DS90UB635TRHBTQ1 [TI]

汽车级 4.16Gbps FPD-Link III CSI-2 串行器 | RHB | 32 | -40 to 105;
DS90UB635TRHBTQ1
型号: DS90UB635TRHBTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级 4.16Gbps FPD-Link III CSI-2 串行器 | RHB | 32 | -40 to 105

光电二极管
文件: 总81页 (文件大小:3072K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
DS90UB635-Q1 适用2.3MP/60fps 摄像头、雷达和其他传感器并具CSI-2 接  
FPD-Link III 4.16Gbps 串行器  
1 特性  
2 应用  
• 符合面向汽车应用AEC-Q100 标准  
• 高级驾驶辅助系(ADAS)  
– 器件温度等2-40°C +105°C 环境工作温  
度范围  
• 符ISO 10605 IEC 61000-4-2 ESD 标准  
• 同轴电缆供(PoC) 兼容收发器  
4.16Gbps 等级串行器支持高速传感器包括全高  
1080p 2.3MP 60fps 4MP 30fps 成像器  
• 符D-PHY v1.2 CSI-2 v1.3 标准的系统接口  
环视系(SVS)  
摄像头监控系(CMS)  
前视摄像(FC)  
驾驶员监控系(DMS)  
后视摄像(RVC)  
飞行时(ToF) 传感器模块  
– 侧后视镜显(SMD)  
汽车卫星雷达模块  
安全和监控  
– 多4 个数据通道每通道速率600Mbps 至  
832Mbps  
– 支持多达四个虚拟通道  
工业和医疗成像  
• 精密多摄像头时钟和同步  
3 说明  
• 灵活的可编程输出时钟发生器  
• 高级数据保护和诊断CRC 数据保护、传感  
器数据完整性检查、I2C 写保护、电压和温度测  
量、可编程警报、BIST、图形生成以及线路故障检  
• 支持单端同轴或屏蔽双绞线(STP) 电缆  
• 超低延迟双I2C GPIO 控制通道支持ECU  
ISP 控制  
DS90UB635-Q1 串行器属于 TI FPD-Link III 器件系  
旨在支持高速原始数据传感器包括 2.3MP/60fps  
成像仪以及 4MP/30fps 摄像头、卫星雷达、激光雷达  
和飞行时间 (ToF) 传感器。该芯片提供 4.16Gbps 正向  
通道和超低延迟的 50Mbps 双向控制通道并支持单  
根同轴 (PoC) STP 电缆进行供电。DS90UB635-Q1  
具有先进的数据保护和诊断功能可支持 ADAS 和自  
动驾驶。在结合配套解串器的情况下DS90UB635-  
Q1 可提供精确的多摄像头传感器时钟和传感器同步。  
• 单1.8 V 电源  
• 低功耗0.28W 典型值)  
• 超低延迟双I2C GPIO 控制通道支持ECU  
DS90UB635-Q1 全符合 AEC-Q100 有  
-40°C 105°C 的宽温度范围。该串行器采用 5mm ×  
5mm 小型 VQFN 封装适用于空间受限型传感器应  
用。  
ISP 控制  
• 用于防伪认证的唯一芯ID  
DS90UB638-Q1 解串器DS90UB662-Q1 集线  
器兼容  
• 小5mm × 5mm VQFN 封装PoC 解决方案尺  
适合紧凑型摄像头模块设计  
器件信息  
(1)  
封装尺寸标称值)  
器件型号  
DS90UB635-Q1  
VQFN (32)  
5.00mm × 5.00mm  
(1) 要了解所有可用封装请见数据表末尾的可订购产品附录。  
MIPI CSI-2  
MIPI CSI-2  
DS90UB63x-Q1  
D3P/N  
D3P/N  
or  
DS90UB635-Q1  
Full HD  
Image Sensor  
Image  
Signal  
Processor  
DS90UB66x-Q1  
Deserializer  
D2P/N  
D2P/N  
D1P/N  
D0P/N  
FPD-Link III  
(over Coax or STP)  
Serializer  
D1P/N  
(ISP)  
D0P/N  
RIN+/-  
DOUT+/-  
CLKP/N  
CLKP/N  
I2C  
I2C  
HS-GPIO  
HS-GPIO  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNLS707  
 
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
Table of Contents  
7.6 Pattern Generation....................................................28  
7.7 Register Maps...........................................................31  
8 Application and Implementation..................................59  
8.1 Application Information............................................. 59  
8.2 Typical Applications.................................................. 62  
9 Power Supply Recommendations................................66  
9.1 Power-Up Sequencing..............................................66  
9.2 Power Down (PDB)...................................................67  
10 Layout...........................................................................68  
10.1 Layout Guidelines................................................... 68  
10.2 Layout Examples.................................................... 69  
11 Device and Documentation Support..........................73  
11.1 Documentation Support.......................................... 73  
11.2 Receiving Notification of Documentation Updates..73  
11.3 支持资源..................................................................73  
11.4 Trademarks............................................................. 73  
11.5 静电放电警告...........................................................73  
11.6 术语表..................................................................... 73  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................7  
6.6 Recommended Timing for the Serial Control Bus.....11  
6.7 Timing Diagrams.......................................................12  
6.8 Typical Characteristics..............................................12  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................13  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................21  
7.5 Programming............................................................ 26  
Information.................................................................... 74  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
February 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
VDDD  
VDDD_CAP  
GPIO_2  
VDDDRV  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
DAP = GND  
VDDDRV_CAP  
DOUT+  
DS90UB635-Q1  
GPIO_3  
DOUT-  
32L QFN  
(Top View)  
CSI_D3P  
CSI_D3N  
CSI_D2P  
CSI_D2N  
LPF2  
VDDPLL  
VDDPLL_CAP  
LPF1  
5-1. RHB Package  
32-Pin VQFN  
Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
CSI INTERFACE  
CSI_CLKP  
CSI_CLKN  
CSI_D0P  
CSI_D0N  
CSI_D1P  
CSI_D1N  
CSI_D2P  
CSI_D2N  
CSI_D3P  
CSI_D3N  
5
6
I, DPHY  
I, DPHY  
I, DPHY  
I, DPHY  
I, DPHY  
I, DPHY  
I, DPHY  
I, DPHY  
I, DPHY  
I, DPHY  
CSI-2 clock input pins. Connect to a CSI-2 clock source with matched 100-Ω(±5%) impedance  
interconnects.  
3
4
1
2
CSI-2 data input pins. Connect to a CSI-2 data sources with matched 100-Ω(±5%) impedance  
interconnects. If unused, these pins may be left floating.  
31  
32  
29  
30  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
SERIAL CONTROL INTERFACE  
I2C_SDA  
I2C_SCL  
23  
24  
OD  
OD  
I2C Data and Clock Pins. Typically pulled up by 470-Ωto 4.7-kΩresistors to either 1.8-V or 3.3-V supply  
rail depending on IDX setting. See 7.5.1 for further details on the I2C implementation of the  
DS90UB635-Q1.  
CONFIGURATION and CONTROL  
RES0  
RES1  
7
I
I
Reserved pin Connect to GND  
22  
Reserved pin Do not connect (leave floating)  
Power-down inverted Input Pin. Internal 1-MΩpulldown. Typically connected to processor GPIO with pull  
down. When PDB input is brought HIGH, the device is enabled and internal register and state machines  
are reset to default values. Asserting PDB signal low will power down the device and consume minimum  
power. The default function of this pin is PDB = LOW; POWER DOWN. PDB should remain low until after  
power supplies are applied and reach minimum required levels. See 9.2 for further details on the  
function of PDB.  
PDB  
8
I, PD  
PDB INPUT IS NOT 3.3-V TOLERANT.  
PDB = 1.8 V, device is enabled (normal operation)  
PDB = 0, device is powered down.  
Mode select configuration input. Default operational mode will be strapped at start-up based on the MODE  
input voltage when PDB transitions LOW to HIGH. Typically connected to voltage divider through external  
pullup to VDD18 and pulldown to GND applying an appropriate bias voltage. See 7.4.2 for details.  
MODE  
21  
19  
I, S  
IDX pin sets the I2C pullup voltage and device address; connect to external pullup to VDD and pulldown  
to GND to create a voltage divider. When PDB transitions LOW to HIGH, the strap input voltage is sensed  
at the CLOCK_OUT/IDX pin to determine functionality and then converted to CLK_OUT. See 7.5.1 for  
details. If CLK_OUT is used, the minimum resistance on the pin is 35 kΩ. If unused, CLK_OUT/IDX may  
be tied to GND.  
CLK_OUT/IDX  
I/O, S  
FPD-LINK III INTERFACE  
DOUT-  
13  
14  
I/O  
I/O  
FPD-Link III Input/Output pins. These pins must be AC-coupled. See 8-5 and 8-6 for typical  
connection diagrams and 8-3 for recommended capacitor values.  
DOUT+  
POWER AND GROUND  
A connection for an internal analog regulator decoupling capacitor. Typically connected to 10-µF, 0.1-µF,  
and 0.01-µF capacitors to GND. Do not connect to an external supply rail. See 8.2 for more details.  
VDDD_CAP  
VDDDRV_CAP  
VDDPLL_CAP  
VDDD  
26  
15  
D, P  
D, P  
D, P  
P
A connection for an internal analog regulator decoupling capacitor. Typically connected to 10-µF, 0.1-µF,  
and 0.01-µF capacitors to GND. Do not connect to an external supply rail. See 8.2 for more details.  
A connection for an internal analog regulator decoupling capacitor. Typically connected to 10-µF, 0.1-µF,  
and 0.01-µF capacitors to GND. Do not connect to an external supply rail. See 8.2 for more details.  
10  
1.8-V (±5%) Power Supply pin.  
Typically connected to 1-µF and 0.01-µF capacitors to GND.  
25  
1.8-V (±5%) Analog Power Supply pin.  
Typically connected to 1-µF and 0.01-µF capacitors to GND.  
VDDDRV  
VDDPLL  
16  
P
1.8-V (±5%) Analog Power Supply pin.  
Typically connected to 1-µF and 0.01-µF capacitors to GND.  
11  
P
DAP is the large metal contact at the bottom side, located at the center of the VQFN package. Connect to  
the ground plane (GND).  
GND  
DAP  
G
LOOP FILTER  
LPF1  
9
P
P
Loop Filter 1: Connect as described in 8.2.2.4.  
Loop Filter 2: Connect as described in 8.2.2.4.  
LPF2  
12  
CLOCK INTERFACE AND GPIO  
GPIO_0  
17  
I/O, PD  
I/O, PD  
General-Purpose Input/Output pins. These pins can also be configured to sense the voltage at their  
inputs. See 7.3.4.3. At power up, these GPIO pins default to inputs with a 300-kΩ(typical) internal  
pulldown resistor. These pins may be left floating if unused, but TI recommends to set the  
GPIOx_INPUT_EN to 0 to disable the pins. See 7.3.6 for programmability.  
GPIO_1  
18  
GPIO_2  
GPIO_3  
27  
28  
I/O, PD  
I/O. PD  
General-Purpose Input/Output pins. At power up, these GPIO pins default to inputs with a 300-kΩ  
(typical) internal pulldown resistor. These pins may be left floating if unused, but TI recommends to set the  
GPIOx_INPUT_EN to 0 to disable the pins. See 7.3.6 for programmability.  
Reference Clock Input pin. If operating in non-sync external clock mode, connect this pin to a local clock  
source. If unused (like other clocking modes), this pin may be left open. See 7-8 for more information  
on clocking modes.  
CLKIN  
20  
I
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
PIN OR  
FREQUENCY  
MIN  
MAX  
UNIT  
VDDD,  
VDDDRV,  
VDDPLL  
Supply voltage, VDD  
Input voltage  
2.16  
V
0.3  
GPIO[3:0],  
PDB, CLKIN,  
IDX, MODE,  
CSI_CLKP/N,  
CSI_D0P/N,  
CSI_D1P/N,  
CSI_D2P/N,  
CSI_D3P/N  
VDD + 0.3  
V
0.3  
DOUT+,  
DOUT-  
FPD-Link III output voltage  
Open-drain voltage  
1.21  
3.96  
V
V
0.3  
0.3  
I2C_SDA, I2C_  
SCL  
Junction temperature, TJ  
Storage termperature, Tstg  
150  
150  
°C  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
All pins except Media Dependent  
Interface Pins  
Human body model (HBM) ESD  
Classification Level 3A, per AEC  
Q100-002(1)  
±4000  
V
Media Dependent Interface  
Pins  
Charged-device model (CDM) ESD Classification Level C6, per AEC  
Q100-011  
±1500  
±8000  
±18000  
±8000  
V
V
V
V
Contact Discharge  
Electrostatic  
discharge  
V(ESD)  
(DOUT+ and DOUT-)  
IEC 61000-4-2  
RD = 330 , CS = 150 pF  
Air Discharge  
(DOUT+ and DOUT-)  
Contact Discharge  
(DOUT+ and DOUT-)  
ISO 10605  
RD = 330 , CS = 150 pF and 330 pF  
RD = 2 k, CS = 150 pF and 330 pF  
Air Discharge  
(DOUT+ and DOUT-)  
±18000  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DS90UB635-Q1  
 
 
 
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VDD (VDDD, VDDDRV,  
VDDPLL)  
Supply voltage  
1.71  
1.8  
1.89  
V
Open-drain voltage  
I2C_SDA, I2C_SCL = V(I2C)  
1.71  
40  
600  
25  
3.6  
105  
832  
104  
1
V
Operating free-air temperature (TA)  
Mipi data rate (per CSI-2 lane)  
Reference clock input frequency  
25  
°C  
Mbps  
MHz  
MHz  
Local I2C frequency (fI2C  
)
VDD (VDDD, VDDDRV,  
VDDPLL)  
Supply noise(3)  
25  
25  
mVp-p  
mVp-p  
f = 10 KHz - 50 MHz  
(coax mode only)  
Differential supply noise between DOUT+ and DOUT-  
(PSR)  
f = 30 Hz, 10-90% Rise/Fall  
Time > 100µs  
(coax mode only)  
25  
mVp-p  
UI_CLK_I  
N(2)  
Input clock jitter for non-synchronous mode (tJIT  
Back channel input jitter (tJIT-BC  
)
CLKIN  
0.05  
)
DOUT+, DOUT-  
0.4 UI_BC(1)  
(1) The back channel unit interval (UI_BC) is 1/(BC line-rate). For example, the typical UI_BC is 1/100 MHz = 10 ns. If the jitter tolerance is  
0.4 UI, convert the jitter in UI to seconds using this equation: 10 ns × 0.4 UI = 4 ns  
(2) Non-synchronous mode - For a given clock, the UI is defined as 1/clock_freq. For example when the clock = 50Mhz, the typical  
UI_CLK_IN is 1/50 MHz = 20 ns.  
(3) DC - 50 MHz  
6.4 Thermal Information  
DS90UB635-Q1  
THERMAL METRIC(1)  
RHB (VQFN)  
UNIT  
32 PINS  
31.5  
10.9  
20  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJB  
RθJC(top)  
RθJC(bot)  
ΨJT  
Junction-to-case (top) thermal resistance  
Junction-to-case (bottom) thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1
0.2  
10.9  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
 
 
 
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER CONSUMPTION  
VDDPLL,  
VDDD,  
IDD_TOTAL  
160  
225  
VDDDRV  
416-MHz CSI Input Clock, 4 Lane Mode,  
Checkerboard Pattern  
Supply current  
IDDPLL  
mA  
80  
VDDPLL  
VDDD  
55  
45  
60  
IDDD  
70  
75  
IDDDRV  
VDDDRV  
1.8-V LVCMOS I/O (VDD) = 1.71 V to 1.89 V  
V(VDD)  
0.45  
GPIO[3:0],  
CLK_OUT  
VOH  
VOL  
VIH  
VIL  
IIH  
High level output voltage  
V(VDD)  
0.45  
V
V
IOH = 4 mA  
GPIO[3:0],  
CLK_OUT  
Low level output voltage IOL = +4 mA  
High level input voltage  
GND  
GPIO[3:0],  
PDB, CLKIN  
V(VDD) ×  
V(VDD)  
V
0.65  
GPIO[3:0],  
PDB, CLKIN  
V(VDD)  
×
Low level input voltage  
GND  
V
0.35  
GPIO[3:0],  
PDB, CLKIN  
Input high current  
Input low current  
VIN = V(VDD)  
20  
µA  
µA  
mA  
GPIO[3:0],  
PDB, CLKIN  
IIL  
VIN = GND  
-20  
Output short-circuit  
current  
IOS  
VOUT = 0 V  
-36  
5
TRI-STATE output  
current  
GPIO[3:0],  
CLK_OUT  
IOZ  
VOUT = V(VDD), VOUT = GND  
±20  
µA  
pF  
CIN  
Input capacitance  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
FPD-LINK III INPUT/OUTPUT  
Single-ended input  
voltage  
Coaxial configuration, 50 Ω, maximum cable  
length  
VIN-BC  
DOUT+, DOUT-  
DOUT+, DOUT-  
DOUT+, DOUT-  
DOUT+, DOUT-  
DOUT+, DOUT-  
DOUT+, DOUT-  
DOUT+, DOUT-  
120  
240  
mV  
STP configuration, 100 Ω, maximum cable  
length  
VID-BC  
EH-FC  
tTR-FC  
tJIT-FC  
fREF  
Differential input voltage  
Coaxial configuration, FPD-Link forward  
channel = 4.16 Gbps  
425  
850  
65  
Forward channel eye  
height  
mVp-p  
STP configuration, FPD-Link forward channel  
= 4.16 Gbps  
Forward channel output FPD-Link forward channel = 4.16Gbps; 20%  
transition time  
ps  
UI  
to 80%  
Synchronous mode, measured with f/15 –  
3dB CDR Loop BW  
0.21  
0.22  
Forward channel output  
jitter  
Non-synchronous mode, measured with f/15  
3dB CDR Loop BW  
Internal reference  
frequency  
Non-synchronous internal clocking mode  
24.2  
25.5 MHz  
FPD-LINK III DRIVER SPECIFICATIONS (DIFFERENTIAL)  
Output differential  
voltage  
VODp-p  
DOUT+, DOUT-  
DOUT+, DOUT-  
1040  
1150  
5
1340 mVp-p  
24 mV  
RL = 100 Ω  
Output voltage  
imbalance  
ΔVOD  
Output differential offset  
voltage  
VOS  
DOUT+, DOUT-  
DOUT+, DOUT-  
DOUT+, DOUT-  
575  
2
mV  
mV  
mA  
Offset voltage imbalance  
ΔVOS  
IOS  
Output short-circuit  
current  
DOUT = 0 V  
22  
Internal termination  
resistance  
RT  
Between DOUT+ and DOUT-  
DOUT+, DOUT-  
80  
100  
120  
FPD-LINK III DRIVER SPECIFICATIONS (SINGLE-ENDED)  
Output single-ended  
voltage  
VOUT  
IOS  
DOUT+, DOUT-  
DOUT+, DOUT-  
DOUT+, DOUT-  
520  
575  
22  
50  
670 mVp-p  
mA  
RL = 50 Ω  
Output short-circuit  
current  
DOUT = 0 V  
Single-ended  
termination resistance  
RT  
40  
60  
VOLTAGE AND TEMPERATURE SENSING  
VACC  
TACC  
Voltage accuracy  
See Voltage and Temperature Sensing  
See Voltage and Temperature Sensing  
GPIO[1:0]  
±1  
±1  
LSB  
LSB  
Temperature accuracy  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
330 mV  
70 mV  
mV  
CSI-2 HS INTERFACE DC SPECIFICATIONS  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
Common-mode voltage  
VCMRX(DC)  
70  
HS receive mode  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
Differential input high  
threshold  
VIDTH  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
Differential input low  
threshold  
VIDTL  
70  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
Differential input  
impedance  
ZID  
80  
100  
125  
CSI-2 HS INTERFACE AC SPECIFICATIONS  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
tHOLD  
Data to clock setup time  
Data to clock hold time  
0.15  
0.15  
UI  
UI  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
tSETUP  
CSI-2 LP INTERFACE DC SPECIFICATIONS  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
VIH  
Logic high input voltage  
Logic low input voltage  
Input hysteresis  
880  
790  
710  
75  
mV  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
VIL  
550 mV  
CSI_D3P/N,  
CSI_D2P/N,  
CSI_D1P/N,  
CSI_D0P/N,  
CSI_CLKP/N  
VHYST  
25  
mV  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
LVCMOS I/O  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LVCMOS low-to-high  
transition time  
tCLH  
V(VDD) = 1.71 to 1.89 V  
GPIO[3:0]  
2
2
ns  
LVCMOS high-to-low  
transition time  
tCHL  
tPDB  
V(VDD) = 1.71 to 1.89 V  
GPIO[3:0]  
PDB  
ns  
PDB reset pulse width  
Voltage supplies applied and stable  
3
ms  
SERIAL CONTROL BUS  
I2C_SCL,  
I2C_SDA  
0.7 ×  
V(I2C)  
VIH  
VIL  
Input high level  
Input low level  
Input hysteresis  
V(I2C) mV  
I2C_SCL,  
I2C_SDA  
0.3 ×  
mV  
GND  
V(I2C)  
I2C_SCL,  
I2C_SDA  
VHY  
>50  
mV  
V(I2C) < 2 V, IOL = 3 mA, Standard-mode/  
Fast-mode  
I2C_SCL,  
I2C_SDA  
0.2 ×  
V
0
0
V(I2C)  
I2C_SCL,  
I2C_SDA  
0.2 ×  
V
V(I2C) < 2 V, IOL = 20 mA, Fast-mode plus  
V(I2C)  
VOL  
Output low level  
V(I2C) > 2 V, IOL = 3 mA, Standard-mode/  
Fast-mode  
I2C_SCL,  
I2C_SDA  
0
0.4  
0.4  
10  
10  
10  
V
V
I2C_SCL,  
I2C_SDA  
V(I2C) > 2 V, IOL = 20 mA, Fast-mode plus  
0
I2C_SCL,  
I2C_SDA  
IIH  
IIL  
Input high current  
Input low current  
Input low current  
Input capacitance  
VIN = V(I2C)  
VIN = 0 V  
VIN = 0 V  
-10  
-10  
-10  
µA  
µA  
µA  
pf  
I2C_SCL,  
I2C_SDA  
I2C_SCL,  
I2C_SDA  
IIL  
I2C_SCL,  
I2C_SDA  
CIN  
5
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
6.6 Recommended Timing for the Serial Control Bus  
Over I2C supply and temperature ranges unless otherwise specified.  
MIN  
>0  
TYP  
MAX  
100  
400  
1
UNIT  
kHz  
kHz  
MHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
pF  
pF  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
Standard-mode  
fSCL  
SCL Clock Frequency  
Fast-mode  
>0  
Fast-mode Plus  
Standard-mode  
Fast-mode  
>0  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
4.0  
0.6  
0.26  
4.7  
0.6  
0.26  
0
tLOW  
tHIGH  
tHD;STA  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
SCL Low Period  
Fast-mode Plus  
Standard-mode  
Fast-mode  
SCL High Period  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Hold time for a start or a repeated start condition  
Set up time for a start or a repeated start condition  
Data hold time  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
Fast-mode Plus  
Standard-mode  
Fast -mode  
0
250  
100  
50  
Data set up time  
Fast-mode Plus  
Standard-mode  
Fast-mode  
4.0  
0.6  
0.26  
4.7  
1.3  
0.5  
Set up time for STOP condition  
Bus free time between STOP and START  
SCL & SDA rise time  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Fast-mode Plus  
Standard-mode  
Fast-mode  
1000  
300  
120  
300  
300  
120  
400  
400  
550  
3.45  
0.9  
tr  
Fast-mode Plus  
Standard-mode  
Fast-mode  
tf  
SCL & SDA fall time  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Cb  
Capacitive load for each bus line  
Data valid time  
Fast-mode Plus  
Standard-mode  
Fast-mode  
tVD:DAT  
Fast-mode Plus  
Standard-mode  
Fast-mode  
0.45  
3.45  
0.9  
tVD;ACK  
Data vallid acknowledge time  
Input filter  
Fast-mode Plus  
Fast-mode  
0.45  
50  
tSP  
Fast-mode Plus  
50  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
6.7 Timing Diagrams  
V
(VDD18)  
80%  
20%  
GND  
t
t
CHL  
CLH  
6-1. LVCMOS Transition Times  
SDA  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
r
f
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
6-2. I2C Serial Control Bus Timing  
6.8 Typical Characteristics  
6-3. Eye Diagram at 4-Gbps FPD-Link III Forward Channel Rate From Serializer Output Vertical Scale:  
100 mV/DIV Horizontal Scale: 62.5 ps/DIV  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DS90UB635-Q1 serializes data from high-resolution image sensors or other sensors using the MIPI CSI-2  
interface. The DS90UB635-Q1 serializer is optimized to interface with the DS90UB63x-Q1 deserializers, the  
DS90UB66x-Q1 deserializers (quad hubs), as well as other potential future deserializers. The interconnect  
between the serializer and the deserializer can be either a coaxial cable or shielded-twisted pair (STP) cable.  
The DS90UB635-Q1 was designed to support multi-sensor systems such as surround view, and as such has the  
ability to synchronize sensors through the DS90UB63x-Q1 and DS90UB66x-Q1 hubs.  
The DS90UB635-Q1 serializer and companion deserializer incorporate an I2C-compatible interface. The I2C-  
compatible interface allows programming of serializer or deserializer devices from a local host controller. In  
addition, the devices incorporate a bidirectional control channel (BCC) that allows communication between the  
serializer and deserializer, as well as between remote I2C target devices.  
The bidirectional control channel (BCC) is implemented through embedded signaling in the high-speed forward  
channel (serializer to deserializer), combined with lower speed signaling in the reverse channel (deserializer to  
serializer). Through this interface, the BCC provides a mechanism to bridge I2C transactions across the serial  
link from one I2C bus to another.  
7.2 Functional Block Diagram  
Vbias_internal  
DOUT+  
DPHY  
Receiver  
Encoder/  
Formatter  
Cable  
Driver  
FIFO  
Serializer  
CSI-2  
DOUT-  
Internal AON Clock  
Clock Gen  
Controller  
CLKIN  
CLK_OUT  
/ IDX  
MODE  
PDB  
I2C_SDA  
I2C_SCL  
I2C  
Controller  
Decode/  
Encode  
Clock/Data  
Recovery  
BCC  
Receiver  
FIFO  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DS90UB635-Q1  
 
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.3 Feature Description  
The DS90UB635-Q1 FPD-Link III serializer is designed to support high-speed raw data sensors including 2-MP  
imagers at 60 fps, as well as 4-MP and 30-fps cameras, satellite RADAR, LIDAR, and time of flight (ToF)  
cameras. The chip features a forward channel capable of up to 4.16 Gbps, as well as an ultra-low latency 50-  
Mbps bidirectional control channel. The transmission of the forward channel, bidirectional control channel, and  
power is supported over coaxial (Power-over-Coax) or STP cables. The DS90UB635-Q1 features advanced data  
protection and diagnostic features to support ADAS and autonomous driving. Together with a companion  
deserializer, the DS90UB635-Q1 delivers precise multi-camera sensor clock and sensor synchronization.  
7.3.1 CSI-2 Receiver  
The DS90UB635-Q1 receives CSI-2 video data from the sensor. During CSI-2 operation, the D-PHY consists of  
a clock lane and one or more data lanes. The DS90UB635-Q1 is a target device and only supports unidirectional  
lane in the forward direction. Low Power Escape mode is not supported.  
7.3.1.1 CSI-2 Receiver Operating Modes  
During normal operation a data lane will be in either control or high-speed mode. In high-speed mode, the data  
transmission happens in a burst and starts and ends at a stop state (LP-11). There is a transition state to take  
the D-PHY from a normal mode to the low-power state.  
The sequence to enter high-speed mode is: LP-11, LP-01, LP-00. After the sequence is entered, the data lane  
remains in high-speed mode until a stop state (LP-11) is received.  
7.3.1.2 CSI-2 Receiver High-Speed Mode  
During high-speed data transmission, the digital D-PHY will enable termination signal to allow proper termination  
of the HS RX of the Analog D-PHY, and the LP RX should stay at LP-00 state. Both CSI-2 data lane and clock  
lane operate in the same manner. The DS90UB635-Q1 supports both CSI-2 continuous and non-continuous  
clock lane modes which must be set using register 0x02[6] and should follow the image sensor clock mode. In  
the continuous clock lane mode, the clock lane remains in high-speed mode.  
7.3.1.3 CSI-2 Protocol Layer  
There are two different types of CSI-2 packets: a short packet and a long packet. Short packets have information  
such as the frame start/ line start, and long packets carry the data after the frame start is asserted. 7-1 shows  
the structure of the CSI-2 protocol layer with short and long packets. The DS90UB635-Q1 supports 1, 2, and 4  
lane configurations.  
DATA:  
Short  
Packet  
Long  
Packet  
Long  
Packet  
Short  
Packet  
ST SP ET  
ST PH  
DATA  
PF ET  
ST PH  
DATA  
PF ET  
ST SP ET  
LPS  
LPS  
LPS  
KEY:  
ST œ Start of Transmission  
ET œ End of Transmission  
LPS œ Low Power State  
PH œ Packet Header  
PF œ Packet Footer  
7-1. CSI-2 Protocol Layer With Short and Long Packets  
7.3.1.4 CSI-2 Short Packet  
The short packet provides frame or line synchronization. 7-2 shows the structure of a short packet. A short  
packet is identified by data types 0x00 to 0x0F.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
32-bit SHORT PACKET (SH)  
Data Type (DT) = 0x00 œ 0x0F  
7-2. CSI-2 Short Packet Structure  
7.3.1.5 CSI-2 Long Packet  
A long packet consists of three elements: a 32-bit packet header (PH), an application-specific data payload with  
a variable number of 8-bit data words, and a 16-bit packet footer (PF). The packet header is further composed of  
three elements: an 8-bit data identifier, a 16-bit word count field, and an 8-bit ECC. The packet footer only has  
one elementa 16-bit checksum. 7-3 shows the structure of a long packet.  
32-bit  
PACKET  
HEADER  
(PH)  
PACKET DATA:  
16-bit  
PACKET  
FOOTER  
(PF)  
Length = Word Count (WC) * Data Word  
Width (8-bits). There are NO restrictions  
on the values of the data words  
7-3. CSI-2 Long Packet Structure  
7-1. CSI-2 Long Packet Structure Description  
PACKET PART  
FIELD NAME  
SIZE (BIT)  
DESCRIPTION  
VC / Data ID  
Word Count  
8
Contains the virtual channel identifier and the data-type information.  
Number of data words in the packet data. A word is 8 bits.  
16  
Header  
ECC for data ID and WC field. Allows 1-bit error recovery and 2-bit  
error detection.  
ECC  
8
Data  
Data  
WC × 8  
16  
Application-specific payload (WC words of 8 bits).  
16-bit cyclic redundancy check (CRC) for packet data.  
Footer  
Checksum  
7.3.1.6 CSI-2 Errors and Detection  
7.3.1.6.1 CSI-2 ECC Detection and Correction  
CSI-2 packet header contains 6-bit Error Correction Code (ECC). ECC in the 32-bit long packet header can be  
corrected when there is a 1-bit error and detected when there is a 2-bit error. This feature is added to monitor the  
CSI-2 input for ECC 1-bit error correction. When ECC error is detected, ECC error detection register will be set  
and an alarm indicator bit can be sent to the deserializer to indicate the ECC error has been detected. A register  
control can be used to either enable or disable the alarm.  
7.3.1.6.2 CSI-2 Check Sum Detection  
A CSI-2 long packet header contains a 16-bit check sum before the end of transmission. The DS90UB635-Q1  
calculates the check sum of the incoming CSI-2 data. If a check sum error is detected, the check sum error  
status can be saved in the CSI_ERR_STATUS register (0x5D), then forwarded to the deserializer through the  
bidirectional control channel.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DS90UB635-Q1  
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.3.1.6.3 D-PHY Error Detection  
DS90UB635-Q1 detect and reports SoT and SoT Sync errors.  
7.3.1.6.4 CSI-2 Receiver Status  
For the receive ports, several status functions can be tracked and monitored through register access. The status  
indications are available for error conditions as well as indications of change in line length measurements. These  
are available through the CSI_ERR_CNT (0x5C), CSI_ERR_STATUS (0x5D), CSI_ERR_DLANE01 (0x5E),  
CSI_ERR_DLANE23 (0x5F), and CSI_ERR_CLK_LANE (0x60) registers.  
7.3.2 FPD-Link III Forward Channel Transmitter  
The DS90UB635-Q1 features a high-speed signal transmitter capable of driving signals at rates of up to 4.16  
Gbps.  
7.3.2.1 Frame Format  
The DS90UB635-Q1 formats the data into 40-bit long frames. Each frame is encoded to ensure DC balance and  
to ensure sufficient data line transitions. Each frame contains video payload data, I2C forward channel data,  
CRC information, framing information, and information regarding the state of the CSI-2 interface.  
7.3.3 FPD-Link III Back Channel Receiver  
The FPD-Link III back channel receives an encoded back channel signal over the FPD-Link III interface. The  
back channel frame is a 30-bit frame that contains I2C commands and GPIO data. The back channel frame  
receives an encoded clock and data from the deserializer, thus the data bit rate is one-half the frequency of the  
highest frequency received.  
The back channel frequency is programmable for operation with compatible deserializers. The default setting is  
determined by the MODE strap pin. For operation with the DS90UB638-Q1 or DS90UB662-Q1, the back  
channel should be programmed for 50-Mbps operation in DS90UB635-Q1 synchronous mode and programmed  
for 10-Mbps operation for non-synchronous modes.  
7.3.4 Serializer Status and Monitoring  
The DS90UB635-Q1 features enhanced FPD-Link III diagnostics, system monitoring, and Built-In Self Test  
capabilities. The device monitors forward channel and back channel data for errors and reports them in the  
status registers. The device also supports voltage and temperature measurement for system level diagnostics.  
The Built-In Self Test feature allows testing of the forward channel and back channel data transmissions without  
external data connections.  
The DS90UB635-Q1 can send alarms and sensor status data through the forward channel to monitor the CSI-2  
interface, Bidirectional Control Channel (BCC), GPIO voltage sensors and internal temperature sensor. The data  
can then be accessed through the SENSOR_STS_X registers (0x51) to (0x54) on the compatible linked  
deserializer. Status bits are always transmitted, and transmission of Alarm bits needs to be enabled from  
registers (0x1C) to (0x1E) on the serializer.  
The CSI-2 error status and alarms on the deserializer SENSOR_STS are: CSI-2 alarm, CSI-2 control error,  
CSI-2 synchronization error, CSI-2 start of transmission error, CSI-2 checksum error, and CSI-2 ECC 2-bit error.  
The status for these bits can also be read from registers (0x5D) to (0x60) on the serializer. The BCC error alarm  
is triggered by are BCC link detect and CRC errors which can be read from register (0x52).  
The voltage sense level and voltage sense alarms correspond to Sensor V0 (0x58) and Sensor V1 (0x59). And  
the temperature sense levels and alarm are monitored from Sensor T (0x5A).  
7.3.4.1 Forward Channel Diagnostics  
The DS90UB635-Q1 monitors the status of the forward channel link. The forward channel high-speed PLL lock  
status is reported in the HS_PLL_LOCK bit (Register 0x52[2]). When paired with the DS90UB638-Q1 or  
DS90UB662-Q1, the FPD-Link III deserializer LOCK status is also reported in the RX_LOCK_DETECT bit  
(Register 0x52[6]).  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.3.4.2 Back Channel Diagnostics  
The DS90UB635-Q1 monitors the status of the back channel link. The back channel CRC errors are reported in  
the CRC_ERR bit (Register 0x52[1]). The number of CRC errors are stored in the CRC error counters and  
reported in the CRC_ERR_CNT1 (Register 0x55) and CRC_ERR_CNT2 (Register 0x56) registers. The CRC  
error counters are reset by setting the CRC_ERR_CLR (Register 0x49[3]) to 1.  
When running the BIST function, the DS90UB635-Q1 reports if a BIST CRC error is detected in the  
BIST_CRC_ERR bit (Register 0x52[3]). The number of BIST errors are reported in the BIST_ERR_CNT field  
(Register 0x54). The BIST CRC error counter is reset by setting the BIST_CRC_ERR_CLR (Register 0x49[5]) to  
1.  
7.3.4.3 Voltage and Temperature Sensing  
The DS90UB635-Q1 supports voltage measurement and temperature measurement. The temperature and  
voltage sensors are both equipped with a 3-bit ADC. The engineer can configure these sensors to monitor a  
signal and raise a flag when a signal goes outside of a set limit. For example, a voltage sensor can be used to  
monitor the 1.8-V line and raise a flag if the voltage goes above 1.85 V or below 1.75 V. This flag can then be  
transferred to the deserializer and set an interrupt at the deserializer end of the link. In a similar manner, the  
temperature sensor will trigger an alarm bit when the internal temperature of DS90UB635-Q1 is outside the  
range.  
Both GPIO0 and GPIO1 can be configured to sense the voltage applied at their inputs. 7-32 through 7-38  
cover the registers specific to this section.  
For a given voltage or temperature, the measurement accuracy is ±1 LSB. This means that for a given input  
voltage or temperature corresponding to the nearest value in 7-2 and 7-3, the resulting ADC output code  
will be accurate to the nearest ±1 code.  
7-2. ADC Code vs Input Voltage  
GPIO VIN (V)  
CODE  
000  
001  
010  
011  
VIN < 0.85  
0.85 < VIN < 0.90  
0.90 < VIN < 0.95  
0.95 < VIN < 1.00  
1.00 < VIN < 1.05  
1.05 < VIN < 1.10  
1.10 < VIN < 1.15  
1.15 < VIN  
100  
101  
110  
111  
7-3. ADC Code vs Temperature  
TEMPERATURE (°C)  
CODE  
000  
001  
010  
011  
T < 30  
30 < T < 10  
10 < T < 15  
15 < T < 35  
35 < T < 55  
55 < T < 75  
75 < T < 100  
100 < T  
100  
101  
110  
111  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DS90UB635-Q1  
 
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.3.4.3.1 Programming Example  
This section gives an example on how to configure the DS90UB635-Q1 and DS90UB638-Q1 to monitor the  
voltage on the DS90UB635-Q1 GPIO1 and set an alarm, which can then assert the INT pin on the DS90UB638-  
Q1  
# DS90UB635-Q1 Settings  
WriteI2C(0x17,0x3E) # Enable Sensor, Select GPIO1 to sense  
WriteI2C(0x18,0xB2) # Enable Sensor Gain Setting (Use Default)  
WriteI2C(0x1A,0x62) # Set Sensor Upper and Lower Limits (Use Default)  
WriteI2C(0x1D,0x3F) # Enable Sensor Alarms  
WriteI2C(0x1E,0x7F) # Enable Sending Alarms over BCC  
# Register 0x57 readout (bits 2 and 3), indicates if the voltage on the GPIO1 is below or above the  
thresholds set in the register 0x1A.  
# DS90UB638-Q1 Settings  
WriteI2C(0x23,0x81) # Enable Interrupts, Enable Interrupts for the camera attached to RX0  
WriteI2C(0x4C,0x01) # Enable Writes to RX0 registers  
WriteI2C(0xD8,0x08) # Interrupt on change in Sensor Status  
# Register 0x51 and 0x52 readouts indicate Sensor data. Register 0x24[7] bit readout indicates the  
Alarm bit. The alarm bit can be routed to GPIO3/INT through GPIO_PIN_CTL and GPIO_OUT_SRC registers.  
7.3.4.4 Built-In Self Test  
An optional at-speed Built-In Self Test (BIST) feature supports high-speed serial link and back channel testing  
without external data connections. This is useful in the prototype stage, equipment production, in-system test,  
and system diagnostics.  
BIST mode is enabled by the BIST configuration register 0xB3[0] on the deserializer, and should only run in the  
synchronous mode. When BIST is activated at the deserializer, a BIST enable signal is sent to the serializer  
through the back channel. The serializer outputs a continuous stream of a pseudo-random sequence and drives  
the link at speed. The deserializer detects the test pattern and monitors the pattern for errors. The serializer also  
tracks errors indicated by the CRC fields in each back channel frame. While the lock indications are required to  
identify the beginning of proper data reception, the best indication of any link failures or data corruption is the  
content of the error counter in the BIST_ERR_COUNT register 0x57 for each RX port on the deserializer side.  
BIST mode is useful in the prototype stage, equipment production, in-system test, and system diagnostics.  
7.3.5 FrameSync Operation  
When paired with compatible deserializers, any of the DS90UB635-Q1 GPIO pins can be use for frame  
synchronization. This feature is useful when multiple sensors are connected to a deserializer hub. A frame  
synchronization signal (FrameSync) can be sent through the back channel using any of the back channel  
GPIOs. The FrameSync signal arrives at the serializers with limited skew.  
7.3.5.1 External FrameSync  
In External FrameSync mode, an external signal is input to the deserializer through one of the GPIO pins on the  
device. The external FrameSync signal may be propagated to one or more of the attached FPD-Link III  
serializers through a GPIO signal in the back channel. The expected skew timing for external FrameSync mode  
is on the order of one back channel frame period or 600 ns when operating at 50 Mbps.  
Deserializer  
GPIOx  
GPIOx  
FPD-Link III  
BC_GPIOx  
Serializer  
Serializer  
FPD-Link III  
BC_GPIOx  
GPIOy  
External  
Frame Sync  
7-4. External FrameSync  
Enabling the external FrameSync mode is done on the deserializer side. Refer to the deserializer data sheet for  
more information.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.3.5.2 Internally Generated FrameSync  
In Internal FrameSync mode, an internally generated FrameSync signal is sent to one or more of the attached  
FPD-Link III Serializers through a GPIO signal in the back channel.  
Deserializer  
FPD-Link III  
GPIOx  
BC_GPIOx  
Serializer  
FPD-Link III  
GPIOx  
FrameSync  
Generator  
BC_GPIOx  
Serializer  
7-5. Internal FrameSync  
FrameSync operation is controlled by the deserializer registers. Refer to the deserializer data sheet for more  
information.  
7.3.6 GPIO Support  
The DS90UB635-Q1 supports four pins, GPIO0 through GPIO3, which can be monitored, configured, and  
controlled through the I2C bus in registers 0x0D, 0x0E, and 0x53. These GPIOs are programmable for use in  
multiple situations. GPIO0 and GPIO1 have additional diagnostics functionality and may be programmed to  
sense external voltage levels.  
7.3.6.1 GPIO Status  
The status HIGH or LOW of each GPIO pin 0 through 3 may be read through the GPIO_STS bits in the  
GPIO_PIN_STS register 0x53. This register read operation provides the status of the GPIO pins when they are  
configured as an input by setting the corresponding GPIOx_INPUT_EN bits in the GPIO_INPUT_CTRL register  
(0x0E). To read the GPIO status when the GPIO is used as output, both GPIOx_INPUT_EN and  
GPIOx_OUT_EN bits in the GPIO_INPUT_CTRL register (0x0E) can be set.  
7-4. GPIO Configuration  
Configuration  
Purpose  
Valid  
Valid  
Valid  
Not Valid  
GPIO used as Output  
GPIO used as Output  
GPIO used as Input  
GPIO used as Input  
GPIOx_INPUT_EN  
GPIOx_OUT_EN  
GPIO_STS  
0
1(1)  
1
1
1
1
0
1
non-functional  
functional  
functional  
N/A  
备注  
(1) When GPIOx_INPUT_EN is set, the internal pull down will be connected to the GPIO output and  
the user should ensure that the pull down resistor will not interfere with the application-specific use.  
7.3.6.2 GPIO Input Control  
Upon initialization, GPIO0 through GPIO3 are enabled as inputs by default. The GPIO_INPUT_CTRL (0x0E)  
register (bits 3:0) allows control of the input enable. If a GPIO_INPUT_CTRL[3:0] bit is set to 1, then the  
corresponding GPIO_INPUT_CTRL[7:4] bit must be set to 0. The number of GPIOs should be set and enabled  
using FC_GPIO_EN in register (0x33).  
7.3.6.3 GPIO Output Control  
Individual GPIO output control is programmable through the GPIO_INPUT_CTRL (0x0E) register (bits 7:4) in 表  
7-27. The GPIO_INPUT_CTRL[7:4] bits should be set to 1 to use the GPIOs as output pins.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DS90UB635-Q1  
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.3.6.4 Forward Channel GPIO  
The input on the DS90UB635-Q1 GPIO pins can be forwarded to compatible deserializers over the FPD-Link III  
interface. Up to four GPIOs are supported in the forward direction.  
The timing for the forward channel GPIO is dependent on the number of GPIOs assigned at the serializer. When  
a single GPIO input from the DS90UB635-Q1 serializer is linked to a compatible deserializer GPIO output, the  
value is sampled at every forward channel transmit frame. Two linked GPIO are sampled every two forward  
channel frames, and three or four linked GPIO are sampled every five frames. The typical latency for the GPIO is  
approximately 225 ns but will vary with the length of the cable. As the information is spread over multiple frames,  
the jitter is typically increased on the order of the sampling period (number of forward channel frames). TI  
recommends that the user maintain a 4x oversampling ratio for linked GPIO throughput. For example, when  
operating in 4-Gbps synchronous mode with REFCLK = 25 MHz, the maximum recommended GPIO input  
frequency based on the number of GPIO linked over the forward channel is shown in 7-5.  
7-5. Forward Channel GPIO Typical Timing  
MAXIMUM  
NUMBER OF LINKED  
FORWARD CHANNEL  
GPIOs  
SAMPLING FREQUENCY  
(MHz)  
AT FPD-Link III LINE  
RATE = 4 Gbps  
RECOMMENDED  
FORWARD CHANNEL  
GPIO FREQUENCY  
(MHz)  
TYPICAL LATENCY (ns)  
TYPICAL JITTER (ns)  
(FC_GPIO_EN)  
1
2
4
100  
50  
25  
12.5  
5
225  
225  
225  
12  
24  
60  
20  
7.3.6.5 Back Channel GPIO  
When enabled as an output, each DS90UB635-Q1 GPIO pin can be programed to output remote data coming  
from the compatible deserializer using the LOCAL_GPIO_DATA register (0x0D). The maximum signal frequency  
that can be received over the FPD-Link III back channel is dependent on the DS90UB635-Q1 clocking mode as  
shown in 7-6.  
7-6. Back Channel GPIO Typical Timing  
MAXIMUM  
RECOMMENDED  
BACK CHANNEL  
GPIO  
FREQUENCY  
(kHz)  
SAMPLING  
FREQUENCY  
(kHz)  
BACK CHANNEL  
RATE (Mbps)  
TYPICAL  
LATENCY (µs)  
TYPICAL JITTER  
(µs)  
DS90UB635-Q1 CLOCKING MODE  
Synchronous Mode  
Non-Synchronous Modes  
DVP Mode  
50  
10  
1670  
334  
416  
83.5  
20  
1.5  
3.2  
0.7  
3
2.5  
83.5  
12.2  
12  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.3.7 Unique ID  
Each device is programmed with a Unique DIE-ID that is burnt into devices at wafer level; Unique DIE-ID with a  
16 bytes customer readable value indicating wafer lot and position of each IC inside a wafer. Combination of  
Unique DIE-IDs can be read and maintained by customer in a database or in a Hash table. Each system can be  
identified by the Unique DIE-ID programmed into the devices. Authenticity of the overall system can be  
established at the powerup/initialization or periodically by checking the Unique DIE-ID.  
A Unique DIE-ID is programmed into each device and can be read using I2C reads. To read the Unique DIE-ID,  
set the IA_SEL (0xB0[4:2]) register to DIE ID Data (010), then set register IND_ACC_ADDR (0xB1) address to  
the Unique ID register being read, and then read the IND_ACC_DATA (0xB2) register to get the Unique DIE-ID.  
There are 16 Unique ID registers, each of the registers contain 8 bits of the total unique DIE-ID. The table below  
lists the Unique ID registers addresses.  
7-7. Unique ID Registers  
Unique ID register  
UNIQUE_ID_0  
UNIQUE_ID_1  
UNIQUE_ID_2  
UNIQUE_ID_3  
UNIQUE_ID_4  
UNIQUE_ID_5  
UNIQUE_ID_6  
UNIQUE_ID_7  
UNIQUE_ID_8  
UNIQUE_ID_9  
UNIQUE_ID_10  
UNIQUE_ID_11  
UNIQUE_ID_12  
UNIQUE_ID_13  
UNIQUE_ID_14  
UNIQUE_ID_15  
IND_ACC_ADDR address  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
7.4 Device Functional Modes  
7.4.1 Clocking Modes  
The DS90UB635-Q1 supports several clocking schemes, which are selected through the MODE pin. In the  
DS90UB635-Q1, the forward channel operates at a higher bandwidth than the requirement set by the video data  
transported, and the forward channel data rate is set by a reference clock. The clocking mode determines what  
the device uses as the reference clock, and the most common configuration is synchronous mode in which no  
local reference oscillator is required. See 7-8 for more information.  
The default mode of the DS90UB635-Q1 is set by the application of a bias on the MODE pin during power up.  
More information on setting the operation modes can be found in 7.4.2.  
7-8. Clocking Modes  
CSI  
REF  
FREQUENCY  
(MHz)  
REFERENCE  
SOURCE  
MODE  
DIVIDE  
N/A  
FC DATA RATE  
CLK_OUT (3)  
BANDWIDTH ≤  
(4)  
f × 160 /  
HS_CLK_DIV ×  
(M/N)  
Synchronous  
Back Channel(1)  
Back Channel(1)  
23 - 26  
f × 160  
f × 128  
f × 128  
f × 160 /  
HS_CLK_DIV ×  
(M/N)  
Synchronous  
(Half-rate)  
N/A  
11.5 - 13  
f × 160  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DS90UB635-Q1  
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
CLK_OUT (3)  
7-8. Clocking Modes (continued)  
CSI  
REF  
FREQUENCY  
(MHz)  
REFERENCE  
SOURCE  
MODE  
DIVIDE  
FC DATA RATE  
BANDWIDTH ≤  
(4)  
f × 80 /  
HS_CLK_DIV ×  
(M/N)  
CLKIN_DIV = 1,  
CLKIN_DIV = 2,  
External Clock(2)  
25 - 52  
f × 80  
f × 64  
Non-Synchronous  
external clock  
f × 40 /  
HS_CLK_DIV ×  
(M/N)  
External clock (2)  
635 Internal Clock  
635 Internal Clock  
50 - 104  
48.4 - 51  
24.2 - 25.5  
f × 40  
f × 80  
f × 80  
f × 32  
f × 64  
f × 64  
Non-Synchronous CLKIN_DIV = 1,  
N/A  
N/A  
Internal Clock  
OSCCLK_SEL = 1  
Non-Synchronous  
Internal Clock  
(Half-rate)  
OSCCLK_SEL = 0  
DVP External  
Clock  
Deserializer  
Mode: RAW10  
f × 28 /  
HS_CLK_DIV ×  
(M/N)  
N/A  
N/A  
External clock  
External clock  
25 - 66.5  
25 - 70  
f × 28  
f × 28  
f × 20  
f × 18  
DVP External  
Clock  
Deserializer  
Mode: RAW12 HF  
f × 28 /  
HS_CLK_DIV ×  
(M/N)  
(1) The back channel is recovered from the FPD-Link III bidirectional control channel. A local reference clock source is not required. Refer  
to the deserializer data sheet for the back channel frequency settings.  
(2) A local reference clock source is required. Provide a clock source to the DS90UB635-Q1's CLKIN pin.  
(3) HS_CLK_DIV typically should be set to either 16, 8, or 4 (default).  
(4) CSI-2 lane speed must be 600Mbps/lane  
FPD-Link III  
Image  
Forward Channel (FC)  
Signal  
Processor  
DS90UB63x or  
DS90UB66x  
Deserializer  
1920 x 1080  
60fps  
Image Sensor  
MIPI CSI-2  
MIPI CSI-2  
DS90UB635  
Serializer  
Bi-directional Control  
Channel (BCC)  
(ISP)  
Internal  
AON Clock  
CLK GEN  
CLK_OUT  
CLK_IN  
REFCLK  
Optional for  
Non Sync CLK_IN  
Mode, Mandatory  
for DVP Mode  
7-6. Clocking System Diagram  
7.4.1.1 Synchronous Mode  
Operation in synchronous mode offers the advantage that the receiver and all of the sensors in a multi-sensor  
system are locked to a common clock in the same clock domain, which reduces or eliminates the need for data  
buffering and resynchronization. The synchronous clocking mode also eliminates the cost, space, and potential  
failure point of a reference oscillator within the sensor module.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
 
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
In this mode, a clock is passed from the deserializer to the serializer through the FPD-Link III back channel, and  
the serializer is able to use this clock both as a reference clock for an attached image sensor, as well as a  
reference clock for the link back to the deserializer (FPD-Link III forward channel). For operation in this mode,  
the DS90UB635-Q1 must be paired with a deserializer that can support this feature such as the DS90UB638-Q1  
or the DS90UB662-Q1.  
7.4.1.2 Non-Synchronous Clock Mode  
In the non-synchronous clock mode, the external reference clock is supplied to the serializer. The serializer uses  
this clock to derive the FPD-Link III forward channel and an external reference clock for an attached image  
sensor. When in CSI-2 mode, the CSI-2 interface may be synchronous to this clock. The CSI-2 rate must be  
lower than the line rate. For example, with a 52-MHz clock, the FPD-Link III forward channel rate is 4.16 Gbps,  
and the CSI-2 throughput must be 600 Mbps to 3.328 Gbps (see 7-8).  
7.4.1.3 Non-Synchronous Internal Mode  
In the non-synchronous internal clocking mode, the serializer uses the internal Always-on Clock (AON) as the  
reference clock for the forward channel. The OSCCLK_SEL select must be asserted (0x05[3]=1) to enable  
maximum data rate when using internal clock mode, and the CLK_OUT function must be disabled. A separate  
reference is provided to the image sensor or ISP. The CSI-2 rate must be lower than the line rate. For example,  
with the internal clock of 48.4 MHz, the FPD-Link III forward channel rate is 3.872 Gbps and the CSI-2  
throughput must be 600 Mbps to 3.097 Gbps (See 7-8).  
7.4.1.4 DVP Backwards Compatibility Mode  
The DS90UB635-Q1 serializer can be placed into DVP mode to be backward-compatible with the DS90UB6xx-  
Q1 deserializer in DVP Backwards Compatibility Mode. While the mode should have been configured using the  
Mode pin on the DS90UB635-Q1 serializer, the register MODE_SEL register 0x03[2:0] can be used to verify or  
override the current mode. This field always indicates the mode setting of the device. When bit 4 of this register  
is 0, this field is read-only and shows the mode setting. Mode is latched from strap value when PDB transitions  
LOW to HIGH, and the value should read back 101 (0x5) if the resistive strap is set correctly to DVP external  
clock backward-compatible mode. Alternatively, when bit 4 of this register is set to 1, the MODE field is read/  
write and can be programmed to 101 to assign the correct backward-compatible MODE. This is shown in 表  
7-16.  
CSI-2 input data provided to the DS90UB635-Q1 serializer must be synchronized to the input frequency applied  
to CLKIN when using DVP external clock mode. The PCLK frequency output from the DS90UB6xx-Q1  
deserializer will also be related to CLKIN when in DVP external clock mode. See Backward compatibility modes  
for operation with parallel output deserializers (SNLA270) for more information.  
7-9. List of Registers Used for DVP Configuration  
REGISTER  
REGISTER NAME  
REGISTER DESCRIPTION  
Used to override and verify strapped value, if necessary, and to configure for DVP with an  
external clock.  
0X03  
MODE_SEL  
BC_MODE_SELE  
CT  
0X04  
0X10  
0X11  
Allows DVP mode overwrites to RAW 10 or RAW 12.  
Allows configuration of data in DVP mode. This includes data types like long, YUV, and specified  
types.  
DVP_CFG  
DVP_DT  
Allows packets with certain data type regardless of RAW 10 or 12 mode if DVP_DT_MATCH_EN  
is asserted.  
7.4.1.5 Configuring CLK_OUT  
When using the DS90UB635-Q1 in either synchronous or non-synchronous external clock modes, CLK_OUT is  
intended as a reference clock for the image sensor. CLK_OUT functionality is disabled when operating in non-  
synchronous internal clocking mode. The frequency of the external CLK_OUT is set by (see 方程1 and 方程式  
2).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
M
CLK_OUT = FCì  
HS_CLK_DIV ìN  
(1)  
where  
FC is the forward channel data rate, and M, HS_CLK_DIV, and N are parameters set by registers 0x06 and  
0x07  
SPACER  
FC  
< 1.05 GHz  
HS_CLK_DIV  
(2)  
The PLL that generates CLK_OUT is a digital PLL, and as such, has very low jitter if the ratio N/M is an integer.  
If N/M is not an integer, then the jitter on the signal is approximately equal to HS_CLK_DIV/FCso if it is not  
possible to have an integer ratio of N/M, it is best to select a smaller value for HS_CLK_DIV.  
If a particular CLK_OUT frequency, such as 37.125 MHz, is required for a system, the designer can select the  
values M=9, N=0xF2, and HS_CLK_DIV=4 to achieve an output frequency of 37.190 MHz and a frequency error  
of 0.175% with an associate jitter of approximately 1 ns. Alternately, the designer could use M=1, N=0x1B,  
HS_CLK_DIV=4 for CLK_OUT = 37.037 MHz, and a frequency error of 0.24% for less jitter. A third alternative  
would be to use M=1, N=0x1B, and HS_CLK_DIV=4, but rather than using a 25.000-MHz reference clock  
frequency (REFCLK) for the deserializer in synchronous mode, use a frequency of 25.059 MHz. The 2x  
reference then fed to the DS90UB635-Q1 from the deserializer back channel will allow generating CLK_OUT =  
37.124 MHz with both low jitter and a low frequency error.  
7.4.2 MODE  
The DS90UB635 can operate in one of many different modes. The default mode is selected by the bias voltage  
applied to the MODE pin during power-up. To set this voltage, a potential divider between VDD and GND is used  
to apply the appropriate bias After Power up, the MODE can be read, or changed through register access.  
1.8V  
R
HIGH  
MODE  
R
LOW  
DS90UB635-Q1  
7-7. MODE Configuration  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7-10. Strap Configuration Mode Select  
VTARGET STRAP  
VOLTAGE  
SUGGESTED STRAP  
RESISTORS (1% TOL)  
MODE SELECT  
VTARGET VOLTAGE RANGE  
DESCRIPTION  
RATIO  
TYP  
RATIO  
MAX  
MODE  
NAME  
RATIO MIN  
V(VDD) = 1.8 V  
RHIGH (k) RLOW (k)  
CSI-2 Synchronous mode FPD-Link III  
Clock reference derived from the  
deserializer.  
0.133 x  
V(VDD)  
0
Synchronous  
0
0
0
OPEN  
75  
10  
CSI-2 Non-synchronous clock FPD-  
Link III Clock reference derived from  
external clock reference input on CLKIN  
pin.  
Non-Synchronous  
External Clock  
0.288 x  
V(VDD)  
0.325 x  
V(VDD)  
0.367 x  
V(VDD)  
2
0.586  
35.7  
CSI-2 Non-synchronous FPD-Link III  
Clock reference derived from internal  
AON clock.  
Non-Synchronous  
Internal Clock  
0.412 x  
V(VDD)  
0.443 x  
V(VDD)  
0.474 x  
V(VDD)  
3
0.792  
1.202  
71.5  
39.2  
56.2  
78.7  
0.642 x  
V(VDD)  
0.673 x  
V(VDD)  
0.704 x  
V(VDD)  
5 (1)  
DVP Mode  
DVP with External clock.  
(1) The DS90UB6xx-Q1 DVP deserializers also contain a Mode pin (21). However, the mode pin on the deserializer determines the  
expected data format: RAW10, RAW12 LF, or RAW12 HF. Note that RAW12 LF is not supported on the DS90UB635-Q1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.5 Programming  
7.5.1 I2C Interface Configuration  
This serializer may be configured by the use of an I2C-compatible serial control bus. Multiple devices may share  
the serial control bus (up to two device addresses are supported). The device address is set through a resistor  
divider (RHIGH and RLOW see Circuit to Bias IDX Pin) connected to the IDX pin.  
7.5.1.1 IDX  
The IDX pin configures the control interface to one of two possible device addresseseither the 1.8-V or 3.3-V  
referenced I2C address. A pull-up resistor and a pulldown resistor must be used to set the appropriate voltage  
on the IDX input pin (see below). The IDX resistor divider must be referred to Pin #25 (after the ferrite filter on  
the DS90UB635-Q1 pin side).  
7-11. IDX Configuration Setting  
VIDX  
TARGET  
VOLTAGE  
I2C 8-  
BIT  
ADDRES ADDRE  
I2C 7-  
BIT  
SUGGESTED STRAP  
RESISTORS (1% TOL)  
VTARGET VOLTAGE RANGE  
V(I2C) (I2C I/O  
VOLTAGE)  
IDX  
S
SS  
RATIO MIN  
RATIO TYP  
RATIO MAX VVDD = 1.8 V  
RHIGH (k) RLOW (k)  
1
2
3
4
0
0
0.131 x  
V(VDD18)  
0
Open  
40.2  
0x30  
0x18  
1.8 V  
0.178 x  
V(VDD18)  
0.214 x  
V(VDD18)  
0.256 x  
V(VDD18)  
0.385  
1.015  
1.223  
180  
82.5  
68.1  
47.5  
102  
137  
0x32  
0x30  
0x32  
0x19  
0x18  
0x19  
1.8 V  
3.3 V  
3.3 V  
0.537 x  
V(VDD18)  
0.564 x  
V(VDD18)  
0.591 x  
V(VDD18)  
0.652 x  
V(VDD18)  
0.679 x  
V(VDD18)  
0.706 x  
V(VDD18)  
V
I2C  
R
R
PU  
PU  
Host (Optional)  
SDA  
SCL  
SDA  
SCL  
Image Sensor  
DS90UB635-Q1  
1.8V  
SDA  
SCL  
R
HIGH  
Ref Clock In  
CLK_OUT/IDX  
R
LOW  
7-8. Circuit to Bias IDX Pin  
7.5.2 I2C Interface Operation  
The serial control bus consists of two signals: SCL and SDA. SCL is a Serial Bus Clock Input / Output signal and  
the SDA is the Serial Bus Data Input / Output signal. Both SCL and SDA signals require an external pullup  
resistor to VI2C, chosen to be either 1.8 V or 3.3 V.  
For the standard and fast I2C modes, a pullup resistor of RPU = 4.7 kΩ is recommended, while a pullup resistor  
of RPU = 470 Ω is recommended for the fast plus mode. However, the pullup resistor value may be additionally  
adjusted for capacitive loading and data rate requirements. The signals are either pulled High or driven Low. The  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
IDX pin configures the control interface to one of two possible device addresses. A pullup resistor (RHIGH) and a  
pulldown resistor (RLOW) may be used to set the appropriate voltage on the IDX input pin.  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SDA transitions Low while SCL is High. A STOP occurs when SDA transitions High while SCL is also HIGH. See  
7-9.  
SDA  
SCL  
S
P
START condition, or  
START repeat condition  
STOP condition  
7-9. Start and Stop Conditions  
To communicate with an I2C target, the host controller (controller) sends data to the target address and waits for  
a response. This response is referred to as an acknowledge bit (ACK). If a target on the bus is addressed  
correctly, the target Acknowledges (ACKs) the controller by driving the SDA bus low. If the address does not  
match a target address of the device, the target Not-acknowledges (NACKs) the controller by pulling the SDA  
High. ACKs also occur on the bus when data is being transmitted. When the controller is writing data, the target  
ACKs after every data byte is successfully received. When the controller is reading data, the controller ACKs  
after every data byte is received to let the target know that the controller wants to receive another data byte.  
When the controller wants to stop reading, the controller NACKs after the last data byte and creates a stop  
condition on the bus. All communication on the bus begins with either a start condition or a repeated start  
condition. All communication on the bus ends with a stop condition. A READ is shown in 7-10 and a WRITE is  
shown in 7-11.  
7-10. I2C Bus Read  
7-11. I2C Bus Write  
Any I2C controller located at the serializer must support I2C clock stretching. For more information on I2C  
interface requirements and throughput considerations, refer to the TI application note I2C communication over  
FPD-Link III with bidirectional control channel (SNLA131).  
7.5.3 I2C Timing  
The proxy controller timing parameters are based on the internal reference clock. The I2C controller regenerates  
the I2C read or write access using timing controls in registers 0x0B and 0x0C to regenerate the clock and data  
signals to meet the desired I2C timing in standard, fast, or fast-plus modes of operation.  
I2C controller SCL high time is set in register 0x0B. This field configures the high pulse width of the SCL output  
when the serializer is the controller on the local I2C bus. The default value is set to provide a minimum 5-µs SCL  
high time with the internal reference clock at 26.25 MHz including five additional oscillator clock periods or  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DS90UB635-Q1  
 
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
synchronization and response time. Units are 38.1 ns for the nominal oscillator clock frequency, giving Min_delay  
= 38.1 ns × (SCL_HIGH_TIME + 5).  
I2C controller SCL low time is set in register 0x0C. This field configures the low pulse width of the SCL output  
when the serializer is the controller on the local deserializer I2C bus. This value is also used as the SDA setup  
time by the I2C target for providing data prior to releasing SCL during accesses over the bidirectional control  
channel. The default value is set to provide a minimum 5-µs SCL high time with the reference clock at 26.25  
MHz including five additional oscillator clock periods or synchronization and response time. Units are 38.1 ns for  
the nominal oscillator clock frequency, giving Min_delay = 38.1 ns × (SCL_HIGH_TIME + 5). See 7-12  
example settings for standard mode, fast mode, and fast mode plus timing.  
7-12. Typical I2C Timing Register Settings  
SCL HIGH TIME  
SCL LOW TIME  
NOMINAL DELAY  
I2C MODE  
0x0B  
0x7F  
0x13  
0x06  
NOMINAL DELAY  
5.03 µs  
0x0C  
0x7F  
0x26  
0x0B  
Standard  
Fast  
5.03 µs  
1.64 µs  
0.648 µs  
0.914 µs  
Fast - Plus  
0.419 µs  
7.6 Pattern Generation  
The DS90UB635-Q1 supports an internal pattern generation feature to provide a simple way to generate video  
test patterns for the CSI-2 transmitter outputs. Two types of patterns are supported: Reference color bar patterns  
and fixed color patterns accessed by the pattern generator page 0 in the indirect register set.  
7.6.1 Reference Color Bar Pattern  
The reference color bar patterns are based on the pattern defined in Appendix D of the mipi_CTS_for_D-  
PHY_v1-1_r03 specification. The pattern is an 8-color bar pattern designed to provide high, low, and medium  
frequency outputs on the CSI-2 transmit data lanes.  
The CSI-2 reference pattern provides 8 color bars by default with the following byte data for the color bars: X  
bytes of 0xAA (high-frequency pattern, inverted), X bytes of 0x33 (mid-frequency pattern), X bytes of 0xF0 (low-  
frequency pattern, inverted), X bytes of 0x7F (lone 0 pattern), X bytes of 0x55 (high-frequency pattern), X bytes  
of 0xCC (mid-frequency pattern, inverted), X bytes of 0x0F (low-frequency pattern), and Y bytes of 0x80 (long 1  
pattern). In most cases, Y will be the same as X. For certain data types, the last color bar may need to be larger  
than the others to properly fill the video line dimensions.  
The pattern generator is programmable with the following options:  
Number of color bars (1, 2, 4, or 8)  
Number of bytes per line  
Number of bytes per color bar  
CSI-2 datatype field and VC-ID  
Number of active video lines per frame  
Number of total lines per frame (active plus blanking)  
Line period (possibly program in units of 10 ns)  
Vertical front porch number of blank lines prior to the FrameEnd packet  
Vertical back porch number of blank lines following the FrameStart packet  
The pattern generator relies on proper programming by software to ensure the color bar widths are set to  
multiples of the block (or word) size required for the specified datatype. For example, for RGB888, the block size  
is 3 bytes which also matches the pixel size. In this case, the number of bytes per color bar must be a multiple of  
3. The pattern generator is implemented in the CSI-2 transmit clock domain, providing the pattern directly to the  
CSI-2 transmitter. The circuit generates the CSI-2 formatted data.  
7.6.2 Fixed Color Patterns  
When programmed for fixed color pattern mode, the pattern generator can generate a video image with a  
programmable fixed data pattern. The basic programming fields for image dimensions are the same as used with  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
the color bar patterns. When sending fixed color patterns, the color bar controls allow the user to alternate  
between the fixed pattern data and the bit-wise inverse of the fixed pattern data.  
The fixed color patterns assume a fixed block size for the byte pattern. The block size is programmable through  
a register and is designed to support most 8-bit, 10-bit, and 12-bit pixel formats. The block size should be set  
based on the pixel size converted to blocks that are an integer multiple of bytes. For example, an RGB888  
pattern would consist of 3-byte pixels and would therefore require a 3-byte block size. A 2x12-bit pixel image  
would also require 3-byte block size, while a 3x12-bit pixel image would require 9 bytes (2 pixels) to send an  
integer number of bytes. Sending a RAW10 pattern typically requires a 5-byte block size for 4 pixels, so 1x10-bit  
and 2x10-bit could both be sent with a 5-byte block size. For 3x10-bit, a 15-byte block size would be required.  
The fixed color patterns support block sizes up to 16 bytes in length, allowing additional options for patterns in  
some conditions. For example, an RGB888 image could alternate between four different pixels by using a  
twelve-byte block size. An alternating black and white RGB888 image could be sent with a block size of 6-bytes  
by setting the first three bytes to 0xFF and the next three bytes to 0x00.  
To support up to 16-byte block sizes, a set of sixteen registers are implemented to allow programming the value  
for each data byte.  
7.6.3 Packet Generator Programming  
The information in this section provides details on how to program the pattern generator to provide a specific  
color bar pattern, based on datatype, frame size, and line size.  
Most basic configuration information is determined directly from the expected video frame parameters. The  
requirements should include the datatype, frame rate (frames per second), number of active lines per frame,  
number of total lines per frame (active plus blanking), and number of pixels per line.  
PGEN_ACT_LPF Number of active lines per frame  
PGEN_TOT_LPF Number of total lines per frame  
PGEN_LSIZE Video line length size in bytes. Compute based on pixels per line multiplied by pixel size in  
bytes  
CSI-2 DataType field and VC-ID.  
Optional: PGEN_VBP Vertical back porch. This is the number of lines of vertical blanking following Frame  
Valid.  
Optional: PGEN_VFP Vertical front porch. This is the number of lines of vertical blanking preceding Frame  
Valid.  
PGEN_LINE_PD Line period in 10-ns units. Compute based on Frame Rate and total lines per frame.  
PGEN_BAR_SIZE Color bar size in bytes. Compute based on datatype and line length in bytes (see  
details below).  
7.6.3.1 Determining Color Bar Size  
The color bar pattern should be programmed in units of a block or word size dependent on the datatype of the  
video being sent. The sizes are defined in the MIPI CSI-2 specification. For example, RGB888 requires a 3-byte  
block size which is the same as the pixel size. RAW10 requires a 5-byte block size which is equal to 4 pixels.  
RAW12 requires a 3-byte block size which is equal to 2 pixels.  
When programming the Pattern Generator, software should compute the required bar size in bytes based on the  
line size and the number of bars. For the standard 8-color bar pattern, that would require the following algorithm:  
Select the desired datatype, and a valid length for that datatype (in pixels).  
Convert pixels/line to blocks/line (by dividing by the number of pixels/block, as defined in the datatype  
specification).  
Divide the blocks/line result by the number of color bars (8), giving blocks/bar.  
Round result down to the nearest integer.  
Convert blocks/bar to bytes/bar and program that value into the PGEN_BAR_SIZE register.  
As an alternative, the blocks/line can be computed by converting pixels/line to bytes/line and dividing by bytes/  
block.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.6.4 Code Example for Pattern Generator  
#Patgen RGB888 1920x1080p30 Fixed 8 Colorbar  
WriteI2C(0xB0,0x00) # Indirect Pattern Gen Registers  
WriteI2C(0xB1,0x01) # PGEN_CTL  
WriteI2C(0xB2,0x01)  
WriteI2C(0xB1,0x02) # PGEN_CFG  
WriteI2C(0xB2,0x33)  
WriteI2C(0xB1,0x03) # PGEN_CSI_DI  
WriteI2C(0xB2,0x24) # RGB888  
WriteI2C(0xB1,0x04) # PGEN_LINE_SIZE1  
WriteI2C(0xB2,0x16)  
WriteI2C(0xB1,0x05) # PGEN_LINE_SIZE0  
WriteI2C(0xB2,0x80)  
WriteI2C(0xB1,0x06) # PGEN_BAR_SIZE1  
WriteI2C(0xB2,0x02)  
WriteI2C(0xB1,0x07) # PGEN_BAR_SIZE0  
WriteI2C(0xB2,0xD0)  
WriteI2C(0xB1,0x08) # PGEN_ACT_LPF1  
WriteI2C(0xB2,0x04)  
WriteI2C(0xB1,0x09) # PGEN_ACT_LPF0  
WriteI2C(0xB2,0x38)  
WriteI2C(0xB1,0x0A) # PGEN_TOT_LPF1  
WriteI2C(0xB2,0x04)  
WriteI2C(0xB1,0x0B) # PGEN_TOT_LPF0  
WriteI2C(0xB2,0x65)  
WriteI2C(0xB1,0x0C) # PGEN_LINE_PD1  
WriteI2C(0xB2,0x0B)  
WriteI2C(0xB1,0x0D) # PGEN_LINE_PD0  
WriteI2C(0xB2,0x93)  
WriteI2C(0xB1,0x0E) # PGEN_VBP  
WriteI2C(0xB2,0x21)  
WriteI2C(0xB1,0x0F) # PGEN_VFP  
WriteI2C(0xB2,0x0A)  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7 Register Maps  
In the register definitions under the TYPE and DEFAULT heading, the following definitions apply:  
R = Read only access  
R/W = Read / Write access  
R/RC = Read only access, Read to Clear  
(R/W)/SC = Read / Write access, Self-Clearing bit  
(R/W)/S = Read / Write access, Set based on strap pin configuration at start-up  
LL = Latched Low and held until read  
LH = Latched High and held until read  
S = Set based on strap pin configuration at start-up  
7.7.1 I2C Device ID Register  
7-13. Device ID Register (Address 0x00)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit I2C ID of Serializer.  
This field always indicates the current value of the I2C ID. When bit  
0 of this register is 0, this field is read-only and shows the strapped  
ID. When bit 0 of this register is 1, this field is read/write and can be  
used to assign any valid I2C ID.  
7:1  
DEVICE_ID  
S, R/W  
S
0: Device ID is from strap  
1: Register I2C Device ID overrides strapped value  
0
SER_ID_OVERRIDE  
R/W  
0x0  
7.7.2 Reset  
7-14. RESET_CTL Register (Address 0x01)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:3  
RESERVED  
R/W  
0x00  
Reserved.  
Restart ROM Auto-load.  
2
1
RESTART_AUTOLOAD (R/W)/SC  
0x0  
0x0  
Setting this bit to 1 causes a reload of the ROM. This bit is self-  
clearing.  
Digital Reset 1.  
Resets the entire digital block including registers. This bit is self-  
clearing.  
1: Reset  
0: Normal operation  
DIGITAL_RESET_1  
DIGITAL_RESET_0  
(R/W)/SC  
(R/W)/SC  
Digital Reset 0.  
Resets the entire digital block except registers. This bit is self-  
clearing.  
0
0x0  
1: Reset  
0: Normal operation  
7.7.3 General Configuration  
7-15. General_CFG (Address 0x02)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
R/W  
0x0  
0x0  
Reserved.  
CSI-2 Clock Lane Configuration.  
0 : Non Continuous Clock  
1 : Continuous Clock  
6
CONTS_CLK  
CSI-2 Data lane configuration.  
00: 1-lane configuration  
01: 2-lane configuration  
11: 4-lane configuration  
5:4  
3:2  
CSI_LANE_SEL  
RESERVED  
R/W  
R/W  
0x3  
0x0  
Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7-15. General_CFG (Address 0x02) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
Transmitter CRC Generator.  
0x1 0: Disable  
CRC_TX_GEN_  
ENABLE  
1
R/W  
1: Enable  
I2C Strap Mode.  
This field indicates the I2C voltage level of the device. Upon device  
start-up, this field will display the I2C voltage level setting from the  
strapped IDX pin. This field is write capable and can be used to  
assign the I2C voltage level. Programming this bit to change the I2C  
voltage level should only be performed remotely over the back  
channel from a connected deserializer.  
0
I2C_STRAP_MODE  
S, R/W  
S
0: 3.3 V  
1: 1.8 V  
7.7.4 Forward Channel Mode Selection  
7-16. MODE_SEL (Address 0x03)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
RESERVED  
RESERVED  
R/W  
S, R  
R/W  
0x0  
S
Reserved.  
Reserved.  
Reserved.  
6
5
0x0  
0: Serializer Mode from the strapped MODE pin  
1: Register Mode overrides strapped value  
4
3
MODE_OV  
R/W  
R
0x0  
0x0  
MODE_DONE  
Indicates MODE value has stabilized and been latched.  
This field always indicates the MODE setting of the device. When bit  
4 of this register is 0, this field is read-only and shows the Mode  
Setting. When bit 4 of this register is 1, this field is read/write and can  
be used to assign MODE. Mode is latched from strap value when  
PDB transitions LOW to HIGH.  
Mode of operation:  
2:0  
MODE  
S, R/W  
S
000: CSI-2 Synchronous Mode  
001: Reserved  
010: CSI-2 Non-synchronous external clock Mode (Requires a local  
clock source)  
011: CSI-2 Non-synchronous Internal AON Clock  
101: DVP External Clock Backward-Compatible Mode (Requires  
local clock source)  
7.7.5 BC_MODE_SELECT  
7-17. BC_MODE_SELECT (Address 0x04)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:3  
RESERVED  
R/W  
0x0  
Reserved.  
28-bit RAW 10 Mode operation.  
Backward-compatible RAW 10 DVP mode (28-bit) is automatically  
configured by the Bidirectional Control Channel once RX lock has  
been detected. Software may overwrite the value, but must also set  
the DVP_MODE_OVER_EN to prevent overwriting by the  
Bidirectional Control Channel.  
MODE_OVERWRITE  
_100m  
2
R/W  
0x0  
28-bit RAW 12 Mode operation.  
Backward-compatible RAW 12 HF DVP mode (28-bit) is  
automatically configured by the Bidirectional Control Channel once  
RX lock has been detected. Software may overwrite the value, but  
must also set the DVP_MODE_OVER_EN to prevent overwriting by  
the Bidirectional Control Channel.  
MODE_OVERWRITE  
_75m  
1
0
R/W  
R/W  
0x0  
0x0  
DVP_MODE_OVER_  
EN  
Prevent auto-loading of the backward-compatible DVP mode (28-bit)  
operation by the Bidirectional Control Channel.  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.6 PLL Clock Control  
7-18. PLLCLK_CTRL Register (Address 0x05)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
0x0  
Reserved.  
CLKIN clock divide ratio to generate internal reference.  
3'b000 : CLKIN Div by 1  
3'b001 : CLKIN Div by 2  
3'b010 : CLKIN Div by 4  
6:4  
CLKIN_DIV  
R/W  
0x0  
3'b011 : CLKIN Div by 8  
3'b100 - 3'b111 : RESERVED  
Internally generated OSC clock reference when operating with Non-  
Synchronous internal clock or external system clock not detected.  
0: 24.2 MHz to 25.5 MHz, set for 2 Gbps line rate  
3
OSCCLK_SEL  
RESERVED  
R/W  
R/W  
0x0  
0x3  
1: 48.4 MHz to 51 MHz, set for 4 Gbps line rate mode.  
2:0  
Reserved.  
7.7.7 Clock Output Control 0  
The DS90UB635-Q1 provides an option for a programmable reference output clock to meet the system clock  
input requirements of various sensors. The control of the clock output frequency is set by the input divider and M  
value in register 0x06 and the N value in register 0x07.  
7-19. CLKOUT_CTRL0 (Address 0x06)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
Clock source of M/N divider is based on the forward channel data rate  
divided by this register field.  
000: Div by 1  
7:5  
HS_CLK_DIV  
R/W  
0x2  
001: Div by 2  
010: Div by 4  
011: Div by 8  
100: Div by 16  
M value for M/N divider for CLKOUT. CLKOUT can be programmed  
using the M/N ratio of an internal high-speed clock to generate a clock  
output based on the system sensor requirement. When selecting the  
M/N ratio, they should be set to yield the CLKOUT frequency less than  
100 MHz. The M value should be 0. Setting M to 0 will disable  
CLKOUT and output will remain static high or low.  
4:0  
DIV_M_VAL  
R/W  
0x01  
7.7.8 Clock Output Control 1  
The DS90UB635-Q1 provides option for a programmable reference output clock to meet the system clock input  
requirements of various sensors. The control of the clock output frequency is set by the input divider and M value  
in register 0x06 and the N value in register 0x07.  
7-20. CLKOUT_CTRL1 (Address 0x07)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
N value for M/N divider for CLKOUT. CLKOUT can be programmed  
using the M/N ratio of an internal high-speed clock to generate a clock  
output based on the system sensor requirement. When selecting the  
M/N ratio, they should be set to yield the CLKOUT frequency less than  
100 MHz. N must be set to non-zero value.  
7:0  
DIV_N_VAL  
R/W  
0x28  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.9 Back Channel Watchdog Control  
7-21. BCC_WATCHDOG (Address 0x08)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
BCC_WD_TIMER sets the Bidirectional Control Channel Watchdog  
Timeout value in units of 2 milliseconds. This field should not be set to  
0. The watchdog timer allows termination of a control channel  
transaction if it fails to complete within a programmed amount of time.  
7:1  
BCC_WD_TIMER  
R/W  
0x7F  
0x0  
Disable Bidirectional Control Channel Watchdog Timer.  
1: Disables BCC Watchdog Timer operation  
0: Enables BCC Watchdog Timer operation  
BCC_WD_TIMER_  
DISABLE  
0
R/W  
7.7.10 I2C Control 1  
7-22. I2C_CONTROL1 (Address 0x09)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
Disable Remote Writes to Local Registers.  
Setting this bit to a 1 prevents remote writes to local device registers  
from across the control channel. This prevents writes to the Serializer  
registers from an I2C controller attached to the deserializer. Setting this  
bit does not affect remote access to I2C targets at the Serializer.  
LCL_WRITE_  
DISABLE  
7
R/W  
0x0  
Internal SDA Hold Time.  
6:4  
3:0  
I2C_SDA_HOLD  
R/W  
0x1  
0xE  
This field configures the amount of internal hold time provided for the  
SDA input relative to the SCL input. Units are 50 nanoseconds.  
I2C Glitch Filter Depth.  
This field configures the maximum width of glitch pulses on the SCL  
and SDA inputs that are rejected. Units are 5 nanoseconds.  
I2C_FILTER_DEPTH R/W  
7.7.11 I2C Control 2  
7-23. I2C_CONTROL2 (Address 0x0A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Remote Ack SDA Output Setup.  
When a Control Channel (remote) access is active, this field configures  
setup time from the SDA output relative to the rising edge of SCL  
during ACK cycles.  
SDA_OUTPUT_  
SETUP  
7:4  
R/W  
0x1  
Setting this value increases setup time in units of 640 ns. The nominal  
output setup time value for SDA to SCL when this field is 0 is 80 ns.  
SDA Output Delay.  
This field configures additional delay on the SDA output relative to the  
falling edge of SCL. Setting this value increases output delay in units  
of 40 ns.  
SDA_OUTPUT_DELA  
Y
3:2  
R/W  
0x0  
Nominal output delay values for SCL to SDA are:  
00 : 240 ns  
01: 280 ns  
10: 320 ns  
11: 360 ns  
Speed up I2C Bus Watchdog Timer.  
1: Watchdog Timer expires after approximately 50 microseconds  
0: Watchdog Timer expires after approximately 1 second.  
I2C_BUS_TIMER_  
SPEEDUP  
1
0
R/W  
R/W  
0x0  
0x0  
Disable I2C Bus Watchdog Timer.  
When the I2C Bus Watchdog Timer may be used to detect when the  
I2C bus is free or hung up following an invalid termination of a  
transaction. If SDA is high and no signalling occurs for approximately 1  
second, the I2C bus is assumed free. If SDA is low and no signaling  
occurs, the device attempts to clear the bus by driving 9 clocks on  
SCL.  
I2C_BUS_TIMER_  
DISABLE  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.12 SCL High Time  
7-24. SCL_HIGH_TIME (Address 0x0B)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
I2C Controller SCL High Time.  
This field configures the high pulse width of the SCL output when the  
Serializer is the Controller on the local I2C bus. Units are 38.1 ns for  
the nominal oscillator clock frequency of 26.25 MHz. The default value  
is set to provide a minimum 5-µs SCL high time with the internal  
oscillator clock running at 26.25 MHz. Delay includes 5 additional  
oscillator clock periods.  
7:0  
SCL_HIGH_TIME  
R/W  
0x7F  
Min_delay = 38.0952 ns × (SCL_HIGH_TIME + 5)  
7.7.13 SCL Low Time  
7-25. SCL_LOW_TIME (Address 0x0C)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
I2C SCL Low Time.  
This field configures the low pulse width of the SCL output when the  
Serializer is the Controller on the local I2C bus. This value is also used  
as the SDA setup time by the I2C Target for providing data prior to  
releasing SCL during accesses over the Bidirectional Control Channel.  
Units are 38.1 ns for the nominal oscillator clock frequency of 26.25  
MHz. The default value is set to provide a minimum 5-µs SCL low time  
with the internal oscillator clock running at 26.25 MHz. Delay includes 5  
additional clock periods.  
7:0  
SCL_LOW_TIME  
R/W  
0x7F  
Min_delay = 38.0952 ns × (SCL_LOW_TIME + 5)  
7.7.14 Local GPIO DATA  
7-26. LOCAL_GPIO_DATA (Address 0x0D)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
Enable remote deserializer GPIO data on local GPIO.  
Bit 7: Enable remote GPIO3 when this bit is set to 1  
Bit 6: Enable remote GPIO2 when this bit is set to 1  
Bit 5: Enable remote GPIO1 when this bit is set to 1  
Bit 4: Enable remote GPIO0 when this bit is set to 1  
7:4  
GPIO_RMTEN  
R/W  
0xF  
0x0  
GPIO Output Source.  
This register sets the logical output of 4 GPIOs, GPIO_RMTEN must be  
disabled and GPIOx_OUT_EN must be enabled.  
Bit 3: write 0/1 on GPIO3  
3:0  
GPIO_OUT_SRC  
R/W  
Bit 2: write 0/1 on GPIO2  
Bit 1: write 0/1 on GPIO1  
Bit 0: write 0/1 on GPIO0  
7.7.15 GPIO Input Control  
7-27. GPIO_INPUT_CTRL (Address 0x0E)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
GPIO3 Output Enable.  
0: Disabled  
7
GPIO3_OUT_EN  
R/W  
0x0  
0x0  
0x0  
0x0  
1: Enabled  
GPIO2 Output Enable.  
0: Disabled  
1: Enabled  
6
5
4
GPIO2_OUT_EN  
GPIO1_OUT_EN  
GPIO0_OUT_EN  
R/W  
R/W  
R/W  
GPIO1 Output Enable.  
0: Disabled  
1: Enabled  
GPIO0 Output Enable.  
0: Disabled  
1: Enabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7-27. GPIO_INPUT_CTRL (Address 0x0E) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
GPIO3 Input Enable.  
0: Disabled  
3
GPIO3_INPUT_EN  
R/W  
0x1  
0x1  
0x1  
0x1  
1: Enabled  
GPIO2 Input Enable.  
0: Disabled  
1: Enabled  
2
1
0
GPIO2_INPUT_EN  
GPIO1_INPUT_EN  
GPIO0_INPUT_EN  
R/W  
R/W  
R/W  
GPIO1 Input Enable.  
0: Disabled  
1: Enabled  
GPIO0 Input Enable.  
0: Disabled  
1: Enabled  
7.7.16 DVP_CFG  
7-28. DVP_CFG (Address 0x10)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:5  
RESERVED  
R/W  
0x0  
0x0  
Reserved.  
When asserted, allows any packet with a Long data type (DT) packet  
through DVP.  
4
3
DVP_DT_ANY_EN  
R/W  
When asserted, allows data type matching based on the value in the  
DVP_DT register. Note: When this bit is asserted, writes to the  
DVP_DT register are blocked.  
DVP_DT_MATCH_EN R/W  
0x0  
0x0  
When asserted, allows YUV 10-bit DTs through DVP when  
mode_100m is also asserted (YUV 10-bit DTs are 0x19, 0x1d, and  
0x1f).  
2
DVP_DT_YUV_EN  
R/W  
1
0
DVP_FV_IN  
DVP_LV_INV  
R/W  
R/W  
0x0  
0x0  
Invert Frame Valid Polarity.  
Invert Line Valid Polarity.  
7.7.17 DVP_DT  
7-29. DVP_DT (Address 0x11)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:6  
RESERVED  
R/W  
0x0  
Reserved.  
When the DVP_DT_MATCH_EN bit in register DVP_CFG (0x10) is  
asserted, the DVP block will allow packets with this DT through  
regardless of the mode_75m or mode_100m setting. The DT value  
must be a Long DT value (either bit 5 or 4 must be set) for a match to  
occur.  
DVP_DT_MATCH_VA  
L
5:0  
R/W  
0x0  
7.7.18 Force BIST Error  
7-30. FORCE_BIST_ERR (Address 0x13)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
FORCE_ERR_CNT allows forcing a number of forward channel parity  
errors based on the value in FORCE_FC_CNT. When in BIST mode, the  
parity errors will be generated automatically upon entering BIST mode.  
7
FORCE_FC_ERR  
SC  
0x0  
When in normal operation this bit must be set to one to inject the parity  
errors.  
0: Force Disabled  
1: Force Enabled  
Force Error Count. Set this value to the desired number of forced parity  
errors.  
6:0  
FORCE_FC_CNT  
R/W  
0x00  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.19 Remote BIST Control  
7-31. REMOTE_BIST_CTRL (Address 0x14)  
BIT  
7:4  
3
FIELD  
TYPE  
DEFAULT DESCRIPTION  
Set to force FC error based on the FORCE_ERR_CNT.  
0: Force Disabled  
FORCE_ERR_CNT R/W  
0x0  
0x0  
1: Force Enabled  
LOCAL_BIST_EN  
BIST_CLOCK  
R/W  
R/W  
Force DS90UB635-Q1 to Enter BIST Mode.  
BIST clock source selection.  
00: External/System clock  
01: 50 MHz internal clock  
1X: 25 MHz internal clock  
2:1  
0
0x0  
0x0  
REMOTE_BIST_EN R/W  
Backward-Compatible Remote BIST Enable Register.  
7.7.20 Sensor Voltage Gain  
7-32. SENSOR_VGAIN (Address 0x15)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
0x0  
Reserved.  
Voltage Sensor Gain Setting. VOLT_GAIN = (128 / REG_VALUE).  
0x40 = Gain of 2  
0x20 = Gain of 4  
0x10 = Gain of 8  
6:0  
VOLT_GAIN  
R/W  
0x20  
7.7.21 Sensor Temp Gain  
7-33. SENSOR_TGAIN (Address 0x16)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
R/W  
0x0  
Reserved.  
Temperature Sensor Gain Setting.  
128/TEMP_GAIN  
6:0  
TEMP_GAIN  
0x18  
7.7.22 Sensor Control 0  
7-34. SENSOR_CTRL0 (Address 0x17)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:4  
RESERVED  
R/W  
0x3  
0x3  
Reserved.  
Temperature and Voltage Sensor Enable.  
00: Disabled  
11: Enabled  
3:2  
1:0  
SENSOR_ENABLE R/W  
Enable GPIO 0/1 for input Voltage Sensor 0/1 measurement.  
00: No voltage sensing  
01: GPIO0 Voltage Sensing  
SENSE_V_GPIO  
R/W  
0x0  
10: GPIO1 Voltage Sensing  
11: GPIO0 and GPIO1 Voltage Sensing  
7.7.23 Sensor Control 1  
7-35. SENSOR_CTRL1 (Address 0x18)  
BIT  
7
FIELD  
TYPE  
DEFAULT DESCRIPTION  
SENSE_GAIN_EN  
RESERVED  
R/W  
R/W  
0x1  
Enable Gain Setting of the Sensor.  
Reserved.  
6:0  
0x00  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.24 Voltage Sensor 0 Thresholds  
7-36. SENSOR_V0_THRESH (Address 0x19)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
0x0  
0x6  
0x0  
0x2  
Reserved.  
GPIO0/V0 sensor upper limit. When the GPIO0 is configured as a voltage  
sensor, and the voltage measured is above the SENSE_V0_HI, it triggers  
the V0_SENSOR_HI alarm in the SENSOR_STATUS register. The max  
reading can be read from VOLTAGE_SENSOR_V0_MAX.  
6:4  
3
SENSE_V0_HI  
RESERVED  
R/W  
R/W  
R/W  
Reserved.  
GPIO0/V0 sensor lower limit. When the GPIO0 is configured as a voltage  
sensor, and the voltage measured is below the SENSE_V0_LO, it triggers  
the V0_SENSOR_LOW alarm in the SENSOR_STATUS register. The min  
reading can be read from VOLTAGE_SENSOR_V0_MIN.  
2:0  
SENSE_V0_LO  
7.7.25 Voltage Sensor 1 Thresholds  
7-37. SENSOR_V1_THRESH (Address 0x1A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
R/W  
0x0  
Reserved.  
GPIO1/V1 alarm upper limit. When the GPIO1 is configured as a voltage  
sensor, V1_MAX sets the upper limit for V1_SENSOR_HI status to be  
triggered.  
6:4  
3
SENSE_V1_HI  
RESERVED  
R/W  
R/W  
R/W  
0x6  
0x0  
0x2  
Reserved.  
GPIO1/V1 alarm lower limit. When the GPIO1 is configured as a voltage  
sensor, V1_MIN sets the lower limit for V1_SENSOR_LOW status to be  
triggered.  
2:0  
SENSE_V1_LO  
7.7.26 Temperature Sensor Thresholds  
7-38. SENSOR_T_THRESH (Address 0x1B)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
0x0  
0x6  
0x0  
0x2  
Reserved.  
Temp sensor upper threshold. When the Temp sensor is enabled, and the  
temperature measured above the SENSE_T_HI limit, it triggers the  
T_SENSOR_HI alarm in SENSOR_STATUS.  
6:4  
3
SENSE_T_HI  
RESERVED  
SENSE_T_LO  
R/W  
R/W  
R/W  
Reserved.  
Temp sensor lower threshold. When the Temp sensor is enabled, and the  
temperature measured below the SENSE_T_LO limit, it triggers the  
T_SENSOR_LOW alarm in SENSOR_STATUS.  
2:0  
7.7.27 CSI-2 Alarm Enable  
7-39. ALARM_CSI_EN (Address 0x1C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:6  
RESERVED  
R/W  
0x0  
Reserved.  
CSI-2 No Frame Valid Alarm Enable.  
1: Enabled  
0: Disabled  
5
4
3
CSI_NO_FV_EN  
R/W  
R/W  
R/W  
0x1  
0x1  
0x1  
DPHY_SYNC_ERR Alarm Enable.  
1: Enabled  
0: Disabled  
DPHY_SYNC_ERR_  
EN  
DPHY_CTRL_ERR Alarm Enable.  
1: Enabled  
0: Disabled  
DPHY_CTRL_ERR_  
EN  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7-39. ALARM_CSI_EN (Address 0x1C) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI_ECC2 Alarm Enable.  
1: Enabled  
2
CSI_ECC_2_EN  
R/W  
0x1  
0: Disabled  
CSI-2 Checksum Error Alarm Enable.  
1: Enabled  
0: Disabled  
CSI_CHKSUM_ERR  
_EN  
1
0
R/W  
R/W  
0x1  
0x1  
CSI-2 Length Error Alarm Enable.  
1: Enabled  
0: Disabled  
CSI_LENGTH_ERR  
_EN  
7.7.28 Alarm Sense Enable  
7-40. ALARM_SENSE_EN (Address 0x1D)  
BIT  
7:6  
5
FIELD  
TYPE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DEFAULT  
DESCRIPTION  
RESERVED  
T_OVER  
0x0  
Reserved.  
0x0  
Enable Temp Sensor over the high limit alarm.  
Enable Temp Sensor under the low limit alarm.  
Enable Voltage1 Sensor over the high limit alarm.  
4
T_UNDER  
V1_OVER  
V1_UNDER  
V0_OVER  
V0_UNDER  
0x0  
3
0x0  
2
0x0  
Enable Voltage1 Sensor under the low limit alarm.  
Enable Voltage0 Sensor over the high limit alarm.  
Enable Voltage0 Sensor under the low limit alarm.  
1
0x0  
0
0x0  
7.7.29 Back Channel Alarm Enable  
7-41. ALARM_BC_EN (Address 0x1E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
CRC_ERR_EN  
R/W  
0x0  
Reserved.  
1
R/W  
0x0  
Enable CRC_ERR alarm.  
Enable LINK_DETECT alarm.  
0
LINK_DETECT_EN R/W  
0x0  
7.7.30 CSI-2 Polarity Select  
The CSI-2 Polarity Select register allows for changing P/N input polarity for each data lane.  
7-42. CSI_POL_SEL (Address 0x20)  
BIT  
7:5  
4
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RESERVED  
R
0x0  
Reserved.  
POLARITY_CLK0 R/W  
0x0  
CSI-2 CLK lane 0 Polarity.  
CSI-2 Data lane 3 Polarity.  
CSI-2 Data lane 2 Polarity.  
CSI-2 Data lane 1 Polarity.  
CSI-2 Data lane 0 Polarity.  
3
POLARITY_D3  
POLARITY_D2  
POLARITY_D1  
POLARITY_D0  
R/W  
R/W  
R/W  
R/W  
0x0  
2
0x0  
1
0x0  
0
0x0  
7.7.31 CSI-2 LP Mode Polarity  
The CSI-2 LP Mode Polarity register allows for changing polarity for all clocks and data lanes in Low power  
mode.  
7-43. CSI_LP_POLARITY (Address 0x21)  
BIT  
7:5  
4
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RESERVED  
POL_LP_CLK0  
R/W  
0x0  
Reserved.  
R/W  
0x0  
LP CSI-2 Clock lane Polarity.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7-43. CSI_LP_POLARITY (Address 0x21) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
3:0  
POL_LP_DATA  
R/W  
0x0  
LP CSI-2 Data lane Polarity.  
7.7.32 CSI-2 High-Speed RX Enable  
The CSI-2 High Speed RX Enable register is intended for system debugging and should be set to 0x00 for  
normal operation.  
7-44. CSI_EN_HSRX (Address 0x22)  
BIT  
7
FIELD  
TYPE  
R
DEFAULT  
DESCRIPTION  
RESERVED  
RESERVED  
0x0  
Reserved.  
6:0  
R/W  
0x00  
Reserved.  
7.7.33 CSI-2 Low Power Enable  
The CSI-2 Low Power Enable register is intended for system debugging.  
7-45. CSI_EN_LPRX (Address 0x23)  
BIT  
7
FIELD  
TYPE  
R
DEFAULT  
DESCRIPTION  
RESERVED  
RESERVED  
0x0  
Reserved.  
6:0  
R/W  
0x00  
Reserved.  
7.7.34 CSI-2 Termination Enable  
The CSI-2 Termination Enable register is intended for system debugging.  
7-46. CSI_EN_RXTERM (Address 0x24)  
BIT  
7:4  
3
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
RESERVED  
R/W  
0x0  
EN_RXTERM_D3 R/W  
EN_RXTERM_D2 R/W  
EN_RXTERM_D1 R/W  
EN_RXTERM_D0 R/W  
0x0  
2
0x0  
1
0x0  
0
0x0  
7.7.35 CSI-2 Packet Header Control  
7-47. CSI_PKT_HDR_TINIT_CTRL (Address 0x31)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
PKT_HDR_SEL_  
VC  
For interleaved VC packet select the VC ID to display the packet header.  
This is effective only if bit4 is set high (PKT_HDR_VCI_ENABLE).  
7:6  
R/W  
0x0  
1: Displays the corrected CSI-2 packet header (in case of error) sent to  
the receiver  
0: Displays the received CSI-2 packet header from imager  
PKT_HDR_  
CORRECTED  
5
R/W  
0x1  
Enable the CSI-2 packet header selection based on VC for interleaved  
mode. For interleaved VC packet set this bit to record the packet headers  
for each VC. For regular data packet ignore this bit.  
PKT_HDR_VCI_E  
NABLE  
4
3
R/W  
R/W  
0x0  
0x0  
RESERVED  
Reserved.  
CSI-2 Initial Time after power up. Any LP control data are ignored during  
this time for all CSI-2 lanes.  
000 = 100 µs  
2:0  
TINIT_TIME  
R/W  
0x0  
001 = 200 µs  
010 = 300 µs  
111 = 800 µs  
and so forth.  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.36 Back Channel Configuration  
7-48. BCC_CONFIG (Address 0x32)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
I2C Pass-Through All Transactions.  
0: Disabled  
1: Enabled  
I2C_PASS_  
THROUGH_ALL  
7
R/W  
0x0  
I2C Pass-Through to Deserializer if decode matches.  
0: Pass-Through Disabled  
1: Pass-Through Enabled  
I2C_PASS_  
THROUGH  
6
5
R/W  
0x0  
0x0  
Automatically Acknowledge all I2C writes independent of the forward  
channel lock state or status of the remote Acknowledge.  
1: Enable  
0: Disable  
AUTO_ACK_ALL R/W  
4
3
RESERVED  
R/W  
R/W  
0x0  
0x1  
Reserved.  
RX_PARITY_  
CHECKER_  
ENABLE  
Parity Checker Enable.  
0: Disable  
1: Enable  
2
1
0
RESERVED  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
0x0  
0x0  
0x1  
Reserved.  
Reserved.  
Reserved.  
7.7.37 Datapath Control 1  
7-49. DATAPATH_CTL1 (Address 0x33)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:3  
RESERVED  
R/W  
0x00  
Reserved.  
DCA CRC Enable.  
If set to a 1, the Forward Channel sends a CRC as part of the DCA  
sequence. The DCA CRC protects the first 8 bytes of the DCA sequence.  
The CRC is sent as the 9th byte.  
2
DCA_CRC_EN  
FC_GPIO_EN  
R/W  
R/W  
0x1  
0x0  
Forward Channel GPIO Enable.  
Configures the number of enabled forward channel GPIOs.  
00: GPIOs disabled  
1:0  
01: One GPIO  
10: Two GPIOs  
11: Four GPIOs  
7.7.38 Remote Partner Capabilities 1  
7-50. REMOTE_PAR_CAP1 (Address 0x35)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Freeze Partner Capabilities.  
FREEZE_DES_  
CAP  
Prevent auto-loading of the Partner Capabilities by the Bidirectional  
Control Channel. The Capabilities are frozen at the values written in  
registers 0x1E and 0x1F.  
7
R/W  
0x0  
6
RESERVED  
R/W  
0x0  
Reserved.  
Link BIST Enable.  
This bit indicates the remote partner is requesting BIST operation over the  
FPD-Link III interface.  
5
BIST_EN  
R/W  
0x0  
This field is automatically configured by the Bidirectional Control Channel  
once back channel link has been detected. Software may overwrite this  
value, but must also set the FREEZE_DES_CAP bit to prevent overwriting  
by the Bidirectional Control Channel.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7-50. REMOTE_PAR_CAP1 (Address 0x35) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Remote Partner Multi-Port capable.  
0 : Remote partner is a single-port deserializer device  
1 : Remote partner is a multi-port deserializer device  
4
MPORT  
R/W  
0x0  
This field is automatically configured by the Bidirectional Control Channel  
once back channel link has been detected. Software may overwrite this  
value, but must also set the FREEZE_DES_CAP bit to prevent overwriting  
by the Bidirectional Control Channel.  
Remote Partner port number.  
When connected to a multi-port device, this field indicates the port  
number to which the Serializer is connected.  
3:0  
PORT_NUM  
R/W  
0x0  
This field is automatically configured by the Bidirectional Control Channel  
once back channel link has been detected. Software may overwrite this  
value, but must also set the FREEZE_DES_CAP bit to prevent overwriting  
by the Bidirectional Control Channel.  
7.7.39 Partner Deserializer ID  
7-51. DES_ID (Address 0x37)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Remote Deserializer ID.  
This field is normally loaded automatically from the remote Deserializer.  
7:1  
DES_ID  
R/W  
0x3D  
Freeze Deserializer Device ID.  
Prevent auto-loading of the Deserializer Device ID from the back channel.  
The ID is frozen at the value written.  
FREEZE_  
DEVICE_ID  
0
R/W  
0x0  
7.7.40 Target 0 ID  
7-52. TARGET_ID_0 (Address 0x39)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 0.  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Deserializer. If an I2C transaction is addressed to  
the Target Alias ID0, the transaction is remapped to this address before  
passing the transaction across the Bidirectional Control Channel to the  
Deserializer.  
TARGET_ID_0  
RESERVED  
0x00  
0x0  
Reserved.  
7.7.41 Target 1 ID  
7-53. TARGET_ID_1 (Address 0x3A)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 1.  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Deserializer. If an I2C transaction is addressed to  
the Target Alias ID1, the transaction is remapped to this address before  
passing the transaction across the Bidirectional Control Channel to the  
Deserializer.  
TARGET_ID_1  
RESERVED  
0x00  
0x0  
Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.42 Target 2 ID  
7-54. TARGET_ID_2 (Address 0x3B)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 2.  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Deserializer. If an I2C transaction is addressed to  
the Target Alias ID2, the transaction is remapped to this address before  
passing the transaction across the Bidirectional Control Channel to the  
Deserializer.  
TARGET_ID_2  
RESERVED  
0x00  
0x0  
Reserved.  
7.7.43 Target 3 ID  
7-55. TARGET_ID_3 (Address 0x3C)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 3.  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Deserializer. If an I2C transaction is addressed to  
the Target Alias ID3, the transaction is remapped to this address before  
passing the transaction across the Bidirectional Control Channel to the  
Deserializer.  
TARGET_ID_3  
RESERVED  
0x00  
0x0  
Reserved.  
7.7.44 Target 4 ID  
7-56. TARGET_ID_4 (Address 0x3D)  
DEFAULT DESCRIPTION  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
7-bit Remote Target Device ID 4.  
Configures the physical I2C address of the remote I2C Target device  
TARGET_ID_4  
RESERVED  
0x00  
0x0  
attached to the remote Deserializer. If an I2C transaction is addressed to the  
Target Alias ID4, the transaction is remapped to this address before passing  
the transaction across the Bidirectional Control Channel to the Deserializer.  
Reserved.  
7.7.45 Target 5 ID  
7-57. TARGET_ID_5 (Address 0x3E)  
DEFAULT DESCRIPTION  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
7-bit Remote Target Device ID 5.  
Configures the physical I2C address of the remote I2C Target device  
TARGET_ID_5  
RESERVED  
0x00  
0x0  
attached to the remote Deserializer. If an I2C transaction is addressed to the  
Target Alias ID5, the transaction is remapped to this address before passing  
the transaction across the Bidirectional Control Channel to the Deserializer.  
Reserved.  
7.7.46 Target 6 ID  
7-58. TARGET_ID_6 (Address 0x3F)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
DEFAULT  
DESCRIPTION  
7-bit Remote Target Device ID 6.  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Deserializer. If an I2C transaction is addressed to  
the Target Alias ID6, the transaction is remapped to this address before  
passing the transaction across the Bidirectional Control Channel to the  
Deserializer.  
TARGET_ID_6  
RESERVED  
0x00  
0x0  
Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.47 Target 7 ID  
7-59. TARGET_ID_7 (Address 0x40)  
DEFAULT DESCRIPTION  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
R
7-bit Remote Target Device ID 7.  
Configures the physical I2C address of the remote I2C Target device  
TARGET_ID_7  
RESERVED  
0x00  
0x0  
attached to the remote Deserializer. If an I2C transaction is addressed to the  
Target Alias ID7, the transaction is remapped to this address before passing  
the transaction across the Bidirectional Control Channel to the Deserializer.  
Reserved.  
7.7.48 Target 0 Alias  
7-60. TARGET_ID_ALIAS_0 (Address 0x41)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7-bit Remote Target Device Alias ID 0.  
Configures the decoder for detecting transactions designated for an I2C  
Target device attached to the remote Deserializer. The transaction is  
remapped to the address specified in the Target ID0 register. A value of 0 in  
this field disables access to the remote I2C Target.  
TARGET_ID_  
ALIAS_0  
7:1  
R/W  
R/W  
0x00  
0x0  
Automatically Acknowledge all I2C writes to the remote Target 0 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
TARGET_AUTO_  
ACK_0  
0
0: Disable  
This is intended for debugging only and not recommended for normal  
operation.  
7.7.49 Target 1 Alias  
7-61. TARGET_ID_ALIAS_1 (Address 0x42)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7-bit Remote Target Device Alias ID 1.  
Configures the decoder for detecting transactions designated for an I2C  
Target device attached to the remote Deserializer. The transaction is  
remapped to the address specified in the Target ID1 register. A value of 0 in  
this field disables access to the remote I2C Target.  
TARGET_ID_ALIA  
S_1  
7:1  
R/W  
R/W  
0x00  
0x0  
Automatically Acknowledge all I2C writes to the remote Target 1 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
TARGET_AUTO_  
ACK_1  
0
0: Disable  
This is intended for debugging only and not recommended for normal  
operation.  
7.7.50 Target 2 Alias  
7-62. TARGET_ID_ALIAS_2 (Address 0x43)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7-bit Remote Target Device Alias ID 2.  
Configures the decoder for detecting transactions designated for an I2C  
Target device attached to the remote Deserializer. The transaction is  
remapped to the address specified in the Target ID2 register. A value of 0 in  
this field disables access to the remote I2C Target.  
TARGET_ID_ALIA  
S_2  
7:1  
R/W  
0x00  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
BIT  
7-62. TARGET_ID_ALIAS_2 (Address 0x43) (continued)  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
Automatically Acknowledge all I2C writes to the remote Target 2 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
0: Disable  
TARGET_AUTO_  
ACK_2  
0
R/W  
0x0  
This is intended for debugging only and not recommended for normal  
operation.  
7.7.51 Target 3 Alias  
7-63. TARGET_ID_ALIAS_3 (Address 0x44)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7-bit Remote Target Device Alias ID 3.  
Configures the decoder for detecting transactions designated for an I2C  
Target device attached to the remote Deserializer. The transaction is  
remapped to the address specified in the Target ID3 register. A value of 0 in  
this field disables access to the remote I2C Target.  
TARGET_ID_ALIA  
S_3  
7:1  
R/W  
R/W  
0x00  
0x0  
Automatically Acknowledge all I2C writes to the remote Target 3 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
TARGET_AUTO_  
ACK_3  
0
0: Disable  
This is intended for debugging only and not recommended for normal  
operation.  
7.7.52 Target 4 Alias  
7-64. TARGET_ID_ALIAS_4 (Address 0x45)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7-bit Remote Target Device Alias ID 4.  
Configures the decoder for detecting transactions designated for an I2C  
Target device attached to the remote Deserializer. The transaction is  
remapped to the address specified in the Target ID4 register. A value of 0 in  
this field disables access to the remote I2C Target.  
TARGET_ID_ALIA  
S_4  
7:1  
R/W  
R/W  
0x00  
0x0  
Automatically Acknowledge all I2C writes to the remote Target 4 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
TARGET_AUTO_  
ACK_4  
0
0: Disable  
This is intended for debugging only and not recommended for normal  
operation.  
7.7.53 Target 5 Alias  
7-65. TARGET_ID_ALIAS_5 (Address 0x46)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7-bit Remote Target Device Alias ID 5.  
Configures the decoder for detecting transactions designated for an I2C  
Target device attached to the remote Deserializer. The transaction is  
remapped to the address specified in the Target ID5 register. A value of 0 in  
this field disables access to the remote I2C Target.  
TARGET_ID_ALIA  
S_5  
7:1  
R/W  
R/W  
0x00  
0x0  
Automatically Acknowledge all I2C writes to the remote Target 5 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
TARGET_AUTO_  
ACK_5  
0
0: Disable  
This is intended for debugging only and not recommended for normal  
operation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.54 Target 6 Alias  
7-66. TARGET_ID_ALIAS_6 (Address 0x47)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7-bit Remote Target Device Alias ID 6.  
Configures the decoder for detecting transactions designated for an I2C  
Target device attached to the remote Deserializer. The transaction is  
remapped to the address specified in the Target ID6 register. A value of 0 in  
this field disables access to the remote I2C Target.  
TARGET_ID_ALIA  
S_6  
7:1  
R/W  
R/W  
0x00  
0x0  
Automatically Acknowledge all I2C writes to the remote Target 6 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
TARGET_AUTO_  
ACK_6  
0
0: Disable  
This is intended for debugging only and not recommended for normal  
operation.  
7.7.55 Target 7 Alias  
7-67. TARGET_ID_ALIAS_7 (Address 0x48)  
DEFAUL  
T
BIT  
FIELD  
TYPE  
DESCRIPTION  
7-bit Remote Target Device Alias ID 7.  
Configures the decoder for detecting transactions designated for an I2C Target  
device attached to the remote Deserializer. The transaction is remapped to the  
address specified in the Target ID7 register. A value of 0 in this field disables  
access to the remote I2C Target.  
TARGET_ID_ALIA  
S_7  
7:1  
R/W  
0x00  
Automatically Acknowledge all I2C writes to the remote Target 7 independent  
of the forward channel lock state or status of the remote Deserializer  
Acknowledge.  
1: Enable  
0: Disable  
TARGET_AUTO_  
ACK_7  
0
R/W  
0x0  
This is intended for debugging only and not recommended for normal  
operation.  
7.7.56 Back Channel Control  
7-68. BC_CTRL (Address 0x49)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:6  
RESERVED  
R
0x0  
Reserved.  
Clear BIST CRC error counter.  
0: Disable clear  
1: Enable Clear  
BIST_CRC_ERR_  
CLR  
5
4
3
(R/W)/SC 0x0  
R/W 0x0  
RESERVED  
Reserved.  
Clear CRC error.  
0: Disable clear  
1: Enable clear  
CRC_ERR_CLR (R/W)/SC 0x0  
LINK_DET_  
2:0  
R/W  
0x0  
TX-RX link detect timer val.  
TIMER  
7.7.57 Revision ID  
7-69. REV_MASK_ID (Address 0x50)  
BIT  
7:4  
3:0  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
REVISION_ID  
MASK_ID  
R
R
0x2  
0x0  
Revision ID.  
Mask ID.  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.58 Device Status  
7-70. Device STS (Address 0x51)  
DEFAULT DESCRIPTION  
BIT  
FIELD  
TYPE  
Config Checksum Passed.  
This bit is set following initialization if the Configuration data in the eFuse ROM  
had a valid checksum.  
CFG_CKSUM_  
STS  
7
R
0x0  
Power-up initialization complete.  
6
CFG_INIT_DONE  
RESERVED  
R
R
0x0  
This bit is set after Initialization is complete. Configuration from eFuse ROM  
has completed.  
5:0  
0x00  
Reserved.  
7.7.59 General Status  
7-71. GENERAL_STATUS (Address 0x52)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R
R
R
0x0  
0x0  
0x0  
Reserved.  
RX_LOCK_  
DETECT  
Deserializer LOCK status This bit indicates the LOCK status of the  
Deserializer.  
6
5
RESERVED  
Reserved.  
Back Channel Link lost Status changed.  
This bit is set if a change in BC LINK DET lost status has been detected. This  
bit is cleared upon read of CRC ERR CLR register or HS PLL loses lock.  
LINK_LOST_  
FLAG  
4
R
0x0  
BIST Error is detected.  
3
2
BIST_CRC_ERR  
HS_PLL_LOCK  
R
R
0x0  
0x1  
The BIST_ERR_CNT register contain the number of Back Channel BIST  
errors.  
Forward Channel High speed PLL lock flag.  
Back Channel CRC error detected.  
This bit is set when the back channel errors detected when BC LINK DET is  
asserted.  
This bit is cleared upon read of CRC_ERR_CLR register.  
1
0
CRC_ERR  
LINK_DET  
R
R
0x0  
0x1  
Back Channel Link detect.  
This bit is set when BC link is valid.  
7.7.60 GPIO Pin Status  
7-72. GPIO_PIN_STS For Input State Only (Address 0x53)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:4  
RESERVED  
R
0x0  
Reserved.  
GPIO Pin Status.  
This register reads the current values on GPIO pins.  
Bit 3 reads the GPIO3 pin status.  
Bit 2 reads the GPIO2 pin status.  
Bit 1 reads the GPIO1 pin status.  
Bit 0 reads the GPIO0 pin status.  
3:0  
GPIO_STS  
R
0x0  
7.7.61 BIST Error Count  
7-73. BIST_ERR_CNT (Address 0x54)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
BIST_BC_  
ERRCNT  
7:0  
R
0x00  
CRC error count in BIST mode.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.62 CRC Error Count 1  
7-74. CRC_ERR_CNT1 (Address 0x55)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
CRC_ERR_CNT1 R  
0x00  
CRC Error count (LSB).  
7.7.63 CRC Error Count 2  
7-75. CRC_ERR_CNT2 (Address 0x56)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:0  
CRC_ERR_CNT2 R  
0x00  
CRC Error count (MSB).  
7.7.64 Sensor Status  
7-76. SENSOR_STATUS (Address 0x57)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:6  
RESERVED  
R
0x0  
0x0  
Reserved.  
When set, this bit indicates that Internal Temperature Sensor is above  
SENSE_T_HI limit. This bit is cleared upon read.  
5
4
3
2
1
0
T_SENSOR_HI  
R
R
R
R
R
R
T_SENSOR_  
LOW  
When set, this bit indicates that Internal Temperature Sensor is below  
SENSE_T_LO limit. This bit is cleared upon read.  
0x0  
0x0  
0x0  
0x0  
0x0  
V1_SENSOR_  
HI  
When set, this bit indicates that GPIO1 input is above SENSE_V1_HI limit. This  
bit is cleared upon read.  
V1_SENSOR_  
LOW  
When set, this bit indicates that GPIO1 input is below SENSO_V1_LO limit.  
This bit is cleared upon read.  
V0_SENSOR_  
HI  
When set, this bit indicates that GPIO0 input is above SENSE_V0_HI limit. This  
bit will be cleared upon read.  
V0_SENSOR_  
LOW  
When set, this bit indicates that GPIO0 input is below SENSO_V0_LO limit.  
This bit will be cleared upon read.  
7.7.65 Sensor V0  
7-77. SENSOR_V0 (Address 0x58)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
0x0  
0x0  
0x0  
0x7  
Reserved.  
VOLTAGE_  
SENSOR_V0_  
MAX  
GPIO0 Voltage sensor max reading when the GPIO0 voltage is above  
SENSE_V0_HI limit. This bit is cleared upon read. 0 indicates alarm has not  
been triggered.  
6:4  
3
RC  
RESERVED  
R/W  
RC  
Reserved.  
VOLTAGE_  
SENSOR_V0_  
MIN  
GPIO0 Voltage sensor min reading when GPIO0 voltage is below  
SENSE_V0_LO limit. This bit is cleared upon read. 7 indicates alarm has not  
been triggered.  
2:0  
7.7.66 Sensor V1  
7-78. SENSOR_V1 (Address 0x59)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
R/W  
0x0  
0x0  
0x0  
0x7  
Reserved.  
VOLTAGE_  
SENSOR_V1_  
MAX  
GPIO1 Voltage sensor max reading when the GPIO1 voltage is above  
SENSE_V1_HI limit. This bit is cleared upon read.  
0 indicates alarm has not been triggered.  
6:4  
3
RC  
RESERVED  
R/W  
RC  
Reserved.  
VOLTAGE_  
SENSOR_V1_  
MIN  
GPIO1 Voltage sensor min reading when GPIO1 voltage is below  
SENSE_V1_LO limit. This bit is cleared upon read.  
7 indicates alarm has not been triggered.  
2:0  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.67 Sensor T  
7-79. SENSOR_T (Address 0x5A)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
RESERVED  
TEMP_MAX  
RESERVED  
TEMP_MIN  
R/W  
0x0  
0x0  
0x0  
0x7  
Reserved.  
Internal Temperature sensor maximum reading when temperature is above  
SENSE_T_HI limit. This bit is cleared upon read.  
0 indicates alarm has not been triggered.  
6:4  
3
RC  
R/W  
RC  
Reserved  
Internal Temperature sensor minimum reading when temperature is below  
SENSE_T_LO limit. This bit is cleared upon read.  
2:0  
7 indicates alarm has not been triggered.  
7.7.68 CSI-2 Error Count  
7-80. CSI_ERR_CNT (Address 0x5C)  
DEFAULT DESCRIPTION  
BIT  
FIELD  
TYPE  
CSI-2 Error Counter Register.  
7:0  
CSI_ERR_CNT RC  
0x00  
This register counts the number of CSI-2 packets received with errors since the  
last read of the counter.  
7.7.69 CSI-2 Error Status  
7-81. CSI_ERR_STATUS (Address 0x5D)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7:4  
RESERVED  
R
0x0  
0x0  
Reserved.  
LINE_LEN_  
MISMATCH  
3
R/RC  
Indicates Line length less than the received Packet header Word count.  
2
1
0
CHKSUM_ERR R/RC  
ECC_2BIT_ERR R/RC  
ECC_1BIT_ERR R/RC  
0x0  
0x0  
0x0  
Indicates a checksum error detected in the incoming data (uncorrectable).  
Indicates a 2-Bit Ecc error (uncorrectable) in the Packet header.  
Indicates a 1-Bit Ecc error detected in the Packet header.  
7.7.70 CSI-2 Errors Data Lanes 0 and 1  
7-82. CSI_ERR_DLANE01 (Address 0x5E)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
SOT_ERROR_1  
R
0x0  
0x0  
Lane 1: Single-bit Error in SYNC Sequence - Correctable.  
SOT_SYNC_  
ERROR_1  
6
5
R
R
Lane 1: Multi-bit Error in SYNC Sequence - Uncorrectable.  
Lane 1: Control Error in HS Request Mode.  
CNTRL_ERR_  
HSRQST_1  
0x0  
4
3
RESERVED  
R
R
0x0  
0x0  
Reserved.  
SOT_ERROR_0  
Lane 0: Single-bit Error in SYNC Sequence - Correctable.  
SOT_SYNC_  
ERROR_0  
2
R
0x0  
Lane 0: Multi-bit Error in SYNC Sequence - Uncorrectable.  
CNTRL_ERR_  
HSRQST_0  
1
0
R
R
0x0  
0x0  
Lane 0: Control Error in HS Request Mode.  
Reserved.  
RESERVED  
7.7.71 CSI-2 Errors Data Lanes 2 and 3  
7-83. CSI_ERR_DLANE23 (Address 0x5F)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
7
SOT_ERROR_3  
R
0x0 Lane 3: Single-bit Error in SYNC Sequence - Correctable.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7-83. CSI_ERR_DLANE23 (Address 0x5F) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
SOT_SYNC_  
ERROR_3  
6
R
0x0  
0x0  
Lane 3: Multi-bit Error in SYNC Sequence - Uncorrectable.  
CNTRL_ERR_  
HSRQST_3  
5
R
Lane 3: Control Error in HS Request Mode.  
4
3
RESERVED  
R
R
0x0  
0x0  
Reserved.  
SOT_ERROR_2  
Lane 2: Single-bit Error in SYNC Sequence - Correctable.  
SOT_SYNC_  
ERROR_2  
2
R
0x0  
Lane 2: Multi-bit Error in SYNC Sequence - Uncorrectable.  
CNTRL_ERR_  
HSRQST_2  
1
0
R
R
0x0  
0x0  
Lane 2: Control Error in HS Request Mode.  
Reserved.  
RESERVED  
7.7.72 CSI-2 Errors Clock Lane  
7-84. CSI_ERR_CLK_LANE (Address 0x60)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:2  
RESERVED  
R
0x00  
Reserved.  
CNTRL_ERR_  
HSRQST_CK0  
1
0
R
R
0x0  
0x0  
Clk Lane: Control Error in HS Request Mode.  
Reserved.  
RESERVED  
7.7.73 CSI-2 Packet Header Data  
7-85. CSI_PKT_HDR_VC_ID (Address 0x61)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
LONG_PKT_  
VCHNL_ID  
7:6  
R
0x0  
Virtual Channel ID from CSI-2 Packet header.  
Data ID from CSI-2 Packet header.  
LONG_PKT_  
DATA_ID  
5:0  
R
0x00  
7.7.74 Packet Header Word Count 0  
7-86. PKT_HDR_WC_LSB (Address 0x62)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
LONG_PKT_  
WRD_CNT_  
LSB  
7:0  
R
0x00  
Payload count lower byte from CSI-2 Packet header.  
7.7.75 Packet Header Word Count 1  
7-87. PKT_HDR_WC_MSB (Address 0x63)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
LONG_PKT_W  
RD_CNT_  
MSB  
7:0  
R
0x00  
Payload count upper byte from CSI-2 Packet header.  
7.7.76 CSI-2 ECC  
7-88. CSI_ECC (Address 0x64)  
BIT  
7
FIELD  
TYPE  
DEFAULT DESCRIPTION  
LINE_  
LENGTH_  
CHANGE  
R
R
0x0  
0x0  
Indicates Line length change detected per frame.  
6
RESERVED  
Reserved.  
Copyright © 2023 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7-88. CSI_ECC (Address 0x64) (continued)  
BIT  
FIELD  
CSI-2_ECC  
TYPE  
DEFAULT DESCRIPTION  
5:0  
R
0x00  
CSI-2 ECC byte from packet header.  
7.7.77 IND_ACC_CTL  
7-89. IND_ACC_CTL (Address 0xB0)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
RESERVED  
R
0x0  
Reserved.  
Indirect Register Select:  
Selects target for register access  
000 : PATGEN  
001 : FPD3 TX Registers  
010: DIE ID Data  
4:2  
1
IA_SEL  
R/W  
0x0  
0x0  
0x0  
Indirect Access Auto Increment:  
Enables auto-increment mode. Upon completion of a read or write, the register  
address is automatically incremented by 1.  
IA_AUTO_INC R/W  
Indirect Access Read:  
Setting this allows generation of a read strobe to the selected register block upon  
setting of the IND_ACC_ADDR register. In auto-increment mode, read strobes are  
also asserted following a read of the IND_ACC_DATA register. This function is  
only required for blocks that need to pre-fetch register data.  
0
IA_READ  
R/W  
7.7.78 IND_ACC_ADDR  
7-90. IND_ACC_ADDR (Address 0xB1)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
IND_ACC_  
ADDR  
Indirect Access Register Offset:  
0x00  
7:0  
R/W  
This register contains the 8-bit register offset for the indirect access.  
7.7.79 IND_ACC_DATA  
7-91. IND_ACC_DATA (Address 0xB2)  
DEFAULT DESCRIPTION  
BIT  
FIELD  
TYPE  
Indirect Access Register Data:  
IND_ACC_  
DATA  
Writing this register causes an indirect write of the IND_ACC_DATA value to the  
selected analog block register. Reading this register returns the value of the  
7:0  
R/W  
0x00  
selected analog block register.  
7.7.80 FPD3_TX_ID0  
7-92. FPD3_TX_ID0 (Address 0xF0)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
FPD3_TX_  
ID0  
7:0  
R
0x5F  
FPD3_TX_ID0: First byte ID code: _.  
7.7.81 FPD3_TX_ID1  
7-93. FPD3_TX_ID1 (Address 0xF1)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FPD3_TX_  
ID1  
7:0  
R
0x55  
FPD3_TX_ID1: 2nd byte of ID code: U.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.82 FPD3_TX_ID2  
7-94. FPD3_TX_ID2 (Address 0xF2)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
FPD3_TX_  
ID2  
7:0  
R
0x42  
FPD3_TX_ID2: 3rd byte of ID code: B.  
7.7.83 FPD3_TX_ID3  
7-95. FPD3_TX_ID3 (Address 0xF3)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
FPD3_TX_  
ID3  
7:0  
R
0x39  
FPD3_TX_ID3: 4th byte of ID code: 9.  
7.7.84 FPD3_TX_ID4  
7-96. FPD3_TX_ID4 (Address 0xF4)  
BIT  
FIELD  
TYPE  
DEFAULT DESCRIPTION  
FPD3_TX_  
ID4  
7:0  
R
0x35  
FPD3_TX_ID4: 5th byte of ID code: '5'.  
7.7.85 FPD3_TX_ID5  
7-97. FPD3_TX_ID5 (Address 0xF5)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FPD3_TX_  
ID5  
7:0  
R
0x33  
FPD3_TX_ID5: 6th byte of ID code: '3'.  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.86 Indirect Access Registers  
Several functional blocks include register sets contained in the Indirect Access map (7-98); that is, Pattern  
Generator, and Analog controls. Register access is provided through an indirect access mechanism through the  
Indirect Access registers (IND_ACC_CTL, IND_ACC_ADDR, and IND_ACC_DATA). These registers are located  
at offsets 0xB0-0xB2 in the main register space.  
The indirect address mechanism involves setting the control register to select the desired block, setting the  
register offset address, and reading or writing the data register. In addition, an auto-increment function is  
provided in the control register to automatically increment the offset address following each read or write of the  
data register.  
For writes, the process is as follows:  
1. Write to the IND_ACC_CTL register to select the desired register block  
2. Write to the IND_ACC_ADDR register to set the register offset  
3. Write the data value to the IND_ACC_DATA register  
If auto-increment is set in the IND_ACC_CTL register, repeating step 3 writes additional data bytes to  
subsequent register offset locations.  
For reads, the process is as follows:  
1. Write to the IND_ACC_CTL register to select the desired register block  
2. Write to the IND_ACC_ADDR register to set the register offset  
3. Read from the IND_ACC_DATA register  
If auto-increment is set in the IND_ACC_CTL register, repeating step 3 reads additional data bytes from  
subsequent register offset locations.  
7-98. Indirect Register Map Description  
IA SELECT  
0xB0[4:2]  
ADDRESS  
RANGE  
PAGE/BLOCK  
INDIRECT REGISTERS  
Digital Page 0 Indirect Registers  
Indirect Registers: Die ID Data  
DESCRIPTION  
Pattern Gen Registers.  
000  
010  
0
2
0x01 - 0x1F  
0x00 - 0x0F  
Hold 16 bytes that correspond to Die  
ID data.  
7.7.86.1 PGEN_CTL  
7-99. PGEN_CTL (Address 0x01)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:1  
RESERVED  
R/W  
0x0  
Reserved.  
Pattern Generator Enable.  
1: Enable Pattern Generator  
0: Disable Pattern Generator  
PGEN_  
ENABLE  
0
R/W  
0x0  
7.7.86.2 PGEN_CFG  
7-100. PGEN_CFG (Address 0x02)  
BIT  
7
FIELD  
TYPE  
R/W  
DEFAULT  
DESCRIPTION  
Fixed Pattern Enable.  
Setting this bit enables Fixed Color Patterns.  
0 : Send Color Bar Pattern  
PGEN_  
FIXED_EN  
0x0  
1 : Send Fixed Color Pattern  
6
RESERVED  
R/W  
0x0  
Reserved.  
Number of Color Bars.  
00 : 1 Color Bar  
01 : 2 Color Bars  
10 : 4 Color Bars  
11 : 8 Color Bars  
NUM_  
CBARS  
5:4  
R/W  
0x3  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7-100. PGEN_CFG (Address 0x02) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Block Size.  
3:0  
BLOCK_SIZE R/W  
0x3  
For Fixed Color Patterns, this field controls the size of the fixed color field in bytes.  
Allowed values are 1 to 15.  
7.7.86.3 PGEN_CSI_DI  
7-101. PGEN_CSI_DI (Address 0x03)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Virtual Channel Identifier.  
This field controls the value sent in the CSI-2 packet for the Virtual Channel  
Identifier.  
PGEN_CSI_V  
C
7:6  
R/W  
0x0  
CSI-2 Data Type.  
PGEN_CSI_D  
T
5:0  
R/W  
0x24  
This field controls the value sent in the CSI-2 packet for the Data Type. The default  
value (0x24) indicates RGB888.  
7.7.86.4 PGEN_LINE_SIZE1  
7-102. PGEN_LINE_SIZE1 (Address 0x04)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
PGEN_LINE_  
SIZE[15:8]  
Most significant byte of the Pattern Generator line size. This is the active line length  
in bytes. Default setting is for 1920 bytes for a 640-pixel line width.  
7:0  
R/W  
0x07  
7.7.86.5 PGEN_LINE_SIZE0  
7-103. PGEN_LINE_SIZE0 (Address 0x05)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
PGEN_LINE_  
SIZE[7:0]  
Least significant byte of the Pattern Generator line size. This is the active line length  
in bytes. Default setting is for 1920 bytes for a 640-pixel line width.  
7:0  
R/W  
0x80  
7.7.86.6 PGEN_BAR_SIZE1  
7-104. PGEN_BAR_SIZE1 (Address 0x06)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Most significant byte of the Pattern Generator color bar size. This is the active  
length in bytes for the color bars. This value is used for all except the last color bar.  
The last color bar is determined by the remaining bytes as defined by the  
PGEN_LINE_SIZE value.  
PGEN_BAR_  
SIZE[15:8]  
7:0  
R/W  
0x00  
7.7.86.7 PGEN_BAR_SIZE0  
7-105. PGEN_BAR_SIZE0 (Address 0x07)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Least significant byte of the Pattern Generator color bar size. This is the active  
length in bytes for the color bars. This value is used for all except the last color bar.  
The last color bar is determined by the remaining bytes as defined by the  
PGEN_LINE_SIZE value.  
PGEN_BAR_  
SIZE[7:0]  
7:0  
R/W  
0xF0  
7.7.86.8 PGEN_ACT_LPF1  
7-106. PGEN_ACT_LPF1 (Address 0x08)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Active Lines Per Frame.  
Most significant byte of the number of active lines per frame. Default setting is for  
480 active lines per frame.  
PGEN_ACT_  
LPF[15:8]  
7:0  
R/W  
0x01  
Copyright © 2023 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.86.9 PGEN_ACT_LPF0  
7-107. PGEN_ACT_LPF0 (Address 0x09)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Active Lines Per Frame.  
Least significant byte of the number of active lines per frame. Default setting is for  
480 active lines per frame.  
PGEN_ACT_  
LPF[7:0]  
7:0  
R/W  
0xE0  
7.7.86.10 PGEN_TOT_LPF1  
7-108. PGEN_TOT_LPF1 (Address 0x0A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Total Lines Per Frame.  
Most significant byte of the number of total lines per frame including vertical  
blanking.  
PGEN_TOT_  
LPF[15:8]  
7:0  
R/W  
0x02  
7.7.86.11 PGEN_TOT_LPF0  
7-109. PGEN_TOT_LPF0 (Address 0x0B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Total Lines Per Frame.  
Least significant byte of the number of total lines per frame including vertical  
blanking.  
PGEN_TOT_  
LPF[7:0]  
7:0  
R/W  
0x0D  
7.7.86.12 PGEN_LINE_PD1  
7-110. PGEN_LINE_PD1 (Address 0x0C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Line Period.  
PGEN_LINE_  
PD[15:8]  
7:0  
R/W  
0x0C  
Most significant byte of the line period in 10-ns units. The default setting for the line  
period registers sets a line period of 31.75 microseconds.  
7.7.86.13 PGEN_LINE_PD0  
7-111. PGEN_LINE_PD0 (Address 0x0D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Line Period.  
PGEN_LINE_  
PD[7:0]  
7:0  
R/W  
0x67  
Least significant byte of the line period in 10-ns units. The default setting for the line  
period registers sets a line period of 31.75 microseconds.  
7.7.86.14 PGEN_VBP  
7-112. PGEN_VBP (Address 0x0E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Vertical Back Porch.  
This value provides the vertical back porch portion of the vertical blanking interval.  
This value provides the number of blank lines between the FrameStart packet and  
the first video data packet.  
7:0  
PGEN_VBP  
R/W  
0x21  
7.7.86.15 PGEN_VFP  
7-113. PGEN_VFP (Address 0x0F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Vertical Front Porch.  
This value provides the vertical front porch portion of the vertical blanking interval.  
This value provides the number of blank lines between the last video line and the  
FrameEnd packet.  
7:0  
PGEN_VFP  
R/W  
0x0A  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.86.16 PGEN_COLOR0  
7-114. PGEN_COLOR0 (Address 0x10)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 0.  
PGEN_  
COLOR0  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 0. For Fixed Color Patterns, this register controls the first byte of the  
fixed color pattern.  
7:0  
R/W  
0xAA  
7.7.86.17 PGEN_COLOR1  
7-115. PGEN_COLOR1 (Address 0x11)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 1.  
PGEN_  
COLOR1  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 1. For Fixed Color Patterns, this register controls the second byte of  
the fixed color pattern.  
7:0  
R/W  
0x33  
7.7.86.18 PGEN_COLOR2  
7-116. PGEN_COLOR2 (Address 0x12)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 2.  
PGEN_  
COLOR2  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 2. For Fixed Color Patterns, this register controls the third byte of  
the fixed color pattern.  
7:0  
R/W  
0xF0  
7.7.86.19 PGEN_COLOR3  
7-117. PGEN_COLOR3 (Address 0x13)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 3.  
PGEN_  
COLOR3  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 3. For Fixed Color Patterns, this register controls the fourth byte of  
the fixed color pattern.  
7:0  
R/W  
0x7F  
7.7.86.20 PGEN_COLOR4  
7-118. PGEN_COLOR4 (Address 0x14)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 4.  
PGEN_  
COLOR4  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 4. For Fixed Color Patterns, this register controls the fifth byte of the  
fixed color pattern.  
7:0  
R/W  
0x55  
7.7.86.21 PGEN_COLOR5  
7-119. PGEN_COLOR5 (Address 0x15)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 5.  
PGEN_  
COLOR5  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 5. For Fixed Color Patterns, this register controls the sixth byte of  
the fixed color pattern.  
7:0  
R/W  
0xCC  
Copyright © 2023 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.86.22 PGEN_COLOR6  
7-120. PGEN_COLOR6 (Address 0x16)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 6.  
PGEN_  
COLOR6  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 6. For Fixed Color Patterns, this register controls the seventh byte  
of the fixed color pattern.  
7:0  
R/W  
0x0F  
7.7.86.23 PGEN_COLOR7  
7-121. PGEN_COLOR7 (Address 0x17)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 7.  
PGEN_  
COLOR7  
For Reference Color Bar Patterns, this register controls the byte data value sent  
during color bar 7. For Fixed Color Patterns, this register controls the eighth byte of  
the fixed color pattern.  
7:0  
R/W  
0x80  
7.7.86.24 PGEN_COLOR8  
7-122. PGEN_COLOR8 (Address 0x18)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 8.  
For Fixed Color Patterns, this register controls the ninth byte of the fixed color  
pattern.  
PGEN_  
COLOR8  
7:0  
R/W  
0x00  
7.7.86.25 PGEN_COLOR9  
7-123. PGEN_COLOR9 (Address 0x19)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 9.  
For Fixed Color Patterns, this register controls the tenth byte of the fixed color  
pattern.  
PGEN_  
COLOR9  
7:0  
R/W  
0x00  
7.7.86.26 PGEN_COLOR10  
7-124. PGEN_COLOR10 (Address 0x1A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 10.  
For Fixed Color Patterns, this register controls the eleventh byte of the fixed color  
pattern.  
PGEN_  
COLOR10  
7:0  
R/W  
0x00  
7.7.86.27 PGEN_COLOR11  
7-125. PGEN_COLOR11 (Address 0x1B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 11.  
For Fixed Color Patterns, this register controls the twelfth byte of the fixed color  
pattern.  
PGEN_  
COLOR11  
7:0  
R/W  
0x00  
7.7.86.28 PGEN_COLOR12  
7-126. PGEN_COLOR12 (Address 0x1C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 12.  
For Fixed Color Patterns, this register controls the thirteenth byte of the fixed color  
pattern.  
PGEN_  
COLOR12  
7:0  
R/W  
0x00  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
7.7.86.29 PGEN_COLOR13  
7-127. PGEN_COLOR13 (Address 0x1D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 13.  
For Fixed Color Patterns, this register controls the fourteenth byte of the fixed color  
pattern.  
PGEN_  
COLOR13  
7:0  
R/W  
0x00  
7.7.86.30 PGEN_COLOR14  
7-128. PGEN_COLOR14 (Address 0x1E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 14.  
For Fixed Color Patterns, this register controls the fifteenth byte of the fixed color  
pattern.  
PGEN_  
COLOR14  
7:0  
R/W  
0x00  
7.7.86.31 PGEN_COLOR15  
7-129. PGEN_COLOR15 (Address 0x1F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 15.  
For Fixed Color Patterns, this register controls the sixteenth byte of the fixed color  
pattern.  
PGEN_  
COLOR15  
7:0  
R/W  
0x00  
Copyright © 2023 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The link between the DS90UB635-Q1 and the companion deserializer has two distinct data paths. The first path  
is a forward channel which is nominally running at up to 4.16 Gbps and is encoded such that the channel  
occupies a bandwidth from 20 MHz to 2.1 GHz. The second path is a back channel from the deserializer to the  
serializer which occupies a frequency range nominally from 10 MHz to 50 MHz.  
For these two communications links to operate properly, the circuit between the serializer and the deserializer  
must present a characteristic impedance of 50 . Deviations from this 50-characteristic will lead to signal  
reflections either at the serializer or deserializer, which will result in bit errors.  
8.1.1 Power-over-Coax  
The DS90UB635-Q1 is designed to support the Power-over-Coax (PoC) method of powering remote sensor  
systems. With this method, the power is delivered over the same medium (a coaxial cable) used for high-speed  
digital video data, bidirectional control, and diagnostics data transmission. This method uses passive networks or  
filters that isolate the transmission line from the loading of the DC-DC regulator circuits and their connecting  
power traces on both sides of the link as shown in 8-1.  
Sensor Module  
Automotive ECU  
DC-DC  
Regulators  
Power  
Source  
PoC  
PoC  
Coaxial Cable  
POWER  
CAC1  
CAC1  
FPD-Link III  
Serializer  
FPD-Link III  
Deserializer  
Processor  
SoC  
Image Sensor  
FPD-Link III  
Braided  
Shield  
CAC2  
CAC2  
RTERM  
RTERM  
8-1. Power-over-Coax (PoC) System Diagram  
The PoC networks' impedance of 1 kΩ over a specific frequency band is recommended to isolate the  
transmission line from the loading of the regulator circuits. Higher PoC network impedance will contribute to  
favorable insertion loss and return loss characteristics in the high-speed channel. The lower limit of the  
frequency band is defined as ½ of the frequency of the back channel, fBC. The upper limit of the frequency band  
is the frequency of the forward high-speed channel, fFC. However, the main criteria that need to be met in the  
high-speed channel, which consists of a serializer PCB, a deserializer PCB, and a cable, are the insertion loss  
and return loss limits defined in the Total Channel Requirements(1) over the entire system, while the system is  
under maximum current load and extreme temperature conditions (2)  
.
1. Contact TI for more information on the required Channel Specifications defined for each individual FPD-Link  
device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: DS90UB635-Q1  
 
 
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
2. The PoC network and any components along the high-speed trace on the PCB will contribute to the PCB  
loss budget. TI has recommendations for the loss budget allocation for each individual PCB and cable  
component in the overall high-speed channel, but the loss limits defined for the total channel in the Channel  
Specifications must be met.  
8-2 shows an example PoC network suitable for a "4G" FPD-Link III consisting of DS90UB635-Q1 and  
DS90UB638-Q1 or DS90UB662-Q1 pair with the bidirectional channel operating at 50 Mbps (½ fBCC = 25 MHz)  
and the forward channel operating at 4.16 Gbps (fFC 2.1 GHz). Other PoC networks are possible and may be  
different on the serializer and the deserializer boards as long as the printed-circuit board return loss  
requirements listed in 8-2 are met.  
VPoC  
R1  
4.02 kW  
L1  
C1  
C2  
10 mH  
0.1 mF  
> 10 mF  
FB3  
FB2  
FB1  
CAC1  
DOUT+  
DOUT-  
33 nF to 100 nF  
CAC2  
R2  
49.9 W  
15 nF to 47 nF  
8-2. Typical PoC Network for a "4G" FPD-Link III  
8-1 lists essential components for this particular PoC network. Note that the impedance characteristic of the  
ferrite beads deviates with the bias current. Therefore, keeping the current going through the network below 150  
mA is recommended.  
8-1. Suggested Components for a "4G" FPD-Link III PoC Network  
COUNT REF DES  
DESCRIPTION  
PART NUMBER  
LQH3NPN100MJR  
LQH3NPZ100MJR  
MFR  
Inductor, 10 µH, 0.288 Ωmaximum, 530 mA minimum (Isat, Itemp)  
30 MHz SRF minimum, 3 mm × 3 mm, General-Purpose  
Murata  
Murata  
Inductor, 10 µH, 0.288 Ωmaximum, 530 mA minimum (Isat, Itemp)  
30 MHz SRF minimum, 3 mm × 3 mm, AEC-Q200  
Inductor, 10 µH, 0.360 Ωmaximum, 450 mA minimum (Isat, Itemp)  
30 MHz SRF minimum, 3.2 mm × 2.5 mm, AEC-Q200  
1
L1  
NLCV32T-100K-EFD  
TYS3010100M-10  
TYS3015100M-10  
BLM18HE152SN1  
BLM18HE152SZ1  
TDK  
Laird  
Inductor, 10 µH, 0.400 Ωtypical, 550 mA minimum (Isat, Itemp)  
39 MHz SRF typical, 3 mm × 3 mm, AEC-Q200  
Inductor, 10 µH, 0.325 Ωmaximum, 725 mA minimum (Isat, Itemp)  
41 MHz SRF typical, 3 mm × 3 mm, AEC-Q200  
Laird  
Ferrite Bead, 1.5 kΩat 1 GHz, 0.5 Ωmaximum at DC  
500 mA at 85°C, 0603 SMD , General-Purpose  
Murata  
Murata  
3
FB1-FB3  
Ferrite Bead, 1.5 kΩat 1 GHz, 0.5 Ωmaximum at DC  
500 mA at 85°C, 0603 SMD , AEC-Q200  
Copyright © 2023 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
In addition to the selection of PoC network components, their placement and layout play a critical role as well.  
Place the smallest component, typically a ferrite bead or a chip inductor, as close to the connector as  
possible. Route the high-speed trace through one of its pads to avoid stubs.  
Use the smallest component pads as allowed by manufacturer's design rules. Add anti-pads in the inner  
planes below the component pads to minimize impedance drop.  
Consult with the connector manufacturer for optimized connector footprint. If the connector is mounted on the  
same side as the IC, minimize the impact of the through-hole connector stubs by routing the high-speed  
signal traces on the opposite side of the connector mounting side.  
Use coupled 100-Ωdifferential signal traces from the device pins to the AC-coupling caps. Use 50-Ωsingle-  
ended traces from the AC-coupling capacitors to the connector.  
Terminate the inverting signal traces close to the connectors with standard 49.9-Ωresistors.  
The suggested characteristics for single-ended PCB traces (microstrips or striplines) for serializer or deserializer  
boards are listed in 8-2. The effects of the PoC networks must be accounted for when testing the traces for  
compliance to the suggested limits.  
8-2. Suggested Characteristics for Single-Ended PCB Traces With Attached PoC Networks  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Single-ended PCB trace length from the  
device pin to the connector pin  
Ltrace  
5
cm  
Single-ended PCB trace characteristic  
impedance  
Ztrace  
Zcon  
45  
40  
50  
50  
55  
60  
Ω
Ω
Connector (mounted) characteristic  
impedance  
The VPOC fluctuations on the serializer side, caused by the transient current draw of the sensor, the DC  
resistance of cables, and PoC components, must be kept to a minimum as well. Increasing the VPOC voltage and  
adding extra decoupling capacitance (> 10 µF) help reduce the amplitude and slew rate of the VPOC fluctuations.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
8.2 Typical Applications  
DS90UB635-Q1  
1.8V  
VDDD_CAP  
VDDD  
VDDDRV  
VDDPLL  
10µF  
0.1µF  
0.1µF  
0.1µF  
0.01µF  
0.01µF  
0.01µF  
0.01µF  
0.01µF  
1µF  
1µF  
1µF  
FB1  
FB2  
FB3  
VDDDRV_CAP  
VDDPLL_CAP  
10µF  
10µF  
0.01µF  
0.022µF  
External Clock  
Input for Non-  
Sync Mode  
LPF1  
LPF2  
CLKIN  
CSI_CLKN  
CSI_CLKP  
CSI_D0N  
CSI_D0P  
CSI_D1N  
CSI_D1P  
CSI_D2N  
CSI_D2P  
CSI_D3N  
CSI_D3P  
0.1µF  
CSI-2  
Inputs  
C1  
C2  
Serial  
FPD-Link  
III  
DOUT+  
DOUT-  
Interface  
49.9  
1.8V  
Optional  
HW Control  
1.8V  
R1  
R2  
1.8V  
MODE  
R3  
CLK_OUT / IDX  
10k  
R4  
SW  
Control  
PDB  
>10µF  
GPIO  
Control  
Interface  
GPIO[0]  
GPIO[1]  
GPIO[2]  
GPIO[3]  
NOTE:  
1.8V or  
3.3V  
C1, C2 (Design Parameters Table)  
4.7k  
4.7k  
R1, R2 (see MODE Setting Table)  
R3, R4 (see IDX Setting Table)  
I2C  
Bus  
Interface  
I2C_SCL  
I2C_SDA  
RES1  
RES0  
DAP (GND)  
FB1-FB3: Z = 1 k (@ 100 MHz)  
DCR < 500 m  
Copyright © 2018, Texas Instruments Incorporated  
8-3. Typical Connection Diagram Coaxial  
Copyright © 2023 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
DS90UB635-Q1  
1.8V  
VDDD_CAP  
VDDD  
VDDDRV  
VDDPLL  
10µF  
10µF  
10µF  
0.1µF  
0.1µF  
0.1µF  
0.01µF  
0.01µF  
0.01µF  
0.01µF  
0.01µF  
1µF  
1µF  
1µF  
FB1  
FB2  
FB3  
VDDDRV_CAP  
VDDPLL_CAP  
0.01µF  
0.022µF  
External Clock  
Input for Non-  
Sync Mode  
LPF1  
LPF2  
CLKIN  
CSI_CLKN  
CSI_CLKP  
CSI_D0N  
CSI_D0P  
CSI_D1N  
CSI_D1P  
CSI_D2N  
CSI_D2P  
CSI_D3N  
CSI_D3P  
0.1µF  
C1  
CSI-2  
Inputs  
Serial  
FPD-Link  
III  
DOUT+  
DOUT-  
Interface  
C2  
1.8V  
Optional  
HW Control  
1.8V  
R1  
R2  
1.8V  
MODE  
R3  
CLK_OUT / IDX  
10k  
R4  
SW  
Control  
PDB  
>10µF  
GPIO  
Control  
Interface  
GPIO[0]  
GPIO[1]  
GPIO[2]  
GPIO[3]  
NOTE:  
1.8V or  
3.3V  
C1, C2 (Design Parameters Table)  
4.7k  
4.7k  
R1, R2 (see MODE Setting Table)  
R3, R4 (see IDX Setting Table)  
I2C  
Bus  
Interface  
I2C_SCL  
I2C_SDA  
RES1  
RES0  
DAP (GND)  
FB1-FB3: Z = 1 k (@ 100 MHz)  
DCR < 500 m  
Copyright © 2018, Texas Instruments Incorporated  
8-4. Typical Connection Diagram STP  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: DS90UB635-Q1  
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
8.2.1 Design Requirements  
For a typical design application, use the parameters listed in 8-3.  
8-3. Design Parameters  
DESIGN PARAMETER  
PIN(S)  
VALUE  
VDDD, VDDDRV,  
VDDPLL  
V(VDD)  
1.8 V  
AC-Coupling Capacitor for  
Synchronous Modes, Coaxial  
Connection  
DOUT+  
33nF 100 nF (50 V / X7R / 0402)  
15nF 47 nF (50 V / X7R / 0402)  
DOUT–  
AC-Coupling Capacitor for  
Synchronous Modes, STP  
Connection  
DOUT+, DOUT–  
33 100 nF (50 V / X7R / 0402)  
AC-Coupling Capacitor for Non-  
Synchronous and DVP Backwards  
Compatible Modes, Coaxial  
Connection  
DOUT+  
100 nF (50 V / X7R / 0402)  
47 nF (50 V / X7R / 0402)  
DOUT–  
AC-Coupling Capacitor for Non-  
Synchronous and DVP Backwards  
Compatible Modes, STP Connection  
100 nF (50 V / X7R / 0402)  
DOUT+, DOUT–  
The SER/DES only supports AC-coupled interconnects through an integrated DC-balanced decoding scheme.  
External AC-coupling capacitors must be placed in series in the FPD-Link III signal path as shown in 8-5 and  
8-6. For applications using single-ended 50-Ω coaxial cable, terminate the unused data pins (DOUT+,  
DOUT) with an AC-coupling capacitor and a 50-Ωresistor.  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
50Q  
50Q  
8-5. AC-Coupled Connection (Coaxial)  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
8-6. AC-Coupled Connection (STP)  
For high-speed FPDLink III transmissions, use the smallest available package for the AC-coupling capacitor to  
help minimize degradation of signal quality due to package parasitics.  
8.2.2 Detailed Design Procedure  
8.2 shows a typical application circuit of the DS90UB635-Q1. The next sections highlight recommendations  
for the critical device pins.  
8.2.2.1 CSI-2 Interface  
The CSI-2 input port on the DS90UB635-Q1 is compliant with the MIPI D-PHY v1.2 and CSI-2 v1.3  
specifications. The CSI-2 interface consists of a clock and an option of one, two, or four data lanes. The clock  
and each of the data lanes are differential lines. The DS90UB635-Q1 CSI-2 input must be DC-coupled to a  
compatible CSI-2 transmitter. Follow the PCB layout guidelines given in 10.1.1.  
8.2.2.2 FPD-Link III Input / Output  
The DS90UB635-Q1 serial data out signal operates at different data rates depending upon the mode in which  
the device is operating. In synchronous mode, where the reference clock is provided by the deserializer, the  
serial data rate is up to 4.16 Gbps.  
Copyright © 2023 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
The signals at DOUT+ and DOUTmust be AC-coupled. The AC-coupling capacitor values used on DOUT+  
and DOUTdepends on the mode and cable used as shown in 8-3. When connecting to a coax cable, the  
AC-coupling capacitor on the negative terminal (DOUT) should be approximately ½ of the AC-coupling  
capacitor value on DOUT+ and be terminated to a 50-load. Make sure to follow the critical PCB layout  
guidelines given in 10.2.  
8.2.2.3 Internal Regulator Bypassing  
The DS90UB635-Q1 features three internal regulators that must be bypassed to GND. The VDDD_CAP,  
VDDDRV_CAP, and VDDPLL_CAP are the pins that expose the outputs of the internal regulators for bypassing.  
TI recommends that each pin has a 10-µF, 0.1-µF, and a 0.01-µF capacitor to GND. The 0.01-µF caps must be  
placed as close as practical to the bypass pins.  
8.2.2.4 Loop Filter Decoupling  
The LPF1 and LPF2 pins are for connecting filter capacitors to the internal PLL circuits. LPF1 should have a  
0.022-µF capacitor connected to the VDD_PLL pin (pin 11). The capacitor connected between LPF1 and  
VDDPLL must enclose as small of a loop as possible. LPF2 must have a 0.1-µF capacitor connecting the pin to  
GND. One of these PLLs generates the high-speed clock used in the serialization of the output, while the other  
PLL is used in the CSI-2 receive port. Noise coupled into these pins degrades the performance of the PLLs in  
the DS90UB635-Q1, so the caps must be placed close to the pins they are connected to, and the area of the  
loop enclosed must be minimized.  
8.2.3 Application Curve  
The falling edge of the blue trace indicates that the device should shift from LP to HS mode the rise that  
comes about one division later is when the DS90UB635-Q1 turns on the internal termination so the device is  
ready to receive HS data. The transitions are the CSI-2 data, and then the drop of the blue trace indicates that  
the termination has been turned off.  
8-7. CSI-2 LP to HS Mode Transition  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
9 Power Supply Recommendations  
This device provides separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. The Pin Configuration and Functions section provides guidance on which circuit blocks are connected  
to which power pin pairs. In some cases, an external filter many be used to provide clean power to sensitive  
circuits such as PLLs.  
9.1 Power-Up Sequencing  
The power-up sequence for the DS90UB635-Q1 is as follows:  
VDD18  
T0  
T2  
T1  
T3  
Hard  
PDB  
Reset  
9-1. Power Supply Sequencing  
9-1. Timing Diagram for the Power Supply Start-Up and Initialization Sequences  
PARAMETER  
MIN  
0.05  
0
TYP  
MAX  
UNIT  
NOTES  
T0  
T1  
VDD18 rise time  
ms  
at 10/90%  
VDD18 to PDB  
ms  
After VDD18 is  
stable  
T2  
T3  
T4  
PDB high time before PDB hard reset  
PDB high to low pulse width  
PDB to I2C Ready  
1
3
2
ms  
ms  
ms  
Hard reset (optional)  
See Initialization  
Sequence:  
Synchronous  
Clocking Mode  
9.1.1 System Initialization  
When initializing the communications link between a deserializer hub and a DS90UB635-Q1 serializer, the  
system timing will depend on the mode selected for generating the serializer reference clock. When synchronous  
clocking mode is selected, the serializer will relock onto the extracted back channel reference clock when  
available, so there is no need for local crystal oscillator at the sensor module. The initialization sequence follows  
the illustration given in the Initialization Sequence: Synchronous Clocking Mode.  
Copyright © 2023 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
PoC  
Supply  
VDD18  
PDB  
T4  
MODE,  
IDX Valid  
DES Back  
Channel  
DES Lock Time  
LOCK  
Sensor  
Config  
635  
Config  
Valid  
Image  
I2C  
Remote  
Pass  
through  
DES  
config  
I2C  
Local  
CLKOUT  
DOUT+  
Sensor  
CSI-2  
9-2. Initialization Sequence: Synchronous Clocking Mode  
To allow for a quicker system bringup time, it is recommended to program the I2C watchdog timer speedup, by  
setting 0x0A = 0x12, before trying to access remote I2C target devices attached to the SER through the back  
channel from the deserializer. This will ensure a faster remote sensor access time even if the serializer I2C bus  
experiences unexpected noise during power up of the sensor module.  
9.2 Power Down (PDB)  
The Serializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin may be controlled by an  
external device, or through VDD where VDD = 1.71 V to 1.89 V. PDB should be brought high after all power  
supplies on the board have stabilized.  
When PDB is driven low, ensure that the pin is driven to 0 V for at least 3 ms before releasing or driving high. In  
the case where PDB is pulled up to VDD directly, a 10-kΩpullup resistor and a > 10-μF capacitor to ground are  
required.  
Toggling PDB low powers down the device and resets all control registers to default. After power up, if there are  
any errors seen, TI recommends clearing the registers to reset the errors.  
Make sure to power up the VDDDRV before or at the same time as the VDDPLL.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Circuit board layout and stack-up for the FPD-Link III devices must be designed to provide low-noise power feed  
to the device. Good layout practice also separates high-frequency or high-level inputs and outputs to minimize  
unwanted stray noise pickup, feedback, and interference. External bypassing should be low-ESR ceramic  
capacitors with high-quality dielectric. The voltage rating of the ceramic capacitors must be at least 2× the power  
supply voltage being used.  
TI recommends surface-mount capacitors due to their smaller parasitics. When using multiple capacitors per  
supply pin, place the smaller value closest to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 47-µF to 100-µF range, which smooths low-frequency switching noise. TI  
recommends connecting power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane. TI also recommends that the user place a via on both ends of the capacitors.  
Connecting power or ground pins to an external bypass capacitor increases the inductance of the path.  
A small body size X7R chip capacitor, such as 0603 or 0402, is recommended for external bypass. The small  
body size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance  
frequency of these external bypass capacitors, usually in the range of 20 to 30 MHz. To provide effective  
bypassing, multiple capacitors are often used to achieve low impedance between the supply rails over the  
frequency of interest. At high frequency, it is also common practice to use two vias from power and ground pins  
to the planes, reducing the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs (see Pin Configuration and Functions for more information). In some cases, an external filter may be  
used to provide clean power to sensitive circuits such as PLLs.  
Use at least a four-layer board with a dedicated ground plane. Place CSI-2 signals away from the single-ended  
or differential FPD-Link III RX input traces to prevent coupling from the CSI-2 lines to the Rx input lines. A single-  
ended impedance of 50 Ω is typically recommended for coaxial interconnect, and a differential impedance of  
100 Ω is typically recommended for STP interconnect. The closely coupled lines help to ensure that coupled  
noise appears as common-mode and thus is rejected by the receivers. The tightly coupled lines also radiate  
less.  
10.1.1 CSI-2 Guidelines  
1. Route CSI0_D*P/N pairs with controlled 100-Ωdifferential impedance (±20%) or 50-Ωsingle-ended  
impedance (±15%).  
2. Keep away from other high-speed signals.  
3. Keep the length difference between a differential pair to 5 mils of each other.  
4. Make sure that length matching is near the location of mismatch.  
5. Match trace lengths between the clock pair and each data pair to be < 25 mils.  
6. Separate each pair by at least 3 times the signal trace width.  
7. Keep the use of bends in differential traces to a minimum. When bends are used, the number of left and right  
bends must be as equal as possible, and the angle of the bend should be 135 degrees. This arrangement  
minimizes any length mismatch caused by the bends and therefore minimizes the impact that bends have on  
EMI.  
8. Route all differential pairs on the same layer to help match trace impedance characteristics.  
9. Keep the number of VIAS to a minimumTI recommends keeping the VIA count to two or fewer.  
10. Keep traces on layers adjacent to ground plane.  
11. Do NOT route differential pairs over any plane split.  
Copyright © 2023 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
备注  
Adding test points can cause impedance discontinuity and therefore negatively impacts signal  
performance. If test points are used, place them in series and symmetrically. Test points must not be  
placed in a manner that causes a stub on the differential pair.  
10.2 Layout Examples  
Figures below 10-1, 10-2, and 10-3 are examples are taken from the layout of an FPD-Link EVM board.  
All EVM layers are included in DS90UB953-Q1EVM user's guide (SNLU224). Note that the DS90UB953-Q1  
shares this user guide with other related products such as the DS90UB635-Q1.  
Routing the FPD-Link III signal traces between the DOUT pins and the connector, as well as connecting the PoC  
filter to these traces, are the most critical pieces of a successful DS90UB635-Q1 PCB layout. The following list  
provides essential recommendations for routing the FPD-Link III signal traces between the driver output pins and  
the FAKRA connector, as well as connecting the PoC filter.  
The routing of the FPD-Link III traces may be all on the top layer or partially embedded in middle layers if EMI  
is a concern.  
The AC-coupling capacitors should be on the top layer and very close to the receiver input pins to minimize  
the length of coupled differential trace pair between the pins and the capacitors.  
Route the DOUT+ trace between the AC-coupling capacitor and the FAKRA connector as a 50-Ωsingle-  
ended micro-strip with tight impedance control (±10%). Calculate the proper width of the trace for a 50-Ω  
impedance based on the PCB stack-up. Ensure that the trace can carry the PoC current for the maximum  
load presented by the remote sensor module.  
The PoC filter should be connected to the DOUT+ trace through the ferrite bead or an RF inductor. The ferrite  
bead should be touching the high-speed trace to minimize the stub length seen by the transmission line.  
Create an anti-pad or a moat under the ferrite bead pad that touches the trace. The anti-pad should be a  
plane cutout of the ground plane directly underneath the top layer without cutting out the ground reference  
under the trace. The purpose of the anti-pad is to maintain the impedance as close to 50 Ωas possible.  
When routing DOUT+ on inner layers, length matching for single-ended traces does not provide a significant  
benefit. If the user wants to route the DOUT+ on the top or bottom layer, route the DOUTtrace loosely  
coupled to the DOUT+ trace for the length similar to the DOUT+ trace length. This may help the differential  
nature of the receiver to cancel out any common-mode noise that may be present in the environment that  
may couple on to the signal traces.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
Thermal vias  
under PAD  
Place AC coupling  
caps close to DOUT  
pins to minimize the  
length of the DOUT  
differential traces  
DOUT  
Place the smallest  
RF inductor  
orthogonally  
right next to the  
DOUT+ trace  
R2  
L2  
CAC  
CAC  
Route DOUT+ trace as  
a 50ohm single-ended  
trace with tight  
impedance control  
(±10%)  
PoC Filter  
L3  
Ensure DOUT+ trace  
can carry PoC current  
without significant  
temperature rise  
(<10°C)  
L4  
Moat the GND plane  
underneath the FB1  
pad touching the  
DOUT+ trace to  
minimize parasitic  
capacitance, but  
maintain the GND  
plane underneath the  
DOUT+ trace  
Follow PCB footprint  
recommendations from  
the connector  
manufacturer to  
maintain 50ohm  
impedance through the  
connector  
10-1. DS90UB635-Q1 Serializer DOUT+ Signal Traces and PoC Filter PCB Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
Thermal vias under PAD  
DOUT  
Place AC coupling caps  
close to DOUT pins to  
minimize the length of  
coupled microstrips  
CAC  
CAC  
Optional common mode  
choke  
Route DOUT traces as  
100ohm coupled traces  
with tight impedance  
control (±10%)  
Follow PCB footprint  
recommendations from the  
connector manufacturer to  
maintain 100ohm  
differential impedance  
through the connector  
10-2. DS90UB635-Q1 Serializer Differential Signal Traces PCB Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
Thermal vias under PAD  
Optional 0-W resistors  
Bring CSI traces to the  
inner layers close to the  
CSI pins  
Route CSI traces as  
100-W differential  
coupled striplines  
(S=2W*) with tight  
impedance control  
( 10%)  
Ensure CSI trace length is  
matched within 5 mils for  
minimal intra-pair and  
pair-pair skew  
Avoid acute angles when  
routing CSI traces  
Ensure pair-pair gap is  
>5W* for minimal pair-  
pair coupling  
Route CSI traces on 1 or 2  
inner signal layers each  
sandwiched with GND or  
power planes to form  
coupled striplines  
CSI-2 Connector  
*W is a trace width. S is a gap  
between adjacent traces.  
10-3. DS90UB635-Q1 Serializer CSI-2 Traces PCB Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
How to design a FPD-Link III system (SNLA267)  
I2C communication over FPD-Link III with bidirectional control channel (SNLA131)  
I2C bus pullup resistor calculation (SLVA689)  
I2C over DS90UB913/4 FPD-Link III with bidirectional control channel (SNLA222)  
Sending Power-over-Coax in DS90UB913A designs (SNLA224)  
FPD-Link learning center training material  
An EMC/EMI system-design and testing methodology for FPD-Link III SerDes (SLYT719)  
Ten tips for successfully designing with automotive EMC/EMI requirements (SLYT636)  
Backwards compatibility modes for operation with parallel output deserializers (SNLA270)  
Power-over-Coax design guidelines (SNLA272)  
AN-1108 Channel-link PCB and interconnect design-in guidelines (SNLA008)  
DS90UB953-Q1EVM user's guide (SNLU224)  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: DS90UB635-Q1  
 
 
 
 
 
 
 
DS90UB635-Q1  
ZHCSOU0 FEBRUARY 2023  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: DS90UB635-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UB635TRHBRQ1  
DS90UB635TRHBTQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
UB635  
UB635  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Mar-2023  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032U  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
0.1 MIN  
(0.13)  
SECTION A-A  
A
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
3.7 0.1  
2X 3.5  
(0.2) TYP  
9
16  
EXPOSED  
THERMAL PAD  
28X 0.5  
8
(0.16) TYP  
17  
2X  
A
A
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
PIN 1 ID  
(45 X 0.3)  
32  
25  
SYMM  
0.5  
0.3  
(0.25)  
TYP  
32X  
4225709/C 01/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032U  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.7)  
SYMM  
25  
32  
32X (0.6)  
1
24  
32X (0.25)  
(0.97)  
28X (0.5)  
(0.63)  
TYP  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(0.63) TYP  
(0.97)  
(4.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225709/C 01/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032U  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
9X ( 1.06)  
(1.26)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(1.26)  
SYMM  
33  
(4.8)  
METAL  
TYP  
17  
8
(R0.05) TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
74% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4225709/C 01/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY