DS90UB933TRTVTQ1 [TI]

适用于 1MP/60fps 和 2MP/30fps 摄像头的 12 位 100MHz FPD-Link III 串行器 | RTV | 32 | -40 to 105;
DS90UB933TRTVTQ1
型号: DS90UB933TRTVTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 1MP/60fps 和 2MP/30fps 摄像头的 12 位 100MHz FPD-Link III 串行器 | RTV | 32 | -40 to 105

光电二极管 电视
文件: 总55页 (文件大小:2500K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
DS90UB933-Q1 适用1MP/60fps 摄像10/12 位、100MHz FPD-Link III 串行器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准其中包括以  
下特性:  
– 器件温度等240°C +105°C 环境工作  
温度范围  
• 支37.5MHz 100MHz 输入像素时钟  
• 稳健的同轴电缆供(PoC) 运行  
• 可编程数据有效载荷:  
10 位有效载荷100MHz  
12 位有效载荷100MHz  
• 连续低延迟双向控制接口通道I2C 接口支  
400kHz 传输速率  
• 嵌入式时钟具DC 均衡编码用于支AC 耦合  
互连  
• 能够驱动长15m 的同轴或屏蔽双绞线(STP) 电  
4 个专用通用输入/(GPIO)  
• 串行器上提1.8V2.8V 3.3V 兼容并行输入  
1.8V 单电源  
DS90UB933-Q1 器件提供一个具有高速正向通道和双  
向控制通道的 FPD-Link III 接口用于实现单一同轴电  
缆或差分对上的数据传输。DS90UB933-Q1 器件的高  
速正向通道和双向控制通道数据路径上均包含差分信  
令。串行器/解串器对主要用于电子控制单元 (ECU) 中  
成像器与视频处理器的连接。该器件非常适用于驱动需  
要高达 12 位像素深度、2 个同步信号以及双向控制通  
道总线的视频数据。  
凭借德州仪器 (TI) 的嵌入式时钟技术可在单一差分  
对上进行透明的全双工通信从而运载不对称的双向控  
制通道信息。这个单个串行数据流通过消除并行数据与  
时钟路径间的偏差简化了印刷电路板 (PCB) 走线和  
电缆上的宽数据总线传输。这样通过限制数据路径的  
宽度大大节省了系统成本相应地减少了 PCB 层  
数、电缆宽度以及连接器尺寸和引脚数量。内DC 均  
衡编码/解码用于支AC 耦合互连。  
器件信息  
器件型号(1)  
封装尺寸标称值)  
封装  
• 符ISO 10605 IEC 61000-4-2 ESD 标准  
DS90UB933-Q1  
WQFN (32)  
5.00mm × 5.00mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
汽车  
环视系(SVS)  
前置摄像(FC)  
后视摄像(RVC)  
传感器融合  
驾驶员监视摄像(DMS)  
远距卫星雷达、ToF 和激光雷达传感器  
安全和监控  
机器视觉应用  
Parallel  
Data In  
Parallel  
Data Out  
FPD-Link III  
10 or 12  
10 or 12  
2
2
Image Signal  
Processor  
(ISP)  
DS90UB934-Q1  
HSYNC,  
VSYNC  
4
HD Image  
Sensor  
HSYNC,  
VSYNC  
4
DS90UB933-Q1  
or  
DS90UB964-Q1  
Bidirectional  
GPO  
2
Control Channel  
GPIO  
2
Bidirectional  
Control Bus  
Bidirectional  
Control Bus  
Serializer  
Deserializer  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNLS546  
 
 
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
Table of Contents  
7.1 Overview...................................................................17  
7.2 Functional Block Diagram.........................................17  
7.3 Feature Description...................................................17  
7.4 Device Functional Modes..........................................22  
7.5 Programming............................................................ 27  
7.6 Register Maps...........................................................31  
8 Application and Implementation..................................38  
8.1 Application Information............................................. 38  
8.2 Typical Applications.................................................. 40  
9 Power Supply Recommendations................................43  
10 Layout...........................................................................44  
10.1 Layout Guidelines................................................... 44  
10.2 Layout Example...................................................... 45  
11 Device and Documentation Support..........................47  
11.1 Documentation Support.......................................... 47  
11.2 Receiving Notification of Documentation Updates..47  
11.3 支持资源..................................................................47  
11.4 Trademarks............................................................. 47  
11.5 静电放电警告...........................................................47  
11.6 术语表..................................................................... 47  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
Pin Functions.................................................................... 4  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................7  
6.5 Electrical Characteristics.............................................7  
6.6 Recommended Serializer Timing For PCLK............. 10  
6.7 AC Timing Specifications (SCL, SDA) - I2C-  
Compatible.................................................................. 11  
6.8 Bidirectional Control Bus DC Timing  
Specifications (SCL, SDA) - I2C-Compatible.............. 11  
6.9 Serializer Switching Characteristics..........................12  
6.10 Timing Diagrams.....................................................14  
6.11 Typical Characteristics............................................ 16  
7 Detailed Description......................................................17  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (January 2020) to Revision E (November 2020)  
Page  
Added register 0x27[3] to register map.............................................................................................................31  
Clarified PDB voltage level for t3 and t4 in Power-Up Sequencing from 90% VPDB to PDB VIH ...................... 38  
Changed Power-Up Sequencing alternative programming steps (t3*) to add NCLK reset...............................38  
Clarified Power-Up Sequencing alternative programming steps (t3*) to remove delay between I2C  
commands ....................................................................................................................................................... 38  
Changes from Revision C (November 2019) to Revision D (January 2020)  
Page  
Clarified GPO2 description by removing statement about leaving pin open if unused ......................................4  
Added maximum power up timing constraint between VDD_n and PDB ........................................................ 38  
Added recommended software programming steps if VDD_n to PDB maximum power up timing constraint  
can not be met .................................................................................................................................................38  
Changes from Revision B (September 2018) to Revision C (November 2019)  
Page  
Added register 0x27[5] to register map ............................................................................................................31  
Changes from Revision A (December 2016) to Revision B (September 2018)  
Page  
Added recommendation to ensure GPO2 is low when PDB goes high..............................................................4  
Added external clock input frequency range ......................................................................................................6  
Added strap pin input current specification for MODE and IDX pins ................................................................. 7  
Updated TJIT1 PCLK input jitter in the external oscillator mode........................................................................10  
Added that 0.45UI TJIT2 maximum is when used with DS90UB934-Q1 and added new foot note ..................10  
Added clarification on MODE pin description in PCLK from imager mode ......................................................23  
Updated the MODE setting values to ratio from voltage...................................................................................23  
Updated IDX setting values to ratio from voltage............................................................................................. 29  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
2
Submit Document Feedback  
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
Added register "TYPE" column per legend ......................................................................................................31  
Added type and default value to the reserved register bits that were missing this information........................ 31  
Added that register 0x00[7:1] does not auto update IDX strapped address ....................................................31  
Added description for 0x05 bits 1 and 0 (TX_MODE_12b and TX_MODE_10b)............................................. 31  
Added reference to Power over Coax Application report..................................................................................38  
Clarified description on PDB pin usage during power up ................................................................................ 38  
Added paragraph to explain setting registers if GPO2 state is not determined when PDB goes high ............ 38  
Added GPO2 to suggested power-up sequencing diagram ............................................................................ 38  
timing constraint for PDB to GPO2 delay ........................................................................................................ 38  
Revised coax connection diagram to include pulldown resistor for GPO2 ...................................................... 40  
Revised STP connection diagram to include pulldown resistor for GPO2 .......................................................42  
Changes from Revision * (August 2016) to Revision A (December 2016)  
Page  
• 将“产品预发布”更改为“量产数据发布”。....................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
English Data Sheet: SNLS546  
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
24  
23  
22  
21  
20  
19  
18  
17  
VDDIO  
DIN[6]  
GPO[1]  
GPO[0]  
VDDCML  
DOUT+  
DOUT-  
VDDT  
DAP = GND  
DIN[7]  
VDDD  
DS90UB933-Q1  
Serializer  
DIN[8]  
DIN[9]  
VDDPLL  
DIN[10]  
DIN[11]  
PDB  
1
2
3
4
5
6
7
8
5-1. RTV Package 32-Pin WQFN Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
LVCMOS PARALLEL INTERFACE  
Parallel data Inputs. For 10-bit MODE, parallel inputs DIN[0:9] are active. DIN[10:11] are  
inactive and should not be used. Any unused inputs (including DIN[10:11]) must be No  
Connect. For 12-bit MODE, parallel inputs DIN[0:11] are active. Any unused inputs must be  
No Connect.  
19,20,21,22,  
23,24,26,27,  
29,30,31,32  
Inputs,  
LVCMOS  
w/ pulldown  
DIN[0:11]  
Input,  
LVCMOS  
Horizontal SYNC input. Note: HS transition restrictions: 1. 12-bit mode: No HS restrictions  
(raw) 2. 10-bit mode: HS restricted to no more than one transition per 10 PCLK cycles.  
HSYNC  
VSYNC  
PCLK  
1
2
3
w/ pulldown Leave open if unused.  
Input,  
LVCMOS  
Vertical SYNC input. Note: VS transition restrictions: 1. 12-bit mode: No VS restrictions (raw)  
2. 10-bit mode: VS restricted to no more than one transition per 10 PCLK cycles. Leave  
w/ pulldown open if unused.  
Input,  
LVCMOS  
Pixel clock input pin. Strobe edge set by TRFB control register 0x03[0].  
w/ pulldown  
GENERAL PURPOSE OUTPUT (GPO)  
General-purpose output pins can be configured as outputs, used to control and respond to  
various commands. GPO[1:0] can be configured to be the outputs for input signals coming  
from GPIO[1:0] pins on the deserializer or can be configured to be outputs of the local  
register on the serializer. Leave open if unused.  
Output,  
LVCMOS  
GPO[1:0]  
16,15  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
4
Submit Document Feedback  
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
GPO[2] pin can be configured to be the output for input signal coming from the GPIO[2] pin  
on the deserializer or can be configured to be the output of the local register on the  
Serializer. It can also be configured to be the output clock pin when the DS90UB933-Q1  
device is used in the external oscillator mode. See 7.4 for a detailed description of  
External Oscillator mode. It is recommended to pull GPO2 to GND with a minimum 40-kΩ  
resistor to ensure GPO2=LOW when PDB transitions from LOW to HIGH.  
GPO[2]/  
CLKOUT  
Output,  
LVCMOS  
17  
GPO[3] can be configured to be the output for input signals coming from the GPIO[3] pin on  
the deserializer or can be configured to be the output of the local register setting on the  
serializer. It can also be configured to be the input clock pin when the DS90UB933-Q1  
serializer is working with an external oscillator. See 7.4 for a detailed description of  
external oscillator mode. Leave open if unused.  
GPO[3]/  
CLKIN  
Input/Output,  
LVCMOS  
18  
BIDIRECTIONAL CONTROL BUS - I2C-COMPATIBLE  
Input/Output, Clock line for the bidirectional control bus communication  
Open Drain SCL requires an external pullup resistor to V(VDDIO)  
SCL  
SDA  
4
5
.
Input/Output, Data line for the bidirectional control bus communication  
Open Drain SDA requires an external pullup resistor to V(VDDIO)  
.
Device mode select  
Resistor (Rmode) to ground and 10-kpullup to 1.8 V rail. MODE pin on the serializer can  
be used to select whether the system is running off the PCLK from the imager or an external  
oscillator. See details in 7-2.  
MODE  
8
Input, analog  
Device ID Address Select  
The IDX pin on the serializer is used to assign the I2C device address. Resistor (RID) to  
IDX  
6
Input, analog  
Ground and 10-kpullup to 1.8 V rail. See 7-6.  
CONTROL AND CONFIGURATION  
Power-down mode input pin  
Input,  
LVCMOS  
PDB = H, Serializer is enabled and is ON.  
PDB = L, Serializer is in power down mode. When the serializer is in power down, the PLL is  
PDB  
9
w/ pulldown shut down, and IDD is minimized. Programmed control register data is NOT retained and  
reset to default values.  
Input,  
Reserved  
RES  
7
LVCMOS  
This pin MUST be tied LOW.  
w/ pulldown  
FPDLink III INTERFACE  
Input/Output, Non-inverting differential output, bidirectional control channel input. The interconnect must  
DOUT+  
13  
CML  
be AC coupled with a 0.1-µF capacitor.  
Inverting differential output, bidirectional control channel input. The interconnect must be AC  
coupled with a 0.1-µF capacitor. For applications using single-ended coaxial interconnect,  
place a 0.047-µF AC-coupling capacitor in series with a 50-Ωresistor before terminating to  
GND.  
Input/Output,  
CML  
DOUT-  
12  
POWER AND GROUND(1)  
Power,  
Analog  
VDDPLL  
VDDT  
10  
11  
PLL power, 1.8 V ±5%.  
Power,  
Analog  
Tx analog power, 1.8 V ±5%.  
Power,  
Analog  
VDDCML  
VDDD  
14  
28  
25  
CML and bidirectional channel driver power, 1.8 V ±5%.  
Power, Digital Digital Power, 1.8 V ±5%.  
Power for I/O stage. The single-ended inputs and SDA, SCL are powered from V(VDDIO)  
VDDIO can be connected to a 1.8 V ±5% or 2.8 V ±10% or 3.3 V ±10%.  
.
VDDIO  
Power, Digital  
Ground, DAP  
DAP must be grounded. DAP is the large metal contact at the bottom side, located at the  
center of the WQFN package. Connected to the ground plane (GND) with at least 9 vias.  
VSS  
DAP  
(1) See 8.1.2.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
English Data Sheet: SNLS546  
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
MAX  
UNIT  
V
2.5  
Supply voltage V(VDD_n) (V(VDDPLL), V(VDDT), V(VDDCML), V(VDDD)  
)
4
V
Supply voltage V(VDDIO)  
LVCMOS input voltage  
V(VDDIO) + 0.3  
V(VDD_n) + 0.3  
150  
V
V
FPD-Link III I/O voltage V(VDD_n)  
Junction temperature  
°C  
°C  
Storage temperature, Tstg  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under 6.3.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 3B  
±8000  
Charged device model (CDM), per AEC  
Q100-011  
CDM ESD Classification Level C6  
Corner pins (1, 8, 9, 16, 17, 24, 25, 32)  
±1000  
Other pins  
Air Discharge  
(DOUT+, DOUT-, RIN+, RIN-)  
±25000  
±7000  
Electrostatic  
discharge  
(IEC 61000-4-2)  
D R = 330 , Cs = 150 pF  
V(ESD)  
V
Contact Discharge  
(DOUT+, DOUT-, RIN+, RIN-)  
Air Discharge  
(DOUT+, DOUT-, RIN+, RIN-)  
±15000  
±8000  
(ISO10605)  
RD = 330 , Cs = 150/330 pF  
RD = 2 K, Cs = 150/330 pF  
Contact Discharge  
(DOUT+, DOUT-, RIN+, RIN-)  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.71  
1.71  
3
NOM  
1.8  
MAX  
UNIT  
Supply voltage, V(VDD_n)  
LVCMOS supply voltage  
1.89  
1.89  
3.6  
3.08  
25  
V
V
V(VDDIO)= 1.8 V  
V(VDDIO)= 3.3 V  
V(VDDIO)= 2.8 V  
V(VDD_n) = 1.8 V  
V(VDDIO) = 1.8 V  
V(VDDIO) = 3.3 V  
1.8  
3.3  
2.52  
2.8  
Supply noise(1)  
mVp-p  
25  
50  
Power-Over-Coax Supply  
Noise  
ƒ= 30 Hz - 1 KHz, trise > 100 µs  
Measured differentially between DOUT+ and DOUT–  
(coax mode only)  
35  
35  
mVp-p  
mVp-p  
ƒ= 1 KHz - 50 MHz  
Measured differentially between DOUT+ and DOUT-  
(coax mode only)  
Operating free air temperature, TA  
PCLK clock frequency - 10-bit mode  
PCLK clock frequency - 12-bit mode  
25  
105  
100  
100  
°C  
40  
50  
MHz  
MHz  
37.5  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
6
Submit Document Feedback  
 
 
 
 
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
MIN  
25  
NOM  
MAX  
UNIT  
MHz  
MHz  
External clock input frequency to GPO3 - 10-bit mode  
External clock input frequency to GPO3 - 12-bit mode  
50  
66.67  
25  
(1) Supply noise testing was done with minimum capacitors (as shown on 8-9, 8-5 on the PCB. A sinusoidal signal is AC coupled to  
the V(VDD_n) (1.8 V) supply with amplitude = 25 mVp-p measured at the device V(VDD_n) pins. Bit error rate testing of input to the  
serializer and output of the deserializer with 10-meter cable shows no error when the noise frequency on the serializer is less than 1  
MHz. The deserializer, on the other hand, shows no error when the noise frequency is less than 750 kHz.  
6.4 Thermal Information  
DS90UB933-Q1  
THERMAL METRIC(1)  
RTV (WQFN)  
32 PINS  
34.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJC(bot)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-case (bottom) thermal resistance  
Junction-to-board thermal resistance  
8.8  
3.4  
23.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.3  
ψJT  
8.8  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
6.5 Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LVCMOS DC SPECIFICATIONS 3.3 V I/O (SER INPUTS, GPIO, CONTROL INPUTS AND OUTPUTS)  
VIH  
VIL  
High level input voltage VIN = 3 V to 3.6 V  
2
GND  
20  
2.4  
VIN  
0.8  
V
V
Low level input voltage  
Input current  
VIN = 3 V to 3.6 V  
IIN  
VIN = 0 V or 3.6 V, VIN = 3 V to 3.6 V  
V(VDDIO) = 3 V to 3.6 V, IOH = 4 mA  
±1  
20  
µA  
V
VOH  
VOL  
High level output voltage  
V(VDDIO)  
0.4  
Low level output voltage V(VDDIO) = 3 V to 3.6 V, IOL = 4 mA  
GND  
V
Output short-circuit  
current  
Serializer  
GPO outputs  
IOS  
VOUT = 0 V  
mA  
15  
PDB = 0 V,  
VOUT = 0 V or V(VDDIO)  
Serializer  
GPO outputs  
IOZ  
Tri-state output current  
Pin capacitance  
20  
µA  
pF  
20  
CGPO  
GPO [3:0]  
1.5  
LVCMOS DC SPECIFICATIONS 1.8 V I/O (SER INPUTS, GPIO, CONTROL INPUTS AND OUTPUTS)  
VIH  
VIL  
IIN  
High level input voltage VIN = 1.71 V to 1.89 V  
0.65 VIN  
GND  
VIN  
0.35 VIN  
20  
V
Low level input voltage  
Input current  
VIN = 1.71 V to 1.89 V  
VIN = 0 V or 1.89 V, VIN = 1.71 V to 1.89 V  
±1  
µA  
V
20  
V(VDDIO)  
VOH  
VOL  
IOS  
High level output voltage  
V(VDDIO)  
0.45  
V(VDDIO) = 1.71 V to 1.89 V, IOH = 4 mA  
0.45  
Low level output voltage V(VDDIO) = 1.71 V to 1.89 V IOL = 4 mA  
GND  
V
Output short-circuit  
current  
Serializer  
GPO outputs  
VOUT = 0 V  
mA  
11  
PDB = 0 V,  
VOUT = 0 V or V(VDDIO)  
Serializer  
GPO outputs  
IOZ  
Tri-state output current  
Pin capacitance  
20  
1
µA  
20  
1  
CGPO  
GPO [3:0]  
1.5  
pF  
µA  
IIN_STRAP Strap pin input current  
VIN = 0 V to VDD_n  
MODE, IDX  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
English Data Sheet: SNLS546  
 
 
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
MAX UNIT  
Over recommended operating supply and temperature ranges unless otherwise specified.(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
LVCMOS DC SPECIFICATIONS 2.8 V I/O (SER INPUTS, GPIO, CONTROL INPUTS AND OUTPUTS)  
VIH  
VIL  
High level input voltage VIN = 2.52 V to 3.08 V  
0.7 VIN  
GND  
VIN  
0.3 VIN  
20  
V
Low level input voltage  
Input current  
VIN = 2.52 V to 3.08 V  
IIN  
VIN = 0 V or 3.08 V, VIN = 2.52 V to 3.08 V  
V(VDDIO) = 2.52 V to 3.08 V, IOH = 4 mA  
±1  
µA  
V
20  
VOH  
VOL  
High level output voltage  
V(VDDIO) - 0.4  
GND  
V(VDDIO)  
0.4  
Low level output voltage V(VDDIO) =2.52 V to 3.08V IOL = 4 mA  
V
Output short-circuit  
current  
Serializer  
GPO outputs  
IOS  
VOUT = 0 V  
mA  
11  
PDB = 0 V,  
VOUT = 0 V or V(VDDIO)  
Serializer  
GPO outputs  
IOZ  
Tri-state output current  
Pin capacitance  
20  
µA  
pF  
20  
CGPO  
GPO [3:0]  
1.5  
CML DRIVER DC SPECIFICATIONS (DOUT+, DOUT)  
Differential output  
voltage  
VOD  
640  
320  
824  
412  
50  
RL = 100 (6-6)  
RL = 50 (6-6)  
RL = 100 Ω  
mV  
mV  
Single-ended output  
voltage  
VOUT  
ΔVOD  
VOS  
Differential output  
voltage unbalance  
1
V(VDD_n)  
(VOD /2)  
Output offset voltage  
V
RL = 100 (6-6)  
RL = 100 Ω  
Offset voltage unbalance  
1
50  
mV  
mA  
ΔVOS  
Output short-circuit  
current  
IOS  
DOUT+ = 0 V or DOUT= 0 V  
Differential across DOUT+ and DOUT–  
DOUT+ or DOUT–  
26  
Differential internal  
termination resistance  
80  
40  
100  
50  
120  
60  
RT  
Single-ended  
termination resistance  
Back channel differential  
input voltage  
VID-BC  
VIN-BC  
260  
130  
mV  
mV  
Back Channel Frequency = 5.5 MHz(4)  
Back channel single-  
ended input voltage  
SERIALIZER SUPPLY CURRENT  
V(VDD_n) = 1.89 V  
V(VDDIO) = 3.6 V  
ƒ= 100 MHz, 12-bit  
mode  
76  
61  
80  
64  
95  
80  
mA  
mA  
Serializer (Tx)  
V(VDD_n) supply current  
(includes load current)  
RL = 100 Ω  
Default registers  
IDDT  
WORST CASE pattern  
(6-2)  
V(VDD_n) = 1.89 V  
V(VDDIO) = 3.6 V  
ƒ= 75 MHz, 12-bit  
mode  
Default registers  
V(VDD_n) = 1.89 V  
V(VDDIO) = 3.6 V  
ƒ= 100 MHz, 12-bit  
mode  
Serializer (Tx)  
V(VDD_n) supply current  
(includes load current)  
RL = 100 Ω  
RANDOM PRBS-7  
pattern  
Default Registers  
IDDT  
mA  
V(VDD_n) = 1.89 V  
V(VDDIO) = 3.6 V  
ƒ= 75 MHz, 12-bit  
mode  
Default Registers  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
8
Submit Document Feedback  
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
Over recommended operating supply and temperature ranges unless otherwise specified.(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
V(VDDIO) = 1.89 V  
ƒ= 75 MHz, 12-bit  
mode  
Default Registers  
1.5  
3
Serializer (Tx)  
V(VDDIO) supply current  
(includes load current)  
RL = 100 Ω  
WORST CASE pattern  
(6-2)  
I(VDDIO)T  
mA  
V(VDDIO) = 3.6 V  
ƒ= 75 MHz, 12-bit  
mode  
5
8
Default registers  
V(VDDIO)=1.89 V  
Default registers  
300  
300  
15  
1000  
1000  
100  
µA  
µA  
µA  
µA  
Serializer (Tx) supply  
current power down  
PDB = 0 V; All other  
LVCMOS inputs = 0 V  
IDDTZ  
V(VDDIO) = 3.6 V  
Default registers  
V(VDDIO) = 1.89 V  
Default registers  
Serializer (Tx) V(VDDIO)  
I(VDDIO)TZ supply current power  
down  
PDB = 0 V; All other  
LVCMOS inputs = 0 V  
V(VDDIO) = 3.6 V  
Default registers  
15  
100  
(1) The Electrical Characteristics tables list verified specifications under the listed 6.3 except as otherwise modified or specified by the  
Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not verified.  
(2) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD which are differential voltages.  
(3) Typical values represent most likely parametric norms at 1.8 V or 3.3 V, TA = 25°C, and at the 6.3 at the time of product  
characterization and are not verified.  
(4) The back channel frequency (MHz) listed is the frequency of the internal clock used to generate the encoded back channel data  
stream. The data rate (Mbps) of the encoded back channel stream is the back channel frequency divided by 2.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
English Data Sheet: SNLS546  
 
 
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
6.6 Recommended Serializer Timing For PCLK  
Over recommended operating supply and temperature ranges unless otherwise specified.(1) (2)  
PARAMETER  
TEST CONDITIONS  
PIN / FREQ  
MIN  
NOM  
MAX  
UNIT  
10-bit mode  
50 MHz 100 MHz  
7.52  
T
20  
26.67  
0.6T  
0.6T  
0.3T  
0.3T  
ns  
tTCP  
Transmit clock period  
12-bit mode  
37.5 MHz - 100 MHz  
10  
0.4T  
T
0.5T  
ns  
Transmit clock  
input high time  
tTCIH  
tTCIL  
Transmit clock  
input low time  
0.4T  
0.5T  
10-bit mode  
50 MHz 100 MHz  
0.05T  
0.05T  
0.25T  
0.25T  
PCLK input transition time  
(6-7)  
tCLKT  
12-bit mode  
37.5 MHz 100 MHz  
LPF = ƒ/20, CDR PLL Loop BW = ƒPCLK = 37.5  
PCLK input jitter (3)  
(PCLK from imager mode)  
tJIT0  
tJIT1  
tJIT2  
0.45  
UI  
ƒ/15, BER = 1E-10  
100  
MHz(5)  
ƒPCLK = 37.5  
100  
PCLK input jitter(3)  
(External oscillator mode)  
LPF = ƒ/20, CDR PLL Loop BW =  
ƒ/15, BER = 1E-10  
1T  
MHz(5)  
LPF = ƒ/20, CDR PLL Loop BW = ƒOSC = 25 –  
External oscillator jitter(3) (4)  
66.67 MHz(6)  
0.45  
55%  
UI  
ƒ/15, BER = 1E-10, paired with  
DS90UB934-Q1 deserializer  
External Oscillator  
Frequency Stability  
ƒOSC = 25 –  
±50  
ppm  
ΔOSC  
66.67 MHz(6)  
CLKOUT duty cycle  
(external oscillator mode)  
ƒOSC = 25 –  
tDC  
45%  
50%  
66.67 MHz(6)  
(1) Recommended input timing requirements are input specifications and not tested in production.  
(2) T is the period of the PCLK.  
(3) Typical values represent most likely parametric norms at 1.8 V or 3.3 V, TA = 25°C, and at 6.3 at the time of product characterization  
and are not verified.  
(4) 0.45UI maximum when used with DS90UB934-Q1 deserializer. When used with DS90UB914A-Q1 deserializer, the maximum is 0.3UI.  
(5) ƒPCLK denotes input PCLK frequency to the device.  
(6) ƒOSC denotes input external oscillator frequency to the device (GPO3/CLKIN).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
10  
Submit Document Feedback  
 
 
 
 
 
 
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
6.7 AC Timing Specifications (SCL, SDA) - I2C-Compatible  
Over recommended supply and temperature ranges unless otherwise specified. (6-1)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
RECOMMENDED INPUT TIMING REQUIREMENTS  
Standard mode  
100  
400  
kHz  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
SCL Clock Frequency  
SCL Low Period  
ƒSCL  
Fast mode  
Standard mode  
Fast mode  
4.7  
1.3  
4.0  
0.6  
4.0  
0.6  
4.7  
0.6  
0
tLOW  
tHIGH  
tHD:STA  
tSU:STA  
tHD:DAT  
tSU:DAT  
tSU:STO  
tBUF  
Standard mode  
Fast mode  
SCL high period  
Standard mode  
Fast mode  
Hold time for a start or a repeated start  
condition  
Standard mode  
Fast mode  
Setup time for a start or a repeated start  
condition  
Standard mode  
Fast mode  
3.45  
900  
Data hold time  
0
Standard mode  
Fast mode  
250  
100  
4.0  
0.6  
4.7  
1.3  
Data setup time  
Standard mode  
Fast mode  
Setup time for stop condition  
Bus free time between stop and start  
SCL and SDA rise time  
SCL and SDA fall time  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
1000  
300  
300  
300  
tr  
Standard mode  
Fast mode  
tf  
6.8 Bidirectional Control Bus DC Timing Specifications (SCL, SDA) - I2C-Compatible  
Over recommended supply and temperature ranges unless otherwise specified(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
RECOMMENDED INPUT TIMING REQUIREMENTS  
VIH  
VIL  
Input high level  
Input low level  
Input hysteresis  
SDA and SCL  
0.7 × V(VDDIO)  
GND  
V(VDDIO)  
V
V
SDA and SCL  
0.3 ×  
V(VDDIO)  
VHY  
> 50  
mV  
SDA, V(VDDIO) = 1.8 V, IOL= 0.9 mA  
SDA, V(VDDIO) = 3.3 V, IOL= 1.6 mA  
SDA or SCL, VIN= V(VDDIO) OR GND  
0
0
0.36  
0.4  
10  
VOL  
Output low level(2)  
V
IIN  
tR  
Input current  
µA  
ns  
ns  
pF  
10  
SDA rise time-READ  
SDA fall time-READ  
430  
20  
SDA, RPU = 10 k, Cb 400 pF (图  
6-1)  
tF  
CIN  
SDA or SCL  
<5  
(1) Specification is verified by design.  
(2) FPD-Link device was designed primarily for point-to-point operation and a small number of attached slave devices. As such the  
minimum IOL pullup current is targeted to lower value than the minimum IOL in the I2C specification.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
English Data Sheet: SNLS546  
 
 
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
MAX UNIT  
6.9 Serializer Switching Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
CML low-to-high  
transition time  
tLHT  
tHLT  
tDIS  
tDIH  
tPLD  
150  
330  
330  
ps  
ps  
ns  
ns  
ms  
RL = 100 (6-3)  
RL = 100 (6-3)  
CML high-to-low  
transition time  
150  
Data input  
Setup to PCLK  
2
2
Serializer data inputs (6-8)  
RL = 100 (6-9)  
Data input  
Hold from PCLK  
Serializer PLL lock  
time(1) (2)  
1
38T  
13T  
2
44T  
15T  
RT = 100 , 10bit mode  
Register 0x03h b[0] (TRFB = 1) (6-10)  
32.5T  
tSD  
Serializer delay(2)  
RT = 100 , 12bit mode  
Register 0x03h b[0] (TRFB = 1) (6-10)  
11.75T  
Serializer output  
PRBS-7 test pattern, CDR PLL Loop  
BW = ƒ/15, BER = 1E-10  
tJIND  
tJINR  
tJINT  
deterministic jitter (3)  
DOUT±  
0.17  
0.016  
0.4  
UI  
UI  
UI  
(4) (5)  
PRBS-7 test pattern, CDR PLL Loop  
BW = ƒ/15, BER = 1E-10  
Serializer output  
DOUT±  
DOUT±  
random jitter (3) (4) (5)  
Peak-to-peak  
PRBS-7 test pattern, CDR PLL Loop  
BW = ƒ/15, BER = 1E-10  
serializer output total  
jitter(3) (5) (6)  
10bit mode  
PCLK = 100 MHz, Default registers  
2.2  
2.2  
Serializer jitter  
transfer function  
3 dB bandwidth  
λSTXB  
MHz  
W
12bit mode  
PCLK = 100 MHz, Default registers  
10bit mode  
PCLK = 100 MHz, Default registers  
1.06  
1.09  
Serializer jitter  
Transfer Function  
(peaking)  
dB  
δSTX  
12bit mode  
PCLK = 100 MHz, Default registers  
Serializer jitter  
transfer function  
(peaking frequency)  
10bit mode  
PCLK = 100 MHz, Default registers  
400  
kHz  
δSTXf  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
12  
Submit Document Feedback  
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
12bit mode  
PCLK = 100 MHz, Default registers  
500  
(1) tPLD is the time required by the serializer to obtain lock when exiting power-down state with an active PCLK.  
(2) Specification is verified by design.  
(3) Typical values represent most likely parametric norms at 1.8 V or 3.3 V, TA = 25°C, and at 6.3 at the time of product characterization  
and are not verified.  
(4) Specification is verified by characterization and is not tested in production.  
(5) UI Unit Interval is equivalent to one ideal serialized data bit width. The UI scales with PCLK frequency.  
10-bit mode: 1 UI = 1 / ( PCLK_Freq. /2 × 28 )  
12-bit mode: 1 UI = 1 / ( PCLK_Freq. × 2/3 × 28 )  
(6) Serializer output peak-to-peak total jitter includes deterministic jitter, random jitter, and jitter transfer from serializer input.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
English Data Sheet: SNLS546  
 
 
 
 
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
6.10 Timing Diagrams  
SDA  
t
BUF  
t
t
f
t
HD;STA  
t
LOW  
r
t
f
t
r
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
6-1. Bidirectional Control Bus Timing  
Signal Pattern  
Device Pin Name  
80%  
80%  
T
Vdiff  
Vdiff = 0 V  
PCLK  
(RFB = H)  
20%  
20%  
tLHT  
tHLT  
D
/R  
IN OUT  
Vdiff = (DOUT+) - (DOUT-)  
6-3. Serializer CML Output Load and Transition  
6-2. Worst CaseTest Pattern for Power  
Times  
Consumption  
100 nF  
D
+
OUT  
50 W  
SCOPE  
BW 8 4.0 GHz  
Z
= 100 W  
100 W  
Diff  
50 W  
D
OUT  
-
100 nF  
Copyright © 2016, Texas Instruments Incorporated  
6-4. Measurement Setup Serializer CML Output Load and Transition Times  
10/12,  
HS,VS  
D
D
+
-
OUT  
R
L
D
IN  
OUT  
PCLK  
Copyright © 2016, Texas Instruments Incorporated  
6-5. Serializer VOD Setup  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
14  
Submit Document Feedback  
 
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
Single-Ended  
V
ö
OS  
V
V
OUT  
OUT  
D
+ or D  
OUT  
-
OUT  
Differential  
V
OD  
0V  
(D  
+) - (D  
OUT  
-)  
OUT  
6-6. Serializer VOD Diagram  
V
DD  
t
TCP  
80%  
80%  
PCLK  
20%  
20%  
PCLK  
V
DDIO  
/2  
V
/2  
V
V
/2  
DDIO  
DDIO  
0V  
t
t
t
t
DIH  
CLKT  
CLKT  
DIS  
DDIO  
6-7. Serializer Input Clock Transition Times  
DINn  
Setup  
Hold  
V
/2  
DDIO  
V
/2  
DDIO  
0V  
6-8. Serializer Setup/Hold Times  
VDDIO/2  
PDB  
PCLK  
t
PLD  
Output Active  
TRI-STATE  
TRI-STATE  
D
OUT  
6-9. Serializer PLL Lock Time  
SYMBOL N  
SYMBOL N+1  
SYMBOL N+2  
SYMBOL N+3  
D
IN  
t
SD  
VDDIO/2  
PCLK  
SYMBOL N-4  
SYMBOL N-3  
SYMBOL N-2  
SYMBOL N-1  
SYMBOL N  
0V  
DOUT+-  
6-10. Serializer Delay  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
English Data Sheet: SNLS546  
 
 
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
6.11 Typical Characteristics  
4
2
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
- 2  
- 4  
- 6  
- 8  
-10  
-12  
-14  
-16  
-18  
1.0E+05  
1.0E+06  
1.0E+07  
1.0E+04  
0.1  
1
Jitter Frequency (MHz)  
10  
MODULATION FREQUENCY (Hz)  
6-11. Typical Serializer Jitter Transfer Function  
6-12. Typical System Input Jitter Tolerance  
Curve - DS90UB933 Linked to DS90UB934  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
16  
Submit Document Feedback  
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DS90UB933-Q1 is optimized to interface with the DS90UB934-Q1 or DS90UB964-Q1 using a 50-Ω coax  
interface. The DS90UB933-Q1 also works with the DS90UB934-Q1 or DS90UB964-Q1 using an STP interface.  
The DS90UB933/934 FPD-Link III chipsets are intended to link mega-pixel camera imagers and video  
processors in ECUs. The Serializer/Deserializer chipset can operate from 37.5 MHz to 100 MHz pixel clock  
frequency. The DS90UB933-Q1 device transforms a 10/12-bit wide parallel LVCMOS data bus along with a  
bidirectional control channel control bus into a single high-speed differential pair. The high-speed serial bit  
stream contains an embedded clock and DC-balanced information which enhances signal quality to support AC  
coupling. The DS90UB934-Q1 device receives the single serial data stream and converts it back into a 10/12-bit  
wide parallel data bus together with the control channel data bus. The DS90UB933/934 chipsets can accept up  
to:  
12-bits of DATA + 2 SYNC bits for an input PCLK range of 37.5 MHz to 100 MHz in the 12-bit mode. Note: No  
HS/VS restrictions (raw).  
10-bits of DATA + 2 SYNC bits for an input PCLK range of 50 MHz to 100 MHz in the 10-bit mode. Note:  
HS/VS restricted to no more than one transition per 10 PCLK cycles.  
The DS90UB933/934 chipset offer customers the choice to work with different clocking schemes. The  
DS90UB933/934 chipsets can use an external oscillator as the reference clock source for the PLL (see 7.4.1)  
or PCLK from the imager as primary reference clock to the PLL (see 7.4.2).  
7.2 Functional Block Diagram  
10 or  
12  
DIN  
R
T
R
T
DOUT+  
DOUT-  
HSYNC  
VSYNC  
4
GPO[3:0]  
Clock  
Gen  
PCLK  
PLL  
PDB  
Timing and  
Control  
SDA  
SCL  
ID[x]  
MODE  
DS90UB933-Q1 - SERIALIZER  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Serial Frame Format  
The high-speed forward channel is composed of 28 bits of data containing video data, sync signals, I2C, and  
parity bits. This data payload is optimized for signal transmission over an AC-coupled link. Data is randomized,  
balanced and scrambled. The 28-bit frame structure changes in the 12-bit mode and 10-bit mode internally and  
is seamless to the customer. The bidirectional control channel data is transferred over the single serial link along  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
English Data Sheet: SNLS546  
 
 
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
with the high-speed forward data. This architecture provides a full-duplex low-speed forward and backward path  
across the serial link together with a high-speed forward channel without the dependence on the video blanking  
phase.  
7.3.2 Line Rate Calculations for the DS90UB933/934  
The DS90UB933-Q1 device divides the clock internally by divide-by-2 in the 10-bit mode and by divide-by-1.5 in  
the 12-bit mode. Conversely, the DS90UB934-Q1 multiplies the recovered serial clock to generate the proper  
pixel clock output frequency. The following are the formulae used to calculate the maximum line rate in the  
different modes:  
For the 12-bit mode, Line rate = ƒPCLK × (2/3) × 28; for example, ƒPCLK = 100 MHz, line rate = (100 MHz) ×  
(2/3) × 28 = 1.87 Gbps  
For the 10-bit mode, Line rate = ƒPCLK/2 × 28; for example, ƒPCLK = 100 MHz, line rate = (100 MHz/2) × 28 =  
1.40 Gbps  
7.3.3 Error Detection  
The chipset provides error detection operations for validating data integrity in long distance transmission and  
reception. The data error detection function offers users flexibility and usability of performing bit-by-bit data  
transmission error checking. The error detection operating modes support data validation of the following  
signals:  
Bidirectional control channel data across the serial link  
Parallel video/sync data across the serial link  
The chipset provides 1 parity bit on the forward channel and 4 cyclic redundancy check (CRC) bits on the back  
channel for error detection purposes. The DS90UB933/934 chipset checks the forward and back channel serial  
links for errors and stores the number of detected errors in two 8-bit registers in the serializer and the  
deserializer, respectively.  
To check parity errors on the forward channel, monitor registers 0x55 and 0x56 on the DS90UB934. The parity  
error counter registers return the number of data parity errors that have been detected on the FPD3 receiver  
data since the last detection of valid lock or last read of these registers (0x55 and 0x56). These registers are  
cleared on read.  
To check CRC errors on the back channel, monitor registers 0x0A and 0x0B on the serializer.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
18  
Submit Document Feedback  
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.3.4 Synchronizing Multiple Cameras  
For applications requiring multiple cameras for frame-synchronization, TI recommends using the general  
purpose input/output (GPIO) pins to transmit control signals to synchronize multiple cameras together. To  
synchronize the cameras properly, the system controller must provide a field sync output (such as a vertical or  
frame sync signal), and the cameras must be set to accept an auxiliary sync input. The vertical synchronize  
signal corresponds to the start and end of a frame and the start and end of a field. Note this form of  
synchronization timing relationship has a non-deterministic latency. After the control data is reconstructed from  
the bidirectional control channel, there is a time variation of the GPIO signals arriving at the different target  
devices (between the parallel links). The maximum latency (t1) of the GPIO data transmitted across the link is 32  
µs.  
备注  
The user must verify that the timing variations between the different links are within their system and  
timing specifications.  
See 7-1 for an example of this function.  
The maximum time (t2) between the time the GPIO signal arrives at Camera A and Camera B is 23 µs.  
Serializer A  
Camera A  
Deserializer A  
CMOS  
Image  
Sensor  
DATA  
PCLK  
DATA  
PCLK  
FSYNC  
FSYNC  
I2C  
I2C  
ECU  
Module  
Camera B  
Serializer B  
Deserializer B  
CMOS  
Image  
Sensor  
DATA  
PCLK  
DATA  
PCLK  
FSYNC  
FSYNC  
I2C  
I2C  
mC  
Copyright © 2016, Texas Instruments Incorporated  
7-1. Synchronizing Multiple Cameras  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
English Data Sheet: SNLS546  
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
DES A  
GPIO[n] Input  
DES B  
GPIO[n] Input  
SER A  
GPIO[n] Output  
SER B  
GPIO[n] Output  
t2  
t1  
7-2. GPIO Delta Latency  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
20  
Submit Document Feedback  
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.3.5 General Purpose I/O (GPIO) Descriptions  
There are 4 GPOs on the serializer and 4 GPIOs on the deserializer when the DS90UB933/934 chipsets are run  
off the pixel clock from the imager as the reference clock source. The GPOs on the serializer can be configured  
as outputs for the input signals that are fed into the deserializer GPIOs. In addition, the GPOs on the serializer  
can behave as outputs of the local register on the serializer. The GPIOs on the deserializer can be configured to  
be the input signals feeding the GPOs (configured as outputs) on the serializer. In addition the GPIOs on the  
deserializer can be configured to behave as outputs of the local register on the deserializer. The DS90UB933-Q1  
serializer GPOs cannot be configured as inputs for remote communication with deserializer. If the  
DS90UB933/934 chipsets are run off the external oscillator source as the reference clock, then GPO3 on the  
serializer is automatically configured to be the input for the external clock and GPO2 is configured to be the  
output of the divide-by-2 clock which is fed into the imager as its reference clock. In this case, the GPIO2 and  
GPIO3 on the deserializer can only behave as outputs of the local register on the deserializer. The GPIO  
maximum switching rate is up to 66 kHz when configured for communication between deserializer GPIO to  
serializer GPO.  
7.3.6 LVCMOS V(VDDIO) Option  
1.8 V/2.8 V/3.3 V Serializer inputs are user configurable to provide compatibility with 1.8 V, 2.8 V, and 3.3 V  
system interfaces.  
7.3.7 Pixel Clock Edge Select (TRFB / RRFB)  
The TRFB/RRFB selects which edge of the pixel clock is used. For the SER, this register determines the edge  
that the data is latched on. If TRFB register is 1, data is latched on the rising edge of the PCLK. If TRFB register  
is 0, data is latched on the falling edge of the PCLK. For the DES, this register determines the edge that the data  
is strobed on. If RRFB register is 1, data is strobed on the rising edge of the PCLK. If RRFB register is 0, data is  
strobed on the falling edge of the PCLK.  
PCLK  
DIN/  
ROUT  
TRFB/RRFB: 0  
TRFB/RRFB: 1  
7-3. Programmable PCLK Strobe Select  
7.3.8 Power Down  
The SER has a PDB input pin to ENABLE or power down the device. Enabling PDB on the SER disables the link  
to save power. If PDB = HIGH, the SER operates at its internal default oscillator frequency when the input PCLK  
stops. When the PCLK starts again, the SER locks to the valid input PCLK and transmit the data to the DES.  
When PDB = LOW, the high-speed driver outputs are static HIGH. See 8.1.2 for power-up requirements.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
English Data Sheet: SNLS546  
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 DS90UB933/934 Operation With External Oscillator as Reference Clock  
In some applications, the pixel clock that comes from the imager can have jitter which exceeds the tolerance of  
the DS90UB933/934/964 chipsets. In this case, operate the DS90UB933-Q1 device by using an external clock  
source as the reference clock for the DS90UB933/934/964 chipsets. This is the recommended operating mode.  
The external oscillator clock output goes through a divide-by-2 circuit in the DS90UB933-Q1 serializer, and this  
divided clock output is used as the reference clock for the imager. The output data and pixel clock from the  
imager are then fed into the DS90UB933-Q1 device. 7-4 shows the operation of the DS90UB33/934 chipsets  
while using an external automotive grade oscillator.  
Serializer  
Deserializer  
FPD Link III-  
High Speed  
Camera Data  
Camera Data  
DOUT+  
RIN+  
10 or 12  
10 or 12  
ROUT[11:0]  
or  
ROUT[9:0]  
HSYNC,  
VSYNC  
DIN[11:0] or  
DATA  
Image  
Sensor  
DATA  
DIN[9:0]  
HSYNC,  
VSYNC  
HSYNC  
HSYNC  
DOUT-  
RIN-  
VSYNC  
VSYNC  
Bi-Directional  
Control Channel  
PCLK  
PCLK  
ECU Module  
Pixel Clock  
Pixel Clock  
SDA  
SCL  
SDA  
SCL  
2
4
PLL  
GPIO[3:0]  
GPO[1:0]  
GPO[3:0]  
Microcontroller  
GPO[1:0]  
SDA  
SCL  
SDA  
SCL  
Camera Unit  
GPO3  
Reference Clock  
(Ext. OSC/2)  
÷2  
GPO2  
External  
Oscillator  
Copyright © 2016, Texas Instruments Incorporated  
7-4. DS90UB933-Q1/934-Q1 Operation in the External Oscillator Mode  
When the DS90UB933-Q1 device is operated using an external oscillator, the GPO3 pin on the DS90UB933-Q1  
is the input pin for the external oscillator. In applications where the DS90UB933-Q1 device is operated from an  
external oscillator, the divide-by-2 circuit in the DS90UB933-Q1 device feeds back the divided clock output to the  
imager device through GPO2 pin. The pixel clock to external oscillator ratios must be fixed for the 12bit mode  
and the 10bit mode. In the 10-bit mode, the pixel clock frequency divided by the external oscillator frequency  
must be 2. In the 12-bit mode, the pixel clock frequency divided by the external oscillator frequency must be 1.5.  
For example, if the external oscillator frequency is 48 MHz in the 10-bit mode, the pixel clock frequency of the  
imager must be twice of the external oscillator frequency, that is, 96 MHz. If the external oscillator frequency is  
48 MHz in the 12-bit mode, the pixel clock frequency of the imager must be 1.5 times of the external oscillator  
frequency, that is, 72 MHz. For the range of PCLK frequency and the external clock input frequency to GPO3 in  
10-bit and 12-bit modes, see 6.3.  
When PCLK signal edge is detected, and 0x03[1] = 0, the DS90UB933-Q1 switches from internal oscillator  
mode to an external PCLK. Upon removal of PCLK input, the device switches back into internal oscillator mode.  
In external oscillator mode, GPO2 and GPO3 on the serializer cannot act as the output of the input signal  
coming from GPIO2 or GPIO3 on the deserializer.  
7-1. Device Functional Mode With Example XCLKIN = 48 MHz  
GPIO2 XCLKOUT =  
XCLKIN / 2  
INPUT PCLK FREQUENCY =  
XLCKIN * RATIO  
MODE  
GPIO3 XCLKIN  
RATIO  
10-bit  
48 MHz  
24 MHz  
2
96 MHz  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
22  
Submit Document Feedback  
 
 
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
MODE  
7-1. Device Functional Mode With Example XCLKIN = 48 MHz (continued)  
GPIO2 XCLKOUT =  
XCLKIN / 2  
INPUT PCLK FREQUENCY =  
XLCKIN * RATIO  
GPIO3 XCLKIN  
RATIO  
12-bit  
48 MHz  
24 MHz  
1.5  
72 MHz  
7.4.2 DS90UB933/934 Operation With Pixel Clock From Imager as Reference Clock  
The DS90UB933/934/964 chipsets can be operated by using the pixel clock from the imager as the reference  
clock. 7-5 shows the operation of the DS90UB933/934/964 chipsets using the pixel clock from the imager. If  
the DS90UB933-Q1 device is operated using the pixel clock from the imager as the reference clock, then the  
imager uses an external oscillator as its reference clock. There are 4 GPIOs available in this mode (PCLK from  
imager mode).  
Serializer  
Deserializer  
Camera Data  
Camera Data  
FPD-Link III  
DOUT+  
DOUT-  
10 or 12  
RIN0+  
RIN0-  
10 or 12  
ROUT[11:0]  
or  
ROUT[9:0]  
FV, LV  
Image  
Sensor  
DIN[11:0] or  
DIN[9:0]  
FV,LV  
YUV  
YUV  
HSYNC  
HSYNC  
VSYNC  
SDA  
VSYNC  
Bi-Directional  
Back Channel  
SDA  
SCL  
PCLK  
ECU Module  
Pixel Clock  
SCL  
RIN1+  
RIN1-  
4
4
GPO[3:0]  
PCLK  
GPIO[3:0]  
GPO  
GPIO  
Microcontroller  
PLL  
SDA  
SCL  
Pixel Clock  
SDA  
SCL  
Camera Unit  
Ext.  
Oscillator  
Copyright © 2016, Texas Instruments Incorporated  
7-5. DS90UB933-Q1/934-Q1 Operation in PCLK mode  
7.4.3 MODE Pin on Serializer  
The MODE pin on the serializer can be configured to select if the DS90UB933-Q1 device is to be operated from  
the external oscillator or the PCLK from the imager. The pin must be pulled to VDD_n(1.8 V, not VDDIO) with a  
resistor R1 and a pulldown resistor R2 for external oscillator mode to create the ratio shown in 7-6. If the  
device is to be operated from PCLK from imager mode, MODE pin can be pulled up to VDD_n (1.8V) with a 10-kΩ  
resistor directly or use the ratio shown in 7-6 and 7-2. Suggested resistor values are given in 7-2. The  
recommended maximum resistor tolerance is 1%. Other resistor values can be used as long as the ratio is met  
under all conditions.  
1.8 V  
R
R
1
MODE  
V
MODE  
2
Serializer  
7-6. MODE Pin Configuration on DS90UB933-Q1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
English Data Sheet: SNLS546  
 
 
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7-2. DS90UB933-Q1 Serializer  
MODE Setting  
DS90UB933-Q1 SERIALIZER MODE SETTING  
SUGGESTED R1  
RESISTOR VALUE (kΩ)  
SUGGESTED R2 RESISTOR  
MINIMUM RATIO  
MAXIMUM RATIO  
(VMODE/V(VDD_n))  
MODE SELECT  
(VMODE/V(VDD_n)  
)
VALUE (kΩ)  
PCLK from imager  
mode  
0.750  
1.000  
10  
50  
External oscillator  
mode  
0.292  
0.339  
10  
4.7  
7.4.4 Internal Oscillator  
When a PCLK is not applied to the DS90UB933-Q1, the serializer establishes the FPD-III link using an internal  
oscillator. During normal operation (not BIST) the frequency of the internal oscillator can be adjusted from  
DS90UB933-Q1 register 0x14[2:1] according to 7-3. In BIST mode, the internal oscillator frequency should  
only be adjusted from the DS90UB934-Q1. The BIST frequency can be set by either pin strapping (7-4) or  
register (7-5). In BIST DS90UB933-Q1 register 0x14[2:1] is automatically loaded from the DS90UB934-Q1  
through the bi-directional control channel.  
7-3. Clock Sources for Forward Channel Frame on the Serializer During Normal Operation  
DS90UB933-Q1  
Reg 0x14 [2:1]  
10-BIT  
MODE  
12-BIT  
MODE  
00  
01  
10  
11  
50 MHz  
100 MHz  
50 MHz  
37.5 MHz  
75 MHz  
37.5 MHz  
Reserved  
Reserved  
7.4.5 Built-In Self Test  
An optional at-speed built-in self test (BIST) feature supports the testing of the high-speed serial link and low-  
speed back channel. This is useful in the prototype stage, equipment production, and in-system test and also for  
system diagnostics.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
24  
Submit Document Feedback  
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.4.6 BIST Configuration and Status  
The chipset can be programmed into BIST mode using either pins or registers on the DES only. By default, BIST  
configuration is controlled through pins. BIST can be configured via registers using BIST Control register (0xB3).  
Pin-based configuration is defined as follows:  
BISTEN = HIGH: Enable the BIST mode, BISTEN = LOW: Disable the BIST mode.  
Deserializer GPIO0 and GPIO1: Defines the BIST clock source (PCLK vs various frequencies of internal  
OSC)  
7-4. BIST Pin Configuration  
DESERIALIZER GPIO[0:1]  
OSCILLATOR SOURCE  
External PCLK  
Internal  
BIST FREQUENCY  
PCLK or external oscillator  
~50 MHz  
00  
01  
10  
Internal  
~25 MHz  
7-5. BIST Register Configuration  
DS90UB934-Q1  
Reg 0xB3 [2:1]  
10-BIT  
MODE  
12-BIT  
MODE  
00  
01  
10  
11  
PCLK  
PCLK  
100 MHz  
50 MHz  
75 MHz  
37.5 MHz  
Reserved  
Reserved  
BIST mode provides various options for the PCLK source. Either external pins (GPIO0 and GPIO1) or registers  
can be used to program the BIST to use external PCLK or various OSC frequencies. Refer to 7-4 for pin  
settings. The BIST status can be monitored real-time on the PASS pin. For every frame with error(s), the PASS  
pin toggles low for one-half PCLK period. If two consecutive frames have errors, PASS toggles twice to allow  
counting of frames with errors. Once the BIST is done, the PASS pin reflects the pass/fail status of the last BIST  
run only for one PCLK cycle. The status can also be read through I2C for the number of frames in errors. BIST  
status register retains results until it is reset by a new BIST session or a device reset. To evaluate BIST in  
external oscillator mode, both the external oscillator and PCLK must be present. For all practical purposes, the  
BIST status can be monitored from the BIST Error Count register 0x57 on the DS90UB934 deserializer.  
7.4.7 Sample BIST Sequence  
Step 1: For the DS90UB933/934 FPD-Link III chipset, BIST mode is enabled via the BISTEN pin of  
DS90UB934-Q1 FPD-Link III deserializer. The desired clock source is selected through the deserializer  
GPIO0 and GPIO1 pins as shown in 7-4.  
Step 2: The DS90UB933-Q1 serializer BIST pattern is enabled through the back channel. The BIST pattern  
is sent through the FPD-Link III to the deserializer. Once the serializer and deserializer are in the BIST mode  
and the deserializer acquires lock, the PASS pin of the deserializer goes high, and BIST starts checking the  
FPD-Link III serial stream. If an error in the payload is detected, the PASS pin switches low for one half of the  
clock period. During the BIST test, the PASS output can be monitored and counted to determine the payload  
error rate.  
Step 3: To stop the BIST mode, the deserializer BISTEN pin is set LOW. The deserializer stops checking the  
data. The final test result is not maintained on the PASS pin. To monitor the BIST status, check the BIST  
Error Count register, 0x57 on the deserializer.  
Step 4: The link returns to normal operation after the deserializer BISTEN pin is low. 7-8 shows the  
waveform diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2 shows one with  
multiple errors. In most cases, it is difficult to generate errors due to the robustness of the link (differential  
data transmission, etc.); thus, they may be introduced by greatly extending the cable length, faulting the  
interconnect, or by reducing signal condition enhancements (Rx equalization).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
English Data Sheet: SNLS546  
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
Normal  
Step 1: DES in BIST  
BIST  
Wait  
Step 2: Wait, SER in BIST  
BIST  
start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
stop  
Step 4: DES/SER in Normal  
7-7. At-Speed BIST System Flow Diagram  
BISTEN  
(DES)  
LOCK  
PCLK  
(RFB = L)  
ROUT[0:11],  
HS, VS  
DATA  
(internal)  
PASS  
Prior Result  
PASS  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
FAIL  
Prior Result  
Normal  
BIST  
Result  
Held  
Normal  
BIST Test  
BIST Duration  
7-8. BIST Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
26  
Submit Document Feedback  
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.5 Programming  
7.5.1 Programmable Controller  
An integrated I2C slave controller is embedded in the DS90UB933-Q1 serializer. It must be used to configure the  
extra features embedded within the programmable registers or it can be used to control the set of programmable  
GPIOs.  
7.5.2 Description of Bidirectional Control Bus and I2C Modes  
The I2C-compatible interface allows programming of the DS90UB933-Q1, DS90UB934-Q1, DS90UB964-Q1, or  
an external remote device (such as image sensor) through the bidirectional control channel. Register  
programming transactions to/from the DS90UB933/934/964 chipset are employed through the clock (SCL) and  
data (SDA) lines. These two signals have open drain I/Os, and both lines must be pulled up to V(VDDIO) by an  
external resistor. Pullup resistors or current sources are required on the SCL and SDA busses to pull them high  
when they are not being driven low. A logic LOW is transmitted by driving the output low. Logic HIGH is  
transmitted by releasing the output and allowing it to be pulled up externally. The appropriate pullup resistor  
values depend upon the total bus capacitance and operating speed. The DS90UB933-Q1 I2C bus data rate  
supports up to 400 kbps according to I2C fast mode specifications.  
For further description of general I2C communication, refer to the Understanding the I2C Bus application note .  
For more information on choosing appropriate pullup resistor values, see the I2C Bus Pullup Resistor Calculation  
application note .  
Bus Activity:  
Master  
Register  
Address  
Slave  
Address  
Data  
SDA Line  
7-bit Address  
P
S
0
A
C
K
A
C
K
A
C
K
Bus Activity:  
Slave  
7-9. Write Byte  
N
A
C
K
Bus Activity:  
Master  
Register  
Address  
Slave  
Address  
Slave  
Address  
S
P
SDA Line  
S
7-bit Address  
7-bit Address  
0
1
A
C
K
A
C
K
A
C
K
Data  
Bus Activity:  
Slave  
7-10. Read Byte  
ACK  
LSB  
MSB  
N/ACK  
SDA  
SCL  
MSB  
LSB  
R/W  
Direction  
Bit  
7-bit Slave Address  
Data Byte  
Acknowledge  
from the Device  
*Acknowledge  
or Not-ACK  
8
9
8
9
1
2
6
7
1
2
Repeated for the Lower Data Byte  
and Additional Data Transfers  
START  
STOP  
7-11. Basic Operation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
English Data Sheet: SNLS546  
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
SDA  
SCL  
S
P
STOP condition  
START condition, or  
START repeat condition  
7-12. Start and Stop Conditions  
7.5.3 I2C Pass-Through  
I2C pass-through provides a way to access remote devices at the other end of the FPD-Link III interface. This  
option is used to determine if an I2C instruction is transferred over to the remote I2C bus. For example, when the  
I2C master is connected to the deserializer and I2C pass-through is enabled on the deserializer, any I2C traffic  
targeted for the remote serializer or remote slave is allowed to pass through the deserializer to reach those  
respective devices.  
If the master controller transmits an I2C transaction for address 0xA0, the DES A with I2C pass-through enabled  
transfers I2C commands to remote Camera A. The DES B (with I2C pass-through disabled) will NOT pass I2C  
commands on the I2C bus to Camera B.  
DS90UB933-Q1  
DS90UB934-Q1  
CMOS  
Image  
Sensor  
DIN[11:0]  
,HS,VS  
PCLK  
ROUT[11:0],  
HS,VS,  
PCLK  
2
I C  
2
I C  
SDA  
SCL  
SDA  
SCL  
Camera A  
Slave ID: (0xA0)  
SER A:  
Remote I2C _MASTER Proxy  
DES A: I2C_SLAVE  
Local  
I2C_PASS_THRU Enabled  
ECU  
Module  
DS90UB933-Q1  
DS90UB934-Q1  
CMOS  
Image  
Sensor  
DIN[11:0]  
,HS,VS  
PCLK  
ROUT[11:0],  
HS,VS,  
PCLK  
2
I C  
2
I C  
SDA  
SCL  
mC  
Camera B  
Slave ID: (0xA0)  
SER B:  
Remote I2C_MASTER Proxy  
DES B: I2C_SLAVE  
Local  
I2C_PASS_THRU Disabled  
Master  
7-13. I2C Pass-Through  
7.5.4 Slave Clock Stretching  
The I2C-compatible interface allows programming of the DS90UB933-Q1, DS90UB934-Q1, DS90UB964-Q1, or  
an external remote device (such as image sensor) through the bidirectional control. To communicate and  
synchronize with remote devices on the I2C bus through the bidirectional control channel/MCU, the chipset  
utilizes bus clock stretching (holding the SCL line low) during data transmission; where the I2C slave pulls the  
SCL line low on the 9th clock of every I2C transfer (before the ACK signal). The slave device does not control  
the clock and only stretches it until the remote peripheral has responded. The I2C master must support clock  
stretching to operate with the DS90UB933/934/964 chipset.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
28  
Submit Document Feedback  
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.5.5 IDX Address Decoder on the Serializer  
The IDX pin on the serializer is used to decode and set the physical slave address of the serializer (I2C only) to  
allow up to five devices on the bus connected to the serializer using only a single pin. The pin sets one of the 4  
possible addresses for each serializer device. The pin must be pulled to V(VDD_n) (1.8 V, not V(VDDIO)) with a  
resistor, R3, and a pulldown resistor R4. Suggested resistor values are given in 7-6. The recommended  
maximum resistor tolerance is 1%. Other resistor values can be used as long as the ratio is met under all  
conditions.  
1.8V  
R
3
V
DDIO  
V
ID[x]  
ID[x]  
RPU  
RPU  
R
4
HOST  
Serializer  
SCL  
SDA  
SCL  
SDA  
To other Devices  
Copyright © 2016, Texas Instruments Incorporated  
7-14. IDX Address Decoder on the Serializer  
7-6. IDX Setting for DS90UB933-Q1 Serializer  
IDX SETTING DS90UB933-Q1 SERIALIZER  
SUGGESTED  
R3 RESISTOR R4 RESISTOR  
VALUE (kΩ)  
SUGGESTED  
MINIMUM  
RATIO (VIDX  
V(VDD_n)  
MAXIMUM  
RATIO (VIDX/  
Address 8-bit  
Address 7-bit 0 appended  
(WRITE)  
/
)
V(VDD_n)  
)
VALUE (kΩ)  
0
0
Open  
10  
0
2
0x58  
0x59  
0x5A  
0x5D  
0xB0  
0xB2  
0xB4  
0xBA  
0.114  
0.297  
0.742  
0.186  
0.347  
1.0  
10  
4.7  
100  
10  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
English Data Sheet: SNLS546  
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.5.6 Multiple Device Addressing  
Some applications require multiple camera devices with the same fixed address to be accessed on the same I2C  
bus. The DS90UB933-Q1 provides slave ID matching/aliasing to generate different target slave addresses when  
connecting more than two identical devices together on the same bus. This allows the slave devices to be  
independently addressed. Each device connected to the bus is addressable through a unique ID by  
programming of the slave alias register on deserializer. This remaps the slave alias address to the target  
SLAVE_ID address; up to 8 ID aliases are supported in sensor mode when slaves are attached to the  
DS90UB933-Q1 serializer. In display mode, when the external slaves are at the deserializer the DS90UB933-Q1  
supports one ID alias. The ECU controller must keep track of the list of I2C peripherals in order to properly  
address the target device.  
See 7-15 for an example of this function.  
ECU is the I2C master and has an I2C master interface.  
The I2C interfaces in DES A and DES B are both slave interfaces.  
The I2C protocol is bridged from DES A to SER A and from DES B to SER B.  
The I2C interfaces in SER A and SER B are both master interfaces.  
If master controller transmits I2C slave 0xA0, DES A (address 0xC0), with pass-through enabled, forwards the  
transaction to remote Camera A. If the controller transmits slave address 0xA4, the DES B 0xC2 recognizes that  
0xA4 is mapped to 0xA0 and is transmitted to the remote Camera B. If controller sends command to address  
0xA6, the DES B (address 0xC2), with pass-through enabled, forwards the transaction to slave device 0xA2.  
Camera A  
Slave ID: (0xA0)  
DS90UB933-Q1  
DS90UB934-Q1  
ROUT[11:0],  
HS, VS,  
PCLK  
CMOS  
Image  
Sensor  
DIN[11:0]  
, HS, VS,  
PCLK  
2
I C  
2
I C  
SDA  
SCL  
SDA  
SCL  
DES A: ID[x](0xC0)  
SLAVE_ID0_ALIAS(0xA0)  
SLAVE_ID0_ID(0xA0)  
SLAVE_ID1_ALIAS(0xA2)  
SLAVE_ID1_ID(0xA2)  
DS90UB934-Q1  
mC/  
EEPROM  
SER A: ID[x](0xB0)  
ECU  
Module  
Slave ID: (0xA2)  
Camera B  
Slave ID: (0xA0)  
DS90UB933-Q1  
DIN[11:0]  
, HS, VS,  
PCLK  
ROUT[11:0],  
HS, VS,  
PCLK  
CMOS  
Image  
Sensor  
2
I C  
2
I C  
SDA  
SCL  
SDA  
SCL  
mC  
DES B: ID[x](0xC2)  
mC/  
EEPROM  
SER B: ID[x](0xB2)  
SLAVE_ID0_ALIAS(0xA4)  
SLAVE_ID0_ID(0xA0)  
SLAVE_ID1_ALIAS(0xA6)  
SLAVE_ID1_ID(0xA2)  
Master  
Slave ID: (0xA2)  
7-15. Multiple Device Addressing  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
30  
Submit Document Feedback  
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6 Register Maps  
See note(1)  
In the register definitions under the TYPE and DEFAULT heading, the following definitions apply:  
R = Read only access  
R/W = Read / Write access  
R/RC = Read only access, Read to Clear  
(R/W)/SC = Read / Write access, Self-Clearing bit  
(R/W)/S = Read / Write access, Set based on strap pin configuration at startup  
LL = Latched Low and held until read  
LH = Latched High and held until read  
S = Set based on strap pin configuration at startup  
7-7. DS90UB933-Q1 Control Registers  
Addr  
(Hex)  
Name  
Bits Field  
TYPE  
Default  
Description  
7-bit address of serializer (0x58'h default). This field  
does not auto update IDX strapped address.  
7:1 DEVICE ID  
0x00  
I2C Device ID  
R/W  
0xB0  
0: Device ID is from IDX  
1: Register I2C Device ID overrides IDX  
0
7
Serializer ID SEL  
RSVD  
RDS  
R/W  
R/W  
0
0
Reserved  
Digital output drive strength  
1: High drive strength  
0: Low drive strength  
6
5
4
Auto voltage control  
1: Enable  
0: Disable  
V(VDDIO) Control  
V(VDDIO) MODE  
R/W  
R/W  
1
1
V(VDDIO) voltage set  
1: V(VDDIO) = 3.3 V  
0: V(VDDIO) = 1.8 V  
This register can be set only through local I2C access.  
1: Analog power down. Powers down the analog block  
in the serializer.  
0x01  
Power and Reset  
3
2
1
ANAPWDN  
RSVD  
R/W  
R/W  
R/W  
0
0
0
0: No effect  
Reserved  
1: Resets the digital block except for register values.  
Does not affect device I2C bus or Device ID. This bit is  
self-clearing.  
DIGITAL  
RESET1  
0: Normal operation  
1: Digital reset, resets the entire digital block including  
all register values. This bit is self-clearing.  
0: Normal operation.  
DIGITAL  
RESET0  
0
R/W  
0
0x02  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
English Data Sheet: SNLS546  
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7-7. DS90UB933-Q1 Control Registers (continued)  
Addr  
(Hex)  
Name  
Bits Field  
TYPE  
Default  
Description  
Back-channel CRC checker enable  
1: Enable  
0: Disable  
RX CRC Checker  
Enable  
7
6
R/W  
1
Forward channel parity generator enable.  
1: Enable  
0: Disable  
TX Parity  
Generator Enable  
R/W  
R/W  
1
0
Clear CRC error counters  
This bit is NOT self-clearing.  
1: Clear counters  
5
4
CRC Error Reset  
0: Normal operation  
Automatically acknowledge I2C remote write  
The mode works when the system is LOCKed.  
1: Enable: When enabled, I2C writes to the  
deserializer (or any remote I2C Slave, if I2C PASS  
ALL is enabled) are immediately acknowledged  
without waiting for the deserializer to acknowledge the  
write. The accesses are then remapped to address  
specified in 0x06.  
I2C Remote Write  
Auto Acknowledge  
R/W  
0
0: Disable  
1: Enable Forward Control Channel pass-through of all  
I2C accesses to I2C IDs that do not match the  
serializer I2C ID. The I2C accesses are then  
remapped to address specified in register 0x06.  
0: Enable Forward Control Channel pass-through only  
of I2C accesses to I2C IDs matching either the remote  
deserializer ID or the remote I2C IDs.  
General  
Configuration  
0x03  
I2C Pass-Through  
All  
3
2
1
R/W  
R/W  
R/W  
0
1
0
I2C Pass-through mode  
1: Pass-through enabled. DES alias 0x07 and slave  
alias 0x09  
I2C Pass-Through  
OV_CLK2PLL  
0: Pass-through disabled  
1:Enabled : When enabled this register overrides the  
clock to PLL mode (External Oscillator mode or Direct  
PCLK mode) defined through MODE pin and allows  
selection through register 0x35 in the serializer.  
0: Disabled : When disabled, Clock to PLL mode  
(External Oscillator mode or Direct PCLK mode) is  
defined through MODE pin on the Serializer.  
Pixel clock edge select  
1: Parallel interface data is strobed on the rising clock  
0
TRFB  
R/W  
1
edge  
0: Parallel interface data is strobed on the falling clock  
edge  
0x04  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
32  
Submit Document Feedback  
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7-7. DS90UB933-Q1 Control Registers (continued)  
Addr  
(Hex)  
Name  
Bits Field  
TYPE  
Default  
Description  
7
6
RSVD  
RSVD  
R/W  
R/W  
0
0
Reserved  
Reserved  
Allows overriding mode select bits coming from back-  
channel.  
1: Overrides MODE select bits  
0: Does not override MODE select bits  
MODE_  
OVERRIDE  
5
4
R/W  
R
0
0
1: Status of mode select from deserializer is up-to-  
date.  
0: Status is NOT up-to-date.  
MODE_UP_  
TO_DATE  
Pin_MODE_  
12bit mode  
1: 12-bit mode is selected.  
0: 12-bit mode is not selected.  
3
2
R
R
0
0
Pin_MODE_  
10bit mode  
1: 10-bit mode is selected.  
0: 10-bit mode is not selected.  
0x05  
Mode Select  
Selects 12 bit data-bus. This bit changes the Tx mode  
settings if MODE_OVERRIDE is SET 0x05[5] = 1.  
1: Enables 12 bit HF mode  
1
0
TX_MODE_12b  
TX_MODE_10b  
R/W  
R/W  
0
0
0: Disables 12 bit HF mode  
Note: This bit changes mode settings on TX. When  
TX_MODE_12b is set TX_MODE_10b must be  
cleared; 0x05[1:0] = 10.  
Selects 10 bit data-bus. This bit changes the Tx mode  
settings if MODE_OVERRIDE is SET 0x05[5] = 1.  
1: Enables 10b mode  
0: Disables 10b mode  
Note: This bit changes mode settings on TX. When  
TX_MODE_10b is set TX_MODE_12b must be  
cleared; 0x05[1:0] = 01.  
7-bit deserializer Device ID Configures the I2C Slave  
ID of the remote deserializer. A value of 0 in this field  
disables I2C access to the remote deserializer. This  
field is automatically configured by the bidirectional  
control channel once RX Lock has been detected.  
Software may overwrite this value, but should also  
assert the FREEZE DEVICE ID bit to prevent  
Deserializer  
Device ID  
7:1  
R/W  
R/W  
0x00  
0x06  
DES ID  
overwriting by the bidirectional control channel.  
1: Prevents auto-loading of the deserializer Device ID  
by the bidirectional control channel. The ID is frozen at  
the value written.  
0
Freeze Device ID  
0
0: Update  
7-bit remote deserializer device alias ID Configures the  
decoder for detecting transactions designated for an  
I2C deserializer device. The transaction is remapped  
to the address specified in the DES ID register.  
A value of 0 in this field disables access to the remote  
deserializer.  
Deserializer ALIAS  
ID  
7:1  
0
R/W  
R/W  
0x00  
0
0x07  
DES Alias  
RSVD  
Reserved  
7-bit remote slave device ID Configures the physical  
I2C address of the remote I2C slave device attached  
to the remote deserializer. If an I2C transaction is  
addressed to the slave alias ID, the transaction is  
remapped to this address before passing the  
transaction across the bidirectional control channel to  
the deserializer and then to remote slave. A value of 0  
in this field disables access to the remote I2C slave.  
7:1 SLAVE ID  
R/W  
R/W  
0x00  
0x08  
SlaveID  
0
RSVD  
0
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
English Data Sheet: SNLS546  
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7-7. DS90UB933-Q1 Control Registers (continued)  
Addr  
(Hex)  
Name  
Bits Field  
TYPE  
Default  
Description  
7-bit remote slave device alias ID Configures the  
decoder for detecting transactions designated for an  
I2C slave device attached to the remote deserializer.  
The transaction is remapped to the address specified  
in the slave ID register. A value of 0 in this field  
disables access to the remote I2C slave.  
7:1 SLAVE ALIAS ID  
R/W  
0x00  
0x09  
Slave Alias  
0
RSVD  
R/W  
R
0
Reserved  
Number of back-channel CRC errors during normal  
operation. Least significant byte.  
0x0A  
0x0B  
CRC Errors  
CRC Errors  
7:0 CRC Error Byte 0  
7:0 CRC Error Byte 1  
7:5 Rev-ID  
0x00  
Number of back-channel CRC errors during normal  
operation. Most significant byte  
R
R
R
R
R
0x00  
0x0  
0
Revision ID  
0x0: Production Revision ID  
1: RX LOCKED  
0: RX not LOCKED  
4
3
2
RX Lock Detect  
BIST CRC  
Error Status  
1: CRC errors in BIST mode  
0: No CRC errors in BIST mode  
0
1: Valid PCLK detected  
0: Valid PCLK not detected  
PCLK Detect  
DES Error  
0
1: CRC error is detected during communication with  
deserializer.  
This bit is cleared upon loss of link or assertion of CRC  
ERROR RESET in register 0x03[5].  
0: No effect  
0x0C  
General Status  
1
0
R
R
0
0
1: Cable link detected  
0: Cable link not detected  
This includes any of the following faults:  
Cable open  
LINK Detect  
'+' and '-' shorted  
Short to GND  
Short to battery  
Local GPIO output value. This value is output on the  
GPIO pin when the GPIO function is enabled. The  
local GPIO direction is output, and remote GPIO  
control is disabled.  
GPO1 Output  
Value  
7
6
R/W  
R/W  
0
1
Remote GPIO Control  
1: Enable GPIO control from remote deserializer. The  
GPIO pin must be an output, and the value is received  
from the remote Deserializer.  
GPO1 Remote  
Enable  
0: Disable GPIO control from remote deserializer  
5
4
RSVD  
R/W  
R/W  
0
1
Reserved  
1: GPIO enable  
0: Tri-state  
GPO1 Enable  
GPO[0]  
and GPO[1]  
Configuration  
0x0D  
Local GPIO output value. This value is output on the  
GPIO pin when the GPIO function is enabled. The  
local GPIO direction is output, and remote GPIO  
control is disabled.  
GPO0 Output  
Value  
3
2
R/W  
R/W  
0
1
Remote GPIO Control  
1: Enable GPIO control from remote deserializer. The  
GPIO pin must be an output, and the value is received  
from the remote Deserializer.  
GPO0 Remote  
Enable  
0: Disable GPIO control from remote deserializer.  
1
0
RSVD  
R/W  
R/W  
0
1
Reserved  
1: GPIO enable  
0: Tri-state  
GPO0 Enable  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
34  
Submit Document Feedback  
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7-7. DS90UB933-Q1 Control Registers (continued)  
Addr  
(Hex)  
Name  
Bits Field  
TYPE  
Default  
Description  
Local GPIO output value. This value is output on the  
GPIO pin when the GPIO function is enabled. The  
local GPIO direction is output, and remote GPIO  
control is disabled.  
GPO3 Output  
Value  
7
6
R/W  
0
Remote GPIO vontrol  
1: Enable GPIO control from remote Deserializer. The  
GPIO pin must be an output, and the value is received  
from the remote deserializer.  
GPO3 Remote  
Enable  
R/W  
0
0: Disable GPIO control from remote Deserializer.  
1: Input  
0: Output  
5
4
GPO3 Direction  
GPO3 Enable  
R/W  
R/W  
1
1
1: GPIO enable  
0: Tri-state  
GPO[2]  
0x0E  
and GPO[3]  
Configuration  
Local GPIO output value. This value is output on the  
GPIO pin when the GPIO function is enabled. The  
local GPIO direction is output, and remote GPIO  
control is disabled.  
GPO2 Output  
Value  
3
2
R/W  
R/W  
0
1
Remote GPIO Control  
1: Enable GPIO control from remote deserializer. The  
GPIO pin must be an output, and the value is received  
from the remote deserializer.  
GPO2 Remote  
Enable  
0: Disable GPIO control from remote deserializer.  
1
0
RSVD  
R/W  
R/W  
R
0
1
Reserved  
1: GPIO enable  
0: Tri-state  
GPO2 Enable  
7:5 RSVD  
0x0  
Reserved  
SDA output delay This field configures output delay on  
the SDA output. Setting this value increases output  
delay in units of 50 ns. Nominal output delay values for  
SCL to SDA are:  
00: ~350 ns  
01: ~400 ns  
10: ~450 ns  
11: ~500 ns  
4:3 SDA Output Delay  
R/W  
00  
Disable remote writes to local registers setting this bit  
to a 1 prevents remote writes to local device registers  
from across the control channel. This prevents writes  
to the serializer registers from an I2C master attached  
to the deserializer. setting this bit does not affect  
remote access to I2C slaves at the serializer.  
Local Write  
Disable  
2
R/W  
R/W  
0
0
I2C Master  
Config  
0x0F  
Speed up I2C bus watchdog timer  
1: Watchdog timer expires after approximately 50  
microseconds.  
0: Watchdog timer expires after approximately 1  
second.  
I2C Bus Timer  
Speed up  
1
1. Disable I2C bus watchdog timer when the I2C  
watchdog timer may be used to detect when the I2C  
bus is free or hung up following an invalid termination  
of a transaction. If SDA is high and no signaling occurs  
for approximately 1 second, the I2C bus is assumed to  
be free. If SDA is low and no signaling occurs, the  
device attempts to clear the bus by driving 9 clocks on  
SCL.  
I2C Bus Timer  
Disable  
0
R/W  
0
0: No effect  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
English Data Sheet: SNLS546  
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7-7. DS90UB933-Q1 Control Registers (continued)  
Addr  
(Hex)  
Name  
Bits Field  
RSVD  
TYPE  
Default  
Description  
7
R/W  
0
Reserved  
Internal SDA hold time. This field configures the  
amount of internal hold time provided for the SDA  
input relative to the SCL input. Units are 50 ns.  
6:4 SDA Hold Time  
3:0 I2C Filter Depth  
R/W  
R/W  
0x1  
0x7  
0x10  
I2C Control  
I2C glitch filter depth. This field configures the  
maximum width of glitch pulses on the SCL and SDA  
inputs that will be rejected. Units are 10 ns.  
I2C master SCL high time This field configures the  
high pulse width of the SCL output when the serializer  
is the master on the local I2C bus. Units are 50 ns for  
the nominal oscillator clock frequency. The default  
value is set to provide a minimum (4 µs + 1 µs of rise  
time for cases where rise time is very fast) SCL high  
time with the internal oscillator clock running at 26  
MHz rather than the nominal 20 MHz.  
0x11  
SCL High Time  
7:0 SCL High Time  
R/W  
0x82  
I2C SCL low time This field configures the low pulse  
width of the SCL output when the serializer is the  
master on the local I2C bus. This value is also used as  
the SDA setup time by the I2C slave for providing data  
prior to releasing SCL during accesses over the  
bidirectional control channel. Units are 50 ns for the  
nominal oscillator clock frequency. The default value is  
set to provide a minimum (4.7 µs + 0.3 µs of fall time  
for cases where fall time is very fast) SCL low time  
with the internal oscillator clock running at 26 MHz  
rather than the nominal 20 MHz.  
0x12  
0x13  
SCL LOW Time  
7:0 SCL Low Time  
R/W  
R/W  
0x82  
0x00  
General Purpose  
Control  
1: High  
0: Low  
7:0 GPCR[7:0]  
7:5 RSVD  
4:3 RSVD  
R
0x0  
0x0  
Reserved  
Reserved  
R/W  
Allows choosing different OSC clock frequencies for  
forward channel frame.  
OSC clock frequency in functional mode when OSC  
mode is selected or when the selected clock source is  
not present, for example, missing PCLK/ external  
oscillator. See 7-3 for oscillator clock frequencies  
when PCLK/ external clock is missing.  
0x14  
BIST Control  
2:1 Clock Source  
R/W  
R/W  
0x0  
0
RSVD  
0
Reserved  
0x15 -  
0x1D  
Reserved  
The watchdog timer allows termination of a control  
channel transaction if it fails to complete within a  
programmed amount of time. This field sets the  
bidirectional control channel watchdog timeout value in  
units of 2 ms. This field should not be set to 0.  
BCC Watchdog  
Timer  
7:1  
0
R/W  
R/W  
0x7F  
0
BCC Watchdog  
Control  
0x1E  
BCC Watchdog  
Timer Disable  
1: Disables BCC watchdog timer operation  
0: Enables BCC watchdog timer operation  
0x1F -  
0x26  
Reserved  
7:6  
5
Reserved  
Power Down PLL  
Reserved  
R
0
0
0
0
0
Reserved  
1: Power down forward channel PLL  
0: Normal operation  
RW  
RW  
RW  
RW  
Analog Power  
Down Control  
0x27  
4
Reserved  
Power Down  
NCLK  
1: Power down NCLK  
0: Normal operation  
3
2:0  
Reserved  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
36  
Submit Document Feedback  
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
7-7. DS90UB933-Q1 Control Registers (continued)  
Addr  
(Hex)  
Name  
Bits Field  
TYPE  
Default  
Description  
0x28  
Reserved  
0x29  
OSC Divider  
7:6 RSVD  
R/W  
R/W  
0x0  
Reserved  
Selects the OSC frequency to drive out on GPO2 in  
external oscillator mode.  
0: Divide by 2 (default)  
5
OSC Divider  
0
1: Divide by 4  
4:0 RSVD  
R/W  
R
0x06  
0x00  
Reserved  
BIST Mode CRC  
Number of CRC errors in the back channel when in  
BIST mode  
0x2A  
CRC Errors  
7:0  
Errors Count  
0x2B -  
0x2C  
Reserved  
1: Forces 1 (one) error over forward channel frame in  
normal operating mode. Self-clearing bit.  
0: No error  
Force Forward  
Channel Error  
7
R/W  
R/W  
0
N: Forces N number of errors in BIST mode. This  
register MUST be set BEFORE BIST mode is enabled.  
BIST error count register on the deserializer must be  
read AFTER BIST mode is disabled for the correct  
number of errors incurred while in BIST mode.  
0: No error  
Inject Forward  
Channel Error  
0x2D  
6:0  
Force BIST Error  
0x00  
0x2E -  
0x34  
Reserved  
7:4 RSVD  
R/W  
R
0x0  
Reserved  
Status of mode select pin  
1: Indicates external oscillator mode is selected by  
mode-resistor  
0: External oscillator mode is not selected by mode-  
resistor  
PIN_LOCK to  
3
0
External Oscillator  
2
1
RSVD  
R
0
0
Reserved  
PLL Clock  
Overwrite  
0x35  
LOCK to External  
Oscillator  
R/W  
Affects only when 0x03[1] =1 (OV_CLK2PLL) and  
0x35[0] = 0  
1: Routes GPO3 directly to PLL  
0: Allows PLL to lock to PCLK  
R/W  
1
Affects only when 0x03[1] = 1 (OV_CLK2PLL)  
1: Allows internal OSC clock to feed into PLL  
0: Allows PLL to lock to either PCLK or external clock  
from GPO3  
0
LOCK2OSC  
(1) To ensure optimum device functionality, TI recommends to NOT write to any RESERVED registers.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
English Data Sheet: SNLS546  
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The DS90UB933-Q1 was designed as a serializer to support automotive camera designs. Automotive cameras  
are often located in remote positions such as bumpers or trunk lids, and a major component of the system cost is  
the wiring. For this reason it is desirable to minimize the wiring to the camera. This chipset allows the video data,  
along with a bidirectional control channel, and power to all be sent over a single coaxial cable. The chipset is  
also able to transmit over STP and is pin-to-pin/backwards compatible with the DS90UB913A-Q1 and  
DS90UB913Q-Q1.  
8.1.1 Power Over Coax  
See application report Sending Power Over Coax in DS90UB933 Designs for more details.  
8.1.2 Power-Up Requirements and PDB Pin  
Transition of the PDB pin from LOW to HIGH must occur after the VVDDIO and VVDD_n supplies have reached  
their required operating voltage levels. Direct control of the PDB timing by processor GPIO is recommended if  
possible. When direct control of PDB is not available, the PDB pin can be tied to the power supply rail with an  
RC filter network to help ensure proper power up timing. GPO2 should be low when PDB goes high. Timing  
constraints are noted in Suggested Power-Up Sequencing and Power-Up Sequencing Constraints. Please refer  
to Power Down section for device operation when powered down.  
If GPO2 state is not determined when PDB goes high, DS90UB933-Q1 registers must be programmed to  
configure the transmission mode. Mode Select register 0x05[5] must be set to 1 and register 0x05 bit 1 and 0 are  
to be selected based on desired 12-bit or 10-bit transmit data format.  
Common applications tie the V(VDDIO) and V(VDD_n) supplies to the same power source of 1.8 V typically. This is  
an acceptable method for ramping the V(VDDIO) and V(VDD_n) supplies. The main constraint here is that the  
V(VDD_n) supply does not lead in ramping before the V(VDDIO) system supply. This is noted in Suggested Power-  
Up Sequencing with the requirement of t1 0. V(VDDIO) must reach the expected operating voltage earlier than  
V(VDD_n) or at the same time.  
t0  
1.8 V or 3.3 V  
VDDIO  
GND  
t2  
1.8V  
VDD_n  
GND  
t1  
t3  
t4  
VDDIO  
PDB  
GND  
Don‘t Care  
GPO2  
8-1. Suggested Power-Up Sequencing  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
38  
Submit Document Feedback  
 
 
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
8-1. Power-Up Sequencing Constraints  
SYMBOL  
DESCRIPTION  
TEST CONDITIONS  
MIN  
TYP  
MAX Units  
10% to 90% of nominal voltage on rising  
edge. Monotonic signal ramp is required  
t0  
V(VDDIO) rise time  
0.05  
5
ms  
ms  
10% of rising edge (V(VDDIO)) to 10% of  
t1  
V(VDDIO) to V(VDD_n) delay  
0
rising edge (V(VDD_n)  
)
10% to 90% of nominal voltage on rising  
edge. Monotonic signal ramp is required.  
VPDB < 10% of V(VDDIO)  
t2  
V(VDD_n) rise time  
0.05  
5
ms  
t3*  
t4  
V(VDD_n) to PDB VIH delay  
PDB to GPO2 delay  
90% rising edge (V(VDD_n)) to PDB VIH  
PDB VIH to 10% of rising edge (GPO2)  
0
16  
ms  
ms  
1.3  
* If timing constraint t3 cannot be assured, the following programming steps should be issued to the via local I2C  
control (not via remote back channel). These programming steps should be completed > 10ms after the power  
sequence is complete (VPDB > PDB VIH) with no delay between write commands. This step will cause a brief  
restart of the forward channel output:  
Write Register 0x27 = 0x28  
Write Register 0x27 = 0x20  
Write Register 0x27 = 0x00  
8.1.3 AC Coupling  
The SER/DES supports only AC-coupled interconnects through an integrated DC-balanced decoding scheme.  
External AC-coupling capacitors must be placed in series in the FPD-Link III signal path as shown in 8-2. For  
applications utilizing single-ended 50-Ω coaxial cable, the unused data pin (DOUT, RIN) must utilize a  
0.047-µF capacitor and must be terminated with a 50-Ω resistor. For high-speed FPDLink III transmissions,  
the smallest available package should be used for the AC-coupling capacitor. This helps minimize degradation of  
signal quality due to package parasitics.  
D
OUT  
+
R
IN  
+
SER  
DES  
R
IN  
-
D
OUT  
-
Copyright © 2016, Texas Instruments Incorporated  
8-2. AC-Coupled Connection (STP)  
D
OUT  
+
R
IN  
+
SER  
DES  
R
IN  
-
D
OUT  
-
50Q  
50Q  
Copyright © 2016, Texas Instruments Incorporated  
8-3. AC-Coupled Connection (Coaxial)  
8.1.4 Transmission Media  
The DS90UB933/934/964 chipset is intended to be used in a point-to-point configuration through a shielded  
coaxial cable. The serializer and deserializer provide internal termination to minimize impedance discontinuities.  
The interconnect (cable and connectors) must have a differential impedance of 100 Ω, or a single-ended  
impedance of 50 Ω. The maximum length of cable that can be used is dependent on the quality of the cable  
(gauge, impedance), connector, board(discontinuities, power plane), the electrical environment (for example,  
power stability, ground noise, input clock jitter, PCLK frequency, etc.). The resulting signal quality at the receiving  
end of the transmission media may be assessed by monitoring the differential eye opening of the serial data  
stream. A differential probe should be used to measure across the termination resistor at the CMLOUTP/N pins.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
English Data Sheet: SNLS546  
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
Contact TI for a channel specification regarding cable loss parameters and further details on adaptive equalizer  
loss compensation.  
8.2 Typical Applications  
8.2.1 Coax Application  
VDDIO  
DS90UB933-Q1  
1.8 V  
VDDT  
VDDIO  
C8  
C3  
C4  
C9  
C13  
1.8 V  
DIN0  
DIN1  
DIN2  
DIN3  
DIN4  
DIN5  
DIN6  
VDDPLL  
C5  
C6  
C10  
C14  
FB1  
FB2  
1.8 V  
VDDCML  
VDDD  
C11  
C7  
C15  
C12  
1.8 V  
LVCMOS  
Parallel  
Bus  
DIN7  
DIN8  
DIN9  
DIN10  
DIN11  
HS  
C1  
C2  
Serial  
FPD-Link III  
Interface  
1.8 V  
VS  
DOUT+  
DOUT-  
PCLK  
RTERM  
R1  
1.8 V  
VDDIO  
MODE  
PDB  
R2  
R3  
10 kQ  
ID[X]  
R4  
C18  
NOTE:  
GPO[0]  
GPO[1]  
GPO[2]  
GPO[3]  
C1 = 0.1 µF (50 WV)  
C2 = 0.047 µF (50 WV)  
C3:C7 = 0.01 µF  
C8:C12 = 0.1 µF  
C13, C14 = 4.7 µF  
C15 = 22 µF  
GPO  
Control  
Interface  
RPD  
C16 - C17 = >100 pF  
C18 = 1 µF  
RTERM = 50  
RPU = 1 kto 4.7 kΩ  
RPD minimum =40 kΩ  
R1, R2 (see MODE Setting Table)  
R3, R4 (see ID[x] Setting Table)  
FB1:FB4: Impedance = 1 k(@ 100 MHz)  
low DC resistance (<1 )  
VDDIO  
RPU  
RPU  
C17  
RES  
I2C  
Bus  
SCL  
DAP (GND)  
FB3  
Interface  
SDA  
FB4  
Optional  
C16  
The "Optional" components shown are  
provisions to provide higher system noise  
immunity and will therefore result in higher  
performance.  
Optional  
Copyright © 2016, Texas Instruments Incorporated  
8-4. Coax Application Connection Diagram  
8.2.1.1 Design Requirements  
For the typical coax design applications, use the following as input parameters:  
8-2. Coax Design Parameters  
DESIGN PARAMETER  
V(VDDIO)  
EXAMPLE VALUE  
1.8 V, 2.8 V, or 3.3 V  
1.8 V  
V(VDD_n)  
AC-coupling capacitors for DOUT±  
PCLK frequency  
0.1 µF, 0.047 µF (For the unused data pin, DOUT)  
100 MHz (12-bit), 100 MHz (10-bit)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
40  
Submit Document Feedback  
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
8-5 shows the typical connection of a DS90UB933-Q1 serializer using a coax interface.  
DS90UB933-Q1  
Serializer  
DS90UB934-Q1  
Deserializer  
FPD-Link III  
Camera Data  
10 or 12  
Camera Data  
10 or 12  
DOUT+  
DOUT-  
RIN+  
RIN-  
ROUT[11:0]  
or  
ROUT[9:0]  
HSYNC,  
VSYNC  
DIN[11:0] or  
DIN[9:0]  
HSYNC,  
VSYNC  
Image  
Sensor  
DATA  
DATA  
HSYNC  
HSYNC  
50Q  
50Q  
VSYNC  
VSYNC  
PCLK  
PCLK  
ECU Module  
Pixel Clock  
Pixel Clock  
Bi-Directional  
Control Channel  
4
4
GPO[3:0]  
GPIO[3:0]  
GPO[3:0]  
GPIO[3:0]  
Microcontroller  
SDA  
SCL  
SDA  
SCL  
SDA  
SCL  
SDA  
SCL  
Camera Unit  
Copyright © 2016, Texas Instruments Incorporated  
8-5. Coax Application Block Diagram  
8.2.1.3 Application Curves  
Time (250 ps/DIV)  
Time (250 ps/DIV)  
8-6. Coax Eye Diagram at 1.4-Gbps Line Rate  
(100-MHz Pixel Clock, 10-bit Mode) from Serializer  
Output (DOUT+)  
8-7. Coax Eye Diagram at 1.87-Gbps Line Rate  
(100-MHz Pixel Clock, 12-bit Mode) from Serializer  
Output (DOUT+)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
English Data Sheet: SNLS546  
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
8.2.2 STP Application  
VDDIO  
DS90UB933-Q1  
1.8 V  
VDDT  
VDDIO  
C8  
C3  
C4  
C9  
C13  
1.8 V  
DIN0  
DIN1  
DIN2  
DIN3  
DIN4  
DIN5  
DIN6  
VDDPLL  
C5  
C6  
C10  
C14  
FB1  
FB2  
1.8 V  
VDDCML  
VDDD  
C11  
C7  
C15  
C12  
1.8 V  
LVCMOS  
Parallel  
Bus  
DIN7  
DIN8  
DIN9  
DIN10  
DIN11  
HS  
C1  
C2  
Serial  
FPD-Link III  
Interface  
1.8 V  
VS  
DOUT+  
DOUT-  
PCLK  
R1  
1.8 V  
VDDIO  
MODE  
PDB  
R2  
R3  
10 kQ  
ID[X]  
R4  
C18  
GPO[0]  
GPO[1]  
GPO[2]  
GPO[3]  
NOTE:  
GPO  
Control  
Interface  
C1, C2 = 0.1 µF (50 WV)  
C3:C7 = 0.01 µF  
C8:C12 = 0.1 µF  
RPD  
C13, C14 = 4.7 µF  
C15 = 22 µF  
C16 - C17 = >100 pF  
C18 = 1 µF  
RPU = 1 kto 4.7 kΩ  
RPD minimum =40 kΩ  
R1, R2 (see MODE Setting Table)  
R3, R4 (see ID[x] Setting Table)  
FB1:FB4: Impedance = 1 k(@ 100 MHz)  
low DC resistance (<1 )  
VDDIO  
RPU  
RPU  
C17  
RES  
I2C  
Bus  
SCL  
DAP (GND)  
FB3  
Interface  
SDA  
FB4  
Optional  
The "Optional" components shown are  
provisions to provide higher system noise  
immunity and will therefore result in higher  
performance.  
C16  
Optional  
Copyright © 2016, Texas Instruments Incorporated  
8-8. STP Application Connection Diagram  
8.2.2.1 Design Requirements  
For the typical STP design applications, use the following as input parameters:  
8-3. STP Design Parameters  
DESIGN PARAMETER  
V(VDDIO)  
EXAMPLE VALUE  
1.8 V, 2.8 V, or 3.3 V  
V(VDD_n)  
1.8 V  
0.1 µF  
AC-coupling capacitors for DOUT±  
PCLK frequency  
100 MHz (12-bit), 100 MHz (10-bit)  
8.2.2.2 Detailed Design Procedure  
8-9 shows a typical connection of a DS90UB933-Q1 Serializer using an STP interface.  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
English Data Sheet: SNLS546  
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
DS90UB933-Q1  
Serializer  
DS90UB934-Q1  
Deserializer  
Camera Data  
FPD-Link III  
Camera Data  
10 or 12  
DOUT+  
DOUT-  
10 or 12  
RIN+  
RIN-  
ROUT[11:0]  
or  
ROUT[9:0]  
DIN[11:0] or  
DIN[9:0]  
HSYNC,  
VSYNC  
Image  
Sensor  
DATA  
DATA  
HSYNC  
HSYNC  
HSYNC,  
VSYNC  
VSYNC  
VSYNC  
Bi-Directional  
Control Channel  
PCLK  
PCLK  
ECU Module  
Pixel Clock  
Pixel Clock  
4
4
GPO[3:0]  
GPIO[3:0]  
GPO[3:0]  
GPIO[3:0]  
Microcontroller  
SDA  
SDA  
SCL  
SCL  
SDA  
SCL  
SDA  
SCL  
Camera Unit  
Copyright © 2016, Texas Instruments Incorporated  
8-9. STP Application Block Diagram  
8.2.2.3  
Eye diagrams in STP applications have roughly double the swing as with coax (8-6 and 8-7).  
9 Power Supply Recommendations  
This device is designed to operate from an input core voltage supply of 1.8 V. Some devices provide separate  
power and ground terminals for different portions of the circuit. This is done to isolate switching noise effects  
between different sections of the circuit. Separate planes on the PCB are typically not required. Pin description  
tables typically provide guidance on which circuit blocks are connected to which power terminal pairs. In some  
cases, an external filter may be used to provide clean power to sensitive circuits such as PLLs. The voltage  
applied on V(VDDIO) (1.8 V, 2.8 V, 3.3 V) or other power supplies making up V(VDD_n) (1.8 V) must be at the input  
pin - any board level DC drop must be compensated (that is, ferrite beads in the path of the power supply rails).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
English Data Sheet: SNLS546  
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Design circuit board layout and stack-up for the serializer/deserializer devices to provide low-noise power feed to  
the device. Good layout practice also separates high frequency or high-level inputs and outputs to minimize  
unwanted stray noise pickup, feedback and interference. Power system performance may be greatly improved  
by using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane  
capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at  
high frequencies, making the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01 µF to 0.1 µF. Tantalum capacitors may be in the 2.2-µF to 10-µF range. Voltage rating of the  
tantalum capacitors should be at least 5× the power supply voltage being used.  
TI recommends surface mount capacitors due to their smaller parasitics. When using multiple capacitors per  
supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 50-µF to 100-µF range and smooths low frequency switching noise. TI recommends  
connecting power and ground pins directly to the power and ground planes with bypass capacitors connected to  
the plane with via on both ends of the capacitor. Connecting power or ground pins to an external bypass  
capacitor increases the inductance of the path.  
A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size  
reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of  
these external bypass capacitors, usually in the range of 20 to 30 MHz. To provide effective bypassing, multiple  
capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At  
high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing  
the impedance at high frequency.  
Some devices provide separate power for different portions of the circuit. This is done to isolate switching noise  
effects between different sections of the circuit. Separate planes on the PCB are typically not required. Pin  
Description tables typically provide guidance on which circuit blocks are connected to which power pin pairs. In  
some cases, an external filter many be used to provide clean power to sensitive circuits such as PLLs.  
Use at least a four-layer board with a power and ground plane. Locate LVCMOS signals away from the  
differential lines to prevent coupling from the LVCMOS lines to the differential lines. Closely-coupled differential  
lines of 100 Ω are typically recommended for differential interconnect. The closely coupled lines help to ensure  
that coupled noise appears as common-mode and thus is rejected by the receivers. The tightly coupled lines  
also radiate less.  
Information on the WQFN package is provided in AN-1187 Leadless Leadframe Package (LLP) (SNOA401).  
10.1.1 Interconnect Guidelines  
See Application Note 1108 Channel-Link PCB and Interconnect Design-In Guidelines (SNLA008) for full details.  
Use 100-Ωcoupled differential pairs  
Use the S/2S/3S rule in spacings  
S = space between the pair  
2S = space between pairs  
3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500-Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Additional general guidance can be found in the LVDS Owners Manual - available in PDF format from the  
Texas Instrument web site at: www.ti.com/lvds.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
44  
Submit Document Feedback  
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
10.2 Layout Example  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the WQFN package is highly recommended to improve  
board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP. Stencil parameters for aperture opening and via locations are shown in the following:  
10-1. No Pullback WQFN, Single Row Reference Diagram  
10-1. No Pullback WQFN Stencil Aperture Summary for DS90UB933-Q1  
GAP  
BETWEEN  
DAP  
APERTURE  
(Dim A mm)  
STENCIL  
DAP  
APERTURE  
(mm)  
NUMBER OF  
DAP  
APERTURE  
OPENINGS  
PCB  
PITCH  
(mm)  
STENCIL I/O  
APERTURE  
(mm)  
PIN  
COUNT  
PCB I/O PAD  
SIZE (mm)  
PCB DAP  
SIZE(mm)  
DEVICE  
MKT DWG  
DS90UB933-Q1  
32  
RTV  
0.25 × 0.6  
0.5  
3.1 × 3.1  
0.25 × 0.7  
1.4 × 1.4  
4
0.2  
AC-Coupling  
Capacitor on  
Top Layer  
Buried FPD-Link III  
High-speed Trace  
on Signal Layer 1  
10-2. DS90UB933-Q1 Serializer DOUT+ Trace Layout  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
English Data Sheet: SNLS546  
 
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
Power-over-Coax  
Network Placed  
Close to Connector  
Coax Connector  
10-3. DS90UB933-Q1 Power-over-Coax Layout  
10-2 and 10-3 are derived from the layout design of the DS90UB933-Q1 evaluation module (EVM). The  
EVM is designed for coax operation. The trace carrying high-speed serial signal DOUT+ is critical and must be  
kept as short as possible. Burying this trace in an internal PCB layer may help reduce emissions. If Power-over-  
Coax is used, the stub must be minimized by placing the filter network as close as possible to the coax  
connector. These graphics and additional layout description are used to demonstrate both proper routing and  
proper solder techniques when designing in this serializer.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS546  
46  
Submit Document Feedback  
 
DS90UB933-Q1  
ZHCSFV6E AUGUST 2016 REVISED NOVEMBER 2020  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
I2C over DS90UB913/4 FPD-Link III with Bidirectional Control Channel (SNLA222)  
Sending Power Over Coax in DS90UB913A Designs (SNOA549)  
FPD-Link Learning Center  
Understanding the I2C Bus  
I2C Bus Pullup Resistor Calculation  
Soldering Specifications Application Report,  
IC Package Thermal Metrics Application Report,  
AN-1187 Leadless Leadframe Package (LLP) Application Report  
LVDS Owner's Manual  
An EMC/EMI System-Design and Testing Methodology for FPD-Link III SerDes  
Ten Tips for Successfully Designing with Automotive EMC/EMI Requirements  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
English Data Sheet: SNLS546  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UB933TRTVRQ1  
DS90UB933TRTVTQ1  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTV  
RTV  
32  
32  
2500 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
UB933Q  
UB933Q  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UB933TRTVRQ1  
DS90UB933TRTVTQ1  
WQFN  
WQFN  
RTV  
RTV  
32  
32  
2500  
250  
330.0  
178.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.3  
1.3  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UB933TRTVRQ1  
DS90UB933TRTVTQ1  
WQFN  
WQFN  
RTV  
RTV  
32  
32  
2500  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RTV0032A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.15  
4.85  
A
B
PIN 1 INDEX AREA  
5.15  
4.85  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.1) TYP  
9
16  
8
17  
SYMM  
33  
2X 3.5  
3.1 0.1  
28X 0.5  
1
24  
0.30  
32X  
0.18  
32  
25  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
32X  
0.05  
4224386/B 04/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTV0032A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.1)  
SYMM  
SEE SOLDER MASK  
DETAIL  
32  
25  
32X (0.6)  
1
24  
32X (0.24)  
28X (0.5)  
(3.1)  
33  
SYMM  
(4.8)  
(1.3)  
8
17  
(R0.05) TYP  
(
0.2) TYP  
VIA  
9
16  
(1.3)  
(4.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224386/B 04/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTV0032A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.775) TYP  
25  
32  
32X (0.6)  
1
32X (0.24)  
28X (0.5)  
24  
(0.775) TYP  
(4.8)  
33  
SYMM  
(R0.05) TYP  
4X (1.35)  
17  
8
9
16  
4X (1.35)  
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 33  
76% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224386/B 04/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY