0.15) TYP  
0.25  
GAGE PLANE  
0 - 8  
SEE DETAIL A  
0.15  
0.75  
0.05  
0.50  
DETAIL A  
TYPICAL  
4214859/B 11/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGG0048A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
48X (1.5)  
SYMM  
1
48  
48X (0.3)  
46X (0.5)  
(R0.05)  
TYP  
SYMM  
24  
25  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214859/B 11/2020  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGG0048A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
48X (1.5)  
SYMM  
1
48  
48X (0.3)  
46X (0.5)  
SYMM  
(R0.05) TYP  
24  
25  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4214859/B 11/2020  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
MECHANICAL DATA  
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998  
DGG (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
48 PINS SHOWN  
0,27  
0,17  
M
0,08  
0,50  
48  
25  
6,20  
6,00  
8,30  
7,90  
0,15 NOM  
Gage Plane  
0,25  
1
24  
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
48  
56  
64  
DIM  
A MAX  
12,60  
12,40  
14,10  
13,90  
17,10  
16,90  
A MIN  
4040078/F 12/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

DS90CF386MTDX

IC QUAD LINE RECEIVER, PDSO56, TSSOP-56, Line Driver or Receiver
NSC

DS90CF386MTDX/NOPB

+3.3V LVDS 接收器 24 位平板显示器 (FPD) 链路 - 85MHz | DGG | 56 | -10 to 70
TI

DS90CF386SLC

+3.3V LVDS Receiver 24-Bit Flat Panel Display (FPD) Link?85 MHz, +3.3V LVDS Receiver 18-Bit Flat Panel Display (FPD) Link?85 MHz
NSC

DS90CF386SLC/NOPB

+3.3V LVDS 接收器 24 位平板显示器 (FPD) 链路 - 85MHz | NZC | 64 | -10 to 70
TI

DS90CF386SLCX

IC QUAD LINE RECEIVER, PBGA64, 0.80 MM PITCH, FBGA-64, Line Driver or Receiver
NSC

DS90CF386SLCX/NOPB

IC QUAD LINE RECEIVER, PBGA64, 0.80 MM PITCH, FBGA-64, Line Driver or Receiver
NSC

DS90CF386SLCX/NOPB

+3.3V LVDS 接收器 24 位平板显示器 (FPD) 链路 - 85MHz | NZC | 64 | -10 to 70
TI

DS90CF388

Dual Pixel LVDS Display Interface (LDI)-SVGA/QXGA
NSC

DS90CF388

+3.3V 双像素 LVDS 显示接口 (LDI)-SVGA/QXGA 接收器
TI

DS90CF388A

Dual Pixel LVDS Display Interface / FPD-Link
NSC

DS90CF388A

双像素 LVDS 显示接口/ FPD 链接接收器
TI

DS90CF388AVJD

Dual Pixel LVDS Display Interface / FPD-Link
NSC