DS90UB926Q-Q1 [TI]

具有双向控制通道的 5-85MHz 24 位彩色 FPD-Link III 解串器;
DS90UB926Q-Q1
型号: DS90UB926Q-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有双向控制通道的 5-85MHz 24 位彩色 FPD-Link III 解串器

光电二极管
文件: 总63页 (文件大小:1301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
具有双向控制通道的 DS90UB926Q-Q1 5 85MHz 24 位彩色 FPD-Link  
III 解串器  
1 特性  
2 应用范围  
1
符合 AEC-Q100 的汽车标准 应用  
汽车导航显示屏  
后座娱乐系统  
器件温度等级 2:环境工作温度范围为 –40°C  
+105°C  
汽车驾驶辅助  
器件 HBM ESD 分类等级 3B  
器件 CDM ESD 分类等级 C6  
器件 MM ESD 分类等级 M3  
车载百万象素级摄像机系统  
3 说明  
具有 I2C 兼容串行控制总线的双向控制接口通道接  
DS90UB926Q-Q1 解串器与 DS90UB925Q-Q1 串行器  
配套使用,可提供完整的数字接口,以便在汽车显示和  
图像传感应用中实现对高速视频、音频和控制数据的并  
行传输 应用。  
支持高清 (720p) 数字视频格式  
支持 RGB888 + VSHSDE 和同步 I2S 音频  
支持 5 85MHz 像素时钟 (PCLK)  
该芯片组将并行 RGB 视频接口转换为单对高速串行化  
接口。FPD-Link III 串行总线方案支持通过单条差分链  
路实现高速正向数据传输和低速反向通道通信的全双工  
控制。通过单个差分对整合视频数据和控制可减小互连  
线尺寸和重量,同时还消除了偏差问题并简化了系统设  
计。  
通过 1.8V 3.3V 兼容 LVCMOS I/O 接口实现  
3.3V 单电源运行  
长达 10 米的交流耦合屏蔽双绞线 (STP) 互连  
并行 LVCMOS 视频输出  
具有用于进行配置的 I2C 兼容串行控制总线  
具有嵌入式时钟的直流平衡和扰频数据  
自适应电缆均衡  
DS90UB926Q-Q1 解串器可恢复出 RGB 数据、3 个视  
频控制信号以及 4 个同步的 I2S 音频信号。器件会从  
高速串行数据流中提取出时钟。LOCK 输出引脚会在  
传入数据流被锁定时提供链路状态,而无需使用训练序  
列或特殊的 SYNC(同步)模式,也不需要基准时  
钟。  
支持中继器应用  
全速 (@ Speed) 链路内置自检 (BIST) 模式和锁定  
(LOCK) 状态引脚  
图像增强(白平衡和抖动)和内部模式生成  
EMI 最小化(展频时钟生成 (SSCG) 和增强型累进  
接通 (EPTO))  
器件信息(1)  
低功率模式大大减少了功率耗散  
器件型号  
封装  
WQFN (60)  
封装尺寸(标称值)  
FPD-Link II 向后兼容  
DS90UB926Q-Q1  
9.00mm x 9.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
典型显示系统图  
V
DD33  
V
DDIO  
V
DDIO  
V
DD33  
(3.3V) (1.8V or3.3V)  
(1.8V or3.3V) (3.3V)  
R[7:0]  
G[7:0]  
R[7:0]  
G[7:0]  
FPD-Link III  
1 Pair / AC Coupled  
B[7:0]  
B[7:0]  
HS  
VS  
DE  
PCLK  
0.1 mF  
0.1 mF  
HOST  
Graphics  
Processor  
RGB Display  
720p  
24-bit color depth  
HS  
DOUT+  
DOUT-  
RIN+  
RIN-  
VS  
DE  
PCLK  
100W STP Cable  
DS90UB925Q  
Serializer  
DS90UB926Q  
Deserializer  
LOCK  
PASS  
PDB  
OSS_SEL  
OEN  
PDB  
3
I2S AUDIO  
(STEREO)  
3
I2S AUDIO  
(STEREO)  
MODE_SEL  
MODE_SEL  
INTB  
INTB_IN  
MCLK  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
DAP  
DAP  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNLS422  
 
 
 
 
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 18  
8.3 Feature Description................................................. 18  
8.4 Device Functional Modes........................................ 31  
8.5 Programming........................................................... 35  
8.6 Register Maps......................................................... 36  
Application and Implementation ........................ 48  
9.1 Application Information............................................ 48  
9.2 Typical Application .................................................. 49  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 8  
7.1 Absolute Maximum Ratings ..................................... 8  
7.2 ESD Ratings.............................................................. 8  
7.3 Recommended Operating Conditions....................... 8  
7.4 Thermal Information.................................................. 9  
7.5 DC Electrical Characteristics .................................... 9  
7.6 AC Electrical Characteristics................................... 11  
7.7 DC and AC Serial Control Bus Characteristics....... 12  
7.8 Timing Requirements.............................................. 12  
7.9 Timing Requirements for the Serial Control Bus .... 13  
7.10 Switching Characteristics...................................... 13  
7.11 Timing Diagrams................................................... 14  
7.12 Typical Characteristics.......................................... 17  
Detailed Description ............................................ 18  
8.1 Overview ................................................................. 18  
9
10 Power Supply Recommendations ..................... 51  
10.1 Power Up Requirements and PDB Pin................. 51  
11 Layout................................................................... 52  
11.1 Layout Guidelines ................................................. 52  
11.2 Layout Examples................................................... 54  
12 器件和文档支持 ..................................................... 55  
12.1 文档支持................................................................ 55  
12.2 接收文档更新通知 ................................................. 55  
12.3 社区资源................................................................ 55  
12.4 ....................................................................... 55  
12.5 静电放电警告......................................................... 55  
12.6 Glossary................................................................ 55  
13 机械、封装和可订购信息....................................... 55  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (February 2017) to Revision D  
Page  
将修订版 C 中以前所做的所有 MLCK 内容更改恢复为修订版 B ............................................................................................ 1  
Deleted the disable I2S jitter cleaner note.............................................................................................................................. 6  
Changes from Revision B (January 2015) to Revision C  
Page  
Changed pin 60 from MCLK to RES2 ................................................................................................................................... 5  
Changed MCLK to RES2 ....................................................................................................................................................... 6  
Added note to disable I2S jitter cleaner ................................................................................................................................ 6  
Changed MCLK to RES2 ....................................................................................................................................................... 6  
Deleted reference to MCLK in this section ............................................................................................................................ 9  
Deleted reference to MCLK in this section .......................................................................................................................... 13  
Deleted reference to MCLK.................................................................................................................................................. 28  
Changed MCLK section ....................................................................................................................................................... 28  
Changed MCLK columns of Audio Interface Frequencies table ......................................................................................... 28  
Changed the values in columns 2 through 5 in Configuration Select (MODE_SEL) table................................................... 32  
Changed the values in columns 2 to 5 in Serial Control Bus Addresses for IDx table ........................................................ 35  
Changed register reference to MCLK .................................................................................................................................. 45  
Changed Typical Display System Diagram (removed reference to MCLK) ........................................................................ 49  
Changed wording of Power Up Requirements and PDB Pin subsection and added Power-Up Sequence graphic............ 51  
2
版权 © 2012–2017, Texas Instruments Incorporated  
 
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
Changes from Revision A (April 2013) to Revision B  
Page  
已添加 添加了引脚配置和功能 部分、ESD 额定值 表、特性 说明 部分、器件功能模式应用和实施 部分、电源相关  
建议 部分、布局 部分、器件和文档支持 部分以及机械、封装和可订购信息 部分 ................................................................. 1  
Changes from Original (July 2012) to Revision A  
Page  
直流和交流串行控制总线特性表中的拼写错误从 VDDIO 更正为 VDD33,添加了注:BIST 在向后兼容模式下不  
可用。,添加了推荐 FRC 设置表,更改了数据表的整体布局以符合 TI 格式,向绝对最大额定值部分添加了注  
(3):在切换至掉电状态的过程中(PDB 从高电平切换至低电平),上限值 (VDDIO + 0.3V) 不适用于 PDB 引脚,删除  
25°C 下最大功耗量的降额。 .............................................................................................................................................. 4  
"Note: BIST is not available in backwards compatible mode."............................................................................................. 26  
版权 © 2012–2017, Texas Instruments Incorporated  
3
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
5 说明 (续)  
DS90UB926Q-Q1 解串器具有一个 31 位并行 LVCMOS 输出接口,可针对 RGB、视频控制和音频数据进行调整。  
自适应均衡器优化了最大电缆长度。输出扩频时钟发生器 (SSCG) 和增强型渐进接通 (EPTO) 功能大大降低了电磁  
干扰 (EMI) 特性。  
4
Copyright © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
6 Pin Configuration and Functions  
NKB Package  
60-Pin WQFN With Exposed Thermal Pad  
Top View  
OSS_SEL  
RES0  
46  
47  
48  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
I2S_WC / GPO_REG7  
VDD33_B  
VDD33_A  
RIN+  
ROUT8 / G0 / GPIO2  
ROUT9 / G1 / GPIO3  
ROUT10 / G2  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
RIN-  
CMF  
ROUT11 / G3  
CMLOUTP  
CMLOUTN  
NC  
VDDIO  
DS90UB926Q-Q1  
TOP VIEW  
ROUT12 / G4  
ROUT13 / G5  
DAP = GND  
CAPR12  
IDx  
ROUT14 / G6  
ROUT15 / G7  
CAPP12  
CAPI2S  
PDB  
ROUT16 / B0 / GPO_REG4  
ROUT17 / B1 / GPO_REG5 / I2S_DB  
ROUT18 / B2  
MCLK  
BISTC / INTB_IN  
Copyright © 2012–2017, Texas Instruments Incorporated  
5
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
Pin Functions  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
LVCMOS PARALLEL INTERFACE  
Parallel Interface Data Output Pins  
Leave open if unused.  
41, 40, 39, 37,  
36, 35, 34, 33,  
28, 27, 26, 25, O, LVCMOS GPIO1.  
23, 22, 21, 20, with pulldown ROUT8 / G0 can optionally be used as GPIO2 and ROUT9 / G1 can optionally be used as  
19, 18, 17, 14,  
12, 11, 10, 9  
ROUT0 / R0 can optionally be used as GPIO0 and ROUT1 / R1 can optionally be used as  
ROUT[23:0] /  
R[7:0],  
G[7:0], B[7:0]  
GPIO3.  
ROUT16 / B0 can optionally be used as GPO_REG4 and ROUT17/ B1 can optionally be  
used as I2S_DB / GPO_REG5.  
Horizontal Sync Output Pin  
Video control signal pulse width must be 3 PCLKs or longer to be transmitted when the  
O, LVCMOS Control Signal Filter is enabled. There is no restriction on the minimum transition pulse  
with pulldown when the Control Signal Filter is disabled. The signal is limited to 2 transitions per 130  
HS  
VS  
8
7
6
PCLKs.  
See Table 11  
Vertical Sync Output Pin  
Video control signal is limited to 1 transition per 130 PCLKs. Thus, the minimum pulse width  
is 130 PCLKs.  
O, LVCMOS  
with pulldown  
Data Enable Output Pin  
Video control signal pulse width must be 3 PCLKs or longer to be transmitted when the  
O, LVCMOS Control Signal Filter is enabled. There is no restriction on the minimum transition pulse  
with pulldown when the Control Signal Filter is disabled. The signal is limited to 2 transitions per 130  
DE  
PCLKs.  
See Table 11  
O, LVCMOS Pixel Clock Output Pin. Strobe edge set by RFB configuration register. See Table 11  
with pulldown  
PCLK  
5
1, 30, 45  
60  
Digital Audio Interface Data Output Pins  
O, LVCMOS Leave open if unused  
with pulldown I2S_CLK can optionally be used as GPO_REG8, I2S_WC can optionally be used as  
GPO_REG7, and I2S_DA can optionally be used as GPO_REG6.  
I2S_CLK,  
I2S_WC,  
I2S_DA  
O, LVCMOS I2S Master Clock Output  
with pulldown x1, x2, or x4 of I2S_CLK Frequency  
MCLK  
OPTIONAL PARALLEL INTERFACE  
Second Channel Digital Audio Interface Data Output pin at 18–bit color mode and set by  
O, LVCMOS MODE_SEL or configuration register  
with pulldown Leave open if unused  
I2S_B can optionally be used as BI or GPO_REG5.  
I2S_DB  
18  
Standard General Purpose IOs.  
I/O,  
LVCMOS  
Available only in 18-bit color mode, and set by MODE_SEL or configuration register. See  
Table 11  
GPIO[3:0]  
27, 28, 40, 41  
with pulldown Leave open if unused  
Shared with G1, G0, R1 and R0.  
GPO_REG[8: 1, 30, 45, 18, O, LVCMOS General Purpose Outputs and set by configuration register. See Table 11  
4]  
19  
with pulldown Shared with I2S_CLK, I2S_WC, I2S_DA, I2S_DB or B1, B0.  
Input,  
Interrupt Input  
INTB_IN  
16  
LVCMOS  
Shared with BISTC  
with pulldown  
OPTIONAL PARALLEL INTERFACE  
Power-down Mode Input Pin  
PDB = H, device is enabled (normal operation)  
I, LVCMOS Refer to Power Up Requirements and PDB Pin.  
with pulldown PDB = L, device is powered down.  
PDB  
59  
When the device is in the POWER DOWN state, the LVCMOS Outputs are in TRI-STATE,  
the PLL is shutdown and IDD is minimized. .  
Input,  
LVCMOS  
Output Enable Pin  
See Table 8  
OEN  
31  
46  
with pulldown  
Input,  
LVCMOS  
Output Sleep State Select Pin  
See Table 8  
OSS_SEL  
with pulldown  
6
Copyright © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
MODE_SEL  
15  
I, Analog  
Device Configuration Select. See Table 9  
I2C Serial Control Bus Device ID Address Select  
External pullup to VDD33 is required under all conditions, DO NOT FLOAT.  
Connect to external pullup and pulldown resistor to create a voltage divider.  
See Figure 23  
IDx  
56  
I, Analog  
I/O,  
I2C Clock Input / Output Interface  
SCL  
3
2
LVCMOS  
Must have an external pullup to VDD33, DO NOT FLOAT.  
Open-Drain Recommended pullup: 4.7 kΩ.  
I/O,  
LVCMOS  
I2C Data Input / Output Interface  
Must have an external pullup to VDD33, DO NOT FLOAT.  
SDA  
Open-Drain Recommended pullup: 4.7 kΩ.  
BIST Enable Pin  
I, LVCMOS  
BISTEN  
44  
16  
0: BIST Mode is disabled.  
with pulldown  
1: BIST Mode is enabled.  
BIST Clock Select  
I, LVCMOS  
BISTC  
Shared with INTB_IN  
with pulldown  
0: PCLK; 1: 33 MHz  
STATUS  
LOCK Status Output Pin  
O, LVCMOS 0: PLL is unlocked, ROUT[23:0]/RGB[7:0], I2S[2:0], HS, VS, DE and PCLK output states  
with pulldown are controlled by OEN. May be used as Link Status or Display Enable  
1: PLL is Locked, outputs are active  
LOCK  
PASS  
32  
42  
PASS Output Pin  
O, LVCMOS 0: One or more errors were detected in the received payload  
with pulldown 1: ERROR FREE Transmission  
Leave Open if unused. Route to test point (pad) recommended  
FPD-LINK III SERIAL INTERFACE  
True Input.  
RIN+  
49  
50  
52  
I, LVDS  
I, LVDS  
O, LVDS  
The interconnection should be AC-coupled to this pin with a 0.1-μF capacitor.  
Inverting Input.  
RIN-  
The interconnection should be AC-coupled to this pin with a 0.1-μF capacitor.  
True CML Output  
Monitor point for equalized differential signal  
CMLOUTP  
Inverting CML Output  
Monitor point for equalized differential signal  
CMLOUTN  
CMF  
53  
51  
O, LVDS  
Analog  
Common Mode Filter. Connect 0.1-μF capacitor to GND  
POWER AND GROUND(1)  
VDD33_A,  
48, 29  
Power to on-chip regulator 3 V – 3.6 V. Requires 4.7 µF to GND at each VDD pin.  
Power  
Power  
Ground  
VDD33_B  
LVCMOS I/O Power 1.8 V ±5% OR 3 V – 3.6 V. Requires 4.7 µF to GND at each VDDIO  
pin.  
VDDIO  
GND  
13, 24, 38  
DAP  
DAP is the large metal contact at the bottom side, located at the center of the WQFN  
package. Connect to the ground plane (GND) with at least 9 vias.  
REGULATOR CAPACITOR  
CAPR12,  
CAPP12,  
CAPI2S  
Decoupling capacitor connection for on-chip regulator. Requires a 4.7 µF to GND at each  
CAP pin.  
55, 57, 58  
4
CAP  
CAP  
Decoupling capacitor connection for on-chip regulator. Requires two 4.7 µF to GND at this  
CAP pin.  
CAPL12  
OTHERS  
NC  
54  
NC  
No connect. This pin may be left open or tied to any level.  
Reserved - tie to Ground.  
RES[1:0]  
43.47  
GND  
(1) The VDD (VDD33 and VDDIO) supply ramp must be faster than 1.5 ms with a monotonic rise.  
Copyright © 2012–2017, Texas Instruments Incorporated  
7
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
See(1)(2)(3)(4)  
MIN  
0.3  
0.3  
0.3  
0.3  
MAX  
UNIT  
V
Supply voltage – VDD33  
Supply voltage – VDDIO  
LVCMOS I/O voltage  
Deserializer input voltage  
Junction temperature  
4
4
(VDDIO + 0.3)  
2.75  
V
V
V
150  
°C  
RθJA  
RθJC  
31  
°C/W  
°C/W  
°C  
Maximum power dissipation  
capacity at 25°C  
2.4  
Storage temperature, Tstg  
65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) The maximum limit (VDDIO + 0.3 V) does not apply to the PDB pin during the transition to the power down state (PDB transitioning from  
HIGH to LOW).  
(4) For soldering specifications: see product folder at www.ti.com and Absolute Maximum Ratings for Soldering (SNOA549).  
7.2 ESD Ratings  
VALUE  
±8000  
±1250  
±250  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Machine model  
Air Discharge (Pin 49 and 50)  
±15000  
±8000  
±15000  
±8000  
±15000  
±8000  
(IEC, powered-up only)  
RD = 330 Ω, CS = 150 pF  
Electrostatic  
discharge  
V(ESD)  
Contact Discharge (Pin 49 and 50)  
Air Discharge (Pin 49 and 50)  
V
(ISO1060SN5), RD = 330 Ω  
CS = 150 pF  
Contact Discharge (Pin 49 and 50)  
Air Discharge (Pin 49 and 50)  
(ISO10605), RD = 2 kΩ  
CS = 150 and 330 pF  
Contact Discharge (Pin 49 and 50)  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
MIN  
3
NOM  
3.3  
3.3  
1.8  
25  
MAX  
3.6  
UNIT  
V
Supply voltage (VDD33  
)
Connect VDDIO to 3.3 V and use 3.3-V IOs  
Connect VDDIO to 1.8 V and use 1.8-V IOs  
3
3.6  
V
LVCMOS supply voltage (VDDIO  
)
1.71  
40  
5
1.89  
105  
85  
V
Operating free air temperature (TA)  
PCLK frequency  
Supply noise(1)  
°C  
MHz  
mVP-P  
100  
(1) Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal signal is AC-coupled to the VDD33 and VDDIO supplies  
with amplitude = 100 mVp-p measured at the device VDD33 and VDDIO pins. Bit error rate testing of input to the Ser and output of the  
Des with 10 meter cable shows no error when the noise frequency on the Ser is less than 50 MHz. The Des on the other hand shows no  
error when the noise frequency is less than 50 MHz.  
8
Copyright © 2012–2017, Texas Instruments Incorporated  
 
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
7.4 Thermal Information  
DS90UB926Q-Q1  
THERMAL METRIC(1)  
NKB (WQFN)  
UNIT  
60 PINS  
26.2  
8.1  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
5.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
5.2  
RθJC(bot)  
1.1  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
7.5 DC Electrical Characteristics  
over recommended operating supply and temperature ranges unless otherwise specified.(1)  
(2) (3)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
LVCMOS I/O DC SPECIFICATIONS  
VIH  
VIL  
IIN  
High Level Voltage  
Low Level Input  
Input Current  
VDDIO = 3 to 3.6 V  
2
GND  
–10  
2
VDDIO  
V
V
VDDIO = 3 to 3.6 V  
PDB  
0.8  
10  
VIN = 0 V or VDDIO = 3 to 3.6 V  
VDDIO = 3 to 3.6 V  
±1  
µA  
VDDIO  
VIH  
High Level Input Voltage  
Low Level Input Voltage  
V
V
0.65 ×  
VDDIO  
VDDIO = 1.71 to 1.89 V  
VDDIO = 3 to 3.6 V  
VDDIO = 1.71 to 1.89 V  
VDDIO = 3  
VDDIO  
GND  
0.8  
OEN, OSS_SEL,  
BISTEN, BISTC /  
INTB_IN,  
VIL  
0.35 ×  
VDDIO  
GND  
GPIO[3:0]  
10  
10  
2.4  
±1  
±1  
10  
10  
to 3.6 V  
VIN = 0 V or  
VDDIO  
IIN  
Input Current  
μA  
V
VDDIO = 1.7  
to 1.89 V  
VDDIO = 3 to  
3.6 V  
VDDIO  
VDDIO  
0.4  
VOH  
High Level Output Voltage  
Low Level Output Voltage  
IOH = 4 mA  
VDDIO = 1.7  
to 1.89 V  
VDDIO –  
ROUT[23:0], HS,  
VS, DE, PCLK,  
LOCK, PASS,  
MCLK, I2S_CLK,  
I2S_WC, I2S_DA,  
I2S_DB,  
0.45  
VDDIO = 3 to  
3.6 V  
GND  
VOL  
IOL = 4 mA  
VOUT = 0 V  
V
VDDIO = 1.7  
to 1.89 V  
GND  
0.35  
GPO_REG[8:4]  
IOS  
IOZ  
Output Short Circuit Current  
Tri-state Output Current  
60  
mA  
VOUT = 0 V or VDDIO, PDB = L  
10  
10  
μA  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 3.3 V, TA = 25°C, and at the Recommended Operating Conditions at the  
time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
Copyright © 2012–2017, Texas Instruments Incorporated  
9
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
MAX UNIT  
DC Electrical Characteristics (continued)  
over recommended operating supply and temperature ranges unless otherwise specified.(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
FPD-LINK III CML RECEIVER INPUT DC SPECIFICATIONS  
Differential Threshold High  
VTH  
50  
mV  
mV  
V
Voltage  
VCM = 2.5 V  
(Internal VBIAS  
)
Differential Threshold Low  
Voltage  
VTL  
VCM  
RT  
50  
RIN+, RIN–  
Differential Common-mode  
Voltage  
1.8  
Internal Termination Resistor -  
Differential  
80  
100  
120  
CML MONITOR DRIVER OUTPUT DC SPECIFICATIONS  
CMLOUTP,  
CMLOUTN  
VODp-p  
Differential Output Voltage  
RL = 100 Ω  
360  
mVp-p  
SUPPLY CURRENT  
IDD1  
VDD33= 3.6 V  
VDDIO= 3.6 V  
VDDIO = 1.89 V  
VDD33  
VDDIO  
125  
110  
60  
145  
118  
75  
145  
85  
65  
115  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Supply Current  
(includes load current)  
f = 85 MHz  
CL = 12 pF,  
Checker Board  
Pattern (Figure 1)  
IDDIO1  
IDD2  
IDDIO2  
IDDS  
IDDIOS  
IDDZ  
VDD33 = 3.6 V VDD33  
125  
75  
Supply Current  
(includes load current)  
f = 85MHz  
CL = 4 pF  
Checker Board  
Pattern (Figure 1)  
VDDIO = 3.6 V  
VDDIO  
VDDIO = 1.89 V  
50  
VDD33 = 3.6 V VDD33  
90  
Without Input  
Serial Stream  
Supply Current Sleep Mode  
Supply Current Power Down  
VDDIO = 3.6 V  
VDDIO  
3
VDDIO = 1.89 V  
2
3
PDB = L, All  
LVCMOS inputs  
are floating or tied  
to GND  
VDD33 = 3.6 V VDD33  
2
10  
10  
10  
VDDIO = 3.6 V  
VDDIO  
0.05  
0.05  
IDDIOZ  
VDDIO = 1.89 V  
10  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
7.6 AC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)  
(2) (3)  
PARAMETER  
GPIO BIT RATE  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
Forward Channel Bit Rate  
Back Channel Bit Rate  
f = 5 to 85  
MHz,  
GPIO[3:0]  
0.25 × f  
>75  
Mbps  
kbps  
BR  
See(4)(5)  
>50  
CML MONITOR DRIVER OUTPUT AC SPECIFICATIONS  
Differential Output Eye Opening  
CMLOUTP,  
CMLOUTN,  
f = 85 MHz  
EW  
0.3  
0.4  
UI  
Width(6)  
RL = 100 ,  
Jitter Freq > f / 40 (Figure 2)(4)(5)  
EH  
Differential Output Eye Height  
200  
300  
mV  
BIST MODE  
tPASS BIST PASS Valid Time  
BISTEN = H (Figure 8)(4)(5)  
SSCG MODE  
800  
ns  
PASS  
Spread Spectrum Clocking  
Deviation Frequency  
±0.5%  
8
±2.5%  
fDEV  
See Figure 14, Table 1, Table 2  
f = 85 MHz,  
SSCG = ON  
(4) (5)  
Spread Spectrum Clocking  
Modulation Frequency  
100  
kHz  
fMOD  
(1) The Electrical Characteristics tables list ensured specifications under the listed in Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 3.3 V, TA = 25 °C, and at the Recommended Operating Conditions at  
the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
(4) Specification is ensured by characterization and is not tested in production.  
(5) Specification is ensured by design and is not tested in production.  
(6) UI – Unit Interval is equivalent to one serialized data bit width (1UI = 1 / 35 * PCLK). The UI scales with PCLK frequency.  
Copyright © 2012–2017, Texas Instruments Incorporated  
11  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
MAX UNIT  
7.7 DC and AC Serial Control Bus Characteristics  
Over 3.3-V supply and temperature ranges unless otherwise specified.(1)  
(2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
VIH  
VIL  
Input High Level  
SDA and SCL  
SDA and SCL  
0.7 ×  
VDD33  
VDD33  
V
V
Input Low Level Voltage  
Input Hysteresis  
0.3 ×  
VDD33  
GND  
VHY  
VOL  
Iin  
> 50  
mV  
V
SDA, IOL = 1.25 mA  
0
0.36  
10  
SDA or SCL, VIN = VDD33 or GND  
–10  
µA  
ns  
ns  
ns  
ns  
ns  
pF  
tR  
SDA RiseTime – READ  
SDA Fall Time – READ  
Setup Time — READ  
Holdup Time — READ  
Input Filter  
430  
20  
SDA, RPU = 10 k, Cb 400 pF (Figure 9)  
tF  
tSU;DAT  
tHD;DAT  
tSP  
See Figure 9  
See Figure 9  
560  
615  
50  
Cin  
Input Capacitance  
SDA or SCL  
< 5  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 3.3 V, TA = 25°C, and at the Recommended Operating Conditions at the  
time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
7.8 Timing Requirements  
MIN  
NOM  
430  
20  
MAX  
UNIT  
ns  
tR  
SDA RiseTime – READ  
SDA Fall Time – READ  
Setup Time — READ  
Holdup Time — READ  
Input Filter  
SDA, RPU = 10 k, Cb 400 pF (Figure 9)  
tF  
ns  
tSU;DAT  
tHD;DAT  
tSP  
See Figure 9  
See Figure 9  
560  
615  
50  
ns  
ns  
ns  
12  
Copyright © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
7.9 Timing Requirements for the Serial Control Bus  
Over 3.3-V supply and temperature ranges unless otherwise specified.  
MIN  
0
NOM  
MAX UNIT  
Standard Mode  
100 kHz  
fSCL  
SCL Clock Frequency  
SCL Low Period  
Fast Mode  
0
400 kHz  
Standard Mode  
Fast Mode  
4.7  
1.3  
4
µs  
µs  
µs  
µs  
µs  
tLOW  
Standard Mode  
Fast Mode  
tHIGH  
SCL High Period  
0.6  
4
Hold time for a start or a  
repeated start condition  
(Figure 9)  
Standard Mode  
tHD;STA  
Fast Mode  
0.6  
4.7  
0.6  
µs  
µs  
µs  
Setup time for a start or a  
repeated start condition  
(Figure 9)  
Standard Mode  
Fast Mode  
tSU:STA  
Standard Mode  
Fast Mode  
0
0
3.45  
0.9  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Data Hold Time (Figure 9)  
Data Setup Time (Figure 9)  
Standard Mode  
Fast Mode  
250  
100  
4
Standard Mode  
Fast Mode  
Setup Time for STOP Condition  
(Figure 9)  
0.6  
4.7  
1.3  
Bus Free Time between STOP Standard Mode  
and START (Figure 9)  
Fast Mode  
Standard Mode  
Fast Mode  
1000  
300  
300  
300  
SCL and SDA Rise Time  
(Figure 9)  
tr  
Standard Mode  
Fast mode  
SCL and SDA Fall Time  
(Figure 9)  
tf  
7.10 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
tRCP = tTCP  
PIN/FREQ.  
PCLK  
MIN  
TYP  
T
MAX  
UNIT  
tRCP  
tRDC  
PCLK Output Period  
PCLK Output Duty Cycle  
11.76  
45%  
200  
ns  
50%  
55%  
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
2
2
2
2
3
3
3
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LVCMOS Low-to-High  
Transition Time (Figure 3)  
tCLH  
tCHL  
tROS  
tROH  
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
ROUT[23:0],  
HS, VS, DE,  
PCLK, LOCK,  
PASS, MCLK,  
I2S_CLK,  
I2S_WC,  
I2S_DA,  
I2S_DB  
LVCMOS High-to-Low  
Transition Time (Figure 3)  
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
2.2  
2.2  
3
Data Valid before PCLK –  
Setup Time  
SSCG = OFF (Figure 6)  
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
Data Valid after PCLK – Hold  
Time  
SSCG = OFF (Figure 6)  
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
3
Copyright © 2012–2017, Texas Instruments Incorporated  
13  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
Switching Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
OEN = L, OSS_SEL = H  
SSCG = OFF  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
ROUT[23:0]  
10  
ns  
HS, VS, DE,  
PCLK, LOCK,  
PASS  
15  
60  
ns  
ns  
Active to OFF Delay  
(Figure 5)(1) (2)  
tXZR  
MCLK,  
I2S_CLK,  
I2S_WC,  
I2S_DA,  
I2S_DB  
tDDLT  
tDD  
Lock Time (Figure 5)(1)(2)(3)  
Delay – Latency(1)(2)  
f = 5 to 85MHz  
f = 5 to 85MHz  
5
40  
ns  
ns  
147*T  
f = 5 to <15  
MHz  
0.5  
0.2  
±2  
50  
50  
50  
50  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
f = 15 to 85  
MHz  
tDCCJ  
Cycle-to-Cycle Jitter(1)(2)  
SSCG = OFF  
I2S_CLK = 1  
to 12.28MHz  
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
Data Valid After OEN = H  
SetupTime (Figure 7)(1)(2)  
tONS  
tONH  
tSES  
tSEH  
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
ROUT[23:0],  
HS, VS, DE,  
PCLK, MCLK,  
I2S_CLK,  
I2S_WC,  
Data Tri-State After OEN = L  
SetupTime (Figure 7)(1)(2)  
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
Data Tri-State after OSS_ SEL  
= H, Setup Time (Figure 7)(1)(2)  
I2S_DA,  
I2S_DB  
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
5
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
5
Data to Low after OSS_SEL = L  
Setup Time (Figure 7)(1)(2)  
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
5
(1) Specification is ensured by characterization and is not tested in production.  
(2) Specification is ensured by design and is not tested in production.  
(3) tDDLT is the time required by the device to obtain lock when exiting power-down state with an active serial stream.  
7.11 Timing Diagrams  
V
DDIO  
PCLK  
GND  
V
DDIO  
ROUT[n] (odd),  
VS, HS  
GND  
V
DDIO  
ROUT[n] (even),  
DE  
GND  
Figure 1. Checker Board Data Pattern  
14  
Copyright © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
Timing Diagrams (continued)  
EW  
VOD (+)  
CMLOUT  
(Diff.)  
EH  
0V  
EH  
VOD (-)  
t
(1 UI)  
BIT  
Figure 2. CML Output Driver  
V
DDIO  
80%  
20%  
GND  
t
t
CHL  
CLH  
Figure 3. LVCMOS Transition Times  
START  
BIT  
STOP  
BIT  
START  
BIT  
STOP  
BIT  
RIN  
3
3
3
3
0
1
2
0
1
2
(Diff.)  
SYMBOL N  
SYMBOL N+1  
t
DD  
PCLK  
(RFB = L)  
ROUT[23:0],  
I2S[2:0],  
SYMBOL N-2  
SYMBOL N-1  
SYMBOL N  
HS, VS, DE  
Figure 4. Delay - Latency  
2.0ë  
PDB  
0.8ë  
RIN  
(Diff.)  
5}v[š /ꢀŒꢁ  
t
DDLT  
TRI-STATE  
or LOW  
ù or [  
LOCK  
t
XZR  
ROUT[23:0],  
HS, VS, DE,  
I2S  
ÇwL-{Ç!Ç9 or [hí or tulled Üp  
ù or [ or tÜ  
PCLK  
ÇwL-{Ç!Ç9 or [hí  
ù or [  
(RFB = L)  
OFF  
IN LOCK TIME  
ACTIVE  
OFF  
Figure 5. PLL Lock Times and PDB Tri-State Delay  
Copyright © 2012–2017, Texas Instruments Incorporated  
15  
 
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
Timing Diagrams (continued)  
V
DDIO  
PCLK  
w/ RFB = H  
1/2 V  
DDIO  
GND  
V
DDIO  
ROUT[23:0],  
VS, HS, DE,  
I2S  
V
OHmin  
V
OLmax  
GND  
t
t
ROH  
ROS  
Figure 6. Output Data Valid (Setup and Hold) Times With SSCG = Off  
PDB= H  
ëLI  
OSS_SEL  
OEN  
ëL[  
ëLI  
ëL[  
RIN  
(Diff.)  
5}v[š /ꢀŒꢁ  
t
SEH  
t
SES  
t
t
ONH  
ONS  
LOCK  
(ILDI)  
ÇwL-{Ç!Ç9  
PASS  
!/ÇLë9  
ILDI  
ILDI  
ROUT[23:0],  
HS, VS, DE,  
I2S[2:0]  
ÇwL-{Ç!Ç9  
ÇwL-{Ç!Ç9  
ÇwL-{Ç!Ç9  
!/ÇLë9  
[hí  
[hí  
[hí  
PCLK  
(RFB = L)  
ÇwL-{Ç!Ç9  
!/ÇLë9  
[hí  
Figure 7. Output State (Setup and Hold) Times  
SDA  
SCL  
S
P
START condition, or  
START repeat condition  
STOP condition  
Figure 8. BIST PASS Waveform  
16  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
Timing Diagrams (continued)  
tr  
tf  
tBUF  
SDA  
tSU;DAT  
tHD;STA  
tSU;STO  
tLOW  
tSP  
tf  
tSU;STA  
tHD;DAT  
SCL  
tr  
tHIGH  
tHD;STA  
S
Sr  
P
S
Figure 9. Serial Control Bus Timing Diagram  
7.12 Typical Characteristics  
78 MHz TX  
Pixel Clock  
Input  
(2 V/DIV)  
78 MHz RX  
Pixel Clock  
Output  
(2 V/DIV)  
Time (1.25 ns/DIV)  
Time (10 ns/DIV)  
Note: On the rising edge of each clock period, the CML driver  
outputs a low Stop bit, high Start bit, and 33 DC-scrambled data  
bits.  
Figure 11. Comparison of Deserializer LVCMOS RX PCLK  
Output Locked to a 78-MHz TX PCLK  
Figure 10. Serializer CML Driver Output  
With 78-MHZ TX Pixel Clock  
Copyright © 2012–2017, Texas Instruments Incorporated  
17  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DS90UB926Q-Q1 deserializer receives 35 bits of data over a single serial FPD-Link III pair operating up to  
2.975-Gbps application payload. The serial stream contains an embedded clock, video control signals, and the  
DC-balanced video data and audio data which enhance signal quality to support AC coupling.  
The DS90UB926Q-Q1 deserializer attains lock to a data stream without the use of a separate reference clock  
source, which greatly simplifies system complexity and overall cost. The deserializer also synchronizes to the  
serializer regardless of the data pattern, delivering true automatic plug and lock performance. It can lock to the  
incoming serial stream without the need of special training patterns or sync characters. The deserializer recovers  
the clock and data by extracting the embedded clock information, validating then deserializing the incoming data  
stream. The recovered parallel LVCMOS video bus is then provided to the display. The deserializer is intended  
for use with the DS90UB925Q-Q1 serializer, but is also backward-compatible with DS90UR905Q or  
DS90UR907Q FPD-Link II serializer.  
8.2 Functional Block Diagram  
w9DÜ[!Çhw  
SSCG  
CMF  
24  
ROUT [23:0]  
HS  
VS  
RIN+  
DE  
RIN-  
I2S_CLK  
4
I2S_WC  
I2S_DA  
MCLK  
CMLOUTP  
CMLOUTN  
Error  
Detector  
BISTEN  
BISTC  
PASS  
PDB  
SCL  
Clock and  
Data  
Recovery  
Timing and  
Control  
PCLK  
LOCK  
SCA  
IDx  
MODE_SEL  
DS90UB926Q-Q1 Deserializer  
8.3 Feature Description  
8.3.1 High-Speed Forward Channel Data Transfer  
The High-Speed Forward Channel (HS_FC) is composed of 35 bits of data containing DIN[23:0] or RGB[7:0] or  
YUV data, sync signals, I2C, and I2S audio transmitted from Serializer to Deserializer. Figure 12 shows the serial  
stream per PCLK cycle. This data payload is optimized for signal transmission over an AC-coupled link. Data is  
randomized, balanced, and scrambled.  
C1  
C0  
Figure 12. FPD-Link III Serial Stream  
18  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
Feature Description (continued)  
The device supports clocks in the range of 5 MHz to 85 MHz. The application payload rate is 2.975 Gbps  
maximum (175 Mbps minimum) with the actual line rate of 2.975 Gbps maximum and 525 Mbps minimum.  
8.3.2 Low-Speed Back Channel Data Transfer  
The low-speed backward channel (LS_BC) of the DS90UB926Q-Q1 provides bidirectional communication  
between the display and host processor. The information is carried back from the Deserializer to the Serializer  
per serial symbol. The back channel control data is transferred over the single serial link along with the high-  
speed forward data, DC balance coding and embedded clock information. This architecture provides a backward  
path across the serial link together with a high-speed forward channel. The back channel contains the I2C, CRC,  
and 4 bits of standard GPIO information with 10-Mbps line rate.  
8.3.3 Backward-Compatible Mode  
The DS90UB926Q-Q1 is also backward-compatible to DS90UR905Q and DS90UR907Q FPD Link II serializers  
at 15- to 65-MHz pixel clock frequencies. It receives 28 bits of data over a single serial FPD-Link II pair operating  
at the line rate of 420 Mbps to 1.82 Gbps. This backward-compatible mode is provided through the MODE_SEL  
pin (Table 9) or the configuration register (Table 11). In this mode, the minimum PCLK frequency is 15 MHz.  
8.3.4 Input Equalization Gain  
FPD-Link III input adaptive equalizer provides compensation for transmission medium losses and reduces the  
medium-induced deterministic jitter. It equalizes up to 10 meter STP cables with 3 connection breaks at  
maximum serialized stream payload rate of 2.975 Gbps.  
8.3.5 Common-Mode Filter Pin (CMF)  
The deserializer provides access to the center tap of the internal termination. A capacitor must be placed on this  
pin for additional common-mode filtering of the differential pair. This can be useful in high noise environments for  
additional noise rejection capability. A 0.1-μF capacitor has to be connected to this pin to Ground.  
8.3.6 Video Control Signal Filter  
When operating the devices in Normal Mode, the Video Control Signals (DE, HS, VS) have the following  
restrictions:  
Normal Mode with Control Signal Filter Enabled: DE and HS — Only 2 transitions per 130 clock cycles are  
transmitted, the transition pulse must be 3 PCLK or longer.  
Normal Mode with Control Signal Filter Disabled: DE and HS — Only 2 transitions per 130 clock cycles are  
transmitted, no restriction on minimum transition pulse.  
VS — Only 1 transition per 130 clock cycles are transmitted, minimum pulse width is 130 clock cycles.  
Video Control Signals are defined as low frequency signals with limited transitions. Glitches of a control signal  
can cause a visual display error. This feature allows for the chipset to validate and filter out any high-frequency  
noise on the control signals. See Figure 13.  
Copyright © 2012–2017, Texas Instruments Incorporated  
19  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
Feature Description (continued)  
PCLK  
IN  
HS/VS/DE  
IN  
Latency  
PCLK  
OUT  
Pulses 1 or 2  
PCLKs wide  
HS/VS/DE  
OUT  
Filetered OUT  
Figure 13. Video Control Signal Filter Waveform  
8.3.7 EMI Reduction Features  
8.3.7.1 Spread Spectrum Clock Generation (SSCG)  
The DS90UB926Q-Q1 provides an internally generated spread-spectrum clock (SSCG) to modulate its outputs.  
Both clock and data outputs are modulated. This will aid to lower system EMI. Output SSCG deviations to ±2.5%  
(5% total) at up to 100-kHz modulations are available. This feature may be controlled by register. See Table 1,  
Table 2, and Table 11. Do not enable the SSCG feature if the source PCLK into the SER has a clock with spread  
spectrum already.  
Frequency  
fdev(max)  
F
PCLK+  
F
PCLK  
F
fdev(min)  
Time  
PCLK-  
1/fmod  
Figure 14. SSCG Waveform  
Table 1. SSCG Configuration  
LFMODE = L (15 to 85 MHz)  
SSCG CONFIGURATION (0x2C) LFMODE = L (15 to 85 MHz)  
SPREAD SPECTRUM OUTPUT  
Fdev (%) Fmod (kHz)  
SSC[2]  
SSC[1]  
SSC[0]  
L
L
L
L
L
H
L
±0.9  
±1.2  
±1.9  
±2.5  
±0.7  
±1.3  
±2  
PCLK / 2168  
PCLK / 1300  
L
H
H
L
L
H
L
H
H
H
H
L
H
L
H
H
H
±2.5  
20  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
Table 2. SSCG Configuration  
LFMODE = H (5 to <15 MHz)  
SSCG CONFIGURATION (0x2C) LFMODE = H (5 to <15 MHz)  
SPREAD SPECTRUM OUTPUT  
SSC[2]  
SSC[1]  
SSC[0]  
Fdev (%)  
±0.5  
±1.3  
±1.8  
±2.5  
±0.7  
±1.2  
±2  
Fmod (kHz)  
L
L
L
L
L
H
L
PCLK / 628  
L
H
H
L
L
H
L
H
H
H
H
L
H
L
PCLK / 388  
H
H
H
±2.5  
8.3.8 Enhanced Progressive Turnon (EPTO)  
The deserializer LVCMOS parallel outputs timing are delayed. Groups of 8-bit R, G and B outputs switch in a  
different time. This minimizes the number of outputs switching simultaneously and helps to reduce supply noise.  
In addition, it spreads the noise spectrum out reducing overall EMI.  
8.3.9 LVCMOS VDDIO Option  
The deserializer parallel bus can operate with 1.8-V or 3.3-V levels (VDDIO) for target (display) compatibility. The  
1.8-V levels offers a lower noise (EMI) and also a system power savings.  
8.3.10 Power Down (PDB)  
The Serializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin can be controlled by the  
host or through the VDDIO, where VDDIO = 3 V to 3.6 V or VDD33. To save power disable the link when the display  
is not needed (PDB = LOW). When the pin is driven by the host, make sure to release it after VDD33 and VDDIO  
have reached final levels; no external components are required. In the case of driven by the VDDIO = 3 V to 3.6 V  
or VDD33 directly, a 10-kΩ resistor to the VDDIO = 3 V to 3.6 V or VDD33 , and a > 10-µF capacitor to the ground are  
required (see Figure 24).  
8.3.11 Stop Stream Sleep  
The deserializer enters a low power SLEEP state when the input serial stream is stopped. A STOP condition is  
detected when the embedded clock bits are not present. When the serial stream starts again, the deserializer  
then locks to the incoming signal and recover the data.  
NOTE  
In STOP STREAM SLEEP, the Serial Control Bus Registers values are retained.  
8.3.12 Serial Link Fault Detect  
The serial link fault detection is able to detect any of following 7 conditions  
1. cable open  
2. + to – short  
3. + short to GND  
4. - short to GND  
5. + short to battery  
6. - short to battery  
7. cable is linked incorrectly  
If any one of the fault conditions occurs, The Link Detect Status is 0 (cable is not detected) on the Serial Control  
Bus Register bit 0 of address 0x1C Table 11. The link errors can be monitored though Link Error Count of the  
Serial Control Bus Register bit [4:0] of address 0x41 Table 11.  
Copyright © 2012–2017, Texas Instruments Incorporated  
21  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
8.3.13 Oscillator Output  
The deserializer provides an optional PCLK output when the input clock (serial stream) has been lost. This is  
based on an internal oscillator. The frequency of the oscillator may be selected. This feature is controlled by  
register Address 0x02, bit 5 (OSC Clock Enable). See Table 11.  
8.3.14 Pixel Clock Edge Select (RFB)  
The RFB determines the edge that the data is strobed on. If RFB is High (1), output data is strobed on the Rising  
edge of the PCLK. If RFB is Low (‘0’), data is strobed on the Falling edge of the PCLK. This allows for inter-  
operability with downstream devices. The deserializer output does not need to use the same edge as the Ser  
input. This feature may be controlled by register. See Table 11.  
8.3.15 Image Enhancement Features  
Several image enhancement features are provided. White balance LUTs allow the user to define and target the  
color temperature of the display. Adaptive Hi-FRC dithering enables the presentation of “true-color” images on an  
18–bit color display.  
8.3.15.1 White Balance  
The white balance feature enables similar display appearance when using LCDs from different vendors. It  
compensates for native color temperature of the display, and adjusts relative intensities of R, G, and B to  
maintain specified color temperature. Programmable control registers are used to define the contents of three  
LUTs (8-bit color value for red, green and blue) for the white balance feature. The LUTs map input RGB values  
to new output RGB values. There are three LUTs, one LUT for each color. Each LUT contains 256 entries, 8 bits  
per entry with a total size of 6144 bits (3 x 256 x 8). All entries are readable and writable. Calibrated values are  
loaded into registers through the I2C interface (deserializer is a slave device). This feature may also be applied  
to lower color depth applications such as 18-bit (666) and 16-bit (565). White balance is enabled and configured  
through the serial control bus register.  
8.3.15.1.1 LUT Contents  
The user must define and load the contents of the LUT for each color (R,G, and B). Regardless of the color  
depth being driven (888, 666, 656), the user must always provide contents for 3 complete LUTs - 256 colors × 8  
bits × 3 tables. Unused bits - LSBs -shall be set to 0 by the user.  
When 24-bit (888) input data is being driven to a 24-bit display, each LUT (R, G and B) must contain 256 unique  
8-bit entries. The 8-bit white balanced data is then available at the output of the DS90UB926Q-Q1 deserializer,  
and driven to the display.  
When 18-bit (666) input data is being driven to an 18-bit display, the white balance feature may be used in one of  
two ways. First, simply load each LUT with 256, 8-bit entries. Each 8-bit entry is a 6-bit value (6 MSBs) with the 2  
LSBs set to 00. Thus as total of 64 unique 6-bit white balance output values are available for each color (R, G,  
and B). The 6-bit white balanced data is available at the output of the DS90UB926Q-Q1 deserializer, and driven  
directly to the display.  
Alternatively, with 6-bit input data the user may choose to load complete 8-bit values into each LUT. This mode  
of operation provides the user with finer resolution at the LUT output to more closely achieve the desired white  
point of the calibrated display. Although 8-bit data is loaded, only 64 unique 8-bit white balance output values are  
available for each color (R, G, and B). The result is 8-bit white balanced data. Before driving to the output of the  
deserializer, the 8-bit data must be reduced to 6-bit with an FRC dithering function. To operate in this mode, the  
user must configure the DS90UB926Q-Q1 to enable the FRC2 function.  
Examples of the three types of LUT configurations described are shown in Figure 15  
22  
Copyright © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
8.3.15.1.2 Enabling White Balance  
The user must load all 3 LUTs prior to enabling the white balance feature. The following sequence must be  
followed by the user.  
To initialize white balance after power-on (Table 3):  
1. Load contents of all 3 LUTs . This requires a sequential loading of LUTs - first RED, second GREEN, third  
BLUE. 256, 8-bit entries must be loaded to each LUT. Page registers must be set to select each LUT.  
2. Enable white balance  
By default, the LUT data may not be reloaded after initialization at power-on.  
An option does exist to allow LUT reloading after power-on and initial LUT loading (as described above). This  
option may only be used after enabling the white balance reload feature through the associated serial control bus  
register. In this mode the LUTs may be reloaded by the master controller through the I2C. This provides the user  
with the flexibility to refresh LUTs periodically , or upon system requirements to change to a new set of LUT  
values. The host controller loads the updated LUT values through the serial bus interface. There is no need to  
disable the white balance feature while reloading the LUT data. Refreshing the white balance to the new set of  
LUT data will be seamless - no interruption of displayed data.  
It is important to note that initial loading of LUT values requires that all 3 LUTs be loaded sequentially. When  
reloading, partial LUT updates may be made.  
8-bit in / 8 bit out  
6-bit in / 6 bit out  
6-bit in / 8 bit out  
Gray level Data Out  
Gray level Data Out  
Gray level Data Out  
Entry  
(8-bits)  
Entry  
(8-bits)  
Entry  
(8-bits)  
0
1
2
3
4
5
6
7
8
9
00000000b  
00000001b  
00000011b  
00000011b  
00000110b  
00000110b  
00000111b  
00000111b  
00001000b  
00001010b  
0
00000000b  
0
00000001b  
1 N/A  
2 N/A  
3 N/A  
1 N/A  
2 N/A  
3 N/A  
4
00000100b  
4
00000110b  
5 N/A  
6 N/A  
7 N/A  
5 N/A  
6 N/A  
7 N/A  
8
00001000b  
8
00001011b  
9 N/A  
10 N/A  
11 N/A  
9 N/A  
10 N/A  
11 N/A  
10 00001001b  
11 00001011b  
248 11111010b  
249 11111010b  
250 11111011b  
251 11111011b  
252 11111110b  
253 11111101b  
254 11111101b  
255 11111111b  
248 11111000b  
249 N/A  
248 11111010b  
249 N/A  
250 N/A  
250 N/A  
251 N/A  
252 11111100b  
253 N/A  
251 N/A  
252 11111111b  
253 N/A  
254 N/A  
255 N/A  
254 N/A  
255 N/A  
Figure 15. White Balance LUT Configurations  
Copyright © 2012–2017, Texas Instruments Incorporated  
23  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
Table 3. White Balance Register Table  
PAGE  
DEFAU  
LT  
(hex)  
ADD  
(dec)  
ADD  
(hex)  
ACCES  
REGISTER NAME BIT(s)  
FUNCTION  
DESCRIPTION  
S
RW  
0x00  
Page Setting  
00: Configuration Registers  
01: Red LUT  
7:6  
10: Green LUT  
11: Blue LUT  
White Balance  
Control  
RW  
RW  
White Balance 0: White Balance Disable  
0
42  
0x2A  
5
Enable  
1: White Balance Enable  
0: Reload Disable  
1: Reload Enable  
4
3:0  
Reserved  
1
2
3
0 –  
255  
00 – FF White Balance Red  
LUT  
RW  
RW  
RW  
N/A  
N/A  
N/A  
Red LUT  
Green LUT  
Blue LUT  
256 8–bit entries to be applied to the Red  
subpixel data  
FF:0  
0 –  
255  
00 – FF White Balance  
Green LUT  
256 8–bit entries to be applied to the Green  
subpixel data  
FF:0  
FF:0  
0 –  
255  
00 – FF White Balance  
Blue LUT  
256 8–bit entries to be applied to the Blue  
subpixel data  
8.3.15.2 Adaptive HI-FRC Dithering  
The adaptive FRC dithering feature delivers product-differentiating image quality. It reduces 24-bit RGB (8 bits  
per subpixel) to 18-bit RGB (6 bits per sub-pixel), smoothing color gradients, and allowing the flexibility to use  
lower cost 18-bit displays. Frame Rate Control (FRC) dithering is a method to emulate “missing” colors on a  
lower color depth LCD display by changing the pixel color slightly with every frame. FRC is achieved by  
controlling on and off pixels over multiple frames (Temporal). Static dithering regulates the number of on and off  
pixels in a small defined pixel group (Spatial). The FRC module includes both Temporal and Spatial methods and  
also Hi-FRC. Conventional FRC can display only 16,194,277 colors with 6-bit RGB source. “Hi-FRC” enables full  
(16,777,216) color on an 18-bit LCD panel. The “adaptive” FRC module also includes input pixel detection to  
apply specific Spatial dithering methods for smoother gray level transitions. When enabled, the lower LSBs of  
each RGB output are not active; only 18-bit data (6 bits per R,G and B) are driven to the display. This feature is  
enabled through the serial control bus register.  
Two FRC functional blocks are available, and may be independently enabled. FRC1 precedes the white balance  
LUT, and is intended to be used when 24-bit data is being driven to an 18-bit display with a white balance LUT  
that is calibrated for an 18-bit data source. The second FRC block, FRC2, follows the white balance block and is  
intended to be used when fine adjustment of color temperature is required on an 18-bit color display, or when a  
24-bit source drives an 18-bit display with a white balance LUT calibrated for 24-bit source data.  
For proper operation of the FRC dithering feature, the user must provide a description of the display timing  
control signals. The timing mode, “sync mode” (HS, VS) or “DE only” must be specified, along with the active  
polarity of the timing control signals. All this information is entered to DS90UB926Q-Q1 control registers through  
the serial bus interface.  
Adaptive Hi-FRC dithering consists of several components. Initially, the incoming 8-bit data is expanded to 9-bit  
data. This allows the effective dithered result to support a total of 16.7 million colors. The incoming 9-bit data is  
evaluated, and one of four possible algorithms is selected. The majority of incoming data sequences are  
supported by the default dithering algorithm. Certain incoming data patterns (black/white pixel, full on/off sub-  
pixel) require special algorithms designed to eliminate visual artifacts associated with these specific gray level  
transitions. Three algorithms are defined to support these critical transitions.  
An example of the default dithering algorithm is illustrated in Figure 16. The 1 or 0 value shown in the table  
describes whether the 6-bit value is increased by 1 (1) or left unchanged (0). In this case, the 3 truncated LSBs  
are 001.  
24  
Copyright © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
F0L0  
PD1  
Frame = 0, Line = 0  
Pixel Data one  
Cell Value 010  
R[7:2]+0, G[7:2]+1, B[7:2]+0  
LSB=001  
three lsb of 9 bit data (8 to 9 for Hi-Frc)  
Pixel Index  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PD8  
LSB = 001  
F0L0  
F0L1  
F0L2  
F0L3  
010  
101  
000  
000  
000  
000  
000  
000  
000  
000  
010  
101  
000  
000  
000  
000  
000  
101  
010  
000  
000  
000  
000  
000  
010  
000  
000  
101  
000  
000  
000  
000  
R = 4/32  
G = 4/32  
B = 4/32  
F1L0  
F1L1  
F1L2  
F1L3  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
000  
000  
000  
000  
111  
R = 4/32  
G = 4/32  
B = 4/32  
F2L0  
F2L1  
F2L2  
F2L3  
000  
000  
010  
101  
000  
000  
000  
000  
010  
101  
000  
000  
000  
000  
000  
000  
010  
000  
000  
101  
000  
000  
000  
000  
000  
101  
010  
000  
000  
000  
000  
000  
R = 4/32  
G = 4/32  
B = 4/32  
F3L0  
F3L1  
F3L2  
F3L3  
000  
000  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
111  
000  
000  
R = 4/32  
G = 4/32  
B = 4/32  
Figure 16. Default FRC Algorithm  
See Table 4 for recommended FRC settings dependant on 18/24–bit source, 18/24–bit white balance LUT, and  
18/24–bit display.  
Table 4. Recommended FRC settings  
SOURCE  
24–bit  
24–bit  
24–bit  
18–bit  
18–bit  
18–bit  
WHITE BALANCE LUT  
DISPLAY  
24–bit  
18–bit  
18–bit  
24–bit  
18–bit  
18–bit  
FRC1  
FRC2  
24–bit  
24–bit  
18–bit  
24–bit  
24–bit  
18–bit  
Disabled  
Disabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Disabled  
Disabled  
Enabled  
Disabled  
8.3.16 Internal Pattern Generation  
The DS90UB926Q-Q1 serializer supports the internal pattern generation feature. It allows basic testing and  
debugging of an integrated panel. The test patterns are simple and repetitive and allow for a quick visual  
verification of panel operation. As long as the device is not in power-down mode, the test pattern will be  
displayed even if no parallel input is applied. If no PCLK is received, the test pattern can be configured to use a  
programmed oscillator frequency. For detailed information, refer to AN-2198 Exploring the Internal Test Pattern  
Generation Feature of 720p FPD-Link III Devices (SNLA132).  
Copyright © 2012–2017, Texas Instruments Incorporated  
25  
 
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
8.3.17 Built-In Self Test (BIST)  
An optional at-speed built-in self test (BIST) feature supports the testing of the high speed serial link and the low-  
speed back channel. This is useful in the prototype stage, equipment production, in-system test, and also for  
system diagnostics.  
NOTE  
BIST is not available in backward-compatible mode.  
8.3.17.1 BIST Configuration and Status  
The BIST mode is enabled at the deserializer by the pin select (Pin 44 BISTEN and Pin 16 BISTC) or  
configuration register (Table 11) through the deserializer. When LFMODE = 0, the pin-based configuration  
defaults to external PCLK or 33-MHz internal oscillator clock (OSC) frequency. In the absence of PCLK, the user  
can select the desired OSC frequency (default 33 MHz or 25 MHz) through the register bit. When LFMODE = 1,  
the pin based configuration defaults to external PCLK or 12.5MHz MHz internal oscillator clock (OSC) frequency.  
When BISTEN of the deserializer is high, the BIST mode enable information is sent to the serializer through the  
Back Channel. The serializer outputs a test pattern and drives the link at speed. The deserializer detects the test  
pattern and monitors it for errors. The PASS output pin toggles to flag any payloads that are received with 1 to  
35 bit errors.  
The BIST status is monitored real time on PASS pin. The result of the test is held on the PASS output until reset  
(new BIST test or Power Down). A high on PASS indicates NO ERRORS were detected. A Low on PASS  
indicates one or more errors were detected. The duration of the test is controlled by the pulse width applied to  
the deserializer BISTEN pin. This BIST feature also contains a Link Error Count and a Lock Status. If the  
connection of the serial link is broken, then the link error count is shown in the register. When the PLL of the  
deserializer is locked or unlocked, the lock status can be read in the register. See Table 11.  
8.3.17.1.1 Sample BIST Sequence  
See Figure 17 for the BIST mode flow diagram.  
1. For the DS90UB925Q-Q1 and DS90UB926Q-Q1 FPD-Link III chipset, BIST Mode is enabled through the  
BISTEN pin of DS90UB926Q-Q1 FPD-Link III deserializer. The desired clock source is selected through  
BISTC pin.  
2. The DS90UB925Q-Q1 serializer is woken up through the back channel if it is not already on. The all zero  
pattern on the data pins is sent through the FPD-Link III to the deserializer. Once the serializer and the  
deserializer are in BIST mode and the deserializer acquires Lock, the PASS pin of the deserializer goes high  
and BIST starts checking the data stream. If an error in the payload (1 to 35) is detected, the PASS pin will  
switch low for one half of the clock period. During the BIST test, the PASS output can be monitored and  
counted to determine the payload error rate.  
3. To Stop the BIST mode, the deserializer BISTEN pin is set Low. The deserializer stops checking the data.  
The final test result is held on the PASS pin. If the test ran error free, the PASS output will be High. If there  
was one or more errors detected, the PASS output will be Low. The PASS output state is held until a new  
BIST is run, the device is RESET, or Powered Down. The BIST duration is user controlled by the duration of  
the BISTEN signal.  
4. The Link returns to normal operation after the deserializer BISTEN pin is low. Figure 18 shows the waveform  
diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2 shows one with multiple errors.  
In most cases it is difficult to generate errors due to the robustness of the link (differential data transmission  
etc.), thus they may be introduced by greatly extending the cable length, faulting the interconnect, reducing  
signal condition enhancements ( Rx Equalization).  
26  
Copyright © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
Normal  
Step 1: DES in BIST  
BIST  
Wait  
Step 2: Wait, SER in BIST  
BIST  
start  
Step 3: DES in Normal Mode -  
check PASS  
BIST  
stop  
Step 4: DES/SER in Normal  
Figure 17. BIST Mode Flow Diagram  
8.3.17.2 Forward Channel And Back Channel Error Checking  
While in BIST mode, the serializer stops sampling RGB input pins and switches over to an internal all-zero  
pattern. The internal all-zeroes pattern goes through scrambler, DC-balancing, and so forth, and goes over the  
serial link to the deserializer. The deserializer on locking to the serial stream compares the recovered serial  
stream with all-zeroes and records any errors in status registers and dynamically indicates the status on PASS  
pin. The deserializer then outputs a SSO pattern on the RGB output pins.  
The back-channel data is checked for CRC errors once the serializer locks onto back-channel serial stream as  
indicated by link detect status (register bit 0x0C[0]). The CRC errors are recorded in an 8-bit register. The  
register is cleared when the serializer enters the BIST mode. As soon as the serializer exits BIST mode, the  
functional mode CRC register starts recording the CRC errors. The BIST mode CRC error register is active in  
BIST mode only and keeps the record of last BIST run until cleared or enters BIST mode again.  
BISTEN  
(DES)  
PCLK  
(RFB = L)  
ROUT[23:0]  
HS, VS, DE  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
BIST  
Result  
Held  
Normal  
SSO  
Normal  
BIST Test  
BIST Duration  
Figure 18. Bist Waveforms  
Copyright © 2012–2017, Texas Instruments Incorporated  
27  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
8.3.18 I2S Receiving  
In normal 24-bit RGB operation mode, the DS90UB926Q-Q1 provides up to 3-bit of I2S. They are I2S_CLK,  
I2S_WC and I2S_DA, as well as the Master I2S Clock (MCLK). The audio is received through the forward video  
frame, or can be configured to receive during video blanking periods. A jitter cleaning feature reduces I2S_CLK  
output jitter to +/- 2ns.  
8.3.18.1 I2S Jitter Cleaning  
The DS90UB926Q-Q1 features a standalone PLL to clean the I2S data jitter supporting high end car audio  
systems. If I2S CLK frequency is less than 1MHz, this feature has to be disabled through the register bit I2S  
Control (0x2B) in Table 10  
8.3.18.2 Secondary I2S Channel  
In 18-bit RGB operation mode, the secondary I2S data (I2S_DB) can be used as the additional I2S audio  
channel in additional to the 3–bit of I2S. The I2S_DB is synchronized to the I2S_CLK. To enable this  
synchronization feature on this bit, set the MODE_SEL (Table 9) or program through the register bit (Table 11).  
8.3.18.2.1 MCLK  
The deserializer has an I2S Master Clock Output. It supports x1, x2, or x4 of I2S CLK Frequency. When the I2S  
PLL is disabled, the MCLK output is off. Table 5 below covers the range of I2S sample rates and MCLK  
frequencies. By default, all the MCLK output frequencies are x2 of the I2S CLK frequencies. The MCLK  
frequencies can also be enabled through the register bit [7:4] (I2S MCLK Output) of 0x3A shown in Table 11. To  
select desired MCLK frequency, write bit 7 (0x3A) = 1, then write to bit [6:4] accordingly.  
Table 5. Audio Interface Frequencies  
SAMPLE RATE  
(kHz)  
I2S DATA WORD SIZE  
(BITS)  
I2S CLK  
(MHz)  
MCLK OUTPUT  
(MHz)  
REGISTER 0x3A[6:4]'b  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
000  
001  
010  
000  
001  
010  
000  
001  
010  
001  
010  
011  
010  
011  
100  
32  
44.1  
48  
1.024  
1.4112  
1.536  
3.072  
6.144  
16  
96  
192  
28  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
Table 5. Audio Interface Frequencies (continued)  
SAMPLE RATE  
I2S DATA WORD SIZE  
(BITS)  
I2S CLK  
(MHz)  
MCLK OUTPUT  
(MHz)  
REGISTER 0x3A[6:4]'b  
(kHz)  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
000  
001  
010  
001  
010  
011  
001  
010  
011  
010  
011  
100  
011  
100  
101  
001  
010  
011  
001  
010  
011  
001  
010  
011  
010  
011  
100  
011  
100  
110  
32  
1.536  
2.117  
2.304  
4.608  
9.216  
2.048  
2.8224  
3.072  
6.144  
12.288  
44.1  
48  
24  
96  
192  
32  
44.1  
48  
32  
96  
192  
8.3.19 Interrupt Pin — Functional Description and Usage (INTB)  
1. On DS90UB925Q-Q1, set register 0xC6[5] = 1 and 0xC6[0] = 1  
2. DS90UB926Q-Q1 deserializer INTB_IN (pin 16) is set LOW by some downstream device.  
3. DS90UB925Q-Q1 serializer pulls INTB (pin 31) LOW. The signal is active low, so a LOW indicates an  
interrupt condition.  
4. External controller detects INTB = LOW; to determine interrupt source, read ISR register .  
5. A read to ISR will clear the interrupt at the DS90UB925Q-Q1, releasing INTB.  
6. The external controller typically must then access the remote device to determine downstream interrupt  
source and clear the interrupt driving INTB_IN. This would be when the downstream device releases the  
INTB_IN (pin 16) on the DS90UB926Q-Q1. The system is now ready to return to step (1) at next falling edge  
of INTB_IN.  
8.3.20 GPIO[3:0] and GPO_REG[8:4]  
In 18-bit RGB operation mode, the optional R[1:0] and G[1:0] of the DS90UB926Q-Q1 can be used as the  
general purpose IOs GPIO[3:0] in either forward channel (Outputs) or back channel (Inputs) application.  
GPIO[3:0] Enable Sequence  
Copyright © 2012–2017, Texas Instruments Incorporated  
29  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
See Table 6 for the GPIO enable sequencing.  
1. Enable the 18-bit mode either through the configuration register bit Table 11 on DS90UB925Q-Q1 only.  
DS90UB926Q-Q1 is automatically configured as in the 18-bit mode.  
2. To enable GPIO3 forward channel, write 0x03 to address 0x0F on DS90UB925Q-Q1, then write 0x05 to  
address 0x1F on DS90UB926Q-Q1.  
Table 6. GPIO Enable Sequencing Table  
NO.  
DESCRIPTION  
DEVICE  
FORWARD CHANNEL  
0x12 = 0x04  
BACK CHANNEL  
0x12 = 0x04  
1
Enable 18-bit  
mode  
DS90UB925Q-Q1  
DS90UB926Q-Q1  
DS90UB925Q-Q1  
DS90UB926Q-Q1  
DS90UB925Q-Q1  
DS90UB926Q-Q1  
DS90UB925Q-Q1  
DS90UB926Q-Q1  
DS90UB925Q-Q1  
DS90UB926Q-Q1  
Auto Load from DS90UB925Q-Q1  
0x0F = 0x03  
Auto Load from DS90UB925Q-Q1  
0x0F = 0x05  
2
3
4
5
GPIO3  
GPIO2  
GPIO1  
GPIO0  
0x1F = 0x05  
0x1F = 0x03  
0x0E = 0x30  
0x0E = 0x50  
0x1E = 0x50  
0x1E = 0x30  
0x0E = 0x03  
0x0E = 0x05  
0x1E = 0x05  
0x0E = 0x05  
0x0D = 0x93  
0x0D = 0x95  
0x1D = 0x95  
0x1D = 0x93  
8.3.20.1 GPO_REG[8:4] Enable Sequence  
GPO_REG[8:4] are the outputs only pins. They must be programmed through the local register bits. See Table 7  
for the GPO_REG enable sequencing.  
1. Enable the 18-bit mode either through the configuration register bit Table 11 on DS90UB925Q-Q1 only.  
DS90UB926Q-Q1 is automatically configured as in the 18-bit mode.  
2. To enable GPO_REG8 outputs a 1 , write 0x90 to address 0x21 on DS90UB926Q-Q1.  
Table 7. GPO_REG Enable Sequencing Table  
NO.  
DESCRIPTION  
DEVICE  
LOCAL ACCESS  
LOCAL OUTPUT VALUE  
1
Enable 18-bit mode  
DS90UB926Q-Q1  
0x12 = 0x04  
(on DS90UB925Q-Q1)  
2
3
4
5
6
GPO_REG8  
GPO_REG7  
GPO_REG6  
GPO_REG5  
GPO_REG4  
DS90UB926Q-Q1  
DS90UB926Q-Q1  
DS90UB926Q-Q1  
DS90UB926Q-Q1  
DS90UB926Q-Q1  
0x21 = 0x90  
0x21 = 0x10  
0x21 = 0x09  
0x21 = 0x01  
0x20 = 0x90  
0x20 = 0x10  
0x20 = 0x09  
0x20 = 0x01  
0x1F = 0x90  
0x1F = 0x10  
1
0
1
1
0
1
1
0
1
0
30  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
 
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
8.4 Device Functional Modes  
8.4.1 Clock-Data Recovery Status Flag (LOCK), Output Enable (OEN) and Output State Select  
(OSS_SEL)  
When PDB is driven HIGH, the CDR PLL begins locking to the serial input and LOCK is TRI-STATE or LOW  
(depending on the value of the OEN setting). After the DS90UB926Q-Q1 completes its lock sequence to the  
input serial data, the LOCK output is driven HIGH, indicating valid data and clock recovered from the serial input  
is available on the parallel bus and PCLK outputs. The State of the outputs are based on the OEN and  
OSS_SEL setting (Table 8) or register bit (Table 11). See Figure 7.  
Table 8. Output States  
INPUTS  
OEN  
OUTPUTS  
SERIAL  
INPUT  
PDB  
OSS_SEL  
LOCK  
PASS  
DATA, GPIO, I2S  
CLK  
X
0
1
1
1
1
1
1
X
0
0
1
1
1
1
X
0
1
0
1
0
1
Z
Z
Z
Z
X
L or H  
L
L
Z
L
X
L or H  
Z
Z
Static  
Static  
Active  
Active  
L
L
L
L
L/OSC (Register bit enable)  
Previous Status  
L
L
L
H
H
L
L
Valid  
Valid  
Valid  
8.4.2 Low Frequency Optimization (LFMODE)  
The LFMODE is set through the register (Table 11) or MODE_SEL Pin 24 (Table 9). It controls the operating  
frequency of the deserializer. If LFMODE is Low (default), the PCLK frequency is between 15 MHz and 85 MHz.  
If LFMODE is High, the PCLK frequency is between 5 MHz and <15 MHz. Please note when the device  
LFMODE is changed, a PDB reset is required.  
8.4.3 Configuration Select (MODE_SEL)  
Configuration of the device may be done through the MODE_SEL input pin, or through the configuration register  
bit. A pullup resistor and a pulldown resistor of suggested values may be used to set the voltage ratio of the  
MODE_SEL input (VR4) and VDD33 to select one of the other 10 possible selected modes. See Figure 19 and  
Table 9.  
V
DD33  
R
3
V
R4  
MODE_SEL  
DES  
R
4
Figure 19. MODE_SEL Connection Diagram  
Copyright © 2012–2017, Texas Instruments Incorporated  
31  
 
 
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
I2S CHANNEL B  
Table 9. Configuration Select (MODE_SEL)  
SUGGESTED  
RESISTOR R4  
k(1%  
Repeater(2)  
IDEAL  
RATIO  
VR4/VDD33  
SUGGESTED  
RESISTOR R3 kΩ  
(1% tolerance)  
IDEAL VR4  
(V)  
BACKWARD  
NO.  
LFMODE(1)  
COMPATIBLE(3) (18–bit Mode)(4)  
tolerance)  
1
2
3
4
5
6
7
8
9
0
0
Open  
115  
121  
162  
137  
107  
113  
95.3  
73.2  
40.2  
16.2  
24.3  
47.5  
56.2  
61.9  
95.3  
113  
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
L
0.123  
0.167  
0.227  
0.291  
0.366  
0.458  
0.542  
0.611  
0.407  
0.552  
0.748  
0.960  
1.209  
1.510  
1.790  
2.016  
L
H
H
L
L
H
L
H
H
H
H
L
L
H
L
H
H
L
H
L
115  
(1) LFMODE: L = 15 to 85 MHz (Default); H = 5 to <15 MHz  
(2) Repeater: L = Repeater Off (Default); H = Repeater On  
(3) Backward Compatible: L = Backward Compatible Off (Default); H = Backward Compatible On to 905/907 (15 to 65 MHz)  
(4) I2S Channel B: L = I2S Channel B Off, Normal 24-bit RGB Mode (Default); H = I2S Channel B On, 18-bit RGB Mode with I2S_DB  
Enabled.  
8.4.4 Repeater Application  
The DS90UB925Q-Q1 and DS90UB926Q-Q1 can be configured to extend data transmission over multiple links  
to multiple display devices. Setting the devices into repeater mode provides a mechanism for transmitting to all  
receivers in the system.  
In a repeater application, in this document, the DS90UB925Q-Q1 is referred to as the Transmitter or transmit port  
(TX), and the DS90UB926Q-Q1 is referred to as the Receiver (RX). Figure 20 shows the maximum configuration  
supported for Repeater implementations using the DS90UB925Q-Q1 (TX) and DS90UB926Q-Q1 (RX). Two  
levels of Repeaters are supported with a maximum of three Transmitters per Receiver.  
32  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
1:3 Repeater  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
RX  
TX  
Source  
TX  
RX  
TX  
TX  
TX  
TX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
Figure 20. Maximum Repeater Application  
DS90UB925Q-Q1  
Transmitter  
downstream  
Receiver  
or  
I2C  
Slave  
I2C  
I2C  
Master  
Repeater  
upstream  
Transmitter  
Parallel  
LVCMOS  
DS90UB925Q-Q1  
Transmitter  
DS90UB926Q-Q1  
Receiver  
I2S Audio  
downstream  
Receiver  
or  
I2C  
Slave  
Repeater  
FPD-Link III interfaces  
Figure 21. 1:2 Repeater Configuration  
In a repeater application, the I2C interface at each TX and RX may be configured to transparently pass I2C  
communications upstream or downstream to any I2C device within the system. This includes a mechanism for  
assigning alternate IDs (Slave Aliases) to downstream devices in the case of duplicate addresses.  
Copyright © 2012–2017, Texas Instruments Incorporated  
33  
 
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
At each repeater node, the parallel LVCMOS interface fans out to up to three serializer devices, providing parallel  
RGB video data, HS/VS/DE control signals and, optionally, packetized audio data (transported during video  
blanking intervals). Alternatively, the I2S audio interface may be used to transport digital audio data between  
receiver and transmitters in place of packetized audio. All audio and video data is transmitted at the output of the  
Receiver and is received by the Transmitter..  
Figure 21 provides more detailed block diagram of a 1:2 repeater configuration.  
8.4.4.1 Repeater Connections  
The Repeater requires the following connections between the Receiver and each Transmitter for Figure 22:  
1. Video Data – Connect PCLK, RGB and control signals (DE, VS, HS).  
2. I2C – Connect SCL and SDA signals. Both signals should be pulled up to VDD33 with 4.7-kresistors.  
3. Audio – Connect I2S_CLK, I2S_WC, and I2S_DA signals.  
4. IDx pin – Each Transmitter and Receiver must have an unique I2C address.  
5. MODE_SEL pin – All Transmitter and Receiver must be set into the Repeater Mode.  
6. Interrupt pin– Connect DS90UB926Q-Q1 INTB_IN pin to DS90UB925Q-Q1 INTB pin. The signal must be  
pulled up to VDDIO  
.
DS90UB926Q-Q1  
DS90UB925Q-Q1  
RGB[7:0) / ROUT[23:0]  
DIN[23:0] / RGB[7:0]  
DE  
VS  
HS  
DE  
VS  
HS  
I2S_CLK  
I2S_WC  
I2S_DA  
I2S_CLK  
I2S_WC  
I2S_DA  
VDD33  
VDD33  
Optional  
VDDIO  
MODE_SEL  
MODE_SEL  
Optional  
INTB_IN  
INTB  
VDD33  
VDD33  
VDD33  
ID[x]  
SDA  
ID[x]  
SDA  
SCL  
SCL  
Figure 22. Repeater Connection Diagram  
34  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
8.5 Programming  
8.5.1 Serial Control Bus  
The DS90UB926Q-Q1 is configured by the use of a serial control bus that is I2C protocol compatible. . Multiple  
deserializer devices may share the serial control bus since 16 device addresses are supported. Device address  
is set through the R1 and R2 values on IDx pin. See Figure 23.  
The serial control bus consists of two signals and a configuration pin. The SCL is a Serial Bus Clock Input /  
Output. The SDA is the Serial Bus Data Input / Output signal. Both SCL and SDA signals require an external  
pullup resistor to VDD33. For most applications a 4.7-kΩ pullup resistor to VDD33 may be used. The resistor value  
may be adjusted for capacitive loading and data rate requirements. The signals are either pulled High, or driven  
Low.  
VDD33  
R1  
VDD33  
VR2  
IDx  
4.7k  
4.7k  
R2  
HOST  
or  
SER  
or  
Salve  
DES  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
Figure 23. Serial Control Bus Connection  
The configuration pin is the IDx pin. This pin sets one of 16 possible device addresses. A pullup resistor and a  
pulldown resistor of suggested values may be used to set the voltage ratio of the IDx input (VR2) and VDD33 to  
select one of the other 16 possible addresses. See Table 10.  
Table 10. Serial Control Bus Addresses for IDx  
SUGGESTED  
RESISTOR R1 k  
(1% tol)  
SUGGESTED  
RESISTOR R2 kΩ  
(1% tol)  
IDEAL RATIO  
VR2 / VDD33  
IDEAL VR2  
(V)  
ADDRESS 8'b  
APPENDED  
NO.  
ADDRESS 7'b  
1
2
0
0
Open  
124  
107  
133  
113  
137  
102  
115  
102  
115  
115  
56.2  
93.1  
82.5  
73.2  
57.6  
40.2  
17.4  
19.1  
29.4  
30.1  
43.2  
37.4  
49.9  
53.6  
73.2  
86.6  
51.1  
102  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x58  
0x5A  
0x5C  
0x5E  
0x60  
0x62  
0x64  
0x66  
0x68  
0x6A  
0x6C  
0x6E  
0x70  
0x72  
0x74  
0x76  
0.123  
0.151  
0.181  
0.210  
0.240  
0.268  
0.303  
0.344  
0.389  
0.430  
0.476  
0.523  
0.565  
0.611  
0.677  
0.406  
0.500  
0.597  
0.694  
0.791  
0.885  
0.999  
1.137  
1.284  
1.418  
1.572  
1.725  
1.863  
2.016  
2.236  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
107  
115  
121  
Copyright © 2012–2017, Texas Instruments Incorporated  
35  
 
 
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
8.6 Register Maps  
Table 11. Serial Control Bus Registers  
ADD  
ADD Register  
Bit(s)  
7:1  
0
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
0
1
0x00 I2C Device ID  
RW  
Device ID  
7–bit address of Deserializer  
See Table 9  
RW  
ID Setting  
I2C ID Setting  
1: Register I2C Device ID (Overrides IDx pin)  
0: Device ID is from IDx pin  
0x01 Reset  
7
RW  
0x04 Remote  
Remote Auto Power Down  
Auto Power 1: Power down when no forward channel link is detected  
Down  
0: Do not power down when no forward channel link is  
detected  
6:3  
2
Reserved  
RW  
RW  
BC Enable  
Back channel enable  
1: Enable  
0: Disable  
1
0
Digital  
RESET1  
Reset the entire digital block including registers  
This bit is self-clearing.  
1: Reset  
0: Normal operation  
RW  
Digital  
RESET0  
Reset the entire digital block except registers  
This bit is self-clearing  
1: Reset  
0: Normal operation  
2
0x02 Configuration  
[0]  
7
6
5
RW  
RW  
RW  
0x00 Output  
LVCMOS Output Enable.  
1: Enable  
0: Disable. Tri-state Outputs  
Enable  
OEN and  
OSS_SEL  
Override  
Overrides Output Enable Pin and Output State pin  
1: Enable override  
0: Disable - no override  
OSC Clock OSC Clock Output Enable  
Enable  
If loss of lock OSC clock is output onto PCLK  
0: Disable  
1: Enable  
4
3
2
RW  
RW  
RW  
Output  
Sleep State Period  
Select  
(OSS_SEL) 0: Disable  
OSS Select to Control Output State during Lock Low  
1: Enable  
Backward  
Mode_Sel Backward compatible Mode Override Enable.  
Compatible 1: Use register bit "reg_02[2]" to set BC Mode  
Mode  
Override  
0: Use MODE_SEL option.  
Backward  
Backward Compatible Mode Select to DS90UR905Q and  
Compatible DS90UR907Q. If Reg_02[3] = 1  
Mode  
Select  
1: Backward Compatible is on  
0: Backward Compatible is off  
1
0
RW  
RW  
LFMODE  
Pin  
Override  
LFMODE Pin Override Enable  
1: Use register bit "reg_02[0]" to set LFMODE  
0: Use LFMODE Pin  
LFMODE  
Low Frequency Mode Select  
1: PCLK = 5 to <15 MHz  
0: PCLK = 15 to 85 MHz  
36  
Copyright © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
3
0x03 Configuration  
7
6
0xF0  
Reserved  
[1]  
RW  
RW  
CRC  
Generator  
Enable  
CRC Generator Enable (Back Channel)  
1: Enable  
0: Disable  
5
4
Reserved  
Filter  
Enable  
HS, VS, DE two clock filter When enabled, pulses less  
than two full PCLK cycles on the DE, HS, and VS inputs  
will be rejected  
1: Filtering enable  
0: Filtering disable  
3
2
RW  
RW  
I2C Pass-  
through  
I2C Pass-Through Mode  
1: Pass-Through Enabled  
0: Pass-Through Disabled  
Auto ACK  
ACK Select  
1: Auto ACK enable  
0: Self ACK  
1
0
Reserved  
RW  
RW  
RRFB  
Pixel Clock Edge Select  
1: Parallel Interface Data is strobed on the Rising Clock  
Edge.  
0: Parallel Interface Data is strobed on the Falling Clock  
Edge.  
4
0x04 BCC  
7:1  
0xFE BCC  
Watchdog  
Timer  
The watchdog timer allows termination of a control channel  
transaction, if it fails to complete within a programmed  
amount of time. This field sets the Bidirectional Control  
Channel Watchdog Timeout value in units of 2  
milliseconds.  
Watchdog  
Control  
This field should not be set to 0  
0
RW  
BCC  
Watchdog  
Timer  
Disable Bidirectional Control Channel Watchdog Timer  
1: Disables BCC Watchdog Timer operation  
0: Enables BCC Watchdog Timer operation"  
Disable  
5
0x05 I2C Control [1]  
7
RW  
RW  
RW  
0x2E I2C Pass  
I2C Pass-Through All Transactions  
Through All 1: Enabled  
0: Disabled  
6:4  
3:0  
I2C SDA  
Hold Time  
Internal I2C SDA Hold Time  
It configures the amount of internal hold time provided for  
the SDA input relative to the SCL input. Units are 50 ns.  
I2C Filter  
Depth  
I2C Glitch Filter Depth  
It configures the maximum width of glitch pulses on the  
SCL and SDA inputs that will be rejected. Units are 5 ns.  
Copyright © 2012–2017, Texas Instruments Incorporated  
37  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
6 0x06 I2C Control [2]  
7
R
0x00 Forward  
Channel  
Control Channel Sequence Error Detected It indicates a  
sequence error has been detected in forward control  
channel. It this bit is set, an error may have occurred in the  
control channel operation.  
Sequence  
Error  
6
RW  
Clear  
Sequence  
Error  
It clears the Sequence Error Detect bit  
This bit is not self-clearing.  
5
Reserved  
4:3  
RW  
RW  
SDA Output SDA Output Delay  
Delay  
This field configures output delay on the SDA output.  
Setting this value will increase output delay in units of 50  
ns. Nominal output delay values for SCL to SDA are:  
00 : 250 ns  
01: 300 ns  
10: 350 ns  
11: 400 ns  
2
Local Write Disable Remote Writes to Local Registers through  
Serializer (Does not affect remote access to I2C slaves at  
Deserializer)  
1: Stop remote write to local device registers  
0: remote write to local device registers  
1
0
RW  
RW  
I2C Bus  
Timer  
Speed  
Speed up I2C Bus Watchdog Timer  
1: Timer expires after approximately 50 ms  
0: Timer expires after approximately 1 s  
I2C Bus  
Timer  
Disable  
Disable I2C Bus Timer When the I2C Timer may be used  
to detect when the I2C bus is free or hung up following an  
invalid termination of a transaction. If SDA is high and no  
signalling occurs for approximately 1 s, the I2C bus is  
assumed to be free. If SDA is low and no signaling occurs,  
the device will try to clear the bus by driving 9 clocks on  
SCL  
7
0x07 Remote  
Device ID  
7:1  
RW  
0x18 Remote ID  
Remote ID  
Configures the I2C Slave ID of the remote Serializer. A  
value of 0 in this field disables I2C access to remote  
Serializer. This field is automatically configured through the  
Serializer Forward Channel. Software may overwrite this  
value, but should also set the FREEZE DEVICE ID bit to  
prevent overwriting by the Forward Channel.  
0
RW  
RW  
Freeze  
Device ID  
Freeze Serializer Device ID  
1: Prevent auto-loading of the Serializer Device ID from the  
Forward Channel. The ID will be frozen at the value  
written.  
0: Update  
8
9
0x08 SlaveID[0]  
7:1  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 0  
Configures the physical I2C address of the remote I2C  
Device ID0 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID0, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
0x09 SlaveID[1]  
7:1  
RW  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 1  
Configures the physical I2C address of the remote I2C  
Device ID1 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID1, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
38  
Copyright © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
10  
11  
12  
13  
14  
15  
16  
0x0A SlaveID[2]  
0x0B SlaveID[3]  
0x0C SlaveID[4]  
0x0D SlaveID[5]  
0x0E SlaveID[6]  
0x0F SlaveID[7]  
0x10 SlaveAlias[0]  
7:1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 2  
Configures the physical I2C address of the remote I2C  
Device ID2 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID2, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
7:1  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 3  
Configures the physical I2C address of the remote I2C  
Device ID3 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID3, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
7:1  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 4  
Configures the physical I2C address of the remote I2C  
Device ID4 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID4, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
7:1  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 5  
Configures the physical I2C address of the remote I2C  
Device ID5 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID5, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
7:1  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 6  
Configures the physical I2C address of the remote I2C  
Device ID6 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID6, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
7:1  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 7  
Configures the physical I2C address of the remote I2C  
Device ID7 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID7, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
7:1  
0x00 ID[0] Match 7-bit Remote Slave Device Alias ID 0  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID0 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
Reserved  
Copyright © 2012–2017, Texas Instruments Incorporated  
39  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
17  
18  
19  
20  
21  
22  
23  
0x11 SlaveAlias[1]  
7:1  
RW  
RW  
RW  
RW  
RW  
RW  
0x00 ID[1] Match 7-bit Remote Slave Device Alias ID 1  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID1 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
Reserved  
0x12 SlaveAlias[2]  
0x13 SlaveAlias[3]  
0x14 SlaveAlias[4]  
0x15 SlaveAlias[5]  
0x16 SlaveAlias[6]  
0x17 SlaveAlias[7]  
7:1  
0x00 ID[2] Match 7-bit Remote Slave Device Alias ID 2  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID2 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
Reserved  
7:1  
0x10 ID[3] Match 7-bit Remote Slave Device Alias ID 3  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID3 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
Reserved  
7:1  
0x00 ID[4] Match 7-bit Remote Slave Device Alias ID 4  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID4 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
Reserved  
7:1  
0x00 ID[5] Match 7-bit Remote Slave Device Alias ID 5  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID5 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
Reserved  
7:1  
0x00 ID[6] Match 7-bit Remote Slave Device Alias ID 6  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID6 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
RW  
RW  
Reserved  
7:1  
0x00 ID[7] Match 7-bit Remote Slave Device Alias ID 7  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID7 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
Reserved  
40  
Copyright © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
28 0x1C General Status  
7:4  
3
RW  
R
0x00  
Reserved  
I2S Locked I2S Lock Status  
0: I2S PLL controller not locked  
1: I2S PLL controller locked to input I2S clock  
2
1
0
Reserved  
Reserved  
R
Lock  
Deserializer CDR, PLL's clock to recovered clock  
frequency  
1: Deserializer locked to recovered clock  
0: Deserializer not locked  
29  
0x1D GPIO0 Config  
7:4  
3
R
0xA0 Rev-ID  
Revision ID: 1010: Production Device  
RW  
GPIO0  
Output  
Value  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO  
function is enabled, the local GPIO direction is Output, and  
remote GPIO control is disabled.  
2
RW  
GPIO0  
Remote  
Enable  
Remote GPIO0 Control  
1: Enable GPIO control from remote Serializer. The GPIO  
pin will be an output, and the value is received from the  
remote Deserializer.  
0: Disable GPIO control from remote Serializer  
1
0
7
RW  
RW  
RW  
GPIO0  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO0  
Enable  
GPIO Function Enable  
1: Enable GPIO operation  
0: Enable normal operation  
30  
0x1E GPIO2 and  
GPIO1 Config  
0x00 GPIO2  
Output  
Local GPIO Output Value  
This value is output on the GPIO when the GPIO function  
is enabled, the local GPIO direction is Output, and remote  
GPIO control is disabled.  
Value  
6
RW  
GPIO2  
Remote  
Enable  
Remote GPIO2 Control  
1: Enable GPIO control from remote Serializer. The GPIO  
pin will be an output, and the value is received from the  
remote Deserializer.  
0: Disable GPIO control from remote Serializer.  
5
4
3
RW  
RW  
RW  
GPIO2  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO2  
Enable  
GPIO Function Enable  
1: Enable GPIO operation  
0: Enable normal operation  
GPIO1  
Output  
Value  
Local GPIO Output Value  
This value is output on the GPIO when the GPIO function  
is enabled, the local GPIO direction is Output, and remote  
GPIO control is disabled.  
2
RW  
GPIO1  
Remote  
Enable  
Remote GPIO1 Control  
1: Enable GPIO control from remote Serializer. The GPIO  
pin will be an output, and the value is received from the  
remote Deserializer.  
0: Disable GPIO control from remote Serializer.  
1
0
RW  
RW  
GPIO1  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO1  
Enable  
GPIO Function Enable  
1: Enable GPIO operation  
0: Enable normal operation  
Copyright © 2012–2017, Texas Instruments Incorporated  
41  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
31  
0x1F GPO_REG4  
7
RW  
0x00 GPO_REG4 Local GPO_REG4 Output Value  
and GPO3  
Config  
Output  
Value  
This value is output on the GPO when the GPO function is  
enabled, the local GPO direction is Output, and remote  
GPO control is disabled.  
6:5  
4
Reserved  
RW  
RW  
RW  
GPO_REG4 GPO_REG4 Function Enable  
Enable  
1: Enable GPO operation  
0: Enable normal operation  
3
2
GPIO3  
Output  
Value  
Local GPIO Output Value This value is output on the GPIO  
when the GPIO function is enabled, the local GPIO  
direction is Output, and remote GPIO control is disabled.  
GPIO3  
Remote  
Enable  
Remote GPIO3 Control  
1: Enable GPIO control from remote Serializer. The GPIO  
pin will be an output, and the value is received from the  
remote Deserializer.  
0: Disable GPIO control from remote Serializer.  
1
0
7
RW  
RW  
RW  
GPIO3  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO3  
Enable  
GPIO Function Enable  
1: Enable GPIO operation  
0: Enable normal operation  
32  
0x20 GPO_REG6  
and  
0x00 GPO_REG6 Local GPO_REG6 Output Value  
Output  
Value  
This value is output on the GPO when the GPO function is  
enabled, the local GPO direction is Output, and remote  
GPO control is disabled.  
GPO_REG5  
Config  
6:5  
4
Reserved  
RW  
RW  
GPO_REG6 GPO_REG6 Function Enable  
Enable  
1: Enable GPO operation  
0: Enable normal operation  
3
GPO_REG5 Local GPO_REG5 Output Value  
Output  
Value  
This value is output on the GPO when the GPO function is  
enabled, the local GPO direction is Output, and remote  
GPO control is disabled.  
2:1  
0
Reserved  
RW  
RW  
GPO_REG5 GPO_REG5 Function Enable  
Enable  
1: Enable GPO operation  
0: Enable normal operation  
33  
0x21 GPO8 and  
GPO7 Config  
7
0x00 GPO_REG8 Local GPO_REG8 Output Value  
Output  
Value  
This value is output on the GPO when the GPO function is  
enabled, the local GPO direction is Output, and remote  
GPO control is disabled.  
6:5  
4
Reserved  
RW  
RW  
GPO_REG8 GPO_REG8 Function Enable  
Enable  
1: Enable GPO operation  
0: Enable normal operation  
3
GPO_REG7 Local GPO_REG7 Output Value  
Output  
Value  
This value is output on the GPO when the GPO function is  
enabled, the local GPO direction is Output, and remote  
GPO control is disabled.  
2:1  
0
Reserved  
RW  
GPO_REG7 GPO_REG7 Function Enable  
Enable  
1: Enable GPO operation  
0: Enable normal operation  
42  
Copyright © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
34  
0x22 Data Path  
Control  
7
RW  
0x00 Override FC 1: Disable loading of this register from the forward channel,  
Config  
keeping locally written values intact  
0: Allow forward channel loading of this register  
6
RW  
Pass RGB  
Setting this bit causes RGB data to be sent independent of  
DE. This allows operation in systems which may not use  
DE to frame video data or send other data when DE is  
deasserted. Note that setting this bit blocks packetized  
audio. This bit does not need to be set in DS90UB925 or in  
Backward Compatibility mode.  
1: Pass RGB independent of DE  
0: Normal operation  
Note: this bit is automatically loaded from the remote  
serializer unless bit 7 of this register is set.  
5
4
RW  
RW  
DE Polarity This bit indicates the polarity of the DE (Data Enable)  
signal.  
1: DE is inverted (active low, idle high)  
0: DE is positive (active high, idle low)  
Note: this bit is automatically loaded from the remote  
serializer unless bit 7 of this register is set.  
I2S_Gen  
This bit controls whether the Receiver outputs packetized  
Auxiliary/Audio data on the RGB video output pins.  
1: Don't output packetized audio data on RGB video output  
pins  
0: Output packetized audio on RGB video output pins.  
Note: this bit is automatically loaded from the remote  
serializer unless bit 7 of this register is set.  
3
2
1
0
RW  
RW  
RW  
RW  
I2S Channel 1: Set I2S Channel B Enable from reg_22[0]  
B Enable  
Override  
0: Set I2S Channel B Enable from MODE_SEL pin  
Note: this bit is automatically loaded from the remote  
serializer unless bit 7 of this register is set.  
18-bit Video 1: Select 18-bit video mode  
Select  
0: Select 24-bit video mode  
Note: this bit is automatically loaded from the remote  
serializer unless bit 7 of this register is set.  
I2S  
Transport  
Select  
1: Enable I2S Data Forward Channel Frame Transport  
0: Enable I2S Data Island Transport  
Note: this bit is automatically loaded from the remote  
serializer unless bit 7 of this register is set.  
I2S Channel I2S Channel B Enable  
B Enable  
1: Enable I2S Channel B on B1 output  
0: I2S Channel B disabled  
Note: this bit is automatically loaded from the remote  
serializer unless bit 7 of this register is set.  
35  
0x23 General  
Purpose  
7
RW  
0x10 Rx RGB  
Checksum  
RX RGB Checksum Enable Setting this bit enables the  
Receiver to validate a one-byte checksum following each  
video line. Checksum failures are reported in the STS  
register  
Control  
6:5  
4
Reserved  
R
R
R
R
R
Mode_Sel  
LFMODE  
Repeater  
Backward  
Mode Select is Done  
3
Low Frequency Mode Status  
Repeater Mode Status  
Backward Compatible Mode Status  
2
1
0
I2S Channel I2S Channel B Status  
B
Copyright © 2012–2017, Texas Instruments Incorporated  
43  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
36  
0x24 BIST Control  
7:4  
3
0x08  
Reserved  
RW  
RW  
BIST Pin  
Config  
BIST Configured through Pin  
1: BIST configured through pin  
0: BIST configured through register bit  
2:1  
0
BIST Clock BIST Clock Source  
Source  
00: External Pixel Clock  
01: 33 MHz Oscillator  
10: Reserved  
11: 25 MHz Oscillator  
RW  
BIST  
Enable  
BIST Control  
1: Enabled  
0: Disabled  
37  
38  
0x25 BIST Error  
7:0  
7:0  
R
0x00 BIST Error  
Count  
BIST Error Count  
0x26 SCL High  
Time  
RW  
0x83 SCL High  
Time  
I2C Master SCL High Time  
This field configures the high pulse width of the SCL output  
when the Deserializer is the Master on the local I2C bus.  
Units are 50 ns for the nominal oscillator clock frequency.  
The default value is set to provide a minimum 5us SCL  
high time with the internal oscillator clock running at 26  
MHz rather than the nominal 20 MHz.  
39  
0x27 SCL Low Time  
7:0  
RW  
0x84 SCL Low  
Time  
I2C SCL Low Time  
This field configures the low pulse width of the SCL output  
when the De-Serializer is the Master on the local I2C bus.  
This value is also used as the SDA setup time by the I2C  
Slave for providing data prior to releasing SCL during  
accesses over the Bidirectional Control Channel. Units are  
50 ns for the nominal oscillator clock frequency. The  
default value is set to provide a minimum 5us SCL low  
time with the internal oscillator clock running at 26 MHz  
rather than the nominal 20 MHz.  
41  
0x29 FRC Control  
7
RW  
0x00 Timing  
Mode  
Select display timing mode  
0: DE only Mode  
Select  
1: Sync Mode (VS,HS)  
6
5
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VS Polarity 0: Active High  
1: Active Low  
HS Polarity 0: Active High  
1: Active Low  
4
DE Polarity 0: Active High  
1: Active Low  
3
FRC2  
Enable  
0: FRC2 Disable  
1: FRC2 Enable  
2
FRC1  
Enable  
0: FRC1 Disable  
1: FRC1 Enable  
1
Hi-FRC 2  
Disable  
0: Hi-FRC2 Enable  
1: Hi-FRC2 Disable  
0
Hi-FRC 1  
Disable  
0: Hi-FRC1 Enable  
1: Hi-FRC1 Disable  
42  
0x2A White Balance  
Control  
7:6  
0x00 Page  
00: Configuration Registers  
01: Red LUT  
Setting  
10: Green LUT  
11: Blue LUT  
5
RW  
RW  
White  
Balance  
Enable  
0: White Balance Disable  
1: White Balance Enable  
4
LUT Reload 0: Reload Disable  
Enable  
1: Reload Enable  
3:0  
Reserved  
44  
Copyright © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
43  
44  
0x2B I2S Control  
7
RW  
0x00 I2S PLL  
I2S PLL Control  
0: I2S PLL is on for I2S data jitter cleaning  
1: I2S PLL is off. No jitter cleaning  
6:1  
0
Reserved  
RW  
I2S Clock  
Edge  
I2S Clock Edge Select  
0: I2S Data is strobed on the Rising Clock Edge  
1: I2S Data is strobed on the Falling Clock Edge  
0x2C SSCG Control  
7:4  
3
0x00  
Reserved  
RW  
RW  
SSCG  
Enable  
Enable Spread Spectrum Clock Generator  
0: Disable  
1: Enable  
2:0  
SSCG  
Selection  
SSCG Frequency Deviation:  
When LFMODE = H  
fdev fmod  
000: ±0.7 CLK/628  
001: ±1.3  
010: ±1.8  
011: ±2.5  
100: ±0.7 CLK/388  
101: ±1.2  
110: ±2  
111: ±2.5  
When LFMODE = L  
fdev fmod  
000: ±0.9 CLK/2168  
001: ±1.2  
010: ±1.9  
011: ±2.5  
100: ±0.7 CLK/1300  
101: ±1.3  
110: ±2  
111: ±2.5  
58  
65  
0x3A I2S MCLK  
Output  
7
RW  
RW  
0x00 MCLK  
Override  
1: Override divider select for MCLK  
0: No override for MCLK divider  
6:4  
MCLK  
Frequency  
Select  
See Table 5  
3:0  
7:5  
4
Reserved  
Reserved  
0x41 Link Error  
Count  
0x03  
RW  
RW  
Link Error  
Count  
Enable  
Enable serial link data integrity error count  
1: Enable error count  
0: Disable  
3:0  
Link Error  
Count  
Link error count threshold.  
Counter is pixel clock based. clk0, clk1 and DCA are  
monitored for link errors, if error count is enabled,  
deserializer loose lock once error count reaches threshold.  
If disabled deserilizer loose lock with one error.  
Copyright © 2012–2017, Texas Instruments Incorporated  
45  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
68  
0x44 Equalization  
7:5  
RW  
0x60 EQ Stage 1 EQ select value.  
Select Used if adaptive EQ is bypassed.  
000 Min EQ 1st Stage  
001  
010  
011  
100  
101  
110  
111 Max EQ 1st Stage  
4
Reserved  
3:1  
RW  
EQ Stage 2 EQ select value.  
Select  
Used if adaptive EQ is bypassed.  
000 Min EQ 2nd Stage  
001  
010  
011  
100  
101  
110  
111 Max EQ 2nd Stage  
0
RW  
RW  
RW  
Adaptive  
EQ  
1: Disable adaptive EQ (to write EQ select values)  
0: Enable adaptive EQ  
86  
0x56 CML Output  
7:4  
3
0x08  
Reserved  
CMLOUT+/- 1: Disabled (Default)  
Enable  
0: Enabled  
2:0  
7:4  
Reserved  
100  
0x64 Pattern  
Generator  
Control  
0x10 Pattern  
Generator  
Fixed Pattern Select  
This field selects the pattern to output when in Fixed  
Pattern Mode. Scaled patterns are evenly distributed  
across the horizontal or vertical active regions. This field is  
ignored when Auto-Scrolling Mode is enabled. The  
following table shows the color selections in non-inverted  
followed by inverted color mode  
Select  
0000: Reserved 0001: White/Black  
0010: Black/White  
0011: Red/Cyan  
0100: Green/Magenta  
0101: Blue/Yellow  
0110: Horizontally Scaled Black to White/White to Black  
0111: Horizontally Scaled Black to Red/Cyan to White  
1000: Horizontally Scaled Black to Green/Magenta to  
White  
1001: Horizontally Scaled Black to Blue/Yellow to White  
1010: Vertically Scaled Black to White/White to Black  
1011: Vertically Scaled Black to Red/Cyan to White  
1100: Vertically Scaled Black to Green/Magenta to White  
1101: Vertically Scaled Black to Blue/Yellow to White  
1110: Custom color (or its inversion) configured in PGRS,  
PGGS, PGBS registers  
1111: Reserved  
3:1  
0
Reserved  
RW  
Pattern  
Generator  
Enable  
Pattern Generator Enable  
1: Enable Pattern Generator  
0: Disable Pattern Generator  
46  
Copyright © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
101  
0x65 Pattern  
Generator  
Configuration  
7:5  
4
0x00  
Reserved  
RW  
RW  
Pattern  
Generator  
18 Bits  
18-bit Mode Select  
1: Enable 18-bit color pattern generation. Scaled patterns  
will have 64 levels of brightness and the R, G, and B  
outputs use the six most significant color bits.  
0: Enable 24-bit pattern generation. Scaled patterns use  
256 levels of brightness.  
3
2
Pattern  
Generator  
External  
Clock  
Select External Clock Source  
1: Selects the external pixel clock when using internal  
timing.  
0: Selects the internal divided clock when using internal  
timing  
This bit has no effect in external timing mode  
(PATGEN_TSEL = 0).  
RW  
Pattern  
Generator  
Timing  
Timing Select Control  
1: The Pattern Generator creates its own video timing as  
configured in the Pattern Generator Total Frame Size,  
Active Frame Size. Horizontal Sync Width, Vertical Sync  
Width, Horizontal Back Porch, Vertical Back Porch, and  
Sync Configuration registers.  
Select  
0: the Pattern Generator uses external video timing from  
the pixel clock, Data Enable, Horizontal Sync, and Vertical  
Sync signals.  
1
0
RW  
RW  
Pattern  
Generator  
Enable Inverted Color Patterns  
1: Invert the color output.  
Color Invert 0: Do not invert the color output.  
Pattern  
Auto-Scroll Enable:  
Generator  
1: The Pattern Generator will automatically move to the  
Auto-Scroll next enabled pattern after the number of frames specified  
Enable  
in the Pattern Generator Frame Time (PGFT) register.  
0: The Pattern Generator retains the current pattern.  
102  
103  
0x66 Pattern  
7:0  
7:0  
RW  
RW  
0x00 Indirect  
Address  
This 8-bit field sets the indirect address for accesses to  
indirectly-mapped registers. It should be written prior to  
reading or writing the Pattern Generator Indirect Data  
register.  
See AN-2198 Exploring Int Test Patt Gen Feat of 720p  
FPD-Link III Devices (SNLA132)  
Generator  
Indirect  
Address  
0x67 Pattern  
0x00 Indirect  
Data  
When writing to indirect registers, this register contains the  
data to be written. When reading from indirect registers,  
this register contains the read back value.  
Generator  
Indirect Data  
See AN-2198 Exploring Int Test Patt Gen Feat of 720p  
FPD-Link III Devices (SNLA132)  
240  
241  
242  
243  
244  
245  
0xF0 RX ID  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
R
R
R
R
R
R
0x5F ID0  
0x55 ID1  
0x48 ID2  
0x39 ID3  
0x32 ID4  
0x36 ID5  
First byte ID code: _  
0xF1  
0xF2  
0xF3  
0xF4  
0xF5  
Second byte of ID code: U  
Third byte of ID code, Value will be either B.  
Fourth byte of ID code: 9  
Fifth byte of ID code: 2  
Sixth byte of ID code: 6  
Copyright © 2012–2017, Texas Instruments Incorporated  
47  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DS90UB926Q-Q1, in conjunction with the DS90UB925Q-Q1, is intended for interface between a host  
(graphics processor) and a display. It supports an 24-bit color depth (RGB888) and high definition (720p) digital  
video format. The device allows to receive a three 8-bit RGB stream with a pixel rate up to 85 MHz together with  
three control bits (VS, HS and DE) and three I2S-bus audio stream with an audio sampling rate up to 192 kHz.  
9.1.1 Display Application  
The deserializer is expected to be located close to its target device. The interconnect between the deserializer  
and the target device is typically in the 1-inch to 3-inch separation range. The input capacitance of the target  
device is expected to be in the 5- to 10-pF range. Care should be taken on the PCLK output trace as this signal  
is edge sensitive and strobes the data. It is also assumed that the fanout of the deserializer is up to three in the  
repeater mode. If additional loads need to be driven, TI recommends a logic buffer or multiplexer (mux) device.  
48  
Copyright © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
9.2 Typical Application  
3.3V/1.8V  
DS90UB926Q-Q1  
3.3V  
VDDIO  
VDD33_A  
C6  
FB2  
FB1  
C4  
C5  
VDDIO  
VDD33_B  
C7  
C8  
VDDIO  
CAPP12  
C9  
CAPR12  
C13  
CAPI2S  
PASS  
LOCK  
C10  
ROUT0  
CAPL12  
ROUT1  
ROUT2  
ROUT3  
ROUT4  
ROUT5  
ROUT6  
C12  
C11  
C1  
C2  
Serial  
FPD-Link III  
Interface  
RIN+  
RIN-  
ROUT7  
CMF  
ROUT8  
ROUT9  
C3  
ROUT10  
CMLOUTP  
CMLOUTN  
ROUT11  
ROUT12  
ROUT13  
ROUT14  
ROUT15  
VDD33_B*  
R
5
LVCMOS  
Parallel  
Video / Audio  
Interface  
OSS_SEL  
OEN  
BISTEN  
ROUT16  
ROUT17  
ROUT18  
ROUT19  
ROUT20  
ROUT21  
ROUT22  
ROUT23  
Host Control  
BISTC / INTB_IN  
PDB  
C14  
VDD33_B  
HS  
VS  
DE  
VDD33_B  
SDA  
SCL  
PCLK  
R
1
R
2
I2S_CLK  
ID[X]  
I2S_WC  
I2S_DA  
MCLK  
VDD33_B  
R
R
3
4
NC  
RES  
3
MODE_SEL  
DAP (GND)  
FB1 œ FB2: Impedance = 1 kW @ 100 MHz,  
Low DC resistance (<1W)  
C1 œ C3 = 0.1 mF (50 WV; C1, C2: 0402; C3: 0603)  
C4 œ C13 = 4.7 mF  
C14 =>10 mF  
R
1
R
3
R
5
and R (see IDx Resistor Values Table 8)  
2
and R (see MODE_SEL Resistor Values Table 4)  
4
= 10 kW  
* or VDDIO = 3.3V+0.3V  
Figure 24. Typical Connection Diagram  
Copyright © 2012–2017, Texas Instruments Incorporated  
49  
 
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
Typical Application (continued)  
V
V
V
V
DDIO  
(1.8V or3.3V)  
DD33  
DDIO  
DD33  
(3.3V)  
(1.8V or3.3V) (3.3V)  
R[7:0]  
G[7:0]  
R[7:0]  
G[7:0]  
FPD-Link III  
1 Pair / AC Coupled  
B[7:0]  
B[7:0]  
HS  
VS  
DE  
PCLK  
0.1 mF  
0.1 mF  
HOST  
Graphics  
Processor  
RGB Display  
720p  
24-bit color depth  
HS  
DOUT+  
DOUT-  
RIN+  
RIN-  
VS  
DE  
PCLK  
100W STP Cable  
DS90UB925Q  
Serializer  
DS90UB926Q  
Deserializer  
LOCK  
PASS  
PDB  
OSS_SEL  
OEN  
PDB  
3
I2S AUDIO  
(STEREO)  
3
I2S AUDIO  
(STEREO)  
MODE_SEL  
MODE_SEL  
INTB  
INTB_IN  
MCLK  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
DAP  
DAP  
Figure 25. Typical Display System Diagram  
Figure 24 shows a typical application of the DS90UB926Q-Q1 deserializer for an 85 MHz, 24-bit color display  
application. Inputs use 0.1-μF coupling capacitors to the line and the deserializer provides internal termination.  
Bypass capacitors are placed near the power supply pins. At a minimum, seven 0.1-μF capacitors and two 4.7-  
μF capacitors should be used for local device bypassing. Ferrite beads are placed on the power lines for effective  
noise suppression. Since the device in the Pin/STRAP mode, two 10-kpullup resistors are used on the parallel  
output bus to select the desired device features.  
The interface to the target display is with 3.3-V LVCMOS levels, thus the VDDIO pins are connected to the 3.3-V  
rail. A delay cap is placed on the PDB signal to delay the enabling of the device until power is stable.  
9.2.1 Design Requirements  
For the typical design application, use the following as input parameters.  
Table 12. Design Parameters  
DESIGN PARAMETER  
VDDIO  
EXAMPLE VALUE  
1.8 V or 3.3 V  
3.3 V  
VDD33  
AC-coupling capacitor for RIN±  
PCLK frequency  
100 nF  
78 MHz  
9.2.2 Detailed Design Procedure  
9.2.2.1 Transmission Media  
The DS90UB925Q-Q1 and DS90UB926Q-Q1 chipset is intended to be used in a point-to-point configuration  
through a shielded twisted pair cable. The serializer and deserializer provide internal termination to minimize  
impedance discontinuities. The interconnect (cable and connector) between the serializer and deserializer should  
have a differential impedance of 100 Ω. The maximum length of cable that can be used is dependant on the  
quality of the cable (gauge, impedance), connector, board (discontinuities, power plane), the electrical  
environment (for example, power stability, ground noise, input clock jitter, PCLK frequency, etc.) and the  
application environment.  
50  
Copyright © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
The resulting signal quality at the receiving end of the transmission media may be assessed by monitoring the  
differential eye opening of the serial data stream. The Receiver CML Monitor Driver Output Specifications define  
the acceptable data eye-opening width and eye-opening height. A differential probe should be used to measure  
across the termination resistor at the CMLOUTP/N pin Figure 2.  
9.2.3 Application Curves  
Time (100 ps/DIV)  
Time (2.5 ns/DIV)  
Figure 26. Deserializer CMLOUT Eye Diagram With 78 MHz  
TX Pixel Clock  
Figure 27. Deserializer FPD-Link III Input With 78-MHz TX  
Pixel Clock  
10 Power Supply Recommendations  
10.1 Power Up Requirements and PDB Pin  
When VDDIO and VDD33_X are powered separately, the VDDIO supply (1.8 V or 3.3 V) must ramp 100 µs  
before the other supply (VDD33_X) begins to ramp. If VDDIO is tied with VDD33_X, both supplies may ramp at  
the same time. The VDDs (VDD33_X and VDDIO) supply ramp must be faster than 1.5 ms with a monotonic  
rise. A large capacitor on the PDB pin is required to ensure PDB arrives after all the VDDs have settled to the  
recommended operating voltage. When PDB pin is pulled to VDDIO = 3 V to 3.6 V or VDD33_X, TI recommends  
using a 10-kΩ pullup and a > 10-µF capacitor to GND to delay the PDB input signal.  
All inputs must not be driven until VDD33_X and VDDIO has reached its steady-state value.  
< 1.5 ms  
1.8 V or 3.3 V  
VDDIO  
100 µs  
3.3 V  
VDD33_X  
< 1.5 ms  
3.3 V  
PDB  
PDB starts to ramp after all supplies have settled  
Figure 28. Power-Up Sequence of DS90UB926Q-Q1  
Copyright © 2012–2017, Texas Instruments Incorporated  
51  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Design the circuit board layout and stack-up for the FPD-Link III devices to provide low-noise power feed to the  
device. Good layout practice separates high frequency or high-level inputs and outputs to minimize unwanted  
stray noise pickup, feedback, and interference. Power system performance may be greatly improved by using  
thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane capacitance for the  
PCB power system with low-inductance parasitics, which has proven especially effective at high frequencies, and  
makes the value and placement of external bypass capacitors less critical. External bypass capacitors should  
include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the range of 0.01 µF to  
0.1 µF. Tantalum capacitors may be in the 2.2-µF to 10-µF range. Voltage rating of the tantalum capacitors  
should be at least 5× the power supply voltage being used.  
TI recommends surface-mount capacitors due to their smaller parasitics. When using multiple capacitors per  
supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 50-µF to 100-µF range and will smooth low-frequency switching noise. TI  
recommends connecting power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external  
bypass capacitor increases the inductance of the path.  
TI recommends a small body size X7R chip capacitor, such as 0603 or 0402, for external bypass. Its small body  
size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of  
these external bypass capacitors, usually in the range of 20 to 30 MHz. To provide effective bypassing, multiple  
capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At  
high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing  
the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as  
PLLs.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the CML  
lines to prevent coupling from the LVCMOS lines to the CML lines. Closely-coupled differential lines of 100 Ω are  
typically recommended for CML interconnect. The closely coupled lines help to ensure that coupled noise  
appears as common-mode and thus is rejected by the receivers. The tightly coupled lines will also radiate less.  
Information on the WQFN style package is provided in AN-1187 Leadless Leadframe Package (LLP)  
(SNOA401).  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the WQFN package is highly recommended to improve  
board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP. Stencil parameters for aperture opening and via locations are shown in Table 13:  
Table 13. No Pullback WQFN Stencil Aperture Summary  
NUMBER of  
PCB I/O  
PAD SIZE  
(mm)  
STENCIL I/O  
APERTURE  
(mm)  
STENCIL DAP  
APERTURE  
(mm)  
PIN  
COUNT  
PCB PITCH PCB DAP  
DAP  
APERTURE  
OPENINGS  
DEVICE  
MKT DWG  
(mm)  
SIZE (mm)  
DS90UB926Q-Q1  
60  
NKB0060B  
0.25 x 0.6  
0.5  
6.3 × 6.3  
0.25 × 0.8  
6.3 × 6.3  
1
Figure 29 shows the PCB layout example derived from the layout design of the DS90UB926QSEVB evaluation  
board. The graphic and layout description are used to determine both proper routing and proper solder  
techniques when designing the Serializer board.  
52  
Copyright © 2012–2017, Texas Instruments Incorporated  
 
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
11.1.1 CML Interconnect Guidelines  
See Application Note 1108 Channel-Link PCB and Interconnect Design-In Guidelines (SNLA008) and AN-905  
Transmission Line RAPIDESIGNER Operation and Applications Guide (SNLA035) for full details.  
Use 100-Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
S = space between the pair  
2S = space between pairs  
3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500-Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Additional general guidance can be found in the LVDS Owner’s Manual - available in PDF format from the TI  
web site at: www.ti.com/lvds.  
Copyright © 2012–2017, Texas Instruments Incorporated  
53  
DS90UB926Q-Q1  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
www.ti.com.cn  
11.2 Layout Examples  
Length-Matched RGB  
Output Traces  
AC Capacitors  
High-Speed Traces  
Figure 29. DS90UB926Q-Q1 Serializer Example Layout  
Figure 30. 60-Pin WQFN Stencil Example of Via and Opening Placement  
54  
版权 © 2012–2017, Texas Instruments Incorporated  
DS90UB926Q-Q1  
www.ti.com.cn  
ZHCSDA1D JULY 2012REVISED AUGUST 2017  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
AN-1108 通道链路 PCB 和互连设计指南》(SNLA008)  
AN-905 传输线路 RAPIDESIGNER 操作和 应用 指南》(SNLA035)  
AN-1187 无引线框架封装 (LLP)(SNOA401)  
LVDS 所有者手册》(文献编号:SNLA187)  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
版权 © 2012–2017, Texas Instruments Incorporated  
55  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UB926QSQ/NOPB  
DS90UB926QSQE/NOPB  
DS90UB926QSQX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
NKB  
NKB  
NKB  
60  
60  
60  
1000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
-40 to 105  
UB926QSQ  
Samples  
Samples  
Samples  
SN  
SN  
UB926QSQ  
UB926QSQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jun-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UB926QSQ/NOPB WQFN  
DS90UB926QSQE/NOPB WQFN  
DS90UB926QSQX/NOPB WQFN  
NKB  
NKB  
NKB  
60  
60  
60  
1000  
250  
330.0  
178.0  
330.0  
16.4  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
1.3  
1.3  
1.3  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
2000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UB926QSQ/NOPB  
DS90UB926QSQE/NOPB  
DS90UB926QSQX/NOPB  
WQFN  
WQFN  
WQFN  
NKB  
NKB  
NKB  
60  
60  
60  
1000  
250  
356.0  
208.0  
356.0  
356.0  
191.0  
356.0  
35.0  
35.0  
35.0  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
NKB0060B  
VQFN - 0.8 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.1  
8.9  
A
B
PIN 1 INDEX AREA  
9.1  
8.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7  
6.3 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.1) TYP  
16  
30  
15  
31  
SYMM  
61  
2X 7  
1
0.3  
60X  
45  
0.2  
56X 0.5  
60  
46  
0.1  
C A B  
0.7  
0.5  
PIN 1 ID  
0.05  
60X  
4214995/A 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NKB0060B  
VQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
6.3)  
SYMM  
SEE SOLDER MASK  
DETAIL  
60X (0.8)  
60X (0.25)  
46  
60  
1
45  
56X (0.5)  
(1.1) TYP  
(1.2) TYP  
SYMM  
(R0.05) TYP  
(
0.2) TYP  
VIA  
61  
(0.6) TYP  
(8.6)  
15  
31  
30  
16  
(0.6) TYP  
(1.2) TYP  
(1.1) TYP  
(8.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214995/A 03/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NKB0060B  
VQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
25X ( 1)  
(1.2) TYP  
46  
60X (0.8)  
60X (0.25)  
60  
1
45  
56X (0.5)  
(R0.05) TYP  
(1.2) TYP  
(8.6)  
61  
SYMM  
15  
31  
16  
30  
SYMM  
(8.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 8X  
EXPOSED PAD 61  
63% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4214995/A 03/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY