DS90LV028AQDQFRQ1 [TI]

汽车类 LVDS 双路差动线路接收器 | DQF | 8 | -40 to 125;
DS90LV028AQDQFRQ1
型号: DS90LV028AQDQFRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 LVDS 双路差动线路接收器 | DQF | 8 | -40 to 125

光电二极管 接口集成电路
文件: 总24页 (文件大小:1297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
DS90LV028A-Q1 汽车LVDS 双路差动线路接收器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
DS90LV028A-Q1 是一款双路 CMOS 差分线路接收  
专为需要超低功率损耗、低噪声和高数据速率的应  
用而设计。该器件旨在利用低电压差动信号 (LVDS) 技  
术支持超400Mbps (200MHz) 的数据速率。  
– 温度等2-40°C +105°C  
>400Mbps (200MHz) 的开关速率  
50ps 差分延迟典型值)  
0.1ns 通道间延迟典型值)  
2.5ns 最大传播延迟  
3.3V 电源设计  
• 直通引脚排列  
DS90LV028A-Q1 可接受低电压350mV 典型值差  
分输入信号并将其转换为 3V CMOS 输出电平。  
DS90LV028A-Q1 采用了直通式设计可简化 PCB 布  
局。  
• 在断电模式下LVDS 输入端具有高阻抗  
• 低功耗设计3.3V 静态条件下18mW)  
LVDS 输入可接LVDS/CML/LVPECL 信号  
• 符ANSI/TIA/EIA-644 标准  
DS90LV028A-Q1 配套的 LVDS 线路驱动器  
DS90LV027AQ 为高速点对点接口应用提供了高功率  
PECL/ECL 器件的全新替代方案。  
器件信息(1)  
2 应用  
封装尺寸标称值)  
器件型号  
封装  
DS90LV028A-Q1  
WSON (DQF 8)  
2.00mm x 2.00mm  
电子销售终(EPOS) 应用  
汽车信息娱乐系统与仪表组  
汽车音响主机  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
RIN1-  
RIN1+  
RIN2-  
RIN2+  
R
ROUT1  
R
ROUT2  
功能图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNLS672  
 
 
 
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram.........................................10  
8.3 Feature Description...................................................10  
8.4 Device Functional Modes..........................................10  
9 Application and Implementation.................................. 11  
9.1 Application Information..............................................11  
9.2 Typical Application.................................................... 11  
10 Power Supply Recommendations..............................13  
11 Layout...........................................................................14  
11.1 Layout Guidelines................................................... 14  
11.2 Layout Examples.....................................................14  
12 Device and Documentation Support..........................15  
12.1 支持资源..................................................................15  
12.2 Trademarks.............................................................15  
12.3 静电放电警告.......................................................... 15  
12.4 术语表..................................................................... 15  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD and Latch-Up Ratings.........................................4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................5  
6.7 Typical Performance Curves.......................................6  
7 Parameter Measurement Information............................9  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
Information.................................................................... 16  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
August 2020  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DS90LV028A-Q1  
 
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
RIN1-  
8
7
6
5
1
2
3
4
VCC  
RIN1+  
ROUT  
1
RIN2+  
RIN2-  
ROUT  
2
GND  
5-1. DQF Package WSON 8 Pin Top View  
Pin Functions  
Pin Number  
Name  
Description  
1
4
2
3
6
7
8
5
RIN1-  
RIN2-  
RIN1+  
RIN2+  
Inverting receiver input pin  
Non-inverting receiver input pin  
Receiver output pin  
ROUT  
ROUT  
VCC  
2
1
Power supply pin, +3.3V +/- 0.3V  
Ground pin  
GND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DS90LV028A-Q1  
 
 
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
MIN  
0.3  
0.3  
0.3  
MAX  
4
UNIT  
V
Supply Voltage (VCC  
Input Voltage (RIN+, RIN)  
Output Voltage (ROUT  
)
3.9  
V
)
VCC+0.3  
260  
V
Lead Temperature Range Soldering  
Maximum Junction Temperature  
Storage temperature, Tstg  
(4 sec.)  
°C  
°C  
°C  
125  
150  
65  
6.2 ESD and Latch-Up Ratings  
VALUE  
±4000  
±1250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
Positive I-Test Latch-Up  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Positive I-Test Latchup , per AEC Q100-004 at maximum ambient temperature (all  
signal pins)  
I-Test+  
+100  
-100  
-70  
mA  
mA  
mA  
Negative I-Test Latchup, per AEC Q100-004 at maximum ambient temperature  
(all signal pins except pin 3)  
I-Test-  
Negative I-Test Latch-Up  
Negative I-Test Latchup, per AEC Q100-004 at maximum ambient temperature  
(pin 3)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. .  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Min  
Typ  
Max  
Units  
Supply Voltage (VCC  
)
+3.0  
+0.5  
40  
+3.3  
25  
+3.6  
+2.1  
105  
V
Receiver Input Voltage  
V
Operating Free Air Temperature (TA)  
°C  
6.4 Thermal Information  
DS90LV028A-Q1  
DQF (WSON)  
8 PINS  
104.0  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(bot)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
33.3  
Junction-to-board thermal resistance  
27.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.3  
27.4  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DS90LV028A-Q1  
 
 
 
 
 
 
 
 
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
www.ti.com.cn  
6.5 Electrical Characteristics  
Over Supply Voltage and Operating Temperature ranges, unless otherwise specified. (1) (2)  
Symbol  
VTH  
VTL  
Parameter  
Conditions  
Pin  
Min  
Typ  
Max  
+100  
Units  
mV  
Differential Input High Threshold  
Differential Input Low Threshold  
VCM(1) = +1.2 V, 0.5 + (|VID|/2) V, 2.1 - (|VID|/2(2)  
mV  
uA  
uA  
uA  
V
100  
RIN+,  
VIN = +2.8V  
VCC = 3.6V or 0V  
VIN = 0V  
±1  
±1  
+10  
+10  
+20  
10  
10  
-20  
2.7  
RIN−  
IIN  
Input Current  
VIN = +3.6V  
VCC = 0V  
IOH = 0.4 mA, VID (2) = +200 mV  
IOL = 2 mA, VID (2) = 200 mV  
VOUT = 0V (3)  
VOH  
VOL  
IOS  
Output High Voltage  
3.1  
0.3  
Output Low Voltage  
0.5  
V
ROUT  
Output Short Circuit Current  
Input Clamp Voltage  
mA  
V
100  
1.5  
50  
0.8  
5.4  
15  
VCL  
ICC  
ICL = 18 mA  
No Load Supply Current  
VID (2) = +200 mV or -200mV  
VCC  
9
mA  
(1) VCM is input common mode voltage |(VRIN+ + VRIN-)/2|  
(2) VID is input differential voltage (VRIN+ - VRIN-  
)
6.6 Switching Characteristics  
Over Supply Voltage and Operating Temperature ranges, unless otherwise specified.(2) (4) (5)  
Symbol  
tPHLD  
tPLHD  
tSKD1  
tSKD2  
tSKD3  
tSKD4  
tTLH  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Differential Propagation Delay High to Low  
CL = 15 pF  
1.0  
1.0  
0
1.6  
1.7  
50  
2.5  
2.5  
650  
0.5  
1.0  
1.5  
800  
800  
ns  
Differential Propagation Delay Low to High  
VID = 200 mV  
ns  
(6)  
ps  
Differential Pulse Skew |tPHLD tPLHD  
|
(7-1 and 7-2)  
Differential Channel-to-Channel Skew-same device (7)  
Differential Part to Part Skew (8)  
Differential Part to Part Skew (9)  
Rise Time  
0
0.1  
ns  
0
ns  
0
ns  
325  
225  
250  
ps  
tTHL  
Fall Time  
ps  
fMAX  
Maximum Operating Frequency (10)  
MHz  
(1) Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground  
unless otherwise specified (such as VID).  
(2) All typicals are given for: VCC = +3.3V and TA = +25°C.  
(3) Output short circuit current (IOS) is specified as magnitude only, minus sign indicates direction only. Only one output should be shorted  
at a time, do not exceed maximum junction temperature specification.  
(4) CL includes probe and jig capacitance.  
(5) Generator waveform for all tests unless otherwise specified: f = 1 MHz, ZO = 50Ω, tr and tf (0% to 100%) 3 ns for RIN.  
(6) tSKD1 is the magnitude difference in differential propagation delay time between the positive-going-edge and the negative-going-edge  
of the same channel.  
(7) tSKD2 is the differential channel-to-channel skew of any event on the same device. This specification applies to devices having multiple  
receivers within the integrated circuit.  
(8) tSKD3, part to part skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices  
at the same VCC and within 5°C of each other within the operating temperature range.  
(9) tSKD4, part to part skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices  
over the recommended operating temperature and voltage ranges, and across process distribution. tSKD4 is defined as |Max Min|  
differential propagation delay.  
(10) fMAX generator input conditions: tr = tf < 1 ns (0% to 100%), 50% duty cycle, differential (1.05V to 1.35 peak to peak). Output criteria:  
60%/40% duty cycle, VOL (max 0.4V), VOH (min 2.7V), load = 15 pF (stray plus probes).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DS90LV028A-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
www.ti.com.cn  
6.7 Typical Performance Curves  
6-2. Output Low Voltage vs Power Supply  
6-1. Output High Voltage vs Power Supply  
Voltage  
Voltage  
6-4. Differential Transition Voltage vs Power  
6-3. Output Short Circuit Current vs Power  
Supply Voltage  
Supply Voltage  
6-5. Differential Propagation Delay vs Power  
6-6. Differential Propagation Delay vs  
Supply Voltage  
Differential Input Voltage  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DS90LV028A-Q1  
 
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
www.ti.com.cn  
6-8. Transition Time vs Power Supply Voltage  
6-7. Differential Propagation Delay vs Common-  
Mode Voltage  
6-9. Differential Skew vs Power Supply Voltage  
6-10. Differential Propagation Delay vs Load  
6-12. Transition Time vs Load  
6-11. Differential Propagation Delay vs Load  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DS90LV028A-Q1  
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
www.ti.com.cn  
6-13. Transition Time vs Load  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DS90LV028A-Q1  
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
www.ti.com.cn  
7 Parameter Measurement Information  
7-1. Receiver Propagation Delay and Transition Time Test Circuit  
7-2. Receiver Propagation Delay and Transition Time Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DS90LV028A-Q1  
 
 
 
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
LVDS drivers and receivers are intended to be primarily used in a simple point-to-point configuration as is shown  
in 9-1. This configuration provides a clean signaling environment for the fast edge rates of the drivers. The  
receiver is connected to the source through a impedance controlled 100 Ωdifferential PCB traces. A termination  
resistor of 100 Ω should be used, and is located as close to the receiver input pins as possible. The termination  
resistor converts the driver output (current mode) into a voltage that is detected by the receiver.  
8.2 Functional Block Diagram  
RIN1-  
R
ROUT1  
RIN1+  
RIN2-  
RIN2+  
R
ROUT2  
8.3 Feature Description  
The DS90LV028A-Q1 differential line receiver is capable of detecting signals as low as 100 mV, over a common-  
mode range of 0.5 + (VID/2) V to 2.1 - (VID/2) V. This is related to the driver offset voltage which is typically  
+1.2V. The driven signal is centered around this voltage and may shift ±0.5V around this center point. The ±0.5V  
shifting may be the result of a ground potential difference between the driver's ground reference and the  
receiver's ground reference, the common-mode effects of coupled noise, or a combination of the two. The AC  
parameters of both receiver input pins are optimized for a recommended operating input voltage range of +0.5V  
to +2.1V (measured from each pin to ground). The device will operate for receiver input voltages up to VCC, but  
exceeding VCC will turn on the ESD protection circuitry which will clamp the bus voltages.  
8.4 Device Functional Modes  
8-1. Truth Table  
INPUTS  
[RIN+] [RIN]  
VID 0.1V  
OUTPUT  
ROUT  
H
L
VID 0.1V  
(1)  
?
0.1V VID 0.1V  
(1) ? indicates state is indeterminate  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DS90LV028A-Q1  
 
 
 
 
 
 
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
General application guidelines and hints for LVDS drivers and receivers may be found in the LVDS application  
notes and design guides.  
9.2 Typical Application  
9-1. Balanced System Point-to-Point Application  
9.2.1 Design Requirements  
When using LVDS devices, it is important to remember to specify controlled impedance PCB traces. All  
components of the transmission media must have a matched differential impedance of 100 Ω. They must not  
introduce major impedance discontinuities.  
9.2.2 Detailed Design Procedure  
9.2.2.1 Power Decoupling Recommendations  
Bypass capacitors must be used on power pins. Use high frequency ceramic (surface mount is recommended)  
0.1 μF and 0.01 μF capacitors in parallel at the power supply pin with the smallest value capacitor closest to  
the device supply pin. Additional scattered capacitors over the printed circuit board will improve decoupling.  
Multiple vias should be used to connect the decoupling capacitors to the power planes. A 10 μF (35 V) or  
greater solid tantalum capacitor should be connected at the power entry point on the printed circuit board  
between the supply and ground.  
9.2.2.2 Termination  
Use a termination resistor which best matches the differential impedance or your transmission line. The resistor  
should be between 90 and 110 . Remember that the current mode outputs need the termination resistor to  
generate the differential voltage. LVDS will not work correctly without resistor termination. Typically, connecting a  
single resistor across the pair at the receiver end will suffice.  
Surface mount 1% resistors are the best. PCB stubs, component lead, and the distance from the termination to  
the receiver inputs should be minimized. The distance between the termination resistor and the receiver should  
be < 10 mm (12 mm MAX).  
9.2.2.3 Input Failsafe Biasing  
External pull up and pull down resistors may be used to provide enough of an offset to enable an input failsafe  
under open-circuit conditions. This configuration ties the positive LVDS input pin to VDD thru a pull up resistor  
and the negative LVDS input pin is tied to GND by a pull down resistor. The pull up and pull down resistors  
should be in the 5 kto 15 krange to minimize loading and waveform distortion to the driver. The common-  
mode bias point ideally should be set to approximately 1.2 V to be compatible with the internal circuitry. Please  
refer to application note AN-1194, Failsafe Biasing of LVDS Interfaces(SNLA051)for more information.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DS90LV028A-Q1  
 
 
 
 
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
www.ti.com.cn  
9.2.2.4 Probing LVDS Transmission Lines  
Always use high impedance (> 100 k), low capacitance (< 2 pF) scope probes with a wide bandwidth (1 GHz)  
scope. Improper probing will give deceiving results.  
9.2.3 Application Curves  
9-2. Power Supply Current vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DS90LV028A-Q1  
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
Bypass capacitors must be used on power pins. TI recommends using high-frequency, ceramic, 0.1-µF and  
0.01-µF capacitors in parallel at the power supply pin with the smallest value capacitor closest to the device  
supply pin. Additional scattered capacitors over the printed-circuit board improves decoupling. Multiple vias must  
be used to connect the decoupling capacitors to the power planes. A 10-µF bulk capacitor, 35-V (or greater)  
solid tantalum capacitor must be connected at the power entry point on the printed-circuit board between the  
supply and ground.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DS90LV028A-Q1  
 
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Differential Traces  
Use controlled impedance traces which match the differential impedance of your transmission trace and  
termination resistor. Run the differential pair trace lines as close together as possible as soon as they leave the  
IC (stubs should be < 10mm long). This will help eliminate reflections and ensure noise is coupled as common-  
mode. In fact, we have seen that differential signals which are 1mm apart radiate far less noise than traces 3mm  
apart since magnetic field cancellation is much better with the closer traces. In addition, noise induced on the  
differential lines is much more likely to appear as common-mode which is rejected by the receiver.  
Match electrical lengths between traces to reduce skew. Skew between the signals of a pair means a phase  
difference between signals which destroys the magnetic field cancellation benefits of differential signals and EMI  
will result! (Note that the velocity of propagation, v = c/E r where c (the speed of light) = 0.2997 mm/ps or 0.0118  
in/ps). Do not rely solely on the autoroute function for differential traces. Carefully review dimensions to match  
differential impedance and provide isolation for the differential lines. Minimize the number of vias and other  
discontinuities on the line.  
Avoid 90° turns (these cause impedance discontinuities). Use arcs or 45° bevels.  
Within a pair of traces, the distance between the two traces should be minimized to maintain common-mode  
rejection of the receivers. On the printed circuit board, this distance should remain constant to avoid  
discontinuities in differential impedance. Minor violations at connection points are allowable.  
11.1.2 PC Board Considerations  
Use at least 4 PCB board layers (top to bottom): LVDS signals, ground, power, TTL signals.  
Isolate TTL signals from LVDS signals, otherwise the TTL signals may couple onto the LVDS lines. It is best to  
put TTL and LVDS signals on different layers which are isolated by a power/ground plane(s).  
11.2 Layout Examples  
11-1. WSON Thermal Land Pad and Pin Pads  
DS90LV028A  
DS90LV027A  
DO- 1  
1
2
3
4
VCC  
16  
15  
14  
13  
1
2
3
4
8
7
6
5
RIN1-  
RIN1+  
RIN2+  
RIN2-  
VCC  
DI 1  
DI 2  
Series Termination (optional)  
ROUT1  
ROUT2  
GND  
DO+ 1  
DO+ 2  
DO- 2  
LVCMOS  
Inputs  
LVCMOS  
Outputs  
Decoupling Cap  
(Bottom Layer)  
GND  
Decoupling Cap  
(Bottom Layer)  
Input Termination  
(Required)  
11-2. Simplified DS90LV027A and DS90LV028A Layout  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DS90LV028A-Q1  
 
 
 
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 支持资源  
TI E2E中文支持论坛是工程师的重要参考资料可直接从专家处获得快速、经过验证的解答和设计帮助。搜索  
现有解答或提出自己的问题获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 使用条款。  
12.2 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.3 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.4 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DS90LV028A-Q1  
 
 
 
 
 
DS90LV028A-Q1  
ZHCSR68 AUGUST 2020  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DS90LV028A-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90LV028AQDQFRQ1  
DS90LV028AQDQFTQ1  
ACTIVE  
ACTIVE  
WSON  
WSON  
DQF  
DQF  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 105  
-40 to 105  
D28Q  
D28Q  
Samples  
Samples  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jun-2023  
OTHER QUALIFIED VERSIONS OF DS90LV028A-Q1 :  
Catalog : DS90LV028A  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90LV028AQDQFRQ1 WSON  
DS90LV028AQDQFTQ1 WSON  
DQF  
DQF  
8
8
3000  
250  
178.0  
178.0  
8.4  
8.4  
2.25  
2.25  
2.25  
2.25  
1.0  
1.0  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90LV028AQDQFRQ1  
DS90LV028AQDQFTQ1  
WSON  
WSON  
DQF  
DQF  
8
8
3000  
250  
205.0  
205.0  
200.0  
200.0  
33.0  
33.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DQF0008A  
WSON - 0.8 mm max height  
S
C
A
L
E
6
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.05 C  
0.05  
0.00  
SYMM  
(0.2) TYP  
4
5
SYMM  
2X 1.5  
6X 0.5  
8
1
0.3  
8X  
0.2  
0.1  
0.05  
0.7  
0.5  
C A B  
PIN 1 ID  
0.6  
0.4  
7X  
4220563/A 03/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DQF0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SEE SOLDER MASK  
DETAIL  
SYMM  
(0.8)  
8
8X (0.25)  
1
SYMM  
6X (0.5)  
(R0.05) TYP  
4
5
7X (0.7)  
(1.7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 30X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220563/A 03/2021  
NOTES: (continued)  
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DQF0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.8)  
8X (0.25)  
1
8
SYMM  
6X (0.5)  
(R0.05) TYP  
5
4
SYMM  
(1.7)  
7X (0.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 30X  
4220563/A 03/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY