DS90UB940TNKDTQ1 [TI]

1080p 双路 FPD-Link III 转 CSI-2 解串器 | NKD | 64 | -40 to 105;
DS90UB940TNKDTQ1
型号: DS90UB940TNKDTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1080p 双路 FPD-Link III 转 CSI-2 解串器 | NKD | 64 | -40 to 105

光电二极管
文件: 总85页 (文件大小:2137K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
DS90UB940-Q1 1080p FPD-Link III CSI-2 解串器  
1 特性  
3 说明  
1
支持高达 170MHz 的像素时钟频率,支持 WUXGA  
(1920x1200) 1080p60 分辨率(24 位色深)  
DS90UB940-Q1 是一款 FPD-Link III 解串器,与  
DS90UB949/947/929-Q1 串行器配合使用时可将单通  
道或双通道 FPD-Link III 流转换成 MIPI CSI-2 接口格  
式。该解串器能够在经济高效的 50Ω 单端同轴或  
100Ω 差分屏蔽双绞线 (STP) 电缆上运行。它能够从单  
通道或双通道 FPD-Link III 串行流中恢复数据,然后将  
其转换为摄像机串行接口 (CSI-2) 格式,最高可支持  
WUXGA 1080p60 视频分辨率(24 位色深)。  
具有偏移补偿能力的单通道或双通道 FPD-Link III  
接口  
MIPI D-PHY/CSI-2 发送器  
支持 2 通道或 4 通道两种可选操作的 CSI-2 输  
出端口  
每个 CSI-2 端口最多支持 4 个数据通道,每个  
通道最高 1.3Gbps  
FPD-Link III 接口支持通过同一条差分链路进行视频和  
音频数据传输以及全双工控制(包括 I2C SPI 通  
信)。通过两个差分对实现视频数据和控制的整合可减  
小互连线尺寸和重量,并简化了系统设计。通过使用低  
压差分信令、数据换序和随机生成最大限度地减少了电  
磁干扰 (EMI)。在向后兼容模式下,该器件在单一差分  
链路上最高可支持 WXGA 720p 分辨率(24 位色  
深)。  
视频格式:RGB888/666/565YUV422/420 和  
RAW8/10/12  
可编程虚拟通道标识符  
速度高达 2.0Mbps 的通用输入输出 (GPIO)  
具有自动温度和老化补偿功能,支持长达 15 米的  
电缆  
速率高达 3.3Mbps 的串行外设接口 (SPI) 控制接口  
具有 1Mbps 快速模式+ I2C(主/从)  
自适应接收均衡  
该器件将自动检测 FPD-Link III 通道并提供一种时钟对  
齐和偏移补偿功能,无需任何特殊的训练模式。这可在  
互连线路(例如,印刷电路板 (PCB) 布线)中出现不  
匹配问题、电缆线对长度存在差异以及连接器不平衡时  
确保相位偏移在容差范围内。  
支持多条 I2S4 个数据)通道  
向后兼容 DS90UB925/925AQ-Q1 和  
DS90UB927Q-Q1 FPD-Link III 串行器  
汽车应用级产品:符合 AEC-Q100 2 级要求  
2 应用  
器件信息(1)  
封装  
汽车信息娱乐:  
器件型号  
封装尺寸(标称值)  
中央信息显示屏  
后座娱乐系统  
数字仪表板  
超薄四方扁平无引线  
(WQFN) NKD (64)  
DS90UB940-Q1  
9.00mm x 9.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
高级驾驶员辅助系统 (ADAS) 摄像机系统  
4 应用 图  
VDDIO  
VDDIO  
(3.3V / 1.8V)  
3.3V  
(3.3V / 1.8V)  
1.8V  
1.1V  
1.2V  
HDMI  
or  
DP++  
FPD-Link III  
2 lanes  
MIPI CSI-2  
IN_CLK-/+  
RIN0+  
RIN0-  
DOUT0+  
DOUT0-  
IN_D0-/+  
IN_D1-/+  
Mobile  
Device  
or  
Graphics  
Processor  
D3+/-  
D2+/-  
D1+/-  
D0+/-  
DOUT1+  
DOUT1-  
RIN1+  
RIN1-  
IN_D2-/+  
Application  
Processor  
DS90UB949-Q1  
Serializer  
DS90UB940-Q1  
Deserializer  
CEC  
DDC  
HPD  
CLK+/-  
I2C  
IDx  
I2C  
IDx  
HS_GPIO  
(SPI)  
HS_GPIO  
(SPI)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNLS479  
 
 
 
 
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 24  
8.3 Feature Description................................................. 25  
8.4 Device Functional Modes........................................ 36  
8.5 Programming........................................................... 43  
8.6 Register Maps......................................................... 46  
Application and Implementation ........................ 67  
9.1 Application Information ......................................... 67  
9.2 Typical Applications ................................................ 67  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
应用 图 ..................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configurations and Functions....................... 4  
Specifications......................................................... 9  
7.1 Absolute Maximum Ratings ...................................... 9  
7.2 ESD Ratings—JEDEC .............................................. 9  
7.3 ESD Ratings—IEC and ISO...................................... 9  
7.4 Recommended Operating Conditions....................... 9  
7.5 Thermal Information................................................ 10  
7.6 DC Electrical Characteristics .................................. 10  
7.7 AC Electrical Characteristics................................... 13  
7.8 Timing Requirements for the Serial Control Bus .... 14  
7.9 Switching Characteristics........................................ 15  
7.10 Timing Diagrams and Test Circuits....................... 17  
7.11 Power Sequence................................................... 22  
7.12 Typical Characteristics.......................................... 23  
Detailed Description ............................................ 24  
8.1 Overview ................................................................. 24  
9
10 Power Supply Recommendations ..................... 72  
10.1 Power Up Requirements and PDB Pin................. 72  
11 Layout................................................................... 72  
11.1 Layout Guidelines ................................................. 72  
11.2 Layout Example .................................................... 74  
12 器件和文档支持 ..................................................... 76  
12.1 文档支持 ............................................................... 76  
12.2 社区资源................................................................ 76  
12.3 ....................................................................... 76  
12.4 静电放电警告......................................................... 76  
12.5 Glossary................................................................ 76  
13 机械、封装和可订购信息....................................... 76  
8
5 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (November 2014) to Revision A  
Page  
Added shared pins description on SPI pins .......................................................................................................................... 5  
Added shared pins description on GPIO pins ....................................................................................................................... 6  
Added shared pins description on D_GPIO pins ................................................................................................................... 6  
Added shared pins description on register only GPIO pins. Changed "Local register control only" to "I2C register  
control only". .......................................................................................................................................................................... 6  
Added shared pins description on slave mode I2S pins ....................................................................................................... 7  
Added shared pins description on master mode I2S pins ..................................................................................................... 7  
Added legend on I/O TYPE .................................................................................................................................................... 8  
Moved Storage Temperature Range from ESD to Absolute Maximum Ratings table .......................................................... 9  
Added ESD Ratings table....................................................................................................................................................... 9  
Changed IDD12Z limit from 11mA to 30mA per PE re-characterization ............................................................................. 12  
Changed Fast Plus Mode tSP maximum from 20ns to 50ns ................................................................................................ 14  
Added Power Sequence section ......................................................................................................................................... 22  
Deleted MODE, CSI LANE, REPLICATE columns in MODE_SEL0 table .......................................................................... 39  
Deleted MODE column. Added (CSI PORT) to CSI_SEL column in MODE_SEL1 table.................................................... 39  
Changed default value from "0" to "1" in register 0x01[2] ................................................................................................... 46  
Added description to register 0x01[1] "Registers which are loaded by pin strap will be restored to their original strap  
value when this bit is set. These registers show ‘Strap’ as their default value in this table." ............................................. 46  
Added to 0x02[7] in Description column "A Digital reset 0x01[0] should be asserted after toggling Output Enable bit  
LOW to HIGH" ..................................................................................................................................................................... 46  
Added "Loaded from remote SER" in register 0x07[7:1] function column............................................................................ 48  
Changed signal detect bit to reserved in register 0x1C[1] ................................................................................................... 51  
Changed "0" to "0/1" in register RW column of 0x1C[1] ...................................................................................................... 51  
2
版权 © 2014–2016, Texas Instruments Incorporated  
 
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
修订历史记录 (接下页)  
Changed signal detect bit to reserved in register 0x1C[1] description................................................................................. 51  
Changed from Reserved to Rev-ID in register 0x1D Function column ............................................................................... 52  
On register 0x22 added "(Loaded from remote SER)"......................................................................................................... 55  
Corrected in register 0x24[3] 0: Bist configured through "bit 0" to "bits 2:0" in description ................................................. 57  
Added in register 0x24[2:1] additional description................................................................................................................ 57  
Changed in register 0x24[1] description to "internal" .......................................................................................................... 57  
Changed in register 0x24[2] description to "internal" .......................................................................................................... 57  
On register 0x28 added "Loaded from remote SER" ........................................................................................................... 58  
Added clarification description on register 0x37 MODE_SEL .............................................................................................. 60  
Merged on 0x45 bits[7:4} and bits[3:0] default value: 0x08.................................................................................................. 61  
Copyright © 2014–2016, Texas Instruments Incorporated  
3
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
6 Pin Configurations and Functions  
NKD  
64-Pin WQFN  
Top View  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
VDDP12_CSI  
VDD33_B  
CSI0_D3+  
CSI0_D3-  
CSI0_D2+  
CSI0_D2-  
CSI0_D1+  
CAP_PLL0  
MODE_SEL1  
VDDP12_CH0  
VDDR12_CH0  
RIN0+  
RIN0-  
CMF  
DS90UB940-Q1  
64 WQFN  
Top Down View  
VDD33_A  
VDDR12_CH1  
RIN1+  
CSI0_D1-  
CSI0_D0+  
CSI0_D0-  
RIN1-  
CSI0_CLK+  
VDDP12_CH1  
MODE_SEL0  
CMLOUTP  
CMLOUTN  
CAP_PLL1  
CSI0_CLK-  
VDD12_CSI0  
D_GPIO0/MOSI  
DAP  
D_GPIO1/MISO  
D_GPIO2/SPLK  
Pin Functions  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NUMBER  
MIPI DPHY / CSI-2 OUTPUT PINS - Layout note: for unused CSI outputs, float those pins (do not connect to an external pullup or  
pulldown)  
CSI0_CLK-  
CSI0_CLK+  
21  
22  
O, DPHY  
O, DPHY  
O, DPHY  
O, DPHY  
O, DPHY  
O, DPHY  
O, DPHY  
O, DPHY  
CSI0 Differential clock  
CSI0 Differential pair 0  
CSI0 Differential pair 1  
CSI0 Differential pair 2  
CSI0 Differential pair 3  
CSI1 Differential clock  
CSI1 Differential pair 1  
CSI1 Differential pair 2  
CSI0_D0-  
CSI0_D0+  
23  
24  
CSI0_D1-  
CSI0_D1+  
25  
26  
CSI0_D2-  
CSI0_D2+  
27  
28  
CSI0_D3-  
CSI0_D3+  
29  
30  
CSI1_CLK-  
CSI1_CLK+  
34  
35  
CSI1_D0-  
CSI1_D0+  
36  
37  
CSI1_D1-  
CSI1_D1+  
38  
39  
4
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NUMBER  
CSI1_D2-  
CSI1_D2+  
40  
41  
O, DPHY  
CSI1 Differential pair 3  
CSI1 Differential pair 3  
CSI1_D3-  
CSI1_D3+  
42  
43  
O, DPHY  
FPD-LINK III INTERFACE - Layout note: for unused FPD-LinkIII inputs, float those pins (do not connect to an external pullup or  
pulldown)  
RIN0-  
RIN0+  
RIN1-  
RIN1+  
54  
53  
59  
58  
55  
I/O, CML  
I/O, CML  
I/O, CML  
I/O, CML  
I/O, CML  
FPD-Link III Inverting Input/Output  
The output must be AC-coupled with a 33 nF capacitor.  
FPD-Link III True Input/Output  
The output must be AC-coupled with a 33 nF capacitor.  
FPD-Link III Inverting Input/Output  
The output must be AC-coupled with a 33 nF capacitor.  
FPD-Link III True Input/Output  
The output must be AC-coupled with a 33 nF capacitor.  
CMF  
Common Mode Filter. Connect 0.1 µF capacitor to GND  
I2C PINS  
I2C_SDA  
46  
45  
47  
I/O, Open-  
Drain  
I2C Data Input / Output interface  
Open drain. Must have an external pull-up resistor to VDDIO DO NOT FLOAT.  
Recommended pull-up: 4.7 kΩ.  
I2C_SCL  
IDx  
I/O, Open-  
Drain  
I2C Clock Input / Output Interface  
Open drain. Must have an external pull-up resistor to VDDIO DO NOT FLOAT.  
Recommended pull-up: 4.7 kΩ.  
I,  
Analog  
Analog input. I2C Serial Control Bus Device ID Address. Table 11  
Configuration  
Pin  
SPI PINS (Pin function programmed through register) - Layout note: for unused SPI pins, tie to an external pulldown  
MOSI  
(D_GPIO0)  
19  
18  
17  
16  
Multi-function Master Out, Slave In.  
pin  
(Pin is shared with D_GPIO0)  
I/O, LVCMOS  
w/ weak  
internal PD  
MISO  
(D_GPIO1)  
Multi-function Master In, Slave Out.  
pin  
(Pin is shared with D_GPIO1)  
I/O, LVCMOS  
w/ weak  
internal PD  
SPLK  
(D_GPIO2)  
Multi-function Serial clock.  
pin  
(Pin is shared with D_GPIO2)  
I/O, LVCMOS  
w/ weak  
internal PD  
SS  
Multi-function Slave select.  
(D_GPIO3)  
pin  
(Pin is shared with D_GPIO3)  
I/O, LVCMOS  
w/ weak  
internal PD  
CONTROL PINS  
MODE_SEL0  
61  
50  
I,  
Analog  
Configuration  
Pin  
Analog input. Mode Select 0. Connect to external pull-up to VDD33 and pull-down to  
GND to create a voltage divider. See Table 8  
MODE_SEL1  
I,  
Analog  
Analog input. Mode Select 1. Connect to external pull-up to VDD33 and pull-down to  
GND to create a voltage divider. See Table 9  
Configuration  
Pin  
Copyright © 2014–2016, Texas Instruments Incorporated  
5
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NUMBER  
PDB  
48  
I, LVCMOS  
Power-Down Mode Input Pin  
Configuration PDB = 1, device is enabled (normal operation)  
Pin w/ weak PDB = 0, device is powered down.  
internal PD  
When the device is in the POWER DOWN state, the LVCMOS outputs are in tri-state,  
the PLL is shutdown and IDD is minimized.  
Note: PDB pin requires minimum ramp time of 200us  
BISTEN  
5
4
4
I, LVCMOS  
Configuration 0: BIST Mode is disabled.  
Pin w/ weak  
internal PD  
Bist Enable Pin  
1: BIST Mode is enabled.  
See Built-In Self Test (BIST) for more information  
BISTC  
(INTB_IN)  
I, LVCMOS  
Configuration  
Pin w/ weak  
internal PD  
Bist Clock Select.  
0: PCLK  
1: 33MHz  
(Pin is shared with INTB_IN)  
INTB_IN  
(BISTC)  
I, LVCMOS  
w/ weak  
Interrupt input.  
(Pin is shared with BISTC)  
internal PD  
BIDIRECTIONAL CONTROL CHANNEL (BCC) GPIO PINS (default pin function) - Layout note: for unused GPIO(s), tie to an external  
pulldown  
GPIO0  
7
Multi-function BCC GPIO0.  
(SDOUT)  
pin  
I/O,  
default state: logic LOW  
(Pin is shared with SDOUT)  
LVCMOS  
GPIO1  
(SWC)  
8
Multi-function BCC GPIO1.  
pin  
I/O,  
default state: logic LOW  
(Pin is shared with SWC)  
LVCMOS  
GPIO2  
(I2S_DC)  
10  
9
Multi-function BCC GPIO2.  
pin  
I/O,  
default state: logic LOW  
(Pin is shared with I2S_DC)  
LVCMOS  
GPIO3  
Multi-function BCC GPIO3.  
(I2S_DD)  
pin  
I/O,  
default state: logic LOW  
(Pin is shared with I2S_DD)  
LVCMOS  
HIGH-SPEED GPIO PINS HIGH-SPEED GPIO PINS (default pin function) - Layout note: for unused D_GPIO(s), tie to an external  
pulldown  
D_GPIO0  
(MOSI)  
19  
18  
17  
16  
I/O, LVCMOS General Purpose I/O in 2-lane FPD-Link III mode  
default state: tri-state  
(Pin is shared with MOSI)  
D_GPIO1  
(MISO)  
I/O, LVCMOS General Purpose I/O in 2-lane FPD-Link III mode  
default state: tri-state  
(Pin is shared with MISO)  
D_GPIO2  
(SPLK)  
I/O, LVCMOS General Purpose I/O in 2-lane FPD-Link III mode  
default state: tri-state  
(Pin is shared with SPLK)  
D_GPIO3  
(SS)  
I/O, LVCMOS General Purpose I/O in 2-lane FPD-Link III mode  
default state: tri-state  
(Pin is shared with SS)  
REGISTER READ/WRITES ONLY GPIO PINS (default pin function) - Layout note: for unused GPIO(s), tie to an external pulldown  
GPIO5_REG  
(I2S_DB)  
11  
Multi-function General Purpose Input/Output 5  
pin I2C register control only.  
I/O, LVCMOS default state: logic LOW  
(Pin is shared with I2S_DB)  
GPIO6_REG  
(I2S_DA)  
12  
Multi-function General Purpose Input/Output 6  
pin  
I2C register control only.  
I/O, LVCMOS default state: logic LOW  
(Pin is shared with I2S_DA)  
6
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NUMBER  
GPIO7_REG  
(I2S_WC)  
14  
Multi-function General Purpose Input/Output 7  
pin I2C register control only.  
I/O, LVCMOS default state: logic LOW  
(Pin is shared with I2S_WC)  
GPIO8_REG  
(I2S_CLK)  
13  
Multi-function General Purpose Input/Output 8  
pin  
I2C register control only.  
I/O, LVCMOS default state: logic LOW  
(Pin is shared with I2S_CLK)  
SLAVE MODE LOCAL I2S CHANNEL PINS (Pin function programmed through register) - Layout note: for unused I2S outputs, tie  
to an external pulldown  
I2S_WC  
(GPIO7_REG)  
14  
13  
12  
11  
10  
9
Multi-function Slave Mode I2S Word Clock Output.  
pin  
(Pin is shared with GPIO7_REG)  
O, LVCMOS  
I2S_CLK  
(GPIO8_REG)  
Multi-function Slave Mode I2S Clock Output.  
pin  
(Pin is shared with GPIO8_REG)  
O, LVCMOS  
I2S_DA  
(GPIO6_REG)  
Multi-function Slave Mode I2S Data Output.  
pin  
(Pin is shared with GPIO6_REG)  
O, LVCMOS  
I2S_DB  
(GPIO5_REG)  
Multi-function Slave Mode I2S Data Output.  
pin  
(Pin is shared with GPIO5_REG)  
O, LVCMOS  
I2S_DC  
(GPIO2_REG)  
Multi-function Slave Mode I2S Data Output.  
pin  
(Pin is shared with GPIO2)  
O, LVCMOS  
I2S_DD  
Multi-function Slave Mode I2S Data Output.  
(GPIO3_REG)  
pin  
(Pin is shared with GPIO3)  
O, LVCMOS  
MASTER MODE LOCAL I2S CHANNEL PINS (Pin function programmed through register) - Layout note: for unused GPIO(s), tie to  
an external pulldown  
SWC  
(GPIO1)  
8
7
Multi-function Master Mode I2S Word Clock Output.  
pin  
(Pin is shared with GPIO1)  
O, LVCMOS  
SDOUT  
(GPIO0)  
Multi-function Master Mode I2S Data Output.  
pin  
(Pin is shared with GPIO0)  
O, LVCMOS  
MCLK  
15  
Multi-function Master Mode I2S System Clock Output.  
(GPIO9)  
pin  
(Pin is shared with GPIO9)  
O, LVCMOS  
STATUS PINS - Layout note: add a test point (TP) on these pins  
LOCK  
1
O, LVCMOS Lock Status Output  
LOCK = 1: PLL acquired lock to the reference clock input; DPHY outputs are active  
LOCK = 0: PLL is unlocked  
PASS  
7
O, LVCMOS Normal mode status output pin (BISTEN = 0)  
PASS = 1: No fault detected on input display timing  
PASS = 0: Indicates an error condition or corruption in display timing. Fault condition  
occurs:  
1. DE length value mismatch measured once in succession  
2. VSync length value mismatch measured twice in succession  
BIST mode status output pin (BISTEN = 1)  
PASS = 1: No error detected  
PASS = 0: Error detected  
(1)  
POWER & GROUND  
VDD33_A,  
VDD33_B  
56  
31  
Power  
3.3V (±10%) supply. Power to on-chip regulator. Requires 10 µF, 1 µF, 0.1 µF, and  
0.01 µF capacitors to GND  
(1) The VDD (VDD12, VDD33, and VDDIO) supply ramp should be faster than 1.5ms with a monotonic rise  
Copyright © 2014–2016, Texas Instruments Incorporated  
7
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
VDDIO  
NUMBER  
3
Power  
Power  
LVCMOS I/O power supply, 1.8V (±5%) OR 3.3V (±10%). Requires 10 µF, 1 µF, 0.1 µF,  
and 0.01 µF capacitors to GND  
VDD12_CSI0  
VDDP12_CSI  
VDD12_CSI1  
VDDL12_0  
20  
32  
33  
6
1.2V (±5%) supplies. Requires 10 µF, 1 µF, 0.1 µF, and 0.01 µF capacitors to GND at  
each VDD pin.  
VDDL12_1  
44  
51  
52  
60  
57  
VDDP12_CH0  
VDDR12_CH0  
VDDP12_CH1  
VDDR12_CH1  
CAP_PLL0  
CAP_PLL1  
CAP_I2S  
49  
64  
2
CAP  
Decoupling capacitor connection for on-chip regulator. Each requires a 0.1 µF  
decoupling capacitor to GND.  
VSS  
DAP  
Ground  
DAP is the large metal contact at the bottom side, located at the center of the WQFN  
package. Connect to the ground plane (GND) with at least 32 vias.  
OTHER PINS  
CMLOUTP  
CMLOUTN  
62  
63  
O, CML  
Monitor point for equalized differential signal.  
Layout recommendation:  
1) place 0.1 µF series capacitor on CMLOUTP and CMLOUTN  
2) place 100ohm termination between 0.1 µF away from CMLOUTP and CMLOUTN  
pins  
3) place test points from 0.1 µF capacitors  
The definitions below define the functionality of the I/O cells for each pin.  
I/O TYPE:  
P = Power Supply  
G = Ground  
CML = CML Interface  
DPHY = MIPI DPHY Interface  
Analog = Analog Interface  
LVCMOS = LVCMOS pin; Referenced to VDDIO IO supply  
I = Input  
O = Output  
I/O = Input/Output  
PD, PU = Internal Pull-Down/Pull-Up (All strap pins have weak internal pull-ups or pull-downs. If the default strap value is needed to be  
changed then an external resistor should be used.)  
Multi-function pin  
8
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
7 Specifications  
7.1 Absolute Maximum Ratings  
(2)  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
MIN  
–0.3  
-0.3  
–0.3  
MAX  
4.0  
UNIT  
VDD33  
VDD12  
VDDIO  
Supply voltage  
Supply voltage  
Supply voltage  
V
V
V
1.8  
4.0  
VDDIO +  
0.3  
LVCMOS I/O voltage  
–0.3  
–0.3  
V
FPD-Link III input voltage  
Junction temperature  
2.75  
150  
150  
V
TJ  
°C  
°C  
Tstg  
Storage temperature range  
-65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) For soldering specifications, see product folder at www.ti.com and SNOA549  
7.2 ESD Ratings—JEDEC  
VALUE  
±8000  
±1250  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 ESD Ratings—IEC and ISO  
VALUE  
UNIT  
IEC, powered-up only contact discharge  
(RIN0+, RIN0-, RIN1+, RIN1-  
±8000  
±15000  
±8000  
)
RD = 330 Ω, CS = 150 pF  
Electrostatic discharge RD = 330 Ω, CS = 150 and 330 pF  
RD = 2 kΩ, CS = 150 and 330 pF  
V
V
V
IEC, powered-up only air-gap discharge  
(RIN0+, RIN0-, RIN1+, RIN1-  
)
ISO10605 contact discharge (RIN0+, RIN0-  
RIN1+, RIN1-  
,
)
V(ESD)  
ISO10605 air-gap discharge (RIN0+, RIN0-  
RIN1+, RIN1-  
,
±15000  
±8000  
)
ISO10605 contact discharge (RIN0+, RIN0-  
RIN1+, RIN1-  
,
)
ISO10605 air-gap discharge (RIN0+, RIN0-  
RIN1+, RIN1-  
,
±15000  
)
7.4 Recommended Operating Conditions  
MIN  
3.0  
NOM  
3.3  
1.8  
1.2  
25  
MAX  
3.6  
UNIT  
V
Supply Voltage (VDD33)  
Supply Voltage (VDD18)  
1.71  
1.14  
40  
25  
1.89  
1.26  
105  
96  
V
Supply Voltage (VDD12)  
V
Operating Free Air Temperature (TA)  
Pixel Clock Frequency (Single Link)  
Pixel Clock Frequency (Dual Link)  
Supply Noise -- VDD33 (DC-50MHz)  
Supply Noise -- VDD18 (DC-50MHz)  
Supply Noise -- VDD12 (DC-50MHz)  
°C  
MHz  
MHz  
mVP-P  
mVP-P  
mVP-P  
50  
170  
100  
50  
25  
Copyright © 2014–2016, Texas Instruments Incorporated  
9
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
7.5 Thermal Information  
DS90UB940-Q1  
THERMAL METRIC(1)  
WQFN (NKD)  
UNIT  
64 PINS  
24.8  
6.2  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
3.6  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
3.6  
RθJC(bot)  
0.6  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
7.6 DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
3.3V LVCMOS I/O (VDDIO = 3.3V ± 10%)  
VIH  
VIL  
IIN  
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
PDB, BISTEN,  
BISTC,  
GPIO[3:0],  
D_GPIO[3:0],  
I2S_DA,  
I2S_DB,  
I2S_DC,  
I2S_DD,  
I2S_CLK,  
I2S_WC,  
2.0  
0
VDDIO  
V
V
0.8  
10  
VIN = 0V or VDDIO  
-10  
2.4  
0
µA  
V
VOH  
VOL  
IOS  
IOZ  
High Level Output Voltage  
Low Level Output Voltage  
Output Short Circuit Current  
Tri-state Output Current  
IOH = -4mA  
IOL = +4mA  
VOUT = 0V  
VDDIO  
0.4  
V
-55  
mA  
PDB = 0V  
VOUT = 0V or VDDIO  
-20  
20  
10  
µA  
pF  
LOCK, PASS  
CIN  
Input Capacitance  
1.8V LVCMOS I/O (VDDIO = 1.8V ± 5%)  
VIH  
High Level Input Voltage  
PDB, BISTEN,  
BISTC,  
0.65 *  
VDDIO  
VDDIO  
V
GPIO[3:0],  
D_GPIO[3:0],  
I2S_DA,  
I2S_DB,  
I2S_DC,  
I2S_DD,  
I2S_CLK,  
I2S_WC,  
VIL  
Low Level Input Voltage  
0.35 *  
VDDIO  
0
V
µA  
V
IIN  
Input Current  
VIN = 0V or VDDIO  
IOH = -4mA  
-10  
10  
VDDIO  
0.45  
VOH  
High Level Output Voltage  
VDDIO-  
0.45  
VOL  
IOS  
IOZ  
Low Level Output Voltage  
Output Short Circuit Current  
Tri-state Output Current  
IOL = +4mA  
VOUT = 0V  
0
V
LOCK, PASS  
-35  
mA  
PDB = 0V  
VOUT = 0V or VDDIO  
-20  
20  
10  
µA  
pF  
CIN  
Input Capacitance  
SERIAL CONTROL BUS (VDDIO = 1.8V ± 5% OR 3.3V ± 10%)  
VIH  
Input High Level  
I2C_SDA,  
I2C_SCL  
0.7 *  
VDDIO  
VDD33  
V
V
VIL  
Input Low Level  
0.3 *  
VDDIO  
GND  
VHY  
VOL  
IIN  
Input Hysteresis  
Output Low Level  
Input Current  
>50  
mV  
V
IOL = +4mA  
0
0.4  
10  
VIN = 0V or VDDIO  
-10  
µA  
10  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
FPD-LINK III CML INPUT  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
VTH  
Differential Threshold High  
Voltage  
VCM = 2.1V (Internal VBIAS  
)
RIN0+, RIN0-  
RIN1+, RIN1-  
50  
mV  
VTL  
Differential Threshold Low  
Voltage  
-50  
mV  
mV  
V
VID  
Input Differential Threshold  
100  
VCM  
Differential Common-mode  
Voltage  
2.1  
RT  
Internal Termination Resistor -  
Differential  
80  
100  
120  
250  
Ω
HSTX DRIVER  
VCMTX  
HS transmit static common-mode  
voltage  
CSI0_D3±,  
CSI0_D2±,  
CSI0_D1±,  
CSI0_D0±,  
CSI0_CLK±,  
CSI1_D3±,  
CSI1_D2±,  
CSI1_D1±,  
CSI1_D0±,  
CSI1_CLK±  
150  
200  
200  
mV  
|ΔVCMTX(1,0)  
|
VCMTX mismatch when output is  
1 or 0  
5
270  
14  
mVP-P  
mV  
|VOD  
|
HS transmit differential voltage  
140  
40  
|ΔVOD  
|
VOD mismatch when output is 1  
or 0  
mV  
VOHHS  
ZOS  
HS output high voltage  
360  
mV  
Single-ended output impedance  
50  
62.5  
Ω
ΔZOS  
Mismatch in single-ended output  
impedance  
10  
%
LPTX DRIVER  
VOH  
VOL  
High Level Output Voltage  
Low Level Output Voltage  
Output impedance  
IOH = -4mA  
IOL = +4mA  
CSI0_D3±,  
CSI0_D2±,  
CSI0_D1±,  
CSI0_D0±,  
CSI0_CLK±,  
CSI1_D3±,  
CSI1_D2±,  
CSI1_D1±,  
CSI1_D0±,  
CSI1_CLK±  
1.05  
-50  
1.2  
1.3  
50  
V
mV  
ZOLP  
110  
Ω
LOOP-THROUGH MONITOR OUTPUT  
VODp-p Differential Output Voltage  
RL = 100Ω  
CMLOUTP,  
CMLOUTN  
360  
mV  
SUPPLY CURRENT  
PT  
Total Power Consumption,  
Normal Operation  
Checkerboard Pattern,  
170MHz. See Figure 1.  
2-lane FPD-Link III Input, 2  
MIPI lanes Output  
VDD  
628  
10  
875  
45  
mW  
mW  
PZ  
Total Power Consumption,  
Power-Down Mode  
PDB = 0V  
IDD12  
IDD33  
IDDIO  
Supply Current, Normal  
Operation  
Checkerboard Pattern, 96MHz. VDD12 = 1.2 V  
150  
90  
250  
122  
mA  
mA  
See Figure 1.  
1-lane FPD-Link III Input, 2  
VDD33 = 3.6 V  
VDDIO = 1.89  
V
MIPI lanes Output  
1
6
mA  
VDDIO = 3.6 V  
1
125  
90  
6
225  
122  
mA  
mA  
mA  
IDD12  
IDD33  
IDDIO  
Supply Current, Normal  
Operation  
Checkerboard Pattern, 96MHz. VDD12 = 1.2 V  
See Figure 1.  
1-lane FPD-Link III Input, 4  
MIPI lanes Output  
VDD33 = 3.6 V  
VDDIO = 1.89  
V
1
1
6
6
mA  
mA  
VDDIO = 3.6 V  
Copyright © 2014–2016, Texas Instruments Incorporated  
11  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
MAX UNIT  
DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
VDD12 = 1.2 V  
VDD33 = 3.6 V  
MIN  
TYP  
250  
90  
IDD12  
IDD33  
IDDIO  
Supply Current, Normal  
Operation  
Checkerboard Pattern,  
170MHz. See Figure 1.  
2-lane FPD-Link III Input, 2  
MIPI lanes Output  
345  
122  
mA  
mA  
VDDIO = 1.89  
V
1
6
mA  
VDDIO = 3.6 V  
VDD12 = 1.2 V  
VDD33 = 3.6 V  
1
220  
90  
6
300  
122  
mA  
mA  
mA  
IDD12  
IDD33  
IDDIO  
Supply Current, Normal  
Operation  
Checkerboard Pattern,  
170MHz. See Figure 1.  
2-lane FPD-Link III Input, 4  
MIPI lanes Output  
VDDIO = 1.89  
V
1
6
mA  
VDDIO = 3.6 V  
VDD12 = 1.2 V  
VDD33 = 3.6 V  
1
2
2
6
30  
8
mA  
mA  
mA  
IDD12Z  
IDD33Z  
IDDIOZ  
Supply Current, Power Down  
Mode  
PDB = 0 V  
VDDIO = 1.89  
V
0.1  
0.1  
0.3  
0.3  
mA  
mA  
VDDIO = 3.6 V  
12  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
7.7 AC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
GPIO BIT RATE  
Rb,FC  
Forward Channel Bit Rate  
PCLK = 25MHz - 170MHz(1)  
GPIO[3:0]  
0.25 *  
PCLK  
Mbps  
kbps  
Rb,BC  
Rb,BC  
Back Channel Bit Rate  
Back Channel Bit Rate  
133  
High Speed (2-lane Mode), 1  
D_GPIO active.  
See Table 4.  
D_GPIO[3:0]  
2.0  
Mbps  
Mbps  
kbps  
High Speed (2-lane Mode), 2  
D_GPIO's active.  
See Table 4.  
1.33  
High Speed (2-lane Mode), 4  
D_GPIO's active.  
See Table 4.  
800  
133  
Normal mode. See Table 4.  
kbps  
s
tGPIO,FC  
GPIO Pulse Width, Forward  
Channel  
GPIO[3:0]  
GPIO[3:0]  
>2 /  
PCLK(1)  
tGPIO,BC  
RESET  
tLRST  
GPIO Pulse Width, Back Channel  
20  
2
μs  
PDB Reset Low Pulse  
PDB  
ms  
LOOP-THROUGH MONITOR OUTPUT  
EW  
Differential Output Eye Opening  
Width  
RL = 100Ω, Jitter frequency >  
PCLK(1) / 40  
CMLOUTP,  
CMLOUTN  
0.4  
UI  
See Figure 2.  
EH  
Differential Output Eye Height  
>300  
mV  
FPD-LINK III CML INPUT  
tDDLT Lock Time  
See Figure 4.  
RIN0+,  
RIN0-,  
RIN1+,  
RIN1-  
5
2
10(2)  
ms  
I2S TRANSMITTER  
tJ,I2S Clock Output Jitter  
tI2S  
I2S_CLK  
ns  
ns  
I2S Clock Period(3)  
See Figure 9.  
>2 /  
PCLK(1)  
or >77  
tHC,I2S  
tLC,I2S  
tSR,I2S  
tHR,I2S  
I2S Clock High Time(3)  
I2S Clock Low Time(3)  
I2S Set-up Time  
See Figure 9.  
See Figure 9.  
See Figure 9.  
See Figure 9.  
0.48  
0.48  
0.4  
tI2S  
tI2S  
tI2S  
I2S_DA,  
I2S_DB,  
I2S_DC,  
I2S_DD  
I2S Hold Time  
0.4  
tI2S  
(1) PCLK refers to the equivalent pixel clock frequency, which is equal to the FPD-Link III line rate / 35.  
(2) This parameter is specified by characterization and is not tested in production.  
(3) I2S specifications for tLC,I2S and tHC,I2S pulses must each be greater than 1 PCLK period to ensure sampling and supersedes the  
0.35*tI2S requirement. tLC,I2S and tHC,I2S must be longer than the greater of either 0.35*tI2S or 2 * PCLK.  
Copyright © 2014–2016, Texas Instruments Incorporated  
13  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
7.8 Timing Requirements for the Serial Control Bus  
Over I2C supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
>0  
TYP  
MAX UNIT  
100 kHz  
400 kHz  
fSCL  
SCL Clock Frequency  
Standard Mode  
Fast Mode  
>0  
Fast Plus Mode  
Standard Mode  
Fast Mode  
>0  
1
MHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
pF  
pF  
ns  
ns  
tLOW  
tHIGH  
tHD;STA  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
SCL Low Period  
SCL High Period  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
4.0  
0.6  
0.26  
4.7  
0.6  
0.26  
0
Fast Plus Mode  
Standard Mode  
Fast Mode  
Fast Plus Mode  
Standard Mode  
Fast Mode  
Hold time for a start or a  
repeated start condition  
Figure 8  
Fast Plus Mode  
Standard Mode  
Fast Mode  
Set Up time for a start or a  
repeated start condition  
Figure 8  
Fast Plus Mode  
Standard Mode  
Fast Mode  
Data Hold Time  
Figure 8  
0
Fast Plus Mode  
Standard Mode  
Fast Mode  
0
Data Set Up Time  
Figure 8  
250  
100  
50  
Fast Plus Mode  
Standard Mode  
Fast Mode  
Set Up Time for STOP  
Condition  
Figure 8  
4.0  
0.6  
0.26  
4.7  
1.3  
0.5  
Fast Plus Mode  
Standard Mode  
Fast Mode  
Bus Free Time  
Between STOP and START  
Figure 8  
Fast Plus Mode  
Standard Mode  
Fast Mode  
tr  
SCL & SDA Rise Time,  
Figure 8  
1000(1)  
300(1)  
120(1)  
300(1)  
300(1)  
120(1)  
400  
Fast Plus Mode  
Standard Mode  
Fast mode  
tf  
SCL & SDA Fall Time,  
Figure 8  
Fast Plus Mode  
Standard Mode  
Fast Mode  
Cb  
Capacitive Load for Each Bus  
Line  
400  
Fast Plus Mode  
Fast Mode  
550  
tSP  
Input Filter  
50  
Fast Plus Mode  
50  
(1) Parameter is specified by bench characterization and is not tested in production.  
14  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
7.9 Switching Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
HSTX DRIVER  
HSTXDBR  
Data bit rate(1)  
MIPI 2 Lanes  
CSI0_D0±  
CSI0_D1±  
CSI0_D2±  
CSI0_D3±  
CSI1_D0±  
CSI1_D1±  
CSI1_D2±  
CSI1_D3±  
CSI0_CLK±  
CSI1_CLK±  
350  
1344  
Mbps  
MHz  
MIPI 4 Lanes  
MIPI 2 Lanes  
MIPI 4 Lanes  
Above 450MHz  
175  
175  
1190  
672  
fCLK  
DDR Clock frequency(1)  
87.5  
595  
ΔVCMTX(HF) Common mode voltage  
15 mVRMS  
25 mVRMS  
variations HF(1)  
ΔVCMTX(LF) Common mode voltage  
Between 50 and 450MHz  
variations LF(1)  
tRHS  
tFHS  
20% to 80% Rise and Fall HS(1) HS bit rates 1 Gbps (UI 1 ns)  
0.3  
UI  
UI  
HS bit rates > 1 Gbps (UI < 1 ns)  
0.35  
Applicable for all HS bit rates.  
However, to avoid excessive  
radiation, bit rates 1 Gbps (UI  
1 ns), should not use values  
below 150 ps  
100  
ps  
SDDTX  
TX differential return loss(1)  
fLPMAX  
fH  
-18  
-9  
dB  
dB  
fMAX  
LPTX DRIVER  
tRLP  
Rise Time LP(2) (3)  
Fall Time LP(2) (3)  
Rise Time Post-EoT(1) (3)  
15% to 85% rise time  
15% to 85% fall time  
30%-85% rise time  
CSI0_D0±  
CSI0_D1±  
CSI0_D2±  
CSI0_D3±  
CSI1_D0±  
CSI1_D1±  
CSI1_D2±  
CSI1_D3±  
CSI0_CLK±  
CSI1_CLK±  
25  
25  
35  
ns  
ns  
ns  
tFLP  
tREOT  
tLP-PULSE-TX Pulse width of the LP exclusive- First LP exclusive-OR clock  
OR clock(1) (3)  
pulse after Stop state or last  
pulse before Stop state  
40  
ns  
All other pulses  
20  
90  
ns  
ns  
tLP-PER-TX  
DV/DtSR  
Period of the LP exclusive-OR  
clock(1)  
Slew rate(2) (3)  
Cload = 0pF  
Cload = 5pF  
Cload = 20pF  
Cload = 70pF  
500 mV/ns  
300 mV/ns  
250 mV/ns  
150 mV/ns  
Cload = 0 to 70pF (Falling Edge  
Only)  
30  
30  
mV/ns  
mV/ns  
Cload = 0 to 70pF (Rising Edge  
Only)  
Cload = 0 to 70pF (Rising Edge  
Only)  
30 -  
0.075*(V  
O,INST -  
700)  
mV/ns  
CLOAD  
Load capacitance(3)  
0
70  
pF  
(1) Specification is ensured by design and is not tested in production.  
(2) This parameter is specified by characterization and is not tested in production.  
(3) CLOAD includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be  
<10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2ns delay.  
Copyright © 2014–2016, Texas Instruments Incorporated  
15  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Switching Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
DATA-CLOCK TIMING SPECIFICATIONS (1) (Figure 10)  
UIINST  
UI instantaneous  
fCLK = CSI-2 DDR Clock  
frequency  
CSI0_D0±  
CSI0_D1±  
CSI0_D2±  
CSI0_D3±  
CSI1_D0±  
CSI1_D1±  
CSI1_D2±  
CSI1_D3±  
CSI0_CLK±  
CSI1_CLK±  
1/(fCLK  
* 2)  
UI  
ΔUI  
UI variation  
PCLK = 25 - 96MHz  
UI 1ns  
-10%  
10%  
5%  
UI  
UI  
UI < 1ns  
-5%  
tSKEW(TX)  
Data to Clock Skew (measured  
at transmitter)  
Skew between clock and data  
from ideal center  
Data rate 1 Gbps  
Data rate > 1 Gbps  
-0.15  
0.15 UIINST  
-0.2  
0.2 UIINST  
CSI-2 TIMING SPECIFICATIONS (1) (Figure 11, Figure 12)  
tCLK-MISS  
Timeout for receiver to detect  
absence of Clock transitions and  
disable the Clock Lane HS-RX  
CSI0_D0±  
CSI0_D1±  
CSI0_D2±  
CSI0_D3±  
CSI1_D0±  
CSI1_D1±  
CSI1_D2±  
CSI1_D3±  
CSI0_CLK±  
CSI1_CLK±  
60  
ns  
ns  
tCLK-POST  
tCLK-PRE  
HS exit  
60 +  
52*UI  
Time HS clock shall be driver  
prior to any associated Data  
Lane beginning the transition  
from LP to HS mode  
8
UI  
tCLK-  
Clock Lane HS Entry  
38  
95  
95  
ns  
ns  
PREPARE  
tCLK-SETTLE Time interval during which the  
HS receiver shall ignore any  
300  
Clock Lane HS transitions  
tCLK-TERM-EN Time-out at Clock Lane Display  
Module to enable HS  
Time for  
Dn to  
Termination  
reach  
38  
ns  
VTERM-  
EN  
tCLK-TRAIL  
Time that the transmitter drives  
the HS-0 state after the last  
payload clock bit of a HS  
transmission burst  
60  
ns  
ns  
tCLK-  
PREPARE  
tCLK-ZERO  
TCLK-PREPARE + time that the  
transmitter drives the HS-0 state  
prior to starting the Clock  
+
300  
tD-TERM-EN  
Time for the Data Lane receiver  
to enable the HS line termination  
Time for  
Dn to  
35 +  
4*UI  
reach V-  
TERM-  
EN  
ns  
ns  
tEOT  
Transmitted time interval from  
the start of tHS-TRAIL to the start  
of the LP-11 state following a HS  
burst  
see(4)  
105 +  
12*UI  
tHS-EXIT  
Time that the transmitter drives  
LP=11 following a HS burst  
100  
ns  
ns  
tHS-PREPARE Data Lane HS Entry  
40 +  
4*UI  
85 +  
6*UI  
(4) (a) 1280x720p60; PCLK = 74.25MHz; 4 MIPI lanes reg0x6c=0x02; reg0x6d=0x84  
(b) 1280x720p60; PCLK = 74.25MHz; 2 MIPI lanes reg0x6c=0x02; reg0x6d=0x89  
(c) 640x480p60; PCLK = 25MHz; 4 MIPI lanes reg0x6c=0x02; reg0x6d=0x82  
(d) 640x480p60; PCLK = 25MHz; 2 MIPI lanes reg0x6c=0x02; reg0x6d=0x83  
(e) Other video formats may require additional register configuration.  
16  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Switching Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
145 +  
TYP  
MAX  
UNIT  
tHS-PREPARE tHS-PREPARE + time that the  
+ tHS-ZERO  
transmitter drives the HS-0 state  
prior to transmitting the Sync  
sequence  
ns  
10*UI  
tHS-SETTLE  
Time interval during which the  
HS receiver shall ignore any  
Data Lane HS transitions,  
85 +  
6*UI  
145 +  
10*UI  
ns  
ns  
starting from the beginning of tHS-  
SETTLE  
tHS-SKIP  
Time interval during which the  
HS-RX should ignore any  
transitions on the Data Lane,  
following a HS burst. The end  
point of the interval is defined as  
the beginning of the LP-11 state  
following the HS burst.  
55 +  
4*UI  
40  
tHS-TRAIL  
Data Lane HS Exit  
60 +  
4*UI  
ns  
ns  
tLPX  
Transmitted length of LP state  
50  
tWAKEUP  
Recovery Time from Ultra Low  
Power State (ULPS)  
1
ms  
7.10 Timing Diagrams and Test Circuits  
+VOD  
-VOD  
CSI0_CLK±,  
CSI1_CLK±  
+VOD  
-VOD  
CSI0_D1±, CSI0_D3±,  
CSI1_D1±, CSI1_D3±  
+VOD  
-VOD  
CSI0_D0±, CSI0_D2±,  
CSI1_D0±, CSI1_D2±  
Cycle N  
Cycle N+1  
Figure 1. Checkerboard Data Pattern  
EW  
VOD (+)  
RIN  
(Diff.)  
EH  
0V  
EH  
VOD (-)  
t
(1 UI)  
BIT  
Figure 2. CML Output Driver  
V
DDIO  
80%  
20%  
GND  
t
t
CHL  
CLH  
Figure 3. LVCMOS Transition Times  
Copyright © 2014–2016, Texas Instruments Incorporated  
17  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Timing Diagrams and Test Circuits (continued)  
PDB  
VIH(min)  
RIN[1:0]±  
tDDLT  
LOCK  
VOH(min)  
TRI-STATE  
Figure 4. CML PLL Lock Time  
RIN[1:0]+  
VTL  
VCM  
VTH  
RIN[1:0]-  
GND  
Figure 5. FPD-Link III Receiver DC VTH/VTL Definition  
V
DDIO  
I2S_CLK,  
MCLK  
1/2 V  
DDIO  
GND  
V
DDIO  
V
OHmin  
I2S_WC,  
V
I2S_D[D:A]  
OLmax  
GND  
t
t
ROH  
ROS  
Figure 6. Output Data Valid (Setup and Hold) Times  
BISTEN  
1/2 V  
DDIO  
t
PASS  
1/2 V  
PASS  
(w/errors)  
DDIO  
Result Held  
Prior BIST Result  
Current BIST Test - Toggle on Error  
Figure 7. BIST PASS Waveform  
SDA  
SCL  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
f
r
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 8. Serial Control Bus Timing Diagram  
18  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Timing Diagrams and Test Circuits (continued)  
tI2S  
tLC,I2S  
t
HC,I2S  
V
IH  
I2S_CLK  
V
IL  
t
t
SR,I2S  
HR,I2S  
I2S_WC  
I2S_D[A,B,C,D]  
Figure 9. I2S Timing  
CSI[1:0]_D[3:0]+  
CSI[1:0]_D[3:0]-  
0.5UI +  
tskew  
CSI[1:0]_CLK+  
CSI[1:0]_CLK-  
1 UI  
Figure 10. Clock and Data Timing in HS Transmission  
Clock Lane  
Data Lane  
Dp/Dn  
T
T
T
HS-SYNC  
LPX  
HS-ZERO  
Disconnect  
Terminator  
THS-PREPARE  
VIH(min)  
VIL(max)  
T
REOT  
Capture  
1st Data Bit  
T
D-TERM-EN  
LP-01  
T
LP-11  
HS-SKIP  
LP-11  
LP-00  
T
EOT  
HS-TRAIL  
T
HS-SETTLE  
T
T
HS-EXIT  
Figure 11. High Speed Data Transmission Burst  
Copyright © 2014–2016, Texas Instruments Incorporated  
19  
 
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Timing Diagrams and Test Circuits (continued)  
Disconnect  
Terminator  
Clock Lane  
Dp/Dn  
T
CLK-SETTLE  
T
T
EOT  
CLK-POST  
TCLK-TERM-EN  
T
CLK-MISS  
VIH(min)  
VIL(max)  
T
T
T
LPX  
T
T
CLK-PRE  
CLK-TRAIL  
HS-EXIT  
CLK-ZERO  
T
CLK-PREPARE  
Data Lane  
Dp/Dn  
T
HS-PREPARE  
Disconnect  
Terminator  
T
LPX  
VIH(min)  
VIL(max)  
T
HS-SKIP  
T
D-TERM-EN  
T
HS-SETTLE  
Figure 12. Switching the Clock Lane between Clock Transmission and Low-Power Mode  
VS  
(internal Node)  
Vertical Blanking  
1st  
Line  
2nd  
Line  
Last  
Line  
DE  
(internal Node)  
CSI0_D[3:0]±  
or  
CSI1_D[3:0]±  
1 to 216  
t
LPX  
Line  
Packet  
Line  
Packet  
Line  
Packet  
Line  
Packet  
FS  
FE  
FS  
LPS  
LPS  
LPS  
LPS  
LPS  
LPS  
LPS  
LPS  
Frame  
Sync  
Packet  
Line  
Packet  
Figure 13. Long Line Packets and Short Frame Sync Packets  
20  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Timing Diagrams and Test Circuits (continued)  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-4  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
BYTE 10  
BYTE 11  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
BYTE 10  
BYTE 11  
HS BYTES TRANSMITTED (n) IS 2 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
BYTE 10  
BYTE 11  
EOT  
HS BYTES TRANSMITTED (n) IS 3 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-1  
EOT  
EOT  
BYTE 10  
BYTE 11  
EOT  
EOT  
Figure 14. 4 MIPI Data Lane Configuration  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 2  
LANE 0  
LANE 1  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 2  
LANE 0  
LANE 1  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE n-1  
EOT  
EOT  
Figure 15. 2 MIPI Data Lane Configuration  
Copyright © 2014–2016, Texas Instruments Incorporated  
21  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
7.11 Power Sequence  
t0  
VDD33  
GND  
t3  
VDDIO  
GND  
t4  
t1  
VDD12  
GND  
t2  
VDDIO  
t5  
VPDB_HIGH  
PDB(*)  
VPDB_LOW  
GND  
(*) It is recommended to assert PDB (active High) with a microcontroller rather than an RC filter  
network to help ensure proper sequencing of PDB pin after settling of power supplies.  
Figure 16. Power Sequence  
Table 1. Power-Up Sequencing Constraints  
Symbol  
Description  
Test Conditions  
Min  
3.0  
Typ  
Max  
Units  
3.6  
1.89  
3.6  
V
V
V
V
VDDIO  
VDDIO voltage range  
1.71  
3.0  
VDD33  
VDD12  
VDD33 voltage range  
VDD12 voltage range  
1.14  
0.8  
1.26  
PDB LOW threshold  
VDDIO = 3.3V ± 10%  
VDDIO = 1.8V ± 5%  
Note: VPDB should not exceed  
limit for respective I/O voltage  
before 90% voltage of VDD12  
VPDB_LOW  
V
V
0.35 *  
VDDIO  
VDDIO = 3.3V ± 10%  
VDDIO = 1.8V ± 5%  
2.0  
VPDB_HIGH  
PDB HIGH threshold  
0.65 *  
VDDIO  
These time constants are specified for  
rise time of power supply voltage ramp  
(10% - 90%)  
t0  
VDD33 rise time  
VDDIO rise time  
<1.5  
<1.5  
ms  
ms  
These time constants are specified for  
rise time of power supply voltage ramp  
(10% - 90%)  
t3  
22  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Power Sequence (continued)  
Table 1. Power-Up Sequencing Constraints (continued)  
Symbol  
Description  
VDD12 rise time  
VDDIO delay time  
Test Conditions  
Min  
Typ  
Max  
Units  
These time constants are specified for  
rise time of power supply voltage ramp  
(10% - 90%)  
t4  
t1  
<1.5  
ms  
VIL of rising edge (VDDIO ) to VIL of  
rising edge (VDD_N)  
The power supplies may be ramped  
simultaneously. If sequenced, VDD33  
should be first, either by itself or with  
VDDIO (1.8V or 3.3V) or VDD12, with the  
other rail(s) following in any order.  
>0  
ms  
ms  
t2  
VDD12 delay time  
Startup time  
The part is powered up after the startup  
time has elapsed from the moment PDB  
goes HIGH. Local I2C is available to  
read/write 948/940 registers after this  
time.  
t5  
<1  
7.12 Typical Characteristics  
Time (50 ns/DIV)  
Time (50 ns/DIV)  
Figure 17. CSI-2 D0± End of Transmission  
Figure 18. CSI-2 D0± Start of Transmission  
Copyright © 2014–2016, Texas Instruments Incorporated  
23  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DS90UB940-Q1 receives a 35-bit symbol over single or dual serial FPD-Link III pairs operating at up to 3.36  
Gbp line rate in 1-lane FPD-Link III mode and 2.975 Gbps per lane in 2-lane FPD-Link III mode. The  
DS90UB940-Q1 converts this stream into a CSI-2 MIPI Interface (4 data channels + 1 clock, or 8 data channels  
+ 2 clocks in replicate mode). The FPD-Link III serial stream contains an embedded clock, video control signals,  
audio, GPIOs, I2C, and the DC-balanced video data and audio data which enhance signal quality to support AC  
coupling.  
The DS90UB940-Q1 is intended for use with the DS90UB949-Q1 or DS90UB947-Q1 Serializers, but is also  
backward compatible to the DS90UB925Q-Q1, DS90UB925AQ-Q1, and DS90UB927Q-Q1 FPD-Link III  
Serializers.  
The DS90UB940-Q1 deserializer attains lock to a data stream without the use of a separate reference clock  
source, which greatly simplifies system complexity and overall cost. The deserializer also synchronizes to the  
serializer regardless of the data pattern, delivering true automatic “plug and lock” performance. It can lock to the  
incoming serial stream without the need of special training patterns or sync characters. The deserializer recovers  
the clock and data by extracting the embedded clock information, validating then deserializing the incoming data  
stream.  
The DS90UB940-Q1 deserializer incorporates an I2C compatible interface. The I2C compatible interface allows  
programming of serializer or deserializer devices from a local host controller. In addition, the devices incorporate  
a bidirectional control channel (BCC) that allows communication between serializer/deserializer as well as remote  
I2C slave devices.  
The bidirectional control channel (BCC) is implemented via embedded signaling in the high-speed forward  
channel (serializer to deserializer) combined with lower speed signaling in the reverse channel (deserializer to  
serializer). Through this interface, the BCC provides a mechanism to bridge I2C transactions across the serial  
link from one I2C bus to another. The implementation allows for arbitration with other I2C compatible masters at  
either side of the serial link.  
8.2 Functional Block Diagram  
MIPI CSI-2  
Outputs  
RIN0+  
RIN0-  
RIN1+  
RIN1-  
CMLOUTP  
CMLOUTN  
Timing  
and  
Control  
PDB  
LOCK  
PASS  
MODE_SEL0  
MODE_SEL1  
CLOCK  
MIPI CSI-2  
Outputs  
Clock  
Gen  
4
/
D_GPIOx / SPI  
I2S / GPIO  
I2C_SDA  
I2C_SCL  
IDx  
8
/
I2C  
Controller  
24  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
8.3 Feature Description  
8.3.1 High Speed Forward Channel Data Transfer  
The High Speed Forward Channel is composed of 35 bits of data containing RGB data, sync signals, I2C,  
GPIOs, and I2S audio transmitted from serializer to deserializer. Figure 19 illustrates the serial stream per clock  
cycle. This data payload is optimized for signal transmission over an AC coupled link. Data is randomized,  
balanced and scrambled.  
C0  
C1  
Figure 19. FPD-Link III Serial Stream  
The DS90UB940-Q1 supports clocks in the range of 25 MHz to 96 MHz over a 1-lane, or 50MHz to 170MHz  
over 2-lanes. The FPD-Link III serial stream rate is 3.36 Gbps maximum (875 Mbps minimum) or 2.975 Gbps  
maximum per lane (875 Mbps minimum) respectively.  
8.3.2 Low Speed Back Channel Data Transfer  
The Low-Speed Backward Channel provides bidirectional communication between the display and host  
processor. The information is carried from the deserializer to the serializer as serial frames. The back channel  
control data is transferred over both serial links along with the high-speed forward data, DC balance coding and  
embedded clock information. This architecture provides a backward path across the serial link together with a  
high speed forward channel. The back channel contains the I2C, CRC and 4 bits of standard GPIO information  
with 5 or 20 Mbps line rate (configured by MODE_SEL1).  
8.3.3 FPD-Link III Port Register Access  
Since the DS90UB940-Q1 contains two ports, some registers need to be duplicated to allow control and  
monitoring of the two ports. To facilitate this, PORT1_SEL and PORT0_SEL bits (0x34[1:0]) register controls  
access to the two sets of registers. Registers that are shared between ports (not duplicated) will be available  
independent of the settings in the PORT_SEL register.  
Setting the PORT1_SEL and PORT0_SEL bit will allow a read of the register for the selected port. If both bits are  
set, port1 registers will be returned. Writes will occur to ports for which the select bit is set, allowing simultaneous  
writes to both ports if both select bits are set.  
8.3.4 Clock and Output Status  
When PDB is driven HIGH, the CDR PLL begins locking to the serial input and LOCK is tri-state or LOW  
(depending on the value of the OUTPUT ENABLE setting). After the deserializer completes its lock sequence to  
the input serial data, the LOCK output is driven HIGH, indicating valid data and clock recovered from the serial  
input is available on the LVCMOS and LVDS outputs. The State of the outputs is based on the OUTPUT  
ENABLE and OUTPUT SLEEP STATE SELECT register settings. See register 0x02 in Table 12.  
Table 2. Output State Table  
Inputs  
Outputs  
Data  
GPIO / D_GPIO  
I2S  
OUTPUT SLEEP  
STATE SELECT  
Reg 0x02 [4]  
OUTPUT ENABLE  
Reg 0x02 [7]  
Serial  
Input  
PDB  
LOCK  
PASS  
CSI-2 Output  
X
L
X
L
X
L
Z
Z
Z
Z
X
H
H
H
H
H
H
L or H  
L
L
Z
HS0  
Z
X
L
H
L
L or H  
Z
Static  
Static  
Active  
Active  
H
H
H
H
L
L
L
L
HS0  
HS0  
HS0  
Valid  
H
L
Previous Status  
L
L
L
L
H
H
Valid  
Valid  
Copyright © 2014–2016, Texas Instruments Incorporated  
25  
 
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
8.3.5 LVCMOS VDDIO Option  
The 1.8V or 3.3V Inputs and Outputs are powered from a separate VDDIO supply to offer compatibility with  
external system interface signals.  
NOTE  
When configuring the VDDIO power supplies, all the single-ended data and control input  
pins for device need to scale together with the same operating VDDIO levels.  
8.3.6 Power Down (PDB)  
The deserializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin can be controlled by  
the host or through the VDDIO, where VDDIO = 3. 0 V to 3.6 V or VDD33. To save power, disable the link when  
the display is not needed (PDB = LOW). When the pin is driven by the host, make sure to release it after VDD33  
and VDDIO have reached final levels; no external components are required. In the case of driven by the VDDIO  
= 3.0 V to 3.6 V or VDD33 directly, a 10kΩ resistor to the VDDIO = 3.0 V to 3.6 V or VDD33, and a >10 µF  
capacitor to the GND are required (see Figure 37 Typical Connection Diagram).  
8.3.7 Interrupt Pin — Functional Description and Usage (INTB_IN)  
The INTB_IN pin is an active low interrupt input pin. This interrupt signal, when configured, will propagate to the  
paired serializer. Consult the appropriate Serializer datasheet for details of how to configure this interrupt  
functionality.  
1. On the Serializer, set register 0xC6[5] = 1 and 0xC6[0] = 1  
2. Deserializer INTB_IN (pin 4) is set LOW by some downstream device.  
3. Serializer pulls INTB pin LOW. The signal is active LOW, so a LOW indicates an interrupt condition.  
4. External controller detects INTB = LOW; to determine interrupt source, read ISR register.  
5. A read to ISR will clear the interrupt at the Serializer, releasing INTB.  
6. The external controller typically must then access the remote device to determine downstream interrupt  
source and clear the interrupt driving the Deserializer INTB_IN. This would be when the downstream device  
releases the INTB_IN (pin 4) on the Deserializer. The system is now ready to return to step (2) at next falling  
edge of INTB_IN.  
8.3.8 General-purpose I/O  
8.3.8.1 GPIO[3:0] and D_GPIO[3:0] Configuration  
In normal operation, GPIO[3:0] may be used as general purpose IOs in either forward channel (outputs) or back  
channel (inputs) mode. GPIO and D_GPIO modes may be configured from the registers (Table 11). The same  
registers configure either GPIO or D_GPIO, depending on the status of PORT1_SEL and PORT0_SEL bits  
(0x34[1:0]). D_GPIO operation requires 2-lane FPD-Link III mode. Consult the appropriate Serializer datasheet  
for details on D_GPIO configuration. Note: if paired with a DS90UB925Q-Q1serializer, the devices must be  
configured into 18-bit mode to allow usage of GPIO pins on the serializer. To enable 18-bit mode, set serializer  
register 0x12[2] = 1. 18-bit mode will be auto-loaded into the deserializer from the serializer. See Table 3 for  
GPIO enable and configuration.  
Table 3. GPIO Enable and Configuration  
Description  
Device  
Serializer  
Forward Channel  
0x0F[3:0] = 0x3  
0x1F[3:0] = 0x5  
0x0E[7:4] = 0x3  
0x1E[7:4] = 0x5  
0x0E[3:0] = 0x3  
0x1E[3:0] = 0x5  
0x0D[3:0] = 0x3  
0x1D[3:0] = 0x5  
Back Channel  
0x0F[3:0] = 0x5  
0x1F[3:0] = 0x3  
0x0E[7:4] = 0x5  
0x1E[7:4] = 0x3  
0x0E[3:0] = 0x5  
0x1E[3:0] = 0x3  
0x0D[3:0] = 0x5  
0x1D[3:0] = 0x3  
GPIO3 / D_GPIO3  
Deserializer  
Serializer  
GPIO2 / D_GPIO2  
GPIO1 / D_GPIO1  
GPIO0 / D_GPIO0  
Deserializer  
Serializer  
Deserializer  
Serializer  
Deserializer  
26  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
The input value present on GPIO[3:0] or D_GPIO[3:0] may also be read from register, or configured to local  
output mode (Table 11).  
8.3.8.2 Back Channel Configuration  
The D_GPIO[3:0] pins can be configured to obtain different sampling rates depending on the mode as well as  
back channel frequency. The mode is controlled by register 0x43 (Table 11). The back channel frequency can be  
controlled several ways:  
1. Register 0x23[6] sets the divider that controls the back channel frequency based on the internal oscillator.  
0x23[6] = 0 sets the divider to 4 and 0x23[6] = 1 sets the divider to 2. As long as BC_HS_CTL (0x23[4]) is  
set to 0, the back channel frequency would be either 5 Mbps or 10Mbps based on this bit.  
2. Register 0x23[4] enables the high-speed back channel. This can also be pin-strapped via MODE_SEL1  
(SeeTable 4). This bit overrides 0x23[6], and sets the divider for the back channel frequency to 1. Setting this  
bit to 1 sets the back channel frequency to 20 Mbps.  
The back channel frequency has variation of ±20%. Note: The back channel frequency must be set to 5 Mbps  
when paired with a DS90UB925Q-Q1, DS90UB925AQ-Q1, or DS90UB927Q-Q1. See Table 4 for details about  
configuring the D_GPIOs in various modes.  
Table 4. Back Channel D_GPIO Effective Frequency  
D_GPIO Effective Frequency(1) (kHz)  
5 Mbps BC(2) 10 Mbps BC(3) 20 Mbps BC(4)  
HSCC_MODE  
(0x43[2:0])  
Number of  
D_GPIOs  
Samples per  
Frame  
D_GPIOs  
Allowed  
Mode  
000  
011  
010  
001  
Normal  
Fast  
4
4
2
1
1
6
33  
66  
400  
666  
1000  
133  
800  
D_GPIO[3:0]  
D_GPIO[3:0]  
D_GPIO[1:0]  
D_GPIO0  
200  
333  
500  
Fast  
10  
15  
1333  
2000  
Fast  
(1) The effective frequency assumes the worst case back channel frequency (-20%) and a 4X sampling rate.  
(2) 5 Mbps corresponds to BC FREQ SELECT = 0 & BC_HS_CTL = 0  
(3) 10 Mbps corresponds to BC FREQ SELECT = 1 & BC_HS_CTL = 0  
(4) 20 Mbps corresponds to BC FREQ SELECT = X & BC_HS_CTL = 1  
8.3.8.3 GPIO_REG[8:5] Configuration  
GPIO_REG[8:5] are register-only GPIOs and may be programmed as outputs or read as inputs through local  
register bits only. Where applicable, these bits are shared with I2S pins and will override I2S input if enabled into  
GPIO_REG mode. See Table 5 for GPIO enable and configuration.  
Note: Local GPIO value may be configured and read either through local register access, or remote register  
access through the Low-Speed Bidirectional Control Channel. Configuration and state of these pins are not  
transported from serializer to deserializer as is the case for GPIO[3:0].  
Table 5. GPIO_REG and GPIO Local Enable and Configuration  
Description  
Register Configuration  
0x21[7:4] = 0x1  
0x21[7:4] = 0x9  
0x21[7:4] = 0x3  
0x21[3:0] = 0x1  
0x21[3:0] = 0x9  
0x21[3:0] = 0x3  
0x20[7:4] = 0x1  
0x20[7:4] = 0x9  
0x20[7:4] = 0x3  
0x20[3:0] = 0x1  
0x20[3:0] = 0x9  
0x20[3:0] = 0x3  
Function  
Output, L  
GPIO_REG8  
Output, H  
Input, Read: 0x6F[0]  
Output, L  
GPIO_REG7  
GPIO_REG6  
GPIO_REG5  
Output, H  
Input, Read: 0x6E[7]  
Output, L  
Output, H  
Input, Read: 0x6E[6]  
Output, L  
Output, H  
Input, Read: 0x6E[5]  
Copyright © 2014–2016, Texas Instruments Incorporated  
27  
 
 
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Table 5. GPIO_REG and GPIO Local Enable and Configuration (continued)  
Description  
Register Configuration  
0x1F[3:0] = 0x1  
0x1F[3:0] = 0x9  
0x1F[3:0] = 0x3  
0x1E[7:4] = 0x1  
0x1E[7:4] = 0x9  
0x1E[7:4] = 0x3  
0x1E[3:0] = 0x1  
0x1E[3:0] = 0x9  
0x1E[3:0] = 0x3  
0x1D[3:0] = 0x1  
0x1D[3:0] = 0x9  
0x1D[3:0] = 0x3  
Function  
Output, L  
GPIO3  
Output, H  
Input, Read: 0x6E[3]  
Output, L  
GPIO2  
GPIO1  
GPIO0  
Output, H  
Input, Read: 0x6E[2]  
Output, L  
Output, H  
Input, Read: 0x6E[1]  
Output, L  
Output, H  
Input, Read: 0x6E[0]  
8.3.9 SPI Communication  
The SPI Control Channel utilizes the secondary link in a 2-lane FPD-Link III implementation. Two possible  
modes are available, Forward Channel and Reverse Channel modes. In Forward Channel mode, the SPI Master  
is located at the Serializer, such that the direction of sending SPI data is in the same direction as the video data.  
In Reverse Channel mode, the SPI Master is located at the Deserializer, such that the direction of sending SPI  
data is in the opposite direction as the video data.  
The SPI Control Channel can operate in a high speed mode when writing data, but must operate at lower  
frequencies when reading data. During SPI reads, data is clocked from the slave to the master on the SPI clock  
falling edge. Thus, the SPI read must operate with a clock period that is greater than the round trip data latency.  
On the other hand, for SPI writes, data can be sent at much higher frequencies where the MISO pin can be  
ignored by the master.  
SPI data rates are not symmetrical for the two modes of operation. Data over the forward channel can be sent  
much faster than data over the reverse channel.  
Note: SPI cannot be used to access Serializer / Deserializer registers.  
8.3.9.1 SPI Mode Configuration  
SPI is configured over I2C using the High-Speed Control Channel Configuration (HSCC_CONTROL) register,  
0x43 (Table 12). HSCC_MODE (0x43[2:0]) must be configured for either High-Speed, Forward Channel SPI  
mode (110) or High-Speed, Reverse Channel SPI mode (111).  
8.3.9.2 Forward Channel SPI Operation  
In Forward Channel SPI operation, the SPI master located at the Serializer generates the SPI Clock (SPLK),  
Master Out / Slave In data (MOSI), and active low Slave Select (SS). The Serializer oversamples the SPI  
signals directly using the video pixel clock. The three sampled values for SPLK, MOSI, and SS are each sent on  
data bits in the forward channel frame. At the Deserializer, the SPI signals are regenerated using the pixel  
clock. In order to preserve setup and hold time, the Deserializer will hold MOSI data while the SPLK signal is  
high. In addition, it delays SPLK by one pixel clock relative to the MOSI data, increasing setup by one pixel  
clock.  
28  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
{9wL![Lù9w  
{{  
{t[Y  
ah{L  
50  
51  
52  
53  
5b  
{{  
59{9wL![Lù9w  
{t[Y  
50  
51  
52  
53  
5b  
ah{L  
Figure 20. Forward Channel SPI Write  
{9wL![Lù9w  
{{  
{t[Y  
ah{L  
aL{h  
50  
51  
w50  
w51  
{{  
59{9wL![Lù9w  
{t[Y  
50  
ah{L  
aL{h  
w50  
w51  
Figure 21. Forward Channel SPI Read  
Copyright © 2014–2016, Texas Instruments Incorporated  
29  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
8.3.9.3 Reverse Channel SPI Operation  
In Reverse Channel SPI operation, the Deserializer samples the Slave Select (SS), SPI clock (SCLK) into the  
internal oscillator clock domain. In addition, upon detection of the active SPI clock edge, the Deserializer  
samples the SPI data (MOSI). The SPI data samples are stored in a buffer to be passed to the Serializer over  
the back channel. The Deserializer sends SPI information in a back channel frame to the Serializer. In each  
back channel frame, the Deserializer sends an indication of the Slave Select value. The Slave Select should be  
inactive (high) for at least one back-channel frame period to ensure propagation to the Serializer.  
Because data is delivered in separate back channel frames and buffered, the data may be regenerated in  
bursts. The following figure (Figure 22) shows an example of the SPI data regeneration when the data arrives in  
three back channel frames. The first frame delivered the SS active indication, the second frame delivered the  
first three data bits, and the third frame delivers the additional data bits.  
59{9wL![Lù9w  
{{  
{t[Y  
ah{L  
50  
51  
52  
53  
5b  
{{  
{t[Y  
{9wL![Lù9w  
50  
51  
52  
53  
5b  
ah{L  
Figure 22. Reverse Channel SPI Write  
For Reverse Channel SPI reads, the SPI master must wait for a round-trip response before generating the  
sampling edge of the SPI clock. This is similar to operation in Forward channel mode. Note that at most one  
data/clock sample will be sent per back channel frame.  
30  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
59{9wL![Lù9w  
{{  
{t[Y  
ah{L  
aL{h  
50  
51  
w50  
w51  
{{  
{9wL![Lù9w  
{t[Y  
50  
ah{L  
aL{h  
w50  
w51  
Figure 23. Reverse Channel SPI Read  
For both Reverse Channel SPI writes and reads, the SPI_SS signal should be deasserted for at least one back  
channel frame period.  
Table 6. SPI SS Deassertion Requirement  
Back Channel Frequency  
5 Mbps  
Deassertion Requirement  
7.5 µs  
3.75 µs  
1.875 µs  
10 Mbps  
20 Mbps  
8.3.10 Backward Compatibility  
The DS90UB940-Q1 is also backward compatible to the DS90UB925Q-Q1, DS90UB925AQ-Q1, and  
DS90UB927Q-Q1 for PCLK frequencies ranging from 25MHz to 85MHz. Backward compatibility does not need  
to be enabled. When paired with a backward compatible device, the Deserializer will auto-detect to 1-lane FPD-  
Link III on the primary channel (RIN0±).  
8.3.11 Input Equalization  
An FPD-Link III input adaptive equalizer provides compensation for transmission medium losses and reduces  
medium-induced deterministic jitter. It equalizes up to 15m STP or 50Ω Coaxial cables with 3 connection breaks  
at maximum serializer stream payload of 3.36 Gbps.  
8.3.12 I2S Audio Interface  
This Deserializer features six I2S output pins that, when paired with a compatible serializer, supports surround  
sound audio applications. The bit clock (I2S_CLK) supports frequencies between 1MHz and the smaller of  
<PCLK/2 or <13MHz. Four I2S data outputs carry two channels of I2S-formatted digital audio each, with each  
channel delineated by the word select (I2C_WC) input.  
Copyright © 2014–2016, Texas Instruments Incorporated  
31  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Deserializer  
MCLK  
System Clock  
Bit Clock  
Word Select  
Data  
I2S_CLK  
I2S_WC  
I2S_Dx  
I2S Receiver  
4
Figure 24. I2S Connection Diagram  
I2S_WC  
I2S_CLK  
MSB  
LSB  
MSB  
LSB  
I2S_Dx  
Figure 25. I2S Frame Timing Diagram  
When paired with a DS90UB925Q, the Deserializer I2S interface supports a single I2S data output through  
I2S_DA (24-bit video mode), or two I2S data outputs through I2S_DA and I2S_DB (18-bit video mode).  
8.3.12.1 I2S Transport Modes  
By default, packetized audio is received during video blanking periods in dedicated Data Island Transport frames.  
The transport mode is set in the serializer and auto-loaded into the deserializer by default. The audio  
configuration may be disabled from control registers if Forward Channel Frame Transport of I2S data is desired.  
In frame transport, only I2S_DA is received to the Deserializer. Surround Sound Mode, which transmits all four  
I2S data inputs (I2S_D[D:A]), may only be operated in Data Island Transport mode. This mode is only available  
when connected to a DS90UB927Q, DS90UB949-Q1, DS90UB947-Q1, or DS90UB929-Q1 serializer. If  
connected to a DS90UB925Q serializer, only I2S_DA and I2S_DB may be received.  
8.3.12.2 I2S Jitter Cleaning  
This device features a standalone PLL to clean the I2S data jitter, supporting high-end car audio systems. If  
I2S_CLK frequency is less than 1MHz, this feature must be disabled through register 0x2B[7]. See Table 12.  
8.3.12.3 MCLK  
The deserializer has an I2S Master Clock Output (MCLK). It supports x1, x2, or x4 of I2S CLK Frequency. When  
the I2S PLL is disabled, the MCLK output is off. Table 7 covers the range of I2S sample rates and MCLK  
frequencies. By default, all the MCLK output frequencies are x2 of the I2S CLK frequencies. The MCLK  
frequencies can also be enabled through the register bits 0x3A[6:4] (I2S DIVSEL), shown in Table 12. To select  
desired MCLK frequency, write 0x3A[7], then write to bit [6:4] accordingly.  
32  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Table 7. Audio Interface Frequencies  
Sample Rate  
(kHz)  
I2S Data Word Size (bits)  
I2S_CLK (MHz)  
MCLK Output (MHz)  
Register 0x3A[6:4]  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
000  
001  
010  
000  
001  
010  
000  
001  
010  
001  
010  
011  
010  
011  
100  
000  
001  
010  
001  
010  
011  
001  
010  
011  
010  
011  
100  
011  
100  
101  
001  
010  
011  
001  
010  
011  
001  
010  
011  
010  
011  
100  
011  
100  
110  
32  
44.1  
48  
1.024  
1.4112  
1.536  
3.072  
6.144  
1.536  
2.117  
2.304  
4.608  
9.216  
2.048  
2.8224  
3.072  
6.144  
12.288  
16  
96  
192  
32  
44.1  
48  
24  
96  
192  
32  
44.1  
48  
32  
96  
192  
Copyright © 2014–2016, Texas Instruments Incorporated  
33  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
8.3.13 Built-In Self Test (BIST)  
An optional At-Speed Built-In Self Test (BIST) feature supports testing of the high speed serial link and the low-  
speed back channel without external data connections. This is useful in the prototype stage, equipment  
production, in-system test, and system diagnostics.  
8.3.13.1 BIST Configuration And Status  
The BIST mode is enabled at the deserializer by pin (BISTEN) or BIST configuration register. The test may  
select either an external PCLK or the 33 MHz internal Oscillator clock (OSC) frequency in the Serializer. In the  
absence of PCLK, the user can select the internal OSC frequency at the deserializer through the BISTC pin or  
BIST configuration register.  
When BIST is activated at the deserializer, a BIST enable signal is sent to the serializer through the Back  
Channel. The serializer outputs a test pattern and drives the link at speed. The deserializer detects the test  
pattern and monitors it for errors. The deserializer PASS output pin toggles to flag each frame received  
containing one or more errors. The serializer also tracks errors indicated by the CRC fields in each back channel  
frame.  
The BIST status can be monitored real time on the deserializer PASS pin, with each detected error resulting in a  
half pixel clock period toggled LOW. After BIST is deactivated, the result of the last test is held on the PASS  
output until reset (new BIST test or Power Down). A high on PASS indicates NO ERRORS were detected. A Low  
on PASS indicates one or more errors were detected. The duration of the test is controlled by the pulse width  
applied to the deserializer BISTEN pin. LOCK status is valid throughout the entire duration of BIST.  
See Figure 26 for the BIST mode flow diagram.  
8.3.13.1.1 Sample BIST Sequence  
Note: Before BIST can be enabled, D_GPIO0 (pin 19) must be strapped HIGH and D_GPIO[3:1] (pins 16, 17,  
and 18) must be strapped LOW.  
1. BIST Mode is enabled via the BISTEN pin of Deserializer. The desired clock source is selected through the  
deserializer BISTC pin.  
2. The serializer is awakened through the back channel if it is not already on. An all-zeros pattern is balanced,  
scrambled, randomized, and sent through the FPD-Link III interface to the deserializer. Once the serializer  
and the deserializer are in BIST mode and the deserializer acquires LOCK, the PASS pin of the deserializer  
goes high and BIST starts checking the data stream. If an error in the payload (1 to 35) is detected, the  
PASS pin will switch low for one half of the clock period. During the BIST test, the PASS output can be  
monitored and counted to determine the payload error rate per 35 bits.  
3. To Stop BIST mode, set the BISTEN pin LOW. The deserializer stops checking the data, and the final test  
result is held on the PASS pin. If the test ran error free, the PASS output will remain HIGH. If there one or  
more errors were detected, the PASS output will output constant LOW. The PASS output state is held until a  
new BIST is run, the device is RESET, or the device is powered down. BIST duration is user-controlled and  
may be of any length.  
The link returns to normal operation after the deserializer BISTEN pin is low. Figure 27 shows the waveform  
diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2 shows one with multiple errors. In  
most cases it is difficult to generate errors due to the robustness of the link (differential data transmission etc.),  
thus they may be introduced by greatly extending the cable length, faulting the interconnect medium, or reducing  
signal condition enhancements (Rx Equalization).  
34  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Normal  
Step 1: DES in BIST  
BIST  
Wait  
Step 2: Wait, SER in BIST  
BIST  
start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
stop  
Step 4: DES/SER in Normal  
Figure 26. BIST Mode Flow Diagram  
8.3.13.2 Forward Channel and Back Channel Error Checking  
The Deserializer, on locking to the serial stream, compares the recovered serial stream with all-zeroes and  
records any errors in status registers. Errors are also dynamically reported on the PASS pin of the deserializer.  
Forward channel errors may also be read from register 0x25 (Table 12).  
The back-channel data is checked for CRC errors once the serializer locks onto the back-channel serial stream,  
as indicated by link detect status (register bit 0x0C[0] - Table 12). CRC errors are recorded in an 8-bit register in  
the serializer. The register is cleared when the serializer enters the BIST mode. As soon as the serializer enters  
BIST mode, the functional mode CRC register starts recording any back channel CRC errors. The BIST mode  
CRC error register is active in BIST mode only and keeps the record of the last BIST run until cleared or the  
serializer enters BIST mode again.  
BISTEN  
(DES)  
CLK[2:1]  
D[7:0]  
7 bits/frame  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
BIST  
Result  
Held  
Normal  
SSO  
Normal  
BIST Test  
BIST Duration  
Figure 27. BIST Waveforms  
8.3.14 Internal Pattern Generation  
The deserializer supports the internal pattern generation feature. It allows basic testing and debugging of an  
integrated panel. The test patterns are simple and repetitive and allow for a quick visual verification of panel  
operation. As long as the device is not in power down mode, the test pattern will be displayed even if no parallel  
input is applied. If no PCLK is received, the test pattern can be configured to use a programmed oscillator  
frequency. For detailed information, refer to Application Note AN-2198 (SNLA132).  
Copyright © 2014–2016, Texas Instruments Incorporated  
35  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Configuration Select  
The DS90UB940-Q1 can be configured for several different operating modes via the MODE_SEL[1:0] input pins,  
or via the register bits 0x23 [4:3] (MODE_SEL1) and 0x6A [5:4] (MODE_SEL0) . A pull-up resistor and a pull-  
down resistor of suggested values may be used to set the voltage ratio of the MODE_SEL[1:0] input and VDD33  
to select one of the possible selected modes.  
The DS90UB940-Q1 is capable of operating in either in 1-lane or 2-lane modes for FPD-Link III. By default, the  
FPD-Link III receiver automatically configures the input based on 1- or 2-lane mode operation. Programming  
register 0x34 [4:3] settings will override the automatic detection. For each FPD-Link III pair, the serial datastream  
is composed of a 35-bit symbol.  
The DS90UB940-Q1 recovers the FPD-Link III serial datastream(s) and produces CSI-2 TX data driven to the  
MIPI DPHY interface. There are two CSI-2 ports (CSI0_Dn and CSI1_Dn) and each consist of one clock lane  
and four data lanes. The DS90UB940-Q1 supports two CSI-2 TX ports, and each may be configured to support  
either two or four CSI-2 data lanes. Unused CSI-2 outputs are driven to LP11 states. The MIPI DPHY  
transmission operates in both differential (HS) and single-ended (LP) modes. During HS transmission, the pair of  
outputs operates in differential mode; and in LP mode, the pair operates as two independent single-ended traces.  
Both the data and clock lanes enter LP mode during the horizontal and vertical blanking periods.  
The configurations outlined in (1-lane FPD-Link III Input, 4 MIPI lanes Output, 1-lane FPD-Link III Input, 2 MIPI  
lanes Output, 1- or 2-lane FPD-Link III Input, 2 or 4 MIPI lanes Output in Replicate) will apply to DS90UB949-Q1,  
DS90UB947-Q1, DS90UB929-Q1, DS90UB925Q-Q1, DS90UB925AQ-Q1, and DS90UB927Q-Q1 FPD-Link III  
Serializers.  
The configurations outlined in (2-lane FPD-Link III Input, 4 MIPI lanes Output, 2-lane FPD-Link III Input, 2 MIPI  
lanes Output, 1- or 2-lane FPD-Link III Input, 2 or 4 MIPI lanes Output in Replicate) will apply to DS90UB949-Q1  
and DS90UB947-Q1 FPD-Link III Serializers.  
The device can be configured in following modes:  
1-lane FPD-Link III Input, 4 MIPI lanes Output  
1-lane FPD-Link III Input, 2 MIPI lanes Output  
2-lane FPD-Link III Input, 4 MIPI lanes Output  
2-lane FPD-Link III Input, 4 MIPI lanes Output  
1- or 2-lane FPD-Link III Input, 2 or 4 MIPI lanes Output (Replicate)  
8.4.1.1 1-lane FPD-Link III Input, 4 MIPI lanes Output  
In this configuration the PCLK rate embedded within the 1-lane FPD-Link III frame can range from 25 MHz to 96  
MHz, resulting in a link rate of 875 Mbps (35 bit * 25 MHz) to 3.36 Gbps (35 bit * 96 MHz). Each MIPI data lane  
will operate at a speed of 7 * PCLK frequency; resulting in a data rate of 175 Mbps to 672 Mbps. The  
corresponding MIPI transmit clock rate will operate between 87.5 MHz to 336 MHz.  
8.4.1.2 1-lane FPD-Link III Input, 2 MIPI lanes Output  
In this configuration the PCLK rate embedded within the 1-lane FPD-Link III frame can range from 25 MHz to 96  
MHz, resulting in a link rate of 875 Mbps (35 bit * 25 MHz) to 3.36 Gbps (35 bit * 96 MHz). Each MIPI data lane  
will operate at a speed of 14 * PCLK frequency; resulting in a data rate of 350 Mbps to 1344 Mbps. The  
corresponding MIPI transmit clock rate will operate between 175 MHz to 672 MHz.  
8.4.1.3 2-lane FPD-Link III Input, 4 MIPI lanes Output  
In this configuration the PCLK rate embedded is split into 2-lane FPD-Link III frame and can range from 50 MHz  
to 170 MHz, resulting in a link rate of 875 Mbps (35 bit * 25 MHz) to 2.975 Gbps (35 bit * 85 MHz). The  
embedded datastreams from the received FPD-Link III inputs are merged in HS mode to form packets that carry  
the video stream. Each MIPI data lane will operate at a speed of 7 * PCLK frequency, resulting in a data rate of  
350 Mbps to 1190 Mbps. The corresponding MIPI transmit clock rate will operate between 175 MHz to 595 MHz.  
36  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
 
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Device Functional Modes (continued)  
8.4.1.4 2-lane FPD-Link III Input, 2 MIPI lanes Output  
In this configuration the PCLK rate embedded is split into 2-lane FPD-Link III frame and can range from 25 MHz  
to 48 MHz, resulting in a link rate of 875 Mbps (35 bit * 25 MHz) to 1.680 Gbps (35 bit * 48 MHz). The embedded  
datastreams from the received FPD-Link III inputs are merged in HS mode to form packets that carry the video  
stream. Each MIPI data lane will operate at a speed of 14 * PCLK frequency, resulting in a data rate of 700 Mbps  
to 1344 Mbps. The corresponding MIPI transmit clock rate will operate between 350 MHz to 672 MHz.  
8.4.1.5 1- or 2-lane FPD-Link III Input, 2 or 4 MIPI lanes Output in Replicate  
Same as 1- or 2-lane FPD-Link III Input(s), duplicates the MIPI CSI-2 lanes on CSI1_D[3:0] and CSI1_CLK  
outputs.  
8.4.2 MODE_SEL[1:0]  
Configuration of the device may be done via the MODE_SEL[1:0] input pins, or via the configuration register bits.  
A pull-up resistor and a pull-down resistor of suggested values may be used to set the voltage ratio of the  
MODE_SEL[1:0] inputs (VR4) and VDD33 to select one of the other 8 possible selected modes. See Table 8 and  
Table 9. Possible configurations are shown in Figure 28.  
Copyright © 2014–2016, Texas Instruments Incorporated  
37  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Device Functional Modes (continued)  
1 lꢁne Ctꢀ-[ink LLL Lnpuꢂ, 4 aLtL lꢁnes huꢂpuꢂ  
2 lꢁne Ctꢀ-[ink LLL Lnpuꢂ, 4 aLtL lꢁnes huꢂpuꢂ  
940  
940  
/{L0_50  
/{L0_51  
/{L0_52  
/{L0_53  
/{L0_/[Y  
/{L0_50  
/{L0_51  
/{L0_52  
/{L0_53  
/{L0_/[Y  
175 t 672 abps  
87.5 t 336 aIz  
350 t 1190 abps  
175 t 595 aIz  
875 abps t 3.36 Dbps  
875 abps t 2.975 Dbps  
wLb0  
wLb0  
ꢀisꢁbled  
875 abps t 2.975 Dbps  
/{L1_50  
/{L1_51  
/{L1_52  
/{L1_53  
/{L1_/[Y  
/{L1_50  
/{L1_51  
/{L1_52  
/{L1_53  
/{L1_/[Y  
wLb1  
wLb1  
[t11  
[t11  
1 lꢁne Ctꢀ-[ink LLL Lnpuꢂ, 2 aLtL lꢁnes huꢂpuꢂ  
2 lꢁne Ctꢀ-[ink LLL Lnpuꢂ, 2 aLtL lꢁnes huꢂpuꢂ  
/{L0_50  
/{L0_51  
/{L0_52  
/{L0_53  
/{L0_/[Y  
/{L0_50  
/{L0_51  
/{L0_52  
/{L0_53  
/{L0_/[Y  
940  
940  
350 t 1344 abps  
[t11  
700 t 1344 abps  
[t11  
875 abps t 1.680 Dbps  
875 abps t 3.36 Dbps  
wLb0  
wLb0  
175 t 672 aIz  
350 t 672 aIz  
875 abps t 1.680 Dbps  
/{L1_50  
/{L1_51  
/{L1_52  
/{L1_53  
/{L1_/[Y  
/{L1_50  
/{L1_51  
/{L1_52 [t11  
/{L1_53  
ꢀisꢁbled  
wLb1  
wLb1  
[t11  
/{L1_/[Y  
1 lꢁne Ctꢀ-[ink LLL Lnpuꢂ, 4 aLtL lꢁnes huꢂpuꢂ (weplicꢁꢂe)  
2 lꢁne Ctꢀ-[ink LLL Lnpuꢂ, 4 aLtL lꢁnes huꢂpuꢂ (weplicꢁꢂe)  
/{L0_50  
/{L0_50  
940  
940  
/{L0_51  
/{L0_52  
/{L0_53  
/{L0_/[Y  
/{L0_51  
/{L0_52  
/{L0_53  
/{L0_/[Y  
175 t 672 abps  
87.5 t 336 aIz  
350 t 1190 abps  
175 t 595 aIz  
wLb0  
wLb0  
wLb1  
/{L1_50  
/{L1_51  
/{L1_52  
/{L1_53  
/{L1_/[Y  
/{L1_50  
/{L1_51  
/{L1_52 {/ꢃL0 replicꢁꢂed}  
/{L1_53  
ꢀisꢁbled  
wLb1  
{/ꢃL0 replicꢁꢂed}  
/{L1_/[Y  
1 lꢁne Ctꢀ-[ink LLL Lnpuꢂ, 2 aLtL lꢁnes huꢂpuꢂ (weplicꢁꢂe)  
2 lꢁne Ctꢀ-[ink LLL Lnpuꢂ, 2 aLtL lꢁnes huꢂpuꢂ (weplicꢁꢂe)  
/{L0_50  
/{L0_50  
/{L0_51  
/{L0_52  
/{L0_53  
940  
940  
350 t 1344 abps  
700 t 1344 abps  
/{L0_51  
/{L0_52  
/{L0_53  
[t11  
[t11  
wLb0  
wLb0  
wLb1  
/{L0_/[Y 175 t 672 aIz  
/{L0_/[Y 350 t 672 aIz  
/{L1_50  
/{L1_51  
/{L1_50  
/{L1_51  
ꢀisꢁbled  
wLb1  
{/ꢃL0 replicꢁꢂed}  
/{L1_52  
/{L1_53  
/{L1_/[Y  
/{L1_52 {/ꢃL0 replicꢁꢂed}  
/{L1_53  
/{L1_/[Y  
Figure 28. Datapath Configurations  
38  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Device Functional Modes (continued)  
Configuration of the device may be done via the MODE_SEL[1:0] input pins, or via the configuration register bits.  
A pull-up resistor and a pull-down resistor of suggested values may be used to set the voltage ratio of the  
MODE_SEL[1:0] inputs (VR1) and VDD33 to select one of the other 8 possible selected modes. See Table 8 and  
Table 9.  
V
DD33  
R1  
R2  
VR1  
MODE_SEL[1:0]  
Deserializer  
Figure 29. MODE_SEL[1:0] Connection Diagram  
Table 8. Configuration Select (MODE_SEL0)  
#
Ideal Ratio  
VR1/VDD33  
Target VR1  
(V)  
Suggested Resistor R1 Suggested Resistor R2  
Output  
Mode  
k(1% tol)  
k(1% tol)  
1
0
0
Open  
40.2 or Any  
4 data lanes  
1 CSI port active  
(determined by  
MODE_SEL1 CSI_SEL  
bit)  
2
3
0.169  
0.230  
0.559  
0.757  
232  
107  
47.5  
31.6  
4 data lanes  
both CSI ports active  
(overrides MODE_SEL1)  
2 data lanes  
1 CSI port active  
(determined by  
MODE_SEL1 CSI_SEL  
bit)  
4
0.295  
0.974  
113  
47.5  
2 data lanes  
both CSI port active  
(overrides MODE_SEL1)  
5
6
7
8
0.376  
0.466  
0.556  
0.801  
1.241  
1.538  
1.835  
2.642  
113  
107  
68.1  
93.1  
113  
182  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
90.9  
45.3  
Table 9. Configuration Select (MODE_SEL1)  
#
Ideal Ratio  
VR1/VDD33  
Target VR1  
(V)  
Suggested  
Resistor R1 kΩ  
(1% tol)  
Suggested  
Resistor R2 kΩ  
(1% tol)  
CSI_SEL  
(CSI PORT)  
High Speed  
Back Channel  
Input  
Mode  
1
2
3
4
5
6
7
8
0
0
Open  
232  
107  
113  
113  
107  
90.9  
45.3  
40.2 or Any  
47.5  
CSI0  
CSI0  
CSI0  
CSI0  
CSI1  
CSI1  
CSI1  
CSI1  
5 Mbps  
5 Mbps  
20 Mbps  
20 Mbps  
5 Mbps  
5 Mbps  
20 Mbps  
20 Mbps  
STP  
Coax  
STP  
0.169  
0.230  
0.295  
0.376  
0.466  
0.556  
0.801  
0.559  
0.757  
0.974  
1.241  
1.538  
1.835  
2.642  
31.6  
47.5  
Coax  
STP  
68.1  
93.1  
Coax  
STP  
113  
182  
Coax  
Copyright © 2014–2016, Texas Instruments Incorporated  
39  
 
 
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
8.4.3 CSI-2 Interface  
The DS90UB940-Q1 (in default mode) takes RGB 24-bpp data bits defined in the serializer and directly maps to  
the pixel color space in the data frame. The DS90UB940-Q1 follows the general frame format as described per  
the CSI-2 standard (Figure 30). Upon the end of the vertical sync pulse (VS), the DS90UB940-Q1 generates the  
Frame End and Frame Start synchronization packets within the vertical blanking period. The timing of the Frame  
Start will not reflect the timing of the VS signal.  
Upon the rising edge of the DE signal, each active line is output in a long data packet with the defined data  
format (Figure 13). At the end of each packet, the data lanes Dn± return to the LP-11 state, while the clock lane  
CLK± continue outputting the high speed clock.  
The DS90UB940-Q1 CSI-2 transmitter consists of a high speed clock (CLK±) and data (Dn±) outputs based on a  
source synchronous interface. The half rate clock at CLK± is derived from the pixel clock sourced by the  
clock/data recovery circuit of the DS90UB940-Q1 . The CSI-2 clock frequency is 3.5 times (4 MIPI lanes) or 7  
times (2 MIPI lanes) the recovered pixel clock frequency. The MIPI DPHY outputs either 2 or 4 high speed data  
lanes (Dn±) according to the CSI-2 protocol. The data rate of each lane is 7 times (4 MIPI lanes) or 14 times (2  
MIPI lanes) the pixel clock. As an example in a 4 MIPI lane configuration, at a pixel clock of 150 MHz, the CLK±  
runs at 525 MHz, and each data lane runs at 1050 Mbps.  
The half-rate clock maintains a quadrature phase relationship to the data signals and allows receiver to sample  
data at the rising and falling edges of the clock (DDR). Figure 10 shows the timing relationship of the clock and  
data lines. The DS90UB940-Q1 supports continuous high speed clock. High speed data are sent out at data  
lanes Dn± in bursts. In between data bursts, the data lanes return to Low Power (LP) States in according to  
protocol defined in D-PHY standard. The rising edge of the differential clock (CSI_CLK+ – CSI_CLK-) is sent  
during the first payload bit of a transmission burst in the data lanes.  
Frame Blanking  
FS  
Line Blanking  
Line Data  
FE  
Frame Blanking  
(1 to N) t  
LPX  
FS  
Line Blanking  
Line Data  
FE  
Frame Blanking  
Figure 30. CSI-2 General Frame Format  
8.4.4 Input Display Timing  
The DS90UB940-Q1 has builtin support to detect the incoming video format extracted from the FPD-Link III  
datastream(s) and automatically generate CSI-2 output timing parameters accordingly. The input video format  
detection is derived from progressive display resolutions based on the CEA861D specification. The video data  
rate and frame rate is determined by measuring internal VS and DE signals.  
40  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
8.4.5 MIPI CSI-2 Output Data Formats  
The DS90UB940-Q1 CSI-2 Tx supports multiple data types. These can be seen in Table 10.  
Table 10. CSI-2 Output Data Formats(1)  
CSI-2 Data Type  
[5:0]  
Reg0x6B [3:2]  
IFMT  
Reg0x6B [7:4]  
OFMT  
Data Format  
Description  
RGB888  
0x24  
00  
0000  
RGB888 image data – using 24-bit container for  
RGB 24-bpp  
RGB666  
RGB565  
0x23  
0x22  
0x1A  
0x18  
0x1E  
0x2A  
00  
00  
00  
00  
00  
11  
0001  
0010  
0011  
0100  
0101  
0110  
RGB666 image data  
RGB565 image data  
YUV420  
YUV4:2:0 image data, Legacy YUV420 8-bit  
YUV4:2:0 image data  
YUV420 8-bit  
YUV422 8-bit  
RAW8  
YUV4:2:2 image data  
RAW Bayer, 8-bit image data D[0:7] of Serializer  
inputs are used as RAW data; Alignment is  
configured with CSIIA_{0x6C}_0x09 [4]  
RAW10  
RAW12  
0x2B  
0x2C  
0x1C  
11  
11  
00  
0111  
1000  
1001  
RAW Bayer, 10-bit image data D[0:9] of Serializer  
inputs are used as RAW data; Alignment is  
configured with CSIIA_{0x6C}_0x09 [4]  
RAW Bayer, 12-bit image data D[0:11] of Serializer  
inputs are used as RAW data; Alignment is  
configured with CSIIA_{0x6C}_0x09 [4]  
YUV420 8-bit (CSPS)  
YUV4:2:0 image data, YUV420 Chroma Shifted  
Pixel Sampling  
(1) Note: Color space conversion is only available from RGB to YUV.  
8.4.6 Non-Continuous / Continuous Clock  
DS90UB940-Q1 D-PHY supports Continuous clock mode and Non-Continuous clock mode on the CSI-2  
interface. Default mode is Non-Continuous Clock mode, where the Clock Lane enters in LP mode between the  
transmissions of data packets. Non-continuous clock mode will only be non-continuous during the vertical  
blanking period for lower PCLK rates. For higher PCLK rates, the clock will be non-continuous between line and  
frame packets. Operating modes are configurable through 0x6A [1].  
Clock lane enters LP11 during horizontal blanking if the horizontal blanking period is longer than the overhead  
time to start/stop the clock lane. There is auto-detection of the length of the horizontal blank period. The fixed  
threshold is 96 PCLK cycles.  
8.4.7 Ultra Low Power State (ULPS)  
The DS90UB940-Q1 supports the MIPI defined Ultra-Low Power State (ULPS). DS90UB940-Q1 D-PHY lanes  
will enter ULPS mode upon software standby mode through 0x6A [2] generated by the processor. When ULPS is  
issued, all active CSI-2 lanes including the clock and data lanes of the enabled CSI-2 port are put in ULPS  
according to the MIPI DPHY protocol. D-PHY can reduce power consumption by entering ULPS mode. Ultra Low  
Power State is exited by means of a Mark-1 state with a length TWAKEUP followed by a Stop state.  
Copyright © 2014–2016, Texas Instruments Incorporated  
41  
 
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Frame  
End  
Stop  
(LP11)  
Escape  
Mode  
ULPS  
(LP00)  
Mark-1  
(LP10)  
Stop  
(LP11)  
Ultra-Low-Power-State Entry Command 00011110  
Clock Lane  
Dp/Dn  
Data Lane  
Dp/Dn  
t
t
INIT  
WAKEUP  
t
LPX  
Figure 31. Ultra Low Power State  
8.4.8 CSI-2 Data Identifier  
The DS90UB940-Q1 MIPI CSI-2 protocol interface transmits the data identifier byte containing the values for the  
virtual channel ID (VC) and data type (DT) for the application specific payload data, as shown in Figure 32. The  
virtual channel ID is contained in the 2 MSBs of the data identifier byte and identify the data as directed to one of  
four virtual channels. The value of the data type is contained in the 6 LSBs of the data identifier byte.  
CSIIA_{0x6C}_0x2E[7:6] CSI_VC_ID: Configures the virtual ID linked to the current context.  
CSICFG1_0x6B[7:4] OFMT: Configures the data format linked to the current context.  
Data Identifier (DI) Byte  
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0  
VC  
DT  
Virtual Channel  
Indentifier  
(VC)  
Data Type  
(DT)  
Figure 32. CSI-2 Data Identifier Structure  
42  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
8.5 Programming  
8.5.1 Serial Control Bus  
The device may also be configured by the use of a I2C compatible serial control bus. Multiple devices may share  
the serial control bus (up to 8 device addresses supported). The device address is set via a resistor divider (R1  
and R2 — see Figure 33 below) connected to the IDx pin.  
VDD33  
VDDIO  
R1  
R2  
VR2  
IDx  
4.7k  
4.7k  
HOST  
DES  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
Figure 33. Serial Control Bus Connection  
The serial control bus consists of two signals, SCL and SDA. SCL is a Serial Bus Clock Input. SDA is the Serial  
Bus Data Input / Output signal. Both SCL and SDA signals require an external pull-up resistor to 1.8 V or 3.3 V  
VDDIO. For most applications, a 4.7kpull-up resistor to VDD33 is recommended. However, the pull-up resistor  
value may be adjusted for capacitive loading and data rate requirements. The signals are either pulled High, or  
driven Low.  
The IDx pin configures the control interface to one of 8 possible device addresses. A pull-up resistor and a pull-  
down resistor may be used to set the appropriate voltage ratio between the IDx input pin (VR2) and VDD33, each  
ratio corresponding to a specific device address. See Table 11 below.  
Table 11. Serial Control Bus Addresses for IDx  
Ideal Ratio  
VR2 / VDD33  
Ideal VR2  
(V)  
Suggested Resistor Suggested Resistor  
#
7-bit Address  
8-bit Address  
R1 k(1% tol)  
R2 k(1% tol)  
40.2 or >10  
47.5  
1
2
3
4
5
6
7
8
0
0
Open  
232  
107  
113  
113  
107  
90.9  
45.3  
0x2C  
0x2E  
0x30  
0x32  
0x34  
0x36  
0x38  
0x3C  
0x58  
0x5C  
0x60  
0x64  
0x68  
0x6C  
0x70  
0x78  
0.169  
0.230  
0.295  
0.376  
0.466  
0.556  
0.801  
0.559  
0.757  
0.974  
1.241  
1.538  
1.835  
2.642  
31.6  
47.5  
68.1  
93.1  
113  
182  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SCL transitions Low while SDA is High. A STOP occurs when SDA transitions High while SCL is also HIGH. See  
Figure 34  
SDA  
SCL  
S
P
START condition, or  
STOP condition  
START repeat condition  
Figure 34. START and STOP Conditions  
Copyright © 2014–2016, Texas Instruments Incorporated  
43  
 
 
 
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
To communicate with a remote device, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it Acknowledges (ACKs) the master by driving the SDA bus low. If the address doesn't  
match a device's slave address, it Not-acknowledges (NACKs) the master by letting SDA be pulled High. ACKs  
also occur on the bus when data is being transmitted. When the master is writing data, the slave ACKs after  
every data byte is successfully received. When the master is reading data, the master ACKs after every data  
byte is received to let the slave know it wants to receive another data byte. When the master wants to stop  
reading, it NACKs after the last data byte and creates a stop condition on the bus. All communication on the bus  
begins with either a Start condition or a Repeated Start condition. All communication on the bus ends with a Stop  
condition. A READ is shown in Figure 35 and a WRITE is shown in Figure 36.  
Register Address  
Slave Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
A
2
A
1
A
0
0
S
Sr  
1
P
Figure 35. Serial Control Bus — READ  
Register Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
0
S
P
Figure 36. Serial Control Bus — WRITE  
The I2C Master located at the Deserializer must support I2C clock stretching. For more information on I2C  
interface requirements and throughput considerations, please refer to TI Application Note SNLA131.  
8.5.2 Multi-Master Arbitration Support  
The Bidirectional Control Channel in the FPD-Link III devices implements I2C compatible bus arbitration in the  
proxy I2C master implementation. When sending a data bit, each I2C master senses the value on the SDA line.  
If the master is sending a logic 1 but senses a logic 0, the master has lost arbitration. It will stop driving SDA,  
retrying the transaction when the bus becomes idle. Thus, multiple I2C masters may be implemented in the  
system.  
For example, there might also be a local I2C master at each camera. The local I2C master could access the  
Image Sensor and EEPROM. The only restriction would be that the remote I2C master at the camera should not  
attempt to access a remote slave through the BCC that is located at the host controller side of the link. In other  
words, the control channel should only operate in camera mode for accessing remote slave devices to avoid  
issues with arbitration across the link. The remote I2C master should also not attempt to access the deserializer  
registers to avoid a conflict in register access with the Host controller.  
If the system does require master-slave operation in both directions across the BCC, some method of  
communication must be used to ensure only one direction of operation occurs at any time. The communication  
method could include using available read/write registers in the deserializer to allow masters to communicate  
with each other to pass control between the two masters. An example would be to use register 0x18 or 0x19 in  
the deserializer as a mailbox register to pass control of the channel from one master to another.  
8.5.3 I2C Restrictions on Multi-Master Operation  
The I2C specification does not provide for arbitration between masters under certain conditions. The system  
should make sure the following conditions cannot occur to prevent undefined conditions on the I2C bus:  
One master generates a repeated Start while another master is sending a data bit.  
One master generates a Stop while another master is sending a data bit.  
One master generates a repeated Start while another master sends a Stop.  
Note that these restrictions mainly apply to accessing the same register offsets within a specific I2C slave.  
8.5.4 Multi-Master Access to Device Registers for Newer FPD-Link III Devices  
When using the latest generation of FPD-Link III devices (DS90UB94x-Q1), serializers or deserializer registers  
may be accessed simultaneously from both local and remote I2C masters. These devices have internal logic to  
properly arbitrate between sources to allow proper read and write access without risk of corruption.  
Access to remote I2C slaves would still be allowed in only one direction at a time (Camera or Display mode).  
44  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
8.5.5 Multi-Master Access to Device Registers for Older FPD-Link III Devices  
When using older FPD-Link III devices (in backward compatible), simultaneous access to serializer or  
deserializer registers from both local and remote I2C masters may cause incorrect operation, thus restrictions  
should be imposed on accessing of serializer and deserializer registers. The likelihood of an error occurrence is  
relatively small, but it is possible for collision on reads and writes to occur, resulting in an errored read or write.  
Two basic options are recommended. The first is to allow device register access only from one controller. In a  
Display mode system, this would allow only the Host controller to access the serializer registers (local) and the  
deserializer registers (remote). A controller at the deserializer (local to the Display) would not be allowed to  
access the deserializer or serializer registers.  
The second basic option is to allow local register access only with no access to remote serializer or deserializer  
registers. The Host controller would be allowed to access the serializer registers while a controller at the  
deserializer could access those register only. Access to remote I2C slaves would still be allowed in one direction  
(Camera or Display mode).  
In a very limited case, remote and local access could be allowed to the deserializer registers at the same time.  
Register access is ensured to work correctly if both local and remote masters are accessing the same  
deserializer register. This allows a simple method of passing control of the Bidirectional Control Channel from  
one master to another.  
8.5.6 Restrictions on Control Channel Direction for Multi-Master Operation  
Only Display or Camera mode operation should be active at any time across the Bidirectional Control Channel. If  
both directions are required, some method of transferring control between I2C masters should be implemented.  
Copyright © 2014–2016, Texas Instruments Incorporated  
45  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
8.6 Register Maps  
Table 12. Serial Control Bus Registers  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x00  
0x01  
I2C Device  
ID  
7:1  
0
DEVICE ID  
DES ID  
RW  
Strap  
7-bit address of Deserializer;  
Defaults to the address configured by the IDx strap pin. See  
Table 11.  
RW  
0
0: Device ID is from IDx strap  
1: Register I2C Device ID overrides IDx strap  
Reset  
7:3  
2
RESERVED  
RESERVED  
RW  
R
0
1
0
Reserved  
Reserved  
1
DIGITAL  
RESET0  
RW  
Digital Reset. Resets the entire digital block including registers.  
This bit is self-clearing.  
1: Reset  
0: Normal operation.  
Registers which are loaded by pin strap will be restored to their  
original strap value when this bit is set. These registers show  
‘Strap’ as their default value in this table.  
0
7
DIGITAL  
RESET1  
RW  
RW  
0
1
Digital Reset. Resets the entire digital block except registers.  
This bit is self-clearing.  
1: Reset  
0: Normal operation  
0x02  
General  
Configuration  
0
OUTPUT  
ENABLE  
Output Enable Override Value (in conjunction with Output Sleep  
State Select) If the Override control is not set, the Output  
Enable will be set to 1.  
A Digital reset 0x01[0] should be asserted after toggling Output  
Enable bit LOW to HIGH  
6
5
OUTPUT  
ENABLE  
OVERRIDE  
RW  
RW  
0
0
Overrides Output Enable and Output Sleep State default  
0: Disable override  
1: Enable override  
OSC CLOCK  
OUTPUT  
ENABLE  
(AUTO_CLOCK_  
EN)  
OSC clock output enable  
If loss of lock OSC clock is output onto PCLK. The frequency is  
selected in register 0x24.  
1: Enable  
0: Disable  
4
OUTPUT SLEEP RW  
STATE SELECT  
0
0
OSS Select Override value to control output state when LOCK  
is low (used in conjunction with Output Enable)  
If the Override control is not set, the Output Sleep State Select  
will be set to 1.  
3:0  
RESERVED  
RW  
Reserved  
46  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x03  
General  
Configuration  
1
7
6
RESERVED  
RW  
RW  
1
1
Reserved  
BC CRC  
GENERATOR  
ENABLE  
Back Channel CRC Generator Enable  
0: Enable  
1: Disable (Default)  
5
4
FAILSAFE LOW RW  
1
1
Controls the pull direction for undriven LVCMOS inputs  
1: Pull down  
0: Pull up  
FILTER ENABLE RW  
HS,VS,DE two clock filter  
When enabled, pulses less than two full PCLK cycles on the  
DE, HS, and VS inputs will be rejected.  
1: Filtering enable  
0: Filtering disable  
3
2
I2C PASS-  
THROUGH  
RW  
RW  
0
0
I2C Pass-Through to Serializer if decode matches  
0: Pass-Through Disabled  
1: Pass-Through Enabled  
AUTO ACK  
Automatically Acknowledge I2C writes independent of the  
forward channel lock state  
1: Enable  
0: Disable  
1
DE GATE RGB  
RW  
0
Gate RGB data with DE signal. RGB data is gated with DE in  
order to allow packetized audio and block unencrypted data  
when paired with a serializer that supports HDCP. When paired  
with a serializer that does not support HDCP, RGB data is not  
gated with DE by default. However, to enable packetized autio  
this bit must be set.  
1: Gate RGB data with DE (has no effect when paired with a  
serializer that supports HDCP)  
0: Pass RGB data independent of DE (has no effect when  
paired with a serializer that does not support HDCP)  
0
RESERVED  
RW  
RW  
0
Reserved  
0x04  
BCC  
Watchdog  
Control  
7:1  
BCC  
0x7F  
The watchdog timer allows termination of a control channel  
transaction if it fails to complete within a programmed amount of  
time. This field sets the Bidirectional Control Channel Watchdog  
Timeout value in units of 2 milliseconds. This field should not be  
set to 0.  
WATCHDOG  
TIMER  
0
BCC  
WATCHDOG  
TIMER DISABLE  
RW  
RW  
RW  
0
Disable Bidirectional Control Channel Watchdog Timer  
1: Disables BCC Watchdog Timer operation  
0: Enables BCC Watchdog Timer operation  
0x05  
I2C Control 1  
7
I2C PASS  
THROUGH ALL  
0
I2C Pass-Through All Transactions  
0: Disabled  
1: Enabled  
6:4  
I2C SDA HOLD  
0x1  
Internal SDA Hold Time  
This field configures the amount of internal hold time provided  
for the SDA input relative to the SCL input. Units are 50  
nanoseconds.  
3:0  
I2C FILTER  
DEPTH  
RW  
0xE  
I2C Glitch Filter Depth  
This field configures the maximum width of glitch pulses on the  
SCL and SDA inputs that will be rejected. Units are 5  
nanoseconds.  
Copyright © 2014–2016, Texas Instruments Incorporated  
47  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x06 I2C Control 2  
7
FORWARD  
CHANNEL  
SEQUENCE  
ERROR  
R
0
Control Channel Sequence Error Detected  
This bit indicates a sequence error has been detected in  
forward control channel. If this bit is set, an error may have  
occurred in the control channel operation.  
6
CLEAR  
RW  
0
Clears the Sequence Error Detect bit  
SEQUENCE  
ERROR  
5
RESERVED  
R
0
0
Reserved.  
4:3  
SDA Output  
Delay  
RW  
SDA Output Delay  
This field configures output delay on the SDA output. Setting  
this value will increase output delay in units of 50ns. Nominal  
output delay values for SCL to SDA are:  
00 : 250ns  
01: 300ns  
10: 350ns  
11: 400ns  
2
LOCAL WRITE  
DISABLE  
RW  
0
Disable Remote Writes to Local Registers  
Setting this bit to a 1 will prevent remote writes to local device  
registers from across the control channel. This prevents writes  
to the Deserializer registers from an I2C master attached to the  
Serializer. Setting this bit does not affect remote access to I2C  
slaves at the Deserializer.  
1
0
I2C BUS TIMER RW  
SPEEDUP  
0
0
Speed up I2C Bus Watchdog Timer  
1: Watchdog Timer expires after approximately 50  
microseconds  
0: Watchdog Timer expires after approximately 1 second.  
I2C BUS TIMER RW  
DISABLE  
Disable I2C Bus Watchdog Timer  
When the I2C Watchdog Timer may be used to detect when the  
I2C bus is free or hung up following an invalid termination of a  
transaction. If SDA is high and no signalling occurs for  
approximately 1 second, the I2C bus will assumed to be free. If  
SDA is low and no signaling occurs, the device will attempt to  
clear the bus by driving 9 clocks on SCL  
0x07  
REMOTE ID 7:1  
REMOTE ID  
(Loaded from  
remote SER)  
RW  
0x00  
7-bit Serializer Device ID  
Configures the I2C Slave ID of the remote Serializer. A value of  
0 in this field disables I2C access to the remote Serializer. This  
field is automatically loaded from the Serializer once RX Lock  
has been detected. Software may overwrite this value, but  
should also assert the FREEZE DEVICE ID bit to prevent  
loading by the Bidirectional Control Channel.  
0
FREEZE DEVICE RW  
ID  
0
0
Freeze Serializer Device ID  
Prevent auto-loading of the Serializer Device ID from the  
Forward Channel. The ID will be frozen at the value written.  
0x08  
0x09  
SlaveID[0]  
SlaveID[1]  
7:1  
SLAVE ID0  
RW  
7-bit Remote Slave Device ID 0  
Configures the physical I2C address of the remote I2C Slave  
device attached to the remote Serializer. If an I2C transaction is  
addressed to the Slave Alias ID0, the transaction will be  
remapped to this address before passing the transaction across  
the Bidirectional Control Channel to the Serializer.  
0
RESERVED  
SLAVE ID1  
RW  
RW  
0
0
Reserved.  
7:01  
7-bit Remote Slave Device ID 1  
Configures the physical I2C address of the remote I2C Slave  
device attached to the remote Serializer. If an I2C transaction is  
addressed to the Slave Alias ID1, the transaction will be  
remapped to this address before passing the transaction across  
the Bidirectional Control Channel to the Serializer.  
0
RESERVED  
RW  
0
Reserved.  
48  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x0A SlaveID[2]  
7:1  
SLAVE ID2  
RW  
0
7-bit Remote Slave Device ID 2  
Configures the physical I2C address of the remote I2C Slave  
device attached to the remote Serializer. If an I2C transaction is  
addressed to the Slave Alias ID2, the transaction will be  
remapped to this address before passing the transaction across  
the Bidirectional Control Channel to the Serializer.  
0
RESERVED  
SLAVE ID3  
RW  
RW  
0
0
Reserved.  
0x0B SlaveID[3]  
0x0C SlaveID[4]  
0x0D SlaveID[5]  
0x0E SlaveID[6]  
7:1  
7-bit Remote Slave Device ID 3  
Configures the physical I2C address of the remote I2C Slave  
device attached to the remote Serializer. If an I2C transaction is  
addressed to the Slave Alias ID3, the transaction will be  
remapped to this address before passing the transaction across  
the Bidirectional Control Channel to the Serializer.  
0
RESERVED  
SLAVE ID4  
RW  
RW  
0
0
Reserved.  
7:1  
7-bit Remote Slave Device ID 4  
Configures the physical I2C address of the remote I2C Slave  
device attached to the remote Serializer. If an I2C transaction is  
addressed to the Slave Alias ID4, the transaction will be  
remapped to this address before passing the transaction across  
the Bidirectional Control Channel to the Serializer.  
0
RESERVED  
SLAVE ID5  
RW  
RW  
0
0
Reserved.  
7:1  
7-bit Remote Slave Device ID 5  
Configures the physical I2C address of the remote I2C Slave  
device attached to the remote Serializer. If an I2C transaction is  
addressed to the Slave Alias ID5, the transaction will be  
remapped to this address before passing the transaction across  
the Bidirectional Control Channel to the Serializer.  
0
RESERVED  
SLAVE ID6  
RW  
RW  
0
0
Reserved.  
7:1  
7-bit Remote Slave Device ID 6  
Configures the physical I2C address of the remote I2C Slave  
device attached to the remote Serializer. If an I2C transaction is  
addressed to the Slave Alias ID6, the transaction will be  
remapped to this address before passing the transaction across  
the Bidirectional Control Channel to the Serializer.  
0
RESERVED  
SLAVE ID7  
RW  
RW  
0
0
Reserved.  
0x0F  
0x10  
0x11  
SlaveID[7]  
7:1  
7-bit Remote Slave Device ID 7  
Configures the physical I2C address of the remote I2C Slave  
device attached to the remote Serializer. If an I2C transaction is  
addressed to the Slave Alias ID7, the transaction will be  
remapped to this address before passing the transaction across  
the Bidirectional Control Channel to the Serializer.  
0
RESERVED  
RW  
RW  
0
0
Reserved.  
SlaveAlias[0] 7:1  
SLAVE ALIAS  
ID0  
7-bit Remote Slave Device Alias ID 0  
Configures the decoder for detecting transactions designated  
for an I2C Slave device attached to the remote Serializer. The  
transaction will be remapped to the address specified in the  
Slave ID0 register. A value of 0 in this field disables access to  
the remote I2C Slave.  
0
RESERVED  
0
0
Reserved.  
SlaveAlias[1] 7:1  
SLAVE ALIAS  
ID1  
RW  
7-bit Remote Slave Device Alias ID 1  
Configures the decoder for detecting transactions designated  
for an I2C Slave device attached to the remote Serializer. The  
transaction will be remapped to the address specified in the  
Slave ID1 register. A value of 0 in this field disables access to  
the remote I2C Slave.  
0
RESERVED  
0
Reserved.  
Copyright © 2014–2016, Texas Instruments Incorporated  
49  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
SlaveAlias[2] 7:1  
SLAVE ALIAS  
ID2  
RW  
0
7-bit Remote Slave Device Alias ID 2  
Configures the decoder for detecting transactions designated  
for an I2C Slave device attached to the remote Serializer. The  
transaction will be remapped to the address specified in the  
Slave ID2 register. A value of 0 in this field disables access to  
the remote I2C Slave.  
0
RESERVED  
0
0
Reserved.  
SlaveAlias[3] 7:1  
SLAVE ALIAS  
ID3  
RW  
RW  
RW  
RW  
RW  
7-bit Remote Slave Device Alias ID 3  
Configures the decoder for detecting transactions designated  
for an I2C Slave device attached to the remote Serializer. The  
transaction will be remapped to the address specified in the  
Slave ID3 register. A value of 0 in this field disables access to  
the remote I2C Slave.  
0
RESERVED  
0
0
Reserved.  
SlaveAlias[4] 7:1  
SLAVE ALIAS  
ID4  
7-bit Remote Slave Device Alias ID 4  
Configures the decoder for detecting transactions designated  
for an I2C Slave device attached to the remote Serializer. The  
transaction will be remapped to the address specified in the  
Slave ID4 register. A value of 0 in this field disables access to  
the remote I2C Slave.  
0
RESERVED  
0
0
Reserved.  
SlaveAlias[5] 7:1  
SLAVE ALIAS  
ID5  
7-bit Remote Slave Device Alias ID 5  
Configures the decoder for detecting transactions designated  
for an I2C Slave device attached to the remote Serializer. The  
transaction will be remapped to the address specified in the  
Slave ID5 register. A value of 0 in this field disables access to  
the remote I2C Slave.  
0
RESERVED  
0
0
Reserved  
SlaveAlias[6] 7:1  
SLAVE ALIAS  
ID6  
7-bit Remote Slave Device Alias ID 6  
Configures the decoder for detecting transactions designated  
for an I2C Slave device attached to the remote Serializer. The  
transaction will be remapped to the address specified in the  
Slave ID6 register. A value of 0 in this field disables access to  
the remote I2C Slave.  
0
RESERVED  
0
0
Reserved.  
SlaveAlias[7] 7:1  
SLAVE ALIAS  
ID7  
7-bit Remote Slave Device Alias ID 7  
Configures the decoder for detecting transactions designated  
for an I2C Slave device attached to the remote Serializer. The  
transaction will be remapped to the address specified in the  
Slave ID7 register. A value of 0 in this field disables access to  
the remote I2C Slave.  
0
RESERVED  
0
0
Reserved.  
0x18  
0x19  
MAILBOX_  
18  
7:0  
MAILBOX_18  
RW  
RW  
Mailbox Register  
This register is an unused read/write register that can be used  
for any purpose such as passing messages between I2C  
masters on opposite ends of the link.  
MAILBOX_  
19  
7:0  
MAILBOX_19  
0x01  
Mailbox Register  
This register is an unused read/write register that can be used  
for any purpose such as passing messages between I2C  
masters on opposite ends of the link.  
50  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x1A GPIO[9] and  
Global GPIO  
Config  
7
GLOBAL GPIO  
OUTPUT VALUE  
RW  
0
Global GPIO Output Value  
This value is output on each GPIO pin when the individual pin is  
not otherwise enabled as a GPIO and the global GPIO direction  
is Output  
6
5
RESERVED  
RW  
RW  
0
0
Reserved  
GLOBAL GPIO  
FORCE DIR  
The GLOBAL GPIO DIR and GLOBAL GPIO EN bits configure  
the pad in input direction or output direction for functional mode  
or GPIO mode. The GLOBAL bits are overridden by the  
individual GPIO DIR and GPIO EN bits.  
{GLOBAL GPIO DIR, GLOBAL GPIO EN}  
00: Functional mode; output  
4
GLOBAL GPIO  
FORCE EN  
RW  
0
10: Tri-state  
01: Force mode; output  
11: Force mode; input  
3
GPIO9 OUTPUT RW  
VALUE  
0
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
2
1
0
RESERVED  
GPIO9 DIR  
GPIO9 EN  
RW  
RW  
RW  
0
0
0
Reserved  
The GPIO DIR and GPIO EN bits configure the pad in input  
direction or output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
0x1B Frequency  
Counter  
7:0  
Frequency Count RW  
0
Frequency Counter control  
A write to this register will enable a frequency counter to count  
the number of pixel clock during a specified time interval. The  
time interval is equal to the value written multiplied by the  
oscillator clock period (nominally 50ns). A read of the register  
returns the number of pixel clock edges seen during the  
enabled interval. The frequency counter will freeze at 0xff if it  
reaches the maximum value. The frequency counter will provide  
a rough estimate of the pixel clock period. If the pixel clock  
frequency is known, the frequency counter may be used to  
determine the actual oscillator clock frequency.  
0x1C General  
Status  
7:5  
4
RESERVED  
R
R
0
0
Reserved.  
DUAL_RX_STS  
Receiver Dual Link Status:  
This bit indicates the current operating mode of the FPD-Link III  
Receive port  
1: 2-lane mode active  
0: 1-lane mode active  
3
I2S LOCKED  
R
0
I2S LOCK STATUS  
0: I2S PLL controller not locked  
1: I2S PLL controller locked to input I2S clock  
2
1
0
RESERVED  
RESERVED  
LOCK  
R
R
R
0
Reserved.  
Reserved.  
0/1  
0
De-Serializer CDR, PLL's clock to recovered clock frequency  
1: De-Serializer locked to recovered clock  
0: De-Serializer not locked  
In Dual Link mode, this indicates both channels are locked.  
Copyright © 2014–2016, Texas Instruments Incorporated  
51  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x1D GPIO0  
Config  
GPIO0 and D_GPIO0 Configuration  
If PORT1_SEL is set, this register controls the D_GPIO0 pin  
7:4  
3
Rev-ID  
R
Revision ID  
GPIO0 OUTPUT RW  
VALUE  
D_GPIO0  
0
0
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
OUTPUT VALUE  
2
GPIO0 REMOTE RW  
ENABLE  
D_GPIO0  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin  
will be an output, and the value is received from the remote  
Serializer.  
REMOTE  
ENABLE  
0: Disable GPIO control from remote Serializer.  
1
0
GPIO0 DIR  
D_GPIO0 DIR  
RW  
RW  
0
0
The GPIO DIR and GPIO EN configures the pad in input  
direction or output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
GPIO0 EN  
D_GPIO0 EN  
01: GPIO mode; output  
11: GPIO mode; input  
0x1E GPIO1_2  
Config  
GPIO1/GPIO2 and D_GPIO1/D_GPIO2 Configuration  
If PORT1_SEL is set, this register controls the D_GPIO1 and  
D_GPIO2 pins  
7
6
GPIO2 OUTPUT RW  
VALUE  
D_GPIO2  
0
0
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
OUTPUT VALUE  
GPIO2 REMOTE RW  
ENABLE  
D_GPIO2  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin  
will be an output, and the value is received from the remote  
Serializer.  
REMOTE  
ENABLE  
0: Disable GPIO control from remote Serializer.  
5
4
GPIO2 DIR  
D_GPIO2 DIR  
RW  
RW  
0
0
The GPIO DIR and GPIO EN configures the pad in input  
direction or output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
GPIO2 EN  
D_GPIO2 EN  
01: GPIO mode; output  
11: GPIO mode; input  
3
2
GPIO1 OUTPUT RW  
VALUE  
D_GPIO1  
0
0
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
OUTPUT VALUE  
GPIO1 REMOTE RW  
ENABLE  
D_GPIO1  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin  
will be an output, and the value is received from the remote  
Serializer.  
REMOTE  
ENABLE  
0: Disable GPIO control from remote Serializer.  
1
0
GPIO1 DIR  
D_GPIO1 DIR  
RW  
RW  
0
0
The GPIO DIR and GPIO EN configures the pad in input  
direction or output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
GPIO1 EN  
D_GPIO1 EN  
01: GPIO mode; output  
11: GPIO mode; input  
52  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x1F  
GPIO3  
Config  
GPIO3 and D_GPIO3 Configuration  
If PORT1_SEL is set, this register controls the D_GPIO3 pin  
7:4  
3
RESERVED  
RW  
0
0
Reserved (No GPIO 4)  
GPIO3 OUTPUT RW  
VALUE  
D_GPIO3  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
OUTPUT VALUE  
2
GPIO3 REMOTE RW  
ENABLE  
D_GPIO3  
0
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin  
will be an output, and the value is received from the remote  
Serializer.  
REMOTE  
ENABLE  
0: Disable GPIO control from remote Serializer.  
1
0
GPIO3 DIR  
D_GPIO3 DIR  
RW  
RW  
0
0
The GPIO DIR and GPIO EN configures the pad in input  
direction or output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
GPIO3 EN  
D_GPIO3 EN  
01: GPIO mode; output  
11: GPIO mode; input  
0x20  
GPIO5_6  
Config  
7
6
GPIO6 OUTPUT RW  
VALUE  
0
0
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
GPIO6 REMOTE RW  
ENABLE  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin  
will be an output, and the value is received from the remote  
Serializer.  
0: Disable GPIO control from remote Serializer.  
5
4
GPIO6 DIR  
GPIO6 EN  
RW  
RW  
0
0
The GPIO DIR and GPIO EN configures the pad in input  
direction or output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
3
2
GPIO5 OUTPUT RW  
VALUE  
0
0
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
GPIO5 REMOTE RW  
ENABLE  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin  
will be an output, and the value is received from the remote  
Serializer.  
0: Disable GPIO control from remote Serializer.  
1
0
GPIO5 DIR  
GPIO5 EN  
RW  
RW  
0
0
The GPIO DIR and GPIO EN configures the pad in input  
direction or output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
Copyright © 2014–2016, Texas Instruments Incorporated  
53  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x21 GPIO7_8  
Config  
7
GPIO8 OUTPUT RW  
VALUE  
0
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
6
GPIO8 REMOTE RW  
ENABLE  
0
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin  
will be an output, and the value is received from the remote  
Serializer.  
0: Disable GPIO control from remote Serializer.  
5
4
GPIO8 DIR  
GPIO8 EN  
RW  
RW  
0
0
The GPIO DIR and GPIO EN configures the pad in input  
direction or output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
3
2
GPIO7 OUTPUT RW  
VALUE  
0
0
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
GPIO7 REMOTE RW  
ENABLE  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin  
will be an output, and the value is received from the remote  
Serializer.  
0: Disable GPIO control from remote Serializer.  
1
0
GPIO7 DIR  
GPIO7 EN  
RW  
RW  
0
0
The GPIO DIR and GPIO EN configures the pad in input  
direction or output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
54  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x22 Datapath  
Control  
7
6
OVERRIDE FC  
CONFIG  
RW  
0
1: Disable loading of this register from the forward channel,  
keeping locally written values intact  
0: Allow forward channel loading of this register  
PASS RGB  
(Loaded from  
remote SER)  
RW  
0
Setting this bit causes RGB data to be sent independent of DE.  
This allows operation in systems which may not use DE to  
frame video data or send other data when DE is deasserted.  
Note that this bit prevents HDCP operation and blocks  
packetized audio. This bit has no effect when paired with a  
serializer that does not support HDCP.  
1: Pass RGB independent of DE  
0: Normal operation  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
5
4
3
DE POLARITY  
(Loaded from  
remote SER)  
RW  
0
0
0
This bit indicates the polarity of the DE (Data Enable) signal.  
1: DE is inverted (active low, idle high)  
0: DE is positive (active high, idle low)  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
I2S_RPTR_REG RW  
EN  
(Loaded from  
remote SER)  
Regenerate I2S Data from Repeater I2S pins.  
1: Don't output packetized audio data on RGB video output pins  
0: Output packetized audio on RGB video output pins (Default).  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
I2S 4-CHANNEL RW  
ENABLE  
OVERRIDE  
(Loaded from  
remote SER)  
1: Set I2S 4-Channel Enable from bit of this register  
0: Set I2S 4-Channel disabled  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
2
1
0
18-BIT VIDEO  
SELECT  
(Loaded from  
remote SER)  
RW  
0
0
0
1: Select 18-bit video mode  
0: Select 24-bit video mode  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
I2S TRANSPORT RW  
SELECT  
(Loaded from  
remote SER)  
1: Enable I2S In-Band Transport  
0: Enable I2S Data Island Transport  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
I2S 4-CHANNEL RW  
ENABLE  
(Loaded from  
remote SER)  
I2S 4-Channel Enable  
1: Enable I2S 4-Channel  
0: Disable I2S 4-Channel  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
Copyright © 2014–2016, Texas Instruments Incorporated  
55  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x23 RX Mode  
Status  
7
6
RESERVED  
RW  
RW  
0
0
Reserved  
BC FREQ  
SELECT  
Back Channel Frequency Select  
0: Divide-by-4 frequency based on the internal oscillator  
1: Divide-by-2 frequency based on the internal oscillator  
This bit will be ignored if BC_HIGH_SPEED is set to a 1. Note  
that changing this setting will result in some errors on the back  
channel for a short period of time. If set over the control  
channel, the Serializer should first be programmed to Auto-Ack  
operation (Serializer register 0x03, bit 5) to avoid a control  
channel timeout due to lack of response from the Deserializer.  
5
4
AUTO_I2S  
RW  
RW  
1
0
Auto I2S  
Determine I2S mode from the AUX data codes.  
BC_HS_CTL  
Back-Channel High-Speed control  
Enables high-speed back-channel at 20Mbps.  
This bit will override the BC_FREQ_SELECT setting.  
Note that changing this setting will result in some errors on the  
back channel for a short period of time. If set over the control  
channel, the Serializer should first be programmed to Auto-Ack  
operation (Serializer register 0x03, bit 5) to avoid a control  
channel timeout due to lack of response from the Deserializer.  
BC_HIGH_SPEED is loaded from the MODE_SEL1 pin strap  
options.  
3
2
COAX_MODE  
RW  
RW  
0
0
Coax Mode  
Configures the FPD3 Receiver for operation over Coax or STP  
cabling:  
0 : Shielded Twisted pair (STP)  
1 : Coax  
Coax Mode is loaded from the MODE_SEL1 pin strap options.  
REPEATER_  
MODE  
Repeater Mode  
Indicates device is strapped to repeater mode. Repeater Mode  
is loaded from the MODE_SEL1 pin strap options.  
1
0
RESERVED  
RESERVED  
RW  
RW  
0
0
Reserved  
Reserved  
56  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x24  
BIST Control 7:6  
BIST_OUT_  
MODE  
RW  
0
BIST Output Mode  
00 : No toggling  
01 : Alternating 1/0 toggling  
1x : Toggle based on BIST data  
5:4  
AUTO_OSC_FR RW  
EQ  
0
When register 0x02 bit 5 (AUTO)CLOCK_EN) is set, this field  
controls the nominal frequency of the oscillator-based receive  
clock.  
00: 50 MHz  
01: 25 MHz  
10: 10 MHz  
11: Reserved  
3
BIST PIN  
CONFIG  
RW  
RW  
1
0
Bist Configured through Pin.  
1: Bist configured through pin.  
0: Bist configured through bits 2:0 in this register  
2:1  
BIST CLOCK  
SOURCE  
BIST Clock Source  
This register field selects the BIST Clock Source at the  
Serializer. These register bits are automatically written to the  
CLOCK SOURCE bits (register offset 0x14) in the Serializer  
after BIST is enabled. See the appropriate Serializer register  
descriptions for details.  
00: External Pixel Clock  
01: Internal Pixel Clock  
1x: Internal Pixel Clock  
0
BIST_EN  
RW  
R
0
0
BIST Control  
1: Enabled  
0: Disabled  
0x25  
0x26  
BIST  
ERROR  
COUNT  
7:0  
BIST ERROR  
COUNT  
Bist Error Count  
Returns BIST error count for selected port. Port selected is  
based on the PORT_SEL control in the DUAL_RX_CTL register  
0x34 [1:0].  
SCL High  
Time  
7:0  
7:0  
SCL HIGH TIME RW  
0x83  
0x84  
I2C Master SCL High Time  
This field configures the high pulse width of the SCL output  
when the De-Serializer is the Master on the local I2C bus. Units  
are 50 ns for the nominal oscillator clock frequency. The default  
value is set to provide a minimum 5us SCL high time with the  
internal oscillator clock running at 26MHz rather than the  
nominal 20MHz.  
0x27  
SCL Low  
Time  
SCL LOW TIME  
RW  
I2C SCL Low Time  
This field configures the low pulse width of the SCL output  
when the De-Serializer is the Master on the local I2C bus. This  
value is also used as the SDA setup time by the I2C Slave for  
providing data prior to releasing SCL during accesses over the  
Bidirectional Control Channel. Units are 50 ns for the nominal  
oscillator clock frequency. The default value is set to provide a  
minimum 5us SCL low time with the internal oscillator clock  
running at 26MHz rather than the nominal 20MHz.  
Copyright © 2014–2016, Texas Instruments Incorporated  
57  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x28 Datapath  
Control 2  
7
OVERRIDE FC  
CONFIG  
RW  
0
1: Disable loading of this register from the forward channel,  
keeping locally witten values intact  
0: Allow forward channel loading of this register  
6
5
RESERVED  
RW  
RW  
0
0
Reserved  
VIDEO_  
Forward channel video disabled  
DISABLED  
(Loaded from  
remote SER)  
0 : Normal operation  
1 : Video is disabled, control channel is enabled  
This is a status bit only, indicating the forward channel is not  
sending active video. In this mode, the control channel and  
GPIO functions are enabled. Setting OVERRIDE_FC_CONFIG  
will prevent this bit from changing.  
4
3
DUAL_LINK  
(Loaded from  
remote SER)  
R
1: Dual Link mode enabled  
0: Single Link mode enabled  
This bit will always be loaded from forward channel and cannot  
be written locally. To force DUAL_LINK receive mode, use the  
RX_PORT_SEL register (address 0x34)  
ALTERNATE I2S RW  
ENABLE  
0
1: Enable alternate I2S output on GPIO1 (word clock) and  
GPIO0 (data)  
(Loaded from  
remote SER)  
0: Normal Operation  
2
1
0
I2S DISABLED  
(Loaded from  
remote SER)  
RW  
RW  
0
0
0
1: I2S DISABLED  
0: Normal Operation  
28BIT VIDEO  
(Loaded from  
remote SER)  
1: 28 bit Video enable. i.e. HS, VS, DE are present in forward  
channel.  
0: Normal Operation  
I2S SURROUND RW  
(Loaded from  
remote SER)  
1: I2S Surround enabled  
0: I2S Surround disabled  
0x2B I2S Control  
7:4  
3
RESERVED  
RW  
R
0
0
Reserved  
I2S FIFO  
OVERRUN  
STATUS  
I2S FIFO Overrun Status  
2
I2S FIFO  
R
0
I2S FIFO Underrun Status  
UNDERRUN  
STATUS  
1
0
I2S FIFO  
ERROR RESET  
RW  
RW  
0
0
I2S Fifo Error Reset  
1: Clears FIFO Error  
I2S DATA  
I2S Clock Edge Select  
FALLING EDGE  
1: I2S Data is strobed on the Rising Clock Edge.  
0: I2S Data is strobed on the Falling Clock Edge.  
0x2E PCLK Test  
Mode  
7
EXTERNAL  
PCLK  
RW  
RW  
0
0
Select pixel clock from BISTC input  
6:0  
RESERVED  
Reserved  
58  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x34 DUAL_RX_  
7
6
RESERVED  
R
0
0
Reserved  
CTL  
RX_LOCK_  
MODE  
RW  
RX Lock Mode:  
Determines operating conditions for indication of RX_LOCK and  
generation of video data.  
0 : RX_LOCK asserted only when receiving active video  
(Forward channel VIDEO_DISABLED bit is 0)  
1 : RX_LOCK asserted when device is linked to a Serializer  
even if active video is not being sent. This allows indication of  
valid link where Bidirectional Control Channel is enabled, but  
Deserializer is not receiving Audio/Video data.  
5
RAW_2ND_BC  
RW  
RW  
0
0
Enable Raw Secondary Back channel  
If this bit is set to a 1, the secondary back channel will operate  
in a raw mode, passing D_GPIO0 from the Deserializer to the  
Serializer, without any oversampling or filtering.  
4:3  
FPD3 INPUT  
MODE  
FPD-Link III Input Mode  
Determines operating mode of FPD-Link III Receive interface  
00: Auto-detect based on received data  
01: Forced Mode: 2-lane  
10: Forced Mode: 1-lane, primary input  
11: Forced Mode: 1-lane, secondary input  
2
1
RESERVED  
PORT1_SEL  
RW  
RW  
0
0
Reserved  
Selects Port 1 for Register Access from primary I2C Address  
For writes, port1 registers and shared registers will both be  
written.  
For reads, port1 registers and shared registers will be read.  
This bit must be cleared to read port0 registers.  
0
PORT0_SEL  
RW  
1
Selects Port 0 for Register Access from primary I2C Address  
For writes, port0 registers and shared registers will both be  
written.  
For reads, port0 registers and shared registers will both be  
read.  
Note that if PORT1_SEL is also set, then port1 registers will be  
read.  
0x35  
AEQ TEST  
AEQ Test register  
If PORT1_SEL is set, this register sets port1 AEQ controls  
7
6
RESERVED  
RW  
0
0
Reserved  
AEQ_RESTART RW  
Set high to restart AEQ adaptation from initial value. Method is  
write HIGH then write LOW - not self clearing. Adaption will be  
restarted on both ports.  
5
OVERRIDE_AEQ RW  
0
Enable operation of SET_AEQ_FLOOR  
_
FLOOR  
4
SET_AEQ_  
FLOOR  
RW  
RW  
0
AEQ adaptation starts from a pre-set floor value rather than  
from zero - recommended for long cable situations  
3:0  
RESERVED  
0x0  
Reserved  
Copyright © 2014–2016, Texas Instruments Incorporated  
59  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x37  
MODE_SEL  
7
MODE_SEL1  
RW  
0
MODE_SEL1 Done:  
DONE  
0: indicates the MODE_SEL1 decode has not been latched into  
the MODE_SEL1 status bits.  
1: indicates the MODE_SEL1 decode has completed and  
latched into the MODE_SEL1 status bits.  
6:4  
MODE_SEL1  
RW  
0
MODE_SEL1 Decode  
3-bit decode from MODE_SEL1 pin, see MODE_SEL1 table  
first column "#" for mode selection:  
000: CSI0 / 5 Mbps / STP (#1 on MODE_SEL1)  
001: CSI0 / 5 Mbps / coax (#2 on MODE_SEL1)  
010: CSI0 / 20 Mbps / STP (#3 on MODE_SEL1)  
011: CSI0 / 20 Mbps / coax (#4 on MODE_SEL1)  
100: CSI1 / 5 Mbps / STP (#5 on MODE_SEL1)  
101: CSI1 / 5 Mbps / coax (#6 on MODE_SEL1)  
110: CSI1 / 20 Mbps / STP (#7 on MODE_SEL1)  
111: CSI1 / 20 Mbps / coax (#8 on MODE_SEL1)  
Note: 0x37[6] is the MSB; 0x37[4] is the LSB  
3
MODE_SEL0  
DONE  
RW  
RW  
0
0
MODE_SEL0 Done:  
0: indicates the MODE_SEL0 decode has not been latched into  
the MODE_SEL0 status bits.  
1: indicates the MODE_SEL0 decode has completed and  
latched into the MODE_SEL0 status bits.  
2:0  
MODE_SEL0  
MODE_SEL0 Decode  
3-bit decode from MODE_SEL0 pin, see MODE_SEL0 table  
first column "#" for mode selection:  
000: 4 data lanes, 1 CSI port active  
..........Active CSI port determined by MODE_SEL1 CSI_SEL bit.  
.......... (#1 on MODE_SEL0)  
001: 4 data lanes, both CSI ports active  
..........overrides MODE_SEL1. (#2 on MODE_SEL0)  
010: 2 data lanes, 1 CSI port active  
..........Active CSI port determined by MODE_SEL1 CSI_SEL bit.  
.......... (#3 on MODE_SEL0)  
011: 2 data lanes, both CSI port active  
..........overrides MODE_SEL1. (#4 on MODE_SEL0)  
100: RESERVED (#5 on MODE_SEL0)  
101: RESERVED (#6 on MODE_SEL0)  
110: RESERVED (#7 on MODE_SEL0)  
111: RESERVED (#8 on MODE_SEL0)  
Note: 0x37[2] is the MSB; 0x37[0] is the LSB  
0x3A I2S_DIVSEL  
7
reg_ov_mdiv  
reg_mdiv  
RW  
RW  
0x0  
0x0  
0: No override for MCLK divider  
1: Override divider select for MCLK  
6:4  
Divide ratio select for VCO output (32*REF/M)  
000: Divide by 32 (=REF/M)  
001: Divide by 16 (=2*REF/M)  
010: Divide by 8 (=4*REF/M)  
011: Divide by 4 (=8*REF/M)  
100: Reserved  
101: Divide by 2 (=16*REF/M)  
110: Reserved  
111: Divide by 1 (32*REF/M)  
3
2
RESERVED  
R
0x0  
0x0  
reg_ov_mselect  
RW  
0: Divide ratio of reference clock VCO selected by PLL-SM  
1: Override divide ratio of clock to VCO  
1:0  
reg_mselect  
RW  
0x0  
Divide ratio select for VCO input (M)  
00: Divide by 1  
01: Divide by 2  
10: Divide by 4  
11: Divide by 8  
60  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x41  
LINK  
ERROR  
COUNT  
7:5  
4
RESERVED  
RW  
RW  
0
0
Reserved  
LINK ERROR  
COUNT ENABLE  
Enable serial link data integrity error count  
1: Enable error count  
0: DISABLE  
3:0  
LINK ERROR  
COUNT  
RW  
0x3  
Link error count threshold. Counter is pixel clock based. clk0,  
clk1 and DCA are monitored for link errors, if error count is  
enabled, deserializer loose lock once error count reaches  
threshold. If disabled deserilizer loose lock with one error.  
0x43  
HSCC_  
CONTROL  
7:5  
4
RESERVED  
RW  
RW  
0
0
Reserved  
SPI_MISO_  
MODE  
SPI MISO pin mode during Reverse SPI mode  
During Reverse SPI mode, SPI_MISO is typically an output  
signal. For bused SPI applications, it may be necessary to tri-  
state the SPI_MISO output if the device is not selected (SPI_SS  
= 0).  
0 : Always enable SPI_MISO output driver  
1 : Tri-state SPI_MISO output if SPI_SS is not asserted (low)  
3
SPI_CPOL  
RW  
RW  
0
0
SPI Clock Polarity Control  
0 : SPI Data driven on Falling clock edge, sampled on Rising  
clock edge  
1 : SPI Data driven on Rising clock edge, sampled on Falling  
clock edge  
2:0  
HSCC_MODE  
High-Speed Control Channel Mode  
Enables high-speed modes for the secondary link back-channel,  
allowing higher speed signaling of GPIOs or SPI interface:  
These bits indicates the High Speed Control Channel mode of  
operation:  
000: Normal frame, GPIO mode  
001: High Speed GPIO mode, 1 GPIO  
010: High Speed GPIO mode, 2 GPIOs  
011: High Speed GPIO mode: 4 GPIOs  
100: Reserved  
101: Reserved  
110: High Speed, Forward Channel SPI mode  
111: High Speed, Reverse Channel SPI mode  
0x44  
ADAPTIVE  
Adaptive Equalizer Bypass register  
EQ BYPASS  
If PORT1_SEL is set, this register sets port1 AEQ controls  
7:5  
EQ STAGE 1  
RW  
0x3  
EQ select value[5:3] - Used if adaptive EQ is bypassed.  
SELECT VALUE  
4
RESERVED  
RW  
RW  
0
0
Reserved  
3:1  
EQ STAGE 2  
EQ select value [2:0] - Used if adaptive EQ is bypassed.  
SELECT VALUE  
0
ADAPTIVE EQ  
BYPASS  
RW  
0
1: Disable adaptive EQ  
0: Enable adaptive EQ  
0x45  
ADAPTIVE  
Adaptive Equalizer Configuration  
EQ MIN MAX  
If PORT1_SEL is set, this register sets port1 AEQ configuration  
7:4  
3:0  
RESERVED  
RW  
RW  
0x08  
Reserved  
ADAPTIVE EQ  
FLOOR VALUE  
When AEQ floor is enabled by mode-sel pin or register  
(reg_35[5:4]) the starting setting is given by this register.  
Copyright © 2014–2016, Texas Instruments Incorporated  
61  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x52  
CML  
OUTPUT  
CTL1  
7
CML CHANNEL  
SELECT 1  
RW  
0
Selects between PORT0 and PORT1 to output onto CMLOUT±.  
0: Recovered forward channel data from RIN0± is output on  
CMLOUT±  
1: Recovered forward channel data from RIN1± is output on  
CMLOUT±  
CMLOUT driver must be enabled by setting 0x56[3] = 1.  
Note: This bit must match 0x57[2:1] setting for PORT0 or  
PORT1.  
6:0  
7:4  
3
RESERVED  
RESERVED  
RW  
RW  
RW  
0
0
0
Reserved  
Reserved  
0x56  
0x57  
CML  
OUTPUT  
ENABLE  
CMLOUT  
ENABLE  
Enable CMLOUT± Loop-through Driver  
0: Disabled (Default)  
1: Enabled  
2:0  
7:3  
2:1  
RESERVED  
RESERVED  
RW  
RW  
RW  
0
0
0
Reserved  
Reserved  
CML  
OUTPUT  
CTL2  
CML CHANNEL  
SELECT 2  
Selects between PORT0 and PORT1 to output onto CMLOUT±.  
01: Recovered forward channel data from RIN0± is output on  
CMLOUT±  
10: Recovered forward channel data from RIN1± is output on  
CMLOUT±  
CMLOUT driver must be enabled by setting 0x56[3] = 1.  
Note: This must match 0x52[7] setting for PORT0 or PORT1.  
0
RESERVED  
RW  
0
Reserved  
62  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x64 PGCTL  
7:4  
PATGEN_SEL  
RW  
1
Fixed Pattern Select  
This field selects the pattern to output when in Fixed Pattern  
Mode. Scaled patterns are evenly distributed across the  
horizontal or vertical active regions. This field is ignored when  
Auto-Scrolling Mode is enabled. The following table shows the  
color selections in non-inverted followed by inverted color  
mode:  
0000: Reserved  
0001: White/Black  
0010: Black/White  
0011: Red/Cyan  
0100: Green/Magenta  
0101: Blue/Yellow  
0110: Horizontally Scaled Black to White/White to Black  
0111: Horizontally Scaled Black to Red/White to Cyan  
1000: Horizontally Scaled Black to Green/White to Magenta  
1001: Horizontally Scaled Black to Blue/White to Yellow  
1010: Vertically Scaled Black to White/White to Black  
1011: Vertically Scaled Black to Red/White to Cyan  
1100: Vertically Scaled Black to Green/White to Magenta  
1101: Vertically Scaled Black to Blue/White to Yellow  
1110: Custom color (or its inversion) configured in PGRS,  
PGGS, PGBS registers  
1111: Reserved  
See TI App Note AN-2198  
3
2
PATGEN_UNH  
RW  
RW  
0
0
Enables the UNH-IOL compliance test pattern:  
0: Pattern type selected by PATGEN_SEL  
1: Compliance test pattern is selected. Value of PATGEN_SEL  
is ignored.  
PATGEN_  
COLOR  
Enable Color Bars Pattern  
0: Color Bars disabled (default)  
1: Color bars enabled  
Overides the selection from bits [7:4]  
1
0
PATGEN_  
VCOM_REV  
RW  
RW  
0
0
Reverse the order of color bands in VCOM pattern  
0: Color sequence from top left is (YCBR) (default)  
1: Color sequence from top left is (RBCY)  
PATGEN_EN  
Pattern Generator Enable:  
1: Enable Pattern Generator  
0: Disable Pattern Generator  
Copyright © 2014–2016, Texas Instruments Incorporated  
63  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x65  
PGCFG  
7:5  
4
RESERVED  
R
0
0
Reserved  
PATGEN_18B  
RW  
18-bit Mode Select:  
1: Enable 18-bit color pattern generation. Scaled patterns will  
have 64 levels of brightness and the R, G, and B outputs use  
the six most significant color bits.  
0: Enable 24-bit pattern generation. Scaled patterns use 256  
levels of brightness.  
This bit has no effect in external timing mode (PATGEN_TSEL  
= 0).  
3
2
PATGEN_  
EXTCLK  
RW  
RW  
0
0
Select PCLK of Pattern generator  
1: Selects the external pixel clock when using internal timing.  
0: Selects the internal divided clock when using internal timing.  
This bit has no effect in external timing mode (PATGEN_TSEL  
= 0).  
PATGEN_TSEL  
Timing Select Control:  
1: The Pattern Generator creates its own video timing as  
configured in the Pattern Generator Total Frame Size, Active  
Frame Size, Horizontal Sync Width, Vertical Sync Width,  
Horizontal Back Porch, Vertical Back Porch, and Sync  
Configuration registers.  
0: the Pattern Generator uses external video timing from the  
pixel clock, Data Enable, Horizontal Sync, and Vertical Sync  
signals.  
1
0
PATGEN_INV  
RW  
RW  
0
0
Enable Inverted Color Patterns:  
1: Invert the color output.  
0: Do not invert the color output.  
PATGEN_  
ASCRL  
Auto-Scroll Enable:  
1: The Pattern Generator will automatically move to the next  
enabled pattern after the number of frames specified in the  
Pattern Generator Frame Time (PGFT) register.  
0: The Pattern Generator retains the current pattern.  
0x66  
0x67  
0x68  
PGIA  
7:0  
7:0  
PATGEN_IA  
PATGEN_ID  
RESERVED  
RW  
RW  
RW  
0
0
Indirect Address:  
This 8-bit field sets the indirect address for accesses to  
indirectly-mapped registers. It should be written prior to reading  
or writing the Pattern Generator Indirect Data register.  
See TI App Note AN-2198.  
PGID  
Indirect Data:  
When writing to indirect registers, this register contains the data  
to be written. When reading from indirect registers, this register  
contains the readback value.  
See TI App Note AN-2198.  
PGDBG  
7:4  
3
0
0
Reserved  
PATGEN_BIST_ RW  
EN  
Pattern Generator BIST Enable:  
Enables Pattern Generator in BIST mode. Pattern Generator  
will compare received video data with local generator pattern.  
Upstream device must be programmed to the same pattern.  
2:0  
7
RESERVED  
RW  
R
0
0
Reserved  
0x69  
PGTSTDAT  
PATGEN_BIST_  
ERR  
Pattern Generator BIST Error Flag  
During Pattern Generator BIST mode, this bit indicates if the  
BIST engine has detected errors. If the BIST Error Count  
(available in the Pattern Generator indirect registers) is non-  
zero, this flag will be set.  
6:0  
RESERVED  
R
0
64  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0x6A CSICFG0  
7:6  
5:4  
RESERVED  
LANE_CNT  
RW  
RW  
00  
00  
Reserved  
Setup number of data lanes for the CSI ports.  
00/01: 4 data lanes  
10: 2 data lanes  
3
ULPM  
RW  
RW  
RW  
RW  
RW  
0
When set, put the data lanes in ultra-low power mode (LP00) by  
sending out a LP signalling sequence.  
2
ULPS  
0
When set with ULPM, put the clock lane into ultra-low power  
mode. No effect if ULPM is not set.  
1
CONTS_CLK  
CSI_DIS  
OFMT  
0
When set, keep the clock lane running (in HS mode) during line  
blank (DE=0) and frame black (VS not active)  
0
0
When set, disable the CSI state machine. Function as a soft  
reset.  
0x6B CSICFG1  
7:4  
0000  
Program the output CSI data formats  
0000: RGB888  
0001: RGB666  
0010: RGB565  
0011: YUV420 Legacy  
0100: YUV420  
0101: YUV422_8  
0110: RAW8  
0111: RAW10  
1000: RAW12  
1001: YUV420 (CSPS)  
3:2  
IFMT  
RW  
00  
Program the input data format in HDMI terminology  
00: RGB444  
01: YUV422  
10: YUV444  
11: RAW  
1
INV_VS  
INV_DE  
CSI_IA  
RW  
RW  
RW  
0
0
0
When set, the VS received from the digital receiver will be  
inverted. Because the CSI logic works on active-high VS, this  
bit is typically set when the VS from the data source is active-  
low.  
0
When set, the DE received from the digital receiver will be  
inverted. Because the CSI logive works on active-high DE, this  
bit is typically set when the DE from the data source is active-  
low.  
0x6C CSIIA  
0x6D CSIID  
7:0  
Indirect address port for accessing CSI registers. Refer to  
Table 13  
7:0  
7
CSI_ID  
RW  
R
0
0
0
0
0
0
0
0
0
0
0
Indirect data port for accessing CSI registers. Refer to Table 13  
GPI7/I2S_WC pin status  
GPI6/I2S_DA pin status  
0x6E GPI Pin  
Status 1  
GPI7 Pin Status  
GPI6 Pin Status  
GPI5 Pin Status  
RESERVED  
6
R
5
R
GPI5/I2S_DB pin status  
4
R
Reserved for future use  
3
GPI3 Pin Status  
GPI2 Pin Status  
GPI1 Pin Status  
GPI0 Pin Status  
RESERVED  
R
GPI3 / I2S_DD pin status  
GPI2 / I2S_DC pin status  
GPI1 pin status  
2
R
1
R
0
R
GPI0 pin status  
0x6F  
GPI Pin  
Status 2  
7:1  
0
R
Reserved for future use  
GPI8 Pin Status  
R
GPI8/I2S_CLK pin status  
Copyright © 2014–2016, Texas Instruments Incorporated  
65  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Register Maps (continued)  
Table 12. Serial Control Bus Registers (continued)  
ADD  
Register  
Bit(s) Function  
Type  
Default  
Description  
(hex) Name  
Value (hex)  
0xF0  
0xF1  
0xF2  
RX ID  
7:0  
7:0  
7:0  
ID0  
ID1  
ID2  
R
R
R
0x5F  
0x55  
0x48  
First byte ID code, ‘_’  
2nd byte of ID code, ‘U’  
3rd byte of ID code. Value will be either ‘B’ or ‘H’. ‘H’ indicates  
an HDCP capable device.  
0xF3  
0xF4  
0xF5  
7:0  
7:0  
7:0  
ID3  
ID4  
ID5  
R
R
R
0x39  
0x34  
0x30  
4th byte of ID code: ‘9’  
5th byte of ID code: '4'  
6th byte of ID code: '0'  
Table 13. CSI Indirect Register Table  
Default  
Value  
(hex)  
Offset  
(hex)  
Register Name  
Bit(s)  
Function  
0x09  
RAW_ALIGN  
7:5  
4
0x00  
Reserved  
Raw Align.  
0: RAW Output onto LSB's of RGB Bus  
1: RAW Output onto MSB's of RGB Bus  
3:0  
7
Reserved  
0x13  
0x14  
0x16  
CSI_EN_PORT0  
CSI_EN_PORT1  
CSIPASS  
0
Register Control  
0 = Disable  
1 = Enable  
6
0
Reserved  
5:0  
0x3F  
0x00 = Disable CSI Port 0  
0x3F = Enable CSI Port 0  
7
0
Register Control  
0 = Disable  
1 = Enable  
6
0
Reserved  
5:0  
0x00  
0x00 = Disable CSI Port 1  
0x3F = Enable CSI Port 1  
7:3  
2
0x02  
0x00  
Reserved  
CSI_PASS to GPIO3. Configures GPIO3 to output the PASS signal when  
this bit is set HIGH.  
1
CSI_PASS to GPIO0. Configures GPIO0 to output the PASS signal when  
this bit is set HIGH. This is the default.  
0
CSI_PASS. This bit reflects the status of the PASS signal.  
0x2E  
CSI_VC_ID  
7:6  
CSI Virtual Channel identifier.  
00: CSI-2 outputs with ID as virtual channel 0.  
01: CSI-2 outputs with ID as virtual channel 1.  
10: CSI-2 outputs with ID as virtual channel 2.  
11: CSI-2 outputs with ID as virtual channel 3.  
5:0  
Reserved  
66  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DS90UB940-Q1 is a FPD-Link III Deserializer which, in conjunction with the DS90UB949/947-Q1 Serializers,  
converts 1-lane or 2-lane FPD-Link III streams into a MIPI CSI-2 interface. The Deserializer is capable of  
operating over cost-effective 50Ω single-ended coaxial or 100Ω differential shielded twisted-pair (STP) cables. It  
recovers the data from two FPD-Link III serial streams and translates it into a Camera Serial Interface (CSI-2)  
format compatible with MIPI DPHY/CSI-2 supporting video resolutions up to WUXGA and 1080p60 with 24-bit  
color depth.  
9.2 Typical Applications  
Bypass capacitors should be placed near the power supply pins. At a minimum, four (4) 10µF capacitors should  
be used for local device bypassing. Ferrite beads are placed on the two sets of supply pins (VDD33 and VDDIO )  
for effective noise suppression. The interface to the graphics source is LVDS. The VDDIO pins may be  
connected to 3.3V or 1.8V. A capacitor and resistor are placed on the PDB pin to delay the enabling of the  
device until power is stable. See Figure 37 for a typical STP connection diagram and for a typical coax  
connection diagram.  
Copyright © 2014–2016, Texas Instruments Incorporated  
67  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Typical Applications (continued)  
ë5533  
1ꢀ2ë  
ë55t12_/I0  
ë5533_!  
ë5533_.  
ë55Lh  
3ꢀ3ë  
C.ꢂ  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
C.1  
0ꢀ1µC 1µC 10µC  
10µC 1µC 0ꢀ1µC  
ë55w12_/I0  
ë55t12_/I1  
ë55w12_/I1  
ë5512_/{L0  
ë5512_/{L1  
ë55t12_[ë5{  
ë55[12_0  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
ë55Lh  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
C.6  
C.2  
C.3  
0ꢀ1µC 1µC 10µC  
10µC 1µC  
10µC 1µC  
0ꢀ1µC  
0ꢀ1µC  
/aC  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
/!t_t[[0  
/!t_t[[1  
/!t_L2{  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
ë5533  
(Cilꢁered 3ꢀ3ë)  
C.4  
0ꢀ01µC  
t 0ꢀ1µC  
10µC 1µC 0ꢀ1µC  
w4  
wꢂ  
ë55[12_0  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ1µC  
w6  
.L{Ç9b  
.L{Ç/  
/onꢁrol  
L5x  
ah59_{9[0  
ah59_{9[1  
w7  
0ꢀ1µC  
w8  
wꢃ  
/1  
/2  
wLb0+  
wLb0-  
0ꢀ1µC  
Ct5-[ink LLL  
/3  
/4  
wLb1+  
wLb1-  
/{L0_/[Y-  
/{L0_/[Y+  
/{L0_50-  
/{L0_50+  
/{L0_51-  
/{L0_51+  
/{L0_52-  
/{L0_52+  
/{L0_53-  
/{L0_53+  
{í/  
!ux !udio  
{5hÜÇ  
ah{L  
aL{h  
{t[Y  
{{  
{tL  
/{L huꢁpuꢁs  
/{L1_/[Y-  
/{L1_/[Y+  
/{L1_50-  
/{L1_50+  
/{L1_51-  
/{L1_51+  
/{L1_52-  
/{L1_52+  
/{L1_53-  
/{L1_53+  
ë55Lh  
/a[hÜÇt  
/a[hÜÇb  
4ꢀ7k 4ꢀ7k  
L2/_{5!  
L2/_{/[  
L2/  
ë55Lh  
10k  
>10µC  
t5.  
L2{_í/  
L2{_/[Y  
L2{_5!  
L2{_5.  
L2{_5/  
L2{_55  
a/[Y  
[h/Y  
t!{{  
{ꢁꢄꢁus  
L2{ !udio  
NOTE:  
FB1-FB4: DCR<=25mQ; Z=120Q@100MHz  
FB5, FB6: DCR<=0.3Q; Z=1KQ@100MHz  
C1-C4 = 0.1µF (50 WV; 0402) with DS90UH/B925/927  
= 0.033µF (50 WV; 0402) with DS90UH/B929/947/949)  
R4 and R5 (see IDx Resistor Values Table)  
5!t  
5{ꢃ0Üxꢃ40-v1  
R6 œ R9 (see MODE_SEL Resistor Values Table)  
Figure 37. Typical Connection Diagram (STP)  
68  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Typical Applications (continued)  
ë5533  
1ꢀ2ë  
ë55t12_/I0  
ë55w12_/I0  
ë55t12_/I1  
ë55w12_/I1  
ë5512_/{L0  
ë5512_/{L1  
ë55t12_[ë5{  
ë55[12_0  
ë5533_!  
3ꢀ3ë  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
C.1  
C.ꢂ  
0ꢀ1µC 1µC 10µC  
10µC 1µC 0ꢀ1µC  
ë5533_.  
ë55Lh  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
ë55Lh  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
C.6  
C.2  
C.3  
0ꢀ1µC 1µC 10µC  
10µC 1µC  
10µC 1µC  
0ꢀ1µC  
0ꢀ1µC  
/aC  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
/!t_t[[0  
/!t_t[[1  
/!t_L2{  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ01µC  
t 0ꢀ1µC  
ë5533  
(Cilꢁered 3ꢀ3ë)  
C.4  
0ꢀ01µC  
t 0ꢀ1µC  
10µC 1µC 0ꢀ1µC  
w4  
wꢂ  
ë55[12_0  
0ꢀ01µC  
t 0ꢀ1µC  
0ꢀ1µC  
w6  
.L{Ç9b  
.L{Ç/  
/onꢁrol  
L5x  
ah59_{9[0  
ah59_{9[1  
w7  
0ꢀ1µC  
w8  
wꢃ  
/1  
/2  
wLb0+  
wLb0-  
0ꢀ1µC  
Ct5-[ink LLL  
wÇ9wa  
/3  
wLb1+  
wLb1-  
/{L0_/[Y-  
/{L0_/[Y+  
/{L0_50-  
/{L0_50+  
/{L0_51-  
/{L0_51+  
/{L0_52-  
/{L0_52+  
/{L0_53-  
/{L0_53+  
/4  
wÇ9wa  
{í/  
!ux !udio  
{5hÜÇ  
ah{L  
aL{h  
{t[Y  
{{  
{tL  
/{L huꢁpuꢁs  
/{L1_/[Y-  
/{L1_/[Y+  
/{L1_50-  
/{L1_50+  
/{L1_51-  
/{L1_51+  
/{L1_52-  
/{L1_52+  
/{L1_53-  
/{L1_53+  
ë55Lh  
/a[hÜÇt  
/a[hÜÇb  
4ꢀ7k 4ꢀ7k  
L2/_{5!  
L2/_{/[  
L2/  
ë55Lh  
10k  
>10µC  
t5.  
L2{_í/  
L2{_/[Y  
L2{_5!  
L2{_5.  
L2{_5/  
L2{_55  
a/[Y  
[h/Y  
t!{{  
{ꢁꢄꢁus  
L2{ !udio  
NOTE:  
FB1-FB4: DCR<=25mQ; Z=120Q@100MHz  
FB5, FB6: DCR<=0.3Q; Z=1KQ@100MHz  
C1,C3 = 0.033µF (50 WV; 0402)  
5!t  
C2,C4 = 0.015µF (50 WV; 0402)  
R4 and R5 (see IDx Resistor Values Table)  
R6 œ R9 (see MODE_SEL Resistor Values Table)  
RTERM = 50Ω  
5{ꢃ0Üxꢃ40-v1  
Figure 38. Typical Connection Diagram (Coax)  
Copyright © 2014–2016, Texas Instruments Incorporated  
69  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
VDDIO  
VDDIO  
(3.3V / 1.8V)  
3.3V  
(3.3V / 1.8V)  
1.8V  
1.1V  
1.2V  
HDMI  
or  
DP++  
FPD-Link III  
2 lanes  
MIPI CSI-2  
IN_CLK-/+  
RIN0+  
RIN0-  
DOUT0+  
DOUT0-  
IN_D0-/+  
IN_D1-/+  
Mobile  
Device  
or  
Graphics  
Processor  
D3+/-  
D2+/-  
D1+/-  
D0+/-  
DOUT1+  
DOUT1-  
RIN1+  
RIN1-  
IN_D2-/+  
Application  
Processor  
DS90UB949-Q1  
Serializer  
DS90UB940-Q1  
Deserializer  
CEC  
DDC  
HPD  
CLK+/-  
I2C  
IDx  
I2C  
IDx  
HS_GPIO  
(SPI)  
HS_GPIO  
(SPI)  
Figure 39.  
9.2.1 Design Requirements  
For the typical design application, use the following as input parameters.  
Table 14. Design Parameters  
Design Parameter  
Example Value  
VDDIO  
1.8V or 3.3V  
1.2V  
VDD12  
VDD33  
3.3V  
AC Coupling Capacitor for RIN0± and RIN1±  
33 nF  
The SER/DES supports only AC-coupled interconnects through an integrated DC-balanced decoding scheme.  
External AC coupling capacitors must be placed in series in the FPD-Link III signal path as illustrated in  
Figure 40. For applications utilizing single-ended 50 Ω coaxial cable, the unused data pins (RIN0-, RIN1-) should  
utilize a 15 nF capacitor and should be terminated with a 50 Ω resistor.  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
Figure 40. AC-Coupled Connection (STP)  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
50Q  
50Q  
Figure 41. AC-Coupled Connection (Coaxial)  
For high-speed FPD–Link III transmissions, the smallest available package should be used for the AC coupling  
capacitor. This will help minimize degradation of signal quality due to package parasitics. The I/O’s require 33 nF  
AC coupling capacitors to the line.  
70  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
9.2.2 Detailed Design Procedure  
9.2.2.1 PCB Layout and Power System Considerations  
Circuit board layout and stack-up for the LVDS serializer and deserializer devices should be designed to provide  
low-noise power to the device. Good layout practice will also separate high frequency or high-level inputs and  
outputs to minimize unwanted stray noise, feedback and interference. Power system performance may be greatly  
improved by using thin dielectrics (2 to 4 mil) for power / ground sandwiches. This arrangement utilizes the plane  
capacitance for the PCB power system and has low-inductance, which has proven effectiveness especially at  
high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01 μF to 10 μF. Tantalum capacitors may be in the 2.2 μF to 10 μF range. The voltage rating of the  
tantalum capacitors should be at least 5X the power supply voltage being used.  
MLCC surface mount capacitors are recommended due to their smaller parasitic properties. When using multiple  
capacitors per supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommended at  
the point of power entry. This is typically in the 50 μF to 100 μF range and will smooth low frequency switching  
noise. It is recommended to connect power and ground pins directly to the power and ground planes with bypass  
capacitors connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an  
external bypass capacitor will increase the inductance of the path. A small body size X7R chip capacitor, such as  
0603 or 0805, is recommended for external bypass. A small body sized capacitor has less inductance. The user  
must pay attention to the resonance frequency of these external bypass capacitors, usually in the range of  
20MHz-30MHz. To provide effective bypassing, multiple capacitors are often used to achieve low impedance  
between the supply rails over the frequency of interest. At high frequency, it is also a common practice to use  
two vias from power and ground pins to the planes, reducing the impedance at high frequency.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the LVDS  
lines to prevent coupling from the LVCMOS lines to the LVDS lines. Closely coupled differential lines of 100 Ω  
are typically recommended for LVDS interconnect. The closely coupled lines help to ensure that coupled noise  
will appear as common mode and thus is rejected by the receivers. The tightly coupled lines will also radiate  
less.  
At least 32 thermal vias are necessary from the device center DAP to the ground plane. They connect the device  
ground to the PCB ground plane, as well as conduct heat from the exposed pad of the package to the PCB  
ground plane. More information on the WQFN style package, including PCB design and manufacturing  
requirements, is provided in TI Application Note: AN-1187.  
9.2.2.2 CML Interconnect Guidelines  
See AN-1108 and AN-905 for full details.  
Use 100Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
S = space between the pair  
2S = space between pairs  
3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Terminate as close to the TX outputs and RX inputs as possible  
Additional general guidance can be found in the LVDS Owner’s Manual - available in PDF format from the Texas  
Instruments web site at: SNLA187  
9.2.3 Application Performance Plots  
The plots below correspond to 1080p60 video application with 2-lane FPD-Link III input and MIPI 4 lanes output.  
Copyright © 2014–2016, Texas Instruments Incorporated  
71  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
Time (240 ps/DIV)  
Time (100 ps/DIV)  
Figure 43. CSI-2 Data Output at 1040 Mbps  
Figure 42. Loop-through CML Output at 2.6 Gbps Serial  
Line Rate  
10 Power Supply Recommendations  
This device provides separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description table provide guidance on which circuit blocks are connected to which power pin pairs.  
In some cases, an external filter many be used to provide clean power to sensitive circuits such as PLLs.  
10.1 Power Up Requirements and PDB Pin  
When power is applied, power from the highest voltage rail to the lowest voltage rail on any of the supply pins.  
For 3.3V IO operation, VDDIO and VDD33 can be powered by the same supply and ramped simultaneously. The  
power supply ramp (VDD12, VDD33, and VDDIO) should be faster than 1.5ms with a monotonic rise. A large  
capacitor on the PDB pin is needed to ensure PDB arrives after all the supply pins have settled to the  
recommended operating voltage. When PDB pin is pulled up to VDD33, a 10 kΩ pull-up and a >10 μF capacitor  
to GND are required to delay the PDB input signal rise. All inputs must not be driven until both VDD33 and  
VDDIO has reached steady state. Pins VDD33_A and VDD33_B should both be externally connected, bypassed,  
and driven to the same potential (they are not internally connected).  
11 Layout  
11.1 Layout Guidelines  
Circuit board layout and stack-up for the FPD-Link III devices should be designed to provide low-noise power  
feed to the device. Good layout practice will also separate high frequency or high-level inputs and outputs to  
minimize unwanted stray noise pickup, feedback and interference. Power system performance may be greatly  
improved by using thin dielectrics (2 to 4 mils) for power/ground sandwiches. This arrangement provides plane  
capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at  
high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01 µF to 0.1 µF. Tantalum capacitors may be in the 2.2 µF to 10 µF range. Voltage rating of the  
tantalum capacitors should be at least 5X the power supply voltage being used.  
Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per  
supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 50 µF to 100 µF range and will smooth low frequency switching noise. It is  
recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external  
bypass capacitor will increase the inductance of the path.  
72  
Copyright © 2014–2016, Texas Instruments Incorporated  
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Layout Guidelines (continued)  
A small body size X7R chip capacitor, such as 0603 or 0402, is recommended for external bypass. Its small body  
size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of  
these external bypass capacitors, usually in the range of 20MHz to 30 MHz. To provide effective bypassing,  
multiple capacitors are often used to achieve low impedance between the supply rails over the frequency of  
interest. At high frequency, it is also a common practice to use two vias from power and ground pins to the  
planes, reducing the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as  
PLLs.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the CML  
lines to prevent coupling from the LVCMOS lines to the CML lines. Closely-coupled differential lines of 100 Ω are  
typically recommended for CML interconnect. The closely coupled lines help to ensure that coupled noise will  
appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also radiate less.  
Information on the WQFN style package is provided in TI Application Note: AN-1187.  
Copyright © 2014–2016, Texas Instruments Incorporated  
73  
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
11.2 Layout Example  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the WQFN package is highly recommended to improve  
board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP. Stencil parameters for aperture opening and via locations are shown in Figure 44:  
Table 15. No Pullback WQFN Stencil Aperture Summary  
Number OF  
DAP Aperture  
Openings  
Gap between  
DAP Aperture  
(Dim A mm)  
PCB I/O Pad  
Size (mm)  
PCB Pitch  
(mm)  
PCB DAP  
Size(mm)  
Stencil I/O  
Aperture (mm) Aperture (mm)  
Stencil DAP  
Device  
Pin Count  
Mkt Dwg  
DS90UB940-Q1  
64  
NKD  
0.25 x 0.6  
0.5  
7.2 x 7.2  
0.25 x 0.6  
1.16 x 1.16  
25  
0.2  
SYMM  
(1.36) TYP  
49  
64X (0.6)  
64  
64X (0.25)  
1
48  
(1.36)  
TYP  
60X (0.5)  
SYMM  
(8.8)  
METAL  
TYP  
16  
33  
17  
32  
25X (1.16)  
(8.8)  
Figure 44. 64-Pin WQFN Stencil Example of Via and Opening Placement  
(dimensions in mm)  
74  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
DS90UB940-Q1  
www.ti.com.cn  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
Figure 45 (PCB layout example) is derived from a layout design of the DS90UB940-Q1. This graphic and  
additional layout description are used to demonstrate both proper routing and proper solder techniques when  
designing in the Deserializer.  
Figure 45. DS90UB940-Q1 Deserializer Example Layout  
版权 © 2014–2016, Texas Instruments Incorporated  
75  
 
DS90UB940-Q1  
ZHCSEN9A NOVEMBER 2014REVISED JANUARY 2016  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
《焊接规范应用报告》,SNOA549  
IC 封装热指标应用报告》,SPRA953  
《通道链路 PCB 和互连设计指南》,SNLA008  
《传输线路 RAPIDESIGNER 操作和应用指南》,SNLA035  
《无引线框架封装 (LLP) 应用报告》,SNOA401  
LVDS 所有者手册》,SNLA187  
《通过具有双向控制通道的 FPD-Link III 进行 I2C 通信》,SNLA131  
《使用 DS90Ux92x FPD-Link III 器件的 I2S 音频接口》,SNLA221  
《探索 720p FPD-Link III 器件的内部测试图案生成特性》,SNLA132  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
76  
版权 © 2014–2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UB940TNKDRQ1  
DS90UB940TNKDTQ1  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
NKD  
NKD  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
90UB940Q1  
90UB940Q1  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UB940TNKDRQ1  
DS90UB940TNKDTQ1  
WQFN  
WQFN  
NKD  
NKD  
64  
64  
2000  
250  
330.0  
178.0  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
1.3  
1.3  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UB940TNKDRQ1  
DS90UB940TNKDTQ1  
WQFN  
WQFN  
NKD  
NKD  
64  
64  
2000  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
NKD 64  
9 x 9, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4229637/A  
www.ti.com  
PACKAGE OUTLINE  
NKD0064A  
WQFN - 0.8 mm max height  
S
C
A
L
E
1
.
6
0
0
WQFN  
9.1  
8.9  
A
B
PIN 1 INDEX AREA  
0.5  
0.3  
9.1  
8.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
(0.1)  
TYP  
7.2 0.1  
SEE TERMINAL  
DETAIL  
17  
32  
60X 0.5  
33  
16  
4X  
7.5  
1
48  
0.3  
64X  
PIN 1 ID  
64  
49  
0.2  
(OPTIONAL)  
0.1  
C A  
C
B
0.5  
0.3  
64X  
0.05  
4214996/A 08/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NKD0064A  
WQFN - 0.8 mm max height  
WQFN  
(
7.2)  
SYMM  
64X (0.6)  
64X (0.25)  
SEE DETAILS  
49  
64  
1
48  
60X (0.5)  
SYMM  
(8.8)  
(1.36)  
TYP  
8X (1.31)  
33  
(
0.2) VIA  
TYP  
16  
17  
32  
(1.36) TYP  
8X (1.31)  
(8.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214996/A 08/2013  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NKD0064A  
WQFN - 0.8 mm max height  
WQFN  
SYMM  
(1.36) TYP  
49  
64X (0.6)  
64X (0.25)  
64  
1
48  
(1.36)  
TYP  
60X (0.5)  
SYMM  
(8.8)  
METAL  
TYP  
16  
33  
17  
32  
25X (1.16)  
(8.8)  
SOLDERPASTE EXAMPLE  
BASED ON 0.125mm THICK STENCIL  
EXPOSED PAD  
65% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
4214996/A 08/2013  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY