DS90UB924TRHSTQ1 [TI]

5MHz 至 96MHz 24 位彩色 FPD-Link III 转 OpenLDI 解串器 | RHS | 48 | -40 to 105;
DS90UB924TRHSTQ1
型号: DS90UB924TRHSTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5MHz 至 96MHz 24 位彩色 FPD-Link III 转 OpenLDI 解串器 | RHS | 48 | -40 to 105

光电二极管
文件: 总65页 (文件大小:1201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
DS90UB924-Q1 具有双向控制通道的 5MHz 96MHz 24 位彩色 FPD-  
Link III OpenLDI 解串器  
1 特性  
2 应用范围  
1
适用于汽车电子 应用 AEC-Q100  
汽车用触摸显示屏  
汽车导航显示屏  
汽车仪表板  
器件温度 2 级:-40℃ 至 +105℃ 的环境运行温  
度范围  
器件人体放电模型 (HBM) 静电放电 (ESD) 分类  
等级 ±8kV  
3 说明  
带电器件模型 (CDM) ESD 分类等级 C6  
DS90UB924-Q1 解串器与 DS90UB921-Q1、  
支持 5MHz 96MHz 像素时钟  
双向控制通道接口,可连接兼容 I2C 的串行控制总  
线
DS90UB925Q-Q1DS90UB927Q-Q1DS90UB929-  
Q1DS90UB949-Q1 DS90UB947-Q1 串行器配套  
使用,可针对汽车信息娱乐系统内的数字视频和音频的  
分配提供一套解决方案。该器件可将嵌入时钟的高速串  
行化接口(通过单信号对 (FPD-Link III) 传输)转换为  
四个 LVDS 数据/控制流、一个 LVDS 时钟对  
低电磁干扰 (EMI) OpenLDI 视频输出  
支持高清 (720p) 数字视频  
支持 RGB888 + VSHSDE I2S 音频  
多达 4 个适用于环绕立体声应用的 I2S 数字音频  
输出  
(OpenLDI) 以及 I2S 音频数据。FPD-Link III 串行总线  
方案支持通过单条差分链路实现高速正向通道数据传输  
和低速反向通道通信的全双工控制。通过单个差分对整  
合音频、视频和和控制数据可减小互连线尺寸和重量,  
同时还消除了偏差问题并简化了系统设计。  
4 条具有 2 个专用引脚的双向通用输入输出 (GPIO)  
通道  
通过兼容 1.8V 3.3V 的低电压互补金属氧化物半  
导体 (LVCMOS) I/O 接口实现 3.3V 单电源供电运  
通过对串行输入数据流使用自适应输入均衡功能,可对  
传输介质损耗和确定性抖动进行补偿。通过使用低压差  
分信令可最大限度减少电磁干扰 (EMI)。  
具有嵌入式时钟的直流均衡和扰频数据  
自适应电缆均衡  
内部模式生成  
器件信息 (1)  
向后兼容模式  
部件号  
封装  
WQFN (48)  
封装尺寸(标称值)  
DS90UB924-Q1  
7.00mm x 7.00mm  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
FPD-Link  
(Open LDI)  
VDD33  
VDDIO  
V
V
DDIO  
(1.8Vor3.3V) (3.3V)  
DD33  
(3.3V) (1.8V or 3.3V)  
R[7:0]  
G[7:0]  
B[7:0]  
HS  
VS  
DE  
PCLK  
TxOUT3+/-  
TxOUT2+/-  
FPD-Link III  
1 Pair/AC Coupled  
HOST  
Graphics  
Processor  
LVDS Display  
720p or  
Graphic  
DOUT+  
RIN+  
RIN-  
TxOUT1+/-  
TxOUT0+/-  
DOUT-  
Proccesor  
100Q STP Cable  
TxCLKOUT+/-  
INTB_IN  
DS90UB921-Q1  
Serializer  
PDB  
DS90UB924-Q1  
Deserializer  
3
OEN  
LOCK  
PASS  
I2S  
MCLK  
SCL  
SDA  
IDx  
I2S AUDIO  
(STEREO)  
OSS_SEL  
PDB  
MAPSEL  
LFMODE  
BISTEN  
6
MODE_SEL  
INTB  
SCL  
SDA  
IDx  
DAP  
MODE_SEL  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNLS512  
 
 
 
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 27  
7.5 Programming........................................................... 33  
7.6 Register Maps......................................................... 35  
Application and Implementation ........................ 50  
8.1 Application Information............................................ 50  
8.2 Typical Application .................................................. 50  
Power Supply Recommendations...................... 53  
9.1 Power Up Requirements and PDB Pin................... 53  
9.2 Analog Power Signal Routing ................................. 55  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ..................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 7  
6.5 DC Electrical Characteristics .................................... 7  
6.6 AC Electrical Characteristics..................................... 9  
6.7 DC and AC Serial Control Bus Characteristics....... 10  
6.8 Timing Requirements for the Serial Control Bus .... 10  
6.9 Timing Requirements.............................................. 11  
6.10 Typical Characteristics.......................................... 15  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 16  
7.3 Feature Description................................................. 17  
8
9
10 Layout................................................................... 55  
10.1 Layout Guidelines ................................................. 55  
10.2 Layout Example .................................................... 57  
11 器件和文档支持 ..................................................... 58  
11.1 文档支持................................................................ 58  
11.2 社区资源................................................................ 58  
11.3 ....................................................................... 58  
11.4 静电放电警告......................................................... 58  
11.5 Glossary................................................................ 58  
12 机械、封装和可订购信息....................................... 58  
7
4 修订历史记录  
日期  
修订版本  
注释  
2016 4 月  
*
首次发布。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
5 Pin Configuration and Functions  
RHS Package  
48-Pin WQFN  
Top View  
I2S_DC/GPIO2  
VDD33_A  
RES1  
37  
38  
39  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
TxOUT0-  
TxOUT0+  
TxOUT1-  
TxOUT1+  
TxOUT2-  
TxOUT2+  
RIN+ 40  
RIN- 41  
CMF 42  
DS90UB924-Q1  
TOP VIEW  
43  
44  
45  
46  
47  
48  
BISTC/INTB_IN  
CMLOUTP  
TxCLKOUT-  
TxCLKOUT+  
TxOUT3-  
DAP = GND  
CMLOUTN  
CAPR12  
TxOUT3+  
CAPP12  
14 GPIO0/SWC  
MODE_SEL  
GPIO1/SDOUT  
13  
Pin Functions  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
FPD-LINK (OpenLDI) OUTPUT INTERFACE  
TxCLKOUT-  
TxCLKOUT+  
TxOUT[3:0]-  
TxOUT[3:0]+  
18  
17  
O, LVDS  
O, LVDS  
O, LVDS  
O, LVDS  
Inverting LVDS Clock Output  
The pair requires external 100-Ω differential termination for standard LVDS levels  
True LVDS Clock Output  
The pair requires external 100-Ω differential termination for standard LVDS levels  
16, 20, 22,  
24  
Inverting LVDS Data Outputs  
Each pair requires external 100-differential termination for standard LVDS levels  
15, 19, 21,  
23  
True LVDS Data Outputs  
Each pair requires external 100-differential termination for standard LVDS levels  
LVCMOS INTERFACE  
GPIO[1:0]  
13, 14  
I/O, LVCMOS General Purpose IO  
with pulldown Shared with SDOUT, SWC  
GPIO[3:2]  
36, 37  
I/O, LVCMOS General Purpose I/O  
with pulldown Shared with I2S_DD, I2S_DC  
Copyright © 2016, Texas Instruments Incorporated  
3
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
GPIO_REG[8  
:5]  
8, 10, 7, 3  
I/O, LVCMOS General Purpose I/O, register access only  
with pulldown Shared with I2S_CLK, I2S_WC, I2S_DA, I2S_DB  
I2S_DA  
I2S_DB  
I2S_DC  
I2S_DD  
7
3
37  
36  
O, LVCMOS Digital Audio Interface I2S Data Outputs  
Shared with GPIO_REG6, GPIO_REG5, GPIO2, GPIO3  
INTB_IN  
43  
I, LVCMOS Interrupt Input  
with pulldown Shared with BISTC  
MCLK  
I2S_WC  
I2S_CLK  
11  
10  
8
O, LVCMOS Digital Audio Interface I2S Master Clock, Word Clock and I2S Bit Clock Outputs  
I2S_WC and I2S_CLK are shared with GPIO_REG7 and GPIO_REG8  
SDOUT  
SWC  
13  
14  
O, LVCMOS Auxiliary Digital Audio Interface I2S Data Output and Word Clock  
with pulldown Shared with GPIO1 and GPIO0  
CONTROL AND CONFIGURATION  
BISTC  
43  
I, LVCMOS BIST Clock Select  
with pulldown Shared with INTB_IN  
Requires a 10-Kpullup if set HIGH  
BISTEN  
IDx  
9
I, LVCMOS BIST Enable  
with pulldown Requires a 10-Kpullup if set HIGH  
12  
I, Analog  
I2C Address Select  
External pullup to VDD33 is required under all conditions. DO NOT FLOAT.  
Connect to external pullup to VDD33 and pulldown to GND to create a voltage divider.  
See Table 7  
LFMODE  
MAPSEL  
32  
26  
48  
I, LVCMOS Low Frequency Mode Select  
with pulldown LFMODE = 0, 15-MHz TxCLKOUT 96-MHz (Default)  
LFMODE = 1, 5-MHz TxCLKOUT < 15-MHz  
Requires a 10-Kpullup if set HIGH  
I, LVCMOS FPD-Link (OpenLDI) Output Map Select  
with pulldown MAPSEL = 0, LSBs on TxOUT3± (Default)  
MAPSEL = 1, MSBs on TxOUT3±  
Requires a 10-Kpullup if set HIGH  
MODE_SEL  
I, Analog  
Device Configuration Select  
Configures Backwards Compatibility (BKWD), Repeater (REPEAT), I2S 4 channel (I2S_B),  
and Long Cable (LCBL) modes  
Connect to external pullup to VDD33 and pulldown to GND resistors to create a voltage  
divider. DO NOT FLOAT  
See Table 6  
OEN  
30  
35  
1
I, LVCMOS Output Enable  
with pulldown Requires a 10-Kpullup if set HIGH  
See Table 5  
OSS_SEL  
PDB  
I, LVCMOS Output Sleep State Select  
with pulldown Requires a 10 Kpullup if set HIGH  
See Table 5  
I, LVCMOS Power-down Mode Input Pin  
Must be driven or pulled up to VDD33. Refer to Power Up Requirements and PDB PinPower  
Up Requirements and PDB Pin in Application and Implementation.  
PDB = H, device is enabled (normal operation)  
PDB = L, device is powered down  
When the device is in the powered down state, the LVDS and LVCMOS outputs are tri-state,  
the PLL is shutdown, and IDD is minimized. Control Registers are RESET.  
SCL  
SDA  
5
4
I/O, Open  
Drain  
I2C Clock Input/Output Interface  
Must have an external pullup to VDD33. DO NOT FLOAT  
Recommended pullup: 4.7 KΩ  
I/O, Open  
Drain  
I2C Data Input/Output Interface  
Must have an external pullup to VDD33. DO NOT FLOAT  
Recommended pullup: 4.7 kΩ  
4
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
STATUS  
LOCK  
NO.  
27  
O, LVCMOS LOCK Status Output  
0: PLL is unlocked, I2S, GPIO, TxOUT[3:0]±, and TxCLKOUT± are idle with output states  
controlled by OEN and OSS_SEL. May be used to indicate Link Status or Display Enable.  
1: PLL is locked, outputs are active with output states controlled by OEN and OSS_SEL  
Route to test point or pad (recommended). Float if unused.  
PASS  
28  
O, LVCMOS PASS Status Output  
0: One or more errors were detected in the received BIST payload (BIST Mode)  
1: Error-free transmission (BIST Mode)  
Route to test point or pad (Recommended). Float if unused.  
FPD-LINK III SERIAL INTERFACE  
CMF  
42  
45  
44  
41  
40  
Analog  
O, LVDS  
O, LVDS  
I/O, LVDS  
I/O, LVDS  
Common Mode Filter  
Requires a 0.1-µF capacitor to GND  
CMLOUTN  
CMLOUTP  
RIN-  
Inverting Loop-through Driver Output  
Monitor point for equalized forward channel differential signal  
True Loop-through Driver Output  
Monitor point for equalized forward channel differential signal  
FPD-Link III Inverting Input  
The output must be AC-coupled with a 0.1-µF capacitor  
RIN+  
FPD-Link III True Input  
The output must be AC-coupled with a 0.1-µF capacitor  
(1)  
POWER AND GROUND  
GND  
DAP  
Ground  
Power  
Power  
Large metal contact at the bottom center of the device package  
Connect to the ground plane (GND) with at least 9 vias  
VDD33_A  
VDD33_B  
38  
31  
3.3-V power to on-chip regulator  
Each pin requires a 4.7-µF capacitor to GND  
VDDIO  
6
1.8-V / 3.3-V LVCMOS I/O Power  
Requires a 4.7-µF capacitor to GND  
REGULATOR CAPACITOR  
CAPI2S  
2
CAP  
Decoupling capacitor connection for on-chip regulator  
Each requires a 4.7-µF decoupling capacitor to GND  
CAPLV25  
CAPLV12  
CAPR12  
CAPP12  
25  
29  
46  
47  
CAPL12  
33  
CAP  
GND  
Decoupling capacitor connection for on-chip regulator  
Requires two 4.7-µF decoupling capacitors to GND  
OTHER  
RES[1:0]  
39, 34  
Reserved  
Connect to GND  
(1) The VDD (VDD33 and VDDIO) supply ramp must be faster than 1.5 ms with a monotonic rise.  
Copyright © 2016, Texas Instruments Incorporated  
5
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless othewise noted)(1)  
(2)  
MIN  
0.3  
0.3  
MAX  
UNIT  
V
(3)  
Supply voltage – VDD33  
4
4
(3)  
Supply voltage – VDDIO  
V
LVCMOS I/O voltage  
(VDDIO  
0.3)  
+
0.3  
0.3  
V
Deserializer input voltage  
Junction temperature  
2.75  
150  
150  
V
°C  
°C  
Storage temperature, Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) For soldering specifications, see product folder at www.ti.com and Absolute Maximum Ratings for Soldering SNOA549.  
(3) The DS90UB924-Q1 VDD33 and VDDIO voltages require a specific ramp rate during power up. The power supply ramp time must be less  
than 1.5 ms with a monotonic rise.  
6.2 ESD Ratings  
VALUE  
±8000  
±1250  
±250  
UNIT  
V
(1)  
Human body model (HBM), per AEC Q100-002, all pins  
Charged device model (CDM), per AEC Q100-011, all pins  
Machine model (MM)  
V
V
Air Discharge (Pins 40, 41, 44, and 45)  
±15000  
±8000  
±15000  
±8000  
±15000  
V
(IEC, powered-up only)  
RD = 330 Ω, CS = 150 pF  
Electrostatic  
discharge  
Contact Discharge (Pins 40, 41, 44, and 45)  
Air Discharge (Pins 40, 41, 44, and 45)  
Contact Discharge (Pins 40, 41, 44, and 45)  
Air Discharge (Pins 40, 41, 44, and 45)  
V
V(ESD)  
V
(ISO10605)  
RD = 330 Ω, CS = 150 pF  
V
(ISO10605)  
V
RD = 2 kΩ, CS = 150 pF or  
330 pF  
Contact Discharge (Pins 40, 41, 44, and 45)  
V
±8000  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
(1)  
Supply Voltage (VDD33  
)
3
3
3.3  
3.3  
1.8  
3.6  
3.6  
V
V
V
(1) (2)  
LVCMOS Supply Voltage (VDDIO  
)
Connect VDDIO to 3.3 V and use 3.3-V IOs  
Connect VDDIO to 1.8 V and use 1.8-V IOs  
1.71  
1.89  
Operating Free Air  
Temperature (TA)  
40  
25  
105  
°C  
PCLK Frequency (out of TxCLKOUT±)  
5
96 MHz  
(3)  
Supply Noise  
100 mVP-P  
(1) The DS90UB924-Q1 VDD33 and VDDIO voltages require a specific ramp rate during power up. The power supply ramp time must be less  
than 1.5 ms with a monotonic rise.  
(2) VDDIO must not exceed VDD33 by more than 300 mV (VDDIO < VDD33 + 0.3 V).  
(3) Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal signal is AC-coupled to the VDD33 and VDDIO supplies  
with amplitude >100 mVp-p measured at the device VDD33 and VDDIO pins. Bit error rate testing of input to the Ser and output of the  
Des shows no error when the noise frequency on the Ser is less than 50 MHz. The Des on the other hand shows no error when the  
noise frequency is less than 50 MHz.  
6
Copyright © 2016, Texas Instruments Incorporated  
 
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
6.4 Thermal Information  
DS90UB924-Q1  
(1)  
THERMAL METRIC  
RHS (WQFN)  
UNIT  
48 PINS  
26.4  
4.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
4.3  
ψJT  
0.1  
ψJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.3  
RθJC(bot)  
0.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
(1) (2) (3)  
PARAMETER  
3.3 V LVCMOS I/O  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
GPIO[3:0],  
REG_GPIO[8:  
5], LFMODE,  
MAPSEL,  
BISTEN,  
2
VDDIO  
0.8  
V
V
VDDIO = 3.0 V to 3.6 V  
GND  
BISTC,  
INTB_IN,  
OEN,  
IIN  
Input Current  
VIN = 0 V or VIN = 3.0 V to 3.6 V  
-10  
±1  
10  
μA  
OSS_SEL  
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
2
VDDIO  
0.7  
V
V
GND  
(4)PDB  
VIN = 0 V or VIN = 3.0 V to 3.6 V  
IIN  
Input Current  
-10  
±1  
10  
μA  
(4)  
VOH  
VOL  
IOS  
HIGH Level Output Voltage  
LOW Level Output Voltage  
Output Short Circuit Current  
IOH = -4 mA  
IOL = 4 mA  
GPIO[3:0],  
REG_GPIO[8:  
5], MCLK,  
2.4  
0
VDDIO  
0.4  
V
V
(5)  
VOUT = 0 V  
-55  
mA  
I2S_WC,  
I2S_CLK,  
I2S_D[A:D],  
LOCK, PASS  
IOZ  
Tri-state Output Current  
VOUT = 0 V or VDDIO, PDB = L  
-20  
20  
μA  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics conditions and/or notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD33 = 3.3 V, VDDIO = 1.8 V or 3.3 V, TA = 25°C, and at the Recommended  
Operating Conditions at the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
(4) PDB is specified to 3.3 V LVCMOS only and must be driven or pulled up to VDD33 or to VDDIO 3 V.  
(5) IOS is not specified for an indefinite period of time. Do not hold in short circuit for more than 500 ms or part damage may result.  
Copyright © 2016, Texas Instruments Incorporated  
7
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
MAX UNIT  
DC Electrical Characteristics (continued)  
(1) (2) (3)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
1.8 V LVCMOS I/O  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
GPIO[3:0],  
REG_GPIO[8:  
5], LFMODE,  
MAPSEL,  
BISTEN,  
0.65 *  
VDDIO  
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
VDDIO  
V
V
VDDIO = 1.71 V to 1.89 V  
0.35 *  
VDDIO  
0
BISTC,  
INTB_IN,  
OEN,  
VIN = 0 V or VIN = 1.71 V to  
1.89 V  
IIN  
Input Current  
-10  
10  
μA  
OSS_SEL  
GPIO[3:0],  
REG_GPIO[8:  
5], MCLK,  
I2S_WC,  
I2S_CLK,  
VDDIO -  
0.45  
VOH  
HIGH Level Output Voltage  
IOH = -4 mA  
IOL = +4 mA  
VDDIO  
0.45  
V
VOL  
IOS  
LOW Level Output Voltage  
Output Short Circuit Current  
0
V
(5)  
VOUT = 0 V  
-35  
mA  
I2S_D[A:D],  
LOCK, PASS  
IOZ  
TRI-STATE® Output Current  
VOUT = 0 V or VDDIO, PDB = L,  
-20  
20  
μA  
FPD-LINK (OpenLDI) LVDS OUTPUT  
Register 0x4B[1:0] = b'00  
RL = 100 Ω  
140  
220  
200  
300  
400  
600  
300  
380  
mV  
mV  
mV  
mV  
Output Voltage Swing (single-  
ended)  
VOD  
Register 0x4B[1:0] = b'01  
RL = 100 Ω  
Register 0x4B[1:0] = b'00  
RL = 100 Ω  
VODp-p  
Differential Output Voltage  
Register 0x4B[1:0] = b'01  
RL = 100 Ω  
TxCLK±,  
TxOUT[3:0]±  
ΔVOD  
VOS  
Output Voltage Unbalance  
Common Mode Voltage  
Offset Voltage Unbalance  
Output Short Circuit Current  
1
1.2  
1
50  
1.5  
50  
mV  
V
RL = 100 Ω  
1
-500  
-50  
ΔVOS  
IOS  
mV  
mA  
VOUT = GND  
-5  
OEN = GND, VOUT = VDDIO or  
GND, 0.8 V VIN 1.6 V  
IOZ  
Output TRI-STATE® Current  
500  
μA  
FPD-LINK III RECEIVER  
VTH  
VTL  
VID  
Input Threshold High  
50  
mV  
mV  
mV  
V
Input Threshold Low  
VCM = 2.1 V (Internal VBIAS)  
Input Differential Threshold  
Common-mode Voltage  
100  
RIN±  
VCM  
2.1  
Internal Termination Resistance  
(Differential)  
RT  
80  
100  
120  
Ω
SUPPLY CURRENT  
IDD33  
VDD33= 3.6 V  
VDDIO = 3.6 V  
VDDIO = 1.89 V  
VDD33 = 3.6 V  
VDDIO = 3.6 V  
VDDIO = 1.89 V  
200  
30  
30  
3
260  
250  
250  
8
mA  
μA  
μA  
mA  
μA  
μA  
Supply Current  
RL = 100 ,  
PCLK = 96 MHz  
IDDIO  
IDDZ  
PDB = 0 V, All other LVCMOS  
inputs = 0 V  
Supply Current — Power Down  
100  
50  
500  
250  
IDDIOZ  
8
Copyright © 2016, Texas Instruments Incorporated  
 
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
6.6 AC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
GPIO  
GPIO[3:0],  
PCLK =  
5MHz to  
96MHz  
GPIO Pulse Width, Forward  
Channel  
(4)  
tGPIO,FC  
See  
2/PCLK  
s
(4)  
(4)  
tGPIO,BC  
RESET  
tLRST  
GPIO Pulse Width, Back Channel See  
GPIO[3:0]  
20  
2
µs  
ms  
PDB Reset Low Pulse  
See  
PDB  
LOOP-THROUGH MONITOR OUTPUT  
EW  
Differential Output Eye Opening  
Width(4)  
RL = 100 Ω, Jitter freq > f/40  
CMLOUTP,  
CMLOUTN  
0.4  
UI  
EH  
Differential Output Eye Height  
300  
mV  
FPD-LINK (OpenLDI) LVDS OUTPUT  
tTLHT  
tTHLT  
tDCCJ  
tTTPn  
Low -to-High Transition Time  
High-to-Low Transition Time  
Cycle-to-Cycle Output Jitter  
Transmitter Pulse Position  
RL = 100 Ω  
TxCLK±,  
TxOUT[3:0]±  
0.25  
0.25  
0.5  
0.5  
65  
ns  
ns  
ps  
UI  
5 MHz PCLK 96 MHz  
TxCLK±  
40  
5 MHz PCLK 96 MHz  
n=[6:0] for bits [6:0]  
See Figure 13  
TxOUT[3:0]±  
0.5 + n  
ΔtTTP  
Offset Transmitter Pulse Position  
(bit 6 - bit 0)  
PCLK = 96 MHz  
0.1  
UI  
tDD  
Delay Latency  
147*T  
900  
6
T
tTPDD  
tTXZR  
Power Down Delay Active to OFF  
Enable Delay OFF to Active  
µs  
ns  
FPD-LINK III INPUT  
tDDLT Lock Time  
LVCMOS OUTPUTS  
(4)  
5 MHz PCLK 96 MHz  
RIN±, LOCK  
LOCK, PASS  
6
40  
ms  
tCLH  
Low-to-High Transition Time  
High-to-Low Transition Time  
CL = 8 pF  
3
2
7
5
ns  
ns  
tCHL  
BIST MODE  
tPASS  
BIST PASS Valid Time  
PASS  
MCLK  
800  
2
ns  
I2S TRANSMITTER  
tJ  
Clock Output Jitter  
ns  
ns  
TI2S  
I2S Clock Period  
PCLK=5 MHz to 96 MHz  
I2S_CLK,  
PCLK =  
5MHz to  
96MHz  
4/PCLK  
or  
1/12.288  
MHz  
(4) (5)  
Figure 10,  
(5)  
(5)  
THC_I2S  
TLC_I2S  
tSR_I2S  
I2S Clock High Time Figure 10,  
I2S Clock Low Time Figure 10,  
I2S Set-up Time Figure 10,  
I2S_CLK  
I2S_CLK  
0.35  
0.35  
0.2  
TI2S  
TI2S  
TI2S  
I2S_WC  
I2S_D[A:D]  
tHR_I2S  
I2S Hold Time Figure 10  
I2S_WC  
0.2  
TI2S  
I2S_D[A:D]  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics conditions and/or notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD33 = 3.3 V, VDDIO = 1.8 V or 3.3 V, TA = 25°C, and at the Recommended  
Operating Conditions at the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
(4) Specification is ensured by design and is not tested in production.  
(5) I2S specifications for tLC and tHC pulses must each be greater than 2 PCLK period to ensure sampling and supersedes the 0.35*TI2S_CLK  
requirement. tLC and tHC must be longer than the greater of either 0.35*TI2S_CLK or 2*PCLK.  
Copyright © 2016, Texas Instruments Incorporated  
9
 
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
MAX UNIT  
6.7 DC and AC Serial Control Bus Characteristics  
Over 3.3-V supply and temperature ranges unless otherwise specified.  
(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
VIH  
VIL  
0.7*  
VDDIO  
Input High Level  
SDA and SCL  
SDA and SCL  
VDD33  
V
V
0.3*  
VDD33  
Input Low Level Voltage  
Input Hysteresis  
GND  
VHY  
VOL  
Iin  
50  
mV  
V
SDA or SCL, IOL = 1.25 mA  
0
0.36  
10  
SDA or SCL, VIN = VDDIO or GND  
-10  
µA  
ns  
pF  
tSP  
Cin  
Input Filter  
50  
5
Input Capacitance  
SDA or SCL  
(1) The Electrical Characteristics tables list specifications under the listed Recommended Operating Conditions except as otherwise  
modified or specified by the Electrical Characteristics conditions and/or notes. Typical specifications are estimations only and are not  
ensured.  
(2) Typical values represent most likely parametric norms at VDD33 = 3.3 V, VDDIO = 1.8 V or 3.3 V, TA = 25°C, and at the Recommended  
Operating Conditions at the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
6.8 Timing Requirements for the Serial Control Bus  
Over 3.3-V supply and temperature ranges unless otherwise specified.  
(1) (2)  
MIN  
0
TYP  
MAX UNIT  
Standard Mode  
Fast Mode  
100 kHz  
fSCL  
SCL Clock Frequency  
0
400 kHz  
Standard Mode  
Fast Mode  
4.7  
1.3  
4.0  
0.6  
4.0  
0.6  
4.7  
0.6  
0
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
tLOW  
tHIGH  
tHD;STA  
tSU:STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
SCL Low Period  
Standard Mode  
Fast Mode  
SCL High Period  
Standard Mode  
Fast Mode  
(3)  
Hold time for a start or a repeated start condition  
Standard Mode  
Fast Mode  
(3)  
Set Up time for a start or a repeated start condition  
Standard Mode  
Fast Mode  
3.45  
0.9  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
(3)  
Data Hold Time  
0
Standard Mode  
Fast Mode  
250  
100  
4
(3)  
Data Set Up Time  
Standard Mode  
Fast Mode  
(3)  
Set Up Time for STOP Condition  
0.6  
4.7  
1.3  
Bus Free Time  
Between STOP and START  
Standard Mode  
Fast Mode  
(3)  
Standard Mode  
Fast Mode  
1000  
300  
300  
300  
(3)  
tr  
SCL & SDA Rise Time,  
Standard Mode  
Fast mode  
(3)  
tf  
SCL & SDA Fall Time,  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics conditions and/or notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD33 = 3.3 V, VDDIO = 1.8 V or 3.3 V, TA = +25°C, and at the Recommended  
Operating Conditions at the time of product characterization and are not ensured.  
(3) Specification is ensured by design and is not tested in production.  
10  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
6.9 Timing Requirements  
MIN  
NOM  
430  
20  
MAX  
UNIT  
ns  
tR  
SDA RiseTime – READ  
SDA Fall Time – READ  
Set Up Time – READ  
Hold Up Time – READ  
SDA, RPU = 10 k, Cb 400 pF, Figure 9  
tF  
ns  
tSU;DAT  
tHD;DAT  
Figure 9  
Figure 9  
560  
615  
ns  
ns  
+VOD  
TxCLKOUT  
TxOUT3  
-VOD  
+VOD  
-VOD  
+VOD  
-VOD  
+VOD  
-VOD  
TxOUT2  
TxOUT1  
TxOUT0  
+VOD  
-VOD  
Cycle N  
Cycle N+1  
Figure 1. Checkerboard Data Pattern  
EW  
VOD (+)  
RIN  
(Diff.)  
EH  
0V  
EH  
VOD (-)  
t
(1 UI)  
BIT  
Figure 2. CML Output Driver  
V
DDIO  
80%  
20%  
GND  
t
t
CHL  
CLH  
Figure 3. LVCMOS Transition Times  
START  
STOP  
BIT  
START  
BIT  
STOP  
BIT  
START  
BIT  
STOP  
BIT  
START STOP  
BIT BIT  
SYMBOLN+3  
BIT  
SYMBOLN  
SYMBOLN+1  
SYMBOLN+2  
RIN  
DCA, DCB  
t
DD  
TxCLKOUT  
TxOUT[3:0]  
SYMBOL N-3  
SYMBOL N-2  
SYMBOL N-1  
SYMBOL N  
Figure 4. Latency Delay  
Copyright © 2016, Texas Instruments Incorporated  
11  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
PDB  
RIN  
VILmax  
X
t
TPDD  
LOCK  
PASS  
Z
Z
TxCLKOUT  
TxOUT[3:0]  
Z
Z
Figure 5. FPD-Link (OpenLDI) and LVCMOS Power Down Delay  
PDB  
LOCK  
t
TXZR  
OEN  
VIHmin  
Z
Z
TxCLKOUT  
TxOUT[3:0]  
Figure 6. FPD-Link (OpenLDI) Outputs Enable Delay  
PDB  
VIH(min)  
RIN±  
tDDLT  
LOCK  
VOH(min)  
TRI-STATE  
Figure 7. CML PLL Lock Time  
RIN+  
RIN-  
VTL  
VCM  
VTH  
GND  
Figure 8. FPD-Link III Receiver DC VTH/VTL Definition  
12  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
V
DDIO  
I2S_CLK,  
MCLK  
1/2 V  
DDIO  
GND  
V
DDIO  
GPIO,  
I2S_WC,  
I2S_D[D:A]  
V
OHmin  
V
OLmax  
GND  
t
t
ROH  
ROS  
Figure 9. Output Data Valid (Setup and Hold) Times  
tI2S  
tLC_I2S  
tHC_I2S  
VIH  
VIL  
I2S_CLK  
tSR_I2S  
tHR_I2S  
VIH  
VIL  
I2S_WC  
I2S_D[A,B,C,D]  
Figure 10. Output State (Setup and Hold) Times  
+VOD  
0V  
-VOD  
80%  
20%  
TxOUT[3:0]  
TxCLKOUT  
(Differential)  
t
t
HLT  
LHT  
Figure 11. Input Transition Times  
TxOUT[3:0]+  
TxCLKOUT+  
VOD-  
VOD+  
TxOUT[3:0]-  
TxCLKOUT-  
VOS  
GND  
(TxOUT[3:0]+) -  
(TxOUT[3:0]-) or  
(TxCLKOUT+) -  
(TxCLKOUT-)  
VOD+  
0V  
VODp-p  
VOD-  
Figure 12. FPD-Link (OpenLDI) Single-Ended and Differential Waveforms  
Copyright © 2016, Texas Instruments Incorporated  
13  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
T
TxCLKOUT±  
TxOUT[3:0]±  
bit 1 bit 0 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
t
t
t
t
t
t
t
TTP1  
TTP2  
TTP3  
TTP4  
TTP5  
TTP6  
TTP7  
0.5UI  
1.5UI  
2.5UI  
2t  
TTP  
3.5UI  
4.5UI  
5.5UI  
6.5UI  
Figure 13. FPD-Link (OpenLDI) Transmitter Pulse Positions  
Ideal Data  
Bit End  
Sampling  
Window  
Ideal Data Bit  
Beginning  
V
TH  
0V  
RxIN_TOL  
Left  
RxIN_TOL  
Right  
V
TL  
Ideal Center Position (t /2)  
BIT  
t
(1 UI)  
BIT  
t
IJIT = RxIN_TOL (Left + Right)  
Sampling Window = 1 UI - t  
IJIT  
Figure 14. Receiver Input Jitter Tolerance  
BISTEN  
1/2 V  
DDIO  
t
PASS  
1/2 V  
PASS  
(w/errors)  
DDIO  
Result Held  
Prior BIST Result  
Current BIST Test - Toggle on Error  
Figure 15. BIST PASS Waveform  
SDA  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
f
r
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 16. Serial Control Bus Timing Diagram  
14  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
6.10 Typical Characteristics  
Time (4 ns/DIV)  
Time (1.0 ns/DIV)  
Figure 18. 96 MHz Clock at Serializer and Deserializer  
Figure 17. Serializer Output Stream with 96 MHz Input Clock  
Copyright © 2016, Texas Instruments Incorporated  
15  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DS90UB924-Q1 receives a 35-bit symbol over a single serial FPD-Link III pair operating at up to 3.36 Gbps  
line rate and converts this stream into an FPD-Link (OpenLDI) Interface (4 LVDS data channels + 1 LVDS  
Clock). The FPD-Link III serial stream contains an embedded clock, video control signals, and the DC-balanced  
video data and audio data which enhance signal quality to support AC coupling.  
The DS90UB924-Q1 deserializer attains lock to a data stream without the use of a separate reference clock  
source, which greatly simplifies system complexity and overall cost. The deserializer also synchronizes to the  
serializer regardless of the data pattern, delivering true automatic plug and lock performance. It can lock to the  
incoming serial stream without the need of special training patterns or sync characters. The deserializer recovers  
the clock and data by extracting the embedded clock information, validating then deserializing the incoming data  
stream.  
The DS90UB924-Q1 deserializer incorporates an I2C-compatible interface. The I2C-compatible interface allows  
programming of serializer or deserializer devices from  
a
local host controller. In addition, the  
serializer/deserializer devices incorporate a bidirectional control channel (BCC) that allows communication  
between serializer/deserializer as well as remote I2C slave devices.  
The bidirectional control channel (BCC) is implemented via embedded signaling in the high-speed forward  
channel (serializer to deserializer) combined with lower speed signaling in the reverse channel (deserializer to  
serializer). Through this interface, the BCC provides a mechanism to bridge I2C transactions across the serial link  
from one I2C bus to another. The implementation allows for arbitration with other I2C compatible masters at either  
side of the serial link.  
The DS90UB924-Q1 deserializer is intended for use with DS90UB921-Q1, DS90UB925Q-Q1, or DS90UB927Q-  
Q1 serializers, but is also backward compatible with DS90UR905Q and DS90UR907Q FPD-Link III serializers.  
7.2 Functional Block Diagram  
OEN  
REGULATOR  
OSS_SEL  
CMF  
TxOUT3±  
TxOUT2±  
RIN+  
TxOUT1±  
RIN-  
TxOUT0±  
TxCLKOUT±  
8
I2S / GPIO  
Error  
Detector  
BISTEN  
BISTC  
PASS  
LFMODE  
MAPSEL  
Clock and  
Data  
Recovery  
PDB  
SCL  
SCA  
LOCK  
Timing and  
Control  
IDx  
MODE_SEL  
Copyright © 2016, Texas Instruments Incorporated  
16  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
7.3 Feature Description  
7.3.1 High-Speed Forward Channel Data Transfer  
The high-speed Forward Channel is composed of a 35-bit frame containing video data, sync signals, I2C, and I2S  
audio transmitted from serializer to deserializer. Figure 19 shows the serial stream PCLK cycle. This data  
payload is optimized for signal transmission over an AC-coupled link. Data is randomized, DC-balanced and  
scrambled.  
C0  
C1  
Figure 19. FPD-Link III Serial Stream  
The device supports pixel clock ranges of 5 MHz to 15 MHz (LFMODE=1) and 15 MHz to 96 MHz (LFMODE=0).  
This corresponds to an application payload rate range of 155 Mbps to 2.976 Gbps, with an actual line rate range  
of 525 Mbps to 3.36 Gbps.  
7.3.2 Low-Speed Back Channel Data Transfer  
The low-speed back channel of the DS90UB924-Q1 provides bidirectional communication between the display  
and host processor. The back channel control data is transferred over the single serial link along with the high-  
speed forward data, DC balance coding, and embedded clock information. Together, the forward channel and  
back channel form the bidirectional control channel (BCC). This architecture provides a backward path across  
the serial link together with a high speed forward channel. The back channel contains the I2C, CRC and 4 bits of  
standard GPIO information with 10 Mbps line rate.  
7.3.3 Backward Compatible Mode  
The DS90UB924-Q1 is also backward compatible to the DS90UR905Q and DS90UR907Q for PCLK frequencies  
ranging from 15 MHz to 65 MHz. The deserializer receives 28 bits of data over a single serial FPD-Link III pair  
operating at a payload rate of 120 Mbps to 1.8 Gbps, corresponding to a line rate of 140 Mbps to 2.1 Gbps. The  
backward compatibility configuration can be selected through the MODE_SEL pin or programmed through the  
device control registers (Table 8). The bidirectional control channel, bidirectional GPIOs, I2S, and interrupt  
(INTB) are not active in this mode. However, local I2C access to the serializer is still available.  
7.3.4 Input Equalization  
An FPD-Link III input adaptive equalizer provides compensation for transmission medium losses and reduces  
medium-induced deterministic jitter.  
The adaptive equalizer may be set to a Long Cable Mode (LCBL), using the MODE_SEL pin (Table 6). This  
mode is typically used with longer cables where it may be desirable to start adaptive equalization from a higher  
default gain. In this mode, the device attempts to lock from a minimum floor AEQ value, defined by a value  
stored in the control registers (Table 8).  
7.3.5 Common Mode Filter Pin (CMF)  
The deserializer provides access to the center tap of the internal CML termination. A 0.1 μF capacitor must be  
connected from this pin to GND for additional common-mode filtering of the differential pair (Figure 37). This  
increases noise rejection capability in high-noise environments.  
7.3.6 Power Down (PDB)  
The deserializer has a PDB input pin to enable or power down the device. This pin may be controlled by an  
external device, or through VDDIO, where VDDIO = 3 V to 3.6 V or VDD33. To save power, disable the link when the  
display is not needed (PDB = LOW). Ensure that this pin is not driven HIGH before VDD33 and VDDIO have  
reached final levels. When PDB is driven low, ensure that the pin is driven to 0 V for at least 1.5 ms before  
releasing or driving high (See Recommended Operating Conditions ). If the PDB is pulled up to VDDIO = 3.0 V to  
3.6 V or VDD33 directly, a 10 kpullup resistor and a >10 µF capacitor to ground are required (See Figure 37).  
Toggling PDB low POWER DOWN the device and RESET all control registers to default. During this time, PDB  
must be held low for a minimum of 2 ms (see AC Electrical Characteristics).  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Feature Description (continued)  
7.3.7 Video Control Signals  
The video control signal bits embedded in the high-speed FPD-Link (OpenLDI) LVDS are subject to certain  
limitations relative to the video pixel clock period (PCLK). By default, the device applies a minimum pulse width  
filter on these signals to help eliminate spurious transitions.  
Normal Mode Control Signals (VS, HS, DE) have the following restrictions:  
Horizontal Sync (HS): The video control signal pulse width must be 3 PCLKs or longer when the Control  
Signal Filter (register bit 0x03[4]) is enabled (default). Disabling the Control Signal Filter removes this  
restriction (minimum is 1 PCLK). See Table 8. HS can have at most two transitions per 130 PCLKs.  
Vertical Sync (VS): The video control signal pulse is limited to 1 transition per 130 PCLKs. Thus, the minimum  
pulse width is 130 PCLKs.  
Data Enable Input (DE): The video control signal pulse width must be 3 PCLKs or longer when the Control  
Signal Filter (register bit 0x03[4]) is enabled (default). Disabling the Control Signal Filter removes this  
restriction (minimum is 1 PCLK). See Table 8. DE can have at most two transitions per 130 PCLKs.  
7.3.8 EMI Reduction Features  
7.3.8.1 LVCMOS VDDIO Option  
The 1.8 V/3.3 V LVCMOS inputs and outputs are powered from a separate VDDIO supply pin to offer  
compatibility with external system interface signals. Note: When configuring the VDDIO power supplies, all the  
single-ended control input pins (except PDB) for device need to scale together with the same operating VDDIO  
levels. If VDDIO is selected to operate in the 3.0 V to 3.6 V range, VDDIO must be operated within 300 mV of VDD33  
(See Recommended Operating Conditions).  
7.3.9 Built In Self Test (BIST)  
An optional At-speed Built-In Self Test (BIST) feature supports testing of the high-speed serial link and the low-  
speed back channel without external data connections. This is useful in the prototype stage, equipment  
production, in-system test, and system diagnostics.  
7.3.9.1 BIST Configuration and Status  
The BIST mode is enabled at the deserializer by pin (BISTEN) or BIST configuration register. The test may  
select either an external PCLK or the 33 MHz internal oscillator clock (OSC) frequency. In the absence of PCLK,  
the user can select the internal OSC frequency at the deserializer through the BISTC pin or BIST configuration  
register.  
When BIST is activated at the deserializer, a BIST enable signal is sent to the serializer through the back  
channel. The serializer outputs a test pattern and drives the link at speed. The deserializer detects the test  
pattern and monitors it for errors. The deserializer PASS output pin toggles to flag each frame received  
containing one or more errors. The serializer also tracks errors indicated by the CRC fields in each back channel  
frame.  
The BIST status can be monitored real time on the deserializer PASS pin, with each detected error resulting in a  
half pixel clock period toggled LOW. After BIST is deactivated, the result of the last test is held on the PASS  
output until reset (new BIST test or Power Down). A high on PASS indicates NO ERRORS were detected. A Low  
on PASS indicates one or more errors were detected. The duration of the test is controlled by the pulse width  
applied to the deserializer BISTEN pin. LOCK status is valid throughout the entire duration of BIST.  
See Figure 20 for the BIST mode flow diagram.  
18  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
Feature Description (continued)  
7.3.9.1.1 Sample BIST Sequence  
1. BIST Mode is enabled via the BISTEN pin of Deserializer. The desired clock source is selected through the  
deserializer BISTC pin.  
2. The serializer is awakened through the back channel if it is not already on. An all zeros pattern is balanced,  
scrambled, randomized, and sent through the FPD-Link III interface to the deserializer. Once the serializer  
and the deserializer are in BIST mode and the deserializer acquires LOCK, the PASS pin of the deserializer  
goes high, and BIST starts checking the data stream. If an error in the payload (1 to 35) is detected, the  
PASS pin switches low for one half of the clock period. During the BIST test, the PASS output can be  
monitored and counted to determine the payload error rate.  
3. To stop BIST mode, set the BISTEN pin LOW. The deserializer stops checking the data, and the final test  
result is held on the PASS pin. If the test ran error free, the PASS output remains HIGH. If there one or more  
errors were detected, the PASS output outputs constant LOW. The PASS output state is held until a new  
BIST is run, the device is RESET, or the device is powered down. BIST duration is user-controlled and may  
be of any length.  
The link returns to normal operation after the deserializer BISTEN pin is low. Figure 21 shows the waveform  
diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2 shows one with multiple errors. In  
most cases it is difficult to generate errors due to the robustness of the link (differential data transmission, and so  
forth.), thus they may be introduced by greatly extending the cable length, faulting the interconnect medium, or  
reducing signal condition enhancements (Rx equalization).  
Normal  
Step 1: DES in BIST  
BIST  
Wait  
Step 2: Wait, SER in BIST  
BIST  
start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
stop  
Step 4: DES/SER in Normal  
Figure 20. BIST Mode Flow Diagram  
7.3.9.2 Forward Channel and Back Channel Error Checking  
The deserializer, on locking to the serial stream, compares the recovered serial stream with all zeroes and  
records any errors in status registers. Errors are also dynamically reported on the PASS pin of the deserializer.  
Forward channel errors may also be read from register 0x25 ( Table 8).  
The back-channel data is checked for CRC errors once the serializer locks onto the back-channel serial stream,  
as indicated by link detect status (register bit 0x1C[0] - Table 8). CRC errors are recorded in an 8-bit register in  
the deserializer. The register is cleared when the serializer enters the BIST mode. As soon as the serializer  
enters BIST mode, the functional mode CRC register starts recording any back channel CRC errors. The BIST  
mode CRC error register is active in BIST mode only and keeps the record of the last BIST run until cleared or  
the serializer enters BIST mode again.  
Copyright © 2016, Texas Instruments Incorporated  
19  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Feature Description (continued)  
BISTEN  
(DES)  
TxCLKOUT  
TxOUT[3:0]  
7 bits/frame  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
BIST  
Result  
Held  
Normal  
SSO  
Normal  
BIST Test  
BIST Duration  
Figure 21. BIST Waveforms  
7.3.10 Internal Pattern Generation  
The DS90UB924-Q1 deserializer features an internal pattern generator. It allows basic testing and debugging of  
an integrated panel. The test patterns are simple and repetitive and allow for a quick visual verification of panel  
operation. As long as the device is not in power down mode, the test pattern is displayed even if no input is  
applied. If no clock is received, the test pattern can be configured to use a programmed oscillator frequency. For  
detailed information, refer to TI Application Note: (AN-2198).  
7.3.10.1 Pattern Options  
The DS90UB924-Q1 deserializer pattern generator is capable of generating 17 default patterns for use in basic  
testing and debugging of panels. Each pattern can be inverted using register bits (see Table 8). The 17 default  
patterns are listed as follows:  
1. White/Black (default/inverted)  
2. Black/White  
3. Red/Cyan  
4. Green/Magenta  
5. Blue/Yellow  
6. Horizontally Scaled Black to White/White to Black  
7. Horizontally Scaled Black to Red/Cyan to White  
8. Horizontally Scaled Black to Green/Magenta to White  
9. Horizontally Scaled Black to Blue/Yellow to White  
10. Vertically Scaled Black to White/White to Black  
11. Vertically Scaled Black to Red/Cyan to White  
12. Vertically Scaled Black to Green/Magenta to White  
13. Vertically Scaled Black to Blue/Yellow to White  
14. Custom Color / Inverted configured in PGRS  
15. Black-White/White-Black Checkerboard (or custom checkerboard color, configured in PGCTL)  
16. YCBR/RBCY VCOM pattern, orientation is configurable from PGCTL  
17. Color Bars (White, Yellow, Cyan, Green, Magenta, Red, Blue, Black) – Note: not included in the auto-  
scrolling feature  
20  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
Feature Description (continued)  
7.3.10.2 Color Modes  
By default, the Pattern Generator operates in 24-bit color mode, where all bits of the red, green, and blue outputs  
are enabled. 18-bit color mode can be activated from the configuration registers (Table 8). In 18-bit mode, the 6  
most significant bits (bits 7-2) of the Red, Green, and Blue outputs are enabled; the 2 least significant bits are 0.  
7.3.10.3 Video Timing Modes  
The Pattern Generator has two video timing modes – external and internal. In external timing mode, the Pattern  
Generator detects the video frame timing present on the DE and VS inputs. If Vertical Sync signaling is not  
present on VS, the Pattern Generator determines Vertical Blank by detecting when the number of inactive pixel  
clocks (DE = 0) exceeds twice the detected active line length. In internal timing mode, the Pattern Generator  
uses custom video timing as configured in the control registers. The internal timing generation may also be  
driven by an external clock. By default, external timing mode is enabled. Internal timing or Internal timing with  
External Clock are enabled by the control registers (Table 8). If internal clock generation is used, register 0x39  
bit 1 must be set.  
7.3.10.4 External Timing  
In external timing mode, the pattern generator passes the incoming DE, HS, and VS signals unmodified to the  
video control outputs after a two-pixel clock delay. It extracts the active frame dimensions from the incoming  
signals in order to properly scale the brightness patterns. If the incoming video stream does not use the VS  
signal, the Pattern Generator determines the Vertical Blank time by detecting a long period of pixel clocks without  
DE asserted.  
7.3.10.5 Pattern Inversion  
The Pattern Generator also incorporates a global inversion control, located in the PGCFG register, which causes  
the output pattern to be bitwise-inverted. For example, the full-screen Red pattern becomes full-screen cyan, and  
the Vertically Scaled Black to Green pattern becomes Vertically Scaled White to Magenta.  
7.3.10.6 Auto Scrolling  
The Pattern Generator supports an Auto-Scrolling mode, in which the output pattern cycles through a list of  
enabled pattern types. A sequence of up to 16 patterns may be defined in the registers. The patterns may  
appear in any order in the sequence and may also appear more than once.  
7.3.10.7 Additional Features  
Additional pattern generator features can be accessed through the Pattern Generator Indirect Register Map. It  
consists of the Pattern Generator Indirect Address (PGIA — Table 8) and the Pattern Generator Indirect Data  
(PGID — Table 8).  
7.3.11 Serial Link Fault Detect  
The DS90UB924-Q1 can detect fault conditions in the FPD-Link III interconnect. If a fault condition occurs, the  
Link Detect Status is 0 (cable is not detected) on bit 0 of address 0x1C (Table 8). The device detects any of the  
following conditions:  
1. Cable open  
2. RIN+ to - short  
3. RIN+ to GND short  
4. RIN- to GND short  
5. RIN+ to battery short  
6. RIN- to battery short  
7. Cable is linked incorrectly (RIN+/RIN- connections reversed)  
Copyright © 2016, Texas Instruments Incorporated  
21  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Feature Description (continued)  
NOTE  
The device detects any of the above conditions, but does not report specifically which one  
has occurred.  
7.3.12 Oscillator Output  
The deserializer provides an optional TxCLKOUT± output when the input clock (serial stream) has been lost.  
This is based on an internal oscillator and may be controlled from register 0x02, bit 5 (OSC Clock Output Enable)  
Table 8.  
7.3.13 Interrupt Pin (INTB / INTB_IN)  
1. Read HDCP_ISR Register 0xC7. (Table 8)  
2. On the serializer, set register (ICR) 0xC6[5] = 1 and 0xC6[0] = 1 to configure the interrupt.  
3. On the serializer, read from ISR register 0xC7 to arm the interrupt for the first time.  
4. When INTB_IN is set LOW, the INTB pin on the serializer also pulls low, indicating an interrupt condition.  
5. The external controller detects INTB = LOW and reads the ISR register to determine the interrupt source.  
Reading this register also clears and resets the interrupt.  
The INTB_IN signal is sampled and required approximately 8.6 μs of the minimum setup and hold time.  
8.6 μs = 30 bit per back channel frame / (5 Mbps rate × ±30% Variation) = 30 / (5E6 × 0.7)  
Note that -30% is the worst case.  
7.3.14 General-Purpose I/O  
7.3.14.1 GPIO[3:0]  
In normal operation, GPIO[3:0] may be used as general purpose IOs in either forward channel (outputs) or back  
channel (inputs) mode. GPIO modes may be configured from the registers (Table 8). GPIO[1:0] are dedicated  
pins and GPIO[3:2] are shared with I2S_DC and I2S_DD respectively. Note: if the DS90UB924-Q1 is paired with  
a DS90UB921-Q1 or DS90UB925Q-Q1 serializer, the devices must be configured into 18-bit mode to allow  
usage of GPIO pins on the serializer. To enable 18-bit mode, set serializer register 0x12[2] = 1. 18-bit mode is  
auto-loaded into the deserializer from the serializer. See Table 1 for GPIO enable and configuration.  
Table 1. DS90UB921-Q1/DS90UB925Q-Q1 GPIO Enable and Configuration  
DESCRIPTION  
DEVICE  
FORWARD CHANNEL  
BACK CHANNEL  
GPIO3  
DS90UB921-Q1/  
DS90UB925Q-Q1  
0x0F = 0x03  
0x0F = 0x05  
DS90UB924-Q1  
0x1F = 0x05  
0x0E = 0x30  
0x1F = 0x03  
0x0E = 0x50  
GPIO2  
DS90UB921-Q1/  
DS90UB925Q-Q1  
DS90UB924-Q1  
0x1E = 0x50  
N/A  
0x1E = 0x30  
0x0E = 0x05  
GPIO1/GPIO1  
(SER/DES)  
DS90UB921-Q1/  
DS90UB925Q-Q1  
DS90UB924-Q1  
N/A  
0x1E = 0x03  
N/A  
GPO_REG5/GPIO1  
(SER/DES)  
DS90UB921-Q1/  
DS90UB925Q-Q1  
0x10 = 0x03  
DS90UB924-Q1  
0x1E = 0x05  
N/A  
N/A  
GPIO0/GPIO0  
(SER/DES)  
DS90UB921-Q1/  
DS90UB925Q-Q1  
0x0D = 0x05  
DS90UB924-Q1  
N/A  
0x1D = 0x03  
N/A  
GPO_REG4/GPIO0  
(SER/DES)  
DS90UB921-Q1/  
DS90UB925Q-Q1  
0x0F = 0x30  
DS90UB924-Q1  
0x1D = 0x05  
N/A  
22  
Copyright © 2016, Texas Instruments Incorporated  
 
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
Table 2. DS90UB927Q-Q1 GPIO Enable and Configuration  
DESCRIPTION  
DEVICE  
FORWARD CHANNEL  
0x0F = 0x03  
BACK CHANNEL  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
DS90UB927Q-Q1  
DS90UB924-Q1  
DS90UB927Q-Q1  
DS90UB924-Q1  
DS90UB927Q-Q1  
DS90UB924-Q1  
DS90UB927Q-Q1  
DS90UB924-Q1  
0x0F = 0x05  
0x1F = 0x03  
0x0E = 0x50  
0x1E = 0x30  
0x0E = 0x05  
0x1E = 0x03  
0x0D = 0x05  
0x1D = 0x03  
0x1F = 0x05  
0x0E = 0x30  
0x1E = 0x50  
0x0E = 0x03  
0x1E = 0x05  
0x0D = 0x03  
0x1D = 0x05  
Note: GPO_REG4 of the DS90UB921-Q1 or DS90UB925-Q1 can be used as a forward channel GPIO,  
outputting on GPIO0 of DS90UB924-Q1. This can be set as follows:  
Set DS90UB921-Q1 or DS90UB925-Q1 in 18-bit mode by mode pin = 1 or by register 0x12[2] = 1.  
Set DS90UB924-Q1 register 0x1D[0] = 1 and 0x1D[2] = 1; this will enable GPIO0 of DS90UB924-Q1 as  
output.  
Set DS90UB921-Q1 or DS90UB925-Q1 register 0x0F[4] = 1 and 0x0F[5] = 1; this will enable GPO_REG4 of  
DS90UB921-Q1 or DS90UB925-Q1 as input.  
Similarly GPO_REG5 of DS90UB921-Q1 or DS90UB925-Q1 can output to GPIO1 of DS90UB924-Q1:  
Set DS90UB921-Q1 or DS90UB925-Q1 in 18-bit mode by mode pin = 1 or by register 0x12[2] = 1.  
Set DS90UB924-Q1 register 0x1E[0] = 1 and 0x1E[2] = 1; this will enable GPIO1 of DS90UB924-Q1 as  
output.  
Set DS90UB921-Q1 or DS90UB925-Q1 register 0x10[0] = 1 and 0x10[1] = 1; this will enable GPO_REG5  
DS90UB921-Q1 or DS90UB925-Q1 as input.  
The input value present on GPIO[3:0] may also be read from register or configured to local output mode  
(Table 8).  
7.3.14.2 GPIO[8:5]  
GPIO_REG[8:5] are register-only GPIOs and may be programmed as outputs or read as inputs through local  
register bits only. Where applicable, these bits are shared with I2S pins and override I2S input if enabled into  
GPIO_REG mode. See Table 3 for GPIO enable and configuration.  
Note: Local GPIO value may be configured and read either through local register access, or remote register  
access through the Low-Speed Bidirectional Control Channel. Configuration and state of these pins are not  
transported from serializer to deserializer as is the case for GPIO[3:0].  
Table 3. GPIO_REG and GPIO Local Enable and Configuration  
DESCRIPTION  
REGISTER CONFIGURATION  
0x21 = 0x01  
FUNCTION  
Output, L  
GPIO_REG8  
0x21 = 0x09  
Output, H  
0x21 = 0x03  
Input, Read: 0x6F[0]  
Output, L  
GPIO_REG7  
GPIO_REG6  
GPIO_REG5  
0x21 = 0x01  
0x21 = 0x09  
Output, H  
0x21 = 0x03  
Input, Read: 0x6E[7]  
Output, L  
0x20 = 0x01  
0x20 = 0x09  
Output, H  
0x20 = 0x03  
Input, Read: 0x6E[6]  
Output, L  
0x20 = 0x01  
0x20 = 0x09  
Output, H  
0x20 = 0x03  
Input, Read: 0x6E[5]  
Copyright © 2016, Texas Instruments Incorporated  
23  
 
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Table 3. GPIO_REG and GPIO Local Enable and Configuration (continued)  
DESCRIPTION  
REGISTER CONFIGURATION  
0x1F = 0x01  
FUNCTION  
Output, L  
GPIO3  
0x1F = 0x09  
Output, H  
0x1F = 0x03  
Input, Read: 0x6E[3]  
Output, L  
GPIO2  
GPIO1  
GPIO0  
0x1E = 0x01  
0x1E = 0x09  
Output, H  
0x1E = 0x03  
Input, Read: 0x6E[2]  
Output, L  
0x1E = 0x01  
0x1E = 0x09  
Output, H  
0x1E = 0x03  
Input, Read: 0x6E[1]  
Output, L  
0x1D = 0x01  
0x1D = 0x09  
Output, H  
0x1D = 0x03  
Input, Read: 0x6E[0]  
7.3.15 I2S Audio Interface  
The DS90UB924-Q1 deserializer features six I2S output pins that, when paired with a DS90UB927Q-Q1  
serializer, supports surround-sound audio applications. The bit clock (I2S_CLK) supports frequencies between 1  
MHz and the smaller of < PCLK/4 or < 13 MHz. Four I2S data outputs carry two channels of I2S-formatted digital  
audio each, with each channel delineated by the word select (I2C_WC) input. The I2S audio interface is not  
available in Backwards Compatibility Mode (BKWD = 1).  
Deserializer  
System Clock  
MCLK  
Bit Clock  
I2S_CLK  
I2S Receiver  
4
Word Select  
Data  
I2S_WC  
I2S_Dx  
Figure 22. I2S Connection Diagram  
I2S_WC  
I2S_CLK  
MSB  
LSB  
MSB  
LSB  
I2S_Dx  
Figure 23. I2S Frame Timing Diagram  
When paired with a DS90UB921-Q1 or DS90UB925Q-Q1, the DS90UB924-Q1 I2S interface supports a single  
I2S data output through I2S_DA (24-bit video mode), or two I2S data outputs through I2S_DA and I2S_DB (18-  
bit video mode).  
7.3.15.1 I2S Transport Modes  
By default, packetized audio is received during video blanking periods in dedicated data island transport frames.  
The transport mode is set in the serializer and auto-loaded into the deserializer by default. The audio  
configuration may be disabled from control registers if Forward Channel Frame Transport of I2S data is desired.  
In frame transport, only I2S_DA is received to the DS90UB924-Q1 deserializer. Surround Sound Mode, which  
transmits all four I2S data inputs (I2S_D[D:A]), may only be operated in Data Island Transport mode. This mode  
is only available when connected to a DS90UB927Q-Q1 serializer. If connected to a DS90UB921-Q1 or  
DS90UB925Q-Q1 serializer, only I2S_DA and I2S_DB may be received.  
24  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
7.3.15.2 I2S Repeater  
I2S audio may be fanned-out and propagated in the repeater application. By default, data is propagated via data  
island transport on the FPD-Link (OpenLDI) interface during the video blanking periods. If frame transport is  
desired, connect the I2S pins from the deserializer to all serializers. Activating surround sound at the top-level  
serializer automatically configures downstream serializers and deserializers for surround-sound transport utilizing  
Data Island Transport. If 4-channel operation utilizing I2S_DA and I2S_DB only is desired, this mode must be  
explicitly set in each serializer and deserializer control register throughout the repeater tree (Table 8).  
A DS90UB924-Q1 deserializer configured in repeater mode may also regenerate I2S audio from its I2S input  
pins in lieu of Data Island frames. See Figure 31 and the I2C control registers (Table 8) for additional details.  
7.3.15.3 I2S Jitter Cleaning  
The DS90UB924-Q1 features a standalone PLL to clean the I2S data jitter, supporting high-end car audio  
systems. If I2S_CLK frequency is less than 1 MHz, this feature must be disabled through register 0x2B[7]. See  
Table 8.  
7.3.15.4 MCLK  
The deserializer has an I2S Master Clock Output (MCLK). It supports ×1, ×2, or ×4 of I2S CLK Frequency. When  
the I2S PLL is disabled, the MCLK output is off. Table 4 covers the range of I2S sample rates and MCLK  
frequencies. By default, all the MCLK output frequencies are ×2 of the I2S CLK frequencies. The MCLK  
frequencies can also be enabled through the register bits 0x3A[6:4] (I2S DIVSEL), shown in Table 8. To select  
desired MCLK frequency, write 0x3A[7], then write to bit [6:4] accordingly.  
Table 4. Audio Interface Frequencies  
SAMPLE RATE  
I2S DATA WORD SIZE (BITS) I2S_CLK (MHz)  
MCLK OUTPUT (MHz)  
REGISTER 0x3A[6:4]'b  
(kHz)  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
000  
001  
010  
000  
001  
010  
000  
001  
010  
001  
010  
011  
010  
011  
100  
32  
1.024  
44.1  
48  
1.4112  
16  
1.536  
3.072  
6.144  
96  
192  
Copyright © 2016, Texas Instruments Incorporated  
25  
 
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Table 4. Audio Interface Frequencies (continued)  
SAMPLE RATE  
(kHz)  
I2S DATA WORD SIZE (BITS) I2S_CLK (MHz)  
MCLK OUTPUT (MHz)  
REGISTER 0x3A[6:4]'b  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
000  
001  
010  
001  
010  
011  
001  
010  
011  
010  
011  
100  
011  
100  
101  
001  
010  
011  
001  
010  
011  
001  
010  
011  
010  
011  
100  
011  
100  
110  
32  
44.1  
48  
1.536  
2.117  
2.304  
4.608  
9.216  
2.048  
2.8224  
3.072  
6.144  
12.288  
24  
96  
192  
32  
44.1  
48  
32  
96  
192  
7.3.16 AV Mute Prevention  
The DS90UB924-Q1 may inadvertently enter the AV MUTE state if the serializer sends video data during  
blanking period (DE = L) with a specific data pattern (24’h666666). Once the device enters the AV MUTE  
state, the device mutes both audio and video outputs resulting in a black display screen. Setting the gate DE  
Register 0x04[4] on the serializer will prevent video signals from being sent during the blanking interval. This  
will ensure AV MUTE mode is not entered during normal operation  
If unexpected AV MUTE state is seen, it is recommended to verify checking the data path control setting of  
the paired Serializer. This setting is not accessible from DS90UB924-Q1.  
7.3.17 OEN Toggling Limitation  
OEN must be enabled LVDS outputs after PDB turns to high state and the internal circuit is stabled. Since OEN  
function is asynchronous signal to internal digital blocks, repeatedly OEN toggling may result in horizontal pixel  
shift at the LVDS output. To avoid this, recommend to reset by programming Register 0x01[0] for digital blocks  
after OEN turns to ON state.  
26  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
7.4 Device Functional Modes  
7.4.1 Clock and Output Status  
When PDB is driven HIGH, the CDR PLL begins locking to the serial input, and LOCK is TRI-STATE or LOW  
(depending on the value of the OEN setting). After the deserializer completes its lock sequence to the input serial  
data, the LOCK output is driven HIGH, indicating valid data and clock recovered from the serial input is available  
on the LVCMOS and LVDS outputs. The state of the outputs is based on the OEN and OSS_SEL setting  
(Table 5) or register bit (Table 8).  
Table 5. Output State Table  
INPUTS  
OEN  
OUTPUTS  
SERIAL  
INPUT  
TxCLKOUT/Tx  
OUT[3:0]  
PDB  
OSS_SEL  
LOCK  
PASS  
DATA/GPIO/I2S  
X
X
X
L
H
H
X
L
L
X
L
Z
Z
L
Z
Z
L
Z
Z
L
Z
L or H  
L or H  
H
L/OSC (Register  
EN)  
Static  
H
H
L
L
L
L
Static  
Active  
Active  
H
H
H
H
H
H
H
L
L
L
Previous Status  
L
L
L
L
L
H
H
Valid  
Valid  
Valid  
7.4.2 FPD-Link (OpenLDI) Input Frame and Color Bit Mapping Select  
The DS90UB924-Q1 can be configured to output 24-bit color (RGB888) or 18-bit color (RGB666) with 2 different  
mapping schemes, shown in Figure 24, or MSBs on TxOUT[3], shown in Figure 25. Each frame corresponds to a  
single pixel clock (PCLK) cycle. The LVDS clock output from TxCLKOUT± follows a 4:3 duty cycle scheme, with  
each 28-bit pixel frame starting with two LVDS bit clock periods high, three low, and ending with two high. The  
mapping scheme is controlled by MAPSEL pin or by Register (Table 8).  
TxCLKOUT  
Previous cycle  
Current cycle  
B[1]  
(bit 26)  
B[0]  
(bit 25)  
G[1]  
(bit 24)  
G[0]  
(bit 23)  
R[1]  
(bit 22)  
R[0]  
(bit 21)  
TxOUT3  
TxOUT2  
DE  
(bit 20)  
VS  
(bit 19)  
HS  
(bit 18)  
B[7]  
(bit 17)  
B[6]  
(bit 16)  
B[5]  
(bit 15)  
B[4]  
(bit 14)  
B[3]  
(bit 13)  
B[2]  
(bit 12)  
G[7]  
(bit 11)  
G[6]  
(bit 10)  
G[5]  
(bit 9)  
G[4]  
(bit 8)  
G[3]  
(bit 7)  
TxOUT1  
TxOUT0  
G[2]  
(bit 6)  
R[7]  
(bit 5)  
R[6]  
(bit 4)  
R[5]  
(bit 3)  
R[4]  
(bit 2)  
R[3]  
(bit 1)  
R[2]  
(bit 0)  
Figure 24. 24-bit Color FPD-Link (OpenLDI) Mapping: LSBs on TxOUT3 (MAPSEL=L)  
Copyright © 2016, Texas Instruments Incorporated  
27  
 
 
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
TxCLKOUT  
Previous cycle  
Current cycle  
B[7]  
(bit 26)  
B[6]  
(bit 25)  
G[7]  
(bit 24)  
G[6]  
(bit 23)  
R[7]  
(bit 22)  
R[6]  
(bit 21)  
TxOUT3  
TxOUT2  
DE  
(bit 20)  
VS  
(bit 19)  
HS  
(bit 18)  
B[5]  
(bit 17)  
B[4]  
(bit 16)  
B[3]  
(bit 15)  
B[2]  
(bit 14)  
B[1]  
(bit 13)  
B[0]  
(bit 12)  
G[5]  
(bit 11)  
G[4]  
(bit 10)  
G[3]  
(bit 9)  
G[2]  
(bit 8)  
G[1]  
(bit 7)  
TxOUT1  
TxOUT0  
G[0]  
(bit 6)  
R[5]  
(bit 5)  
R[4]  
(bit 4)  
R[3]  
(bit 3)  
R[2]  
(bit 2)  
R[1]  
(bit 1)  
R[0]  
(bit 0)  
Figure 25. 24-bit Color FPD-Link (OpenLDI) Mapping: MSBs on TxOUT3 (MAPSEL=H)  
TxCLKOUT  
Previous cycle  
Current cycle  
TxOUT3  
TxOUT2  
DE  
(bit 20)  
VS  
(bit 19)  
HS  
(bit 18)  
B[5]  
(bit 17)  
B[4]  
(bit 16)  
B[3]  
(bit 15)  
B[2]  
(bit 14)  
B[1]  
(bit 13)  
B[0]  
(bit 12)  
G[5]  
(bit 11)  
G[4]  
(bit 10)  
G[3]  
(bit 9)  
G[2]  
(bit 8)  
G[1]  
(bit 7)  
TxOUT1  
TxOUT0  
G[0]  
(bit 6)  
R[5]  
(bit 5)  
R[4]  
(bit 4)  
R[3]  
(bit 3)  
R[2]  
(bit 2)  
R[1]  
(bit 1)  
R[0]  
(bit 0)  
Figure 26. 18-bit Color FPD-Link (OpenLDI) Mapping (MAPSEL = L)  
TxCLKOUT  
Previous cycle  
Current cycle  
B[5]  
(bit 26)  
B[4]  
(bit 25)  
G[5]  
(bit 24)  
G[4]  
(bit 23)  
R[5]  
(bit 22)  
R[4]  
(bit 21)  
TxOUT3  
TxOUT2  
DE  
(bit 20)  
VS  
(bit 19)  
HS  
(bit 18)  
B[3]  
(bit 17)  
B[2]  
(bit 16)  
B[1]  
(bit 15)  
B[0]  
(bit 14)  
G[3]  
(bit 11)  
G[2]  
(bit 10)  
G[1]  
(bit 9)  
G[0]  
(bit 8)  
TxOUT1  
TxOUT0  
R[3]  
(bit 5)  
R[2]  
(bit 4)  
R[1]  
(bit 3)  
R[0]  
(bit 2)  
Figure 27. 18-bit Color FPD-Link (OpenLDI) Mapping (MAPSEL = H)  
28  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
7.4.3 Low Frequency Optimization (LFMODE)  
The LFMODE is set via register (Table 8) or by the LFMODE Pin. This mode optimizes device operation for  
lower input data clock ranges supported by the serializer. If LFMODE is Low (LFMODE=0, default), the  
TxCLKOUT± PCLK frequency is between 15 MHz and 96 MHz. If LFMODE is High (LFMODE=1), the  
TxCLKOUT± frequency is between 5 MHz and <15 MHz. Note: when the device LFMODE is changed, a PDB  
reset is required. When LFMODE is high (LFMODE=1), the line rate relative to the input data rate is multiplied by  
four. Thus, for the operating range of 5 MHz to <15 MHz, the line rate is 700 Mbps to <2.1 Gbps with an effective  
data payload of 175 Mbps to 525 Mbps. Note: for Backwards Compatibility Mode (BKWD=1), the line rate relative  
to the input data rate remains the same.  
7.4.4 Mode Select (MODE_SEL)  
Device configuration may be done via the MODE_SEL pin or via register (Table 7). A pullup resistor and a  
pulldown resistor of suggested values may be used to set the voltage ratio of the MODE_SEL input (VR4) and  
VDD33 to select one of the 9 possible selected modes. See Figure 28 and Table 6.  
V
DD33  
R
3
VR4  
MODE_SEL  
Deserializer  
R
4
Copyright © 2016, Texas Instruments Incorporated  
Figure 28. MODE_SEL Connection Diagram  
Table 6. Configuration Select (MODE_SEL)  
Suggested  
Resistor R3  
(kΩ, 1% tol)  
Suggested  
Resistor R4  
(kΩ, 1% tol)  
Ideal Ratio  
Ideal  
VR4 (V)  
NO.  
REPEAT  
BKWD  
I2S_B  
LCBL  
(VR4/VDD33  
)
1
2
3
4
5
6
7
8
9
0
0
OPEN  
294  
255  
267  
255  
226  
205  
162  
124  
40.2  
40.2  
49.9  
76.8  
102  
130  
165  
191  
210  
L
L
L
L
L
L
L
L
L
H
L
L
0.120  
0.164  
0.223  
0.286  
0.365  
0.446  
0.541  
0.629  
0.397  
0.540  
0.737  
0.943  
1.205  
1.472  
1.786  
2.075  
L
H
L
L
H
H
L
L
H
L
L
H
H
H
H
L
L
H
L
H
H
L
H
L
7.4.5 Repeater Configuration  
The supported Repeater application provides a mechanism to extend transmission over multiple links to multiple  
display devices.  
For the repeater application, this document refers to the DS90UB927Q-Q1 as the Transmitter (TX), and refers to  
the DS90UB924-Q1 as the Receiver (RX). Figure 29 shows the maximum configuration supported for Repeater  
implementations. Two levels of Repeaters are supported with a maximum of three Transmitters per Receiver.  
Copyright © 2016, Texas Instruments Incorporated  
29  
 
 
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
1:3 Repeater  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
RX  
TX  
Source  
TX  
RX  
TX  
TX  
TX  
TX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
Figure 29. Maximum Repeater Application  
In a repeater application, the I2C interface at each TX and RX is configured to transparently pass I2C  
communications upstream or downstream to any I2C device within the system. This includes a mechanism for  
assigning alternate IDs (Slave Aliases) to downstream devices in the case of duplicate addresses.  
Repeater Node  
Transmitter  
Downstream  
Receiver  
or  
Repeater  
I2C  
Slave  
I2C  
I2C  
Master  
Upstream  
Transmitter  
FPD-Link  
(LVDS)  
Transmitter  
Receiver  
I2S Audio  
Downstream  
Receiver  
or  
I2C  
Slave  
Repeater  
FPD-Link III interfaces  
Copyright © 2016, Texas Instruments Incorporated  
Figure 30. 1:2 Repeater Configuration  
30  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
7.4.5.1 Repeater Connections  
The Repeater requires the following connections between the Receiver and each Transmitter (Figure 31).  
1. Video Data – Connect all FPD-Link (OpenLDI) data and clock pairs  
2. I2C – Connect SCL and SDA signals. Both signals must be pulled up to VDD33 or VDDIO = 3.0 V to 3.6 V with  
4.7-kresistors.  
3. Audio (optional) – Connect I2S_CLK, I2S_WC, and I2S_Dx signals.  
4. IDx pin – Each Transmitter and Receiver must have an unique I2C address.  
5. REPEAT & MODE_SEL pins — All Transmitters and Receivers must be set into Repeater Mode.  
6. Interrupt pin – Connect DS90UB924-Q1 INTB_IN pin to the serializer INTB pin. The signal must be pulled up  
to VDDIO with a 10-kΩ resistor.  
Deserializer  
Serializer  
RxIN0+  
RxIN0-  
TxOUT0+  
TxOUT0-  
RxIN1+  
RxIN1-  
TxOUT1+  
TxOUT1-  
RxIN2+  
RxIN2-  
TxOUT2+  
TxOUT2-  
RxIN3+  
RxIN3-  
TxOUT3+  
TxOUT3-  
RxCLKIN+  
RxCLKIN-  
TxCLKOUT+  
TxCLKOUT-  
VDD33  
VDD33  
MODE_SEL  
REPEAT  
I2S_CLK  
I2S_WC  
I2S_Dx  
I2S_CLK  
I2S_WC  
I2S_Dx  
Optional  
VDDIO  
VDD33  
VDD33  
IDx  
IDx  
INTB  
INTB_IN  
VDD33  
SDA  
SCL  
SDA  
SCL  
Copyright © 2016, Texas Instruments Incorporated  
Figure 31. Repeater Connection Diagram  
7.4.5.1.1 Repeater Fan-Out Electrical Requirements  
Repeater applications requiring fan-out from one DS90UB924-Q1 deserializer to up to three DS90UB927Q-Q1  
serializers requires special considerations for routing and termination of the FPD-Link (OpenLDI) differential  
traces. Figure 32 Details the requirements that must be met for each signal pair:  
Copyright © 2016, Texas Instruments Incorporated  
31  
 
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
L3  
< 60 mm  
TX  
(UB927)  
RX  
(UB924)  
TX  
(UB927)  
R1=100  
R2=100  
L1  
<
75 mm  
L2 < 60 mm  
TX  
(UB927)  
L3  
< 60 mm  
Copyright  
©
2016, Texas Instruments Incorporated  
Figure 32. FPD-Link (OpenLDI) Fan-Out Electrical Requirements  
32  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
7.5 Programming  
The DS90UB924-Q1 may also be configured by the use of an I2C compatible serial control bus. Multiple devices  
may share the serial control bus (up to 10 device addresses supported). The device address is set via a resistor  
divider (R1 and R2 — see Figure 33) connected to the IDx pin.  
VDD33  
VDD33  
R1  
R2  
VR2  
IDx  
4.7kQ  
4.7kQ  
HOST  
DES  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
Copyright © 2016, Texas Instruments Incorporated  
Figure 33. Serial Control Bus Connection  
The serial control bus consists of two signals and an address configuration pin. SCL is a Serial Bus Clock  
Input/Output. SDA is the Serial Bus Data Input/Output signal. Both SCL and SDA signals require an external  
pullup resistor to VDD33 or VDDIO = 3.0 V to 3.6 V. For most applications, a 4.7-kpullup resistor to VDD33 is  
recommended. The signals are either pulled HIGH, or driven LOW.  
The IDx pin configures the control interface to one of 10 possible device addresses. A pullup resistor and a  
pulldown resistor is used to set the appropriate voltage ratio between the IDx input pin (VR2) and VDD33, each  
ratio corresponding to a specific device address. See Table 8.  
Table 7. Serial Control Bus Addresses for IDx  
SUGGESTED  
RESISTOR R1 kΩ  
(1% tol)  
SUGGESTED  
RESISTOR R2 kΩ  
(1% tol)  
IDEAL RATIO  
VR2 / VDD33  
IDEAL VR2  
(V)  
NO.  
ADDRESS 7'b  
ADDRESS 8'b  
1
2
0
0
OPEN  
226  
215  
200  
187  
174  
154  
150  
137  
90.9  
40.2 or >10  
97.6  
113  
0x2C  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x58  
0x66  
0x68  
0x6A  
0x6C  
0x6E  
0x70  
0x72  
0x74  
0x76  
0.995  
1.137  
1.282  
1.413  
1.570  
1.707  
1.848  
1.997  
2.535  
0.302  
0.345  
0.388  
0.428  
0.476  
0.517  
0.560  
0.605  
0.768  
3
4
127  
5
140  
6
158  
7
165  
8
191  
9
210  
10  
301  
Copyright © 2016, Texas Instruments Incorporated  
33  
 
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SCL transitions Low while SDA is High. A STOP occurs when SDA transitions High while SCL is also HIGH. See  
Figure 34.  
SDA  
SCL  
S
P
START condition, or  
STOP condition  
START repeat condition  
Figure 34. START and STOP Conditions  
To communicate with a remote device, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it Acknowledges (ACKs) the master by driving the SDA bus LOW. If the address doesn't  
match the slave address of device, it Not-acknowledges (NACKs) the master by letting SDA be pulled HIGH.  
ACKs also occur on the bus when data is being transmitted. When the master is writing data, the slave ACKs  
after every data byte is successfully received. When the master is reading data, the master ACKs after every  
data byte is received to let the slave know it wants to receive another data byte. When the master wants to stop  
reading, it NACKs after the last data byte and creates a stop condition on the bus. All communication on the bus  
begins with either a Start condition or a Repeated Start condition. All communication on the bus ends with a Stop  
condition. A READ is shown in Figure 35 and a WRITE is shown in Figure 36.  
Register Address  
Slave Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
A
2
A
1
A
0
0
S
S
1
P
Figure 35. Serial Control Bus — READ  
Register Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
0
S
P
Figure 36. Serial Control Bus — WRITE  
To support I2C transactions over the BCC. the I2C Master located at the DS90UB924-Q1 deserializer must  
support I2C clock stretching. For more information on I2C interface requirements and throughput considerations,  
refer to AN-2173 I2C Communication Over FPD-Link III with Bidirectional Control Channel SNLA131.  
34  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
7.6 Register Maps  
(1) (2)  
Table 8. Serial Control Bus Registers  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
0
0x00 I2C Device ID  
7:1  
RW  
IDx  
Device ID  
7–bit address of Deserializer  
Note: Read-only unless bit 0 is set  
0
RW  
ID Setting  
I2C ID Setting  
0: Device ID is from IDx pin  
1: Register I2C Device ID overrides IDx pin  
1
0x01 Reset  
7:3  
2
0x04  
Reserved  
RW  
RW  
BC Enable Back Channel Enable  
0: Disable  
1: Enable  
1
0
7
Digital  
RESET1  
Reset the entire digital block including registers  
This bit is self-clearing.  
0: Normal operation (default)  
1: Reset  
RW  
RW  
Digital  
RESET0  
Reset the entire digital block except registers  
This bit is self-clearing  
0: Normal operation (default)  
1: Reset  
2
0x02 General  
Configuration 0  
0x00  
OEN  
LVCMOS Output Enable. Self-clearing on loss of  
LOCK  
0: Disable, Tristate Outputs (default)  
1: Enable  
6
5
RW  
RW  
OEN/OSS_ Output Enable and Output Sleep State Select override  
SEL  
Override  
0: Disable over-write (default)  
1: Enable over-write  
Auto Clock OSC Clock Output. Enable On loss of lock, OSC  
Enable  
clock is output onto TxCLK±  
0: Disable (default)  
1: Enable  
4
RW  
OSS_SEL  
Output Sleep State Select. Enable Select to control  
output state during lock low period  
0: Disable, Tri-State Outputs (default)  
1: Enable  
3
2
1
0
RW  
RW  
RW  
RW  
BKWD  
Override  
Backwards Compatibility Mode Override  
0: Use MODE_SEL pin (default)  
1: Use register bit to set BKWD mode  
BKWD  
Mode  
Backwards Compatibility Mode Select  
0: Backwards Compatibility Mode disabled (default)  
1: Backwards Compatibility Mode enabled  
LFMODE  
Override  
Low Frequency Mode Override  
0: Use LFMODE pin (default)  
1: User register bit to set LFMODE  
LFMODE  
Low Frequency Mode  
0: 15MHz PCLK 96MHz (default)  
1: 5MHz PCLK < 15MHz  
(1) Addresses not listed are reserved.  
(2) Do not alter Reserved fields from their default values.  
Copyright © 2016, Texas Instruments Incorporated  
35  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Register Maps (continued)  
(1) (2)  
Table 8. Serial Control Bus Registers  
(continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
3
0x03 General  
Configuration 1  
7
6
0xF0  
Reserved  
RW  
Back  
channel  
CRC  
Back Channel CRC Generator Enable  
0: Disable  
1: Enable (default)  
Generator  
Enable  
5
4
RW  
RW  
Failsafe  
Outputs Failsafe Mode. Determines the pull direction  
for undriven LVCMOS inputs  
0: Pullup  
1: Pulldown (default)  
Filter  
Enable  
HS, VS, DE two clock filter. When enabled, pulses  
less than two full PCLK cycles on the DE, HS, and VS  
inputs will be rejected  
0: Filtering disable  
1: Filtering enable (default)  
3
RW  
I2C Pass-  
Through  
I2C Pass-Through Mode  
Read/Write transactions matching any entry in the  
DeviceAlias registers will be passed through to the  
remote serializer I2C interface.  
0: Pass-Through Disabled (default)  
1: Pass-Through Enabled  
2
1
RW  
RW  
Auto ACK  
Automatically Acknowledge I2C transactions  
independent of the forward channel Lock state.  
0: Disable (default)  
1: Enable  
DE Gate  
RGB  
Gate RGB data with DE signal. RGB data is not gated  
with DE by default. However, to enable packetized  
audio in DS90UB924-Q1, this bit must be set.  
0: Pass RGB data independent of DE in Backward  
Compatibility mode or interfacing to DS90UB925 or  
DS90UB927  
1: Gate RGB data with DE in Backward Compatibility  
mode or interfacing to DS90UB925 or DS90UB927  
0
Reserved  
4
0x04 BCC Watchdog  
Control  
7:1  
RW  
0xFE  
BCC  
Watchdog  
Timer  
BCC Watchdog Timer The watchdog timer allows  
termination of a control channel transaction if it fails to  
complete within a programmed amount of time. This  
field sets the Bidirectional Control Channel Watchdog  
Timeout value in units of 2 milliseconds. This field  
must not be set to 0.  
0
RW  
RW  
RW  
RW  
BCC  
Watchdog  
Disable  
Disable Bidirectional Control Channel Watchdog  
Timer  
0: Enable (default)  
1: Disable  
5
0x05 I2C Control 1  
7
0x1E  
I2C Pass-  
All  
I2C Pass-Through All Transactions. Pass all local I2C  
transactions to the remote serializer.  
0: Disable (default)  
1: Enable  
6:4  
3:0  
I2C SDA  
Hold  
Internal I2C SDA Hold Time  
This field configures the amount of internal hold time  
is provided for the SDA input relative to the SCL input.  
Units are 50ns.  
I2C Filter  
Depth  
I2C Glitch Filter Depth  
This field configures the maximum width of glitch  
pulses on the SCL and SDA inputs that will be  
rejected. Units are 5 nanoseconds.  
36  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
Register Maps (continued)  
(1) (2)  
Table 8. Serial Control Bus Registers  
(continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
6
0x06 I2C Control 2  
7
RW  
0x00  
Forward  
Channel  
Sequence  
Error  
Control Channel Sequence Error Detected  
Indicates a sequence error has been detected in  
forward control channel. It this bit is set, an error may  
have occurred in the control channel operation.  
6
RW  
Clear  
Sequence  
Error  
Clears the Sequence Error Detect bit This bit is not  
self-clearing.  
5
Reserved  
4:3  
RW  
SDA Output SDA Output Delay  
Delay This field configures output delay on the SDA output.  
Setting this value will increase output delay in units of  
50ns. Nominal output delay values for SCL to SDA  
are:  
00: 250ns (default)  
01: 300ns  
10: 350ns  
11: 400ns  
2
RW  
Local Write Disable Remote Writes to Local Registers through  
Disable  
Serializer (Does not affect remote access to I2C  
slaves)  
0: Remote write to local device registers (default)  
1: Stop remote write to local device registers  
1
0
RW  
RW  
I2C Bus  
Timer  
Speedup  
Speed up I2C Bus Watchdog Timer  
0: Timer expires after approximately 1s (default)  
1: Timer expires after approximately 50µs  
I2C Bus  
Timer  
Disable  
Disable I2C Bus Watchdog Timer.  
When the I2C Watchdog Timer may be used to detect  
when the I2C bus is free or hung up following an  
invalid termination of a transaction. If SDA is high and  
no signaling occurs for approximately 1 second, the  
I2C bus is assumed to be free. If SDA is low and no  
signaling occurs, the device will attempt to clear the  
bus by driving 9 clocks on SCL  
7
8
0x07 Remote ID  
7:1  
0
R
0x00  
0x00  
Remote ID Remote Serializer ID  
RW if bit 0 is set  
RW  
Freeze  
Freeze Serializer Device ID  
Device ID  
0: Auto-load Serializer Device ID (default)  
1: Prevent auto-loading of Serializer Device ID from  
the remote device. The ID will be frozen at the value  
written.  
0x08 Slave ID[0]  
7:1  
RW  
RW  
Slave  
7-bit Remote Slave Device ID 0  
Device ID0 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[0], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
9
0x09 Slave ID[1]  
7:1  
0x00  
Slave  
7-bit Remote Slave Device ID1  
Device ID1 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[1], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
37  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Register Maps (continued)  
(1) (2)  
Table 8. Serial Control Bus Registers  
(continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
10  
11  
12  
13  
14  
15  
16  
0x0A Slave ID[2]  
0x0B Slave ID[3]  
0x0C Slave ID[4]  
0x0D Slave ID[5]  
0x0E Slave ID[6]  
0x0F Slave ID[7]  
0x10 Slave Alias[0]  
7:1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Slave  
7-bit Remote Slave Device ID2  
Device ID2 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[2], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
7-bit Remote Slave Device ID3  
Device ID3 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[3], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
7-bit Remote Slave Device ID4  
Device ID4 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[4], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
7-bit Remote Slave Device ID5  
Device ID5 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[5], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
7-bit Remote Slave Device ID6  
Device ID6 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[6], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
7-bit Remote Slave Device ID 7  
Device ID7 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[7], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
7-bit Remote Slave Alias 0  
Device  
Alias 0  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[0], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
38  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
Register Maps (continued)  
(1) (2)  
Table 8. Serial Control Bus Registers  
(continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
17  
18  
19  
20  
21  
22  
23  
0x11 Slave Alias[1]  
0x12 Slave Alias[2]  
0x13 Slave Alias[3]  
0x14 Slave Alias[4]  
0x15 Slave Alias[5]  
0x16 Slave Alias[6]  
0x17 Slave Alias[7]  
7:1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Slave  
Device  
Alias 1  
7-bit Remote Slave Alias 1  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[1], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
Device  
Alias 2  
7-bit Remote Slave Alias 2  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[2], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
Device  
Alias 3  
7-bit Remote Slave Alias 3  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[3], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
Device  
Alias 4  
7-bit Remote Slave Alias 4  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[4], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
Device  
Alias 5  
7-bit Remote Slave Alias 5  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[5], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
Device  
Alias 6  
7-bit Remote Slave Alias 6  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[6], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
7-bit Remote Slave Alias 7  
Device  
Alias 7  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[7], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
39  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Register Maps (continued)  
(1) (2)  
Table 8. Serial Control Bus Registers  
(continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
24  
25  
27  
0x18 Mailbox[0]  
7:0  
RW  
RW  
RW  
0x00  
0x01  
0x00  
Mailbox  
Register 0  
Mailbox Register 0  
This register may be used to temporarily store  
temporary data, such as status or multi-master  
arbitration  
0x19 Mailbox[1]  
7:0  
7:0  
Mailbox  
Register 1  
Mailbox Register 1  
This register may be used to temporarily store  
temporary data, such as status or multi-master  
arbitration  
0x1B Frequency  
Counter  
Frequency  
Count  
Frequency Counter control  
A write to this register will enable a frequency counter  
to count the number of pixel clock during a specified  
time interval. The time interval is equal to the value  
written multiplied by the oscillator clock period  
(nominally 50ns). A read of the register returns the  
number of pixel clock edges seen during the enabled  
interval. The frequency counter will saturate at 0xff if it  
reaches the maximum value. The frequency counter  
will provide a rough estimate of the pixel clock period.  
If the pixel clock frequency is known, the frequency  
counter may be used to determine the actual oscillator  
clock frequency.  
28  
0x1C General Status  
7:4  
3
0x00  
Reserved  
R
R
I2S Locked I2S Lock Status  
0: I2S PLL controller not locked (default)  
1: I2S PLL controller locked to input I2S clock  
2
CRC Error  
CRC Error Detected  
0: No CRC errors detected  
1: CRC errors detected  
1
0
Reserved  
R
LOCK  
Deserializer CDR and PLL Locked to recovered clock  
frequency  
0: Deserializer not Locked (default)  
1: Deserializer Locked to recovered clock  
29  
0x1D GPIO0  
Configuration  
7:4  
3
R
0x20  
Revision ID Device Revision ID:  
0010: Production Device  
RW  
GPIO0  
Output  
Value  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the  
local GPIO direction is Output, and remote GPIO  
control is disabled.  
0: Output LOW (default)  
1: Output HIGH  
2
RW  
GPIO0  
Remote  
Enable  
Remote GPIO Control  
0: Disable GPIO control from remote device (default)  
1: Enable GPIO control from remote device. The  
GPIO pin will be an output, and the value is received  
from the remote device.  
1
0
RW  
RW  
GPIO0  
Direction  
Local GPIO Direction  
0: Output (default)  
1: Input  
GPIO0  
Enable  
GPIO Function Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
40  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
Register Maps (continued)  
(1) (2)  
Table 8. Serial Control Bus Registers  
(continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
30  
0x1E GPIO1 and  
GPIO2  
7
RW  
0x00  
GPIO2  
Output  
Value  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the  
local GPIO direction is Output, and remote GPIO  
control is disabled.  
Configuration  
0: Output LOW (default)  
1: Output HIGH  
6
RW  
GPIO2  
Remote  
Enable  
Remote GPIO Control  
0: Disable GPIO control from remote device (default)  
1: Enable GPIO control from remote device. The  
GPIO pin will be an output, and the value is received  
from the remote device.  
5
4
3
RW  
RW  
RW  
GPIO2  
Direction  
Local GPIO Direction  
0: Output (default)  
1: Input  
GPIO2  
Enable  
GPIO Function Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
GPIO1  
Output  
Value  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the  
local GPIO direction is Output, and remote GPIO  
control is disabled.  
0: Output LOW (default)  
1: Output HIGH  
2
RW  
GPIO1  
Remote  
Enable  
Remote GPIO Control  
0: Disable GPIO control from remote device (default)  
1: Enable GPIO control from remote device. The  
GPIO pin will be an output, and the value is received  
from the remote device.  
1
0
RW  
RW  
GPIO1  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO1  
Enable  
GPIO function enable  
1: Enable GPIO operation  
0: Enable normal operation  
31  
0x1F GPIO3  
Configuration  
7:4  
3
0x00  
Reserved  
RW  
RW  
GPIO3  
Output  
Value  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the  
local GPIO direction is Output, and remote GPIO  
control is disabled.  
0: Output LOW (default)  
1: Output HIGH  
2
GPIO3  
Remote  
Enable  
Remote GPIO Control  
0: Disable GPIO control from remote device (default)  
1: Enable GPIO control from remote device. The  
GPIO pin will be an output, and the value is received  
from the remote device.  
1
0
RW  
RW  
GPIO3  
Direction  
Local GPIO Direction  
0: Output (default)  
1: Input  
GPIO3  
Enable  
GPIO Function Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
Copyright © 2016, Texas Instruments Incorporated  
41  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Register Maps (continued)  
(1) (2)  
Table 8. Serial Control Bus Registers  
(continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
32  
0x20 GPIO_REG5  
and  
7
RW  
0x00  
GPIO_REG Local GPIO Output Value This value is output on the  
6 Output  
Value  
GPIO pin when the GPIO function is enabled, and the  
local GPIO direction is Output.  
0: Output LOW (default)  
GPIO_REG6  
Configuration  
1: Output HIGH  
6
5
Reserved  
RW  
RW  
RW  
GPIO_REG Local GPIO Direction  
6 Direction 0: Output (default)  
1: Input  
4
3
GPIO_REG GPIO Function Enable  
6 Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
GPIO_REG Local GPIO Output Value This value is output on the  
5 Output  
Value  
GPIO pin when the GPIO function is enabled, and the  
local GPIO direction is Output.  
0: Output LOW (default)  
1: Output HIGH  
2
1
Reserved  
RW  
RW  
RW  
GPIO_REG Local GPIO Direction  
5 Direction 0: Output (default)  
1: Input  
0
7
GPIO_REG GPIO Function Enable  
5 Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
33  
0x21 GPIO_REG7  
and  
0x00  
GPIO_REG Local GPIO Output Value This value is output on the  
8 Output  
Value  
GPIO pin when the GPIO function is enabled, and the  
local GPIO direction is Output.  
0: Output LOW (default)  
GPIO_REG8  
Configuration  
1: Output HIGH  
6
5
Reserved  
RW  
RW  
RW  
GPIO_REG Local GPIO Direction  
8 Direction 0: Output (default)  
1: Input  
4
3
GPIO_REG GPIO Function Enable  
8 Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
GPIO_REG Local GPIO Output Value This value is output on the  
7 Output  
Value  
GPIO pin when the GPIO function is enabled, and the  
local GPIO direction is Output.  
0: Output LOW (default)  
1: Output HIGH  
2
1
Reserved  
RW  
RW  
GPIO_REG Local GPIO Direction  
7 Direction 0: Output (default)  
1: Input  
0
GPO_REG GPIO Function Enable  
7 Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
42  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
Register Maps (continued)  
(1) (2)  
Table 8. Serial Control Bus Registers  
(continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
34  
0x22 Data Path  
Control  
7
RW  
0x00  
Override FC Override Configuration Loaded by Forward Channel  
Configuratio 0: Allow forward channel loading of this register  
n
(default)  
1: Disable loading of this register from the forward  
channel, keeping locally written values intact  
Bits [6:0] are RW if this bit is set  
6
5
Reserved  
RW  
RW  
DE Polarity This bit indicates the polarity of the DE (Data Enable)  
signal.  
0: DE is positive (active high, idle low) (default)  
1: DE is inverted (active low, idle high)  
4
3
I2S  
Repeater  
Regen  
Regenerate I2S Data From Repeater I2S Pins  
0: Output packetized audio on RGB video output pins.  
(default)  
1: Do not output packaged audio data on RGB video  
output pins.  
RW  
I2S  
I2S Channel B Override  
Channel B  
Enable  
Override  
0: Set I2S Channel B Disabled (default)  
1: Set I2S Channel B Enable from register  
2
1
RW  
RW  
18-bit Video Video Color Depth Mode  
Select  
0: Select 24-bit video mode (default)  
1: Select 18-bit video mode  
I2S  
Select I2S Transport Mode  
Transport  
Select  
0: Enable I2S Data Island Transport (default)  
1: Enable I2S Data Forward Channel Frame  
Transport  
0
RW  
I2S  
I2S Channel B Enable  
Channel B  
Enable  
0: I2S Channel B disabled (default)  
1: Enable I2S Channel B  
35  
0x23 Rx Mode Status  
7
6:4  
3
0x10  
Reserved  
Reserved  
RW  
RW  
RW  
RW  
LFMODE  
Status  
Low Frequency Mode (LFMODE) pin status  
0: 15 TxCLKOUT 96MHz (default)  
1: 5 TxCLKOUT < 15MHz  
2
1
0
REPEAT  
Status  
Repeater Mode (REPEAT) pin Status  
0: Non-repeater (default)  
1: Repeater  
BKWD  
Status  
Backward Compatible Mode (BKWD) Status  
0: Compatible to DS90UB925/7Q (default)  
1: Backward compatible to DS90UR905/7Q  
I2S  
Channel B  
Status  
I2S Channel B Mode (I2S_DB) Status  
0: I2S_DB inactive (default)  
1: I2S_DB active  
36  
0x24 BIST Control  
7:4  
3
0x08  
Reserved  
RW  
RW  
BIST Pin  
Config  
BIST Pin Configuration  
0: BIST enabled from register  
1: BIST enabled from pin (default)  
2:1  
OSC Clock Internal OSC clock select for Functional Mode or  
Source  
BIST. Functional Mode when PCLK is not present and  
0x03[1]=1.  
00: 33 MHz Oscillator (default)  
01: 33 MHz Oscillator  
Note: In LFMODE=1, the internal oscillator is  
12.5MHz  
0
RW  
BIST  
BIST Control  
Enable  
0: Disabled (default)  
1: Enabled  
Copyright © 2016, Texas Instruments Incorporated  
43  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Register Maps (continued)  
(1) (2)  
Table 8. Serial Control Bus Registers  
(continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
37  
0x25 BIST Error  
7:0  
R
0x00  
BIST Error Errors Detected During BIST  
Count  
Records the number (up to 255) of forward-channel  
errors detected during BIST. The value stored in this  
register is only valid after BIST terminates (BISTEN =  
0). Resets on PDB = 0 or start of another BIST  
(BISTEN = 1).  
38  
39  
0x26 SCL High Time  
0x27 SCL Low Time  
7:0  
7:0  
RW  
RW  
0x83  
0x84  
SCL High  
Time  
I2C Master SCL High Time  
This field configures the high pulse width of the SCL  
output when the deserializer is the Master on the local  
I2C bus. Units are 50 ns for the nominal oscillator  
clock frequency.  
SCL Low  
Time  
I2C SCL Low Time  
This field configures the low pulse width of the SCL  
output when the deserializer is the Master on the local  
I2C bus. This value is also used as the SDA setup  
time by the I2C Slave for providing data prior to  
releasing SCL during accesses over the Bidirectional  
Control Channel. Units are 50 ns for the nominal  
oscillator clock frequency.  
40  
0x28 Data Path  
Control 2  
7
RW  
0x00  
Block I2S  
Override Forward Channel Configuration  
Auto Config 0: Enable forward-channel loading of this register  
1: Disable loading of this register from the forward  
channel, keeping local values intact  
6:4  
3
Reserved  
RW  
RW  
Aux I2S  
Enable  
Auxiliary I2S Channel Enable  
0: Normal GPIO[1:0] operation  
1: Enable Aux I2S channel on GPIO1 (AUX word  
select) and GPIO0 (AUX data)  
2
I2S Disable Disable All I2S Outputs  
0: I2S Outputs Enabled (default)  
1: I2S Outputs Disabled  
1
0
Reserved  
RW  
I2S  
Surround  
Enable 5.1- or 7.1-channel I2S audio transport  
0: 2-channel or 4-channel I2S audio is enabled as  
configured in register or MODE_SEL (default)  
1: 5.1- or 7.1-channel audio is enabled  
Note that I2S Data Island Transport is the only option  
for surround audio. Also note that in a repeater, this  
bit may be overridden by the in-band I2S mode  
detection.  
44  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
Register Maps (continued)  
(1) (2)  
Table 8. Serial Control Bus Registers  
(continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
41  
0x29 FRC Control  
7
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x00  
Timing  
Mode  
Select  
Select Display Timing Mode  
0: DE only Mode (default)  
1: Sync Mode (VS,HS)  
6
5
4
3
2
1
0
7
6
HS Polarity Horizontal Sync Polarity Select  
0: Active High (default)  
1: Active Low  
VS Polarity Vertical Sync Polarity Select  
0: Active High (default)  
1: Active Low  
DE Polarity Data Enable Sync Polarity Select  
0: Active High (default)  
1: Active Low  
FRC2  
Enable  
FRC2 Enable  
0: FRC2 disable (default)  
1: FRC2 enable  
FRC1  
Enable  
FRC1 Enable  
0: FRC1 disable (default)  
1: FRC1 enable  
Hi-FRC2  
Enable  
Hi-FRC2 Enable  
0: Hi-FRC2 enable (default)  
1: Hi-FRC2 disable  
Hi-FRC1  
Enable  
Hi-FRC1 Enable  
0: Hi-FRC1 enable (default)  
1: Hi-FRC1 disable  
43  
0x2B I2S Control  
0x00  
I2S PLL  
Override  
Override I2S PLL  
0: PLL override disabled (default)  
1: PLL override enabled  
I2S PLL  
Enable  
Enable I2S PLL  
0: I2S PLL is on for I2S data jitter cleaning (default)  
1: I2S PLL is off. No jitter cleaning  
5:1  
0
Reserved  
RW  
RW  
I2S Clock  
Edge  
I2S Clock Edge Select  
0: I2S Data is strobed on the Falling Clock Edge  
(default)  
1: I2S Data is strobed on the Rising Clock Edge  
53  
0x35 AEQ Control  
7
6
0x00  
Reserved  
AEQ  
Restart  
Restart AEQ adaptation from initial (Floor) values  
0: Normal operation (default)  
1: Restart AEQ adaptation  
Note: This bit is not self-clearing. It must be set, then  
reset.  
5
4
RW  
RW  
LCBL  
Override  
Override LCBL Mode Set by MODE_SEL  
0: LCBL controlled by MODE_SEL pin  
1: LCBL controlled by register  
LCBL  
Set LCBL Mode  
0: LCBL Mode disabled  
1: LCBL Mode enabled. AEQ Floor value is controlled  
from Adaptive EQ MIN/MAX register  
3:0  
7:2  
1
Reserved  
Reserved  
57  
0x39 PG Internal  
Clock Enable  
0x00  
RW  
PG INT  
CLK  
Enable Pattern Generator Internal Clock  
This bit must be set to use the Pattern Generator  
Internal Clock Generation  
0: Pattern Generator with external PCLK  
1: Pattern Generator with internal PCLK  
See TI Application Note AN-2198 for details  
0
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
45  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Register Maps (continued)  
(1) (2)  
Table 8. Serial Control Bus Registers  
(continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
58  
0x3A I2S DIVSEL  
7
RW  
0x00  
MCLK Div  
Override  
Override MCLK Divider Setting  
0: No override for MCLK divider (default)  
1: Override divider select for MCLK  
6:4  
3:0  
7:6  
5:0  
RW  
MCLK Div  
See Table 4  
Reserved  
59  
65  
0x3B Adaptive EQ  
Status  
R
R
Reserved  
EQ Status  
Equalizer Status  
Current equalizer level set by AEQ or Override  
Register  
0x41 Link Error Count  
7:5  
4
0x03  
Reserved  
RW  
RW  
Link Error  
Count  
Enable  
Enable serial link data integrity error count.  
1: Enable error count  
0: Disable  
3:0  
Link Error  
Count  
Link error count threshold. Counter is pixel clock  
based. CLK0, CLK1, and DCA are monitored for link  
errors. If error count is enabled, Deserializer will lose  
lock once error count reaches threshold. If disabled,  
Deserializer will lose lock with one error. Video, audio,  
GPIO, and I2C data bits are not checked for errors.  
68  
0x44 Adaptive  
Equalizer  
7:5  
RW  
0x60  
EQ Stage 1 EQ Stage 1 select value. Used if adaptive EQ is  
Select  
Value  
bypassed. Used if adaptive EQ is bypassed.  
Bypass  
4
Reserved  
3:1  
RW  
RW  
EQ Stage 2 EQ Stage 2 select value. Used if adaptive EQ is  
Select  
Value  
bypassed Used if adaptive EQ is bypassed.  
0
Adaptive  
Bypass Adaptive EQ  
EQ Bypass Overrides Adaptive EQ search and sets the EQ to the  
static value configured in this register  
0: Enable adaptive EQ (default)  
1: Disable adaptive EQ (to write EQ select values)  
69  
73  
0x45 Adaptive EQ  
MIN/MAX  
7:4  
3:0  
RW  
RW  
0x88  
0x00  
Reserved  
Adaptive  
EQ Floor  
Adaptive Equalizer Floor Value  
Sets the AEQ floor value when Long Cable Mode  
(LCBL) is enabled by register or MODE_SEL  
0x49 Map Select  
7
6
R
MAPSEL  
Pin Status  
Returns Status of MAPSEL pin  
RW  
MAPSEL  
Override  
Map Select (MAPSEL) Setting Override  
0: MAPSEL set from pin  
1: MAPSEL set from register  
5
RW  
MAPSEL  
Map Select (MAPSEL) Setting  
0: LSBs on TxOUT3±  
1: MSBs on TxOUT3±  
4:0  
7:2  
1:0  
Reserved  
Reserved  
75  
86  
0x4B LVDS Driver  
Setting  
0x08  
0x08  
RW  
RW  
LVDS VOD  
Control  
00: 400mV differential (default)  
01: 600mV differential  
0x56 Loop-Through  
Driver  
7:4  
3
Reserved  
Loop-  
Through  
Driver  
Enable CML Loop-Through Driver  
(CMLOUTP/CMLOUTN)  
0: Enable  
Enable  
1: Disable (default)  
2:0  
Reserved  
46  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
Register Maps (continued)  
(1) (2)  
Table 8. Serial Control Bus Registers  
(continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
100  
0x64 Pattern  
Generator  
Control  
7:4  
RW  
0x10  
Pattern  
Generator  
Select  
Fixed Pattern Select  
Selects the pattern to output when in Fixed Pattern  
Mode. Scaled patterns are evenly distributed across  
the horizontal or vertical active regions. This field is  
ignored when Auto-Scrolling Mode is enabled.  
xxxx: normal/inverted  
0000: Checkerboard  
0001: White/Black (default)  
0010: Black/White  
0011: Red/Cyan  
0100: Green/Magenta  
0101: Blue/Yellow  
0110: Horizontal Black-White/White-Black  
0111: Horizontal Black-Red/White-Cyan  
1000: Horizontal Black-Green/White-Magenta  
1001: Horizontal Black-Blue/White-Yellow  
1010: Vertical Black-White/White— Black  
1011: Vertically Scaled Black to Red/White to Cyan  
1100: Vertical Black-Green/White-Magenta  
1101: Vertical Black-Blue/White-Yellow  
1110: Custom color (or its inversion) configured in  
PGRS, PGGS, PGBS registers  
1111: VCOM  
See TI App Note AN-2198  
3
2
Reserved  
RW  
Color Bars Enable Color Bars Pattern  
Pattern  
0: Color Bars disabled (default)  
1: Color Bars enabled  
Overrides the selection from bits [7:4]  
1
0
RW  
RW  
VCOM  
Pattern  
Reverse  
Reverse order of color bands in VCOM pattern  
0: Color sequence from top left is (YCBR) (default)  
1: Color sequence from top left is (RBCY)  
Pattern  
Pattern Generator Enable  
Generator  
Enable  
0: Disable Pattern Generator (default)  
1: Enable Pattern Generator  
See TI App Note AN-2198  
Copyright © 2016, Texas Instruments Incorporated  
47  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Register Maps (continued)  
(1) (2)  
Table 8. Serial Control Bus Registers  
(continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
101  
0x65 Pattern  
Generator  
Configuration  
7
6
0x00  
Reserved  
RW  
Checkerboa Scale Checkerboard Patterns:  
rd Scale  
0: Normal operation (each square is 1x1 pixel)  
(default)  
1: Scale checkered patterns (VCOM and  
checkerboard) by 8 (each square is 8x8 pixels)  
Setting this bit gives better visibility of the checkered  
patterns.  
5
4
RW  
RW  
Custom  
Use Custom Checkerboard Color  
Checkerboa 0: Use white and black in the Checkerboard pattern  
rd  
(default)  
1: Use the Custom Color and black in the  
Checkerboard pattern  
PG 18–bit  
Mode  
18-bit Mode Select:  
0: Enable 24-bit pattern generation. Scaled patterns  
use 256 levels of brightness. (default)  
1: Enable 18-bit color pattern generation. Scaled  
patterns will have 64 levels of brightness and the R,  
G, and B outputs use the six most significant color  
bits.  
3
2
RW  
RW  
External  
Clock  
Select External Clock Source:  
0: Selects the internal divided clock when using  
internal timing (default)  
1: Selects the external pixel clock when using internal  
timing. This bit has no effect in external timing mode  
(PATGEN_TSEL = 0).  
Timing  
Select  
Timing Select Control:  
0: the Pattern Generator uses external video timing  
from the pixel clock, Data Enable, Horizontal Sync,  
and Vertical Sync signals. (default)  
1: The Pattern Generator creates its own video timing  
as configured in the Pattern Generator Total Frame  
Size, Active Frame Size. Horizontal Sync Width,  
Vertical Sync Width, Horizontal Back Porch, Vertical  
Back Porch, and Sync Configuration registers.  
1
0
RW  
RW  
Color Invert Enable Inverted Color Patterns:  
0: Do not invert the color output. (default)  
1: Invert the color output.  
Auto Scroll Auto Scroll Enable:  
0: The Pattern Generator retains the current pattern.  
(default)  
1: The Pattern Generator will automatically move to  
the next enabled pattern after the number of frames  
specified in the Pattern Generator Frame Time  
(PGFT) register.  
See TI App Note AN-2198  
102  
103  
0x66 PGIA  
7:0  
7:0  
RW  
RW  
0x00  
0x00  
PG Indirect This 8-bit field sets the indirect address for accesses  
Address  
to indirectly-mapped registers. It must be written prior  
to reading or writing the Pattern Generator Indirect  
Data register.  
See TI App Note AN-2198  
0x67 PGID  
PG Indirect When writing to indirect registers, this register  
Data  
contains the data to be written. When reading from  
indirect registers, this register contains the read back  
value.  
See TI App Note AN-2198 AN-2198  
48  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
Register Maps (continued)  
(1) (2)  
Table 8. Serial Control Bus Registers  
(continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
110  
0x6E GPI Pin Status  
1
7
R
R
R
0x00  
GPI7 Pin  
Status  
GPI7 Pin Status. Readable when REG_GPIO7 is set  
as an input.  
6
5
GPI6 Pin  
Status  
GPI6 Pin Status. Readable when REG_GPIO6 is set  
as an input.  
GPI5 Pin  
Status  
GPI5 Pin Status. Readable when REG_GPIO5 is set  
as an input.  
4
3
Reserved  
R
R
R
R
GPI3 Pin  
Status  
GPI3 Pin Status. Readable when GPIO3 is set as an  
input.  
2
1
0
GPI2 Pin  
Status  
GPI2 Pin Status. Readable when GPIO2 is set as an  
input.  
GPI1 Pin  
Status  
GPI1 Pin Status. Readable when GPIO1 is set as an  
input.  
GPI0 Pin  
Status  
GPI0 Pin Status. Readable when GPIO0 is set as an  
input.  
111  
0x6F GPI Pin Status  
2
7:1  
0
0x00  
Reserved  
R
GPI8 Pin  
Status  
GPI8 Pin Status. Readable when REG_GPIO8 is set  
as an input.  
Copyright © 2016, Texas Instruments Incorporated  
49  
 
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers must  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DS90UB924-Q1 deserializer, in conjunction with a DS90UB921-Q1, DS90UB925Q-Q1 or DS90UB927Q-Q1  
serializer, provides a solution for distribution of digital video and audio within automotive infotainment systems. It  
converts a high-speed serialized interface with an embedded clock, delivered over a single signal pair (FPD-Link  
III), to four LVDS data/control streams, one LVDS clock pair (FPD-Link (OpenLDI)), and I2S audio data. The  
serial bus scheme, FPD-Link III, supports high-speed forward channel data transmission, and low-speed full  
duplex back channel communication over a single differential link. Consolidation of audio, video data, and control  
over a single differential pair reduces the interconnect size and weight, while also eliminating skew issues and  
simplifying system design.  
8.2 Typical Application  
Figure 37 shows a typical application of the DS90UB924-Q1 deserializer for an 96 MHz 24-bit color display  
application. Inputs utilize 0.1-µF coupling capacitors to the line, and the deserializer provides internal termination.  
The voltage rating of the coupling capacitors must be 50 V and must use a small body capacitor size, such as  
0402 or 0602, to help ensure good signal integrity. The FPD-Link (OpenLDI) LVDS differential outputs require  
100-termination resistors at the receiving device or display.  
Bypass capacitors must be placed near the power supply pins. At a minimum, three 4.7-μF capacitors, one  
placed at each power supply pin, are required for local device bypassing. If additional bypass capacitors are  
used, place the smaller value components closer to the pin. Ferrite beads are required on the two supplies  
(VDD33 and VDDIO) for effective noise suppression. Connect pins VDD33_A and VDD33_B directly to ensure ESD  
performance. The interface to the display is FPD-Link (OpenLDI) LVDS. The VDDIO pin may be connected to 3.3  
V or 1.8 V. Place a delay capacitor (>10 µF) and pullup resistor (10 kΩ) on the PDB signal to delay the enabling  
of the device until power is stable.  
50  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
Typical Application (continued)  
3.3V  
DS90UB924-Q1  
3.3V / 1.8V  
VDDIO  
VDD33_A  
C6  
FB1  
FB2  
C4  
CAPLV25  
VDD33_B  
CAPL12  
C7  
C11  
C12  
C5  
C8  
CAPLV12  
CAPP12  
C9  
CAPR12  
C10  
CAPI2S  
C13  
PASS  
LOCK  
C1  
Serial  
FPD-Link III  
Interface  
TxCLKOUT-  
TxCLKOUT+  
RIN+  
RIN-  
RTERM  
C2  
CMF  
TxOUT3-  
TxOUT3+  
TxOUT2-  
TxOUT2+  
RTERM  
C3  
FPD-Link  
Interface  
RTERM  
CMLOUTP  
CMLOUTN  
TxOUT1-  
TxOUT1+  
RTERM  
OEN  
OSS_SEL  
LVCMOS  
TxOUT0-  
TxOUT0+  
BISTEN  
Control  
RTERM  
MAPSEL  
LFMODE  
Interface  
VDD33  
VDD33  
R1  
VDD33 or VDDIO=3.3V±0.3V  
R5  
IDx  
SCL  
SDA  
INTB_IN  
PDB  
R2  
NOTE:  
FB1-FB2 (Optional): Impedance = 1kQ,  
Low DC resistance (<1Q)  
C14  
VDD33  
C1-C3 = 0.1 µF (50 WV; C1, C2: 0402; C3: 0603)  
C4-C13 = 4.7 µF  
C14 = > 10 µF  
R1 and R2 (see IDx Resistor Value Table)  
R3 and R4 (see MODE_SEL Resistor Value Table)  
R5 = 10kQ  
R3  
R4  
GPIO[1:0]  
MCLK  
I2S_CLK  
I2S_WC  
I2S_Dx  
MODE_SEL  
I2S / GPIO  
Interface  
4
RESx  
DAP (GND)  
RPU = 4.7kQ  
RTERM = 100Q  
Copyright © 2016, Texas Instruments Incorporated  
Figure 37. Typical Connection Diagram  
Copyright © 2016, Texas Instruments Incorporated  
51  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Typical Application (continued)  
FPD-Link  
(Open LDI)  
VDD33  
VDDIO  
V
DDIO  
V
DD33  
(3.3V) (1.8V or 3.3V)  
(1.8Vor3.3V) (3.3V)  
R[7:0]  
G[7:0]  
B[7:0]  
HS  
VS  
DE  
PCLK  
TxOUT3+/-  
TxOUT2+/-  
FPD-Link III  
1 Pair/AC Coupled  
HOST  
Graphics  
Processor  
LVDS Display  
720p or  
Graphic  
DOUT+  
RIN+  
RIN-  
TxOUT1+/-  
TxOUT0+/-  
DOUT-  
Proccesor  
100Q STP Cable  
TxCLKOUT+/-  
INTB_IN  
DS90UB921-Q1  
Serializer  
PDB  
DS90UB924-Q1  
Deserializer  
3
OEN  
LOCK  
PASS  
I2S  
MCLK  
SCL  
SDA  
IDx  
I2S AUDIO  
(STEREO)  
OSS_SEL  
PDB  
MAPSEL  
LFMODE  
BISTEN  
6
MODE_SEL  
INTB  
SCL  
SDA  
IDx  
DAP  
MODE_SEL  
Copyright © 2016, Texas Instruments Incorporated  
Figure 38. Typical Display System Diagram  
8.2.1 Design Requirements  
For the typical design application, use the following as input parameters:  
Table 9. Design Parameters  
DESIGN PARAMETER  
VDDIO  
EXAMPLE VALUE  
1.8 V or 3.3 V  
3.3 V  
VDD33  
330nF for RIN+, 250nF for RIN-  
(Single-ended)  
100 nF for RIN+/- (Differential)  
AC Coupling Capacitor for RIN±  
PCLK Frequency  
96 MHz  
8.2.2 Detailed Design Procedure  
8.2.2.1 Transmission Media  
The DS90UB927Q-Q1/DS90UB921-Q1/DS90UB925Q-Q1 and DS90UB924-Q1 chipset is intended to be used in  
a point-to-point configuration through a shielded twisted pair cable. The serializer and deserializer provide  
internal termination to minimize impedance discontinuities. The interconnect (cable and connector) between the  
serializer and deserializer must have a differential impedance of 100 Ω. The maximum length of cable that can  
be used is dependant on the quality of the cable (gauge, impedance), connector, board (discontinuities, power  
plane), the electrical environment (for example, power stability, ground noise, input clock jitter, PCLK frequency,  
and so forth.) and the application environment.  
The resulting signal quality at the receiving end of the transmission media may be assessed by monitoring the  
differential eye opening of the serial data stream. The Receiver CML Monitor Driver Output Specifications define  
the acceptable data eye opening width and eye opening height. use a differential probe to measure across the  
termination resistor at the CMLOUTP/CMLOUTN pins.  
52  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
8.2.2.2 Display Application  
The DS90UB924-Q1, in conjunction with the DS90UB921-Q1, is intended for interfacing with a host (graphics  
processor) and a display supporting 24-bit color depth (RGB888) and high-definition (720p) digital video format. It  
can receive an 8-bit RGB stream with a pixel clock rate up to 96 MHz together with three control bits (VS, HS,  
and DE) and four I2S audio streams.  
8.2.3 Application Curves  
Time (1.25 ns/DIV)  
Time (250 ps/DIV)  
Figure 39. 96 MHz TxCLKOUT± and TxOUT0± Data Output  
Figure 40. CMLOUT of Deserializer from 96 MHz Input  
Clock  
9 Power Supply Recommendations  
9.1 Power Up Requirements and PDB Pin  
When VDDIO and VDD33 are powered separately, the VDDIO supply (1.8V or 3.3V) should ramp 100us before  
the other supply, VDD33. If VDDIO is tied with VDD33, both supplies may ramp at the same time. The VDDs  
(VDD33 and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. If the PDB pin is not  
controlled by a microcontroller, a large capacitor on the pin is needed to ensure PDB arrives after all the VDDs  
have settled to the recommended operating voltage. When PDB pin is pulled to VDDIO = 3.0V to 3.6V or  
VDD33, it is recommended to use a 10 kpull-up and a >10 uF cap to GND to delay the PDB input signal.  
A minimum low pulse of 2ms is required when toggling the PDB pin to perform a hard reset.  
All inputs must not be driven until VDD33 and VDDIO has reached its steady state value.  
Copyright © 2016, Texas Instruments Incorporated  
53  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Power Up Requirements and PDB Pin (continued)  
t0  
VDDIO  
GND  
t3  
VDD33  
GND  
t1  
VDD33  
t4  
VPDB_HIGH  
PDB(*)  
VPDB_LOW  
GND  
(*) It is recommended to assert PDB (active High) with a microcontroller rather than an RC filter  
network to help ensure proper sequencing of PDB pin after settling of power supplies.  
Figure 41. Power Sequence  
Table 10. Power-Up Sequencing Constraints  
Symbol  
VDDIO  
VDD33  
Description  
Test Conditions  
Min  
3.0  
Typ  
Max  
3.6  
Units  
V
V
V
VDDIO voltage range  
1.71  
3.0  
1.89  
3.6  
VDD33 voltage range  
PDB LOW threshold  
Note: VPDB must not exceed  
limit for respective I/O voltage  
before 90% voltage of VDD33  
VPDB_LOW  
VDDIO = 3.3V ± 10%  
VDDIO = 3.3V ± 10%  
0.8  
V
VPDB_HIGH  
t0  
PDB HIGH threshold  
2.0  
1.5  
V
These time constants are specified for  
rise time of power supply voltage ramp  
(10% - 90%)  
VDDIO rise time  
0.05  
0.05  
ms  
These time constants are specified for  
rise time of power supply voltage ramp  
(10% - 90%)  
t3  
VDD33 rise time  
1.5  
ms  
ms  
VIL of rising edge (VDDIO ) to VIL of  
rising edge (VDD33)  
The power supplies may be ramped  
simultaneously. If sequenced, VDDIO  
must be first.  
t1  
VDD33 delay time  
0
The part is powered up after the startup  
time has elapsed from the moment PDB  
goes HIGH. Local I2C is available to  
read/write 948/940 registers after this  
time.  
t4  
Startup time  
1
ms  
54  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
9.2 Analog Power Signal Routing  
All power inputs must be tied to the main VDD source (for example, battery), unless the user wishes to power it  
from another source. (that is, external LDO output).  
The analog VDD inputs power the internal bias and error amplifiers, so they must be tied to the main VDD. The  
analog VDD inputs must have an input voltage between 2.8 V and 5.5 V, as specified in the Recommended  
Operating Conditions table earlier in the datasheet.  
The other VINs (VINLDO1, VINLDO2) can have inputs lower than 2.8 V, as long as the input it higher than the  
programmed output (0.3 V).  
The analog and digital grounds must be tied together outside of the chip to reduce noise coupling.  
10 Layout  
10.1 Layout Guidelines  
Circuit board layout and stack-up for the LVDS serializer and deserializer devices must be designed to provide  
low-noise power to the device. Good layout practice also separates high frequency or high-level inputs and  
outputs to minimize unwanted stray noise, feedback, and interference. Power system performance may be  
greatly improved by using thin dielectrics (2 to 4 mil) for power / ground sandwiches. This arrangement utilizes  
the plane capacitance for the PCB power system and has low inductance, which has proven effectiveness  
especially at high frequencies, and makes the value and placement of external bypass capacitors less critical.  
External bypass capacitors must include both RF ceramic and tantalum electrolytic types. RF capacitors may use  
values in the range of 0.01 μF to 10 μF. Tantalum capacitors may be in the 2.2 μF to 10 μF range. The voltage  
rating of the capacitors must be at least 5X the power supply voltage being used.  
TI recommends MLCC surface mount capacitors due to their smaller parasitic properties. When using multiple  
capacitors per supply pin, locate the smaller value closer to the pin. TI recommends a large bulk capacitor  
typically in the 50 μF to 100 μF range at the point of power entry, which smooths low frequency switching noise  
connect power and ground pins directly to the power and ground planes with bypass capacitors connected to the  
plane with via on both ends of the capacitor. Connecting power or ground pins to an external bypass capacitor  
increases the inductance of the path. TI recommends a small body size X7R chip capacitor, such as 0603 or  
0805, for external bypass. Because a small body sized capacitor has less inductance. The user must pay  
attention to the resonance frequency of these external bypass capacitors, usually in the range of 20 MHz to 30  
MHz. To provide effective bypassing, multiple capacitors are often used to achieve low impedance between the  
supply rails over the frequency of interest. At high frequency, it is also a common practice to use two vias from  
power and ground pins to the planes, reducing the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as  
PLLs. This device requires only one common ground plane to connect all device related ground pins.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the LVDS  
lines to prevent coupling from the LVCMOS lines to the LVDS lines. Closely coupled differential lines of 100 Ω  
are typically recommended for LVDS interconnect. The closely coupled lines help to ensure that coupled noise  
will appear as common mode and thus is rejected by the receivers. The tightly coupled lines also radiate less.  
At least 9 thermal vias are necessary from the device center DAP to the ground plane. They connect the device  
ground to the PCB ground plane, as well as conduct heat from the exposed pad of the package to the PCB  
ground plane. More information on the WQFN package, including PCB design and manufacturing requirements,  
is provided in AN-1187 Leadless Leadframe Package (LLP) (AN-2198).  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the WQFN package is highly recommended to improve  
board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP. Stencil parameters for aperture opening and via locations are shown below:  
Copyright © 2016, Texas Instruments Incorporated  
55  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
Layout Guidelines (continued)  
Table 11. No Pullback WQFN Stencil Aperture Summary  
DEVICE  
PIN  
COUNT  
MKT Dwg  
PCB I/O  
Pad Size  
(mm)  
PCB  
PITCH  
(mm)  
PCB DAP  
SIZE (mm)  
STENCIL I/O  
APERTURE  
(mm)  
STENCIL DAP  
Aperture (mm)  
NUMBER of  
DAP  
APERTURE  
OPENINGS  
DS90UB924-Q1  
48  
RHS0048A 0.25 x 0.4  
0.5  
5.1 x 5.1  
0.25 x 0.6  
5.1 x 5.1  
1
Figure 42 shows the PCB layout example derived from the layout design of the DS90UB924QEVM evaluation  
board. The graphic and layout description are used to determine both proper routing and proper solder  
techniques when designing the Serializer board.  
10.1.1 CML Interconnect Guidelines  
See Application Note 1108 Channel-Link PCB and Interconnect Design-In Guidelines (SNLA008) and  
Application Note 905 Transmission Line RAPIDESIGNER Operation and Applications Guide (SNLA035) for  
full details.  
Use 100 Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
– S = space between the pair  
– 2S = space between pairs  
– 3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500 Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Terminate as close to the TX outputs and RX inputs as possible  
Additional general guidance can be found in the LVDS Owner’s Manual (SNLA187).  
56  
Copyright © 2016, Texas Instruments Incorporated  
DS90UB924-Q1  
www.ti.com.cn  
ZHCSEY4 APRIL 2016  
10.2 Layout Example  
Length-Matched  
OpenLDI Traces  
High-Speed Traces  
AC Capacitors  
Figure 42. DS90UB924-Q1 Deserializer Example Layout  
Figure 43. 48-Pin WQFN Stencil Example of Via and Opening Placement  
版权 © 2016, Texas Instruments Incorporated  
57  
DS90UB924-Q1  
ZHCSEY4 APRIL 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
相关文档如下:  
AN-1108《通道链路 PCB 和互连设计指南》SNLA008  
AN-905《传输线路 RAPIDESIGNER 操作和 应用 指南》SNLA035  
AN-1187《无引线框架封装 (LLP)SNOA401  
LVDS 所有者手册》SNLA187  
AN-2173《通过具有双向控制通道的 FPD-Link III 进行 I2C 通信》SNLA131  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
58  
版权 © 2016, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UB924TRHSRQ1  
DS90UB924TRHSTQ1  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RHS  
RHS  
48  
48  
2500 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
UB924Q  
UB924Q  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
RHS0048A  
WQFN - 0.8 mm max height  
S
C
A
L
E
1
.
8
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.15  
6.85  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
7.15  
6.85  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8  
0.7  
C
DIM A  
SEATING PLANE  
OPT 1  
(0.1)  
OPT 2  
(0.2)  
0.05  
0.00  
0.08 C  
2X 5.5  
(0.2)  
5.1 0.1  
(A) TYP  
13  
24  
44X 0.5  
12  
25  
EXPOSED  
THERMAL PAD  
2X  
49  
SYMM  
5.5  
SEE TERMINAL  
DETAIL  
1
36  
0.30  
0.18  
48X  
48  
37  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.1  
C A B  
0.5  
0.3  
48X  
0.05  
4214990/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHS0048A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.1)  
SYMM  
48  
37  
48X (0.6)  
1
36  
48X (0.25)  
44X (0.5)  
(1.05) TYP  
(1.25) TYP  
(6.8)  
49  
SYMM  
(R0.05)  
TYP  
(
0.2) TYP  
VIA  
25  
12  
13  
24  
(1.25)  
TYP  
(1.05)  
TYP  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214990/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHS0048A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.625) TYP  
(1.25)  
TYP  
37  
48  
48X (0.6)  
1
36  
49  
48X (0.25)  
44X (0.5)  
(1.25)  
TYP  
(0.625) TYP  
(6.8)  
SYMM  
(R0.05) TYP  
METAL  
TYP  
12  
25  
24  
13  
16X  
1.05)  
SYMM  
(
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
68% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:15X  
4214990/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY