DS90UB921-Q1 [TI]

5MHz-96MHz 24 位彩色 FPD-Link III 串行器;
DS90UB921-Q1
型号: DS90UB921-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5MHz-96MHz 24 位彩色 FPD-Link III 串行器

光电二极管
文件: 总55页 (文件大小:1844K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
DS90UB921-Q1 具有双向控制通道的 5MHz 96MHz 24 位彩色 FPD-  
Link III 串行器  
1 特性  
3 说明  
1
适用于汽车电子 应用  
DS90UB921-Q1 串行器与 DS90UB922-Q1、  
DS90UB926Q-Q1DS90UB928Q-Q1DS90UB948-  
Q1 DS90UB940-Q1 解串器配套使用,可提供完整  
的数字接口以实现汽车显示屏和图像传感应用中视频、  
音频和控制数据的高速并行 传输。  
具有符合 AEC-Q100 标准的下列结果:  
器件温度等级 2-40℃ 至 +105℃ 的环境运行  
温度范围  
器件人体放电模型 (HBM) 静电放电 (ESD) 分类  
等级 ±8kV  
该芯片组非常适合 WVGA HD 格式的车载视频显示  
系统。DS90UB921-Q1 整合了嵌入式双向控制通道和  
低延迟 GPIO 控制。该芯片组将并行接口转换为单对  
高速串行化接口。FPD-Link III 串行总线方案支持通过  
单个链路实现高速视频数据传输和双向控制通信的全双  
工控制。通过单个差分对(或单线)整合视频数据和控  
制可减少互连线尺寸和重量,同时还消除了偏差问题并  
简化了系统设计。  
器件组件充电模式 (CDM) ESD 分类等级 C6  
支持扩展高清 (1920x720p/60Hz) 数字视频格式  
支持 5MHz–96MHz 像素时钟 (PCLK)STP 模  
式)  
支持 15MHz–96MHz PCLK(同轴模式)  
RGB888 + VSHS DE  
并行 LVCMOS 视频输入  
允许存在幅值偏差的扩频输入  
4 条可选的双向 GPIO 通道  
双向控制接口通道接口,可连接到 I2C 兼容串行控  
制总线  
可选的 I2S 支持  
DS90UB921-Q1 串行器内嵌时钟,可通过直流扰频 &  
均衡数据有效载荷,并将信号电平转换为高速低压差分  
(或单端)信令。最多有 24 个数据位可随视频控制信  
号一同串行化。  
长达 10 米的交流耦合同轴或屏蔽双绞线 (STP) 互  
低压摆幅信令的使用、数据换序和随机生成以及扩频定  
时兼容性最大限度地减少了电磁干扰 (EMI)。  
通过 1.8V 3.3V 兼容 LVCMOS I/O 接口实现  
3.3V 单电源运行  
来自下行解串器的远程中断被映射至一个本地输出引  
脚。  
具有嵌入式时钟的直流均衡和扰频数据  
内部模式生成  
器件信息 (1)  
低功率模式最大限度地减少了功率耗散  
>8kV ISO 10605 静电放电 (ESD) 额定值  
部件号  
封装  
WQFN (48)  
封装尺寸(标称值)  
DS90UB921-Q1  
7.00mm x 7.00mm  
2 应用  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
汽车用触摸显示屏  
汽车导航显示屏  
汽车仪表板  
VDDIO  
(3.3V) (1.8Vor3.3V)  
VDD33  
VDDIO  
(1.8Vor3.3V) (3.3V)  
VDD33  
R[7:0]  
G[7:0]  
R[7:0]  
G[7:0]  
FPD-Link III  
1 Coax / AC Coupled  
B[7:0]  
B[7:0]  
HS  
VS  
DE  
PCLK  
HOST  
Graphics  
Processor  
RGB Display  
720p  
24-bit color depth  
HS  
DOUT+  
RIN+  
RIN-  
VS  
DE  
PCLK  
DOUT-  
DS90UB921-Q1  
Serializer  
DS90UB922-Q1  
Deserializer  
LOCK  
PASS  
PDB  
OSS_SEL  
OEN  
PDB  
3
I2S AUDIO  
(STEREO)  
3
I2S AUDIO  
(STEREO)  
MODE_SEL  
MODE_SEL  
INTB  
INTB_IN  
MCLK  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
DAP  
DAP  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNLS488  
 
 
 
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 24  
7.5 Programming .......................................................... 27  
7.6 Register Maps ........................................................ 28  
Application and Implementation ........................ 40  
8.1 Application Information............................................ 40  
8.2 AVMUTE Operation ................................................ 40  
8.3 Typical Application .................................................. 41  
Power Supply Recommendations...................... 45  
9.1 Power Up Requirements and PDB Pin................... 45  
9.2 CML Interconnect Guidelines.................................. 46  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ..................................... 6  
6.2 ESD Ratings - JEDEC ............................................. 6  
6.3 ESD Ratings—IEC and ISO...................................... 6  
6.4 Recommended Operating Conditions....................... 6  
6.5 Thermal Information.................................................. 7  
6.6 DC Electrical Characteristics .................................... 7  
6.7 AC Electrical Characteristics..................................... 9  
6.8 PCLK Timing Requirements ..................................... 9  
6.9 Recommended Timing for the Serial Control Bus .. 10  
6.10 Switching Characteristics...................................... 13  
6.11 Typical Charateristics ........................................... 14  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 15  
8
9
10 Layout................................................................... 47  
10.1 Layout Guidelines ................................................. 47  
10.2 Layout Example .................................................... 48  
11 器件和文档支持 ..................................................... 51  
11.1 文档支持................................................................ 51  
11.2 社区资源................................................................ 51  
11.3 ....................................................................... 51  
11.4 静电放电警告......................................................... 51  
11.5 Glossary................................................................ 51  
12 机械、封装和可订购信息....................................... 51  
7
4 修订历史记录  
日期  
修订版本  
注释  
2016 3 月  
*
最初发布版本。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
5 Pin Configuration and Functions  
DS90UB921-Q1  
48 Pin WQFN (RHS)  
Top View  
G2 / DIN10  
37  
MODE_SEL  
CMF  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
G3 / DIN11  
38  
G4 / DIN12  
39  
VDD33  
PDB  
G5 / DIN13  
40  
G6 / DIN14  
41  
DOUT+  
DOUT-  
G7 / DIN15  
42  
DS90UB921-Q1  
TOP VIEW  
RES1  
GPO_REG4 / B0 / DIN16  
43  
CAPHS12  
REM_INTB  
FSEL  
GPO_REG5 / B1 / DIN17 44  
B2 / DIN18  
45  
DAP = GND  
B3 / DIN19  
46  
B4 / DIN20  
47  
CAPP12  
I2S_CLK  
B5 / DIN21  
48  
Pin Functions  
PIN  
I/O, TYPE  
NUMBER  
DESCRIPTION  
NAME  
LVCMOS PARALLEL INTERFACE - Layout note: for unused LVCMOS input pins, tie to an external pulldown  
DIN[23:18],  
DIN[15:10],  
DIN[7:2] /  
R[7:2],  
27, 28, 29, 32, 33,  
34, 37, 38, 39, 40,  
41, 42, 45, 46, 47,  
48, 1, 2  
I, LVCMOS, Parallel Interface Data Input Pins  
PD  
G[7:2],  
B[7:2]  
DIN[1:0],  
DIN[9:8],  
DIN[17:16] /  
R[1:0],  
25, 26, 35, 36, 43,  
44  
Multi-function Parallel Interface Data Input Pins  
pin  
I/O, LVCMOS,  
PD  
DIN0 / R0 can optionally be used as GPIO0 and DIN1 / R1 can optionally be used as  
GPIO1  
DIN8 / G0 can optionally be used as GPIO2 and DIN9 /G1 can optionally be used as  
GPIO3  
G[1:0],  
B[1:0]  
DIN16 / B0 can optionally be used as GPO_REG4 and DIN17 / B1 can optionally be  
used as GPO_REG5  
Copyright © 2016, Texas Instruments Incorporated  
3
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NUMBER  
HS  
3
I, LVCMOS, Horizontal Sync Input Pin  
PD  
Video control signal pulse width must be 3 PCLKs or longer to be transmitted when  
the Control Signal Filter is enabled. There is no restriction on the minimum transition  
pulse when the Control Signal Filter is disabled. The signal is limited to 2 transitions  
per 130 PCLKs.  
See Video Control Signal Filter.  
VS  
DE  
4
5
I, LVCMOS, Vertical Sync Input Pin  
PD Video control signal is limited to 1 transition per 130 PCLKs. Thus, the minimum pulse  
width is 130 PCLKs.  
See Video Control Signal Filter.  
I, LVCMOS, Data Enable Input Pin  
PD Video control signal pulse width must be 3 PCLKs or longer to be transmitted when  
the Control Signal Filter is enabled. There is no restriction on the minimum transition  
pulse when the Control Signal Filter is disabled. The signal is limited to 2 transitions  
per 130 PCLKs.  
See Video Control Signal Filter.  
PCLK  
10  
I, LVCMOS, Pixel Clock Input Pin. Strobe edge set by TRFB configuration register. See 7  
PD 0x03[0].  
I2S_CLK,  
I2S_WC,  
I2S_DA  
13, 12, 11  
Multi-function Digital Audio Interface Data Input Pins  
pin  
I, LVCMOS,  
PD  
Leave open if unused  
I2S_CLK can optionally be used as GPO_REG8, I2S_WC can optionally be used as  
GPO_REG7, and I2S_DA can optionally be used as GPO_REG6.  
OPTIONAL PARALLEL INTERFACE - Layout note: for unused interface pins, tie to an external pulldown  
GPIO[3:0]  
36, 35, 26, 25  
Multi-function General Purpose IOs. Available only in 18-bit color mode, and set by MODE_SEL pin  
pin  
I/O, LVCMOS,  
PD  
or configuration register. See 7 0x0D - 0x0F.  
Leave open if unused.  
Shared with DIN9, DIN8, DIN1 and DIN0  
GPO_REG[  
7:4]  
12, 11, 44, 43  
Multi-function General Purpose Outputs and set by configuration register. See 7 0x0F - 0x11.  
pin  
O, LVCMOS,  
PD  
Share with I2S_WC, I2S_DA, or DIN17, DIN16.  
CONTROL  
PDB  
21  
I, LVCMOS, Power-down Mode Input Pin  
PD  
PDB = H, device is enabled (normal operation)  
Refer to Power Up Requirements and PDB Pin section.  
PDB = L, device is powered down.  
When the device is in the powered down state, the Driver Outputs are both HIGH, the  
PLL is shutdown, and IDD is minimized. Control Registers are RESET.  
MODE_SEL  
FSEL  
24  
15  
S
Device Configuration Select. See 5.  
I, LVCMOS, Frequency Mode Select. Enables Intermediate Frequency mode for coaxial operation.  
PU  
See Frequency Mode Optimizations.  
I2C  
IDx  
6
S
I2C Serial Control Bus Device ID Address Select  
External pull-up to VDD33 is required under all conditions, DO NOT FLOAT.  
Connect to external pull-up and pull-down resistor to create a voltage divider. See 表  
6.  
SCL  
SDA  
8
9
I/O, Open  
Drain  
I2C Clock Input / Output Interface  
Must have an external pull-up to VDD33, DO NOT FLOAT.  
Recommended pull-up: 4.7kΩ.  
I2C Data Input / Output Interface  
Must have an external pull-up to VDD33, DO NOT FLOAT.  
Recommended pull-up: 4.7kΩ.  
I/O, Open  
Drain  
4
Copyright © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NUMBER  
STATUS - Layout note: for unused interface pins, leave as No Connect  
INTB  
31  
16  
O, Open Drain Interrupt  
INTB = H, normal  
INTB = L, Interrupt request  
Typically connected with 4.7kΩ to VDDIO.  
REM_INTB  
O, LVCMOS, Interrupt. Mirrors status of INTB_IN from the remote deserializer. Note: REM_INTB  
PD  
will be driven LOW until lock is achieved with the downstream deserializer.  
REM_INTB = H, normal  
REM_INTB = L, interrupt request  
FPD-LINK III SERIAL INTERFACE  
DOUT+  
DOUT-  
CMF  
20  
19  
23  
O, LVDS  
O, LVDS  
CAP  
True Output  
The output must be AC-coupled per the typical connection diagram.  
Inverting Output  
The output must be AC-coupled per the typical connection diagram.  
Common Mode Filter.  
Typically connected with 0.1µF to GND  
(1)  
POWER AND GROUND  
VDD33  
VDDIO  
22  
30  
Power  
Power  
Power to on-chip regulator 3.0 V - 3.6 V. Typically connected with 4.7 uF to GND  
LVCMOS I/O Power 1.71 V - 1.89 V OR 3.0 V - 3.6 V. Typically connected with 4.7  
uF to GND  
GND  
DAP  
Ground  
DAP is the large metal contact at the bottom side, located at the center of the WQFN  
package. Connect to the ground plane (GND) with at least 9 vias.  
REGULATOR CAPACITOR  
CAPHS12,  
CAPP12  
17, 14  
CAP  
CAP  
Decoupling capacitor connection for on-chip regulator. Typically connected with 4.7uF  
to GND at each CAP pin.  
CAPL12  
7
Decoupling capacitor connection for on-chip regulator. Typically connected with two  
4.7uF to GND at this CAP pin.  
OTHERS  
RES1  
18  
GND  
Reserved. Tie to Ground.  
(1) The VDD (VDD33 and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise.  
The definitions below define the functionality of the I/O cells for each pin. I/O TYPE:  
CAP = Capacitor connection  
LVCMOS = LVCMOS pin; Referenced to VDDIO IO supply  
I = Input  
O = Output  
I/O = Input/Output  
S = Strap pin. All strap pins have weak internal pull-ups or pull-downs. If the default strap value is needed to  
be changed then an external resistor should be used.  
PD, PU = Weak Internal Pull-Down/Pull-Up  
Multi-function pin  
Copyright © 2016, Texas Instruments Incorporated  
5
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
Supply voltage – VDD33  
Supply voltage – VDDIO  
LVCMOS I/O voltage  
4
4
VDDIO + 0.3  
2.75  
V
V
Serializer output voltage - DOUT±  
Junction temperature  
V
150  
°C  
°C  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
6.2 ESD Ratings - JEDEC  
VALUE  
±8000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 ESD Ratings—IEC and ISO  
VALUE  
UNIT  
IEC, powered-up only contact discharge  
(DOUT+, DOUT-)  
±8000  
±18000  
±8000  
RD = 330 Ω, CS = 150 pF  
Electrostatic discharge RD = 330 Ω, CS = 150 and 330 pF  
RD = 2 kΩ, CS = 150 and 330 pF  
V
V
V
IEC, powered-up only air-gap discharge  
(DOUT+, DOUT-)  
ISO10605 contact discharge (DOUT+,  
DOUT-)  
V(ESD)  
ISO10605 air-gap discharge (DOUT+,  
DOUT-)  
±18000  
±8000  
ISO10605 contact discharge (DOUT+,  
DOUT-)  
ISO10605 air-gap discharge (DOUT+,  
DOUT-)  
±18000  
6.4 Recommended Operating Conditions  
MIN  
3
NOM  
3.3  
3.3  
1.8  
25  
MAX  
3.6  
3.6  
1.89  
105  
96  
UNIT  
V
Supply voltage (VDD33)  
LVCMOS supply voltage (VDDIO)  
3
V
1.71  
40  
48  
24  
15  
15  
5
V
Operating free-air temperature (TA)  
°C  
PCLK frequency, Coax operation, high frequency mode(1)  
PCLK frequency, Coax operation, intermediate frequency mode(1)  
PCLK frequency, Coax operation, low frequency mode(1)  
PCLK frequency, STP operation, high frequency mode(1)  
PCLK frequency, STP operation, low frequency mode(1)  
Supply noise -- (DC-50MHz)  
MHz  
MHz  
MHz  
MHz  
MHz  
mVP-P  
48  
24  
96  
15  
100  
(1) For configuration of cable type and frequency mode, refer to Frequency Mode Optimizations.  
6
Copyright © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
6.5 Thermal Information  
DS90UB921-Q1  
THERMAL METRIC(1)  
RHS (WQFN)  
UNIT  
48 PINS  
29  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
11.7  
5.0  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
6.0  
RθJC(bot)  
1.7  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6.6 DC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
LVCMOS I/O DC SPECIFICATIONS  
VIH  
VIL  
High-level input voltage VDDIO = 3 V to 3.6 V  
Low-level input voltage VDDIO = 3 V to 3.6 V  
2
VDDIO  
0.8  
V
V
GND  
PDB  
VIN = 0 V or  
VIN = VDDIO (3 V to 3.6 V)  
IIN  
Input current  
–10  
±1  
10  
VDDIO  
VDDIO  
0.8  
µA  
V
VDDIO = 3 V to 3.6 V  
2
VIH  
High-level input voltage  
0.65 ×  
VDDIO  
VDDIO = 1.71 V to 1.89 V  
VDDIO = 3 V to 3.6 V  
V
DIN[23:0], HS,  
VS, DE, PCLK,  
I2S_CLK,  
GND  
V
VIL  
Low-level input voltage  
Input current  
0.35 ×  
VDDIO  
VDDIO = 1.71 V to 1.89 V  
GND  
V
I2S_WC,  
I2S_DA  
VDDIO = 3 V to  
–10  
–10  
2.4  
±1  
±1  
10  
10  
µA  
µA  
V
3.6 V  
VIN = 0 V or  
VIN = VDDIO  
IIN  
VDDIO = 1.71 V  
to 1.89 V  
VDDIO = 3 V to  
3.6 V  
VDDIO  
VDDIO  
0.4  
High-level output  
voltage  
VOH  
IOH = –4 mA  
VDDIO = 1.71 V  
to 1.89 V  
VDDIO –  
0.45  
V
VDDIO = 3 V to  
3.6 V  
GND  
GND  
V
Low-level output  
voltage  
GPIO[3:0],  
GPO_REG[7:4],  
REM_INTB  
VOL  
IOH = 4 mA  
VOUT = 0 V  
VDDIO = 1.71 V  
to 1.89 V  
0.35  
V
Output short-circuit  
current  
IOS  
–50  
mA  
VOUT = 0 V or  
VOUT = VDDIO  
PDB = L  
TRI-STATE output  
current  
IOZ  
–10  
10  
µA  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at nominal conditions at the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
Copyright © 2016, Texas Instruments Incorporated  
7
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
DC Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
FPD-LINK III CML DRIVER DC SPECIFICATIONS  
Differential output  
VOD  
voltage (DOUT+) –  
(DOUT–)  
RL = 100 Ω, see 1  
700  
350  
800  
1000  
mVp-p  
Single-ended output  
voltage (DOUT+ or  
DOUT-)  
RL = 50 Ω  
See 2  
VOUT  
ΔVOD  
VOS  
400  
1
500  
50  
mV  
mV  
V
Output voltage  
unbalance  
2.5 –  
0.5 ×  
VOD  
RL = 100 Ω  
See 1  
Offset voltage —  
single-ended  
DOUT±  
Offset voltage  
unbalanced single-  
ended  
ΔVOS  
1
–38  
50  
50  
mV  
mA  
Ω
Output short-circuit  
current  
IOS  
DOUT± = 0 V, PDB = L or H  
Internal termination  
resistor — single-  
ended  
RT  
40  
62  
SERIAL CONTROL BUS  
0.7 ×  
VDD33  
VIH  
VIL  
Input high level, I2C  
VDD33  
V
V
Input low-level voltage,  
I2C  
0.3 ×  
VDD33  
VHY  
VOL  
Input hysteresis, I2C  
> 50  
< 5  
mV  
V
SDA, SCL  
Output Low Level, I2C IOL = +1.25mA  
0
0.36  
10  
VIN = 0V or  
Input Current, I2C  
IIN  
–10  
µA  
pF  
VIN = VDD33  
CIN  
Input capacitance, I2C  
SUPPLY CURRENT  
IDD1  
VDD33 = 3.6V  
VDDIO = 3.6V  
VDDIO = 1.89V  
VDD33 = 3.6V  
VDDIO = 3.6V  
VDDIO = 1.89V  
VDD33 = 3.6V  
VDDIO = 3.6V  
VDDIO = 1.89V  
VDD33 = 3.6V  
VDDIO = 3.6V  
VDDIO = 1.89V  
148  
90  
1
180  
180  
3
mA  
μA  
Supply Current  
(includes load current)  
RL = 100, f = 96MHz  
Checker Board Pattern,  
See 3  
IDDIO1  
IDDS1  
IDDIOS1  
IDDS2  
IDDIOS2  
IDDS3  
mA  
mA  
μA  
1.2  
65  
55  
1
3
Supply Current Remote  
Auto Power Down  
Mode  
0x01[7] = 1, deserializer is powered  
down  
200  
200  
3
μA  
mA  
μA  
Supply Current Power  
Down  
PDB = L, All LVCMOS inputs are not  
connected (NC) or tied to GND  
65  
55  
55  
80  
1
200  
200  
μA  
mA  
μA  
Supply Current Sleep  
State  
0x01[7] = 1, PCLK is removed.  
IDDIOS3  
mA  
8
Copyright © 2016, Texas Instruments Incorporated  
 
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
6.7 AC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)  
PARAMETER  
GPIO BIT RATE  
TEST CONDITIONS  
PIN/FREQUENCY  
MIN  
TYP  
MAX  
UNIT  
Forward channel bit  
rate  
ƒ = 5 – 96 MHz  
GPIO[3:0]  
BRF  
See(4)  
0.25 × ƒ  
60  
Mbps  
kbps  
STP cable - HFMODE  
STP cable - LFMODE  
Coax cable - HFMODE,  
IFMODE, or LFMODE  
BRB  
Back channel bit rate  
GPIO[3:0]  
40  
kbps  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at nominal conditions at the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
(4) Specification is ensured by design and is not tested in production.  
6.8 PCLK Timing Requirements  
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)  
MIN  
NOM  
MAX  
UNIT  
PCLK period with STP cable, see(4)  
ƒ = 5 to 96 MHz  
PCLK period with Coax cable, see(4)  
ƒ = 15 to 96 MHz  
10.41  
T
200  
ns  
tTCP  
10.41  
T
66.7  
ns  
tCIH  
tCIL  
PCLK input high time; pin/frequency: PCLK  
PCLK input low time; pin/frequency: PCLK  
PCLK input transition time(4), see 4; ƒ = 5 MHz  
PCLK input transition time(4), see 4; ƒ = 96 MHz  
0.4*T  
0.4*T  
4
0.5*T  
0.5*T  
0.6*T  
0.6*T  
ns  
ns  
ns  
ns  
tCLKT  
0.5  
PCLK input jitter, bit error rate 10–10  
ƒ / 40 < jitter freq < ƒ / 20  
0.35  
0.35  
0.35  
UI  
UI  
UI  
ƒ = 5 to 78 MHz  
(4)(5)  
Paired with DS90UB926Q-Q1  
PCLK input jitter, bit error rate 10–10  
ƒ / 40 < jitter freq < ƒ / 20  
tIJIT  
f = 5 - 85MHz  
(4)(5)  
Paired with DS90UB928Q-Q1  
PCLK input jitter, bit error rate 10–10  
ƒ / 40 < jitter freq < ƒ / 20  
f = 25 - 96MHz  
(4)(5)  
Paired with DS90UB940-Q1, or DS90UB948-Q1  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at nominal conditions at the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
(4) Specification is ensured by characterization and is not tested in production.  
(5) UI – Unit Interval is equivalent to one serialized data bit width (1UI = 1 / 35 × PCLK). The UI scales with PCLK frequency.  
Copyright © 2016, Texas Instruments Incorporated  
9
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
6.9 Recommended Timing for the Serial Control Bus  
Over 3.3-V supply and temperature ranges unless otherwise specified.  
MIN  
0
TYP  
MAX  
100  
UNIT  
kHz  
kHz  
µs  
Standard mode  
ƒSCL  
tLOW  
tHIGH  
SCL clock frequency  
SCL low period  
Fast mode  
0
400  
Standard mode  
Fast mode  
4.7  
1.3  
4
µs  
Standard mode  
Fast mode  
µs  
SCL high period  
0.6  
4
µs  
Hold time for a start or a  
repeated start condition,  
see 10  
Standard mode  
µs  
tHD;STA  
Fast mode  
0.6  
4.7  
0.6  
µs  
µs  
µs  
Set-up time for a start or a Standard mode  
repeated start condition,  
tSU:STA  
Fast mode  
see 10  
Standard mode  
Data hold time, see 10  
Fast mode  
0
0
0.615  
0.615  
0.56  
3.45  
0.9  
µs  
µs  
ns  
ns  
µs  
tHD;DAT  
Standard mode  
Fast mode  
250  
100  
4
Data set-up time, see 图  
10  
tSU;DAT  
0.56  
Set-up time for STOP  
condition,  
See 10  
Standard mode  
tSU;STO  
Fast mode  
0.6  
4.7  
µs  
µs  
Bus free time  
between STOP and  
START,  
Standard mode  
tBUF  
Fast mode  
1.3  
µs  
See10  
Standard mode  
Fast mode  
430  
200  
20  
1000  
300  
300  
300  
ns  
ns  
ns  
ns  
ns  
SCL and SDA rise time,  
See 10  
tr  
Standard mode  
Fast mode  
SCL and SDA fall time,  
See 10  
tf  
20  
tsp  
Input filter  
50  
DOUT+  
0.1 mF  
0.1 mF  
Differential probe  
Input Impedance û 100  
kW  
30  
DIN[23:0],  
HS,VS,DE,  
I2S  
SCOPE  
BW û 4 GHz  
100W  
D
C
L
ú 0.5 pF  
DOUT-  
BW û 3.5 GHz  
PCLK  
(D  
+) - (D  
OUT  
-)  
OUT  
0V  
V
OD  
1. Serializer Differential VOD DC Output  
10  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
DOUT+  
DOUT-  
0.33 mF  
0.15 mF  
SCOPE  
BW û 4 GHz  
30  
Input Impedance = 50W  
DIN[23:0],  
HS,VS,DE,  
I2S  
D
50O  
PCLK  
V
OUT  
D
OUT  
+
ö V  
OS  
0V  
2. Serializer Single-ended VOUT DC Output  
V
DDIO  
PCLK  
GND  
V
DDIO  
DIN[n] (odd),  
VS, HS  
GND  
V
DDIO  
DIN[n] (even),  
DE  
GND  
3. Checker Board Data Pattern  
VDDIO  
80%  
80%  
PCLK  
20%  
20%  
CLKT  
0V  
t
CLKT  
t
4. Serializer Input Clock Transition Time  
80%  
80%  
Differential  
Signal  
V
diff  
= 0V  
20%  
20%  
t
t
HLT  
LHT  
5. Serializer CML Output Load and Transition Time  
版权 © 2016, Texas Instruments Incorporated  
11  
 
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
t
TCP  
V
/2  
V
DDIO  
/2  
V
DDIO  
/2  
PCLK  
DDIO  
t
t
DIH  
DIS  
V
DDIO  
DIN[23:0],  
HS,VS,DE  
V
/2  
DDIO  
Setup  
Hold  
0V  
6. Serializer Setup and Hold Times  
PDB  
1/2 V  
DDIO  
PCLK  
"X"  
active  
t
PLD  
DOUT  
(Diff.)  
Driver On  
Driver OFF, V  
OD  
= 0V  
7. Serializer Lock Time  
RGB[7:0],  
SYMBOL N  
SYMBOL N+1  
HS, VS, DE  
t
SD  
PCLK  
START  
BIT  
STOP  
BIT  
START  
BIT  
STOP  
BIT  
DOUT±  
3
3
3
3
0
1
2
0
1
2
SYMBOL N  
SYMBOL N-1  
8. Serializer Delay Time  
VOD (+)  
DOUT  
(Diff.)  
EYE OPENING  
0V  
VOD (-)  
t
(1 UI)  
BIT  
9. Serializer CML Output Jitter  
12  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
 
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
SDA  
SCL  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
SP  
t
f
r
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
10. Serial Control Bus Timing Diagram  
6.10 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
tLHT  
tHLT  
tDIS  
CML Output Low-to-High  
Transition Time  
80  
80  
ps  
DOUT+,  
DOUT-  
See 5  
CML Output High-to-Low  
Transition Time  
ps  
ns  
Data Input Setup to PCLK  
R[7:0],  
G[7:0],  
B[7:0], HS,  
VS, DE,  
PCLK  
2.0  
2.0  
See 6  
tDIH  
Data Input Hold from PCLK  
ns  
(1)  
tPLD  
tSD  
See 7  
See 8  
f = 5 -  
96MHz  
Serializer PLL Lock Time  
Delay — Latency  
131*T  
145*T  
ns  
ns  
f = 5 -  
96MHz  
RL = 100Ω  
f = 96MHz  
See 9  
Output Total Intrinsic Jitter, Jitter  
frequency > f/10  
DOUT+,  
DOUT-  
tTJIT  
0.25  
0.30  
UI  
Bit Error Rate 10-10 (2) (3)  
(1) tPLD is the time required by the device to obtain lock when exiting power-down state with an active PCLK  
(2) Specification is ensured by characterization and is not tested in production.  
(3) UI – Unit Interval is equivalent to one serialized data bit width 1UI = 1 / (35*PCLK). The UI scales with PCLK frequency.  
版权 © 2016, Texas Instruments Incorporated  
13  
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
6.11 Typical Charateristics  
Time (1.0 ns/DIV)  
Time (2.0 ns/DIV)  
Note: On the rising edge of each clock period, the CML driver outputs  
a low Stop bit, high Start bit, and 33 DC-scrambled data bits.  
11. Serializer CML Driver Output with 96 MHz TX Pixel  
Clock  
12. Serializer CMLOUT Driver Output and 96 MHz  
LVCMOS PCLK Input  
14  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
7 Detailed Description  
7.1 Overview  
The DS90UB921-Q1 serializer transmits a 35-bit symbol over a single serial FPD-Link III channel operating up to  
3.36 Gbps line rate. The serial stream contains an embedded clock, video control signals and DC-balanced video  
data and audio data which enhance signal quality to support AC coupling. The serializer is intended for use with  
the DS90UB926Q-Q1, DS90UB928Q-Q1, DS90UB948-Q1, or DS90UB940-Q1 deserializers.  
The DS90UB921-Q1 serializer and compatible deserializer incorporate an I2C compatible interface. The I2C  
compatible interface allows programming of serializer or deserializer devices from a local host controller. In  
addition, the devices incorporate a bidirectional control channel (BCC) that allows communication between  
serializer/deserializer as well as remote I2C slave devices.  
The bidirectional control channel is implemented via embedded signaling in the high-speed forward channel  
(serializer to deserializer) as well as lower speed signaling in the reverse channel (deserializer to serializer).  
Through this interface, the BCC provides a mechanism to bridge I2C transactions across the serial link from one  
I2C bus to another. The implementation allows for arbitration with other I2C compatible masters at either side of  
the serial link.  
There are two operating modes available on DS90UB921-Q1, display mode and camera mode. In display mode,  
I2C transactions originate from the host controller attached to the serializer and target either the deserializer or an  
I2C slave attached to the deserializer. Transactions are detected by the I2C slave in the serializer and forwarded  
to the I2C master in the deserializer. Similarly, in camera mode, I2C transactions originate from a controller  
attached to the deserializer and target either the serializer or an I2C slave attached to the serializer. Transactions  
are detected by the I2C slave in the deserializer and forwarded to the I2C master in the serializer.  
7.2 Functional Block Diagram  
w9DÜ[!Çhw  
CMF  
24  
DIN [23:0]  
HS  
VS  
D
D
+
-
OUT  
DE  
D
PCLK  
OUT  
I2S_CLK  
I2S_WC  
I2S_DA  
3
PDB  
MODE_SEL  
INTB  
PLL  
REM_INTB  
SDA  
Timing  
and  
Control  
SCL  
IDx  
DS90UB921-Q1  
Serializer  
7.3 Feature Description  
7.3.1 High Speed Forward Channel Data Transfer  
The High Speed Forward Channel (HS_FC) is composed of 35 bits of data containing DIN[23:0] or RGB[7:0] or  
YUV data, sync signals, I2C, and I2S audio transmitted from Serializer to Deserializer. 13 illustrates the serial  
stream per PCLK cycle. This data payload is optimized for signal transmission over an AC coupled link. Data is  
randomized, balanced and scrambled.  
版权 © 2016, Texas Instruments Incorporated  
15  
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
Feature Description (接下页)  
C1  
C0  
13. FPD-Link III Serial Stream  
The device supports clocks in the range of 5 MHz to 96 MHz. The actual line rate is 3.36 Gbps maximum and  
525 Mbps Minimum.  
7.3.2 Low Speed Back Channel Data Transfer  
The Low-Speed Backward Channel (LS_BC) of the DS90UB921-Q1 provides bidirectional communication  
between the display and host processor. The information is carried back from the Deserializer to the Serializer  
per serial symbol. The back channel control data is transferred over the single serial link along with the high-  
speed forward data, DC balance coding and embedded clock information. This architecture provides a backward  
path across the serial link together with a high speed forward channel. The back channel contains the I2C, CRC  
and 4 bits of standard GPIO information with 3.1 Mbps line rate in Coax mode and low frequency STP mode,  
and 4.4Mbps line rate in high frequency STP mode. The back channel data rate is configured automatically when  
STP or Coax is selected (see Frequency Mode Optimizations).  
7.3.3 Common Mode Filter Pin (CMF)  
The serializer provides access to the center tap of the internal termination. A capacitor must be placed on this pin  
for additional common-mode filtering of the differential pair. This can be useful in high noise environments for  
additional noise rejection capability. A 0.1 μF capacitor must be connected to this pin to Ground.  
7.3.4 Video Control Signal Filter  
When operating the devices in Normal Mode, the Video Control Signals (DE, HS, VS) have the following  
restrictions:  
Normal Mode with Control Signal Filter Enabled: DE and HS — Only 2 transitions per 130 clock cycles are  
transmitted, the transition pulse must be 3 PCLK or longer.  
Normal Mode with Control Signal Filter Disabled: DE and HS — Only 2 transitions per 130 clock cycles are  
transmitted, no restriction on minimum transition pulse.  
VS — Only 1 transition per 130 clock cycles are transmitted, minimum pulse width is 130 clock cycles.  
Video Control Signals are defined as low frequency signals with limited transitions. Glitches of a control signal  
can cause a visual display error. This feature allows for the chipset to validate and filter out any high frequency  
noise on the control signals. See 14.  
16  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
Feature Description (接下页)  
PCLK  
IN  
HS/VS/DE  
IN  
Latency  
PCLK  
OUT  
Pulses 1 or 2  
PCLKs wide  
HS/VS/DE  
OUT  
Filetered OUT  
14. Video Control Signal Filter Waveform  
7.3.5 EMI Reduction Features  
7.3.5.1 Input SSC Tolerance (SSCT)  
The DS90UB921-Q1 serializer is capable of tracking a triangular input spread spectrum clocking (SSC) profile up  
to ±2.5% amplitude deviations (center spread), up to 35 kHz modulation at 5–96 MHz, from a host source.  
7.3.6 LVCMOS VDDIO Option  
1.8 V or 3.3 V Inputs and Outputs are powered from a separate VDDIO supply to offer compatibility with external  
system interface signals.  
When configuring the VDDIO power supplies, all the single-ended data and control input  
pins for device need to scale together with the same operating VDDIO levels.  
7.3.7 Power Down (PDB)  
The Serializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin can be controlled by the  
host or through the VDDIO, where VDDIO = 3.0V to 3.6V or VDD33. To save power disable the link when the  
display is not needed (PDB = LOW). When the pin is driven by the host, make sure to release it after VDD33 and  
VDDIO have reached final levels; no external components are required. In the case of driven by the VDDIO =  
3.0V to 3.6V or VDD33 directly, a 10 kohm resistor to the VDDIO = 3.0V to 3.6V or VDD33 , and a >10uF  
capacitor to the ground are required (See 26).  
7.3.8 Remote Auto Power-Down Mode  
The DS90UB921-Q1 serializer features a Remote Auto Power Down mode. This feature is enabled and disabled  
through the register bit 0x01[7] (7). When the back channel is not detected, either due to an idle or powered-  
down deserializer, the serializer enters remote auto power down mode. Power dissipation of the serializer is  
significantly reduced in this mode. The serializer automatically attempts to resume normal operation upon  
detection of an active back channel from the deserializer. To complete the wake-up process and reactivate  
forward channel operation, the remote power-down feature must be disabled by either a local I2C host, or by an  
auto-ACK I2C transaction from a remote I2C host located at the deserializer. The Remote Auto Power Down  
Sleep/Wake cycle is shown below in 15:  
版权 © 2016, Texas Instruments Incorporated  
17  
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
Feature Description (接下页)  
Enable  
Set reg_0x01[7]=1  
Back Channel IDLE  
Remote Auto Power  
Down Enabled  
Forward-channel  
OFF  
Normal Operation  
Sleep  
Disable  
Back Channel ACTIVE  
Set reg_0x01[7]=0  
15. Remote Auto Power Down Sleep/Wake Cycle  
To resume normal operation, the Remote Auto Power Down feature must be disabled in the device control  
register. This may be accomplished from a local I2C controller by writing reg_0x01[7]=0 (7). To disable from a  
remote I2C controller located at the deserializer, perform the following procedure to complete the wake-up  
process:  
1. Power up remote deserializer (back channel must be active)  
2. Enable I2C PASS-THROUGH ALL by setting deserializer register reg_0x05[7]=1  
3. Enable I2C AUTO ACK by setting deserializer register reg_0x03[2]=1  
4. Disable Remote Auto Power Down by setting serializer register reg_0x01[7]=0  
5. Disable I2C AUTO ACK by setting deserializer register reg_0x03[2]=0  
6. Disable I2C PASS-THROUGH ALL by setting deserializer register reg_0x05[7]=0  
7.3.9 Input PCLK Loss Detect  
The serializer can be programmed to enter a low power SLEEP state when the input clock (PCLK) is lost. This is  
done via register 0x03[1] (see 7). A clock loss condition is detected when PCLK drops below approximately  
1MHz. When a PCLK is detected again, the serializer will then lock to the incoming PCLK. Note – when PCLK is  
lost, the Serial Control Bus Registers values are still RETAINED.  
18  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
Feature Description (接下页)  
7.3.10 Serial Link Fault Detect  
The serial link fault detection is able to detect any of following seven (7) conditions:  
1. cable open  
2. “+” to “-“ short  
3. “+” short to GND  
4. “-“ short to GND  
5. “+” short to battery  
6. “-“ short to battery  
7. Cable is linked correctly  
If any one of the fault conditions (first 6 conditions above) occurs, The Link Detect Status is 0 (cable is not  
detected) on bit 0 of address 0x0C 7.  
7.3.11 Pixel Clock Edge Select (TRFB)  
The TRFB control register bit selects which edge of the Pixel Clock is used. For the serializer, this pin determines  
the edge that the data is latched on. If TRFB is HIGH (‘1’), data is latched on the Rising edge of the PCLK. If  
TRFB is LOW (‘0’), data is latched on the Falling edge of the PCLK.  
7.3.12 Frequency Mode Optimizations  
HFMODE, LFMODE, and IFMODE are set through a combination of the FSEL pin and MODE_SEL pin, with  
register overrides for both. These pins (or register overrides) will configure the DS90UB921-Q1 into either Low  
Frequency Mode (LFMODE), Intermediate Frequency mode (IFMODE), or High Frequency mode (HFMODE).  
See 1 for details on how each mode is enabled.  
1. HFMODE / LFMODE / IFMODE Configuration Table  
FSEL (pin 15, or  
ALTERNATE  
MODE  
PCLK RANGE for COAX  
PCLK RANGE for STP  
register 0x35[7:6])  
FREQUENCY (set by  
MODE_SEL pin, or  
register 0x04[1:0])  
L
H
H
L
L
L
HFMODE  
HFMODE  
IFMODE  
LFMODE  
N/A  
15 - 96 MHz  
N/A  
48 - 96 MHz  
24 - 48 MHz  
15 - 24 MHz  
H
H
N/A  
5 - 15 MHz  
版权 © 2016, Texas Instruments Incorporated  
19  
 
 
 
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
7.3.13 Interrupt Pins – Funtional Description and Usage (INTB, REM_INTB)  
The REM_INTB pin mirrors the status of INTB_IN from the remote deserializer. Any change in INTB_IN status of  
the remote device will be reflected at the REM_INTB output of the serializer. REM_INTB will remain LOW until  
lock is achieved with the downstream deserializer. Alternately, the INTB pin can be set to trigger on remote  
interrupts by following the steps below.  
1. On DS90UB921-Q1, read register 0xC7.  
2. On DS90UB921-Q1, set register 0xC6[5] = 1 and 0xC6[0] = 1  
3. Deserializer INTB_IN is set LOW by some downstream device.  
4. DS90UB921-Q1 serializer pulls INTB (pin 31) LOW. The signal is active low, so a LOW indicates an interrupt  
condition.  
5. External controller detects INTB = LOW; to determine interrupt source, read ISR register 0xC7.  
6. A read to ISR will clear the interrupt at the DS90UB921-Q1, releasing INTB.  
7. The external controller typically must then access the remote device to determine downstream interrupt  
source and clear the interrupt driving INTB_IN. This would be when the downstream device releases the  
INTB_IN on the deserializer. The system is now ready to return to step (1) at next falling edge of INTB_IN.  
If using the REM_INTB pin instead of INTB for remote interrupts, the IS_RX_INT bit (0xC6[5]) of the serializer's  
ICR register must be set low (default) masking remote interrupts to the INTB pin.  
7.3.14 Internal Pattern Generation  
The DS90UB921-Q1 serializer supports the internal pattern generation feature. It allows basic testing and  
debugging of an integrated panel through the FPD-Link III output stream. The test patterns are simple and  
repetitive and allow for a quick visual verification of panel operation. As long as the device is not in power down  
mode, the test pattern will be displayed even if no parallel input is applied. If no PCLK is received, the test  
pattern can be configured to use a programmed oscillator frequency. For detailed information, refer to Application  
Note AN-2198 (SNLA132).  
7.3.15 GPIO[3:0] and GPO_REG[7:4]  
In 18-bit RGB operation mode, the optional R[1:0] and G[1:0] of the DS90UB921-Q1 can be used as the general  
purpose IOs GPIO[3:0] in either forward channel (Inputs) or back channel (Outputs) applications.  
7.3.15.1 GPIO[3:0] Enable Sequence  
See 2 for the GPIO enable sequencing.  
Step 1: Enable the 18-bit mode either through the configuration register bit 7 on DS90UB921-Q1 only. The  
deserializer is automatically configured as in the 18-bit mode.  
Step 2: To enable GPIO3 forward channel, write 0x03 to address 0x0F on DS90UB921-Q1, then write 0x05 to  
address 0x1F on the deserializer.  
2. GPIO Enable Sequencing Table  
#
DESCRIPTION  
DEVICE  
FORWARD CHANNEL  
0x12 = 0x04  
BACK CHANNEL  
0x12 = 0x04  
1
Enable 18-bit  
mode  
DS90UB921-Q1  
DS90UB926Q-Q1  
DS90UB921-Q1  
DS90UB926Q-Q1  
DS90UB921-Q1  
DS90UB926Q-Q1  
DS90UB921-Q1  
DS90UB926Q-Q1  
DS90UB921-Q1  
DS90UB926Q-Q1  
Auto Load from DS90UB921-Q1  
0x0F = 0x03  
Auto Load from DS90UB921-Q1  
0x0F = 0x05  
2
3
4
5
GPIO3  
GPIO2  
GPIO1  
GPIO0  
0x1F = 0x05  
0x1F = 0x03  
0x0E = 0x30  
0x0E = 0x50  
0x1E = 0x50  
0x1E = 0x30  
0x0E = 0x03  
0x0E = 0x05  
0x1E = 0x05  
0x1E = 0x03  
0x0D = 0x93  
0x0D = 0x95  
0x1D = 0x95  
0x1D = 0x93  
20  
版权 © 2016, Texas Instruments Incorporated  
 
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
Note: GPO_REG4 of the DS90UB921-Q1 can be used as a forward channel GPIO, outputting on GPIO0 of  
DS90UB928Q-Q1. This is configured as follows:  
Set DS90UB921-Q1 in 18-bit mode by register 0x12[2] = 1.  
Set DS90UB928Q-Q1 register 0x1D[0] = 1 and 0x1D[2] = 1; this enables GPIO0 of DS90UB928Q-Q1 as an  
output.  
Set DS90UB921-Q1 register 0x0F[4] = 1 and 0x0F[5] = 1; this enables GPO_REG4 of DS90UB921-Q1 as an  
input.  
Similarly GPO_REG5 of DS90UB921-Q1 can output to GPIO1 of DS90UB928Q-Q1:  
Set DS90UB921-Q1 in 18-bit mode by register 0x12[2] = 1.  
Set DS90UB928Q-Q1 register 0x1E[0] = 1 and 0x1E[2] = 1; this enables GPIO1 of DS90UB928Q-Q1 as an  
output.  
Set DS90UB921-Q1 register 0x10[0] = 1 and 0x10[1] = 1; this enables GPO_REG5 DS90UB921-Q1 as an  
input.  
7.3.15.2 GPO_REG[7:4] Enable Sequence  
GPO_REG[7:4] are the outputs only pins. They must be programmed through the local register bits. See 3 for  
the GPO_REG enable sequencing.  
Step 1: Enable the 18-bit mode either through the configuration register bit 7 on DS90UB921-Q1 only. The  
deserializer is automatically configured as in the 18-bit mode.  
Step 2: To enable GPO_REG7 outputs an “1”, write 0x09 to address 0x11 on DS90UB921-Q1.  
3. GPO_REG Enable Sequencing Table  
#
1
2
DESCRIPTION  
Enable 18-bit mode  
GPO_REG7  
DEVICE  
LOCAL ACCESS  
0x12 = 0x04  
0x11 = 0x09  
0x11 = 0x01  
0x10 = 0x90  
0x10 = 0x10  
0x10 = 0x09  
0x10 = 0x01  
0x0F = 0x90  
0x0F = 0x10  
LOCAL OUTPUT  
DS90UB921-Q1  
DS90UB921-Q1  
“1”  
“0”  
“1”  
“0”  
“1”  
“0”  
“1”  
“0”  
3
4
5
GPO_REG6  
GPO_REG5  
GPO_REG4  
DS90UB921-Q1  
DS90UB921-Q1  
DS90UB921-Q1  
7.3.16 I2S Transmitting  
In normal 24-bit RGB operation mode, the DS90UB921-Q1 supports 3 bits of I2S. They are I2S_CLK, I2S_WC  
and I2S_DA. The optionally packetized audio information can be transmitted during the video blanking (data  
island transport) or during active video (forward channel frame transport). Note: The bit rates of any I2S bits must  
maintain one fourth of the PCLK rate. 4 covers the range of I2S sample rates.  
4. Audio Interface Frequencies  
SAMPLE RATE (kHz)  
I2S DATA WORD SIZE (BITS)  
I2S CLK (MHz)  
1.024  
32  
44.1  
48  
16  
16  
16  
16  
16  
24  
24  
24  
24  
1.411  
1.536  
96  
3.072  
192  
32  
6.144  
1.536  
44.1  
48  
2.117  
2.304  
96  
4.608  
版权 © 2016, Texas Instruments Incorporated  
21  
 
 
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
4. Audio Interface Frequencies (接下页)  
SAMPLE RATE (kHz)  
I2S DATA WORD SIZE (BITS)  
I2S CLK (MHz)  
9.216  
192  
32  
24  
32  
32  
32  
32  
32  
2.048  
44.1  
48  
2.822  
3.072  
96  
6.144  
192  
12.288  
7.3.17 Built In Self Test (BIST)  
An optional At-Speed Built In Self Test (BIST) feature supports the testing of the high speed serial link and the  
low- speed back channel. This is useful in the prototype stage, equipment production, in-system test and also for  
system diagnostics.  
7.3.17.1 BIST Configuration and Status  
The BIST mode is enabled at the deseralizer by the Pin select (BISTEN and BISTC) or configuration register (表  
7) through the deserializer. When LFMODE = 0, the pin based configuration defaults to external PCLK or 33  
MHz internal Oscillator clock (OSC) frequency. In the absence of PCLK, the user can select the desired OSC  
frequency (default 33 MHz or 25MHz) through the register bit. When LFMODE = 1, the pin based configuration  
defaults to external PCLK or 12.5MHz MHz internal Oscillator clock (OSC) frequency.  
When BISTEN of the deserializer is high, the BIST mode enable information is sent to the serializer through the  
Back Channel. The serializer outputs a test pattern and drives the link at speed. The deserializer detects the test  
pattern and monitors it for errors. The PASS output pin toggles to flag any payloads that are received with 1 to  
35 bit errors.  
The BIST status is monitored real time on PASS pin. The result of the test is held on the PASS output until reset  
(new BIST test or Power Down). A high on PASS indicates NO ERRORS were detected. A Low on PASS  
indicates one or more errors were detected. The duration of the test is controlled by the pulse width applied to  
the deserializer BISTEN pin. This BIST feature also contains a Link Error Count and a Lock Status. If the  
connection of the serial link is broken, then the link error count is shown in the register. When the PLL of the  
deserializer is locked or unlocked, the lock status can be read in the register. See 7.  
7.3.17.1.1 Sample BIST Sequence  
See 16 for the BIST mode flow diagram.  
Step 1: BIST Mode is enabled via the BISTEN pin of the deserializer. The desired clock source is selected  
through BISTC pin.  
Step 2: The DS90UB921-Q1 serializer is woken up through the back channel if it is not already on. The all zero  
pattern on the data pins is sent through the FPD-Link III to the deserializer. Once the serializer and the  
deserializer are in BIST mode and the deserializer acquires Lock, the PASS pin of the deserializer goes high and  
BIST starts checking the data stream. If an error in the payload (1 to 35) is detected, the PASS pin will switch low  
for one half of the clock period. During the BIST test, the PASS output can be monitored and counted to  
determine the payload error rate.  
Step 3: To Stop the BIST mode, the deserializer BISTEN pin is set Low. The deserializer stops checking the  
data. The final test result is held on the PASS pin. If the test ran error free, the PASS output will be High. If there  
was one or more errors detected, the PASS output will be Low. The PASS output state is held until a new BIST  
is run, the device is RESET, or Powered Down. The BIST duration is user controlled by the duration of the  
BISTEN signal.  
Step 4: The Link returns to normal operation after the deserializer BISTEN pin is low. 17 shows the waveform  
diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2 shows one with multiple errors. In  
most cases it is difficult to generate errors due to the robustness of the link (differential data transmission etc.),  
thus they may be introduced by greatly extending the cable length, faulting the interconnect, reducing signal  
condition enhancements (Rx Equalization).  
22  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
Normal  
Step 1: DES in BIST  
BIST  
Wait  
Step 2: Wait, SER in BIST  
BIST  
start  
Step 3: DES in Normal Mode -  
check PASS  
BIST  
stop  
Step 4: DES/SER in Normal  
16. Bist Mode Flow Diagram  
7.3.17.2 Forward Channel And Back Channel Error Checking  
While in BIST mode, the serializer stops sampling RGB input pins and switches over to an internal all-zero  
pattern. The internal all-zeroes pattern goes through scrambler, dc-balancing etc. and goes over the serial link to  
the deserializer. The deserializer on locking to the serial stream compares the recovered serial stream with all-  
zeroes and records any errors in status registers and dynamically indicates the status on PASS pin. The  
deserializer then outputs a simultaneous switching output (SSO) pattern on the RGB output pins.  
The back-channel data is checked for CRC errors once the serializer locks onto back-channel serial stream as  
indicated by link detect status (register bit 0x0C[0]). The CRC errors are recorded in an 8-bit register. The  
register is cleared when the serializer enters the BIST mode. As soon as the serializer exits BIST mode, the  
functional mode CRC register starts recording the CRC errors. The BIST mode CRC error register is active in  
BIST mode only and keeps the record of last BIST run until cleared or enters BIST mode again.  
BISTEN  
(DES)  
PCLK  
(RFB = L)  
ROUT[23:0]  
HS, VS, DE  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
BIST  
Result  
Held  
Normal  
SSO  
Normal  
BIST Test  
BIST Duration  
17. Bist Waveforms  
版权 © 2016, Texas Instruments Incorporated  
23  
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Configuration Select (MODE_SEL)  
Configuration of the device may be done via the MODE_SEL input pin, or via the configuration register bit. A pull-  
up resistor and a pull-down resistor of suggested values may be used to set the voltage ratio of the MODE_SEL  
input (VR4) and VDD33 to select one of the other 7 possible selected modes. The voltage range in between the  
Minimum and Maximum VR4 must be adhered even when taking resistor tolerances into account. The 1%  
suggested resistors meet this for all cases, but others that also meet the desired voltage range are also  
acceptable. See 18 and 5.  
V
DD33  
R
3
V
R4  
MODE_SEL  
SER  
R
4
18. MODE_SEL Connection Diagram  
5. Configuration Select (MODE_SEL)  
#
MINIMUM  
VR4 (V)(1)  
MAXIMUM  
VR4 (V)(1)  
SUGGESTED  
RESISTOR R3  
k(1% tol)  
SUGGESTED  
RESISTOR R4  
k(1% tol)  
ALTERNATE  
FREQUENCY  
REPEATER  
18–BIT MODE  
1
2
3
4
5
6
7
0.000  
0.530  
0.725  
0.930  
1.165  
1.480  
1.750  
0.150  
0.596  
0.800  
1.012  
1.284  
1.599  
1.905  
Open  
90.9  
93.1  
71.5  
68.1  
82.5  
73.2  
40.2 or Any  
18.7  
L
L
L
H
H
L
L
L
28.0  
L
H
L
30.1  
H
H
H
H
40.2  
L
H
L
71.5  
H
H
90.9  
H
Alternate Frequency:  
See Frequency Mode Optimizations  
Repeater:  
L = Repeater OFF (Default)  
H = Repeater ON  
18-bit Mode:  
L = Normal 24-bit RGB Mode (Default)  
H = 18-bit RGB Mode. Note: use of GPIO(s) on unused inputs must be enabled by register.  
7.4.2 Repeater Application  
The DS90UB921-Q1 and DS90UB926Q-Q1 can be configured to extend data transmission over multiple links to  
multiple display devices. Setting the devices into repeater mode provides a mechanism for transmitting to all  
receivers in the system.  
7.4.2.1 Repeater Configuration  
In the repeater application, in this document, the DS90UB921-Q1 is referred to as the Transmitter or transmit  
port (TX), and the DS90UB926Q-Q1 is referred to as the Receiver (RX). 19 shows the maximum configuration  
supported for Repeater implementations using the DS90UB921-Q1 (TX) and DS90UB926Q-Q1 (RX). Two levels  
of Repeaters are supported with a maximum of three Transmitters per Receiver.  
(1) Voltage indicated assumes nominal VDD33.  
24  
版权 © 2016, Texas Instruments Incorporated  
 
 
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
Device Functional Modes (接下页)  
1:3 Repeater  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
RX  
TX  
Source  
TX  
RX  
TX  
TX  
TX  
TX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
19. Maximum Repeater Application  
In a repeater application, the I2C interface at each TX and RX may be configured to transparently pass I2C  
communications upstream or downstream to any I2C device within the system. This includes a mechanism for  
assigning alternate IDs (Slave Aliases) to downstream devices in the case of duplicate addresses.  
At each repeater node, the parallel LVCMOS interface fans out to up to three serializer devices, providing parallel  
RGB video data, HS/VS/DE control signals and, optionally, packetized audio data (transported during video  
blanking intervals). Alternatively, the I2S audio interface may be used to transport digital audio data between  
receiver and transmitters in place of packetized audio. All audio and video data is transmitted at the output of the  
Receiver and is received by the Transmitter.  
20 provides more detailed block diagram of a 1:2 repeater configuration.  
版权 © 2016, Texas Instruments Incorporated  
25  
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
Device Functional Modes (接下页)  
DS90UB921-Q1  
Transmitter  
downstream  
Receiver  
or  
I2C  
Slave  
I2C  
I2C  
Master  
Repeater  
upstream  
Transmitter  
Parallel  
LVCMOS  
DS90UB921-Q1  
Transmitter  
DS90UB926-Q1  
Receiver  
I2S Audio  
downstream  
Receiver  
or  
I2C  
Slave  
Repeater  
FPD-Link III interfaces  
20. 1:2 Repeater Configuration  
7.4.2.2 Repeater Connections  
The Repeater requires the following connections between the Receiver and each Transmitter 21.  
1. Video Data – Connect PCLK, RGB and control signals (DE, VS, HS).  
2. I2C – Connect SCL and SDA signals. Both signals should be pulled up to VDD33 with 4.7 kresistors.  
3. Audio – Connect I2S_CLK, I2S_WC, and I2S_DA signals.  
4. IDx pin – Each Transmitter and Receiver must have an unique I2C address.  
5. MODE_SEL pin – All Transmitter and Receiver must be set into the Repeater Mode.  
6. Interrupt pin – Connect DS90UB926Q-Q1 INTB_IN pin to DS90UB921-Q1 INTB pin. The signal must be  
pulled up to VDDIO.  
5{90Ü.926-v1  
5{90Ü.921-v1  
RGB[7:0) / ROUT[23:0]  
DIN[23:0] / RGB[7:0]  
DE  
VS  
HS  
DE  
VS  
HS  
I2S_CLK  
I2S_WC  
I2S_DA  
I2S_CLK  
I2S_WC  
I2S_DA  
VDD33  
VDD33  
hptionꢁl  
VDDIO  
ah59_{9[  
ah59_{9[  
hptionꢁl  
INTB_IN  
INTB  
VDD33  
VDD33  
VDD33  
L5ꢀx]  
L5ꢀx]  
SDA  
SDA  
SCL  
SCL  
21. Repeater Connection Diagram  
26  
版权 © 2016, Texas Instruments Incorporated  
 
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
7.5 Programming  
The DS90UB921-Q1 is configured by the use of a serial control bus that is I2C protocol compatible. Multiple  
serializer devices may share the serial control bus since 9 device addresses are supported. Device address is  
set via R1 and R2 values on IDx pin. See 22.  
The serial control bus consists of two signals and a configuration pin. The SCL is a Serial Bus Clock Input /  
Output. The SDA is the Serial Bus Data Input / Output signal. Both SCL and SDA signals require an external  
pull-up resistor to VDD33. For most applications a 4.7 k pull-up resistor to VDD33 may be used. The resistor  
value may be adjusted for capacitive loading and data rate requirements. The signals are either pulled High, or  
driven Low.  
VDD33  
R1  
VDD33  
VR2  
IDx  
4.7k  
4.7k  
R2  
HOST  
or  
DS90UB921-Q1  
Slave  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
22. Serial Control Bus Connection  
The configuration pin is the IDx pin. This pin sets one of 8 possible device addresses. A pull-up resistor and a  
pull-down resistor of suggested values may be used to set the voltage ratio of the IDx input (VR2) and VDD33 to  
select one of the other 8 possible addresses. The voltage range in between the Minimum and Maximum VR2  
must be adhered even when taking resistor tolerances into account. The 1% suggested resistors meet this for all  
cases, but others that also meet the desired voltage range are also acceptable. See 6.  
6. Serial Control Bus Addresses for IDx  
Maximum Voltage  
Minimum Voltage  
VR2 (V)(1)  
Suggested Resistor Suggested Resistor  
Address 8'b  
Appended  
#
VR2  
Address 7'b  
R1 k(1% tol)  
R2 k(1% tol)  
(V)(1)  
1
2
3
4
5
6
7
8
0.000  
0.535  
0.723  
0.947  
1.203  
1.493  
1.789  
2.469  
0.150  
0.578  
0.775  
0.995  
1.258  
1.565  
1.855  
2.515  
Open  
86.6  
90.9  
71.5  
84.5  
54.9  
78.7  
30.9  
40.2 or Any  
17.4  
0x0C  
0x0E  
0x10  
0x12  
0x14  
0x16  
0x18  
0x1A  
0x18  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
26.7  
30.1  
49.9  
47.5  
97.6  
95.3  
(1) Voltage indicated assumes nominal VDD33.  
版权 © 2016, Texas Instruments Incorporated  
27  
 
 
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SCL transitions Low while SDA is High. A STOP occurs when SDA transition High while SCL is also HIGH. See  
23.  
SDA  
SCL  
S
P
START condition, or  
STOP condition  
START repeat condition  
23. Start and Stop Conditions  
To communicate with a remote device, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it Acknowledges (ACKs) the master by driving the SDA bus low. If the address doesn't  
match a device's slave address, it Not-acknowledges (NACKs) the master by letting SDA be pulled High. ACKs  
also occur on the bus when data is being transmitted. When the master is writing data, the slave ACKs after  
every data byte is successfully received. When the master is reading data, the master ACKs after every data  
byte is received to let the slave know it wants to receive another data byte. When the master wants to stop  
reading, it NACKs after the last data byte and creates a stop condition on the bus. All communication on the bus  
begins with either a Start condition or a Repeated Start condition. All communication on the bus ends with a Stop  
condition. A READ is shown in 24 and a WRITE is shown in 25.  
If the Serial Bus is not required, the three pins may be left open (NC).  
Register Address  
Slave Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
A
2
A
1
A
0
0
S
S
1
P
24. Serial Control Bus — Read  
Register Address  
Slave Address  
Data  
a
c
a
c
k
a
c
k
A
2
A
1
A
0
0
S
P
k
25. Serial Control Bus — Write  
7.6 Register Maps  
28  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
7. Serial Control Bus Registers  
ADD  
(dec)  
ADD  
(hex)  
DEFAULT  
FUNCTION  
(hex)  
REGISTER NAME  
BIT(S)  
TYPE  
DESCRIPTION  
0
0x00  
I2C Device ID  
7:1  
0
RW  
RW  
Device ID  
ID Setting  
7–bit address of Serializer  
I2C ID Setting  
1: Register I2C Device ID (Overrides IDx pin)  
0: Device ID is from IDx pin  
1
0x01  
Reset  
7
RW  
RW  
0x00  
Soft Sleep  
1: Enable power down when no Bidirectional Control Channel Link detected.  
0: Do not power down when no Bidirectional Control Channel Link detected.  
6:2  
1
Reserved  
Digital RESET1 Reset the entire digital block including registers  
This bit is self-clearing.  
1: Reset  
0: Normal operation  
0
7
RW  
RW  
Digital RESET0 Reset the entire digital block except registers  
This bit is self-clearing  
1: Reset  
0: Normal operation  
3
0x03  
Configuration [0]  
0xD2  
Back channel  
CRC Checker  
Enable  
Back Channel Check Enable  
1: Enable  
0: Disable  
6
5
Reserved  
RW  
I2C Remote  
Write Auto  
Acknowledge  
Automatically Acknowledge I2C Remote Write When enabled, I2C writes to  
the Deserializer (or any remote I2C Slave, if I2C PASS ALL is enabled) are  
immediately acknowledged without waiting for the Deserializer to  
acknowledge the write. This allows higher throughput on the I2C bus  
1: Enable  
0: Disable  
4
3
RW  
RW  
Filter Enable  
HS, VS, DE two clock filter When enabled, pulses less than two full PCLK  
cycles on the DE, HS, and VS inputs will be rejected  
1: Filtering enable  
0: Filtering disable  
I2C Pass-  
through  
I2C Pass-Through Mode  
1: Pass-Through Enabled  
0: Pass-Through Disabled  
2
1
Reserved  
RW  
RW  
PCLK Auto  
TRFB  
Switch over to internal OSC in the absence of PCLK  
1: Enable auto-switch  
0: Disable auto-switch  
0
Pixel Clock Edge Select  
1: Parallel Interface Data is strobed on the Rising Clock Edge.  
0: Parallel Interface Data is strobed on the Falling Clock Edge.  
版权 © 2016, Texas Instruments Incorporated  
29  
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
7. Serial Control Bus Registers (接下页)  
ADD  
(dec)  
ADD  
(hex)  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
TYPE  
FUNCTION  
DESCRIPTION  
4
0x04  
Configuration [1]  
7
RW  
0x80  
Failsafe State  
Input Failsafe State  
1: Failsafe to Low  
0: Failsafe to High  
6
5
Reserved  
RW  
CRC Error Reset Clear back channel CRC Error Counters  
This bit is NOT self-clearing  
1: Clear Counters  
0: Normal Operation  
4
RGB  
1: Gate RGB data with DE  
DE Gate  
0: Pass RGB data independent of DE (default)  
This bit is recommended to be set to 1 to avoid unintentionally entering  
AVMUTE mode. See AVMUTE Operation.  
3:2  
1
RW  
RW  
Reserved  
Reserved  
ALTERNATE  
FREQUENCY  
select by pin or  
register control  
Frequency range is set by MODE_SEL pin or register, in conjunction with  
FSEL pin or register 0x35[7:6]. See Frequency Mode Optimizations.  
1: Frequency range is set by register. Use register bit reg_0x04[0] to set  
Alternate Frequency.  
0: Frequency range is set by MODE_SEL pin.  
0
RW  
ALTERNATE  
FREQUENCY  
Override Value  
Frequency range select, in conjunction with FSEL pin or register 0x35[7:6].  
See Frequency Mode Optimizations.  
30  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
7. Serial Control Bus Registers (接下页)  
ADD  
(dec)  
ADD  
(hex)  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
TYPE  
FUNCTION  
DESCRIPTION  
5
0x05  
I2C Control  
7:5  
4:3  
0x00  
Reserved  
RW  
SDA Output  
Delay  
SDA output delay  
Configures output delay on the SDA output. Setting this value will increase  
output delay in units of 40ns.  
Nominal output delay values for SCL to SDA are  
00: 240ns  
01: 280ns  
10: 320ns  
11: 360ns  
2
RW  
Local Write  
Disable  
Disable remote writes to local registers  
Setting the bit to a 1 prevents remote writes to local device registers from  
across the control channel. It prevents writes to the Serializer registers from  
an I2C master attached to the Deserializer.  
Setting this bit does not affect remote access to I2C slaves at the Serializer  
1
0
RW  
RW  
I2C Bus Timer  
Speedup  
Speed up I2C bus watchdog timer  
1: Watchdog timer expires after ~50 ms.  
0: Watchdog Timer expires after ~1 s  
I2C Bus timer  
Disable  
Disable I2C bus watchdog timer  
When the I2C watchdog timer may be used to detect when the I2C bus is  
free or hung up following an invalid termination of a transaction.  
If SDA is high and no signalling occurs for ~1 s, the I2C bus assumes to be  
free. If SDA is low and no signaling occurs, the device attempts to clear the  
bus by driving 9 clocks on SCL  
6
0x06  
DES ID  
7:1  
RW  
0x00  
DES Device ID  
7-bit Deserializer Device ID  
Configures the I2C Slave ID of the remote Deserializer. A value of 0 in this  
field disables I2C access to the remote Deserializer. This field is  
automatically configured by the Bidirectional Control Channel once RX Lock  
has been detected. Software may overwrite this value, but should also  
assert the FREEZE DEVICE ID bit to prevent overwriting by the  
Bidirectional Control Channel.  
0
RW  
RW  
Device ID  
Frozen  
Freeze Deserializer Device ID  
Prevents autoloading of the Deserializer Device ID by the Bidirectional  
Control Channel. The ID will be frozen at the value written.  
7
0x07  
Slave ID  
7:1  
0x00  
Slave Device ID 7-bit Remote Slave Device ID  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Deserializer. If an I2C transaction is addressed to  
the Slave Device Alias ID, the transaction will be remapped to this address  
before passing the transaction across the Bidirectional Control Channel to  
the Deserializer  
0
Reserved  
版权 © 2016, Texas Instruments Incorporated  
31  
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
7. Serial Control Bus Registers (接下页)  
ADD  
(dec)  
ADD  
(hex)  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
TYPE  
FUNCTION  
DESCRIPTION  
8
0x08  
Slave Alias  
7:1  
RW  
0x00  
Slave Device  
Alias ID  
7-bit Remote Slave Device Alias ID  
Assigns an Alias ID to an I2C Slave device attached to the remote  
Deserializer. The transaction will be remapped to the address specified in  
the Slave ID register. A value of 0 in this field disables access to the remote  
I2C Slave.  
0
Reserved  
10  
11  
12  
0x0A  
0x0B  
0x0C  
CRC Errors  
7:0  
7:0  
7:4  
3
R
R
0x00  
0x00  
0x00  
CRC Error LSB  
Number of back channel CRC errors – 8 least significant bits  
CRC Error MSB Number of back channel CRC errors – 8 most significant bits  
General Status  
Reserved  
R
R
R
R
BIST CRC Error Back channel CRC error during BIST communication with Deserializer.  
The bit is cleared upon loss of link, restart of BIST, or assertion of CRC  
ERROR RESET in register 0x04.  
2
1
0
PCLK Detect  
PCLK Status  
1: Valid PCLK detected  
0: Valid PCLK not detected  
DES Error  
Back channel CRC error during communication with Deserializer.  
The bit is cleared upon loss of link or assertion of CRC ERROR RESET in  
register 0x04.  
LINK Detect  
RESERVED  
LINK Status  
1: Cable link detected  
0: Cable link not detected (Fault Condition)  
13  
0x0D  
GPIO0 Configuration  
7:4  
3
R
0x00  
Reserved  
RW  
GPIO0 Output  
Value  
Local GPIO output value  
This value is output on the GPIO pin when the GPIO function is enabled,  
the local GPIO direction is Output, and remote GPIO control is disabled.  
2
RW  
GPIO0 Remote  
Enable  
Remote GPIO control  
1: Enable GPIO control from remote Deserializer. The GPIO pin will be an  
output, and the value is received from the remote Deserializer.  
0: Disable GPIO control from remote Deserializer.  
1
0
RW  
RW  
GPIO0 Direction Local GPIO Direction  
1: Input  
0: Output  
GPIO0 Enable  
GPIO function enable  
1: Enable GPIO operation  
0: Enable normal operation  
32  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
7. Serial Control Bus Registers (接下页)  
ADD  
(dec)  
ADD  
(hex)  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
TYPE  
FUNCTION  
DESCRIPTION  
14  
0x0E  
GPIO2 and GPIO1  
Configurations  
7
RW  
0x00  
GPIO2 Output  
Value  
Local GPIO output value  
This value is output on the GPIO pin when the GPIO function is enabled,  
the local GPIO direction is Output, and remote GPIO control is disabled.  
6
RW  
GPIO2 Remote  
Enable  
Remote GPIO control  
1: Enable GPIO control from remote Deserializer. The GPIO pin will be an  
output, and the value is received from the remote Deserializer.  
0: Disable GPIO control from remote Deserializer.  
5
4
3
2
RW  
RW  
RW  
RW  
GPIO2 Direction Local GPIO Direction  
1: Input  
0: Output  
GPIO2 Enable  
GPIO function enable  
1: Enable GPIO operation  
0: Enable normal operation  
GPIO1 Output  
Value  
Local GPIO output value  
This value is output on the GPIO pin when the GPIO function is enabled,  
the local GPIO direction is Output, and remote GPIO control is disabled.  
GPIO1 Remote  
Enable  
Remote GPIO control  
1: Enable GPIO control from remote Deserializer. The GPIO pin will be an  
output, and the value is received from the remote Deserializer.  
0: Disable GPIO control from remote Deserializer.  
1
0
RW  
RW  
GPIO1 Direction Local GPIO Direction  
1: Input  
0: Output  
GPIO1 Enable  
GPIO function enable  
1: Enable GPIO operation  
0: Enable normal operation  
版权 © 2016, Texas Instruments Incorporated  
33  
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
7. Serial Control Bus Registers (接下页)  
ADD  
(dec)  
ADD  
(hex)  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
TYPE  
FUNCTION  
DESCRIPTION  
15  
0x0F  
GPO_REG4 and  
GPIO3 Configurations  
7
RW  
0x00  
GPO_REG4  
Output Value  
Local GPO_REG4 output value  
This value is output on the GPO pin when the GPO function is enabled.  
(The local GPO direction is Output, and remote GPO control is disabled)  
6:5  
4
Reserved  
RW  
RW  
RW  
GPO_REG4  
Enable  
GPO_REG4 function enable  
1: Enable GPO operation  
0: Enable normal operation  
3
2
GPIO3 Output  
Value  
Local GPIO output value  
This value is output on the GPIO pin when the GPIO function is enabled,  
the local GPIO direction is Output, and remote GPIO control is disabled.  
GPIO3 Remote  
Enable  
Remote GPIO control  
1: Enable GPIO control from remote Deserializer. The GPIO pin will be an  
output, and the value is received from the remote Deserializer.  
0: Disable GPIO control from remote Deserializer.  
1
0
7
RW  
RW  
RW  
GPIO3 Direction Local GPIO Direction  
1: Input  
0: Output  
GPIO3 Enable  
GPIO function enable  
1: Enable GPIO operation  
0: Enable normal operation  
16  
0x10  
GPO_REG6 and  
GPO_REG5  
Configurations  
0x00  
GPO_REG6  
Output Value  
Local GPO_REG6 output value  
This value is output on the GPO pin when the GPO function is enabled.  
(The local GPO direction is Output, and remote GPO control is disabled)  
6:5  
4
Reserved  
RW  
RW  
GPO_REG6  
Enable  
GPO_REG6 function enable  
1: Enable GPO operation  
0: Enable normal operation  
3
GPO_REG5  
Output Value  
Local GPO_REG5 output value  
This value is output on the GPO pin when the GPO function is enabled, the  
local GPO direction is Output, and remote GPO control is disabled.  
2:1  
0
Reserved  
RW  
GPO_REG5  
Enable  
GPO_REG5 function enable  
1: Enable GPO operation  
0: Enable normal operation  
34  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
7. Serial Control Bus Registers (接下页)  
ADD  
(dec)  
ADD  
(hex)  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
TYPE  
FUNCTION  
DESCRIPTION  
17  
0x11  
GPO_REG7  
Configurations  
7:4  
3
RW  
RW  
0x00  
Reserved  
Reserved  
Local GPO_REG7 output value  
This value is output on the GPO pin when the GPO function is enabled, the  
local GPO direction is Output, and remote GPO control is disabled.  
GPO_REG7  
Output Value  
2:1  
0
Reserved  
RW  
GPO_REG7  
Enable  
GPO_REG7 function enable  
1: Enable GPO operation  
0: Enable normal operation  
18  
0x12  
Data Path Control  
7:6  
5
0x00  
Reserved  
RW  
RW  
DE Polarity  
The bit indicates the polarity of the DE (Data Enable) signal.  
1: DE is inverted (active low, idle high)  
0: DE is positive (active high, idle low)  
4
I2S Repeater  
Regen  
I2S Repeater Regeneration  
1: Repeater regenerate I2S from I2S pins  
0: Repeater pass through I2S from video pins  
3
2
Reserved  
RW  
RW  
18-bit Video  
Select  
18–bit video select  
1: Select 18-bit video mode  
Note: use of GPIO(s) on unused inputs must be enabled by register.  
0: Select 24-bit video mode  
1
I2S Transport  
Select  
I2S Transport Mode Slect  
1: Enable I2S Data Forward Channel Frame Transport  
0: Enable I2S Data Island Transport  
0
7:5  
4
Reserved  
Reserved  
19  
0x13  
Mode Status  
0x10  
R
R
R
MODE_SEL  
Alternate  
MODE_SEL Status  
1: MODE_SEL decode circuit is completed  
0: MODE_SEL decode circuit is not completed  
3
2
Alternate Frequency Mode Status  
Frequency Mode Indicates either Low Frequency mode or Intermediate Frequency mode,  
depending on FSEL status. See Frequency Mode Optimizations.  
Repeater Mode  
Repeater Mode Status  
1: Repeater mode ON  
0: Repeater Mode OFF  
1
0
R
R
Reserved  
18-Bit Mode  
18-bit Mode Strap Status. The initial strap value can be overridden by  
register 0x12[2].  
1: 18-bit RGB mode  
0: 24-bit RGB mode  
版权 © 2016, Texas Instruments Incorporated  
35  
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
7. Serial Control Bus Registers (接下页)  
ADD  
(dec)  
ADD  
(hex)  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
TYPE  
FUNCTION  
DESCRIPTION  
20  
0x14  
Oscillator Clock  
Source and BIST  
Status  
7:3  
2:1  
0x00  
Reserved  
RW  
OSC Clock  
Source  
OSC Clock Source  
(When LFMODE = 1, Oscillator = 12.5MHz ONLY)  
00: External Pixel Clock  
01: 33 MHz Oscillator  
10: Reserved  
11: 25 MHz Oscillator  
0
R
BIST Enable  
Status  
BIST status  
1: Enabled  
0: Disabled  
22  
23  
0x16  
0x17  
BCC Watchdog  
Control  
7:1  
RW  
0xFE  
Timer Value  
The watchdog timer allows termination of a control channel transaction if it  
fails to complete within a programmed amount of time.  
This field sets the Bidirectional Control Channel Watchdog Timeout value in  
units of 2 ms.  
This field should not be set to 0  
0
7
RW  
RW  
Timer Control  
I2C Pass All  
Disable Bidirectional Control Channel Watchdog Timer  
1: Disables BCC Watchdog Timer operation  
0: Enables BCC Watchdog Timer operation  
I2C Control  
0x5E  
I2C Control  
1: Enable Forward Control Channel pass-through of all I2C accesses to I2C  
Slave IDs that do not match the Serializer I2C Slave ID.  
0: Enable Forward Control Channel pass-through only of I2C accesses to  
I2C Slave IDs matching either the remote Deserializer Slave ID or the  
remote Slave ID.  
6
Reserved  
5:4  
RW  
SDA Hold Time  
Internal SDA Hold Time  
Configures the amount of internal hold time provided for the SDA input  
relative to the SCL input. Units are 40 ns  
3:0  
7:0  
RW  
RW  
I2C Filter Depth Configures the maximum width of glitch pulses on the SCL and SDA inputs  
that will be rejected. Units are 5 ns  
24  
0x18  
SCL High Time  
0xA1  
SCL HIGH Time I2C Master SCL High Time  
This field configures the high pulse width of the SCL output when the  
Serializer is the Master on the local I2C bus. Units are 40 ns for the nominal  
oscillator clock frequency. The default value is set to provide a minimum  
5us SCL high time with the internal oscillator clock running at 32.5MHz  
rather than the nominal 25MHz.  
36  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
7. Serial Control Bus Registers (接下页)  
ADD  
(dec)  
ADD  
(hex)  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
TYPE  
FUNCTION  
DESCRIPTION  
25  
0x19  
SCL Low Time  
7:0  
RW  
0xA5  
SCL LOW Time I2C SCL Low Time  
This field configures the low pulse width of the SCL output when the  
Serializer is the Master on the local I2C bus. This value is also used as the  
SDA setup time by the I2C Slave for providing data prior to releasing SCL  
during accesses over the Bidirectional Control Channel. Units are 40 ns for  
the nominal oscillator clock frequency. The default value is set to provide a  
minimum 5us SCL low time with the internal oscillator clock running at  
32.5MHz rather than the nominal 25MHz.  
27  
53  
0x1B  
0x35  
BIST BC Error  
FSEL Override  
7:0  
7
R
0x00  
0
BIST Back  
Channel CRC  
Error Counter  
BIST Mode Back Channel CRC Error Counter  
This error counter is active only in the BIST mode. It clears itself at the start  
of the BIST run.  
RW  
FSEL Register  
Override Control  
FSEL Override. FSEL value is set by pin or through register.  
0: FSEL set by pin 15 at power-up  
1: FSEL is set by register 0x35[6]  
6
RW  
0
FSEL Override  
Value  
This value will be used for FSEL when FSEL Register Override is set  
(0x35[7]). See Frequency Mode Optimizations.  
5:0  
7:4  
RW  
RW  
0
RESERVED  
Pattern  
Reserved.  
100  
0x64  
Pattern Generator  
Control  
0x10  
Fixed Pattern Select  
Generator Select This field selects the pattern to output when in Fixed Pattern Mode. Scaled  
patterns are evenly distributed across the horizontal or vertical active  
regions. This field is ignored when Auto-Scrolling Mode is enabled. The  
following table shows the color selections in non-inverted followed by  
inverted color mode  
0000: Reserved  
0001: White/Black  
0010: Black/White  
0011: Red/Cyan  
0100: Green/Magenta  
0101: Blue/Yellow  
0110: Horizontally Scaled Black to White/White to Black  
0111: Horizontally Scaled Black to Red/Cyan to White  
1000: Horizontally Scaled Black to Green/Magenta to White  
1001: Horizontally Scaled Black to Blue/Yellow to White  
1010: Vertically Scaled Black to White/White to Black  
1011: Vertically Scaled Black to Red/Cyan to White  
1100: Vertically Scaled Black to Green/Magenta to White  
1101: Vertically Scaled Black to Blue/Yellow to White  
1110: Custom color (or its inversion) configured in PGRS, PGGS, PGBS  
registers  
1111: Reserved  
3:1  
0
Reserved  
RW  
Pattern  
Generator  
Enable  
Pattern Generator Enable  
1: Enable Pattern Generator  
0: Disable Pattern Generator  
版权 © 2016, Texas Instruments Incorporated  
37  
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
7. Serial Control Bus Registers (接下页)  
ADD  
(dec)  
ADD  
(hex)  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
TYPE  
FUNCTION  
DESCRIPTION  
101  
0x65  
Pattern Generator  
Configuration  
7:5  
4
0x00  
Reserved  
RW  
Pattern  
18-bit Mode Select  
Generator 18  
Bits  
1: Enable 18-bit color pattern generation. Scaled patterns will have 64 levels  
of brightness and the R, G, and B outputs use the six most significant color  
bits.  
0: Enable 24-bit pattern generation. Scaled patterns use 256 levels of  
brightness.  
3
2
RW  
RW  
Pattern  
Generator  
External Clock  
Select External Clock Source  
1: Selects the external pixel clock when using internal timing.  
0: Selects the internal divided clock when using internal timing  
This bit has no effect in external timing mode (PATGEN_TSEL = 0).  
Pattern  
Timing Select Control  
Generator  
Timing Select  
1: The Pattern Generator creates its own video timing as configured in the  
Pattern Generator Total Frame Size, Active Frame Size. Horizontal Sync  
Width, Vertical Sync Width, Horizontal Back Porch, Vertical Back Porch, and  
Sync Configuration registers.  
0: the Pattern Generator uses external video timing from the pixel clock,  
Data Enable, Horizontal Sync, and Vertical Sync signals.  
1
0
RW  
RW  
Pattern  
Enable Inverted Color Patterns  
Generator Color 1: Invert the color output.  
Invert  
0: Do not invert the color output.  
Pattern  
Auto-Scroll Enable:  
Generator Auto- 1: The Pattern Generator will automatically move to the next enabled  
Scroll Enable  
pattern after the number of frames specified in the Pattern Generator Frame  
Time (PGFT) register.  
0: The Pattern Generator retains the current pattern.  
102  
103  
198  
0x66  
0x67  
0xC6  
Pattern Generator  
Indirect Address  
7:0  
7:0  
RW  
RW  
0x00  
0x00  
Indirect Address This 8-bit field sets the indirect address for accesses to indirectly-mapped  
registers. It should be written prior to reading or writing the Pattern  
Generator Indirect Data register.  
See AN-2198 (SNLA132).  
Pattern Generator  
Indirect Data  
Indirect Data  
When writing to indirect registers, this register contains the data to be  
written. When reading from indirect registers, this register contains the read  
back value.  
See AN-2198 (SNLA132)  
ICR  
7:6  
5
Reserved  
RW  
RW  
IS_RX_INT  
INT Enable  
Interrupt on Receiver interrupt  
Enables interrupt on indication from the Receiver. Allows propagation of  
interrupts from downstream devices  
4:1  
0
Reserved  
Global Interrupt Enable  
Enables interrupt on the interrupt signal to the controller.  
38  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
7. Serial Control Bus Registers (接下页)  
ADD  
(dec)  
ADD  
(hex)  
DEFAULT  
(hex)  
REGISTER NAME  
ISR  
BIT(S)  
TYPE  
FUNCTION  
DESCRIPTION  
199  
0xC7  
7:6  
5
Reserved  
R
IS RX INT  
Interrupt on Receiver interrupt  
Receiver has indicated an interrupt request from down-stream device  
4:1  
0
Reserved  
R
INT  
Global Interrupt  
Set if any enabled interrupt is indicated  
版权 © 2016, Texas Instruments Incorporated  
39  
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DS90UB921-Q1, in conjunction with the DS90UB948-Q1, is intended for interface between a host (graphics  
processor) and a Display. It supports a 24-bit color depth (RGB888) and extended high definition (1920x720p)  
digital video format. It can receive a three 8-bit RGB stream with a pixel rate up to 96 MHz together with three  
control bits (VS, HS and DE) and three I2S-bus audio stream with an audio sampling rate up to 192 kHz.  
8.2 AVMUTE Operation  
When using DS90UB921-Q1, it is possible to send video data during the blanking period (DE = L). If a specific  
pattern is sent during the blanking period, the paired Deserializer will enter AVMUTE mode. The pattern that the  
Deserializer is looking for is 24'h666666. If the last pixel of the frame is 24'h666666, and the video transmission  
extends into the DE = L, period, then AVMUTE mode will be enabled.  
Setting 0x04[1] = "1" on the DS90UB921-Q1 will prevent video from being sent during the blanking interval. This  
will ensure AVMUTE mode is not entered during normal operation.  
40  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
8.3 Typical Application  
DS90UB921-Q1  
3.3V/1.8V  
3.3V  
VDDIO  
VDD33  
CAPP12  
CAPL12  
FB1  
C5  
FB2  
C4  
DIN0  
DIN1  
DIN2  
DIN3  
DIN4  
DIN5  
DIN6  
DIN7  
C6  
C7  
C9  
C8  
CAPHS12  
DIN8  
DIN9  
DIN10  
DIN11  
DIN12  
DIN13  
DIN14  
DIN15  
C1  
Serial  
FPD-Link III  
Interface  
DOUT+  
DOUT-  
CMF  
LVCMOS  
Parallel  
Video  
C2  
Interface  
C3  
DIN16  
DIN17  
DIN18  
DIN19  
DIN20  
DIN21  
DIN22  
DIN23  
VDD33  
R
3
MODE_SEL  
C
R
4
PCLK  
11  
VDDIO VDD33*  
HS  
VS  
DE  
VDD33  
R
6
R
5
NOTE:  
LVCMOS  
Control  
Interface  
FB1-FB2: Impedance = 1 kW @ 100 MHz,  
Low DC resistance (<1W)  
C1-C3 = 0.1 mF (50 WV; C1, C2: 0402; C3: 0603)  
C4-C9 = 4.7 mF  
INTB  
PDB  
R
1
ID[X]  
SCL  
SDA  
C10  
R
2
C
12  
REM_INTB  
C10 =>10 mF  
I2S_CLK  
I2S_WC  
I2S_DA  
R
1
R
3
R
5
R
6
and R (see IDx Resistor Values Table)  
2
and R (see MODE_SEL Resistor Values Table)  
4
RES1  
DAP (GND)  
FSEL  
= 10 kW  
= 4.7 kW  
* or VDDIO = 3.3V+0.3V  
26. Typical STP Connection Diagram  
版权 © 2016, Texas Instruments Incorporated  
41  
 
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
Typical Application (接下页)  
DS90UB921-Q1  
3.3V/1.8V  
3.3V  
VDDIO  
VDD33  
CAPP12  
CAPL12  
FB1  
C5  
FB2  
C4  
DIN0  
DIN1  
DIN2  
DIN3  
DIN4  
DIN5  
DIN6  
DIN7  
C6  
C7  
C9  
C8  
CAPHS12  
DIN8  
DIN9  
DIN10  
DIN11  
DIN12  
DIN13  
DIN14  
DIN15  
C1  
Serial  
FPD-Link III  
Interface  
DOUT+  
DOUT-  
CMF  
LVCMOS  
Parallel  
Video  
C2  
R7  
Interface  
C3  
DIN16  
DIN17  
DIN18  
DIN19  
DIN20  
DIN21  
DIN22  
DIN23  
VDD33  
R
3
MODE_SEL  
C
R
4
PCLK  
11  
HS  
VDDIO VDD33*  
NOTE:  
VS  
DE  
VDD33  
FB1-FB2: Impedance = 1 kW @ 100 MHz,  
Low DC resistance (<1W)  
C1 = 330nF (50 WV; C1, C2: 0402; C3: 0603)  
C2 = 150nF  
C3 = 0.1 mF  
C4-C9 = 4.7 mF  
R
6
R
5
LVCMOS  
Control  
Interface  
R
1
INTB  
PDB  
ID[X]  
SCL  
SDA  
C10  
R
C
12  
2
REM_INTB  
C10 =>10 mF  
C11-C12 = 0.1 mF  
I2S_CLK  
I2S_WC  
I2S_DA  
R
1
R
3
R
5
R
6
R
7
and R (see IDx Resistor Values Table)  
2
and R (see MODE_SEL Resistor Values Table)  
4
RES1  
DAP (GND)  
FSEL  
= 10 kW  
= 4.7 kW  
= 50 W  
* or VDDIO = 3.3V+0.3V  
27. Typical Coax Connection Diagram  
42  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
Typical Application (接下页)  
V
DDIO  
V
DD33  
V
DDIO  
V
DD33  
(3.3V) (1.8Vor3.3V)  
(1.8Vor3.3V) (3.3V)  
R[7:0]  
G[7:0]  
R[7:0]  
G[7:0]  
FPD-Link III  
1 Pair / AC Coupled  
B[7:0]  
HS  
VS  
DE  
PCLK  
B[7:0]  
HOST  
Graphics  
Processor  
RGB Display  
720p  
24-bit color depth  
HS  
DOUT+  
RIN+  
RIN-  
VS  
DE  
PCLK  
DOUT-  
DS90UB921-Q1  
Serializer  
DS90UB926Q-Q1  
Deserializer  
LOCK  
PASS  
PDB  
OSS_SEL  
OEN  
PDB  
3
I2S AUDIO  
(STEREO)  
3
I2S AUDIO  
(STEREO)  
MODE_SEL  
MODE_SEL  
INTB  
INTB_IN  
MCLK  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
DAP  
DAP  
28. Typical STP System Diagram  
V
V
V
V
V
DDIO  
(1.8Vor3.3V) (3.3V)  
DD33  
DDIO  
DD33  
(3.3V)  
DD12  
(1.2V)  
(1.8Vor3.3V)  
FPD-Link  
(Open LDI)  
R[7:0]  
G[7:0]  
B[7:0]  
HS  
VS  
DE  
PCLK  
FPD-Link III  
1 Pair / AC Coupled  
CLK1+/-  
D0+/-  
HOST  
Graphics  
Processor  
DOUT+  
RIN0+  
RIN0-  
D1+/-  
D2+/-  
D3+/-  
DOUT-  
LVDS  
Display  
720p60  
or Graphic  
Processor  
DS90UB921-Q1  
Serializer  
PDB  
DS90UB948-Q1  
Deserializer  
3
CLK2+/-  
D4+/-  
I2S AUDIO  
(STEREO)  
PDB  
INTB_IN  
MODE_SEL  
INTB  
MODE_SEL[1:0]  
D5+/-  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
D6+/-  
D7+/-  
DAP  
29. Typical Coax Applications Diagram  
8.3.1 Design Requirements  
For the typical design application, use the following as input parameters.  
8. Design Parameters  
DESIGN PARAMETER  
VDDIO  
EXAMPLE VALUE  
1.8 V or 3.3 V  
3.3 V  
VDD33  
100 nF on DOUT+ and 100nF on DOUT- for STP  
330nF on DOUT+ and 150nF on DOUT- for Coax  
AC Coupling Capacitor for DOUT±  
PCLK Frequency  
74.25 MHz  
版权 © 2016, Texas Instruments Incorporated  
43  
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
8.3.2 Detailed Design Procedure  
26 shows a typical application of the DS90UB921-Q1 serializer for an 96 MHz 24-bit Color Display  
Application. The CML outputs must have an external 0.1 μF AC coupling capacitor on the high speed serial lines  
for STP applications and 0.33 μF / 0.15 μF AC coupling capacitors for coax applications. The same AC coupling  
capacitor values should be used on the paired deserializer board. The serializer has an internal termination.  
Bypass capacitors are placed near the power supply pins. At a minimum, six (6) 4.7μF capacitors and two (2)  
additional 1μF capacitors should be used for local device bypassing. Ferrite beads are placed on the two (2)  
VDDs (VDD33 and VDDIO) for effective noise suppression. The interface to the graphics source is with 3.3V  
LVCMOS levels, thus the VDDIO pin is connected to the 3.3 V rail.  
8.3.3 Application Curves  
Time (200 ps/DIV)  
Time (2.0 ns/DIV)  
30. Serializer Eye Diagram with 74.25 MHz TX Pixel  
31. Serializer CML Output with 74.25 MHz TX Pixel  
Clock  
Clock  
44  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
9 Power Supply Recommendations  
9.1 Power Up Requirements and PDB Pin  
When VDDIO and VDD33 are powered separately, the VDDIO supply (1.8V or 3.3V) should ramp 100us before  
the other supply, VDD33. If VDDIO is tied with VDD33, both supplies may ramp at the same time. The VDDs  
(VDD33 and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. If the PDB pin is not  
controlled by a microcontroller, a large capacitor on the pin is needed to ensure PDB arrives after all the VDDs  
have settled to the recommended operating voltage. When PDB pin is pulled to VDDIO = 3.0V to 3.6V or  
VDD33, it is recommended to use a 10 kpull-up and a >10 uF cap to GND to delay the PDB input signal.  
A minimum low pulse of 2ms is required when toggling the PDB pin to perform a hard reset.  
All inputs must not be driven until VDD33 and VDDIO has reached its steady state value.  
t0  
VDDIO  
GND  
t3  
VDD33  
GND  
t1  
VDD33  
VPDB_HIGH  
PDB(*)  
VPDB_LOW  
t4  
GND  
(*) It is recommended to assert PDB (active High) with a microcontroller rather than an RC filter  
network to help ensure proper sequencing of PDB pin after settling of power supplies.  
32. Timing Diagram of DS90UB921-Q1  
9. Power-Up Sequencing Constraints  
Symbol  
VDDIO  
VDD33  
Description  
Test Conditions  
Min  
3.0  
Typ  
Max  
3.6  
Units  
V
V
V
VDDIO voltage range  
VDD33 voltage range  
1.71  
3.0  
1.89  
3.6  
PDB LOW threshold  
Note: VPDB should not exceed  
limit for respective I/O voltage  
before 90% voltage of VDD12  
VPDB_LOW  
VDDIO = 3.3V ± 10%  
VDDIO = 3.3V ± 10%  
0.8  
V
VPDB_HIGH  
t0  
PDB HIGH threshold  
2.0  
V
These time constants are specified for  
rise time of power supply voltage ramp  
(10% - 90%)  
VDDIO rise time  
0.05  
0.05  
<1.5  
ms  
These time constants are specified for  
rise time of power supply voltage ramp  
(10% - 90%)  
t3  
VDD33 rise time  
<1.5  
ms  
版权 © 2016, Texas Instruments Incorporated  
45  
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
Power Up Requirements and PDB Pin (接下页)  
9. Power-Up Sequencing Constraints (接下页)  
Symbol  
Description  
Test Conditions  
Min  
Typ  
Max  
Units  
VIL of rising edge (VDDIO) to VIL of rising  
edge (VDD33)  
t1  
VDD33 delay time  
The power supplies may be ramped  
simultaneously. If sequenced, VDDIO  
should be first..  
>0  
ms  
The part is powered up after the startup  
time has elapsed from the moment PDB  
goes HIGH. Local I2C is available to  
read/write 921 registers after this time.  
t4  
Startup time  
<1  
ms  
This device is designed to operate from an input core voltage supply of 3.3V. Some devices provide separate  
power and ground terminals for different portions of the circuit. This is done to isolate switching noise effects  
between different sections of the circuit. Separate planes on the PCB are typically not required. Terminal  
description tables typically provide guidance on which circuit blocks are connected to which power terminal pairs.  
In some cases, an external filter may be used to provide clean power to sensitive circuits such as PLLs.  
9.2 CML Interconnect Guidelines  
See AN-1108 (SNLA008) and AN-905 (SNLA035) for full details.  
Use 100Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
– S = space between the pair  
– 2S = space between pairs  
– 3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500 Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Additional general guidance can be found in the LVDS Owner’s Manual - available in PDF format from the Texas  
Instruments web site at: www.ti.com/lvds.  
46  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
10 Layout  
10.1 Layout Guidelines  
Circuit board layout and stack-up for the FPD-Link III devices should be designed to provide low-noise power  
feed to the device. Good layout practice will also separate high frequency or high-level inputs and outputs to  
minimize unwanted stray noise pickup, feedback and interference. Power system performance may be greatly  
improved by using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane  
capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at  
high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01 uF to 0.1 uF. Tantalum capacitors may be in the 2.2 uF to 10 uF range. Voltage rating of the  
tantalum capacitors should be at least 5X the power supply voltage being used.  
Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per  
supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 50uF to 100uF range and will smooth low frequency switching noise. It is  
recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external  
bypass capacitor will increase the inductance of the path.  
A small body size X7R chip capacitor, such as 0603 or 0402, is recommended for external bypass. Its small body  
size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of  
these external bypass capacitors, usually in the range of 20-30 MHz. To provide effective bypassing, multiple  
capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At  
high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing  
the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as  
PLLs.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the CML  
lines to prevent coupling from the LVCMOS lines to the CML lines. Closely-coupled differential lines of 100 Ohms  
are typically recommended for CML interconnect. The closely coupled lines help to ensure that coupled noise will  
appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also radiate less.  
Information on the WQFN style package is provided in TI Application Note: AN-1187 (SNOA401).  
版权 © 2016, Texas Instruments Incorporated  
47  
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
10.2 Layout Example  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the WQFN package is highly recommended to improve  
board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP. Stencil parameters for aperture opening and via locations are shown below:  
33. No Pullback WQFN, Single Row Reference Diagram  
10. No Pullback WQFN Stencil Aperture Summary  
DEVICE  
PIN  
COUN  
T
MKT Dwg PCB I/O  
PCB  
PCB DAP  
SIZE (mm)  
STENCIL I/O  
APERTURE  
(mm)  
STENCIL  
DAP  
Aperture  
(mm)  
NUMBER of  
DAP  
APERTURE  
OPENINGS  
GAP BETWEEN  
DAP APERTURE  
(Dim A mm)  
Pad Size PITCH  
(mm)  
(mm)  
DS90UB921-  
Q1  
0.25 x  
0.6  
48  
SQA48A  
0.5  
5.1 x 5.1  
0.25 x 0.7  
1.1 x 1.1  
16  
0.2  
34. 48-Pin WQFN Stencil Example of Via and Opening Placement  
48  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
35 and 36 PCB layout examples are derived from the layout design of the DS90UB921-Q1EVM Evaluation  
Board. The graphic and layout description are used to determine proper routing when designing the Serializer  
board. 35 shows the high speed FPD-Link III traces routed differentially to the connector. The traces are  
buried in an internal layer with a GND layer and power layer on each adjacent layer. Burying the traces helps  
reduce emissions, and it is important not to route other high speed signals near these critical signal traces. 100Ω  
differential characteristic impedance and 50Ω single-ended characteristic impedance traces are maintained as  
much as possible for both STP and coax applications. For layout of a coax board, 100Ω coupled traces should  
be used with the DOUT- termination near to the connector.  
Buried signal traces  
35. DS90UB921-Q1 Serializer Example Layout, Inner Layer  
36 shows the high speed FPD-Link III traces close to the DOUT± pins. In this case, the AC coupling  
capacitors are on the opposide side of the board, so there is an additional via that would not be needed if the  
components were all on the same side. This via, the AC coupling capacitors, the common-mode choke, and the  
second via (going to the buried traces to the connector) are all place closely together so that the impedance  
discontinuity appears as tightly grouped as possible.  
版权 © 2016, Texas Instruments Incorporated  
49  
 
DS90UB921-Q1  
ZHCSEV0 MARCH 2016  
www.ti.com.cn  
Tightly  
grouped  
discontinuities  
36. DS90UB921-Q1 Serializer Example Layout, Bottom Layer  
50  
版权 © 2016, Texas Instruments Incorporated  
DS90UB921-Q1  
www.ti.com.cn  
ZHCSEV0 MARCH 2016  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
AN-2198 探究内部测试模式生成》,SNLA132  
AN-1108 通道链路 PCB 和互连设计指南》,SNLA008  
SCAN18245T 具有三态输出的同向收发器》,SNLA035  
TI 接口网站 www.ti.com.cn/lvds  
AN-1187 无引线框架封装 (LLP)》,SNOA401  
《半导体和 IC 封装热指标》,SPRA953  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
51  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UB921TRHSRQ1  
DS90UB921TRHSTQ1  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RHS  
RHS  
48  
48  
1000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
UB921Q  
UB921Q  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY