DS90UB925Q-Q1 [TI]

具有双向控制通道的 5 - 85MHz 24 位彩色 FPD-Link III 串行器;
DS90UB925Q-Q1
型号: DS90UB925Q-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有双向控制通道的 5 - 85MHz 24 位彩色 FPD-Link III 串行器

光电二极管
文件: 总51页 (文件大小:1130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
DS90UB925Q-Q1 具有双向控制通道的 5 85 MHz 24 位  
彩色 FPD-Link III 串行器  
1 特性  
3 说明  
具有 I2C 兼容串行控制总线的双向控制接口通道接  
DS90UB925Q-Q1 串行器与 DS90UB926Q-Q1 解串器  
相连,可提供完整的数字接口以实现汽车显示屏和图像  
传感应用中高速视频、音频和控制数据的并行传输。  
1
支持高清 (720p) 数字视频格式  
支持 RGB888 + VSHSDE I2S 音频  
支持两个 10 位摄像机视频流  
支持 5 85MHz 并行时钟 (PCLK)  
该芯片组非常适合高清 (HD) 格式的车载视频显示系统  
和具有百万象素级分辨率的车载视觉系统。  
DS90UB925Q-Q1 整合了嵌入式双向控制通道和低延  
GPIO 控制。 该芯片组将一个并行接口转换为一个  
单对高速串行接口。 FPD-Link III 串行总线方案支持通  
过单个差分链路实现高速视频数据传输和双向控制通信  
的全双工控制。 通过单个差分对整合视频数据和控制  
可减少互连线尺寸和重量,同时还消除了偏差问题并简  
化了系统设计。  
通过 1.8V 3.3V 兼容 LVCMOS I/O 接口实现  
3.3V 单电源运行  
长达 10 米的 AC 耦合生成树协议 (STP) 互连  
并行 LVCMOS 视频输出  
具有嵌入式时钟的直流均衡和扰频数据  
支持中继器应用  
内部模式生成  
DS90UB925Q-Q1 串行器内嵌时钟,可通过直流扰频  
& 均衡数据有效载荷,并将信号电平转换为高速低压差  
分信令。 最多有 24 个数据位可随视频控制信号一同  
串化。  
低功率模式最大限度地减少了功率耗散  
汽车应用级产品:符合 AEC-Q100 2 级要求  
>8kV 人体模型 (HBM) ISO 10605 静电放电  
(ESD) 等级  
向下兼容至 FPD-Link II  
串行传输通过用户可选的去加重功能进行优化。 低压  
差分信令的使用、数据换序和随机生成以及展频定时兼  
容性最大限度地减少了电磁干扰 (EMI)。  
2 应用范围  
汽车导航显示屏  
器件信息(1)  
后座娱乐系统  
汽车驾驶员辅助系统  
车载百万象素级摄像机系统  
部件号  
封装  
WQFN (48)  
封装尺寸(标称值)  
DS90UB925Q-Q1  
7.00mm x 7.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
V
V
V
V
DDIO  
DD33  
DDIO  
(1.8Vor3.3V) (3.3V)  
DD33  
(3.3V) (1.8Vor3.3V)  
R[7:0]  
G[7:0]  
R[7:0]  
G[7:0]  
FPD-Link III  
1 Pair / AC Coupled  
B[7:0]  
B[7:0]  
HS  
VS  
DE  
PCLK  
0.1 PF  
0.1 PF  
HOST  
Graphics  
Processor  
RGB Display  
720p  
24-bit color depth  
HS  
DOUT+  
RIN+  
RIN-  
VS  
DE  
PCLK  
DOUT-  
100: STP Cable  
DS90UB925Q-Q1  
Serializer  
DS90UB926Q-Q1  
Deserializer  
LOCK  
PASS  
PDB  
OSS_SEL  
OEN  
PDB  
3
I2S AUDIO  
(STEREO)  
3
I2S AUDIO  
(STEREO)  
MODE_SEL  
MODE_SEL  
INTB  
INTB_IN  
MCLK  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
DAP  
DAP  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNLS407  
 
 
 
 
 
 
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 22  
7.5 Programming .......................................................... 25  
7.6 Register Maps ........................................................ 27  
Application and Implementation ........................ 38  
8.1 Application Information............................................ 38  
8.2 Typical Application .................................................. 38  
Power Supply Recommendations...................... 41  
9.1 Power Up Requirements and PDB Pin................... 41  
9.2 CML Interconnect Guidelines.................................. 41  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
6.1 Absolute Maximum Ratings ..................................... 7  
6.2 Handling Ratings....................................................... 7  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 8  
6.5 DC Electrical Characteristics .................................... 8  
6.6 AC Electrical Characteristics................................... 10  
6.7 Recommended Timing for the Serial Control Bus .. 11  
6.8 Switching Characteristics........................................ 13  
6.9 Typical Charateristics ............................................. 14  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 15  
8
9
10 Layout................................................................... 42  
10.1 Layout Guidelines ................................................. 42  
10.2 Layout Example .................................................... 43  
11 器件和文档支持 ..................................................... 45  
11.1 文档支持................................................................ 45  
11.2 ....................................................................... 45  
11.3 静电放电警告......................................................... 45  
11.4 术语表 ................................................................... 45  
12 机械封装和可订购信息 .......................................... 45  
7
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (April 2013) to Revision D  
Page  
已添加 数据表流程和版面布局,以符合全新 TI 标准。 已添加以下章节:处理额定值、器件功能模式;编程;电源建  
议;布局布线;器件和文档支持;机械封装和订购信息 ......................................................................................................... 1  
已添加 器件信息.................................................................................................................................................................. 1  
Fixed typo for GPIO configuration ........................................................................................................................................ 19  
Removed two MODE_SEL modes: I2S Channel B, and Backward Compatible.................................................................. 23  
Removed IDx addresses 0x22, 0x24, 0x2E, 0x30, 0x32, 0x34............................................................................................ 26  
Changed suggested resistor values for IDx addresses 0x1E, 0x20, 0x26, 0x28, 0x2A....................................................... 26  
Changes from Revision B (August 2012) to Revision C  
Page  
已更改 国家数据表布局至 TI 格式....................................................................................................................................... 1  
Changes from Revision A (July 2012) to Revision B  
Page  
Added typical charateristic graphics..................................................................................................................................... 14  
Added” Note: frequency range = 15 - 65MHz when LFMODE = 0 and frequency range = 5 - <15MHz when  
LFMODE = 1.” under Functional Description. ...................................................................................................................... 16  
Reformatted Table 2 and added clarification to notes.......................................................................................................... 19  
Added clarification to notes on Table 6, address 0x04[3:0] (backwards compatible and LFMODE registers). .................. 27  
Changes from Original (March 2012) to Revision A  
Page  
已转换为混合 TI 格式。 .......................................................................................................................................................... 1  
Corrected typo in SCL from pin 6 to pin 8.............................................................................................................................. 4  
Corrected typo in SDA from pin 7 to pin 9.............................................................................................................................. 4  
2
Copyright © 2012–2014, Texas Instruments Incorporated  
 
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
Added to Absolute Maximum Rating section, note (3): The maximum limit (VDDIO +0.3V) does not apply to the PDB  
pin during the transition to the power down state (PDB transitioning from HIGH to LOW).................................................... 7  
Deleted derate from Maximum Power Dissipation Capacity at 25°C..................................................................................... 7  
Added "Note: BIST is not available in backwards compatible mode." ................................................................................. 20  
Corrected typo in Table 4 "I2S Channel B (18-bit Mode)" from L to H ............................................................................... 23  
Corrected typo in Table 5 Ideal VR2(V) from 2.475 to 1.475. .............................................................................................. 26  
Copyright © 2012–2014, Texas Instruments Incorporated  
3
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
5 Pin Configuration and Functions  
DS90UB925Q-Q1  
48 Pin WQFN  
Top View  
G2 / DIN10  
37  
MODE_SEL  
CMF  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
G3 / DIN11  
38  
G4 / DIN12  
39  
VDD33  
PDB  
G5 / DIN13  
40  
G6 / DIN14  
41  
DOUT+  
DOUT-  
RES1  
G7 / DIN15  
42  
DS90UB925Q-Q1  
TOP VIEW  
GPO_REG4 / B0 / DIN16  
43  
CAPHS12  
NC  
I2S_DB / GPO_REG5 / B1 / DIN17 44  
B2 / DIN18  
45  
DAP = GND  
B3 / DIN19  
46  
RES0  
B4 / DIN20  
47  
CAPP12  
B5 / DIN21  
48  
I2S_CLK / GPO_REG8  
Pin Functions  
PIN NAME  
PIN #  
I/O, TYPE  
DESCRIPTION  
LVCMOS PARALLEL INTERFACE  
DIN[23:0] /  
R[7:0],  
25, 26, 27, 28, I, LVCMOS Parallel Interface Data Input Pins  
29, 32, 33, 34, w/ pull down Leave open if unused  
G[7:0],  
B[7:0]  
35, 36, 37, 38,  
39, 40, 41, 42,  
43, 44, 45, 46,  
47, 48, 1, 2  
DIN0 / R0 can optionally be used as GPIO0 and DIN1 / R1 can optionally be used as GPIO1  
DIN8 / G0 can optionally be used as GPIO2 and DIN9 /G1 can optionally be used as GPIO3  
DIN16 / B0 can optionally be used as GPIO4 and DIN17 / B1 can optionally be used as  
GPIO5  
HS  
VS  
3
I, LVCMOS Horizontal Sync Input Pin  
w/ pull down Video control signal pulse width must be 3 PCLKs or longer to be transmitted when the  
Control Signal Filter is enabled. There is no restriction on the minimum transition pulse when  
the Control Signal Filter is disabled. The signal is limited to 2 transitions per 130 PCLKs.  
See Table 6.  
4
I, LVCMOS Vertical Sync Input Pin  
w/ pull down Video control signal is limited to 1 transition per 130 PCLKs. Thus, the minimum pulse width  
is 130 PCLKs.  
4
Copyright © 2012–2014, Texas Instruments Incorporated  
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
Pin Functions (continued)  
PIN NAME  
PIN #  
I/O, TYPE  
DESCRIPTION  
DE  
5
I, LVCMOS Data Enable Input Pin  
w/ pull down Video control signal pulse width must be 3 PCLKs or longer to be transmitted when the  
Control Signal Filter is enabled. There is no restriction on the minimum transition pulse when  
the Control Signal Filter is disabled. The signal is limited to 2 transitions per 130 PCLKs.  
See Table 6.  
PCLK  
10  
I, LVCMOS Pixel Clock Input Pin. Strobe edge set by RFB configuration register. See Table 6.  
w/ pull down  
I2S_CLK,  
I2S_WC,  
I2S_DA  
13, 12, 11  
I, LVCMOS Digital Audio Interface Data Input Pins  
w/ pull down Leave open if unused  
I2S_CLK can optionally be used as GPO_REG8, I2S_WC can optionally be used as  
GPO_REG7, and I2S_DA can optionally be used as GPO_REG6.  
OPTIONAL PARALLEL INTERFACE  
I2S_DB  
44  
I, LVCMOS  
Second Channel Digital Audio Interface Data Input pin at 18–bit color mode and set by  
w/ pull down MODE_SEL pin or configuration register  
Leave open if unused  
I2S_DB can optionally be used as DIN17 or GPO_REG5.  
GPIO[3:0]  
36, 35, 26, 25 I/O, LVCMOS General Purpose IOs. Available only in 18-bit color mode, and set by MODE_SEL pin or  
w/ pull down configuration register. See Table 6.  
Leave open if unused.  
Shared with DIN9, DIN8, DIN1 and DIN0  
GPO_REG[ 13, 12, 11, 44, O, LVCMOS General Purpose Outputs and set by configuration register. See Table 6.  
8:4]  
43  
w/ pull down Share with I2S_CLK, I2S_WC, I2S_DA, I2S_DB or DIN17, DIN16.  
CONTROL  
PDB  
21  
I, LVCMOS Power-down Mode Input Pin  
w/ pull-down PDB = H, device is enabled (normal operation)  
Refer to Power Up Requirements and PDB Pin section.  
PDB = L, device is powered down.  
When the device is in the powered down state, the Driver Outputs are both HIGH, the PLL is  
shutdown, and IDD is minimized. Control Registers are RESET.  
MODE_SEL  
I2C  
24  
6
I, Analog  
I, Analog  
Device Configuration Select. See Table 4.  
IDx  
I2C Serial Control Bus Device ID Address Select  
External pull-up to VDD33 is required under all conditions, DO NOT FLOAT.  
Connect to external pull-up and pull-down resistor to create a voltage divider. See Figure 19.  
SCL  
SDA  
8
9
I/O, LVCMOS I2C Clock Input / Output Interface  
Open Drain Must have an external pull-up to VDD33, DO NOT FLOAT.  
Recommended pull-up: 4.7kΩ.  
I/O, LVCMOS I2C Data Input / Output Interface  
Open Drain Must have an external pull-up to VDD33, DO NOT FLOAT.  
Recommended pull-up: 4.7kΩ.  
STATUS  
INTB  
31  
O, LVCMOS Interrupt  
Open Drain INTB = H, normal  
INTB = L, Interrupt request  
Recommended pull-up: 4.7kΩ to VDDIO  
FPD-LINK III SERIAL INTERFACE  
DOUT+  
DOUT-  
CMF  
20  
19  
23  
O, LVDS  
O, LVDS  
Analog  
True Output  
The output must be AC-coupled with a 0.1µF capacitor.  
Inverting Output  
The output must be AC-coupled with a 0.1µF capacitor.  
Common Mode Filter.  
Connect 0.1µF to GND  
Copyright © 2012–2014, Texas Instruments Incorporated  
5
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
Pin Functions (continued)  
PIN NAME  
PIN #  
I/O, TYPE  
DESCRIPTION  
(1)  
POWER AND GROUND  
VDD33  
VDDIO  
GND  
22  
30  
Power  
Power  
Ground  
Power to on-chip regulator 3.0 V - 3.6 V. Requires 4.7 uF to GND  
LVCMOS I/O Power 1.8 V ±5% OR 3.0 V - 3.6 V. Requires 4.7 uF to GND  
DAP  
DAP is the large metal contact at the bottom side, located at the center of the WQFN  
package. Connect to the ground plane (GND) with at least 9 vias.  
REGULATOR CAPACITOR  
CAPHS12,  
CAPP12  
17, 14  
CAP  
CAP  
Decoupling capacitor connection for on-chip regulator. Requires a 4.7uF to GND at each  
CAP pin.  
CAPL12  
7
Decoupling capacitor connection for on-chip regulator. Requires two 4.7uF to GND at this  
CAP pin.  
OTHERS  
NC  
16  
NC  
Do not connect.  
RES[1:0]  
18, 15  
GND  
Reserved. Tie to Ground.  
(1) The VDD (VDD33 and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise.  
6
Copyright © 2012–2014, Texas Instruments Incorporated  
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1) (2)  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
MAX  
UNIT  
V
Supply Voltage – VDD33  
Supply Voltage – VDDIO  
LVCMOS I/O Voltage(3)  
Serializer Output Voltage  
Junction Temperature  
+4.0  
+4.0  
V
VDDIO + 0.3  
+2.75  
V
V
+150  
°C  
(1) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(2) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or  
other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating  
Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions.  
(3) The maximum limit (VDDIO +0.3V) does not apply to the PDB pin during the transition to the power down state (PDB transitioning from  
HIGH to LOW).  
6.2 Handling Ratings  
MIN  
-65  
MAX  
+150  
±8  
UNIT  
Tstg  
Storage temperature range  
Electrostatic discharge  
°C  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
Machine Model (MM)  
±8  
kV  
V
V(ESD)  
±1.25  
±250  
±15  
±1.25  
±250  
±15  
Air Discharge  
(DOUT+, DOUT-)  
ESD Rating (IEC 61000-4-2,  
powered-up only)  
RD= 330Ω, CS = 150pF  
Contact Discharge  
(DOUT+, DOUT-)  
±8  
±15  
±8  
±8  
±15  
±8  
kV  
Air Discharge  
(DOUT+, DOUT-)  
ESD Rating (ISO 10605)  
RD= 330Ω, CS = 150pF/330pF  
RD= 2KΩ, CS = 150pF/330pF  
Contact Discharge  
(DOUT+, DOUT-)  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
3.0  
NOM  
3.3  
MAX  
UNIT  
V
Supply Voltage (VDD33  
)
3.6  
3.6  
LVCMOS Supply Voltage (VDDIO  
)
)
3.0  
3.3  
V
OR  
LVCMOS Supply Voltage (VDDIO  
1.71  
40  
5
1.8  
1.89  
+105  
85  
V
Operating Free Air Temperature (TA)  
PCLK Frequency  
+25  
°C  
MHz  
mVP-P  
Supply Noise  
100  
Copyright © 2012–2014, Texas Instruments Incorporated  
7
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
6.4 Thermal Information  
WQFN  
48 PINS  
35  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
5.2  
5.5  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
5.5  
RθJC(bot)  
1.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6.5 DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)  
(2) (3)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
LVCMOS I/O DC SPECIFICATIONS  
High Level Input  
Voltage  
VIH  
VDDIO = 3.0 to 3.6V  
2.0  
VDDIO  
0.8  
V
V
Low Level Input  
Voltage  
PDB  
VIL  
VDDIO = 3.0 to 3.6V  
GND  
IIN  
Input Current  
VIN = 0V or VDDIO = 3.0 to 3.6V  
VDDIO = 3.0 to 3.6V  
10  
±1  
+10  
μA  
2.0  
VDDIO  
V
High Level Input  
Voltage  
VIH  
0.65*  
VDDIO  
VDDIO = 1.71 to 1.89V  
VDDIO = 3.0 to 3.6V  
VDDIO = 1.71 to 1.89V  
VDDIO = 3.0  
VDDIO  
0.8  
V
V
V
DIN[23:0], HS,  
VS, DE, PCLK,  
I2S_CLK,  
I2S_WC,  
I2S_DA, I2S_DB  
GND  
GND  
Low Level Input  
Voltage  
VIL  
0.35*  
VDDIO  
10  
10  
±1  
±1  
+10  
+10  
μA  
μA  
V
to 3.6V  
VIN = 0V or  
IIN  
Input Current  
VDDIO  
VDDIO = 1.71  
to 1.89V  
VDDIO = 3.0 to  
2.4  
VDDIO  
VDDIO  
0.4  
3.6V  
High Level Output  
Voltage  
VOH  
IOH = 4mA  
VDDIO = 1.71  
VDDIO - 0.45  
GND  
V
to 1.89V  
VDDIO = 3.0 to  
V
3.6V  
Low Level Output  
Voltage  
GPIO[3:0],  
GPO_REG[8:4]  
VOL  
IOL = +4mA  
VDDIO = 1.71  
GND  
0.35  
V
to 1.89V  
Output Short Circuit  
Current  
IOS  
IOZ  
VOUT = 0V  
50  
mA  
μA  
TRI-STATE® Output  
Current  
VOUT = 0V or VDDIO, PDB = L,  
10  
+10  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 3.3 V, TA = +25 °C, and at the Recommended Operating Conditions at  
the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
8
Copyright © 2012–2014, Texas Instruments Incorporated  
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
FPD-LINK III CML DRIVER DC SPECIFICATIONS  
Differential Output  
Voltage  
(DOUT+) – (DOUT-)  
RL = 100,  
See Figure 1  
VODp-p  
ΔVOD  
VOS  
1160  
1250  
1
1340  
50  
mVp-p  
mV  
V
Output Voltage  
Unbalance  
2.5-  
0.25*VODp-p  
Offset Voltage –  
Single-ended  
RL = 100,  
See Figure 1  
(TYP)  
DOUT+, DOUT-  
Offset Voltage  
Unbalance  
Single-ended  
ΔVOS  
1
50  
62  
mV  
mA  
Output Short Circuit  
Current  
IOS  
DOUT+/- = 0V, PDB = L or H  
38  
Internal Termination  
Resistor - Single  
ended  
RT  
40  
52  
SERIAL CONTROL BUS  
0.7*  
VDD33  
VIH  
VIL  
Input High Level  
SDA and SCL  
SDA and SCL  
VDD33  
V
V
Input Low Level  
Voltage  
0.3*  
VDD33  
GND  
VHY  
VOL  
Iin  
Input Hysteresis  
>50  
<5  
mV  
V
SDA, IOL = 1.25 mA  
0
0.36  
10  
SDA or SCL, VIN = VDD33 or GND  
SDA or SCL  
-10  
µA  
pF  
Cin  
Input Capacitance  
SUPPLY CURRENT  
IDD1  
VDD33= 3.6V  
VDD33  
VDDIO  
VDD33  
VDDIO  
VDD33  
VDDIO  
148  
90  
1
170  
180  
1.6  
2.4  
150  
150  
2
mA  
μA  
mA  
mA  
μA  
μA  
mA  
μA  
μA  
Supply Current  
(includes load current) Pattern,  
RL = 100, f = 85MHz See Figure 2  
Checker Board  
VDDIO = 3.6V  
VDDIO = 1.89V  
VDD33 = 3.6V  
VDDIO = 3.6V  
VDDIO = 1.89V  
VDD33 = 3.6V  
VDDIO = 3.6V  
VDDIO = 1.89V  
IDDIO1  
IDDS1  
IDDIOS1  
IDDS2  
1.2  
65  
55  
1
Supply Current  
Remote Auto Power  
Down Mode  
0x01[7] = 1,  
deserializer is  
powered down  
PDB = L, All  
Supply Current Power LVCMOS inputs  
Down  
65  
50  
150  
150  
are floating or  
tied to GND  
IDDIOS2  
Copyright © 2012–2014, Texas Instruments Incorporated  
9
 
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
MAX UNIT  
6.6 AC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)  
(2) (3)  
PARAMETER  
GPIO BIT RATE  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
Forward Channel Bit Rate  
Back Channel Bit Rate  
f = 5 – 85  
MHz  
GPIO[3:0]  
0.25* f  
75  
Mbps  
kbps  
BR  
See(4) (5)  
RECOMMENDED TIMING FOR PCLK  
tTCP  
tCIH  
tCIL  
PCLK Period  
11.76  
0.4*T  
0.4*T  
4.0  
T
0.5*T  
0.5*T  
200  
0.6*T  
0.6*T  
ns  
ns  
ns  
ns  
ns  
PCLK Input High Time  
PCLK Input Low Time  
PCLK Input Transition Time,  
See(4) (5)  
PCLK  
f = 5 MHz  
(4) (5)  
tCLKT  
tIJIT  
See Figure 3  
f = 85 MHz  
0.5  
PCLK Input Jitter Tolerance,  
f / 40 < Jitter Freq < f / 20(4) (6)  
f = 5 –  
78MHz  
0.4  
0.6  
UI  
Bit Error Rate 10–10  
(7)  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 3.3 V, TA = +25 °C, and at the Recommended Operating Conditions at  
the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
(4) Specification is ensured by characterization and is not tested in production.  
(5) Specification is ensured by design and is not tested in production.  
(6) Jitter Frequency is specified in conjunction with DS90UB926 PLL bandwidth.  
(7) UI – Unit Interval is equivalent to one serialized data bit width 1UI = 1 / (35*PCLK). The UI scales with PCLK frequency.  
10  
Copyright © 2012–2014, Texas Instruments Incorporated  
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
6.7 Recommended Timing for the Serial Control Bus  
Over 3.3V supply and temperature ranges unless otherwise specified.  
MIN  
0
TYP  
MAX UNIT  
fSCL  
Standard Mode  
Fast Mode  
100 kHz  
SCL Clock Frequency  
SCL Low Period  
0
400 kHz  
tLOW  
Standard Mode  
Fast Mode  
4.7  
1.3  
4.0  
0.6  
4.0  
µs  
µs  
µs  
µs  
µs  
tHIGH  
Standard Mode  
Fast Mode  
SCL High Period  
tHD;STA  
Hold time for a start or a  
repeated start condition,  
See Figure 8  
Standard Mode  
Fast Mode  
0.6  
4.7  
0.6  
µs  
µs  
µs  
tSU:STA  
Set Up time for a start or a  
repeated start condition,  
See Figure 8  
Standard Mode  
Fast Mode  
tHD;DAT  
tSU;DAT  
tSU;STO  
Standard Mode  
Fast Mode  
0
0
0.615  
0.615  
0.56  
3.45  
0.9  
µs  
µs  
ns  
ns  
µs  
Data Hold Time,  
See Figure 8  
Standard Mode  
Fast Mode  
250  
100  
4.0  
Data Set Up Time,  
See Figure 8  
0.56  
Set Up Time for STOP  
Condition,  
See Figure 8  
Standard Mode  
Fast Mode  
0.6  
4.7  
1.3  
µs  
µs  
µs  
Bus Free Time  
Between STOP and START,  
See Figure 8  
Standard Mode  
Fast Mode  
tBUF  
Standard Mode  
Fast Mode  
430  
430  
20  
1000  
300  
300  
300  
ns  
ns  
ns  
ns  
ns  
SCL and SDA Rise Time,  
See Figure 8  
tr  
Standard Mode  
Fast mode  
SCL and SDA Fall Time,  
See Figure 8  
tf  
20  
tsp  
input Filter  
50  
DOUT+  
0.1 PF  
0.1 PF  
Differential probe  
Input Impedance û 100  
k:  
30  
DIN[23:0],  
HS,VS,DE,  
I2S  
SCOPE  
BW û 4 GHz  
100:  
D
C
L
ú 0.5 pF  
DOUT-  
BW û 3.5 GHz  
PCLK  
D
OUT  
-
V
OD-  
Single Ended  
V
OD  
V
OD+  
D
OUT  
+
V
OS  
0V  
|
V
OD+  
(D +) - (D -)  
OUT OUT  
0V  
Differential  
V
OD-  
Figure 1. Serializer VOD DC Output  
Copyright © 2012–2014, Texas Instruments Incorporated  
11  
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
V
DDIO  
PCLK  
GND  
V
DDIO  
DIN[n] (odd),  
VS, HS  
GND  
V
DDIO  
DIN[n] (even),  
DE  
GND  
Figure 2. Checkboard Data Pattern  
VDDIO  
80%  
80%  
PCLK  
20%  
20%  
CLKT  
0V  
t
CLKT  
t
Figure 3. Serializer Input Clock Transition Time  
80%  
80%  
Differential  
Signal  
V
diff  
= 0V  
20%  
20%  
t
t
HLT  
LHT  
Figure 4. Serializer CML Output Load and Transition Time  
t
TCP  
V
/2  
V
DDIO  
/2  
V
DDIO  
/2  
PCLK  
DDIO  
t
t
DIH  
DIS  
V
DDIO  
DIN[23:0],  
HS,VS,DE  
V
/2  
DDIO  
Setup  
Hold  
0V  
Figure 5. Serializer Setup and Hold Times  
PDB  
1/2 V  
DDIO  
PCLK  
"X"  
active  
t
PLD  
DOUT  
(Diff.)  
Driver On  
Driver OFF, V  
OD  
= 0V  
Figure 6. Serializer Lock Time  
12  
Copyright © 2012–2014, Texas Instruments Incorporated  
 
 
 
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
t
t
DJIT  
DJIT  
VOD (+)  
DOUT  
(Diff.)  
EYE OPENING  
0V  
VOD (-)  
t
(1 UI)  
BIT  
Figure 7. Serializer CML Output Jitter  
SDA  
SCL  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
SP  
t
f
r
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 8. Serial Control Bus Timing Diagram  
6.8 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
tLHT  
tHLT  
tDIS  
CML Output Low-to-High  
Transition Time  
80  
80  
130  
130  
ps  
DOUT+,  
DOUT-  
See Figure 4  
CML Output High-to-Low  
Transition Time  
ps  
ns  
Data Input Setup to PCLK  
Data Input Hold from PCLK  
R[7:0],  
G[7:0],  
B[7:0], HS,  
VS, DE,  
PCLK,  
I2S_CLK,  
I2S_WC,  
I2S_DA  
2.0  
2.0  
See Figure 5  
See Figure 6  
tDIH  
ns  
(1)  
tPLD  
tSD  
f = 15 -  
45MHz  
Serializer PLL Lock Time  
Delay — Latency  
131*T  
145*T  
ns  
ns  
f = 15 -  
45MHz  
Output Total Jitter,  
RL = 100Ω  
f = 45MHz  
DOUT+,  
DOUT-  
tTJIT  
Bit Error Rate 10-10  
0.25  
0.30  
UI  
(2) (3) (4)  
Figure 7  
(1) tPLD is the time required by the device to obtain lock when exiting power-down state with an active PCLK  
(2) Specification is ensured by characterization and is not tested in production.  
(3) Specification is ensured by design and is not tested in production.  
(4) UI – Unit Interval is equivalent to one serialized data bit width 1UI = 1 / (35*PCLK). The UI scales with PCLK frequency.  
Copyright © 2012–2014, Texas Instruments Incorporated  
13  
 
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
6.9 Typical Charateristics  
78 MHz TX  
Pixel Clock  
Input  
(2 V/DIV)  
78 MHz RX  
Pixel Clock  
Output  
(2 V/DIV)  
Time (1.25 ns/DIV)  
Time (10 ns/DIV)  
Note: On the rising edge of each clock period, the CML driver outputs  
a low Stop bit, high Start bit, and 33 DC-scrambled data bits.  
Figure 9. Serializer CML Driver Output with 78 MHz TX Pixel  
Clock  
Figure 10. Comparison of Deserializer LVCMOS RX PCLK  
Output Locked to a 78 MHz TX PCLK  
14  
Copyright © 2012–2014, Texas Instruments Incorporated  
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
7 Detailed Description  
7.1 Overview  
The DS90UB925Q-Q1 serializer transmits a 35-bit symbol over a single serial FPD-Link III pair operating up to  
2.975 Gbps line rate. The serial stream contains an embedded clock, video control signals and DC-balanced  
video data and audio data which enhance signal quality to support AC coupling. The serializer is intended for use  
with the DS90UB926Q-Q1 deserializer, but is also backward compatible with DS90UR906Q or DS90UR908Q  
FPD-Link II deserializer.  
The DS90UB925Q-Q1 serializer and DS90UB926Q-Q1 deserializer incorporate an I2C compatible interface. The  
I2C compatible interface allows programming of serializer or deserializer devices from a local host controller. In  
addition, the devices incorporate a bidirectional control channel (BCC) that allows communication between  
serializer/deserializer as well as remote I2C slave devices.  
The bidirectional control channel is implemented via embedded signaling in the high-speed forward channel  
(serializer to deserializer) as well as lower speed signaling in the reverse channel (deserializer to serializer).  
Through this interface, the BCC provides a mechanism to bridge I2C transactions across the serial link from one  
I2C bus to another. The implementation allows for arbitration with other I2C compatible masters at either side of  
the serial link.  
There are two operating modes available on DS90UB925Q-Q1, display mode and camera mode. In display  
mode, I2C transactions originate from the host controller attached to the serializer and target either the  
deserializer or an I2C slave attached to the deserializer. Transactions are detected by the I2C slave in the  
serializer and forwarded to the I2C master in the deserializer. Similarly, in camera mode, I2C transactions  
originate from a controller attached to the deserializer and target either the serializer or an I2C slave attached to  
the serializer. Transactions are detected by the I2C slave in the deserializer and forwarded to the I2C master in  
the serializer.  
7.2 Functional Block Diagram  
REGULATOR  
CMF  
24  
DIN [23:0]  
HS  
VS  
D
D
+
-
OUT  
DE  
D
PCLK  
OUT  
I2S_CLK  
I2S_WC  
I2S_DA  
3
PDB  
MODE_SEL  
INTB  
PLL  
Timing  
and  
Control  
SDA  
SCL  
IDx  
DS90UB925Q-Q1  
Serializer  
7.3 Feature Description  
7.3.1 High Speed Forward Channel Data Transfer  
The High Speed Forward Channel (HS_FC) is composed of 35 bits of data containing DIN[23:0] or RGB[7:0] or  
YUV data, sync signals, I2C, and I2S audio transmitted from Serializer to Deserializer. Figure 11 illustrates the  
serial stream per PCLK cycle. This data payload is optimized for signal transmission over an AC coupled link.  
Data is randomized, balanced and scrambled.  
Copyright © 2012–2014, Texas Instruments Incorporated  
15  
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
Feature Description (continued)  
C1  
C0  
Figure 11. FPD-Link III Serial Stream  
The device supports clocks in the range of 5 MHz to 85 MHz. The application payload rate is 2.975 Gbps  
maximum (175 Mbps minimum) with the actual line rate of 2.975 Gbps maximum and 525 Mbps Minimum.  
7.3.2 Low Speed Back Channel Data Transfer  
The Low-Speed Backward Channel (LS_BC) of the DS90UB925Q-Q1 provides bidirectional communication  
between the display and host processor. The information is carried back from the Deserializer to the Serializer  
per serial symbol. The back channel control data is transferred over the single serial link along with the high-  
speed forward data, DC balance coding and embedded clock information. This architecture provides a backward  
path across the serial link together with a high speed forward channel. The back channel contains the I2C, CRC  
and 4 bits of standard GPIO information with 10 Mbps line rate.  
7.3.3 Backward Compatible Mode  
The DS90UB925Q-Q1 is also backward compatible to DS90UR906Q and DS90UR908Q FPD Link II  
deserializers at 5-65 MHz of PCLK. It transmits 28-bits of data over a single serial FPD-Link II pair operating at  
the line rate of 140 Mbps to 1.82 Gbps. The backward configuration mode can be set via MODE_SEL pin  
(Table 4) or the configuration register (Table 6). Note: frequency range = 15 – 65MHz when LFMODE = 0 and  
frequency range = 5 – <15MHz when LFMODE = 1.  
7.3.4 Common Mode Filter Pin (CMF)  
The serializer provides access to the center tap of the internal termination. A capacitor must be placed on this pin  
for additional common-mode filtering of the differential pair. This can be useful in high noise environments for  
additional noise rejection capability. A 0.1 μF capacitor must be connected to this pin to Ground.  
7.3.5 Video Control Signal Filter  
When operating the devices in Normal Mode, the Video Control Signals (DE, HS, VS) have the following  
restrictions:  
Normal Mode with Control Signal Filter Enabled: DE and HS — Only 2 transitions per 130 clock cycles are  
transmitted, the transition pulse must be 3 PCLK or longer.  
Normal Mode with Control Signal Filter Disabled: DE and HS — Only 2 transitions per 130 clock cycles are  
transmitted, no restriction on minimum transition pulse.  
VS — Only 1 transition per 130 clock cycles are transmitted, minimum pulse width is 130 clock cycles.  
Video Control Signals are defined as low frequency signals with limited transitions. Glitches of a control signal  
can cause a visual display error. This feature allows for the chipset to validate and filter out any high frequency  
noise on the control signals. See Figure 12.  
16  
Copyright © 2012–2014, Texas Instruments Incorporated  
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
Feature Description (continued)  
PCLK  
IN  
HS/VS/DE  
IN  
Latency  
PCLK  
OUT  
Pulses 1 or 2  
PCLKs wide  
HS/VS/DE  
OUT  
Filetered OUT  
Figure 12. Video Control Signal Filter Waveform  
7.3.6 EMI Reduction Features  
7.3.6.1 Input SSC Tolerance (SSCT)  
The DS90UB925Q-Q1 serializer is capable of tracking a triangular input spread spectrum clocking (SSC) profile  
up to ±2.5% amplitude deviations (center spread), up to 35 kHz modulation at 5–85 MHz, from a host source.  
7.3.7 LVCMOS VDDIO Option  
1.8 V or 3.3 V Inputs and Outputs are powered from a separate VDDIO supply to offer compatibility with external  
system interface signals.  
NOTE  
When configuring the VDDIO power supplies, all the single-ended data and control input  
pins for device need to scale together with the same operating VDDIO levels.  
7.3.8 Power Down (PDB)  
The Serializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin can be controlled by the  
host or through the VDDIO, where VDDIO = 3.0V to 3.6V or VDD33. To save power disable the link when the display  
is not needed (PDB = LOW). When the pin is driven by the host, make sure to release it after VDD33 and VDDIO  
have reached final levels; no external components are required. In the case of driven by the VDDIO = 3.0V to 3.6V  
or VDD33 directly, a 10 kohm resistor to the VDDIO = 3.0V to 3.6V or VDD33 , and a >10uF capacitor to the ground  
are required (See Figure 23).  
7.3.9 Remote Auto Power Down Mode  
The Serializer features a remote auto power down mode. During the power down mode of the pairing  
deserializer, the Serializer enters the remote auto power down mode. In this mode, the power dissipation of the  
Serializer is reduced significantly. When the Deserializer is powered up, the Serializer enters the normal power  
on mode automatically. This feature is enabled through the register bit 0x01[7] Table 6.  
7.3.10 Input PCLK Loss Detect  
The serializer can be programmed to enter a low power SLEEP state when the input clock (PCLK) is lost. A  
clock loss condition is detected when PCLK drops below approximately 1MHz. When a PCLK is detected again,  
the serializer will then lock to the incoming PCLK. Note – when PCLK is lost, the Serial Control Bus Registers  
values are still RETAINED.  
Copyright © 2012–2014, Texas Instruments Incorporated  
17  
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
Feature Description (continued)  
7.3.11 Serial Link Fault Detect  
The serial link fault detection is able to detect any of following seven (7) conditions:  
1. cable open  
2. “+” to “-“ short  
3. “+” short to GND  
4. “-“ short to GND  
5. “+” short to battery  
6. “-“ short to battery  
7. Cable is linked correctly  
If any one of the fault conditions occurs, The Link Detect Status is 0 (cable is not detected) on bit 0 of address  
0x0C Table 6.  
7.3.12 Pixel Clock Edge Select (RFB)  
The RFB control register bit selects which edge of the Pixel Clock is used. For the serializer, this pin determines  
the edge that the data is latched on. If RFB is HIGH (‘1’), data is latched on the Rising edge of the PCLK. If RFB  
is LOW (‘0’), data is latched on the Falling edge of the PCLK.  
7.3.13 Low Frequency Optimization (LFMODE)  
The LFMODE is set via register (0x04[1:0]) or MODE_SEL Pin 24 (Table 4). It controls the operating frequency  
of the serializer. If LFMODE is Low (default), the PCLK frequency is between 15 MHz and 85 MHz. If LFMODE is  
High, the PCLK frequency is between 5 MHz and <15 MHz. Please note when the device LFMODE is changed,  
a PDB reset is required.  
7.3.14 Interrupt Pin — Functional Description And Usage (INTB)  
1. On DS90UB925, set register 0xC6[5] = 1 and 0xC6[0] = 1  
2. DS90UB926Q-Q1 deserializer INTB_IN (pin 16) is set LOW by some downstream device.  
3. DS90UB925Q-Q1 serializer pulls INTB (pin 31) LOW. The signal is active low, so a LOW indicates an  
interrupt condition.  
4. External controller detects INTB = LOW; to determine interrupt source, read ISR register .  
5. A read to ISR will clear the interrupt at the DS90UB925, releasing INTB.  
6. The external controller typically must then access the remote device to determine downstream interrupt  
source and clear the interrupt driving INTB_IN. This would be when the downstream device releases the  
INTB_IN (pin 16) on the DS90UB926Q-Q1. The system is now ready to return to step (1) at next falling edge  
of INTB_IN.  
7.3.15 Internal Pattern Generation  
The DS90UB925Q-Q1 serializer supports the internal pattern generation feature. It allows basic testing and  
debugging of an integrated panel through the FPD-Link III output stream. The test patterns are simple and  
repetitive and allow for a quick visual verification of panel operation. As long as the device is not in power down  
mode, the test pattern will be displayed even if no parallel input is applied. If no PCLK is received, the test  
pattern can be configured to use a programmed oscillator frequency. For detailed information, refer to Application  
Note AN-2198 (SNLA132).  
7.3.16 GPIO[3:0] and GPO_REG[8:4]  
In 18-bit RGB operation mode, the optional R[1:0] and G[1:0] of the DS90UB925Q-Q1 can be used as the  
general purpose IOs GPIO[3:0] in either forward channel (Inputs) or back channel (Outputs) application.  
7.3.16.1 GPIO[3:0] Enable Sequence  
See Table 1 for the GPIO enable sequencing.  
18  
Copyright © 2012–2014, Texas Instruments Incorporated  
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
Feature Description (continued)  
Step 1: Enable the 18-bit mode either through the configuration register bit Table 6 on DS90UB925Q-Q1 only.  
DS90UB926Q-Q1 is automatically configured as in the 18-bit mode.  
Step 2: To enable GPIO3 forward channel, write 0x03 to address 0x0F on DS90UB925Q-Q1, then write 0x05 to  
address 0x1F on DS90UB926Q-Q1.  
Table 1. GPIO Enable Sequencing Table  
#
DESCRIPTION  
DEVICE  
FORWARD CHANNEL  
0x12 = 0x04  
BACK CHANNEL  
0x12 = 0x04  
1
Enable 18-bit  
mode  
DS90UB925Q-Q1  
DS90UB926Q-Q1  
DS90UB925Q-Q1  
DS90UB926Q-Q1  
DS90UB925Q-Q1  
DS90UB926Q-Q1  
DS90UB925Q-Q1  
DS90UB926Q-Q1  
DS90UB925Q-Q1  
DS90UB926Q-Q1  
Auto Load from DS90UB925Q-Q1  
0x0F = 0x03  
Auto Load from DS90UB925Q-Q1  
0x0F = 0x05  
2
3
4
5
GPIO3  
GPIO2  
GPIO1  
GPIO0  
0x1F = 0x05  
0x1F = 0x03  
0x0E = 0x30  
0x0E = 0x50  
0x1E = 0x50  
0x1E = 0x30  
0x0E = 0x03  
0x0E = 0x05  
0x1E = 0x05  
0x1E = 0x03  
0x0D = 0x93  
0x0D = 0x95  
0x1D = 0x95  
0x1D = 0x93  
7.3.16.2 GPO_REG[8:4] Enable Sequence  
GPO_REG[8:4] are the outputs only pins. They must be programmed through the local register bits. See Table 2  
for the GPO_REG enable sequencing.  
Step 1: Enable the 18-bit mode either through the configuration register bit Table 6 on DS90UB925Q-Q1 only.  
DS90UB926Q-Q1 is automatically configured as in the 18-bit mode.  
Step 2: To enable GPO_REG8 outputs an “1”, write 0x90 to address 0x11 on DS90UB925Q.  
Table 2. GPO_REG Enable Sequencing Table  
#
1
2
DESCRIPTION  
Enable 18-bit mode  
GPO_REG8  
DEVICE  
LOCAL ACCESS  
0x12 = 0x04  
0x11 = 0x90  
0x11 = 0x10  
0x11 = 0x09  
0x11 = 0x01  
0x10 = 0x90  
0x10 = 0x10  
0x10 = 0x09  
0x10 = 0x01  
0x0F = 0x90  
0x0F = 0x10  
LOCAL OUTPUT  
DS90UB925Q-Q1  
DS90UB925Q-Q1  
“1”  
“0”  
“1”  
“0”  
“1”  
“0”  
“1”  
“0”  
“1”  
“0”  
3
4
5
6
GPO_REG7  
GPO_REG6  
GPO_REG5  
GPO_REG4  
DS90UB925Q-Q1  
DS90UB925Q-Q1  
DS90UB925Q-Q1  
DS90UB925Q-Q1  
7.3.17 I2S Transmitting  
In normal 24-bit RGB operation mode, the DS90UB925Q-Q1 supports 3 bits of I2S. They are I2S_CLK, I2S_WC  
and I2S_DA. The optionally packetized audio information can be transmitted during the video blanking (data  
island transport) or during active video (forward channel frame transport). Note: The bit rates of any I2S bits must  
maintain one fourth of the PCLK rate.  
Copyright © 2012–2014, Texas Instruments Incorporated  
19  
 
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
7.3.17.1 Secondary I2S Channel  
In I2S Channel B operation mode, the secondary I2S data (I2S_DB) can be used as the additional I2S audio in  
addition to the 3–bit of I2S. The I2S_DB input must be synchronized to I2S_CLK and aligned with I2S_DA and  
I2S_WC at the input to the serializer. This operation mode is enabled through either the MODE_SEL pin  
(Table 4) or through the register bit 0x12[0] (Table 6).  
Table 3 covers the range of I2S sample rates.  
Table 3. Audio Interface Frequencies  
SAMPLE RATE (kHz)  
I2S DATA WORD SIZE (BITS)  
I2S CLK (MHz)  
1.024  
32  
44.1  
48  
16  
16  
16  
16  
16  
24  
24  
24  
24  
24  
32  
32  
32  
32  
32  
1.411  
1.536  
96  
3.072  
192  
32  
6.144  
1.536  
44.1  
48  
2.117  
2.304  
96  
4.608  
192  
32  
9.216  
2.048  
44.1  
48  
2.822  
3.072  
96  
6.144  
192  
12.288  
7.3.18 Built In Self Test (BIST)  
An optional At-Speed Built In Self Test (BIST) feature supports the testing of the high speed serial link and the  
low- speed back channel. This is useful in the prototype stage, equipment production, in-system test and also for  
system diagnostics. Note: BIST is not available in backwards compatible mode.  
7.3.18.1 BIST Configuration and Status  
The BIST mode is enabled at the deseralizer by the Pin select (Pin 44 BISTEN and Pin 16 BISTC) or  
configuration register (Table 6) through the deserializer. When LFMODE = 0, the pin based configuration defaults  
to external PCLK or 33 MHz internal Oscillator clock (OSC) frequency. In the absence of PCLK, the user can  
select the desired OSC frequency (default 33 MHz or 25MHz) through the register bit. When LFMODE = 1, the  
pin based configuration defaults to external PCLK or 12.5MHz MHz internal Oscillator clock (OSC) frequency.  
When BISTEN of the deserializer is high, the BIST mode enable information is sent to the serializer through the  
Back Channel. The serializer outputs a test pattern and drives the link at speed. The deserializer detects the test  
pattern and monitors it for errors. The PASS output pin toggles to flag any payloads that are received with 1 to  
35 bit errors.  
The BIST status is monitored real time on PASS pin. The result of the test is held on the PASS output until reset  
(new BIST test or Power Down). A high on PASS indicates NO ERRORS were detected. A Low on PASS  
indicates one or more errors were detected. The duration of the test is controlled by the pulse width applied to  
the deserializer BISTEN pin. This BIST feature also contains a Link Error Count and a Lock Status. If the  
connection of the serial link is broken, then the link error count is shown in the register. When the PLL of the  
deserializer is locked or unlocked, the lock status can be read in the register. See Table 6.  
7.3.18.1.1 Sample BIST Sequence  
See Figure 13 for the BIST mode flow diagram.  
20  
Copyright © 2012–2014, Texas Instruments Incorporated  
 
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
Step 1: For the DS90UB925Q-Q1 and DS90UB926Q-Q1 FPD-Link III chipset, BIST Mode is enabled via the  
BISTEN pin of DS90UB926Q-Q1 FPD-Link III deserializer. The desired clock source is selected through BISTC  
pin.  
Step 2: The DS90UB925Q-Q1 serializer is woken up through the back channel if it is not already on. The all zero  
pattern on the data pins is sent through the FPD-Link III to the deserializer. Once the serializer and the  
deserializer are in BIST mode and the deserializer acquires Lock, the PASS pin of the deserializer goes high and  
BIST starts checking the data stream. If an error in the payload (1 to 35) is detected, the PASS pin will switch low  
for one half of the clock period. During the BIST test, the PASS output can be monitored and counted to  
determine the payload error rate.  
Step 3: To Stop the BIST mode, the deserializer BISTEN pin is set Low. The deserializer stops checking the  
data. The final test result is held on the PASS pin. If the test ran error free, the PASS output will be High. If there  
was one or more errors detected, the PASS output will be Low. The PASS output state is held until a new BIST  
is run, the device is RESET, or Powered Down. The BIST duration is user controlled by the duration of the  
BISTEN signal.  
Step 4: The Link returns to normal operation after the deserializer BISTEN pin is low. Figure 14 shows the  
waveform diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2 shows one with multiple  
errors. In most cases it is difficult to generate errors due to the robustness of the link (differential data  
transmission etc.), thus they may be introduced by greatly extending the cable length, faulting the interconnect,  
reducing signal condition enhancements ( Rx Equalization).  
Normal  
Step 1: DES in BIST  
BIST  
Wait  
Step 2: Wait, SER in BIST  
BIST  
start  
Step 3: DES in Normal Mode -  
check PASS  
BIST  
stop  
Step 4: DES/SER in Normal  
Figure 13. Bist Mode Flow Diagram  
7.3.18.2 Forward Channel And Back Channel Error Checking  
While in BIST mode, the serializer stops sampling RGB input pins and switches over to an internal all-zero  
pattern. The internal all-zeroes pattern goes through scrambler, dc-balancing etc. and goes over the serial link to  
the deserializer. The deserializer on locking to the serial stream compares the recovered serial stream with all-  
zeroes and records any errors in status registers and dynamically indicates the status on PASS pin. The  
deserializer then outputs a SSO pattern on the RGB output pins.  
The back-channel data is checked for CRC errors once the serializer locks onto back-channel serial stream as  
indicated by link detect status (register bit 0x0C[0]). The CRC errors are recorded in an 8-bit register. The  
register is cleared when the serializer enters the BIST mode. As soon as the serializer exits BIST mode, the  
functional mode CRC register starts recording the CRC errors. The BIST mode CRC error register is active in  
BIST mode only and keeps the record of last BIST run until cleared or enters BIST mode again.  
Copyright © 2012–2014, Texas Instruments Incorporated  
21  
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
BISTEN  
(DES)  
PCLK  
(RFB = L)  
ROUT[23:0]  
HS, VS, DE  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
BIST  
Result  
Held  
Normal  
SSO  
Normal  
BIST Test  
BIST Duration  
Figure 14. Bist Waveforms  
7.4 Device Functional Modes  
7.4.1 Configuration Select (MODE_SEL)  
Configuration of the device may be done via the MODE_SEL input pin, or via the configuration register bit. A pull-  
up resistor and a pull-down resistor of suggested values may be used to set the voltage ratio of the MODE_SEL  
input (VR4) and VDD33 to select one of the other 10 possible selected modes. See Figure 15 and Table 4.  
V
DD33  
R
3
V
R4  
MODE_SEL  
SER  
R
4
Figure 15. MODE_SEL Connection Diagram  
22  
Copyright © 2012–2014, Texas Instruments Incorporated  
 
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
Device Functional Modes (continued)  
Table 4. Configuration Select (MODE_SEL)  
#
IDEAL  
RATIO  
VR4/VDD33  
IdeAl VR4  
(V)  
SUGGESTED  
RESISTOR R3  
k(1% tol)  
SUGGESTED  
RESISTOR R4  
k(1% tol)  
LFMODE  
REPEATER  
BACKWARD I2S Channel  
COMPATIBL  
E
B
(18–bit  
Mode)  
1
2
3
4
5
6
7
8
0
0
Open  
255  
243  
237  
196  
169  
137  
90.9  
40.2 or Any  
49.9  
L
L
L
H
H
L
L
L
L
L
0.164  
0.221  
0.285  
0.359  
0.453  
0.539  
0.728  
0.541  
0.729  
0.941  
1.185  
1.495  
1.779  
2.402  
69.8  
L
L
H
L
95.3  
H
H
H
H
H
L
110  
L
L
H
L
140  
H
H
L
L
158  
L
H*  
H
L
243  
LFMODE:  
L = frequency range is 15 – 85 MHz (Default)  
H = frequency range is 5 – <15 MHz  
Repeater:  
L = Repeater OFF (Default)  
H = Repeater ON  
Backward Compatible:  
L = Backward Compatible is OFF (Default)  
H = Backward Compatible is ON; DES = DS90UR906Q or DS90UR916Q or DS90UR908Q  
– frequency range = 15 - 65 MHz when LFMODE = 0  
– frequency range = 5 - <15 MHz when LFMODE = 1  
I2S Channel B:  
L = I2S Channel B is OFF, Normal 24-bit RGB Mode (Default)  
H = I2S Channel B is ON, 18-bit RGB Mode with I2S_DB Enabled. Note: use of GPIO(s) on unused inputs must be enabled by register.  
7.4.2 Repeater Application  
The DS90UB925Q-Q1 and DS90UB926Q-Q1 can be configured to extend data transmission over multiple links  
to multiple display devices. Setting the devices into repeater mode provides a mechanism for transmitting to all  
receivers in the system.  
7.4.2.1 Repeater Configuration  
In the repeater application, in this document, the DS90UB925Q-Q1 is referred to as the Transmitter or transmit  
port (TX), and the DS90UB926Q-Q1 is referred to as the Receiver (RX). Figure 16 shows the maximum  
configuration supported for Repeater implementations using the DS90UB925Q-Q1 (TX) and DS90UB926Q-Q1  
(RX). Two levels of Repeaters are supported with a maximum of three Transmitters per Receiver.  
Copyright © 2012–2014, Texas Instruments Incorporated  
23  
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
1:3 Repeater  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
RX  
TX  
Source  
TX  
RX  
TX  
TX  
TX  
TX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
Figure 16. Maximum Repeater Application  
In a repeater application, the I2C interface at each TX and RX may be configured to transparently pass I2C  
communications upstream or downstream to any I2C device within the system. This includes a mechanism for  
assigning alternate IDs (Slave Aliases) to downstream devices in the case of duplicate addresses.  
At each repeater node, the parallel LVCMOS interface fans out to up to three serializer devices, providing parallel  
RGB video data, HS/VS/DE control signals and, optionally, packetized audio data (transported during video  
blanking intervals). Alternatively, the I2S audio interface may be used to transport digital audio data between  
receiver and transmitters in place of packetized audio. All audio and video data is transmitted at the output of the  
Receiver and is received by the Transmitter.  
Figure 17 provides more detailed block diagram of a 1:2 repeater configuration.  
DS90UB925Q-Q1  
Transmitter  
downstream  
Receiver  
or  
Repeater  
I2C  
Slave  
I2C  
I2C  
Master  
upstream  
Transmitter  
Parallel  
LVCMOS  
DS90UB925Q-Q1  
Transmitter  
DS90UB926Q-Q1  
Receiver  
I2S Audio  
downstream  
Receiver  
or  
I2C  
Slave  
Repeater  
FPD-Link III interfaces  
Figure 17. 1:2 Repeater Configuration  
24  
Copyright © 2012–2014, Texas Instruments Incorporated  
 
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
7.4.2.2 Repeater Connections  
The Repeater requires the following connections between the Receiver and each Transmitter Figure 18.  
1. Video Data – Connect PCLK, RGB and control signals (DE, VS, HS).  
2. I2C – Connect SCL and SDA signals. Both signals should be pulled up to VDD33 with 4.7 kresistors.  
3. Audio – Connect I2S_CLK, I2S_WC, and I2S_DA signals.  
4. IDx pin – Each Transmitter and Receiver must have an unique I2C address.  
5. MODE_SEL pin – All Transmitter and Receiver must be set into the Repeater Mode.  
6. Interrupt pin – Connect DS90UB926Q-Q1 INTB_IN pin to DS90UB925Q-Q1 INTB pin. The signal must be  
pulled up to VDDIO  
.
DS90UB926Q-Q1  
DS90UB925Q-Q1  
RGB[7:0) / ROUT[23:0]  
DIN[23:0] / RGB[7:0]  
DE  
VS  
HS  
DE  
VS  
HS  
I2S_CLK  
I2S_WC  
I2S_DA  
I2S_CLK  
I2S_WC  
I2S_DA  
VDD33  
VDD33  
Optional  
VDDIO  
MODE_SEL  
MODE_SEL  
Optional  
INTB_IN  
INTB  
VDD33  
VDD33  
VDD33  
ID[x]  
ID[x]  
SDA  
SDA  
SCL  
SCL  
Figure 18. Repeater Connection Diagram  
7.5 Programming  
The DS90UB925Q-Q1 is configured by the use of a serial control bus that is I2C protocol compatible. Multiple  
serializer devices may share the serial control bus since 9 device addresses are supported. Device address is  
set via R1 and R2 values on IDx pin. See Figure 19.  
The serial control bus consists of two signals and a configuration pin. The SCL is a Serial Bus Clock Input /  
Output. The SDA is the Serial Bus Data Input / Output signal. Both SCL and SDA signals require an external  
pull-up resistor to VDD33. For most applications a 4.7 k pull-up resistor to VDD33 may be used. The resistor value  
may be adjusted for capacitive loading and data rate requirements. The signals are either pulled High, or driven  
Low.  
Copyright © 2012–2014, Texas Instruments Incorporated  
25  
 
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
Programming (continued)  
VDD33  
R1  
VDD33  
VR2  
IDx  
4.7k  
4.7k  
R2  
HOST  
or  
SER  
or  
Salve  
DES  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
Figure 19. Serial Control Bus Connection  
The configuration pin is the IDx pin. This pin sets one of 9 possible device addresses. A pull-up resistor and a  
pull-down resistor of suggested values may be used to set the voltage ratio of the IDx input (VR2) and VDD33 to  
select one of the other 9 possible addresses. See Table 5.  
Table 5. Serial Control Bus Addresses for IDx  
SUGGESTED  
RESISTOR  
R1 k(1% tol)  
SUGGESTED  
RESISTOR  
R2 k(1% tol)  
IDEAL RATIO  
VR2 / VDD33  
IDEAL VR2  
(V)  
ADDRESS 8'b  
APPENDED  
#
ADDRESS 7'b  
1
2
3
4
5
6
7
8
9
0
0
Open  
294  
280  
137  
118  
115  
102  
115  
90.9  
40.2 or Any  
40.2  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x13  
0x14  
0x15  
0x1B  
0x18  
0x1A  
0x1C  
0x1E  
0x20  
0x26  
0x28  
0x2A  
0x36  
0.121  
0.152  
0.180  
0.208  
0.303  
0.345  
0.389  
0.727  
0.399  
0.502  
0.594  
0.685  
0.999  
1.137  
1.284  
2.399  
49.9  
30.1  
30.9  
49.9  
53.6  
73.2  
243  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SCL transitions Low while SDA is High. A STOP occurs when SDA transition High while SCL is also HIGH. See  
Figure 20.  
SDA  
SCL  
S
P
START condition, or  
STOP condition  
START repeat condition  
Figure 20. Start and Stop Conditions  
26  
Copyright © 2012–2014, Texas Instruments Incorporated  
 
 
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
To communicate with a remote device, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it Acknowledges (ACKs) the master by driving the SDA bus low. If the address doesn't  
match a device's slave address, it Not-acknowledges (NACKs) the master by letting SDA be pulled High. ACKs  
also occur on the bus when data is being transmitted. When the master is writing data, the slave ACKs after  
every data byte is successfully received. When the master is reading data, the master ACKs after every data  
byte is received to let the slave know it wants to receive another data byte. When the master wants to stop  
reading, it NACKs after the last data byte and creates a stop condition on the bus. All communication on the bus  
begins with either a Start condition or a Repeated Start condition. All communication on the bus ends with a Stop  
condition. A READ is shown in Figure 21 and a WRITE is shown in Figure 22.  
If the Serial Bus is not required, the three pins may be left open (NC).  
Register Address  
Slave Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
A
2
A
1
A
0
0
S
S
1
P
Figure 21. Serial Control Bus — Read  
Register Address  
Slave Address  
Data  
a
c
a
c
k
a
c
k
A
2
A
1
A
0
0
S
P
k
Figure 22. Serial Control Bus — Write  
Table 6. Serial Control Bus Registers  
7.6 Register Maps  
REGIST  
ER  
TYPE  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
0
0x00 I2C Device ID  
7:1  
0
RW  
RW  
Device ID  
ID Setting  
7–bit address of Serializer  
I2C ID Setting  
1: Register I2C Device ID (Overrides IDx pin)  
0: Device ID is from IDx pin  
1
0x01 Reset  
7
RW  
0x00  
Remote  
Remote Auto Power Down  
Auto Power 1: Power down when no Bidirectional Control Channel  
Down  
link is detected  
0: Do not power down when no Bidirectional Control  
Channel link is detected  
6:2  
1
Reserved  
RW  
RW  
Digital  
RESET1  
Reset the entire digital block including registers  
This bit is self-clearing.  
1: Reset  
0: Normal operation  
0
Digital  
RESET0  
Reset the entire digital block except registers  
This bit is self-clearing  
1: Reset  
0: Normal operation  
Copyright © 2012–2014, Texas Instruments Incorporated  
27  
 
 
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 6. Serial Control Bus Registers (continued)  
REGIST  
ER  
TYPE  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
3
0x03 Configuration  
[0]  
7
RW  
0xD2  
Back  
channel  
CRC  
Back Channel Check Enable  
1: Enable  
0: Disable  
Checker  
Enable  
6
5
Reserved  
RW  
I2C Remote Automatically Acknowledge I2C Remote Write When  
Write Auto enabled, I2C writes to the Deserializer (or any remote  
Acknowledg I2C Slave, if I2C PASS ALL is enabled) are  
e
immediately acknowledged without waiting for the  
Deserializer to acknowledge the write. This allows  
higher throughput on the I2C bus  
1: Enable  
0: Disable  
4
3
RW  
RW  
Filter  
Enable  
HS, VS, DE two clock filter When enabled, pulses less  
than two full PCLK cycles on the DE, HS, and VS  
inputs will be rejected  
1: Filtering enable  
0: Filtering disable  
I2C Pass-  
through  
I2C Pass-Through Mode  
1: Pass-Through Enabled  
0: Pass-Through Disabled  
2
1
Reserved  
RW  
RW  
PCLK Auto Switch over to internal OSC in the absence of PCLK  
1: Enable auto-switch  
0: Disable auto-switch  
0
TRFB  
Pixel Clock Edge Select  
1: Parallel Interface Data is strobed on the Rising Clock  
Edge.  
0: Parallel Interface Data is strobed on the Falling  
Clock Edge.  
28  
Copyright © 2012–2014, Texas Instruments Incorporated  
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
Register Maps (continued)  
Table 6. Serial Control Bus Registers (continued)  
REGIST  
ER  
TYPE  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
4
0x04 Configuration  
[1]  
7
RW  
0x80  
Failsafe  
State  
Input Failsafe State  
1: Failsafe to Low  
0: Failsafe to High  
6
5
Reserved  
RW  
CRC Error  
Reset  
Clear back channel CRC Error Counters  
This bit is NOT self-clearing  
1: Clear Counters  
0: Normal Operation  
4
3
RGB  
DE Gate  
1: Gate RGB data with DE in Backward Compatibility  
mode and with Non-HDCP Deserializer  
0: Pass RGB data independent of DE in Backward  
Compatibility mode and Non-HDCP operation (default)  
RW  
Backward  
Backward Compatible (BC) mode set by MODE_SEL  
Compatible pin or register  
select by  
pin or  
1: BC is set by register bit. Use register bit reg_0x04[2]  
to set BC Mode  
register  
control  
0: BC is set by MODE_SEL pin.  
2
1
0
RW  
RW  
Backward  
Backward compatible (BC) mode to DS90UR906Q or  
Compatible DS90UR908Q, if reg_0x04[3] = 1  
Mode  
Select  
1: Backward compatible with DS90UR906Q or  
DS90UR908Q  
0: Backward Compatible is OFF (default)  
LFMODE  
select by  
pin or  
register  
control  
Frequency range is set by MODE_SEL pin or register  
1: Frequency range is set by register. Use register bit  
reg_0x04[0] to set LFMODE  
0: Frequency range is set by MODE_SEL pin.  
RW  
RW  
LFMODE  
Frequency range select  
1: PCLK range = 5MHz - <15 MHz), if reg_0x04[1] = 1  
0: PCLK range = 15MHz - 85MHz (default)  
5
0x05 I2C Control  
7:5  
4:3  
0x00  
Reserved  
SDA Output SDA output delay  
Delay Configures output delay on the SDA output. Setting this  
value will increase output delay in units of 40ns.  
Nominal output delay values for SCL to SDA are  
00: 240ns  
01: 280ns  
10: 320ns  
11: 360ns  
2
RW  
Local Write Disable remote writes to local registers  
Disable  
Setting the bit to a 1 prevents remote writes to local  
device registers from across the control channel. It  
prevents writes to the Serializer registers from an I2C  
master attached to the Deserializer.  
Setting this bit does not affect remote access to I2C  
slaves at the Serializer  
1
0
RW  
RW  
I2C Bus  
Timer  
Speedup  
Speed up I2C bus watchdog timer  
1: Watchdog timer expires after ~50 ms.  
0: Watchdog Timer expires after ~1 s  
I2C Bus  
timer  
Disable  
Disable I2C bus watchdog timer  
When the I2C watchdog timer may be used to detect  
when the I2C bus is free or hung up following an invalid  
termination of a transaction.  
If SDA is high and no signalling occurs for ~1 s, the I2C  
bus assumes to be free. If SDA is low and no signaling  
occurs, the device attempts to clear the bus by driving  
9 clocks on SCL  
Copyright © 2012–2014, Texas Instruments Incorporated  
29  
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 6. Serial Control Bus Registers (continued)  
REGIST  
ER  
TYPE  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
6
0x06 DES ID  
7:1  
RW  
0x00  
DES Device 7-bit Deserializer Device ID  
ID  
Configures the I2C Slave ID of the remote Deserializer.  
A value of 0 in this field disables I2C access to the  
remote Deserializer. This field is automatically  
configured by the Bidirectional Control Channel once  
RX Lock has been detected. Software may overwrite  
this value, but should also assert the FREEZE DEVICE  
ID bit to prevent overwriting by the Bidirectional Control  
Channel.  
0
RW  
RW  
Device ID  
Frozen  
Freeze Deserializer Device ID  
Prevents autoloading of the Deserializer Device ID by  
the Bidirectional Control Channel. The ID will be frozen  
at the value written.  
7
8
0x07 Slave ID  
7:1  
0x00  
0x00  
Slave  
Device ID  
7-bit Remote Slave Device ID  
Configures the physical I2C address of the remote I2C  
Slave device attached to the remote Deserializer. If an  
I2C transaction is addressed to the Slave Device Alias  
ID, the transaction will be remapped to this address  
before passing the transaction across the Bidirectional  
Control Channel to the Deserializer  
0
Reserved  
0x08 Slave Alias  
7:1  
RW  
Slave  
7-bit Remote Slave Device Alias ID  
Device  
Alias ID  
Assigns an Alias ID to an I2C Slave device attached to  
the remote Deserializer. The transaction will be  
remapped to the address specified in the Slave ID  
register. A value of 0 in this field disables access to the  
remote I2C Slave.  
0
Reserved  
10  
11  
12  
0x0A CRC Errors  
0x0B  
7:0  
R
R
0x00  
0x00  
0x00  
CRC Error  
LSB  
Number of back channel CRC errors – 8 least  
significant bits  
7:0  
CRC Error  
MSB  
Number of back channel CRC errors – 8 most  
significant bits  
0x0C General Status  
7:4  
3
Reserved  
R
BIST CRC  
Error  
Back channel CRC error during BIST communication  
with Deserializer.  
The bit is cleared upon loss of link, restart of BIST, or  
assertion of CRC ERROR RESET in register 0x04.  
2
1
R
R
PCLK  
Detect  
PCLK Status  
1: Valid PCLK detected  
0: Valid PCLK not detected  
DES Error  
Back channel CRC error during communication with  
Deserializer.  
The bit is cleared upon loss of link or assertion of CRC  
ERROR RESET in register 0x04.  
0
R
LINK Detect LINK Status  
1: Cable link detected  
0: Cable link not detected (Fault Condition)  
30  
Copyright © 2012–2014, Texas Instruments Incorporated  
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
Register Maps (continued)  
Table 6. Serial Control Bus Registers (continued)  
REGIST  
ER  
TYPE  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
DEFAULT  
(hex)  
BIT(S)  
7:4  
FUNCTION  
DESCRIPTION  
13  
0x0D Revision ID and  
GPIO0  
R
0xA0  
Rev-ID  
Revision ID: 1010  
Production Device  
Configuration  
3
RW  
GPIO0  
Output  
Value  
Local GPIO output value  
This value is output on the GPIO pin when the GPIO  
function is enabled, the local GPIO direction is Output,  
and remote GPIO control is disabled.  
2
RW  
GPIO0  
Remote  
Enable  
Remote GPIO control  
1: Enable GPIO control from remote Deserializer. The  
GPIO pin will be an output, and the value is received  
from the remote Deserializer.  
0: Disable GPIO control from remote Deserializer.  
1
0
7
RW  
RW  
RW  
GPIO0  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO0  
Enable  
GPIO function enable  
1: Enable GPIO operation  
0: Enable normal operation  
14  
0x0E GPIO2 and  
GPIO1  
0x00  
GPIO2  
Output  
Value  
Local GPIO output value  
This value is output on the GPIO pin when the GPIO  
function is enabled, the local GPIO direction is Output,  
and remote GPIO control is disabled.  
Configurations  
6
RW  
GPIO2  
Remote  
Enable  
Remote GPIO control  
1: Enable GPIO control from remote Deserializer. The  
GPIO pin will be an output, and the value is received  
from the remote Deserializer.  
0: Disable GPIO control from remote Deserializer.  
5
4
3
RW  
RW  
RW  
GPIO2  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO2  
Enable  
GPIO function enable  
1: Enable GPIO operation  
0: Enable normal operation  
GPIO1  
Output  
Value  
Local GPIO output value  
This value is output on the GPIO pin when the GPIO  
function is enabled, the local GPIO direction is Output,  
and remote GPIO control is disabled.  
2
RW  
GPIO1  
Remote  
Enable  
Remote GPIO control  
1: Enable GPIO control from remote Deserializer. The  
GPIO pin will be an output, and the value is received  
from the remote Deserializer.  
0: Disable GPIO control from remote Deserializer.  
1
0
RW  
RW  
GPIO1  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO1  
Enable  
GPIO function enable  
1: Enable GPIO operation  
0: Enable normal operation  
Copyright © 2012–2014, Texas Instruments Incorporated  
31  
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 6. Serial Control Bus Registers (continued)  
REGIST  
ER  
TYPE  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
15  
0x0F GPO_REG4  
and GPIO3  
7
RW  
0x00  
GPO_REG Local GPO_REG4 output value  
4 Output  
Value  
This value is output on the GPO pin when the GPO  
function is enabled.  
Configurations  
(The local GPO direction is Output, and remote GPO  
control is disabled)  
6:5  
4
Reserved  
RW  
RW  
GPO_REG GPO_REG4 function enable  
4 Enable  
1: Enable GPO operation  
0: Enable normal operation  
3
2
GPIO3  
Output  
Value  
Local GPIO output value  
This value is output on the GPIO pin when the GPIO  
function is enabled, the local GPIO direction is Output,  
and remote GPIO control is disabled.  
RW  
GPIO3  
Remote  
Enable  
Remote GPIO control  
1: Enable GPIO control from remote Deserializer. The  
GPIO pin will be an output, and the value is received  
from the remote Deserializer.  
0: Disable GPIO control from remote Deserializer.  
1
0
7
RW  
RW  
RW  
GPIO3  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO3  
Enable  
GPIO function enable  
1: Enable GPIO operation  
0: Enable normal operation  
16  
0x10 GPO_REG6  
and  
0x00  
GPO_REG Local GPO_REG6 output value  
6 Output  
Value  
This value is output on the GPO pin when the GPO  
function is enabled.  
(The local GPO direction is Output, and remote GPO  
control is disabled)  
GPO_REG5  
Configurations  
6:5  
4
Reserved  
RW  
RW  
GPO_REG GPO_REG6 function enable  
6 Enable  
1: Enable GPO operation  
0: Enable normal operation  
3
GPO_REG Local GPO_REG5 output value  
5 Output  
Value  
This value is output on the GPO pin when the GPO  
function is enabled, the local GPO direction is Output,  
and remote GPO control is disabled.  
2:1  
0
Reserved  
RW  
GPO_REG GPO_REG5 function enable  
5 Enable  
1: Enable GPO operation  
0: Enable normal operation  
32  
Copyright © 2012–2014, Texas Instruments Incorporated  
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
Register Maps (continued)  
Table 6. Serial Control Bus Registers (continued)  
REGIST  
ER  
TYPE  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
17  
0x11 GPO_REG8  
and  
7
RW  
0x00  
GPO_REG Local GPO_REG8 output value  
8 Output  
Value  
This value is output on the GPO pin when the GPO  
function is enabled.  
GPO_REG7  
Configurations  
(The local GPO direction is Output, and remote GPO  
control is disabled)  
6:5  
4
Reserved  
RW  
RW  
GPO_REG GPO_REG8 function enable  
8 Enable  
1: Enable GPO operation  
0: Enable normal operation  
3
GPO_REG Local GPO_REG7 output value  
7 Output  
Value  
This value is output on the GPO pin when the GPO  
function is enabled, the local GPO direction is Output,  
and remote GPO control is disabled.  
2:1  
0
Reserved  
RW  
RW  
GPO_REG GPO_REG7 function enable  
7 Enable  
1: Enable GPO operation  
0: Enable normal operation  
18  
0x12 Data Path  
Control  
7:6  
5
0x00  
Reserved  
DE Polarity The bit indicates the polarity of the DE (Data Enable)  
signal.  
1: DE is inverted (active low, idle high)  
0: DE is positive (active high, idle low)  
4
3
RW  
RW  
I2S  
Repeater  
Regen  
I2S Repeater Regeneration  
1: Repeater regenerate I2S from I2S pins  
0: Repeater pass through I2S from video pins  
I2S  
I2S Channel B Enable  
Channel B  
Enable  
Override  
1: Set I2S Channel B Enable from reg_12[0]  
0: Set I2S Channel B Enable from MODE_SEL pin  
2
RW  
18-bit Video 18–bit video select  
Select  
1: Select 18-bit video mode  
Note: use of GPIO(s) on unused inputs must be  
enabled by register.  
0: Select 24-bit video mode  
1
0
RW  
RW  
I2S  
Transport  
Select  
I2S Transport Mode Slect  
1: Enable I2S Data Forward Channel Frame Transport  
0: Enable I2S Data Island Transport  
I2S  
I2S Channel B Enable  
Channel B  
Enable  
1: Enable I2S Channel B on B1 input  
0: I2S Channel B disabled  
19  
0x13 Mode Status  
7:5  
4
0x10  
Reserved  
R
R
R
R
R
MODE_SEL MODE_SEL Status  
1: MODE_SEL decode circuit is completed  
0: MODE_SEL decode circuit is not completed  
3
2
1
0
Low  
Frequency  
Mode  
Low Frequency Mode Status  
1: Low frequency (5 - <15 MHz)  
0: Normal frequency (15 - 85 MHz)  
Repeater  
Mode  
Repeater Mode Status  
1: Repeater mode ON  
0: Repeater Mode OFF  
Backward  
Backward Compatible Mode Status  
Compatible 1: Backward compatible ON  
Mode  
0: Backward compatible OFF  
I2S  
I2S Channel B Mode Status  
Channel B  
Mode  
1: I2S Channel B ON, 18-bit RGB mode with I2S_DB  
enabled  
0: I2S Channel B OFF; normal 24-bit RGB mode  
Copyright © 2012–2014, Texas Instruments Incorporated  
33  
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 6. Serial Control Bus Registers (continued)  
REGIST  
ER  
TYPE  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
20  
0x14 Oscillator Clock  
Source and  
7:3  
2:1  
0x00  
Reserved  
OSC Clock OSC Clock Source  
RW  
BIST Status  
Source  
(When LFMODE = 1, Oscillator = 12.5MHz ONLY)  
00: External Pixel Clock  
01: 33 MHz Oscillator  
10: Reserved  
11: 25 MHz Oscillator  
0
R
BIST  
Enable  
Status  
BIST status  
1: Enabled  
0: Disabled  
22  
0x16 BCC Watchdog  
Control  
7:1  
RW  
0xFE  
Timer Value The watchdog timer allows termination of a control  
channel transaction if it fails to complete within a  
programmed amount of time.  
This field sets the Bidirectional Control Channel  
Watchdog Timeout value in units of 2 ms.  
This field should not be set to 0  
0
7
RW  
RW  
Timer  
Control  
Disable Bidirectional Control Channel Watchdog Timer  
1: Disables BCC Watchdog Timer operation  
0: Enables BCC Watchdog Timer operation  
23  
0x17 I2C Control  
0x5E  
I2C Pass  
All  
I2C Control  
1: Enable Forward Control Channel pass-through of all  
I2C accesses to I2C Slave IDs that do not match the  
Serializer I2C Slave ID.  
0: Enable Forward Control Channel pass-through only  
of I2C accesses to I2C Slave IDs matching either the  
remote Deserializer Slave ID or the remote Slave ID.  
6
Reserved  
5:4  
RW  
SDA Hold  
Time  
Internal SDA Hold Time  
Configures the amount of internal hold time provided  
for the SDA input relative to the SCL input. Units are 40  
ns  
3:0  
7:0  
RW  
RW  
I2C Filter  
Depth  
Configures the maximum width of glitch pulses on the  
SCL and SDA inputs that will be rejected. Units are 5  
ns  
24  
25  
0x18 SCL High Time  
0xA1  
0xA5  
SCL HIGH I2C Master SCL High Time  
Time  
This field configures the high pulse width of the SCL  
output when the Serializer is the Master on the local  
I2C bus. Units are 40 ns for the nominal oscillator clock  
frequency. The default value is set to provide a  
minimum 5us SCL high time with the internal oscillator  
clock running at 32.5MHz rather than the nominal  
25MHz.  
0x19 SCL Low Time  
7:0  
RW  
SCL LOW  
Time  
I2C SCL Low Time  
This field configures the low pulse width of the SCL  
output when the Serializer is the Master on the local  
I2C bus. This value is also used as the SDA setup time  
by the I2C Slave for providing data prior to releasing  
SCL during accesses over the Bidirectional Control  
Channel. Units are 40 ns for the nominal oscillator  
clock frequency. The default value is set to provide a  
minimum 5us SCL low time with the internal oscillator  
clock running at 32.5MHz rather than the nominal  
25MHz.  
27  
0x1B BIST BC Error  
7:0  
R
0x00  
BIST Back BIST Mode Back Channel CRC Error Counter  
Channel  
CRC Error  
Counter  
This error counter is active only in the BIST mode. It  
clears itself at the start of the BIST run.  
34  
Copyright © 2012–2014, Texas Instruments Incorporated  
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
Register Maps (continued)  
Table 6. Serial Control Bus Registers (continued)  
REGIST  
ER  
TYPE  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
100  
0x64 Pattern  
Generator  
Control  
7:4  
RW  
0x10  
Pattern  
Generator  
Select  
Fixed Pattern Select  
This field selects the pattern to output when in Fixed  
Pattern Mode. Scaled patterns are evenly distributed  
across the horizontal or vertical active regions. This  
field is ignored when Auto-Scrolling Mode is enabled.  
The following table shows the color selections in non-  
inverted followed by inverted color mode  
0000: Reserved  
0001: White/Black  
0010: Black/White  
0011: Red/Cyan  
0100: Green/Magenta  
0101: Blue/Yellow  
0110: Horizontally Scaled Black to White/White to  
Black  
0111: Horizontally Scaled Black to Red/Cyan to White  
1000: Horizontally Scaled Black to Green/Magenta to  
White  
1001: Horizontally Scaled Black to Blue/Yellow to White  
1010: Vertically Scaled Black to White/White to Black  
1011: Vertically Scaled Black to Red/Cyan to White  
1100: Vertically Scaled Black to Green/Magenta to  
White  
1101: Vertically Scaled Black to Blue/Yellow to White  
1110: Custom color (or its inversion) configured in  
PGRS, PGGS, PGBS registers  
1111: Reserved  
3:1  
0
Reserved  
RW  
Pattern  
Generator  
Enable  
Pattern Generator Enable  
1: Enable Pattern Generator  
0: Disable Pattern Generator  
Copyright © 2012–2014, Texas Instruments Incorporated  
35  
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 6. Serial Control Bus Registers (continued)  
REGIST  
ER  
TYPE  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
101  
0x65 Pattern  
Generator  
Configuration  
7:5  
4
0x00  
Reserved  
RW  
RW  
Pattern  
Generator  
18 Bits  
18-bit Mode Select  
1: Enable 18-bit color pattern generation. Scaled  
patterns will have 64 levels of brightness and the R, G,  
and B outputs use the six most significant color bits.  
0: Enable 24-bit pattern generation. Scaled patterns  
use 256 levels of brightness.  
3
2
Pattern  
Generator  
External  
Clock  
Select External Clock Source  
1: Selects the external pixel clock when using internal  
timing.  
0: Selects the internal divided clock when using internal  
timing  
This bit has no effect in external timing mode  
(PATGEN_TSEL = 0).  
RW  
Pattern  
Generator  
Timing  
Timing Select Control  
1: The Pattern Generator creates its own video timing  
as configured in the Pattern Generator Total Frame  
Size, Active Frame Size. Horizontal Sync Width,  
Vertical Sync Width, Horizontal Back Porch, Vertical  
Back Porch, and Sync Configuration registers.  
0: the Pattern Generator uses external video timing  
from the pixel clock, Data Enable, Horizontal Sync, and  
Vertical Sync signals.  
Select  
1
0
RW  
RW  
Pattern  
Generator  
Enable Inverted Color Patterns  
1: Invert the color output.  
Color Invert 0: Do not invert the color output.  
Pattern  
Auto-Scroll Enable:  
Generator  
1: The Pattern Generator will automatically move to the  
Auto-Scroll next enabled pattern after the number of frames  
Enable  
specified in the Pattern Generator Frame Time (PGFT)  
register.  
0: The Pattern Generator retains the current pattern.  
102  
0x66 Pattern  
7:0  
7:0  
RW  
RW  
0x00  
0x00  
Indirect  
Address  
This 8-bit field sets the indirect address for accesses to  
indirectly-mapped registers. It should be written prior to  
reading or writing the Pattern Generator Indirect Data  
register.  
Generator  
Indirect Address  
See AN-2198 (SNLA132).  
103  
198  
0x67 Pattern  
Indirect  
Data  
When writing to indirect registers, this register contains  
the data to be written. When reading from indirect  
registers, this register contains the read back value.  
See AN-2198 (SNLA132)  
Generator  
Indirect Data  
0xC6 ICR  
7:6  
5
Reserved  
RW  
IS_RX_INT Interrupt on Receiver interrupt  
Enables interrupt on indication from the Receiver.  
Allows propagation of interrupts from downstream  
devices  
4:1  
0
Reserved  
RW  
R
INT Enable Global Interrupt Enable  
Enables interrupt on the interrupt signal to the  
controller.  
199  
0xC7 ISR  
7:6  
5
Reserved  
IS RX INT  
INT  
Interrupt on Receiver interrupt  
Receiver has indicated an interrupt request from down-  
stream device  
4:1  
0
Reserved  
R
Global Interrupt  
Set if any enabled interrupt is indicated  
36  
Copyright © 2012–2014, Texas Instruments Incorporated  
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
Register Maps (continued)  
Table 6. Serial Control Bus Registers (continued)  
REGIST  
ER  
TYPE  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
240  
241  
242  
243  
244  
245  
0xF0 TX ID  
0xF1  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
R
R
R
R
R
R
0x5F  
0x55  
0x48  
0x39  
0x32  
0x35  
ID0  
ID1  
ID2  
ID3  
ID4  
ID5  
First byte ID code, ‘_’  
Second byte of ID code, ‘U’  
Third byte of ID code. Value will be ‘B’  
Forth byte of ID code: ‘9’  
0xF2  
0xF3  
0xF4  
Fifth byte of ID code: “2”  
0xF5  
Sixth byte of ID code: “5”  
Copyright © 2012–2014, Texas Instruments Incorporated  
37  
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DS90UB925Q-Q1, in conjunction with the DS90UB926Q-Q1, is intended for interface between a host  
(graphics processor) and a Display. It supports a 24-bit color depth (RGB888) and high definition (720p) digital  
video format. It can receive a three 8-bit RGB stream with a pixel rate up to 85 MHz together with three control  
bits (VS, HS and DE) and three I2S-bus audio stream with an audio sampling rate up to 192 kHz.  
8.2 Typical Application  
DS90UB925Q-Q1  
3.3V/1.8V  
3.3V  
VDDIO  
VDD33  
CAPP12  
CAPL12  
FB1  
C5  
FB2  
C4  
DIN0  
DIN1  
DIN2  
DIN3  
DIN4  
DIN5  
DIN6  
DIN7  
C6  
C7  
C9  
C8  
CAPHS12  
DIN8  
DIN9  
DIN10  
DIN11  
DIN12  
DIN13  
DIN14  
DIN15  
C1  
Serial  
FPD-Link III  
Interface  
DOUT+  
DOUT-  
CMF  
LVCMOS  
Parallel  
Video  
C2  
Interface  
C3  
DIN16  
DIN17  
DIN18  
DIN19  
DIN20  
DIN21  
DIN22  
DIN23  
VDD33  
R
3
MODE_SEL  
R
4
PCLK  
HS  
VS  
DE  
VDD33  
VDDIO VDD33*  
NOTE:  
FB1-FB2: Impedance = 1 k: @ 100 MHz,  
Low DC resistance (<1:)  
C1-C3 = 0.1 PF (50 WV; C1, C2: 0402; C3: 0603)  
C4-C9 = 4.7 PF  
R
1
R
6
R
5
ID[X]  
SCL  
SDA  
LVCMOS  
Control  
Interface  
INTB  
PDB  
R
2
C10 =>10 PF  
C10  
R and R (see IDx Resistor Values Table 5)  
1
2
NC  
R and R (see MODE_SEL Resistor Values Table 1)  
I2S_CLK  
I2S_WC  
I2S_DA  
3
5
6
4
RES  
DAP (GND)  
R
R
= 10 k:  
= 4.7 k:  
* or VDDIO = 3.3V+0.3V  
Figure 23. Typical Connection Diagram  
38  
Copyright © 2012–2014, Texas Instruments Incorporated  
 
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
Typical Application (continued)  
V
V
V
V
DDIO  
DD33  
DDIO  
(1.8Vor3.3V)  
DD33  
(3.3V) (1.8Vor3.3V)  
(3.3V)  
R[7:0]  
G[7:0]  
R[7:0]  
G[7:0]  
FPD-Link III  
1 Pair / AC Coupled  
B[7:0]  
B[7:0]  
HS  
VS  
DE  
PCLK  
0.1 PF  
0.1 PF  
HOST  
Graphics  
Processor  
RGB Display  
720p  
24-bit color depth  
HS  
DOUT+  
DOUT-  
RIN+  
RIN-  
VS  
DE  
PCLK  
100: STP Cable  
DS90UB925Q-Q1  
Serializer  
DS90UB926Q-Q1  
Deserializer  
LOCK  
PASS  
PDB  
OSS_SEL  
OEN  
PDB  
3
I2S AUDIO  
(STEREO)  
3
I2S AUDIO  
(STEREO)  
MODE_SEL  
MODE_SEL  
INTB  
INTB_IN  
MCLK  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
DAP  
DAP  
Figure 24. Typical Display System Diagram  
V
V
V
V
DDIO  
DDIO  
(1.8V or 3.3V)  
DD33  
DD33  
(3.3V) (1.8V or 3.3V)  
(3.3V)  
FPD-Link III  
1 Pair/AC Coupled  
D[0:n]  
HS  
VS  
720p  
Megapixel  
Image  
ROUT[0:n]  
0.1 PF  
0.1 PF  
Image  
Processor  
Unit  
HS  
VS  
PCLK  
RIN+  
RIN-  
DOUT+  
DOUT-  
PCLK  
Sensor  
100: STP Cable  
GPIO  
DS90UB925Q-Q1  
Serializer  
DS90UB926Q-Q1  
Deserializer  
GPIO  
PDB  
OSS_SEL  
OEN  
LOCK  
PASS  
MODE_SEL  
INTB_IN  
MODE_SEL  
INTB  
PDB  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
DAP  
DAP  
Figure 25. Typical Camera Applications Diagram  
8.2.1 Design Requirements  
For the typical design application, use the following as input parameters.  
Table 7. Design Parameters  
DESIGN PARAMETER  
VDDIO  
EXAMPLE VALUE  
1.8 V or 3.3 V  
3.3 V  
VDD33  
AC Coupling Capacitor for DOUT±  
PCLK Frequency  
100 nF  
85 MHz  
Copyright © 2012–2014, Texas Instruments Incorporated  
39  
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
Figure 23 shows a typical application of the DS90UB925Q-Q1 serializer for an 85 MHz 24-bit Color Display  
Application. The camera application has the same recommended connections. The CML outputs must have an  
external 0.1 μF AC coupling capacitor on the high speed serial lines. The serializer has an internal termination.  
Bypass capacitors are placed near the power supply pins. At a minimum, six (6) 4.7μF capacitors and two (2)  
additional 1μF capacitors should be used for local device bypassing. Ferrite beads are placed on the two (2)  
VDDs (VDD33 and VDDIO) for effective noise suppression. The interface to the graphics source is with 3.3V  
LVCMOS levels, thus the VDDIO pin is connected to the 3.3 V rail. A RC delay is placed on the PDB signal to  
delay the enabling of the device until power is stable.  
8.2.3 Application Curves  
Time (100 ps/DIV)  
Time (2.5 ns/DIV)  
Figure 26. Serializer Eye Diagram with 78 MHz TX Pixel  
Clock  
Figure 27. Serializer CML Output with 78 MHz TX Pixel  
Clock  
40  
Copyright © 2012–2014, Texas Instruments Incorporated  
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
9 Power Supply Recommendations  
9.1 Power Up Requirements and PDB Pin  
The VDDs (VDD33 and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. A large capacitor  
on the PDB pin is needed to ensure PDB arrives after all the VDDs have settled to the recommended operating  
voltage. When PDB pin is pulled to VDDIO = 3.0V to 3.6V or VDD33, it is recommended to use a 10 kpull-up and  
a >10 uF cap to GND to delay the PDB input signal.  
All inputs must not be driven until VDD33 and VDDIO has reached its steady state value.  
This device is designed to operate from an input core voltage supply of 3.3V. Some devices provide separate  
power and ground terminals for different portions of the circuit. This is done to isolate switching noise effects  
between different sections of the circuit. Separate planes on the PCB are typically not required. Terminal  
description tables typically provide guidance on which circuit blocks are connected to which power terminal pairs.  
In some cases, an external filter may be used to provide clean power to sensitive circuits such as PLLs.  
9.2 CML Interconnect Guidelines  
See AN-1108 (SNLA008) and AN-905 (SNLA035) for full details.  
Use 100Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
– S = space between the pair  
– 2S = space between pairs  
– 3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500 Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Additional general guidance can be found in the LVDS Owner’s Manual - available in PDF format from the Texas  
Instruments web site at: www.ti.com/lvds.  
Copyright © 2012–2014, Texas Instruments Incorporated  
41  
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Circuit board layout and stack-up for the FPD-Link III devices should be designed to provide low-noise power  
feed to the device. Good layout practice will also separate high frequency or high-level inputs and outputs to  
minimize unwanted stray noise pickup, feedback and interference. Power system performance may be greatly  
improved by using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane  
capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at  
high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01 uF to 0.1 uF. Tantalum capacitors may be in the 2.2 uF to 10 uF range. Voltage rating of the  
tantalum capacitors should be at least 5X the power supply voltage being used.  
Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per  
supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 50uF to 100uF range and will smooth low frequency switching noise. It is  
recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external  
bypass capacitor will increase the inductance of the path.  
A small body size X7R chip capacitor, such as 0603 or 0402, is recommended for external bypass. Its small body  
size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of  
these external bypass capacitors, usually in the range of 20-30 MHz. To provide effective bypassing, multiple  
capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At  
high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing  
the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as  
PLLs.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the CML  
lines to prevent coupling from the LVCMOS lines to the CML lines. Closely-coupled differential lines of 100 Ohms  
are typically recommended for CML interconnect. The closely coupled lines help to ensure that coupled noise will  
appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also radiate less.  
Information on the WQFN style package is provided in TI Application Note: AN-1187 (SNOA401).  
42  
Copyright © 2012–2014, Texas Instruments Incorporated  
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
10.2 Layout Example  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the WQFN package is highly recommended to improve  
board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP. Stencil parameters for aperture opening and via locations are shown below:  
Figure 28. No Pullback WQFN, Single Row Reference Diagram  
Table 8. No Pullback WQFN Stencil Aperture Summary  
DEVICE  
PIN  
COUN  
T
MKT Dwg PCB I/O  
PCB  
PCB DAP  
SIZE (mm)  
STENCIL I/O  
APERTURE  
(mm)  
STENCIL  
DAP  
Aperture  
(mm)  
NUMBER of  
DAP  
APERTURE  
OPENINGS  
GAP BETWEEN  
DAP APERTURE  
(Dim A mm)  
Pad Size PITCH  
(mm)  
(mm)  
DS90UB925  
Q-Q1  
0.25 x  
0.6  
48  
SQA48A  
0.5  
5.1 x 5.1  
0.25 x 0.7  
1.1 x 1.1  
16  
0.2  
Figure 29. 48-Pin WQFN Stencil Example of Via and Opening Placement  
Figure 30 PCB layout example is derived from the layout design of the DS90UB925QSEVB Evaluation Board.  
The graphic and layout description are used to determine both proper routing and proper solder techniques when  
designing the Serializer board.  
Copyright © 2012–2014, Texas Instruments Incorporated  
43  
DS90UB925Q-Q1  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
www.ti.com.cn  
Figure 30. DS90UB925Q-Q1 Serializer Example Layout  
44  
版权 © 2012–2014, Texas Instruments Incorporated  
DS90UB925Q-Q1  
www.ti.com.cn  
ZHCSCX8D APRIL 2012REVISED OCTOBER 2014  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
AN-2198 探究内部测试模式生成》,SNLA132  
AN-1108 通道链路 PCB 和互连设计指南》,SNLA008  
SCAN18245T 具有三态输出的同向收发器》,SNLA035  
TI 接口网站 www.ti.com/lvds  
AN-1187 无引线框架封装 (LLP)》,SNOA401  
《半导体和 IC 封装热指标》,SPRA953  
11.2 商标  
All trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2012–2014, Texas Instruments Incorporated  
45  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UB925QSQ/NOPB  
DS90UB925QSQE/NOPB  
DS90UB925QSQX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
48  
48  
48  
1000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
-40 to 105  
UB925QSQ  
Samples  
Samples  
Samples  
SN  
SN  
UB925QSQ  
UB925QSQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jun-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UB925QSQ/NOPB WQFN  
DS90UB925QSQE/NOPB WQFN  
DS90UB925QSQX/NOPB WQFN  
RHS  
RHS  
RHS  
48  
48  
48  
1000  
250  
330.0  
178.0  
330.0  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.3  
1.3  
1.3  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UB925QSQ/NOPB  
DS90UB925QSQE/NOPB  
DS90UB925QSQX/NOPB  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
48  
48  
48  
1000  
250  
356.0  
208.0  
356.0  
356.0  
191.0  
356.0  
35.0  
35.0  
35.0  
2500  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DS90UB925QSQ

5 - 85 MHz 24-bit Color FPD-Link III Serializer with Bidirectional Control Channel
TI

DS90UB925QSQ/NOPB

具有双向控制通道的 5 - 85MHz 24 位彩色 FPD-Link III 串行器 | RHS | 48 | -40 to 105
TI

DS90UB925QSQE

5 - 85 MHz 24-bit Color FPD-Link III Serializer with Bidirectional Control Channel
TI

DS90UB925QSQE/NOPB

具有双向控制通道的 5 - 85MHz 24 位彩色 FPD-Link III 串行器 | RHS | 48 | -40 to 105
TI

DS90UB925QSQX

5 - 85 MHz 24-bit Color FPD-Link III Serializer with Bidirectional Control Channel
TI

DS90UB925QSQX/NOPB

具有双向控制通道的 5 - 85MHz 24 位彩色 FPD-Link III 串行器 | RHS | 48 | -40 to 105
TI

DS90UB926Q

5 - 85 MHz 24-bit Color FPD-Link III Deserializer with Bidirectional Control Channel
TI

DS90UB926Q-Q1

具有双向控制通道的 5-85MHz 24 位彩色 FPD-Link III 解串器
TI

DS90UB926QSQ

5 - 85 MHz 24-bit Color FPD-Link III Deserializer with Bidirectional Control Channel
TI

DS90UB926QSQ/NOPB

具有双向控制通道的 5-85MHz 24 位彩色 FPD-Link III 解串器 | NKB | 60 | -40 to 105
TI

DS90UB926QSQE

5 - 85 MHz 24-bit Color FPD-Link III Deserializer with Bidirectional Control Channel
TI

DS90UB926QSQE/NOPB

具有双向控制通道的 5-85MHz 24 位彩色 FPD-Link III 解串器 | NKB | 60 | -40 to 105
TI