DS90CR216AMTD [TI]

+3.3V 上升沿数据选通 LVDS 接收器 21 位频道链接 - 66MHz | DGG | 48 | -40 to 85;
DS90CR216AMTD
型号: DS90CR216AMTD
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

+3.3V 上升沿数据选通 LVDS 接收器 21 位频道链接 - 66MHz | DGG | 48 | -40 to 85

光电二极管 接口集成电路
文件: 总38页 (文件大小:2177K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
SNLS043H MAY 2000REVISED JANUARY 2016  
DS90CR286A/-Q1 (or DS90CR216A) 3.3-V Rising Edge Data Strobe LVDS Receiver  
28-Bit (or 21-Bit) Channel Link-66 MHz  
1 Features  
3 Description  
The DS90CR286A receiver converts the four LVDS  
data streams back into parallel 28 bits of LVCMOS  
data. Also available is the DS90CR216A receiver that  
converts the three LVDS data streams back into  
parallel 21 bits of LVCMOS data. The outputs of both  
receivers strobe on the rising edge.  
1
20 to 66 MHz Shift Clock Support  
50% Duty Cycle on Receiver Output Clock  
Best–in–Class Set and Hold Times on Rx Outputs  
Rx Power Consumption < 270 mW (Typ) at 66  
MHz Worst Case  
Rx Power-Down Mode < 200 μW (Max)  
ESD Rating > 7 kV (HBM), > 700 V (EIAJ)  
PLL Requires No External Components  
Compatible with TIA/EIA-644 LVDS Standard  
The receiver LVDS clock operates at rates from 20 to  
66 MHz. The device phase-locks to the input clock,  
samples the serial bit streams at the LVDS data lines,  
and converts them into parallel output data. At an  
incoming clock rate of 66 MHz, each LVDS input line  
is running at a bit rate of 462 Mbps, resulting in a  
maximum throughput of 1.848 Gbps for the  
DS90CR286A and 1.386 Gbps for the DS90CR216A.  
Low Profile 56-Pin or 48-Pin DGG (TSSOP)  
Package  
Operating Temperature: 40°C to 85°C  
The DS90CR286A and DS90CR216A devices are  
enhanced over prior generation receivers and provide  
a wider data valid time on the receiver output. The  
use of these serial link devices is ideal for solving  
EMI and cable size problems associated with  
transmitting data over wide, high speed parallel  
LVCMOS interfaces. Both devices are offered in  
TSSOP packages.  
Automotive Q Grade Available - AEC-Q100 Grade  
3 Qualified  
2 Applications  
Video Displays  
Automotive Infotainment  
Industrial Printers and Imaging  
Digital Video Transport  
Machine Vision  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
14.00 mm x 6.10 mm  
14.00 mm x 6.10 mm  
12.50 mm × 6.10 mm  
DS90CR286AMTD TSSOP (56)  
DS90CR286AQMT TSSOP (56)  
DS90CR216AMTD TSSOP (48)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Typical Application Block Diagram (DS90CR216A)  
[ë5{ /ꢀble or ꢁ/. Çrꢀce  
5{90/w216! 21-.it wx  
18-.it wD. 5isplꢀy Ünit  
wxhÜÇꢂ20:0]  
[ë5{ 5ꢀtꢀ  
Graphics Processor Unit (GPU)  
21-Bit Tx Data  
(3 LVDS Data, 1 LVDS Clock)  
[ë5{ /lock  
wx/[Y  
PLL  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
SNLS043H MAY 2000REVISED JANUARY 2016  
www.ti.com  
Table of Contents  
7.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 17  
8.1 Application Information............................................ 17  
8.2 Typical Applications ............................................... 17  
Power Supply Recommendations...................... 23  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics: Receiver ......................... 7  
6.7 Typical Characteristics............................................ 13  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagrams ..................................... 14  
7.3 Feature Description................................................. 15  
8
9
10 Layout................................................................... 23  
10.1 Layout Guidelines ................................................. 23  
10.2 Layout Examples................................................... 23  
11 Device and Documentation Support ................. 25  
11.1 Device Support...................................................... 25  
11.2 Related Links ........................................................ 25  
11.3 Community Resources.......................................... 25  
11.4 Trademarks........................................................... 25  
11.5 Electrostatic Discharge Caution............................ 25  
11.6 Glossary................................................................ 25  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 25  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision G (August 2015) to Revision H  
Page  
Changed Figure 6 and Figure 7 to clarify that TxIN on Tx is the same as RxOUT on Rx .................................................... 9  
Changed "limit output amplitude" to "reduce reflections from long board traces" for clarification........................................ 18  
Deleted 0.01-µF and 0.001-µF caps from required DC power supply coupling capacitors ................................................. 18  
Deleted "Setup and Hold Time" label from the Rx strobe window diagram to clarify RSKM concept ................................. 21  
Changed direction of Rx strobe position shift for correct left and right RSKM margin shift behavior .................................. 21  
Added new Application Note reference for RSKM improvement.......................................................................................... 21  
Added improved layout guidelines........................................................................................................................................ 23  
Changed Figure 28 graphic to clarify the use of series resistors on LVCMOS output ........................................................ 24  
Changes from Revision F (February 2013) to Revision G  
Page  
Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation  
section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and  
Mechanical, Packaging, and Orderable Information section .................................................................................................. 1  
Changed specification title to clarify 3.3 V LVCMOS and not standard 5 V CMOS............................................................... 6  
Changed title and graphic of figure to clarify 3.3 V LVCMOS and not standard 5 V CMOS ................................................. 8  
Changed title of DS90CR286A mapping to clarify the make-up of the LVDS lines ............................................................... 9  
Changed title of DS90CR216A mapping to clarify the make-up of the LVDS lines ............................................................... 9  
Added cycle-to-cycle jitter value of 250 ps instead of TBD ps ............................................................................................. 12  
Changes from Revision E (February 2013) to Revision F  
Page  
Changed layout of National Data Sheet to TI format ............................................................................................................. 3  
2
Submit Documentation Feedback  
Copyright © 2000–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
 
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
www.ti.com  
SNLS043H MAY 2000REVISED JANUARY 2016  
5 Pin Configuration and Functions  
DGG Package  
56-Pin TSSOP  
DS90CR286A Top View  
DGG Package  
48-Pin TSSOP  
DS90CR216A Top View  
Copyright © 2000–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
SNLS043H MAY 2000REVISED JANUARY 2016  
www.ti.com  
DS90CR286A Pin Functions — DGG0056A Package — 28-Bit Channel Link Receiver  
PIN  
I/O , TYPE  
PIN DESCRIPTION  
NAME  
NO.  
RxIN0+, RxIN0-,  
RxIN1+, RxIN1-,  
RxIN2+, RxIN2-,  
RxIN3+, RxIN3-  
10, 9,  
Positive and negative LVDS differential data inputs. 100-Ω termination resistors  
should be placed between RxIN+ and RxIN- receiver inputs as close as  
possible to the receiver pins for proper signaling.  
12, 11,  
16, 15,  
20, 19  
I, LVDS  
Positive and negative LVDS differentiaI clock input. 100-Ω termination resistor  
should be placed between RxCLKIN+ and RxCLKIN- receiver inputs as close  
as possible to the receiver pins for proper signaling.  
RxCLKIN+,  
RxCLKIN-  
18,  
17  
I, LVDS  
7, 6, 5, 3,  
2, 1, 55, 54,  
53, 51, 50, 49,  
47, 46, 45, 43,  
42, 41, 39, 38,  
37, 35, 34, 33,  
32, 30, 29, 27  
RxOUT[27:0]  
O, LVCMOS  
LVCMOS level data outputs.  
RxCLK OUT  
PWR DWN  
VCC  
26  
O, LVCMOS  
I, LVCMOS  
Power  
LVCMOS Ievel clock output. The rising edge acts as the data strobe.  
LVCMOS level input. When asserted low, the receiver outputs are low.  
Power supply pins for LVCMOS outputs.  
25  
56, 48, 40, 31  
52, 44, 36,  
28, 4  
GND  
Power  
Ground pins for LVCMOS outputs.  
PLL VCC  
23  
Power  
Power  
Power  
Power  
Power supply for PLL.  
PLL GND  
LVDS VCC  
LVDS GND  
24, 22  
13  
Ground pin for PLL.  
Power supply pin for LVDS inputs.  
Ground pins for LVDS inputs.  
21, 14, 8  
DS90CR216A Pin Functions — DGG0048A Package — 21-Bit Channel Link Receiver  
PIN  
I/O , TYPE  
PIN DESCRIPTION  
NAME  
NO.  
RxIN0+, RxIN0-,  
RxIN1+, RxIN1-,  
RxIN2+, RxIN2-  
9, 8,  
11, 10,  
15, 14  
Positive and negative LVDS differential data inputs. 100-Ω termination resistors  
should be placed between RxIN+ and RxIN- receiver inputs as close as  
possible to the receiver pins for proper signaling.  
I, LVDS  
Positive and negative LVDS differentiaI clock input. 100-Ω termination resistor  
should be placed between RxCLKIN+ and RxCLKIN- receiver inputs as close  
as possible to the receiver pins for proper signaling.  
RxCLKIN+,  
RxCLKIN-  
17,  
16  
I, LVDS  
5, 4, 2, 1, 47,  
46, 45, 43, 41,  
40, 39, 37, 35,  
34, 33, 31, 30,  
29, 27, 26, 24  
RxOUT[20:0]  
O, LVCMOS  
LVCMOS level data outputs.  
RxCLK OUT  
PWR DWN  
VCC  
23  
O, LVCMOS  
I, LVCMOS  
Power  
LVCMOS Ievel clock output. The rising edge acts as the data strobe.  
LVCMOS level input. When asserted low, the receiver outputs are low.  
Power supply pins for LVCMOS outputs.  
22  
48, 42, 36, 28  
44, 38, 32,  
25, 3  
GND  
Power  
Ground pins for LVCMOS outputs.  
PLL VCC  
20  
Power  
Power  
Power  
Power  
Power supply for PLL.  
PLL GND  
LVDS VCC  
LVDS GND  
21, 19  
12  
Ground pin for PLL.  
Power supply pin for LVDS inputs.  
Ground pins for LVDS inputs.  
18, 13, 7  
4
Submit Documentation Feedback  
Copyright © 2000–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
www.ti.com  
SNLS043H MAY 2000REVISED JANUARY 2016  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)(2)  
see  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
Supply voltage (VCC  
)
4
(VCC + 0.3 V)  
(VCC + 0.3 V)  
150  
LVCMOS output voltage  
V
LVDS receiver input voltage  
Junction temperature  
V
°C  
°C  
°C  
Lead temperature (soldering, 4 sec)  
Storage temperature, Tstg  
260  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.  
6.2 ESD Ratings  
VALUE  
±7000  
±700  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
3.0  
–40  
0
NOM  
3.3  
MAX  
3.6  
UNIT  
Supply voltage (VCC  
)
V
°C  
Operating free air temperature (TA)  
Receiver input range  
25  
85  
2.4  
V
Supply noise voltage (VNOISE  
)
100  
mVPP  
6.4 Thermal Information  
DS90CR286A/-Q1  
DS90CR216A  
DGG (TSSOP)  
48 PINS  
67.8  
THERMAL METRIC(1)  
DGG (TSSOP)  
56 PINS  
64.6  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
20.6  
22.1  
33.3  
34.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.0  
1.1  
ψJB  
33.0  
34.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2000–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
SNLS043H MAY 2000REVISED JANUARY 2016  
www.ti.com  
6.5 Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LVCMOS DC SPECIFICATIONS (For PWR DWN Pin)  
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
Input Clamp Voltage  
2
VCC  
0.8  
V
V
GND  
VCL  
ICL = 18 mA  
–0.79  
1.8  
0
–1.5  
10  
V
V IN = 0.4 V, 2.5 V or VCC  
V IN = GND  
μA  
μA  
IIN  
Input Current  
–10  
2.7  
LVCMOS DC SPECIFICATIONS  
VOH  
VOL  
IOS  
High Level Output Voltage  
Low Level Output Voltage  
Output Short Circuit Current  
IOH = 0.4 mA  
IOL = 2 mA  
3.3  
0.06  
–60  
V
V
0.3  
VOUT = 0 V  
–120  
mA  
LVDS RECEIVER DC SPECIFICATIONS  
VTH  
VTL  
Differential Input High Threshold  
Differential Input Low Threshold  
VCM = +1.2V  
100  
mV  
mV  
μA  
–100  
VIN = +2.4V, VCC = 3.6V  
VIN = 0V, VCC = 3.6V  
±10  
±10  
IIN  
Input Current  
μA  
RECEIVER SUPPLY CURRENT  
CL = 8 pF, Worst Case  
Pattern, DS90CR286A  
(Figure 1 Figure 2),  
TA=10°C to +70°C  
f = 33 MHz  
f = 37.5 MHz  
f = 66 MHz  
f = 40 MHz  
49  
53  
81  
53  
65  
70  
mA  
mA  
mA  
mA  
ICCRW  
ICCRW  
ICCRW  
Receiver Supply Current Worst Case  
105  
70  
CL = 8 pF, Worst Case  
Pattern, DS90CR286A  
(Figure 1 Figure 2),  
TA=40°C to +85°C  
Receiver Supply Current Worst Case  
Receiver Supply Current Worst Case  
f = 66 MHz  
81  
105  
mA  
CL = 8 pF, Worst Case  
Pattern, DS90CR216A  
(Figure 1 Figure 2),  
TA=10°C to +70°C  
f = 33 MHz  
f = 37.5 MHz  
f = 66 MHz  
f = 40 MHz  
49  
53  
78  
53  
55  
60  
90  
60  
mA  
mA  
mA  
mA  
CL = 8 pF, Worst Case  
Pattern, DS90CR216A  
(Figure 1 Figure 2),  
TA=40°C to +85°C  
ICCRW  
ICCRZ  
Receiver Supply Current Worst Case  
Receiver Supply Current Power Down  
f = 66 MHz  
78  
10  
90  
55  
mA  
Power Down = Low Receiver Outputs Stay  
Low during Power Down Mode  
μA  
(1) Typical values are given for VCC = 3.3 V and TA = 25ºC.  
(2) Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground  
unless otherwise specified (except VOD and ΔV OD).  
6
Submit Documentation Feedback  
Copyright © 2000–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
www.ti.com  
SNLS043H MAY 2000REVISED JANUARY 2016  
6.6 Switching Characteristics: Receiver  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
MIN  
TYP  
2
MAX UNIT  
CLHT  
CHLT  
LVCMOS Low-to-High Transition Time (Figure 2)  
LVCMOS High-to-Low Transition Time (Figure 2)  
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.8  
1.4  
5
RSPos0 Receiver Input Strobe Position for Bit 0 (Figure 9, Figure 10)  
RSPos1 Receiver Input Strobe Position for Bit 1  
RSPos2 Receiver Input Strobe Position for Bit 2  
RSPos3 Receiver Input Strobe Position for Bit 3  
RSPos4 Receiver Input Strobe Position for Bit 4  
RSPos5 Receiver Input Strobe Position for Bit 5  
RSPos6 Receiver Input Strobe Position for Bit 6  
1
4.5  
2.15  
5.8  
8.1  
8.5  
11.9  
15.6  
19.2  
22.9  
9.15  
12.6  
16.3  
19.9  
23.6  
f = 40 MHz  
11.6  
15.1  
18.8  
22.5  
Receiver Input Strobe Position for Bit 0  
(Figure 9, Figure 10)  
RSPos0  
0.7  
1.1  
1.4  
ns  
RSPos1 Receiver Input Strobe Position for Bit 1  
RSPos2 Receiver Input Strobe Position for Bit 2  
RSPos3 Receiver Input Strobe Position for Bit 3  
RSPos4 Receiver Input Strobe Position for Bit 4  
RSPos5 Receiver Input Strobe Position for Bit 5  
RSPos6 Receiver Input Strobe Position for Bit 6  
2.9  
5.1  
7.3  
9.5  
11.7  
13.9  
490  
400  
15  
3.3  
5.5  
3.6  
5.8  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
μs  
f = 66 MHz  
7.7  
8
9.9  
10.2  
12.4  
14.6  
12.1  
14.3  
f = 40 MHz  
f = 66 MHz  
RSKM  
RxIN Skew Margin(2) (Figure 11)  
RCOP  
RCOH  
RCOL  
RSRC  
RHRC  
RCOH  
RCOL  
RSRC  
RHRC  
RCCD  
RPLLS  
RPDD  
RxCLK OUT Period (Figure 3)  
T
12.2  
11  
50  
RxCLK OUT High Time (Figure 3)  
10  
RxCLK OUT Low Time (Figure 3)  
10  
f = 40 MHz  
RxOUT Setup to RxCLK OUT (Figure 3)  
RxOUT Hold to RxCLK OUT (Figure 3)  
RxCLK OUT High Time (Figure 3)  
6.5  
6
11.6  
11.6  
7.6  
6.3  
7.3  
6.3  
5
5
RxCLK OUT Low Time (Figure 3)  
5
f = 66 MHz  
RxOUT Setup to RxCLK OUT (Figure 3)  
RxOUT Hold to RxCLK OUT (Figure 3)  
RxCLK IN to RxCLK OUT Delay at 25°C, VCC = 3.3 V(3) (Figure 4)  
Receiver Phase Lock Loop Set (Figure 5)  
Receiver Power Down Delay (Figure 8)  
4.5  
4
3.5  
7.5  
10  
1
(1) Typical Values are given for VCC = 3.3 V and TA = 25ºC  
(2) Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account the transmitter  
pulse positions (min and max) and the receiver input setup and hold time (internal data sampling window - RSPos). This margin allows  
for LVDS interconnect skew, inter-symbol interference (both dependent on type/length of cable), and clock jitter (less than 250 ps).  
(3) Total latency for the channel link chipset is a function of clock period and gate delays through the transmitter (TCCD) and receiver  
(RCCD). The total latency for the DS90CR215/DS90CR285 transmitter and DS90CR216A/DS90CR286A receiver is: (T + TCCD) + (2*T  
+ RCCD), where T = Clock period.  
Copyright © 2000–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
SNLS043H MAY 2000REVISED JANUARY 2016  
www.ti.com  
Figure 1. “Worst Case” Test Pattern  
[ë/ah{ hutput  
Figure 2. LVCMOS Output Load and Transition Times  
Figure 3. Setup/Hold and High/Low Times  
Figure 4. Clock In to Clock Out Delay  
8
Submit Documentation Feedback  
Copyright © 2000–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
www.ti.com  
SNLS043H MAY 2000REVISED JANUARY 2016  
Figure 5. Phase Lock Loop Set Time  
wx/[Y Lb  
(ꢁifferential)  
wxLb3  
({ingle-ꢀnded)  
wxhÜÇ5-1  
wxhÜÇ20-1  
wxhÜÇ9-1  
wxhÜÇ1-1  
wxhÜÇ23  
wxhÜÇ26  
wxhÜÇ18  
wxhÜÇ7  
wxhÜÇ16  
wxhÜÇ24  
wxhÜÇ14  
wxhÜÇ4  
wxhÜÇ5  
wxhÜÇ20  
wxhÜÇ9  
wxhÜÇ1  
wxhÜÇ27-1  
wxhÜÇ19-1  
wxhÜÇ8-1  
wxhÜÇ0-1  
wxhÜÇ17  
wxhÜÇ25  
wxhÜÇ15  
wxhÜÇ6  
wxhÜÇ11  
wxhÜÇ22  
wxhÜÇ13  
wxhÜÇ3  
wxhÜÇ10  
wxhÜÇ21  
wxhÜÇ12  
wxhÜÇ2  
wxhÜÇ27  
wxhÜÇ19  
wxhÜÇ8  
wxhÜÇ0  
wxLb2  
({ingle-ꢀnded)  
wxLb1  
({ingle-ꢀnded)  
wxLb0  
({ingle-ꢀnded)  
Figure 6. DS90CR286A Mapping of 28 LVCMOS Parallel Data to 4D + C LVDS Serialized Data  
wx/[Y Lb  
(ꢁifferential)  
wxLb2  
({ingle-ꢀnded)  
wxhÜÇ20  
wxhÜÇ13  
wxhÜÇ6  
wxhÜÇ18  
wxhÜÇ11  
wxhÜÇ4  
wxhÜÇ15  
wxhÜÇ8  
wxhÜÇ1  
wxhÜÇ15-1  
wxhÜÇ8-1  
wxhÜÇ1-1  
wxhÜÇ14-1  
wxhÜÇ7-1  
wxhÜÇ0-1  
wxhÜÇ19  
wxhÜÇ12  
wxhÜÇ5  
wxhÜÇ17  
wxhÜÇ10  
wxhÜÇ3  
wxhÜÇ16  
wxhÜÇ9  
wxhÜÇ2  
wxhÜÇ14  
wxhÜÇ7  
wxhÜÇ0  
wxLb1  
({ingle-ꢀnded)  
wxLb0  
({ingle-ꢀnded)  
Figure 7. DS90CR216A Mapping of 21 LVCMOS Parallel Data to 3D + C LVDS Serialized Data  
Copyright © 2000–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
 
 
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
SNLS043H MAY 2000REVISED JANUARY 2016  
www.ti.com  
Figure 8. Power Down Delay  
Figure 9. DS90CR286A LVDS Input Strobe Position  
10  
Submit Documentation Feedback  
Copyright © 2000–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
www.ti.com  
SNLS043H MAY 2000REVISED JANUARY 2016  
Figure 10. DS90CR216A LVDS Input Strobe Position  
Copyright © 2000–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
SNLS043H MAY 2000REVISED JANUARY 2016  
www.ti.com  
C—Setup and Hold Time (Internal data sampling window) defined by Rspos (receiver input strobe position) min and  
max  
Tppos—Transmitter output pulse position (min and max)  
Cable Skew—typically 10 ps–40 ps per foot, media dependent  
RSKM = Cable Skew (type, length) + Source Clock Jitter (cycle to cycle)(1) + ISI (Inter-symbol interference)(2)  
(1) Cycle-to-cycle jitter depends on the Tx source. if a Channel Link I Source Transmitter is used, clock jitter is  
maintained to less than 250 ps at 66 MHz.  
(2) ISI is dependent on interconnect length; may be zero.  
Figure 11. Receiver LVDS Input Skew Margin  
12  
Submit Documentation Feedback  
Copyright © 2000–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
www.ti.com  
SNLS043H MAY 2000REVISED JANUARY 2016  
6.7 Typical Characteristics  
Çime (20.0 ns/5Lë)  
Çime (5.0 ns/ꢀLë)  
Figure 12. Parallel PRBS-7 on LVCMOS Outputs at 66 MHz  
Figure 13. Typical RxOUT Strobe Position at 66 MHz  
Çime (5.0 ns/ꢀLë)  
Çime (5.0 ns/ꢀLë)  
Figure 14. Typical RxOUT Setup Time at 66 MHz  
(RSRC = 7.1 ns)  
Figure 15. Typical RxOUT Hold Time at 66 MHz  
(RHRC = 7.0 ns)  
Copyright © 2000–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
SNLS043H MAY 2000REVISED JANUARY 2016  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The DS90CR286A and DS90CR286A-Q1 are receivers that convert four LVDS (Low Voltage Differential  
Signaling) data streams into parallel 28 bits of LVCMOS data (24 bits of RGB and 4 bits of HSYNC, VSYNC, DE,  
and CNTL). The DS90CR216A is a receiver that converts three LVDS data streams back into parallel 21 bits of  
LVCMOS data (18 bits of RGB and 3 bits of HSYNC, VSYNC, and DE). An internal PLL locks to the incoming  
LVDS clock ranging from 20 to 66 MHz. The locked PLL ensures a stable clock to sample the output LVCMOS  
data on the Receiver Clock Out rising edge. These devices feature a PWR DWN pin to put the device into low  
power mode when there is no active input data.  
7.2 Functional Block Diagrams  
4 x [ë5{ 5ꢀtꢀ  
(140 to 462 abps on  
9ꢀcꢁ [ë5{ /ꢁꢀnnel)  
28 x [ë/ah{  
hutputs  
[ë5{ /lock  
(20 to 66 aIz)  
PLL  
weceiver /lock hut  
ꢂíw 5íꢃ  
Figure 16. DS90CR286A Block Diagram  
3 x [ë5{ 5ꢀtꢀ  
(140 to 462 abps on  
9ꢀcꢁ [ë5{ /ꢁꢀnnel)  
21 x [ë/ah{  
hutputs  
[ë5{ /lock  
(20 to 66 aIz)  
PLL  
weceiver /lock hut  
ꢂíw 5íꢃ  
Figure 17. DS90CR216A Block Diagram  
14  
Submit Documentation Feedback  
Copyright © 2000–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
www.ti.com  
SNLS043H MAY 2000REVISED JANUARY 2016  
7.3 Feature Description  
The DS90CR286A and DS90CR216A consist of several key blocks:  
LVDS Receivers  
Phase Locked Loop (PLL)  
Serial LVDS-to-Parallel LVCMOS Converter  
LVCMOS Drivers  
7.3.1 LVDS Receivers  
There are five differential LVDS inputs to the DS90CR286A and four differential LVDS inputs to the  
DS90CR216A. Four of the LVDS inputs contain serialized data originating from a 28-bit source transmitter. For  
the DS90CR216A, three of the LVDS inputs contain serialized data originating from a 21-bit source transmitter.  
The remaining LVDS input contains the LVDS clock associated with the data pairs.  
7.3.1.1 LVDS Input Termination  
The DS90CR286A and DS90CR216A require a single 100-Ω terminating resistor across the true and  
complement lines on each differential pair of the receiver input. To prevent reflections due to stubs, this resistor  
should be placed as close to the device input pins as possible. Figure 18 shows an example.  
Figure 18. LVDS Serialized Link Termination  
7.3.2 Phase Locked Loop (PLL)  
The Channel Link I devices use an internal PLL to recover the clock transmitted across the LVDS interface. The  
recovered clock is then used as a reference to determine the sampling position of the seven serial bits received  
per clock cycle. The width of each bit in the serialized LVDS data stream is one-seventh the clock period.  
Differential skew (Δt within one differential pair), interconnect skew (Δt of one differential pair to another) and  
clock jitter will all reduce the available window for sampling the LVDS serial data streams. Individual bypassing of  
each VCC to ground will minimize the noise passed on to the PLL, thus creating a low jitter LVDS clock to  
improve the overall jitter budget.  
7.3.3 Serial LVDS-to-Parallel LVCMOS Converter  
After the PLL locks to the incoming LVDS clock, the receiver deserializes each LVDS differential data pair into  
seven parallel LVCMOS data outputs per clock cycle. For the DS90CR286A, the LVDS data inputs map to  
LVCMOS outputs according to Figure 6. For the DS90CR216A, the LVDS data inputs map to LVCMOS outputs  
according to Figure 7.  
7.3.4 LVCMOS Drivers  
The LVCMOS outputs from the DS90CR286A and DS90CR216A are the deserialized parallel single-ended data  
from the serialized LVDS differential data pairs. Each LVCMOS output is clocked by the PLL and strobes on the  
RxCLKOUT rising edge. All unused DS90CR286A and DS90CR216A RxOUT outputs can be left floating.  
Copyright © 2000–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
 
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
SNLS043H MAY 2000REVISED JANUARY 2016  
www.ti.com  
7.4 Device Functional Modes  
7.4.1 Power Down Mode  
The DS90CR286A and DS90CR216A may be placed into a power down mode at any time by asserting the PWR  
DWN pin (active low). The DS90CR286A and DS90CR216A are also designed to protect themselves from  
accidental loss of power to either the transmitter or receiver. If power to the transmit board is lost, the receiver  
clocks (input and output) stop. The data outputs (RxOUT) retain the states they were in when the clocks stopped.  
When the receiver board loses power, the receiver inputs are shorted to VCC through an internal diode. Current is  
limited to 5 mA per input, thus avoiding the potential for latch-up when powering the device.  
16  
Submit Documentation Feedback  
Copyright © 2000–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
www.ti.com  
SNLS043H MAY 2000REVISED JANUARY 2016  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DS90CR286A and DS90CR216A are designed for a wide variety of data transmission applications. The use  
of serialized LVDS data lines in these applications allows for efficient signal transmission over a narrow bus  
width, thereby reducing cost, power, and space.  
8.2 Typical Applications  
[ë5{ /ꢀble or ꢁ/. Çrꢀce  
5{90/w286! 28-.it wx  
24-.it wD. 5isplꢀy Ünit  
wxhÜÇꢂ27:0]  
[ë5{ 5ꢀtꢀ  
Graphics Processor Unit (GPU)  
28-Bit Tx Data  
(4 LVDS Data, 1 LVDS Clock)  
[ë5{ /lock  
wx/[Y  
PLL  
Figure 19. Typical DS90CR286A Application Block Diagram  
[ë5{ /ꢀble or ꢁ/. Çrꢀce  
5{90/w216! 21-.it wx  
18-.it wD. 5isplꢀy Ünit  
wxhÜÇꢂ20:0]  
[ë5{ 5ꢀtꢀ  
Graphics Processor Unit (GPU)  
21-Bit Tx Data  
(3 LVDS Data, 1 LVDS Clock)  
[ë5{ /lock  
wx/[Y  
PLL  
Figure 20. Typical DS90CR216A Application Block Diagram  
Copyright © 2000–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
SNLS043H MAY 2000REVISED JANUARY 2016  
www.ti.com  
Typical Applications (continued)  
8.2.1 Design Requirements  
For this design example, ensure that the following requirements are observed.  
Table 1. Design Parameters  
DESIGN PARAMETER  
DESIGN REQUIREMENTS  
LVDS clock must be within 20-66 MHz.  
Operating Frequency  
DS90CR286A: No higher than 24 bpp. The maximum supported resolution is 8-bit RGB.  
DS90CR216A: No higher than 18 bpp. The maximum supported resolution is 6-bit RGB.  
Bit Resolution  
Determine the appropriate mapping required by the panel display following the DS90CR286A  
or DS90CR216A outputs.  
Bit Data Mapping  
RSKM (Receiver Skew Margin)  
Input Termination for RxIN±  
RxIN± Board Trace Impedance  
LVCMOS Outputs  
Ensure that there is acceptable margin between Tx pulse position and Rx strobe position.  
100 Ω ± 10% resistor across each LVDS differential pair. Place as close as possible to IC  
input pins.  
Design differential trace impedance with 100 Ω ± 5%  
If unused, leave pins floating. Series resistance on each LVCMOS output optional to reduce  
reflections from long board traces. If used, 33-Ω series resistance is typical.  
Use a 0.1-µF capacitor to minimize power supply noise. Place as close as possible to VCC  
pins.  
DC Power Supply Coupling Capacitors  
8.2.2 Detailed Design Procedure  
To design with the DS90CR286A or DS90CR216A, determine the following:  
Cable Interface  
Bit Resolution and Operating Frequency  
Bit Mapping from Receiver to Endpoint Panel Display  
RSKM Interoperability with Transmitter Pulse Position Margin  
8.2.2.1 Cables  
A cable interface between the transmitter and receiver needs to support the differential LVDS pairs. The  
DS90CR216A requires four pairs of signal wires and the DS90CR286A requires five pairs of signal wires. The  
ideal cable interface has a constant 100-Ω differential impedance throughout the path. It is also recommended  
that cable skew remain below 150 ps (assuming 66 MHz clock rate) to maintain a sufficient data sampling  
window at the receiver.  
Depending upon the application and data rate, the interconnecting media between Tx and Rx may vary. For  
example, for lower data rate (clock rate) and shorter cable lengths (< 2m), the media electrical performance is  
less critical. For higher speed or long distance applications, the media's performance becomes more critical.  
Certain cable constructions provide tighter skew (matched electrical length between the conductors and pairs).  
For example, twin-coax cables have been demonstrated at distances as long as five meters and with the  
maximum data transfer of 1.386 Gbps (DS90CR216A) and 1.848 Gbps (DS90CR286A).  
8.2.2.2 Bit Resolution and Operating Frequency Compatibility  
The bit resolution of the endpoint panel display reveals whether there are enough bits available in the  
DS90CR286A or DS90CR216A to output the required data per pixel. The DS90CR286A has 28 parallel  
LVCMOS outputs and can therefore provide a bit resolution up to 24 bpp (bits per pixel). In each clock cycle, the  
remaining bits are the three control signals (HSync, VSync, DE) and one spare bit. The DS90CR216A has 21  
parallel LVCMOS outputs and can therefore provide a bit resolution up to 18 bpp (bits per pixel). In each clock  
cycle, the remaining bits are the three control signals (HSync, VSync, DE).  
The number of pixels per frame and the refresh rate of the endpoint panel display indicate the required operating  
frequency of the deserializer clock. To determine the required clock frequency, refer to the following formula:  
f_Clk = [H_Active + H_Blank] × [V_Active + V_Blank] × f_Vertical  
where  
H_Active = Active Display Horizontal Lines  
18  
Submit Documentation Feedback  
Copyright © 2000–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
www.ti.com  
SNLS043H MAY 2000REVISED JANUARY 2016  
H_Blank = Blanking Period Horizontal Lines  
V_Active = Active Display Vertical Lines  
V_Blank = Blanking Period Vertical Lines  
f_Vertical = Refresh Rate (in Hz)  
f_Clk = Operating Frequency of LVDS clock  
(1)  
In each frame, there is a blanking period associated with horizontal rows and vertical columns that are not  
actively displayed on the panel. These blanking period pixels must be included to determine the required clock  
frequency. Consider the following example to determine the required LVDS clock frequency:  
H_Active = 640  
H_Blank = 40  
V_Active = 480  
V_Blank = 41  
f_Vertical = 59.95 Hz  
Thus, the required operating frequency is determined below:  
[640 + 40] x [480 + 41] x 59.95 = 21239086 Hz 21.24 MHz  
(2)  
Since the operating frequency for the PLL in the DS90CR286A and DS90CR216A ranges from 20-66 MHz, the  
DS90CR286A and DS90CR216A can support a panel display with the aforementioned requirements.  
If the specific blanking interval is unknown, the number of pixels in the blanking interval can be approximated to  
20% of the active pixels. The following formula can be used as a conservative approximation for the operating  
LVDS clock frequency:  
f_Clk H_Active x V_Active x f_Vertical x 1.2  
(3)  
Using this approximation, the operating frequency for the example in this section is estimated below:  
640 x 480 x 59.95 x 1.2 = 22099968 Hz 22.10 MHz  
(4)  
8.2.2.3 Data Mapping between Receiver and Endpoint Panel Display  
Ensure that the LVCMOS outputs are mapped to align with the endpoint display RGB mapping requirements  
following the deserializer. Two popular mapping topologies for 8-bit RGB data are shown below:  
1. LSBs are mapped to RxIN3±.  
2. MSBs are mapped to RxIN3±.  
The following tables depict how these two popular topologies can be mapped to the DS90CR286A outputs.  
Table 2. 8-Bit Color Mapping with LSBs on RxIN3±  
LVDS INPUT  
CHANNEL  
LVDS BIT STREAM  
POSITION  
LVCMOS OUTPUT  
CHANNEL  
COLOR MAPPING  
COMMENTS  
TxIN0  
TxIN1  
TxIN2  
TxIN3  
TxIN4  
TxIN6  
TxIN7  
TxIN8  
TxIN9  
TxIN12  
TxIN13  
TxIN14  
TxIN15  
TxIN18  
RxOUT0  
RxOUT1  
RxOUT2  
RxOUT3  
RxOUT4  
RxOUT6  
RxOUT7  
RxOUT8  
RxOUT9  
RxOUT12  
RxOUT13  
RxOUT14  
RxOUT15  
RxOUT18  
R2  
R3  
R4  
R5  
R6  
R7  
G2  
G3  
G4  
G5  
G6  
G7  
B2  
B3  
RxIN0  
MSB  
RxIN1  
MSB  
Copyright © 2000–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
 
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
SNLS043H MAY 2000REVISED JANUARY 2016  
www.ti.com  
Table 2. 8-Bit Color Mapping with LSBs on RxIN3± (continued)  
LVDS INPUT  
CHANNEL  
LVDS BIT STREAM  
POSITION  
LVCMOS OUTPUT  
CHANNEL  
COLOR MAPPING  
COMMENTS  
TxIN19  
TxIN20  
TxIN21  
TxIN22  
TxIN24  
TxIN25  
TxIN26  
TxIN27  
TxIN5  
RxOUT19  
RxOUT20  
RxOUT21  
RxOUT22  
RxOUT24  
RxOUT25  
RxOUT26  
RxOUT27  
RxOUT5  
B4  
B5  
B6  
RxIN2  
B7  
MSB  
Horizontal Sync  
Vertical Sync  
Data Enable  
LSB  
HSYNC  
VSYNC  
DE  
R0  
R1  
TxIN10  
TxIN11  
TxIN16  
TxIN17  
TxIN23  
RxOUT10  
RxOUT11  
RxOUT16  
RxOUT17  
RxOUT23  
G0  
LSB  
LSB  
RxIN3  
G1  
B0  
B1  
GP  
General Purpose  
Table 3. 8-Bit Color Mapping with MSBs on RxIN3±  
LVDS INPUT  
CHANNEL  
LVDS BIT STREAM  
LVCMOS OUTPUT  
CHANNEL  
COLOR MAPPING  
COMMENTS  
POSITION  
TxIN0  
RxOUT0  
RxOUT1  
RxOUT2  
RxOUT3  
RxOUT4  
RxOUT6  
RxOUT7  
RxOUT8  
RxOUT9  
RxOUT12  
RxOUT13  
RxOUT14  
RxOUT15  
RxOUT18  
RxOUT19  
RxOUT20  
RxOUT21  
RxOUT22  
RxOUT24  
RxOUT25  
RxOUT26  
RxOUT27  
RxOUT5  
RxOUT10  
RxOUT11  
RxOUT16  
RxOUT17  
RxOUT23  
R0  
R1  
LSB  
TxIN1  
TxIN2  
R2  
RxIN0  
TxIN3  
R3  
TxIN4  
R4  
TxIN6  
R5  
TxIN7  
G0  
LSB  
LSB  
TxIN8  
G1  
TxIN9  
G2  
TxIN12  
TxIN13  
TxIN14  
TxIN15  
TxIN18  
TxIN19  
TxIN20  
TxIN21  
TxIN22  
TxIN24  
TxIN25  
TxIN26  
TxIN27  
TxIN5  
G3  
RxIN1  
G4  
G5  
B0  
B1  
B2  
B3  
B4  
RxIN2  
B5  
HSYNC  
VSYNC  
DE  
R6  
Horizontal Sync  
Vertical Sync  
Data Enable  
R7  
MSB  
MSB  
TxIN10  
TxIN11  
TxIN16  
TxIN17  
TxIN23  
G6  
RxIN3  
G7  
B6  
B7  
MSB  
GP  
General Purpose  
20  
Submit Documentation Feedback  
Copyright © 2000–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
www.ti.com  
SNLS043H MAY 2000REVISED JANUARY 2016  
In either the case where the DS90CR216A is used or the DS90CR286A must support 18 bpp, Table 2 is  
commonly used. With this mapping, MSBs of RGB data are retained on RXIN0±, RXIN1±, and RXIN2± while the  
two LSBs for the original 8-bit RGB resolution are ignored from RxIN3±.  
8.2.2.4 RSKM Interoperability  
One of the most important factors when designing the receiver into a system application is assessing how much  
RSKM (Receiver Skew Margin) is available. In each LVDS clock cycle, the LVDS data stream carries seven  
serialized data bits. Ideally, the Transmit Pulse Position for each bit will occur every (n x T)/7 seconds, where n =  
Bit Position and T = LVDS Clock Period. Likewise, ideally the Receive Strobe Position for each bit will occur  
every ((n + 0.5) x T)/7 seconds. However, due to the effects of cable skew, clock jitter, and ISI, both LVDS  
transmitter and receiver in real systems will have a minimum and maximum pulse and strobe position,  
respectively, for each bit position. This concept is illustrated in Figure 21:  
wspos1  
wspos0  
max  
min  
max  
min  
Çppos0  
.it 0 [eft aꢀrgin  
.it 0 wight aꢀrgin  
Çppos1  
.it 1 [eft aꢀrgin  
.it 1 wight aꢀrgin  
Çppos2  
Ldeal wx {trobe  
ꢀosition  
Ldeal wx {trobe  
ꢀosition  
max  
max  
min  
min  
max  
min  
.it0  
.it1  
Figure 21. RSKM Measurement Example  
All left and right margins for Bits 0-6 must be considered in order to determine the absolute minimum for the  
whole LVDS bit stream. This absolute minimum corresponds to the RSKM.  
To improve RSKM performance between LVDS transmitter and receiver, designers often either advance or delay  
the LVDS clock compared to the LVDS data. Moving the LVDS clock compared to the LVDS data can improve  
the location of the setup and hold time for the transmitter compared to the setup and hold time for the receiver.  
If there is less left bit margin than right bit margin, the LVDS clock can be delayed so that the Rx strobe position  
for incoming data appears to be delayed. If there is less right bit margin than left bit margin, all the LVDS data  
pairs can be delayed uniformly so that the LVDS clock and Rx strobe position for incoming data appear to  
advance. To delay an LVDS data or clock pair, designers either add more PCB trace length or install a capacitor  
between the LVDS transmitter and receiver. It is important to note that when using these techniques, all  
serialized bit positions are shifted right or left uniformly.  
When designing the DS90CR286A or DS90CR216A receiver with a third-party OpenLDI transmitter, users must  
calculate the skew margin budget (RSKM) based on the Tx pulse position and the Rx strobe position to ensure  
error-free transmission. For more information about calculating RSKM, refer to Application Note SNLA249.  
Copyright © 2000–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
 
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
SNLS043H MAY 2000REVISED JANUARY 2016  
www.ti.com  
8.2.3 Application Curves  
The following application curves are examples taken with a DS90C385 serializer interfacing to a DS90CR286A  
deserializer in nominal temperature (25ºC) at an operating frequency of 66 MHz.  
ÇxLb7  
ÇxLb6  
ÇxLb4  
ÇxLb3  
ÇxLb2  
ÇxLb1  
ÇxLb0  
Çime (ꢁ.0 nsꢀ5Lë)  
Çime (2.ꢂ nsꢀ5Lë)  
Figure 23. LVDS CLKIN aligned with LVCMOS RxCLKOUT  
Figure 22. LVDS RxIN0± aligned with LVCMOS RxCLKOUT  
Çime (ꢁ.0 nsꢀ5Lë)  
Çime (20.0 nsꢀ5Lë)  
Figure 24. RxOUT Strobe on Rising Edge of RxCLKOUT  
Figure 25. PRBS-7 Output on RxOUT Channels  
22  
Submit Documentation Feedback  
Copyright © 2000–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
www.ti.com  
SNLS043H MAY 2000REVISED JANUARY 2016  
9 Power Supply Recommendations  
Proper power supply decoupling is important to ensure a stable power supply with minimal power supply noise.  
Bypassing capacitors are needed to reduce the impact of switching noise which could limit performance. For a  
conservative approach three parallel-connected decoupling capacitors (Multi-Layered Ceramic type in surface  
mount form factor) between each VCC and the ground plane(s) are recommended. The three capacitor values are  
0.1 μF, 0.01 μF and 0.001 μF. The preferred capacitor size is 0402. An example is shown in Figure 26. The  
designer should employ wide traces for power and ground and ensure each capacitor has its own via to the  
ground plane. If board space is limiting the number of bypass capacitors, the PLL VCC should receive the most  
filtering/bypassing. Next would be the LVDS VCC pins and finally the logic VCC pins.  
Figure 26. Recommended Bypass Capacitor Decoupling Configuration  
10 Layout  
10.1 Layout Guidelines  
As with any high speed design, board designers must maximize signal integrity by limiting reflections and  
crosstalk that can adversely affect high frequency and EMI performance. The following practices are  
recommended layout guidelines to optimize device performance.  
Ensure that differential pair traces are always closely coupled to eliminate noise interference from other  
signals and take full advantage of the common mode noise canceling effect of the differential signals.  
Maintain equal length on signal traces for a given differential pair.  
Limit impedance discontinuities by reducing the number of vias on signal traces.  
Eliminate any 90º angles on traces and use 45º bends instead.  
If a via must exist on one signal polarity, mirror the via implementation on the other polarity of the differential  
pair.  
Match the differential impedance of the selected physical media. This impedance should also match the value  
of the termination resistor that is connected across the differential pair at the receiver's input.  
When possible, use short traces for LVDS inputs.  
10.2 Layout Examples  
The following images show an example layout of the DS90CR286A.Traces in blue correspond to the top layer  
and the traces in green correspond to the bottom layer. Note that differential pair inputs to the DS90CR286A are  
tightly coupled and close to the connector pins. In addition, observe that the power supply decoupling capacitors  
are placed as close as possible to the power supply pins with through vias in order to minimize inductance. The  
principles illustrated in this layout can also be applied to the 48-pin DS90CR216A.  
Copyright © 2000–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
 
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
SNLS043H MAY 2000REVISED JANUARY 2016  
www.ti.com  
Layout Examples (continued)  
Figure 27. Example Layout With DS90CR286A (U1)  
100-Q [ë5{  
Çerminations close to  
wxLb pins  
33 Q {ꢀŒ]ꢀ• wꢀ•]•š}Œ•  
occasionally used to  
reduce reflections  
Figure 28. Example Layout Close-up  
24  
Submit Documentation Feedback  
Copyright © 2000–2016, Texas Instruments Incorporated  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
DS90CR216A, DS90CR286A, DS90CR286A-Q1  
www.ti.com  
SNLS043H MAY 2000REVISED JANUARY 2016  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 4. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
DS90CR216A  
DS90CR286A  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
DS90CR286A-Q1  
11.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2000–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
DGG  
DGG  
DGG  
DGG  
DGG  
DGG  
DGG  
DGG  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90CR216AMTD  
DS90CR216AMTD/NOPB  
DS90CR216AMTDX/NOPB  
DS90CR286AMTD  
NRND  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
48  
48  
48  
56  
56  
56  
56  
56  
38  
Non-RoHS  
& Green  
Call TI  
Level-2-235C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-235C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
DS90CR216AMTD  
>B  
ACTIVE  
ACTIVE  
NRND  
38  
RoHS & Green  
SN  
SN  
DS90CR216AMTD  
>B  
1000 RoHS & Green  
DS90CR216AMTD  
>B  
34  
34  
Non-RoHS  
& Green  
Call TI  
SN  
DS90CR286AMTD  
>B  
DS90CR286AMTD/NOPB  
DS90CR286AMTDX/NOPB  
DS90CR286AQMT/NOPB  
DS90CR286AQMTX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RoHS & Green  
DS90CR286AMTD  
>B  
1000 RoHS & Green  
34 RoHS & Green  
1000 RoHS & Green  
SN  
DS90CR286AMTD  
>B  
SN  
DS90CR286AQ  
MT  
SN  
DS90CR286AQ  
MT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF DS90CR286A, DS90CR286A-Q1 :  
Catalog : DS90CR286A  
Automotive : DS90CR286A-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90CR216AMTDX/  
NOPB  
TSSOP  
TSSOP  
TSSOP  
DGG  
DGG  
DGG  
48  
56  
56  
1000  
1000  
1000  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
8.6  
8.6  
8.6  
13.2  
14.5  
14.5  
1.6  
1.8  
1.8  
12.0  
12.0  
12.0  
24.0  
24.0  
24.0  
Q1  
Q1  
Q1  
DS90CR286AMTDX/  
NOPB  
DS90CR286AQMTX/  
NOPB  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90CR216AMTDX/NOPB  
DS90CR286AMTDX/NOPB  
TSSOP  
TSSOP  
TSSOP  
DGG  
DGG  
DGG  
48  
56  
56  
1000  
1000  
1000  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
45.0  
45.0  
45.0  
DS90CR286AQMTX/  
NOPB  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DS90CR216AMTD  
DS90CR216AMTD  
DGG  
DGG  
DGG  
DGG  
DGG  
DGG  
DGG  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
48  
48  
48  
56  
56  
56  
56  
38  
38  
38  
34  
34  
34  
34  
495  
495  
495  
495  
495  
495  
495  
10  
10  
10  
10  
10  
10  
10  
2540  
2540  
2540  
2540  
2540  
2540  
2540  
5.79  
5.79  
5.79  
5.79  
5.79  
5.79  
5.79  
DS90CR216AMTD/NOPB  
DS90CR286AMTD  
DS90CR286AMTD  
DS90CR286AMTD/NOPB  
DS90CR286AQMT/NOPB  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DGG0056A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
2
0
0
SMALL OUTLINE PACKAGE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
54X 0.5  
56  
1
14.1  
13.9  
NOTE 3  
2X  
13.5  
28  
B
29  
0.27  
0.17  
6.2  
6.0  
56X  
1.2 MAX  
0.08  
C A  
B
(0.15) TYP  
0.25  
GAGE PLANE  
0 - 8  
SEE DETAIL A  
0.15  
0.05  
0.75  
0.50  
DETAIL A  
TYPICAL  
4222167/A 07/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05)  
TYP  
SYMM  
28  
29  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222167/A 07/2015  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05) TYP  
SYMM  
28  
29  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4222167/A 07/2015  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DGG0048A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
3
5
0
SMALL OUTLINE PACKAGE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
46X 0.5  
48  
1
12.6  
12.4  
NOTE 3  
2X  
11.5  
24  
B
25  
0.27  
0.17  
48X  
6.2  
6.0  
1.2  
1.0  
0.08  
C A B  
(0.15) TYP  
0.25  
GAGE PLANE  
0 - 8  
SEE DETAIL A  
0.15  
0.75  
0.05  
0.50  
DETAIL A  
TYPICAL  
4214859/B 11/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGG0048A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
48X (1.5)  
SYMM  
1
48  
48X (0.3)  
46X (0.5)  
(R0.05)  
TYP  
SYMM  
24  
25  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214859/B 11/2020  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGG0048A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
48X (1.5)  
SYMM  
1
48  
48X (0.3)  
46X (0.5)  
SYMM  
(R0.05) TYP  
24  
25  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4214859/B 11/2020  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
MECHANICAL DATA  
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998  
DGG (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
48 PINS SHOWN  
0,27  
0,17  
M
0,08  
0,50  
48  
25  
6,20  
6,00  
8,30  
7,90  
0,15 NOM  
Gage Plane  
0,25  
1
24  
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
48  
56  
64  
DIM  
A MAX  
12,60  
12,40  
14,10  
13,90  
17,10  
16,90  
A MIN  
4040078/F 12/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY