DS90UB960WRTDTQ1 [TI]

四路 2MP 摄像头集线器 FPD-Link III 解串器,配备双路 CSI-2 输出端口 | RTD | 64 | -40 to 105;
DS90UB960WRTDTQ1
型号: DS90UB960WRTDTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四路 2MP 摄像头集线器 FPD-Link III 解串器,配备双路 CSI-2 输出端口 | RTD | 64 | -40 to 105

光电二极管
文件: 总175页 (文件大小:3596K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
具有两MIPI CSI-2 端口DS90UB960-Q1 4.16Gbps FPD-Link III 解串器集  
线器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
DS90UB960-Q1 是一款多功能传感器集线器可通过  
FPD-Link III 接口收集从 4 个独立视频数据流接收到的  
串行传感器数据。与 DS90UB953-Q1 串行器配对时,  
DS90UB960-Q1 可接收来自传感器例如可在 60Hz  
帧速率下支持全高清 1080p/2MP 分辨率的成像器的  
数据。接收的数据将聚合至符合 MIPI CSI-2 标准并与  
下游处理器互连的输出端。该器件还配有第二个 MIPI  
CSI-2 输出端口可提供额外带宽或提供第二个复制输  
出以便进行数据记录和并行处理。  
– 器件温度等2-40+105境工作温  
度范围  
• 四4.16Gbps 解串器集线器同时从最4 个传感  
器聚合数据  
• 支200 万像素传感器60Hz 帧速率下支持  
全高1080p 分辨率  
• 精确多摄像头同步  
• 符MIPI DPHY 1.2/CSI-2 1 .3 标准  
2 MIPI CSI-2 输出端口  
DS90UB960-Q1 包括 4 FPD-Link III 解串器每个  
均支持通过具有成本效益50Ω端同轴或 100Ω差  
STP 电缆进行连接。接收均衡器会自动适应以补偿  
电缆损耗特性包括随时间推移而出现的劣化。  
– 每CSI-2 端口支1234 个数据通道  
CSI-2 数据速率可扩展每个数据通道支持  
400Mbps/800Mbps/1.2Gbps/ 1.5Gbps/1.6Gbps  
– 端口复制模式  
功能安全型  
每个 FPD-Link III 接口还包括一个单独的低延迟双向控  
制通道该通道可连续传送 I2CGPIO 和其他控制信  
息。通用 I/O 信号如摄像头同步和诊断特性所需的,  
也可利用该双向控制通道。  
– 有助于进ISO 26262 系统设计的文档  
• 超低数据和控制路径延迟  
• 支持单端同轴包括电缆供(PoC)或屏蔽双绞  
线(STP) 电缆  
• 自适应接收均衡  
• 具有快速模式增强版1MbpsI2C 端口  
• 用于传感器同步和诊断的灵GPIO  
DS90UB953-Q1DS90UB935-Q1、  
DS90UB933-Q1DS90UB913A-Q1 串行器兼容  
• 内部可编程精密帧同步发生器  
• 线路故障检测和高级诊断  
DS90UB960-Q1 符合面向汽车应用的 AEC-Q100 标  
采用具有成本效益且节省空间64 VQFN 封  
装。  
器件信息  
器件型号(1)  
封装尺寸标称值)  
封装  
DS90UB960-Q1  
VQFN (64)  
9.00mm x 9.00mm  
(1) 如需了解所有在售封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
• 汽ADAS  
TX Port0:  
Up to 4 Lanes  
FPD-Link III  
Serializer  
– 后视摄像(RVC)  
– 环视系(SVS)  
– 摄像头监控系(CMS)  
– 前视摄像(FC)  
MIPI CSI-2  
FPD-Link III  
Serializer  
DS90UB960-Q1  
FPD-Link III HUB  
FPD-Link III  
Coax or STP  
Processor  
SoC  
TX Port1:  
Up to 4 Lanes  
FPD-Link III  
Serializer  
– 驾驶员监控系(DMS)  
– 卫星雷达、飞行时(ToF)、激光雷达传感器模  
块和传感器融合  
I2C  
FPD-Link III  
Serializer  
GPIO  
INTB  
• 安全和监控  
典型应用原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNLS589  
 
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Table of Contents  
7.5 Programming............................................................ 57  
7.6 Register Maps...........................................................73  
8 Application and Implementation................................148  
8.1 Application Information........................................... 148  
8.2 Typical Application.................................................. 152  
8.3 System Examples................................................... 155  
9 Power Supply Recommendations..............................159  
9.1 VDD Power Supply................................................. 159  
9.2 Power-Up Sequencing............................................159  
10 Layout.........................................................................162  
10.1 Layout Guidelines................................................. 162  
10.2 Layout Example.................................................... 164  
11 Device and Documentation Support........................168  
11.1 Documentation Support........................................ 168  
11.2 Receiving Notification of Documentation Updates168  
11.3 支持资源................................................................168  
11.4 Trademarks........................................................... 168  
11.5 静电放电警告.........................................................168  
11.6 术语表................................................................... 168  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 4  
6 Specifications.................................................................. 7  
6.1 Absolute Maximum Ratings........................................ 7  
6.2 ESD Ratings............................................................... 7  
6.3 Recommended Operating Conditions.........................8  
6.4 Thermal Information....................................................8  
6.5 DC Electrical Characteristics...................................... 8  
6.6 AC Electrical Characteristics.....................................12  
6.7 CSI-2 Timing Specifications......................................13  
6.8 Recommended Timing for the Serial Control Bus.....18  
6.9 Recommended Timing for the Serial Control Bus.....19  
6.10 Typical Characteristics............................................24  
7 Detailed Description......................................................25  
7.1 Overview...................................................................25  
7.2 Functional Block Diagram.........................................26  
7.3 Feature Description...................................................26  
7.4 Device Functional Modes..........................................26  
Information.................................................................. 168  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (Febrary 2018) to Revision C (December 2020)  
Page  
• 添加了特性要点“功能安全型”.........................................................................................................................1  
Changed ESD HBM other pins to +/- 3000V...................................................................................................... 7  
Changes from Revision A (Feburary 2018) to Revision B (July 2018)  
Page  
• 将器件状态由受限制的“预告信息”发布改成了公开“量产数据”................................................................... 1  
Changes from Revision * (September 2016) to Revision A (Feburary 2018)  
Page  
• 将器件状态从“量产数据”改为“预告信息”....................................................................................................1  
• 将环境工作温度范围从–40+115改为-40+105..................................................................... 1  
Combined the ESD Ratings - JEDEC and ESD Ratings - IEC and ISO tables into one table............................7  
Removed I2C pullup voltage and maximum allowable POC noise parameter from the Recommended  
Operating Conditions table................................................................................................................................. 8  
Changed the maximum operating free-air temperature from: 115to: 105...................................................8  
Added a maximum value for the reference clock frequency...............................................................................8  
Added test conditions for the total power consumption in operation mode........................................................ 8  
Changed the IDDT1 and IDDT2 parameters and added the IDDT3 parameter........................................................ 8  
Changed test conditions for the high and low level output voltages...................................................................8  
Removed tablenote for the Recommended Timing for the Serial Control Bus table........................................ 18  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
2
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
VDD18_FPD0  
RIN0+  
32  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
VDD18A  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
CSI0_D3P  
CSI0_D3N  
CSI0_D2P  
CSI0_D2N  
CSI0_D1P  
CSI0_D1N  
RIN0-  
VDD_FPD1  
RIN1+  
RIN1-  
VDD18_FPD1  
CMLOUTP  
CMLOUTN  
VDD18_FPD2  
RIN2+  
DS90UB960-Q1  
64L QFN  
Top down view  
CSI0_D0P  
CSI0_D0N  
CSI0_CLKP  
CSI0_CLKN  
VDD_CSI0  
GPIO7  
RIN2-  
VDD_FPD2  
RIN3+  
DAP  
GPIO6  
RIN3-  
GPIO5  
GPIO4  
VDD18_FPD3  
5-1. RTD Package 64-Pin VQFN (Top View)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
MIPI CSI-2 TX INTERFACE  
CSI0_CLKN  
CSI0_CLKP  
CSI0_D0N  
CSI0_D0P  
CSI0_D1N  
CSI0_D1P  
CSI0_D2N  
CSI0_D2P  
CSI0_D3N  
CSI0_D3P  
CSI1_CLKN  
CSI1_CLKP  
CSI1_D0N  
CSI1_D0P  
CSI1_D1N  
CSI1_D1P  
CSI1_D2N  
CSI1_D2P  
CSI1_D3N  
CSI1_D3P  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
O
CSI-2 TX Port 0 differential clock output pins.  
Leave unused pins as No Connect.  
CSI-2 TX Port 0 differential data output pins. Use CSI_PORT_SEL (see 7-71),  
CSI_CTL (see 7-72), and CSI_CTL2 (see 7-73) registers for the CSI-2 TX  
control.  
Leave unused pins as No Connect.  
O
CSI-2 TX Port 1 differential clock output pins.  
Leave unused pins as No Connect.  
CSI-2 TX Port 1 differential data output pins. Use CSI_PORT_SEL (see 7-71),  
CSI_CTL (see 7-72), and CSI_CTL2 (see 7-73) registers for the CSI-2 TX  
control.  
Leave unused pins as No Connect.  
FPD-LINK III RX INTERFACE  
RIN0+  
RIN0-  
50  
51  
I/O  
FPD-Link III RX Port 0 pins. The port receives FPD-Link III high-speed forward  
channel video and control data and transmits back channel control data. It can  
interface with a compatible FPD-Link III serializer TX through a STP or coaxial cable  
(see 8-6 and 8-7). It must be AC-coupled per 8-4.  
If port is unused, set RX_PORT_CTL register bit 0 to 0 to disable RX Port 0 (see 表  
7-33) and leave the pins as No Connect.  
RIN1+  
RIN1-  
53  
54  
FPD-Link III RX Port 1 pins. The port receives FPD-Link III high-speed forward  
channel video and control data and transmits back channel control data. It can  
interface with a compatible FPD-Link III serializer TX through a STP or coaxial cable  
(see 8-6 and 8-7). It must be AC-coupled per 8-4.  
If port is unused, set RX_PORT_CTL register bit 1 to 0 to disable RX Port 1 (see 表  
7-33) and leave the pins as No Connect.  
RIN2+  
RIN2-  
59  
60  
FPD-Link III RX Port 2 pins. The port receives FPD-Link III high-speed forward  
channel video and control data and transmits back channel control data. It can  
interface with a compatible FPD-Link III serializer TX through a STP or coaxial cable  
(see 8-6 and 8-7). It must be AC-coupled per 8-4.  
If port is unused, set RX_PORT_CTL register bit 2 to 0 to disable RX Port 2 (See 表  
7-33) and leave the pins as No Connect.  
RIN3+  
RIN3-  
62  
63  
FPD-Link III RX Port 3 pins. The port receives FPD-Link III high-speed forward  
channel video and control data and transmits back channel control data. It can  
interface with a compatible FPD-Link III serializer TX through a STP or coaxial cable  
(see 8-6 and 8-7). It must be AC-coupled per 8-4.  
If port is unused, set RX_PORT_CTL register bit 3 to 0 to disable RX Port 3 (see 表  
7-33) and leave the pins as No Connect.  
SYNCHRONIZATION AND GENERAL-PURPOSE I/O  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
4
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
INTB  
NO.  
9
I/O, PD  
General-Purpose Input/Output pins. The pins can be used to control and respond to  
various commands. They may be configured to be input signals for the corresponding  
GPIOs on the serializer or they may be configured to be outputs to follow local register  
settings. At power up, the GPIO pins are disabled and by default include a pulldown  
resistor (25-kΩtyp).  
10  
14  
15  
17  
18  
19  
20  
6
See 7.4.11. for programmability. If unused, leave the pin as No Connect.  
O, OD  
Interrupt Output pin.  
INTB is an active-low open drain and controlled by the status registers. See 7.5.9.  
Recommend a 4.7-kΩPullup to to 1.8 V or 3.3 V. If unused, leave the pin as No  
Connect.  
SERIAL CONTROL BUS (I2C)  
I2C_SCL  
I2C_SDA  
I2C_SCL2  
I2C_SDA2  
12  
11  
8
I/O, OD  
I/O, OD  
I/O, OD  
I/O, OD  
Primary I2C Clock Input / Output interface pin. See 7.5.1.  
Recommend a 2.2-kΩto 4.7-kΩPullup(1) to 1.8 V or 3.3 V.  
Primary I2C Data Input / Output interface pin. See 7.5.1.  
Recommend a 2.2-kΩto 4.7-kΩPullup(1) to 1.8 V or 3.3 V.  
Secondary I2C Clock Input / Output interface pin. See 7.5.2.  
Recommend a 2.2-kΩto 4.7-kΩPullup(1) to 1.8 V or 3.3 V.  
7
Secondary I2C Data Input / Output interface pin. See 7.5.2.  
Recommend a 2.2-kΩto 4.7-kΩPullup(1) to 1.8 V or 3.3 V.  
CONFIGURATION AND CONTROL  
IDX  
46  
45  
3
S
S
I2C Serial Control Bus Device ID Address Select configuration pin.  
Connect to an external pullup to VDD18 and a pulldown to GND to create a voltage  
divider. See 7-18.  
MODE  
PDB  
Mode Select configuration pin.  
Connect to external pullup to VDD18 and a pulldown to GND to create a voltage  
divider. See 7-2.  
I, PD  
Inverted Power-Down input pin. Typically connected to a processor GPIO with a  
pulldown. When PDB input is brought HIGH, the device is enabled and internal  
registers and state machines are reset to default values. Asserting PDB signal low will  
power down the device and consume minimum power. The default function of this pin  
is PDB = LOW; POWER DOWN with an internal 50-kΩinternal pulldown enabled.  
PDB should remain low until after power supplies are applied and reach minimum  
required levels. See 9.1.  
INPUT IS 3.3-V TOLERANT  
PDB = 1.8 V, device is enabled (normal operation)  
PDB = 0 V, device is powered down.  
POWER AND GROUND  
VDDIO  
16  
P
P
1.8-V (±5%) OR 3.3-V (±10%) LVCMOS I/O Power  
Requires 1-μF and 0.1-μF or 0.01-μF capacitors to GND.  
VDD_CSI0  
VDD_CSI1  
21  
33  
1.1-V (±5%) Power Supplies  
Requires 0.1-μF or 0.01-μF capacitors to GND at each VDD pin. Additional 1-μF  
and 10-μF decoupling is recommended for the pin group.  
VDDL1  
VDDL2  
13  
44  
P
P
1.1-V (±5%) Power Supplies  
Requires 0.1-μF or 0.01-μF capacitors to GND at each VDD pin. Additional 1-μF  
and 10-μF decoupling is recommended for the pin group.  
VDD_FPD1  
VDD_FPD2  
52  
61  
1.1-V (±5%) Power Supplies  
Requires 0.1-μF or 0.01-μF capacitors to GND at each VDD pin. Additional 1-μF  
and 10-μF decoupling is recommended for the pin group.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
VDD18_P2  
VDD18_P3  
VDD18_P1  
VDD18_P0  
2
1
47  
48  
P
1.8-V (±5%) Power Supplies  
Requires 0.1-μF or 0.01-μF capacitors to GND at each VDD pin. Additional 1-μF,  
and 10-μF decoupling is recommended for the pin group.  
VDD18A  
32  
P
P
1.8-V (±5%) Power Supplies  
Requires 0.1-μF or 0.01-μF capacitors to GND at each VDD pin. Additional 1-μF,  
and 10-μF decoupling is recommended for the pin group.  
VDD18_FPD0  
VDD18_FPD1  
VDD18_FPD2  
VDD18_FPD3  
49  
55  
58  
64  
1.8-V (±5%) Power Supplies  
Requires 0.1-μF or 0.01-μF capacitors to GND at each VDD pin. Additional 1-μF,  
and 10-μF decoupling is recommended for the pin group.  
GND  
DAP  
G
I
DAP is the large metal contact at the bottom side, located at the center of the VQFN  
package. Connect to the ground plane (GND).  
OTHERS  
REFCLK  
5
Reference clock oscillator input.  
Typically connected to a 23-MHz to 26-MHz LVCMOS-level oscillator (100 ppm).  
For 400-Mbps, 800-Mbps, 1.2-Gbps or 1.6-Gbps CSI-2 data rates, use 25-MHz  
frequency.  
For the oscillator requirements, see 7.4.4. For other common CSI-2 data rates, see  
7.4.19.  
RES  
4
-
This pin must be tied to GND for normal operation.  
CMLOUTP  
CMLOUTN  
56  
57  
O
Channel Monitor Loop-through Driver differential output.  
Route to a test point or a pad with 100-Ωtermination resistor between pins for channel  
monitoring (recommended). See 7.4.8.  
(1) Optimum Pullup Resistor (RPU) value depends on the I2C mode of operation, refer to I2C Bus Pullup Resistor Calculation (SLVA689)  
The definitions below define the functionality of the I/O cells for each pin. TYPE:  
I = Input  
O = Output  
I/O = Input/Output  
S = Configuration/Strap Input (All strap pins have internal pulldowns determined by IOZ specification. If the default strap value needs to  
be changed then an external resistor should be used.  
PD = Internal Pulldown  
OD = Open Drain  
P = Power Supply  
G = Ground  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
6
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
UNIT  
VDD11 (VDD_CSI0, VDD_CSI1, VDDL1, VDDL2, VDD_FPD1,  
VDD_FPD2)  
1.32 and  
<V(VDD18)  
V
0.3  
VDD18 (VDD18_P0, VDD18_P1, VDD18_P2, VDD18_P3, VDD18A,  
VDD18_FPD0, VDD18_FPD1, VDD18_FPD2, VDD18_FPD3)  
Supply voltage  
2.16  
3.96  
2.75  
V
V
V
0.3  
0.3  
0.3  
VDDIO  
Device powered up (All supplies within  
RIN0+, RIN0-,  
recommended operating conditions)  
RIN1+, RIN1-,  
FPD-Link III input voltage  
CSI-2 voltage  
Device powered down, Transient voltage  
1.45  
1.35  
V
V
RIN2+, RIN2-,  
RIN3+, RIN3-  
0.3  
0.3  
Device powered down, DC voltage  
CSI0_D0P, CSI0_D0N, CSI0_D1P, CSI0_D1N, CSI0_D2P, CSI0_D2N,  
CSI0_D3P, CSI0_D3N,  
CSI0_CLKP, CSI0_CLKN, CSI1_D0P, CSI1_D0N, CSI1_D1P,  
CSI1_D1N, CSI1_D2P, CSI1_D2N, CSI1_D3P, CSI1_D3N, CSI1_CLKP,  
CSI1_CLKN  
1.32  
V
0.3  
PDB  
3.96  
V
V
0.3  
0.3  
LVCMOS IO voltage  
V(VDDIO)  
0.3  
+
+
GPIO[7:0], REFCLK, RES, CMLOUTP, CMLOUTN  
V(VDD18)  
0.3  
Configuration input voltage  
MODE, IDX  
V
0.3  
0.3  
Open-Drain voltage  
I2C_SDA, I2C_SCL, I2C_SDA2, I2C_SCL2, INTB  
3.96  
150  
150  
V
Junction temperature  
Storage temperature, Tstg  
°C  
°C  
65  
(1) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office or Distributors for availability  
and specifications.  
(2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
RIN0+, RIN0-, RIN1+, RIN1-,  
RIN2+, RIN2-, RIN3+, RIN3-  
±6000  
V
Human body model (HBM), per AEC  
Q100-002(1)  
Other pins  
±3000  
±1000  
V
V
Charged device model (CDM), per AEC Q100-011  
ESD Rating (IEC 61000-4-2)  
Contact Discharge  
(RIN0+, RIN0-, RIN1+, RIN1-,  
RIN2+, RIN2-, RIN3+, RIN3-)  
±10 000  
±21 000  
±10 000  
±21 000  
V
V
V
V
RD= 330 Ω, CS = 150 pF  
Air Discharge  
(RIN0+, RIN0-, RIN1+, RIN1-,  
RIN2+, RIN2-, RIN3+, RIN3-)  
V(ESD)  
Electrostatic discharge  
ESD Rating (ISO 10605)  
RD= 330 Ω, CS = 150 pF and 330 pF  
RD= 2 kΩ, CS = 150 pF and 330 pF  
Contact Discharge  
(RIN0+, RIN0-, RIN1+, RIN1-,  
RIN2+, RIN2-, RIN3+, RIN3-)  
Air Discharge  
(RIN0+, RIN0-, RIN1+, RIN1-,  
RIN2+, RIN2-, RIN3+, RIN3-)  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
English Data Sheet: SNLS589  
 
 
 
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN NOM MAX UNIT  
V(VDD11)  
1.045  
1.71  
1.71  
3.0  
1.1 1.155  
V
V
Supply voltage  
V(VDD18)  
1.8  
1.8  
3.3  
1.89  
1.89  
3.6  
V(VDDIO) = 1.8 V  
LVCMOS I/O supply voltage  
V
OR V(VDDIO) = 3.3 V  
V
Open-drain voltage  
INTB = V(INTB), I2C pins = V(I2C)  
1.71  
40  
368  
184  
23  
3.6  
V
Operating free-air temperature, TA  
MIPI data rate (per CSI-2 lane)  
MIPI CSI-2 HS clock frequency  
Reference clock frequency  
25  
105  
°C  
800 1664 Mbps  
400  
25  
832 MHz  
26 MHz  
REFCLK, Center spread  
REFCLK, Down spread  
-0.5  
-1  
0.5  
0
%
%
Spread-spectrum reference clock modulation  
percentage  
Local I2C frequency, fI2C  
1
MHz  
V(VDD11)  
25 mVP-P  
50 mVP-P  
50 mVP-P  
100 mVP-P  
mVP-P  
V(VDD18)  
Supply noise(1)  
V(VDDIO) = 1.8 V  
V(VDDIO) = 3.3 V  
RIN0+, RIN1+, RIN2+, RIN3+  
10  
(1) DC to 50 MHz.  
6.4 Thermal Information  
DS90UB960-Q1  
THERMAL METRIC(1)  
RTD (VQFN)  
64 PINS  
23.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(TOP)  
RθJC(BOT)  
RθJB  
10.4  
Junction-to-case (bottom) thermal resistance  
Junction-to-board thermal resistance  
0.4  
7.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.1  
ψJT  
7.5  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER CONSUMPTION  
CSI-2 TX = 2 x (4 data lanes + 1 CLK  
lane)  
CSI-2 TX line rate = 1.664 Gbps  
4 × FPD-Link III RX inputs  
FPD-Link III line rate = 4.16 Gbps  
CSI-2 mode, Non-replicate mode  
Default registers  
Total power consumption  
in operation mode  
VDD18, VDD11,  
VDDIO  
PT  
800  
999 mW  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
8
Submit Document Feedback  
 
 
 
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CSI-2 TX = 4 data lanes + 1 CLK lane  
CSI-2 TX line rate = 1.664 Gbps  
4 × FPD-Link III RX inputs  
FPD-Link III line rate = 4.16 Gbps  
CSI-2 mode, Non-replicate mode  
Default registers  
VDD11  
VDD18  
165  
295  
310  
340  
mA  
VDDIO  
2
3
Deserializer supply  
current (includes load  
current)  
IDDT1  
CSI-2 TX = 4 data lanes + 1 CLK lane  
CSI-2 TX line rate = 832 Mbps  
4 × FPD-Link III RX inputs  
FPD-Link III line rate = 4.16 Gbps  
CSI-2 mode, Non-replicate mode  
Default registers  
VDD11  
VDD18  
150  
295  
290  
340  
mA  
VDDIO  
2
3
CSI-2 TX = 2 x (4 data lanes + 1 CLK  
lane)  
VDD11  
VDD18  
174  
312  
360  
370  
mA  
3
CSI-2 TX line rate = 1.664 Gbps  
4 × FPD-Link III RX inputs  
FPD-Link III line rate = 4.16 Gbps  
CSI-2 mode, Replicate mode  
Default registers  
VDDIO  
2
Deserializer supply  
current (includes load  
current)  
IDDT2  
CSI-2 TX = 2 x (4 data lanes + 1 CLK  
lane)  
VDD11  
VDD18  
127  
369  
305  
415  
mA  
3
CSI-2 TX line rate = 832 Mbps  
4 × FPD-Link III RX inputs  
FPD-Link III line rate = 4.16 Gbps  
CSI-2 mode, Replicate mode  
Default registers  
VDDIO  
2
CSI-2 TX = 4 data lanes + 1 CLK lane  
CSI-2 TX line rate = 1.664 Gbps  
4 × FPD-Link III RX inputs  
FPD-Link III line rate = 1.867 Gbps  
RAW12 HF mode, Non-replicate mode  
Default registers  
VDD11  
VDD18  
122  
263  
300  
305  
mA  
VDDIO  
2
3
Deserializer supply  
current (includes load  
current)  
IDDT3  
CSI-2 TX = 2 x (4 data lanes + 1 CLK  
lane)  
VDD11  
VDD18  
120  
315  
330  
365  
mA  
3
CSI-2 TX line rate = 832 Mbps  
4 × FPD-Link III RX inputs  
FPD-Link III line rate = 1.867 Gbps  
RAW12 HF mode, Replicate mode  
Default registers  
VDDIO  
2
VDD11  
VDD18  
VDDIO  
160  
Deserializer shutdown  
current  
IDDZ  
PDB = LOW  
4
3
mA  
1.8-V LVCMOS I/O  
V(VDDIO)  
0.45  
VOH  
VOL  
VIH  
High level output voltage  
GPIO[7:0]  
V(VDDIO)  
0.45  
V
V
IOH = 2 mA, V(VDDIO) = 1.71 to 1.89 V  
Low level output voltage IOL = 2 mA, V(VDDIO) = 1.71 to 1.89 V  
GPIO[7:0], INTB  
GND  
0.65 ×  
V(VDDIO)  
High level input voltage  
V(VDDIO) = 1.71 to 1.89 V  
Low level input voltage  
V(VDDIO)  
GPIO[7:0], PDB,  
REFCLK  
V
0.35 ×  
V(VDDIO)  
VIL  
GND  
45  
VIN = V(VDDIO) = 1.71 to 1.89 V, internal  
pulldown enabled  
GPIO[7:0], PDB  
115  
20  
μA  
μA  
IIH  
Input high current  
VIN = V(VDDIO) = 1.71 to 1.89 V, internal  
pulldown disabled  
GPIO[7:0],  
REFCLK  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
MAX UNIT  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
GPIO[7:0], PDB,  
REFCLK  
IIL  
Input low current  
VIN = 0 V  
3.5  
1
20  
1  
μA  
μA  
mA  
μA  
IIN-STRAP  
IOS  
Strap pin input current  
VIN = 0 V to V(VDD18)  
VOUT = 0 V  
MODE, IDX  
GPIO[7:0]  
GPIO[7:0]  
Output short circuit  
current  
40  
IOZ  
TRI-STATE output current VOUT = 0 V or V(VDDIO) , PDB = LOW  
20  
20  
3.3-V LVCMOS I/O  
VOH  
VOL  
High level output voltage  
GPIO[7:0]  
2.4  
V(VDDIO)  
0.4  
V
V
IOH = 4 mA, V(VDDIO) = 3.0 to 3.6 V  
Low level output voltage IOL = 4 mA, V(VDDIO) = 3.0 to 3.6 V  
GPIO[7:0], INTB  
GND  
GPIO[7:0],  
REFCLK  
2
1.17  
GND  
GND  
85  
V(VDDIO)  
V(VDDIO)  
0.8  
V
V
VIH  
Highlevel input voltage  
Low level input voltage  
V(VDDIO) = 3.0 to 3.6 V  
V(VDDIO) = 3.0 to 3.6 V  
PDB  
GPIO[7:0],  
REFCLK  
V
VIL  
PDB  
0.63  
V
VIN = V(VDDIO) = 3.0 to 3.6 V, internal  
pulldown enabled  
GPIO[7:0], PDB  
215  
μA  
IIH  
Input high current  
Input low current  
VIN = V(VDDIO) = 3.0 to 3.6 V, internal  
pulldown disabled  
GPIO[7:0],  
REFCLK  
30  
μA  
μA  
GPIO[7:0], PDB,  
REFCLK  
IIL  
IOS  
VIN = V(VDDIO) = 0 V  
VOUT = 0 V  
3.5  
20  
20  
Output short circuit  
current  
GPIO[7:0]  
GPIO[7:0]  
mA  
65  
IOZ  
TRI-STATE output current VOUT = 0 V or V(VDDIO) , PDB = LOW  
30  
μA  
I2C SERIAL CONTROL BUS  
0.7 ×  
V(I2C)  
VIH  
Input high level  
V(I2C)  
V
0.3 ×  
V(I2C)  
VIL  
Input low level  
GND  
V
VHYS  
Input hysteresis  
50  
mV  
I2C_SDA,  
I2C_SCL  
I2C_SDA2,  
I2C_SCL2  
V(I2C) = 3.0 to 3.6 V,  
IOL = 3 mA  
Standard-mode  
Fast-mode  
VOL1  
Output low level  
Output low level  
0
0.4  
V
V(I2C) = 3.0 to 3.6 V,  
IOL = 20 mA  
Fast-mode Plus  
V(I2C) = 1.71 to 1.89 V, Fast-mode  
0.2 ×  
V(I2C)  
VOL2  
0
V
IOL = 2 mA  
Fast-mode Plus  
IIN  
Input current  
VIN = 0 V or V(I2C)  
10  
µA  
pF  
10  
CIN  
Input capacitance  
5
FPD-LINK III RECEIVER INPUT  
VCM  
Common mode voltage  
RIN0+, RIN0-,  
RIN1+, RIN1-,  
RIN2+, RIN2-,  
RIN3+, RIN3-  
1.2  
50  
V
Single-ended RIN+ or RIN-  
40  
80  
60  
Internal termination  
resistance  
RT  
Differential across RIN+ and RIN-  
100  
120  
FPD-LINK III BACK CHANNEL DRIVER OUTPUT  
RL = 50 Ω  
Coaxial configuration  
Forward channel disabled  
Back channel single-  
ended output voltage  
RIN0+, RIN1+  
RIN2+, RIN3+  
VOUT-BC  
190  
380  
220  
440  
260  
520  
mV  
mV  
RIN0+, RIN0-,  
RIN1+, RIN1-,  
RIN2+, RIN2-,  
RIN3+, RIN3-  
Back channel differential  
RL = 100 Ω  
STP configuration  
Forward channel disabled  
VOD-BC  
output voltage V(RIN+)  
V(RIN-)  
-
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
10  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
HSTX DRIVER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
HS transmit static  
common-mode voltage  
CSI0_D0P,  
CSI0_D0N,  
CSI0_D1P,  
CSI0_D1N,  
CSI0_D2P,  
CSI0_D2N,  
CSI0_D3P,  
CSI0_D3N,  
CSI0_CLKP,  
CSI0_CLKN,  
CSI1_D0P,  
CSI1_D0N,  
CSI1_D1P,  
CSI1_D1N,  
CSI1_D2P,  
CSI1_D2N,  
CSI1_D3P,  
CSI1_D3N,  
CSI1_CLKP,  
CSI1_CLKN  
VCMTX  
150  
200  
250  
5
mV  
mVP-P  
mV  
|
Δ
VCMTX mismatch when  
output is 1 or 0  
VCMTX(1,0)  
|
HS transmit differential  
voltage  
|VOD  
|
140  
40  
200  
50  
270  
VOD mismatch when  
output is 1 or 0  
14  
360  
mV  
mV  
Ω
|ΔVOD  
VOHHS  
ZOS  
|
HS output high voltage  
Single-ended output  
impedance  
62.5  
Mismatch in single-ended  
output impedance  
10  
%
ΔZOS  
LPTX DRIVER  
CSI0_D0P,  
CSI0_D0N,  
CSI0_D1P,  
CSI0_D1N,  
CSI0_D2P,  
CSI0_D2N,  
CSI0_D3P,  
CSI0_D3N,  
CSI0_CLKP,  
CSI0_CLKN,  
CSI1_D0P,  
CSI1_D0N,  
CSI1_D1P,  
CSI1_D1N,  
CSI1_D2P,  
CSI1_D2N,  
CSI1_D3P,  
CSI1_D3N,  
CSI1_CLKP,  
CSI1_CLKN  
1.1  
0.95  
50  
1.2  
1.3  
1.3  
50  
V
V
CSI-2 TX line rate 1.5 Gbps  
VOH  
VOL  
High level output voltage  
Low level output voltage  
CSI-2 TX line rate > 1.5 Gbps  
mV  
ZOLP  
Output impedance  
110  
Ω
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
MAX UNIT  
6.6 AC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN OR  
FREQUENCY  
MIN  
TYP  
LVCMOS I/O  
LVCMOS low-to-high  
transition time  
V(VDDIO) = 1.71 V to 1.89 V  
OR  
V(VDDIO) = 3.0 V to 3.6 V  
CL = 8 pF (lumped load)  
Default Registers  
(6-1)  
tCLH  
tCHL  
tPDB  
GPIO[7:0]  
GPIO[7:0]  
PDB  
2.5  
2.5  
ns  
LVCMOS high-to-low  
transition time  
Power supplies applied and  
stable (9-1)  
PDB reset pulse width  
2
ms  
FPD-LINK III RECEIVER INPUT  
Coaxial cable attenuation =  
-19.2 dB @ 2.1 GHz  
VIN  
VID  
Single ended input voltage  
Differential input voltage  
60  
mV  
mV  
STP cable attenuation = -19.6  
dB @ 2.1 GHz  
115  
CSI-2 Mode, paired with  
DS90UB953-Q1, coaxial cable  
attenuation = -19.2 dB @ 2.1  
GHz, AEQ range +/-3  
15  
400  
15  
30  
ms  
ms  
ms  
ms  
CSI-2 Mode, paired with  
DS90UB953-Q1, coaxial cable  
attenuation = -19.2 dB @ 2.1  
GHz, AEQ default range  
tDDLT  
Deserializer data lock time  
Raw Mode, paired with  
DS90UB933-Q1, coaxial cable  
attenuation = -14 dB @ 1.4 GHz,  
AEQ range +/-3  
30  
RIN0+, RIN0-,  
RIN1+, RIN1-,  
RIN2+, RIN2-,  
RIN3+, RIN3-  
Raw Mode, paired with  
DS90UB933-Q1, coaxial cable  
attenuation = -14 dB @ 1.4 GHz,  
AEQ default range  
400  
CSI-2 Mode, paired with  
DS90UB953-Q1, coaxial cable  
attenuation = -19.2 dB @ 2.1  
GHz, Jitter frequency >  
FPD3_PCLK(1) / 15  
See 7.4.6  
tIJIT  
Input jitter  
0.4  
UI  
CSI-2 Mode, paired with  
DS90UB953-Q1, STP cable  
attenuation = -19.6 dB @ 2.1  
GHz, Jitter frequency >  
FPD3_PCLK(1) / 15  
See 7.4.6  
FPD-LINK III BACK CHANNEL DRIVER  
Back channel output eye  
Coaxial or STP configuration,  
fBC = 52 Mbps  
EW-BC  
width  
0.7  
130  
260  
0.8  
160  
320  
UIBC  
mV  
RIN0+, RIN0-,  
RIN1+, RIN1-,  
RIN2+, RIN2-,  
RIN3+, RIN3-  
Coaxial configuration, fBC = 52  
Mbps  
Back channel output eye  
EH-BC  
height  
STP configuration, fBC = 52  
Mbps  
mV  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
12  
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN OR  
FREQUENCY  
MIN  
TYP  
MAX UNIT  
Mbps  
2x  
REFCLK  
CSI-2 synchronous mode  
CSI-2 synchronous mode, no  
REFCLK  
46  
56 Mbps  
RIN0+, RIN0-,  
RIN1+, RIN1-,  
RIN2+, RIN2-,  
RIN3+, RIN3-  
fBC  
Back channel data  
2x  
REFCLK  
/5  
CSI-2 non-synchronous mode  
Raw mode  
Mbps  
Mbps  
REFCLK  
/10  
(1) FPD3_PCLK frequency is a function of the PCLK, CLK_IN or REFCLK frequency and dependent on the serializer operating MODE:  
CSI-2 syncronous mode: FPD3_PCLK = 4 x REFCLK  
CSI-2 non-syncronous mode: FPD3_PCLK = 2 x CLK_IN  
RAW 10-bit mode: FPD3_PCLK = PCLK / 2  
RAW 12-bit HF mode: FPD3_PCLK = 2 x PCLK / 3  
RAW 12-bit LF mode: FPD3_PCLK = PCLK  
6.7 CSI-2 Timing Specifications  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
HSTX DRIVER  
REFCLK = 23 MHz  
REFCLK = 25 MHz  
CSI0_D0P,  
CSI0_D0N,  
CSI0_D1P,  
CSI0_D1N,  
CSI0_D2P,  
CSI0_D2N,  
CSI0_D3P,  
CSI0_D3N,  
CSI1_D0P,  
CSI1_D0N,  
CSI1_D1P,  
CSI1_D1N,  
CSI1_D2P,  
CSI1_D2N,  
CSI1_D3P,  
CSI1_D3N,  
368  
400  
736  
800  
1472 Mbps  
1600 Mbps  
HSTXDBR  
Data rate  
REFCLK = 26 MHz  
416  
832  
1664 Mbps  
REFCLK = 23 MHz  
REFCLK = 25 MHz  
REFCLK = 26 MHz  
CSI0_CLKP,  
CSI0_CLKN,  
CSI1_CLKP,  
CSI1_CLKN  
184  
200  
208  
368  
400  
416  
736 MHz  
800 MHz  
832 MHz  
fCLK  
DDR clock frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
15 mVRMS  
25 mVRMS  
Common mode voltage  
variations HF  
Above 450 MHz  
ΔVCMTX(HF)  
CSI0_D0P,  
CSI0_D0N,  
CSI0_D1P,  
CSI0_D1N,  
CSI0_D2P,  
CSI0_D2N,  
CSI0_D3P,  
CSI0_D3N,  
CSI0_CLKP,  
CSI0_CLKN,  
CSI1_D0P,  
CSI1_D0N,  
CSI1_D1P,  
CSI1_D1N,  
CSI1_D2P,  
CSI1_D2N,  
CSI1_D3P,  
CSI1_D3N,  
CSI1_CLKP,  
CSI1_CLKN  
Common mode voltage  
variations LF  
Between 50 and 450 MHz  
ΔVCMTX(LF)  
tRHS  
tFHS  
20% to 80% rise and fall HS  
HS data rates 1 Gbps  
(UI 1 ns)  
0.3  
UI  
UI  
HS data rates > 1 Gbps  
(UI 1 ns) but less than  
1.5 Gbps (UI 0.667 ns)  
0.35  
Applicable when  
supporting maximum HS  
data rates 1.5 Gbps.  
100  
ps  
UI  
ps  
Applicable for all HS data  
rates when supporting >  
1.5 Gbps.  
0.4  
Applicable for all HS data  
rates when supporting >  
1.5 Gbps.  
50  
fLPMAX  
-18  
-9  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
HS data rates  
<1.5 Gbps  
fH  
fMAX  
-3  
SDDTX  
TX differential return loss  
fLPMAX  
-18  
-4.5  
-2.5  
-20  
-15  
-9  
HS data rates  
>1.5 Gbps  
fH  
fMAX  
DC to fLPMAX  
All HS data  
rates  
SCCTX  
TX common mode return loss  
fH  
fMAX  
LPTX DRIVER  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
14  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tRLP  
Rise time LP(1)  
15% to 85% rise time  
15% to 85% fall time  
30%-85% rise time  
25  
25  
35  
ns  
ns  
ns  
tFLP  
Fall time LP(1)  
tREOT  
Rise time post-EoT(1)  
First LP exclusive-OR  
clock pulse after Stop  
state or last pulse before  
Stop state  
40  
ns  
Pulse width of the LP  
exclusive-OR clock(1)  
tLP-PULSE-TX  
All other pulses  
20  
90  
ns  
ns  
CSI0_D0P,  
CSI0_D0N,  
CSI0_D1P,  
CSI0_D1N,  
CSI0_D2P,  
CSI0_D2N,  
CSI0_D3P,  
CSI0_D3N,  
CSI0_CLKP,  
CSI0_CLKN,  
CSI1_D0P,  
CSI1_D0N,  
CSI1_D1P,  
CSI1_D1N,  
CSI1_D2P,  
CSI1_D2N,  
CSI1_D3P,  
CSI1_D3N,  
CSI1_CLKP,  
CSI1_CLKN  
Period of the LP exclusive-OR  
clock  
tLP-PER-TX  
CLOAD = 0 pF  
CLOAD = 5 pF  
CLOAD = 20 pF  
CLOAD = 70 pF  
500 mV/ns  
300 mV/ns  
250 mV/ns  
150 mV/ns  
CLOAD = 0 to 70 pF (falling  
edge only), data rate ≤  
1.5 Gbps  
30  
30  
25  
25  
mV/ns  
mV/ns  
mV/ns  
mV/ns  
mV/ns  
mV/ns  
CLOAD = 0 to 70 pF (falling  
edge only), data rate ≤  
1.5 Gbps  
DV/DtSR  
Slew rate(1)  
CLOAD = 0 to 70 pF (falling  
edge only), data rate > 1.5  
Gbps  
CLOAD = 0 to 70 pF (falling  
edge only), data rate > 1.5  
Gbps  
30 - 0.075×  
(VO,INST -  
700)  
CLOAD = 0 to 70 pF (falling  
edge only)(2) (3)  
25 - 0.0625×  
(VO,INST -  
550)  
CLOAD = 0 to 70 pF (falling  
edge only)(4) (5)  
CLOAD  
Load capacitance(1)  
0
70  
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
MAX UNIT  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
DATA-CLOCK TIMING (6-6, 6-7)  
In 1, 2, 3, or 4 lane  
configuration  
Data rate = 368 Mbps to  
1.664 Gbps  
CSI0_D0P,  
CSI0_D0N,  
CSI0_D1P,  
CSI0_D1N,  
CSI0_D2P,  
CSI0_D2N,  
CSI0_D3P,  
CSI0_D3N,  
CSI0_CLKP,  
CSI0_CLKN,  
CSI1_D0P,  
CSI1_D0N,  
CSI1_D1P,  
CSI1_D1N,  
CSI1_D2P,  
CSI1_D2N,  
CSI1_D3P,  
CSI1_D3N,  
CSI1_CLKP,  
CSI1_CLKN  
UIINST  
UI instantaneous  
UI variation  
0.6  
2.7  
ns  
-10%  
-5%  
10%  
5%  
UI  
UI  
UI 1 ns (6-5)  
UI < 1 ns (6-5)  
ΔUI  
Data rate 1 Gbps (图  
6-5)  
Data to clock skew (measured  
at transmitter)  
Skew between clock and data  
from ideal center  
-0.15  
0.15 UIINST  
tSKEW(TX)  
1 Gbps Data rate 1.5  
Gbps (6-5)  
-0.2  
-0.2  
0.2 UIINST  
0.2 UIINST  
0.15 UIINST  
tSKEW(TX)  
static  
Static data to clock skew  
tSKEW(TX)  
dynamic  
Dynamic data to clock skew  
-0.15  
Data rate > 1.5 Gbps  
ISI  
Channel ISI  
0.2 UIINST  
GLOBAL TIMING (6-6, 6-7)  
Timeout for receiver to detect  
absence of Clock transitions  
and disable the Clock Lane HS-  
RX  
tCLK-MISS  
tCLK-POST  
tCLK-PRE  
60  
ns  
ns  
CSI0_D0P,  
CSI0_D0N,  
CSI0_D1P,  
CSI0_D1N,  
CSI0_D2P,  
CSI0_D2N,  
CSI0_D3P,  
CSI0_D3N,  
CSI0_CLKP,  
CSI0_CLKN,  
CSI1_D0P,  
CSI1_D0N,  
CSI1_D1P,  
CSI1_D1N,  
CSI1_D2P,  
CSI1_D2N,  
CSI1_D3P,  
CSI1_D3N,  
CSI1_CLKP,  
CSI1_CLKN  
60 +  
52×UIINST  
HS exit  
Time HS clock shall be driver  
prior to any associated Data  
Lane beginning the transition  
from LP to HS mode  
8
UIINST  
tCLK-PREPARE Clock Lane HS Entry  
38  
95  
95  
ns  
ns  
Time interval during which the  
tCLK-SETTLE HS receiver shall ignore any  
Clock Lane HS transitions  
300  
Time-out at Clock Lane Display  
tCLK-TERM-EN Module to enable HS  
Termination  
Time for Dn  
to reach  
VTERM-EN  
38  
ns  
ns  
ns  
Time that the transmitter drives  
the HS-0 state after the last  
payload clock bit of a HS  
transmission burst  
tCLK-TRAIL  
60  
TCLK-PREPARE + time that  
tCLK-PREPARE  
the transmitter drives the HS-0  
+ tCLK-ZERO  
300  
state prior to starting the Clock  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
16  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Time for the Data Lane receiver  
to enable the HS line  
termination  
Time for Dn  
to reach V-  
TERM-EN  
35 +  
ns  
tD-TERM-EN  
4×UIINST  
Transmitted time interval from  
the start of tHS-TRAIL to the start  
of the LP-11 state following a  
HS burst  
105 +  
12×UIINST  
CSI0_D0P,  
CSI0_D0N,  
CSI0_D1P,  
CSI0_D1N,  
CSI0_D2P,  
CSI0_D2N,  
CSI0_D3P,  
CSI0_D3N,  
CSI0_CLKP,  
CSI0_CLKN,  
CSI1_D0P,  
CSI1_D0N,  
CSI1_D1P,  
CSI1_D1N,  
CSI1_D2P,  
CSI1_D2N,  
CSI1_D3P,  
CSI1_D3N,  
CSI1_CLKP,  
CSI1_CLKN  
tEOT  
ns  
Time that the transmitter drives  
LP=11 following a HS burst  
tHS-EXIT  
100  
ns  
ns  
40 +  
4×UIINST  
85 +  
6×UIINST  
tHS-PREPARE Data Lane HS Entry  
tHS-PREPARE + time that the  
tHS-PREPARE transmitter drives the HS-0  
145 +  
10×UIINST  
ns  
ns  
+ tHS-ZERO  
state prior to transmitting the  
Sync sequence  
Time interval during which the  
HS receiver shall ignore any  
Data Lane HS transitions,  
starting from the beginning of  
tHS-SETTLE  
85 +  
6×UIINST  
145 +  
10×UIINST  
tHS-SETTLE  
Time interval during which the  
HS-RX should ignore any  
transitions on the Data Lane,  
following a HS burst. The end  
point of the interval is defined  
as the beginning of the LP-11  
state following the HS burst.  
55 +  
4×UIINST  
tHS-SKIP  
40  
ns  
CSI0_D0P,  
CSI0_D0N,  
CSI0_D1P,  
CSI0_D1N,  
CSI0_D2P,  
CSI0_D2N,  
CSI0_D3P,  
CSI0_D3N,  
CSI0_CLKP,  
CSI0_CLKN,  
CSI1_D0P,  
CSI1_D0N,  
CSI1_D1P,  
CSI1_D1N,  
CSI1_D2P,  
CSI1_D2N,  
CSI1_D3P,  
CSI1_D3N,  
CSI1_CLKP,  
CSI1_CLKN  
60 +  
4×UIINST  
tHS-TRAIL  
tLPX  
Data Lane HS Exit  
ns  
ns  
Transmitted length of LP state  
50  
Recovery Time from Ultra Low  
Power State (ULPS)  
tWAKEUP  
1
ms  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
MAX UNIT  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
CSI0_D0P,  
CSI0_D0N,  
CSI0_D1P,  
CSI0_D1N,  
CSI0_D2P,  
CSI0_D2N,  
CSI0_D3P,  
CSI0_D3N,  
CSI0_CLKP,  
CSI0_CLKN,  
CSI1_D0P,  
CSI1_D0N,  
CSI1_D1P,  
CSI1_D1N,  
CSI1_D2P,  
CSI1_D2N,  
CSI1_D3P,  
CSI1_D3N,  
CSI1_CLKP,  
CSI1_CLKN  
tINIT  
Initialization period  
100  
µs  
(1) CLOAD includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be  
<10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2 ns delay.  
(2) When the output voltage is between 700 mV and 930 mV  
(3) Applicable when the supported data rate 1.5 Gbps  
(4) When the output voltage is between 550 mV and 790 mV  
(5) Applicable when the supported data rate > 1.5 Gbps.  
6.8 Recommended Timing for the Serial Control Bus  
Over I2C supply and temperature ranges unless otherwise specified.  
MIN  
>0  
TYP  
MAX UNIT  
100 kHz  
400 kHz  
Standard-mode  
Fast-mode  
fSCL  
SCL Clock Frequency  
SCL Low Period  
>0  
Fast-mode Plus  
Standard-mode  
Fast-mode  
>0  
1
MHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
4.0  
0.6  
0.26  
4.7  
0.6  
0.26  
0
tLOW  
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
SCL High Period  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Hold time for a start or a repeated start  
condition  
tHD;STA  
tSU;STA  
tHD;DAT  
tSU;DAT  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Set up time for a start or a repeated  
start condition  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Data hold time  
0
Fast-mode Plus  
Standard-mode  
Fast -mode  
0
250  
100  
50  
Data set up time  
Fast-mode Plus  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
18  
Submit Document Feedback  
 
 
 
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Over I2C supply and temperature ranges unless otherwise specified.  
MIN  
4.0  
TYP  
MAX UNIT  
Standard-mode  
µs  
µs  
µs  
µs  
µs  
µs  
tSU;STO  
tBUF  
tr  
Set up time for STOP condition  
Fast-mode  
0.6  
Fast-mode Plus  
Standard-mode  
Fast-mode  
0.26  
4.7  
Bus free time between STOP and  
START  
1.3  
Fast-mode Plus  
Standard-mode  
Fast-mode  
0.5  
1000  
300  
120  
300  
300  
120  
400  
400  
550  
3.45  
0.9  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
pF  
pF  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
SCL & SDA rise time  
SCL & SDA fall time  
Capacitive load for each bus line  
Data valid time  
Fast-mode Plus  
Standard-mode  
Fast-mode  
tf  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Cb  
Fast-mode Plus  
Standard-mode  
Fast-mode  
tVD:DAT  
Fast-mode Plus  
Standard-mode  
Fast-mode  
0.45  
3.45  
0.9  
tVD;ACK  
Data vallid acknowledge time  
Input filter  
Fast-mode Plus  
Fast-mode  
0.45  
50  
tSP  
Fast-mode Plus  
50  
6.9 Recommended Timing for the Serial Control Bus  
V
DDIO  
80%  
20%  
GND  
t
t
CHL  
CLH  
6-1. LVCMOS Transition Times  
Single  
Ended  
RIN+  
or RIN  
VIN  
VIN  
œ
VCM  
ö
0 V  
Differential  
VID  
(RIN+) - (RINœ)  
0 V  
6-2. FPD-Link Receiver VID, VIN , VCM  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
PDB=H  
tDDLT  
RIN  
GPIOx  
(LOCK)  
VDDIO/2  
6-3. Deserializer Data Lock Time  
SDA  
SCL  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
r
f
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
6-4. I2C Serial Control Bus Timing  
CSI[1:0]_D[3:0]P  
CSI[1:0]_D[3:0]N  
0.5UI +  
tSKEW  
CSI[1:0]_CLKP  
CSI[1:0]_CLKN  
1 UI  
6-5. Clock and Data Timing in HS Transmission  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
20  
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Disconnect  
Terminator  
Clock Lane  
Dp/Dn  
T
CLK-SETTLE  
T
T
EOT  
CLK-POST  
TCLK-TERM-EN  
T
CLK-MISS  
VIH(min)  
VIL(max)  
T
T
T
LPX  
T
T
CLK-PRE  
CLK-TRAIL  
HS-EXIT  
CLK-ZERO  
T
CLK-PREPARE  
Data Lane  
Dp/Dn  
T
HS-PREPARE  
Disconnect  
Terminator  
T
LPX  
VIH(min)  
VIL(max)  
T
HS-SKIP  
T
D-TERM-EN  
T
HS-SETTLE  
6-6. High Speed Data Transmission Burst  
Clock  
Lane  
Data Lane  
Dp/Dn  
TLPX  
THS-ZERO  
THS-SYNC  
Disconnect  
Terminator  
VOH  
THS-PREPARE  
VIH(min)  
VIL(max)  
VOL  
TREOT  
Capture  
1st Data Bit  
TD-TERM-EN  
THS-SKIP  
TEOT  
THS-TRAIL  
LP-11  
LP-11  
LP-01  
LP-00  
THS-SETTLE  
THS-EXIT  
LOW-POWER TO  
HIGH-SPEED  
TRANSITION  
START OF  
HS-ZERO TRANSMISSION  
SEQUENCE  
HIGH-SPEED TO  
HS-TRAIL LOW-POWER  
TRANSITION  
HIGH-SPEED DATA  
TRANSMISSION  
6-7. Switching the Clock Lane between Clock Transmission and Low-Power Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
FRAME VALID  
Vertical Blanking  
1st  
Line  
2nd  
Line  
Last  
Line  
LINE VALID  
Line  
Packet  
Line  
Packet  
CSI_D[3:0]  
Line  
Packet  
Line  
Packet  
FS  
FE  
FS  
LPS  
LPS  
LPS  
LPS  
LPS  
LPS  
LPS  
LPS  
Frame  
Sync  
Packet  
Line  
Packet  
6-8. Long Line Packets and Short Frame Sync Packets  
Frame Blanking  
FS  
Line Blanking  
Line Data  
FE  
Frame Blanking  
FS  
Line Blanking  
Line Data  
FE  
Frame Blanking  
6-9. CSI-2 General Frame Format (Single Rx / VC)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
22  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 4  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 3  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-4  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
SOT  
SOT  
SOT  
BYTE0  
BYTE 1  
BYTE2  
BYTE3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE8  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
LANE 0  
LANE 1  
LANE 2  
BYTE 10  
BYTE 11  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 3  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 4  
SOT  
SOT  
SOT  
BYTE0  
BYTE 1  
BYTE2  
BYTE3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE8  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
LANE 0  
LANE 1  
LANE 2  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
BYTE 10  
BYTE 11  
HS BYTES TRANSMITTED (n) IS 2 LESS THAN INTEGER MULTIPLE OF 3  
SOT  
SOT  
SOT  
BYTE0  
BYTE 1  
BYTE2  
BYTE3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE8  
BYTE n-1  
EOT  
EOT  
LANE 0  
LANE 1  
LANE 2  
HS BYTES TRANSMITTED (n) IS 2 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
BYTE 10  
BYTE 11  
3 CSI-2 Data Lane Configuration  
EOT  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 2  
HS BYTES TRANSMITTED (n) IS 3 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-1  
EOT  
EOT  
LANE 0  
LANE 1  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
BYTE 10  
BYTE 11  
EOT  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 2  
EOT  
LANE 0  
LANE 1  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE n-1  
EOT  
EOT  
4 CSI-2 Data Lane Configuration (default)  
2 CSI-2 Data Lane Configuration  
6-10. 4 MIPI Data Lane Configuration  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
6.10 Typical Characteristics  
6-11. Typical 4 Gbps Forward Channel Monitor  
6-12. Typical 50 Mbps Back Channel Output  
Loop Through Waveform (CMLOUT)  
Waveform  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
24  
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DS90UB960-Q1 is a sensor hub that accepts four sensor inputs from a FPD-Link III interface. When  
coupled with ADAS FPD-Link III serializers (DS90UB953-Q1, DS90UB935-Q1, DS90UB933-Q1 or  
DS90UB913A-Q1), the device combines data streams from multiple sensor sources onto one or two MIPI CSI-2  
port(s) with up to four data lanes on each port.  
7-1. Serializer Compatibility  
SERIALIZER  
DS90UB953-Q1  
DS90UB935-Q1  
DS90UB933-Q1  
DS90UB913A-Q1  
Compatibility  
Yes  
Yes  
Yes  
Yes  
7.1.1 Functional Description  
The DS90UB960-Q1 is a sensor hub that aggregates up to four inputs acquired from a FPD-Link III stream and  
transmitted over a MIPI sensor serial interface (CSI-2). When coupled with the DS90UB953-Q1, DS90UB935-  
Q1, DS90UB933-Q1, or DS90UB913A-Q1 FPD-Link III serializers, the DS90UB960-Q1 receives data streams  
from multiple imagers that can be multiplexed on the same CSI-2 links. When paired with the DS90UB953-Q1 or  
DS90UB935-Q1, the DS90UB960-Q1 operates with the full feature set. When in the backward-compatible mode  
paired with a DS90UB933-Q1 or DS90UB913A-Q1, the device operates with basic functionality. The  
DS90UB960-Q1 supplies two MIPI CSI-2 ports, configured with four lanes per port with up to 1.664 Gbps per  
lane. The second MIPI CSI-2 output port is available to provide either more bandwidth or supply a second  
replicated output. The DS90UB960-Q1 can support multiple data formats (programmable as RAW, YUV, RGB)  
and different sensor resolutions. The CSI-2 Tx module accommodates both image data and non-image data  
(including synchronization or embedded data packets).  
The DS90UB960-Q1 CSI-2 interface combines each of the sensor data streams into packets designated for  
each virtual channel. The output generated is composed of virtual channels to separate different streams to be  
interleaved. Each virtual channel is identified by a unique channel identification number in the packet header.  
When the DS90UB960-Q1 is paired with a DS90UB953-Q1 serializer, the received FPD-Link III forward channel  
is constructed in 40-bit long frames. Each encoded frame contains video payload data, I2C forward channel  
data, and additional information on framing, data integrity and link diagnostics. The high-speed, serial bit stream  
from the DS90UB953-Q1 contains an embedded clock and DC-balancing to allow sufficient data line transitions  
for enhanced signal quality. When paired with ADAS serializers in RAW input mode, the received FPD-Link III  
forward channel is similarly constructed at a lower line rate in 28-bit long frames. The DS90UB960-Q1 device  
recovers a high-speed, FPD-Link III forward channel signal and generates a bidirectional control channel control  
signal in the reverse channel direction. The DS90UB960-Q1 converts the FPD-Link III stream into a MIPI CSI-2  
output interface designed to support automotive sensors, including 2MP/60fps and 4MP/30fps image sensors.  
The DS90UB960-Q1 device has four receive input ports to accept up to four sensor streams simultaneously. The  
control channel function of the DS90UB953-Q1 / DS90UB960-Q1 pair supplies bidirectional communication  
between the image sensors and ECU. The integrated bidirectional control channel transfers data bidirectionally  
over the same differential pair used for video data interface. This interface has advantages over other chipsets  
because the interface eliminates the need for additional wires for programming and control. The bidirectional  
control channel bus is controlled through an I2C port. The bidirectional control channel supplies continuous low  
latency communication and is not dependent on video blanking intervals. The DS90UB953-Q1 / DS90UB960-Q1  
chipset can operate entirely off of the back channel frequency clock generated by the DS90UB960-Q1 and  
recovered by the DS90UB953-Q1. The DS90UB953-Q1 provides the reference clock source for the sensor  
based on the recovered back channel clock. Synchronous clocking mode has distinct advantages in a multi-  
sensor system by locking all of the sensors and the receiver to a common reference in the same clock domain,  
which reduces or eliminates the need for data buffering and re-synchronization. This mode also eliminates the  
cost, space, and potential failure point of a reference oscillator within the sensor. The DS90UB953-Q1 /  
DS90UB960-Q1 chipset gives customers the choice to work with different clocking schemes. The DS90UB953-  
Q1 / DS90UB960-Q1 chipset can also use an external oscillator as the reference clock source for the PLL as the  
primary reference clock to the serializer (see the DS90UB953-Q1 data sheet).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.2 Functional Block Diagram  
RIN0+  
RIN0-  
MIPI CSI-2  
Port 0  
RIN1+  
RIN1-  
RIN2+  
RIN2-  
MIPI CSI-2  
Port 1  
Timing  
and  
Control  
RIN3+  
RIN3-  
CLOCK  
MIPI CSI-2  
Outputs  
Clock  
Gen  
CMLOUTP  
CMLOUTN  
REFCLK  
PDB  
I2C_SDA  
I2C_SCL  
GPIOs  
MODE  
I2C  
Controller  
I2C_SDA2  
I2C_SCL2  
IDx  
INTB  
7-1. Functional Block Diagram  
7.3 Feature Description  
The DS90UB960-Q1 provides a 4:2 hub for sensor applications. The device includes four FPD-Link III inputs for  
sensor data streams from up to four DS90UB953-Q1 serializers. The interfaces are also backward-compatible to  
DS90UB933-Q1 or DS90UB913A-Q1 serializers. Data received from the four input ports is aggregated onto one  
or two 4-lane CSI-2 interfaces.  
7.4 Device Functional Modes  
The DS90UB960-Q1 supports two main operating modes:  
CSI-2 Mode (DS90UB935-Q1 compatible)  
RAW Mode (DS90UB933-Q1 / DS90UB913A-Q1 compatible)  
The two modes mainly control the FPD-Link III receiver operation of the device. In both cases, the output format  
for the device is CSI-2 through one or two CSI-2 transmit ports.  
Each RX input port can be individually configured for CSI-2 or RAW modes of operation. The input mode of  
operation is controlled by the FPD3_MODE 0x6D[1:0] register bits in the PORT_CONFIG register (see 表  
7-126). The input mode may also be controlled by the MODE strap pin.  
The DS90UB960-Q1 includes forwarding control to allow multiple video streams from any of the received ports  
to be mapped to either of the CSI-2 ports.  
7.4.1 CSI-2 Mode  
When operating in CSI-2 Mode, the receives CSI-2 formatted data on up to four FPD-Link III input ports and  
forwards the data to one or two CSI-2 transmit ports. The deserializer can operate in CSI-2 mode with  
synchronous back channel reference or non-synchronous mode. The forward channel line rate is independent of  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
26  
Submit Document Feedback  
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
the CSI-2 rate in synchronous or non-synchronous with external clock mode. The mode supports the remapping  
of Virtual Channel IDs at the input of each receive port. This remapping allows the receivers to handle conflicting  
VC-IDs for input streams from multiple sensors and to send those streams to the same CSI-2 transmit port.  
In CSI-2 mode each deserializer Rx Port can support an FPD-Link III line rate up to 4.16 Gbps, where the line (or  
forward channel) and back channel rates are based on the reference frequency used for the serializer:  
In Synchronous mode based on REFCLK input frequency reference, the FPD-Link III forward channel rate is  
a fixed value of 160 × REFCLK. FPD3_PCLK = 4 × REFCLK and back channel rate = 2 × REFCLK. For  
example with REFCLK = 25 MHz, forward channel data rate = 4.0 Gbps, FPD3_PCLK = 100 MHz, back  
channel data rate = 50 Mbps.  
In Non-synchronous clocking mode when the DS90UB953-Q1 uses external reference clock (CLK_IN) the  
FPD-Link line rate is typically CLK_IN × 80, FPD3_PCLK = 2 × CLK_IN or 1 x CLK_IN. The back channel  
data rate must be set to 10 Mbps in this mode. For example, with CLK_IN = 50 MHz, forward channel rate =  
4 Gbps, FPD3_PCLK = 100 MHz, and the back channel rate is 10 Mbps. The sensor CSI-2 rate is  
independent of the CLK_IN.  
7.4.2 RAW Mode  
In RAW mode, the DS90UB960-Q1 receives RAW8, RAW10, or RAW12 data from a DS90UB933-Q1 or  
DS90UB913-Q1 serializer. The data is translated into a RAW8, RAW10, or RAW12 CSI-2 video stream for  
forwarding on one of the CSI-2 transmit ports. For each input port, the CSI-2 packet header VC-ID and Data  
Type are programmable.  
In RAW mode, each Rx Port can support up to:  
12 bits of DATA + 2 SYNC bits for an input PCLK range of 37.5 MHz to 100 MHz (75 MHz for DS90UB913A-  
Q1) in the 12-bit, high-frequency mode. Line rate = PCLK × (2/3) × 28. For example, PCLK = 100 MHz, line  
rate = (100 MHz) × (2/3) × 28 = 1.87 Gbps. Note: No HS/VS restrictions (raw). NOTE: The back channel rate  
must be set to 2.5 Mbps in this mode.  
12 bits of DATA + 2 bits SYNC for an input PCLK range of 25 MHz to 50 MHz in the 12-bit, low-frequency  
mode. Line rate = PCLK × 28. For example, PCLK = 50 MHz, line rate = 50 MHz × 28 = 1.40 Gbps. Note: No  
HS/VS restrictions (raw). The back channel rate must be set to 2.5 Mbps in this mode.  
10 bits of DATA + 2 SYNC bits for an input PCLK range of 50 MHz to 100 MHz in the 10-bit mode. Line rate =  
(PCLK / 2) × 28. For example, PCLK = 100 MHz, line rate = (100 MHz / 2) × 28 = 1.40 Gbps. Note: HS/HV is  
restricted to no more than one transition per 10 PCLK cycles. The back channel rate must be set to 2.5 Mbps  
in this mode.  
7.4.3 MODE Pin  
Configuration of the device may be done through the MODE input strap pin, or through the configuration register  
bits. A pullup resistor and a pulldown resistor of suggested values may be used to set the voltage ratio of the  
MODE input (VMODE) and VDD18 to select one of the four possible modes. Possible configurations are:  
CSI-2 Mode (DS90UB953-Q1 and DS90UB935-Q1 compatible)  
40-bit forward channel frame  
50-Mbps back channel rate for serializer operation in Synchronous mode (default)  
10-Mbps back channel rate for serializer operation in Non-synchronous mode (must be programmed by  
setting BC_FREQ_SELECT register 0x58[2:0] = 010))  
12-bit LF / 12-bit HF / 10-bit RAW modes (DS90UB933-Q1 and DS90UB913A-Q1 compatible)  
28-bit forward channel frame  
2.5-Mbps back channel rate (default)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
VDD18  
R
HIGH  
MODE  
or IDX  
V
TARGET  
R
LOW  
Deserializer  
GND  
7-2. Strap Pin Connection Diagram  
7-2. Strap Configuration Mode Select  
VMODE VOLTAGE RANGE  
VTYP  
VIDX TARGET  
VOLTAGE  
SUGGESTED STRAP RESISTORS  
(1% TOL)  
NO.  
RX MODE  
VMIN  
VMAX  
VDD18 = 1.80 V  
0
RHIGH ( k)  
RLOW ( k)  
10.0  
0
1
2
3
4
5
6
7
0
0
0.131 × V(VDD18)  
0.247 × V(VDD18)  
0.362 × V(VDD18)  
0.474 × V(VDD18)  
0.592 × V(VDD18)  
0.704 × V(VDD18)  
0.823 × V(VDD18)  
V(VDD18)  
OPEN  
88.7  
75.0  
71.5  
78.7  
39.2  
25.5  
10.0  
CSI-2 Mode  
0.179 × V(VDD18)  
0.296 × V(VDD18)  
0.412 × V(VDD18)  
0.525 × V(VDD18)  
0.642 × V(VDD18)  
0.761 × V(VDD18)  
0.876 × V(VDD18)  
0.213 × V(VDD18)  
0.330 × V(VDD18)  
0.443 × V(VDD18)  
0.559 × V(VDD18)  
0.673 × V(VDD18)  
0.792 × V(VDD18)  
V(VDD18)  
0.374  
0.582  
0.792  
0.995  
1.202  
1.420  
1.8  
23.2  
RAW12 LF  
RAW12 HF  
RAW10  
35.7  
56.2  
97.6  
CSI-2 Mode  
RAW12 LF  
RAW12 HF  
RAW10  
78.7  
95.3  
OPEN  
The strapped values can be viewed and/or modified in the following locations:  
RX Mode Port Configuration FPD3_MODE Register 0x6D[1:0] bits (see 7-126)  
7.4.4 REFCLK  
A valid 23-MHz to 26-MHz reference clock is required on the REFCLK pin 5 for precise frequency operation. The  
REFCLK frequency defines all internal clock timers, including the back channel rate, I2C timers, CSI-2 datarate,  
FrameSync signal parameters, and other timing critical internal circuitry. REFCLK input must be continuous. If  
the REFCLK input does not detect a transition more than 20 µs, this may cause a disruption in the CSI-2 output.  
REFCLK should be applied to the DS90UB960-Q1 only when the supply rails are above minimum levels (see 图  
9-1). At start-up, the DS90UB960-Q1 defaults to an internal oscillator to generate an backup internal reference  
clock at nominal frequency of 25 MHz ±10%.  
As an option for mitigating EMI / EMC, the DS90UB960-Q1 is capable of tolerating a REFCLK with spread-  
spectrum clocking (SSC) profile with up to ±0.5% amplitude deviations (center spread) or up to 1% amplitude  
deviations (down spread) and up to 33-kHz frequency modulation from a clock source.  
The REFCLK LVCMOS input oscillator specifications are listed in 7-3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
28  
Submit Document Feedback  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-3. REFCLK Oscillator Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
REFERENCE CLOCK  
±100  
ppm  
40°C TA 105°C, aging, no  
spread-spectrum  
Frequency tolerance with aging  
Amplitude  
Symmetry  
Rise and fall time  
Jitter  
800  
1200  
50%  
V(VDDIO)  
60%  
6
mVp-p  
Duty Cycle  
40%  
ns  
10% 90%  
50  
25  
200  
26  
ps p-p  
MHz  
200 kHz 10 MHz  
Frequency  
23  
-0.5%  
-1%  
Center spread  
Down spread  
+0.5%  
0%  
Spread-spectrum clock modulation percentage  
(Optional)  
Spread-spectrum clock modulation frequency  
(Optional)  
33  
kHz  
7.4.5 Receiver Port Control  
The DS90UB960-Q1 can support up to four simultaneous inputs to Rx ports 0 - 4. The Receiver port control  
register RX_PORT_CTL 0x0C (see 7-33) allows for disabling any Rx inputs when not in use. These bits can  
only be written by a local I2C master at the deserializer side of the FPD-Link.  
Each FPD-Link III Receive port has a unique set of registers that provides control and status corresponding to  
Rx ports 0 - 4. Control of the FPD-Link III port registers is assigned by the FPD3_PORT_SEL register, which  
sets the page controls for reading or writing individual ports unique registers. For each of the FPD-Link III  
Receive Ports, the FPD3_PORT_SEL 0x4C register defaults to selecting that ports registers as detailed in  
register description (see 7-93).  
As an alternative to paging to access FPD-Link III Receive unique port registers, separate I2C addresses may  
be enabled to allow direct access to the port-specific registers. The Port I2C address registers 0xF8 - 0xFB allow  
programming a separate 7-bit I2C address to allow access to unique, port-specific registers without paging (see  
7.6.17. I2C commands to these assigned I2C addresses are also allowed access to all shared registers.  
7.4.5.1 Video Stream Forwarding  
Video stream forwarding is handled by the Rx Port forwarding control in register 0x20 (see 7-53). Forwarding  
from input ports are disabled by default and must be enabled using per-port controls. Different options for  
forwarding CSI-2 packets can also be selected as described starting in 7.4.25.  
7.4.6 Input Jitter Tolerance  
Input jitter tolerance is the ability of the clock and data recovery (CDR) and phase-locked loop (PLL) of the  
receiver to track and recover the incoming serial data stream. Jitter tolerance at a specific frequency is the  
maximum jitter permissible before data errors occur. 7-3 shows the allowable total jitter of the receiver inputs  
and must be less than the values in 7-4.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Amplitude  
(UI p-p)  
A1  
A2  
Ö (MHz)  
Ö1  
Ö2  
7-3. Input Jitter Tolerance Plot  
7-4. Input Jitter Tolerance Limit  
INTERFACE  
JITTER AMPLITUDE (UI p-p)  
FREQUENCY (MHz) (1)  
A1  
1
A2  
ƒ1  
FPD3_PCLK / 80  
ƒ2  
FPD3_PCLK / 15  
FPD3  
0.4  
(1) FPD3_PCLK frequency is a function of the PCLK, CLK_IN, or REFCLK frequency and dependent on the serializer operating MODE:  
CSI-2 synchronous mode: FPD3_PCLK = 4 x REFCLK  
CSI-2 non-synchronous mode: FPD3_PCLK = 2 x CLK_IN  
RAW 10-bit mode: FPD3_PCLK = PCLK / 2  
RAW 12-bit HF mode: FPD3_PCLK = 2 x PCLK / 3  
RAW 12-bit LF mode: FPD3_PCLK = PCLK  
7.4.7 Adaptive Equalizer  
The receiver inputs provide an adaptive equalization filter to compensate for signal degradation from the  
interconnect components. To determine the maximum cable reach, factors that affect signal integrity such as  
jitter, skew, ISI, crosstalk, and so forth, must be considered. The equalization status and configuration are  
selected through AEQ registers 0xD20xD5 (see 7-184 through 7-187).  
Each RX receiver incorporates an adaptive equalizer (AEQ), which continuously monitors cable characteristics  
for long-term cable aging and temperature changes. The AEQ attempts to optimize the equalization setting of  
the RX receiver.  
If the deserializer loses LOCK, the adaptive equalizer will reset and perform the LOCK algorithm again to  
reacquire the serial data stream being sent by the serializer.  
7.4.7.1 Transmission Distance  
The DS90UB960-Q1 AEQ can compensate for the transmission channel insertion loss of up to 19.2 dB at 2.1  
GHz. When designing the transmission channel, consider the total insertion loss of all components in the signal  
path between a serializer and a deserializer. Typically, the transmission channel would consist of a serializer  
PCB, two or more connectors, one or more cables, and a deserializer PCB as shown in 7-4.  
Serializer PCB  
Deserializer PCB  
SER  
DES  
Dacar 462  
Dacar 462  
Dacar 302  
7-4. Typical Transmission Channel Components With Coaxial Cables  
Assuming 1.2 dB at 2.1-GHz insertion loss (IL) budget for each serializer and deserializer PCB and 0.1 dB for  
each connector, it is easy to determine maximum cable reach given the insertion loss characteristic of the cable.  
For example, Dacar 462 has typical insertion loss of about 1.31 dB/m at 2.1 GHz. With the 19.2-dB total IL  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
30  
Submit Document Feedback  
 
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
budget, the remaining IL budget for the cable is 16.6 dB (19.2 dB 2 × (1.2 dB) 2 × (0.1 dB)) after  
insertion loss of the two PCBs and two connectors are deducted from the total channel IL budget. Given this IL  
cable budget, the maximum cable reach with a single Dacar 462 is greater than 12 m (16.6 dB / 1.31 dB/m).  
Lower loss cables such as Dacar 302 (typical insertion loss of 0.78 dB/m at 2.1 GHz) may be used alone or in  
combination with Dacar 462 to achieve even longer transmission distances as exemplified in 7-4. 7-5  
shows typical Dacar 462 and Dacar 302 cable combinations that achieve a 15-m transmission distance and stay  
within the maximum insertion loss budget.  
7-5. Typical 15-m Cable Combinations with Dacar 462 and Dacar 302 Cables  
CONNECTOR  
DACAR 462  
DACAR 302  
TOTAL CHANNEL  
INSERTION LOSS AT 2.1  
GHz  
PCB INSERTION  
LOSS AT 2.1 GHz  
EXAMPLE  
INSERTION LOSS AT INSERTION LOSS AT INSERTION LOSS AT  
2.1 GHz  
2.1 GHz  
2.1 GHz  
2 × 2.5 m × (1.31)  
A
B
C
2 × (1.2) dB  
2 × (1.2) dB  
2 × (1.2) dB  
4 × (0.1) dB  
10 m × (0.78) dB/m  
14.75 dB  
15.28 dB  
16.87 dB  
dB/m  
2 × 3 m × (1.31)  
4 × (0.1) dB  
4 × (0.1) dB  
9 m × (0.78) dB/m  
7 m × (0.78) dB/m  
dB/m  
2 × 4 m × (1.31)  
dB/m  
7.4.7.2 Channel Requirements  
For optimal AEQ performance and error free operation, the end-to-end transmission channel (Including cables,  
connectors, and PCBs) needs to meet insertion loss, return loss (impedance control), and crosstalk  
requirements given in 7-6 and 7-7. Poor impedance control or insertion loss of the transmission channel  
and poor channel to channel isolation (low IL / FEXT) may result in significant reductions in the maximum  
transmission distance.  
7-6. Transmission Channel Requirements for Coaxial Cable Applications  
PARAMETER  
Ztrace Single-ended PCB trace characteristic impedance  
Zcable Coaxial cable characteristic impedance  
MIN  
TYP  
MAX UNIT  
45  
50  
55  
Ω
Ω
Ω
dB  
45  
50  
55  
62.5  
Zcon  
Connector (mounted) characteristic impedance  
40  
50  
½ fBC < f < 0.1 GHz  
0.1 GHz < f < 1 GHz (f in GHz)  
1 GHz < f < fFC  
f = 1 MHz  
16  
RL  
Return Loss, S11  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
9 + 7 × log(f)  
9  
1.4  
2.3  
2.5  
3.5  
4.5  
9.5  
14.0  
19.2  
f = 5 MHz  
f = 10 MHz  
f = 50 MHz  
IL  
Insertion Loss, S12  
f = 100 MHz  
f = 0.5 GHz  
f = 1 GHz  
f = 2.1 GHz  
FEXT Maximum Far End Crosstalk  
NEXT Maximum Near End Crosstalk  
f < 2.1 GHz  
39.2  
30  
< 200 MHz  
7-7. Transmission Channel Requirements for STP / STQ Cable Applications  
PARAMETER  
Ztrace Differential PCB trace characteristic impedance  
Zcable STP / STQ cable characteristic impedance  
MIN  
TYP  
100  
100  
100  
MAX UNIT  
90  
110  
115  
125  
Ω
Ω
Ω
85  
Zcon  
Differential connector (mounted) characteristic impedance  
80  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
English Data Sheet: SNLS589  
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-7. Transmission Channel Requirements for STP / STQ Cable Applications (continued)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
½ fBC < f < 0.01 GHz  
dB  
dB  
20  
20 + 20(f)  
10  
0.01 GHz < f < 0.5 GHz (f in  
GHz)  
RL  
Return Loss, SDD11  
0.5 GHz < f < fFC  
f = 1 MHz  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
1.1  
1.4  
1.6  
2.7  
3.4  
7.8  
12.0  
19.6  
f = 5 MHz  
f = 10 MHz  
f = 50 MHz  
f = 100 MHz  
f = 0.5 GHz  
f = 1 GHz  
IL  
Insertion Loss, SDD12  
f = 2.1 GHz  
f < 2.1 GHz  
< 200 MHz  
FEXT Maximum Far End Crosstalk  
NEXT Maximum Near End Crosstalk  
39.6  
30  
7.4.7.3 Adaptive Equalizer Algorithm  
The AEQ process steps through the allowed equalizer control values to find a value that allows the Clock Data  
Recovery (CDR) circuit to keep a valid lock condition. The circuit waits for a programmed re-lock time period for  
each EQ setting, then the circuit checks the results for a valid lock. If a valid lock is detected, the circuit will stop  
at the current EQ setting and maintain a constant value as long as the lock state persists. If the deserializer  
loses the lock, the adaptive equalizer will resume the LOCK algorithm and the EQ setting is incremented to the  
next valid state. When the lock is lost, the circuit will search the EQ settings to find another valid setting to  
reacquire the serial data stream sent by the serializer that remains locked.  
7.4.7.4 AEQ Settings  
7.4.7.4.1 AEQ Start-Up and Initialization  
The AEQ circuit can be restarted at any time by setting the AEQ_RESTART bit in the AEQ_CTL2 register 0xD2  
(see 7-184). When the deserializer is powered on, the AEQ is continually searching through the EQ settings  
and could be at any setting when the serializer supplies a signal. If the Rx Port CDR locks to the signal, it may  
be acceptable for low bit errors, but it may not optimized or overequalized. When connected to a compatible  
serializer (DS90UB953-Q1, DS90UB933-Q1 or DS90UB913A-Q1), the DS90UB960-Q1 will restart the AEQ  
adaption by default after the device achieves the first positive lock indication to supply a more consistent start-up  
from known conditions.  
With this feature disabled, the AEQ may lock at a relatively random EQ setting based on when the FPD-Link III  
input signal is initially present. Alternatively, AEQ_RESTART or DIGITAL_RESET0 can be applied once the  
compatible serializer input signal frequency is stable to restart adaption from the minimum EQ gain value. These  
techniques allow for a more consistent initial EQ setting following adaption.  
7.4.7.4.2 AEQ Range  
The AEQ circuit can be programmed with minimum and maximum settings used during the EQ adaption. Using  
the full AEQ range provides the most flexible solution, if the channel conditions are known however, an improved  
deserializer lock time can be achieved by narrowing the search window for allowable EQ gain settings. For  
example, in a system use case with a longer cable and multiple interconnects creating higher channel  
attenuation, the AEQ would not adapt to the minimum EQ gain settings. Likewise, in a system use case with a  
short cable and low channel attenuation, the AEQ would not generally adapt to the highest EQ gain settings. The  
AEQ range is determined by the AEQ_MIN_MAX register 0xD5 (see 7-187) where AEQ_MAX sets the  
maximum value of EQ gain. The ADAPTIVE_EQ_FLOOR_VALUE determines the starting value for EQ gain  
adaption. To enable the minimum AEQ limit, the SET_AEQ_FLOOR bit in the AEQ_CTL2 register 0xD2[2] must  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
32  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
also be set (see 7-184). An AEQ range (AEQ_MAX - AEQ_FLOOR) to allow a variation around the nominal  
setting of 2/+4 or ±3 around the nominal AEQ value specific to Rx port channel characteristics gives a good  
trade-off in lock time and adaptability. The setting for the AEQ after adaption can be read back from the  
AEQ_STATUS register 0xD3 (see 7-185). The suggested AEQ_FLOOR settings are given in 7-8.  
7-8. Suggested ADAPTIVE_EQ_FLOOR_VALUE as a Function of Channel Insertion Loss  
CHANNEL INSERTION LOSS AT 2.1 GHz (dB)  
ADAPTIVE_EQ_FLOOR_VALUE  
0
2
4
5
6
Up to 9.4  
9.4 to 13.2  
13.2 to 15.4  
15.4 to 17.8  
17.8 to 19.2  
7.4.7.4.3 AEQ Timing  
The dwell time for AEQ to wait for lock or error-free status is also programmable. When checking each EQ  
setting the AEQ will wait for a time interval, controlled by the ADAPTIVE_EQ_RELOCK_TIME field in the  
AEQ_CTL2 register (see 7-184) before incrementing to the next allowable EQ gain setting. The default wait  
time is set to 2.62 ms based on REFCLK = 25 MHz. When the maximum setting is reached and there is no lock  
acquired during the programmed relock time, the AEQ will restart adaption at minimum setting or AEQ_FLOOR  
value.  
7.4.7.4.4 AEQ Threshold  
The DS90UB960-Q1 receiver will adapt by default based on the FPD-Link error checking during the Adaptive  
Equalization process. The specific errors linked to equalizer adaption, FPD-Link III clock recovery error, packet  
encoding error, and parity error can be individually selected in AEQ_CTL register 0x42 (see 7-83). Errors are  
accumulated over 1/2 of the period of the timer set by the ADAPTIVE_EQ_RELOCK_TIME. If the number of  
errors is greater than the programmed threshold (AEQ_ERR_THOLD), the AEQ will attempt to increase the EQ  
setting.  
7.4.8 Channel Monitor Loop-Through Output Driver  
The DS90UB960-Q1 includes an internal Channel Monitor Loop-through output on the CMLOUTP/N pins. The  
CMLOUTP/N supplies a buffered loop-through output driver to observe the jitter after equalization for each of the  
four RX receiver channels. The CMLOUT monitors the post EQ stage, thus providing the recovered input of the  
deserializer signal. The measured serial data width on the CMLOUT loop-through is the total jitter including the  
internal driver, AEQ, back channel echo, and so forth. Each channel also has its own CMLOUT monitor and can  
be used for debug purposes. This CMLOUT is useful in identifying gross signal conditioning issues.  
7-9 shows the minimum CMLOUT differential eye opening as a measure of acceptable forward channel signal  
integrity. A CMLOUT eye opening of at least 0.35 UI suggests that the forward channel signal integrity is likely  
acceptable. However, further testing such as BIST is recommended to verify error-free operation. An eye  
opening of less than 0.35 UI indicates possible issues with the forward channel signal integrity.  
7-9. CML Monitor Output Driver  
PARAMETER  
TEST CONDITIONS  
RL = 100 Ω  
(7-5)  
PIN  
MIN  
TYP  
MAX  
UNIT  
Differential Output  
Eye Opening  
EW  
CMLOUTP, CMLOUTN  
0.35  
UI(1)  
(1) Unit Interval (UI) is equivalent to one ideal serialized data bit width. The UI scales with serializer input PCLK frequency (RAW Modes),  
serializer CLK_IN frequency (CSI-2 Mode, Serializer Non-synchronous Mode) or REFCLK (CSI-2 Mode, Serializer Synchronous  
Mode).  
CSI-2 Mode, Serializer Synchronous Mode: 1 UI = 1 / ( 160 x REFCLK ) (typ)  
CSI-2 Mode, Serializer Non-synchronous Mode: 1 UI = 1 / ( 80 x CLK_IN) (typ)  
RAW 10-bit mode: 1 UI = 1 / ( 28 x PCLK / 2 )  
RAW 12-bit HF mode: 1 UI = 1 / ( 28 x 2/3 x PCLK )  
RAW 12-bit LF mode: 1 UI = 1 / ( 28 x PCLK )  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
English Data Sheet: SNLS589  
 
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
VOD (+)  
Ew  
0V  
VOD (-)  
t
(1 UI)  
BIT  
7-5. CMLOUT Output Driver  
7-10 includes details on selecting the corresponding RX receiver of CMLOUTP/N configuration.  
7-10. Channel Monitor Loop-Through Output Configuration  
FPD3 RX Port 0  
FPD3 RX Port 1  
FPD3 RX Port 2  
FPD3 RX Port 3  
0xB0 = 0x14  
0xB1 = 0x00  
0xB2 = 0x80  
0xB0 = 0x14  
0xB1 = 0x00  
0xB2 = 0x80  
0xB0 = 0x14  
0xB1 = 0x00  
0xB2 = 0x80  
0xB0 = 0x14  
0xB1 = 0x00  
0xB2 = 0x80  
ENABLE MAIN LOOPTHRU DRIVER  
SELECT CHANNEL MUX  
0xB1 = 0x01  
0xB2 = 0x01  
0xB1 = 0x01  
0xB2 = 0x02  
0xB1 = 0x01  
0xB2 = 0x04  
0xB1 = 0x01  
0xB2 = 0x08  
0xB0 = 0x04  
0xB1 = 0x0F  
0xB2 = 0x01  
0xB1 = 0x10  
0xB2 = 0x02  
0xB0 = 0x08  
0xB1 = 0x0F  
0xB2 = 0x01  
0xB1 = 0x10  
0xB2 = 0x02  
0xB0 = 0x0C  
0xB1 = 0x0F  
0xB2 = 0x01  
0xB1 = 0x10  
0xB2 = 0x02  
0xB0 = 0x10  
0xB1 = 0x0F  
0xB2 = 0x01  
0xB1 = 0x10  
0xB2 = 0x02  
SELECT RX PORT  
7.4.8.1 Code Example for CMLOUT FPD3 RX Port 0:  
WriteI2C(0xB0,0x14)  
WriteI2C(0xB1,0x00)  
WriteI2C(0xB2,0x80)  
WriteI2C(0xB1,0x01)  
WriteI2C(0xB2,0x01)  
WriteI2C(0xB0,0x04)  
WriteI2C(0xB1,0x0F)  
WriteI2C(0xB2,0x01)  
WriteI2C(0xB1,0x10)  
WriteI2C(0xB2,0x02)  
# FPD3 RX Shared, page 0  
# Offset 0 (reg_0_sh)  
# Enable loop throu driver  
# Select Drive Mux  
#
# FPD3 RX Port 0, page 0  
#
# Loop through select  
#
# Enable CML data output  
7.4.9 RX Port Status  
The DS90UB960-Q1 is able to monitor and detect several other RX port specific conditions and interrupt states.  
This information is latched into the RX port status registers RX_PORT_STS1 0x4D (see 7-94) and  
RX_PORT_STS2 0x4E (see 7-95). There are bits to flag any change in LOCK status (LOCK_STS_CHG) or  
detect any errors in the control channel over the forward link (BCC_CRC_ERROR, BCC_SEQ_ERROR) which  
are cleared upon read. The Rx Port status registers also allow monitoring of the presence stable input signal  
along with monitoring parity and CRC errors, line length, and lines per video frame.  
7.4.9.1 RX Parity Status  
The FPD-Link III receiver checks the decoded data parity to detect any errors in the received FPD-Link III frame.  
Parity errors are counted up and accessible through the RX_PAR_ERR_HI and RX_PAR_ERR_LO registers  
0x55 and 0x56 (see 7-102 and 7-103) to provide combined 16-bit error counter. In addition, a parity error  
flag can be set once a programmed number of parity errors have been detected. This condition is indicated by  
the PARITY_ERROR flag in the RX_PORT_STS1 register. Reading the counter value will clear the counter  
value and PARITY_ERROR flag. An interrupt may also be generated based on assertion of the parity error flag.  
By default, the parity error counter will be cleared and flag will be cleared on loss of Receiver lock. To ensure an  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
34  
Submit Document Feedback  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
exact read of the parity error counter, parity checking should be disabled in the GENERAL_CFG register 0x02  
(see 7-23) before reading the counter.  
7.4.9.2 FPD-Link Decoder Status  
The FPD-Link III receiver also checks the decoded data for encoding or sequence errors in the received FPD-  
Link III frame. If either of these error conditions are detected the FPD3_ENC_ERROR bit will be latched in the  
RX_PORT_STS2 register 0x4E[5] (see 7-95). An interrupt may also be generated based on assertion of the  
encoded error flag. To detect FPD-Link III Encoder errors, the LINK_ERROR_COUNT must be enabled with a  
LINK_ERR_THRESH value greater than 1. Otherwise, the loss of Receiver Lock will prevent detection of the  
Encoder error. The FPD3_ENC_ERROR flag is cleared on read.  
When partnered with a DS90UB953-Q1, the FPD3 Encoder may be configured to include a CRC check of the  
FPD3 encoder sequence. The CRC check provides an extra layer of error checking on the encoder sequence.  
This CRC checking adds protection to the encoder sequence used to send link information comprised of  
Datapath Control registers 0x59 (7-106) and 0x5A (7-107), Sensor Status registers 0x51 - 0x54 (7-98  
through 7-101), and Serializer ID register 0x5B (7-109). TI recommends that designers enable CRC error  
checking on the FPD3 Encoder sequence to prevent any updates of link information values from encoded  
packets that do not pass CRC check. The FPD3 Encoder CRC is enabled by setting the FPD3_ENC_CRC_DIS  
register 0xBA[7] to 0 (see 7-175). In addition, the FPD3_ENC_CRC_CAP flag should be set in register  
0x4A[4] (see 7-91).  
7.4.9.3 RX Port Input Signal Detection  
The DS90UB960-Q1 can detect and measure the approximate input frequency and frequency stability of each  
RX input port and indicate status in bits [2:1] of RX_PORT_STS2 (see 7-95). Frequency measurement stable  
FREQ_STABLE indicates the FPD-Link III input clock frequency is stable. When no FPD-Link III input clock is  
detected at the RX input port, the NO_FPD3_CLK bit indicates that condition has occurred. The setting of these  
error flags is dependent on the stability control settings in the FREQ_DET_CTL register 0x77 (see 7-136).  
The NO_FPD3_CLK bit will be set if the input frequency is below the setting programmed in the FREQ_LO_THR  
setting in the FREQ_DET_CTL register. A change in frequency FREQ_STABLE = 0, is defined as any change in  
MHz greater than the value programmed in the FREQ_HYST value. The frequency is continually monitored and  
provided for readback through the I2C interface less than every 1 ms. A 16-bit value is used to provide the  
frequency in registers 0x4F and 0x50 (see 7-96 and 7-97). An interrupt can also be generated for any of  
the ports to indicate if a change in frequency is detected on any port.  
7.4.9.4 Line Counter  
For each video frame received, the deserializer will count the number of video lines in the frame. In CSI-2 input  
mode, any long packet will be counted as a video line. In RAW mode, any assertion of the Line Valid (LV) signal  
will be interpreted as a video line. The LINE_COUNT_1 and LINE_COUNT_0 registers (7-132 and 7-133)  
can be used to read the line count for the most recent video frame. Line Length may not be consistent when  
receiving multiple CSI-2 video streams differentiated by VC-ID. An interrupt may be enabled based on a change  
in the LINE_COUNT value. If interrupts are enabled, the LINE_COUNT registers will be latched at the interrupt  
and held until read back by the processor through the I2C.  
7.4.9.5 Line Length  
For each video line, the length (in bytes) will be determined. The LINE_LEN_1 and LINE_LEN_0 registers (表  
7-134 and 7-135) can be used to read the line count for the most recent video frame. If the line length is not  
stable throughout the frame, the length of the last line of the frame will be reported. Line Count may not be  
consistent when receiving multiple CSI-2 video streams differentiated by VC-ID. An interrupt may be enabled  
based on a change in the LINE_LEN value. If interrupts are enabled, the LINE_LEN registers will be latched at  
the interrupt and held until read by the processor through the I2C.  
7.4.10 Sensor Status  
When paired with the DS90UB953-Q1 serializer, the DS90UB960-Q1 is capable of receiving diagnostic  
indicators from the serializer. The sensor alarm and status diagnostic information are reported in the  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
SENSOR_STS_X registers (7-98 through 7-101). The interrupt capability from detected status changes in  
sensor are described in 7.5.9.4. This interrupt condition will be cleared by reading the SEN_INT_RISE_STS  
and SEN_INT_FALL_STS registers (7-196 and 7-197).  
7.4.11 GPIO Support  
The DS90UB960-Q1 supports 8 pins which are programmable for use in multiple options through the  
GPIOx_PIN_CTL registers.  
7.4.11.1 GPIO Input Control and Status  
Upon initialization GPIO0 through GPIO7 are enabled as inputs by default. Each GPIO pin has an input disable  
and a pulldown disable control bit with exception of the open-drain GPIO3 pin. By default, the GPIO pin input  
paths are enabled and the internal pulldown circuit for the GPIO is enabled. The GPIO_INPUT_CTL (7-36)  
and GPIO_PD_CTL (7-179) registers allow control of the input enable and the pulldown, respectively. For  
example to disable GPIO1 and GPIO2 as inputs you would program in register 0x0F[2:1] = 11. For most  
applications, there is no need to modify the default register settings for the pull down resistors. The status HIGH  
or LOW of each GPIO pin 0 through 7 may be read through the GPIO_PIN_STS register 0x0E (7-35). This  
register read operation provides the status of the GPIO pin independent of whether the GPIO pin is configured  
as an input or output.  
7.4.11.2 GPIO Output Pin Control  
Individual GPIO output pin control is programmable through the GPIOx_PIN_CTL registers 0x10 to 0x17 (表  
7-37 through 7-44). To enable any of the GPIO as output, set bit 0 = 1 in the respective register 0x10 to 0x17  
after clearing the corresponding input enable bit in register 0x0F.  
7.4.11.3 Forward Channel GPIO  
The DS90UB960-Q1 8 GPIO pins can output data received from the forward channel when paired with the  
DS90UB953-Q1 serializer. The remote Serializer GPIO are mapped to GPIO. Each GPIO pin can be  
programmed for output mode and mapped. Up to four GPIOs are supported in the forward direction on each  
FPD-Link III Receive port. Each forward channel GPIO (from any port) can be mapped to any GPIO output pin.  
The DS90UB933-Q1 and DS90UB913A-Q1 GPIOs cannot be configured as inputs for remote communication  
over the forward channel to the DS90UB960-Q1.  
The timing for the forward channel GPIO is dependant on the number of GPIOs assigned at the serializer. When  
a single GPIO input from the DS90UB953-Q1 serializer is linked to a DS90UB960-Q1 deserializer GPIO output  
the value is sampled every forward channel transmit frame. Two linked GPIO are sampled every two forward  
channel frames and 3-linked or 4-linked GPIOs are sampled every 5 frames. The minimum latency for the GPIO  
remains consistent (approximately 225 ns), but as the information spreads over multiple frames, the jitter  
typically increases on the order of the sampling period (number of forward channel frames). TI recommends  
maintaining a 4x oversampling ratio for linked GPIO throughput. For example, when operating in 4-Gbps  
synchronous mode with REFCLK = 25 MHz, the maximum recommended GPIO input frequency based on the  
number of GPIO linked over the forward channel is shown in 7-11.  
7-11. Forward Channel GPIO Typical Timing  
NUMBER OF LINKED  
FORWARD CHANNEL GPIOs  
(FC_GPIO_EN)  
SAMPLING FREQUENCY (MHz)  
AT FPD-Link III LINE RATE = 4  
Gbps  
MAXIMUM RECOMMENDED  
FORWARD CHANNEL GPIO  
FREQUENCY (MHz)  
TYPICAL JITTER (ns)  
1
2
4
100  
50  
25  
12.5  
5
12  
24  
60  
20  
In addition to mapping remote serializer GPI, an internally generated FrameSync (see 7.4.24) or other control  
signals may be output from any of the deserializer GPIOs for synchronization with a local processor or another  
deserializer.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
36  
Submit Document Feedback  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.4.11.4 Back Channel GPIO  
Each DS90UB960-Q1 GPIO pin defaults to input mode at start-up. The deserializer can link GPIO pin input data  
on up to four available slots to send on the back channel per each remote serializer connection. Any of the 8  
GPIO pin data can be mapped to send over the available back channel slots for each FPD-Link III Rx port. The  
same GPIO on the deserializer pin can be mapped to multiple back channel GPIO signals. For 50-Mbps back  
channel operation, the frame period is 600 ns (30 bits × 20 ns/bit). For 2.5-Mbps back channel operation, the  
frame period is 12 µs (30 bits × 400 ns/bit). As the back channel GPIOs are sampled and sent back by the  
DS90UB960-Q1 deserializer, the latency and jitter timing are on the order of one back channel frame. The back  
channel GPIO is effectively sampled at a rate of 1/30 of the back channel rate or 1.67 MHz at fBC = 50 Mbps. TI  
recommends that the input switching frequency for the back channel GPIO is < 1/4 of the sampling rate or 416  
kHz at fBC = 50 Mbps. For example, when operating in 4-Gbps synchronous mode with REFCLK = 25 MHz, the  
maximum recommended GPIO input frequency based on the data rate when linked over the back channel is  
shown in 7-12.  
7-12. Back Channel GPIO Typical Timing  
MAXIMUM  
BACK CHANNEL RATE SAMPLING FREQUENCY RECOMMENDED BACK  
TYPICAL LATENCY (µs)  
TYPICAL JITTER (µs)  
(Mbps)  
(kHz)  
CHANNEL GPIO  
FREQUENCY (kHz)  
50  
10  
1670  
334  
416  
83.5  
20  
1.5  
3.2  
0.7  
3
2.5  
83.5  
12.2  
12  
In addition to sending GPIO from pins, an internally generated FrameSync or external FrameSync input signal  
may be mapped to any of the back channel GPIOs for synchronization of multiple sensors with extremely low  
skew (see 7.4.24).  
In addition to sending GPIO from pins, an internally generated FrameSync signal may be sent on any of the back  
channel GPIOs.  
For each port, the following GPIO control is available through the BC_GPIO_CTL0 register 0x6E and  
BC_GPIO_CTL1 register 0x6F.  
7.4.11.5 GPIO Pin Status  
GPIO pin status may be read through the GPIO_PIN_STS register 0x0E. This register provides the status of the  
GPIO pin independent of whether the GPIO pin is configured as an input or output.  
7.4.11.6 Other GPIO Pin Controls  
Each GPIO pin can has a input disable and a pulldown disable. By default, the GPIO pin input paths are enabled  
and the internal pulldown circuit in the GPIO is enabled. The GPIO_INPUT_CTL register 0x0F (7-36) and  
GPIO_PD_CTL register 0xBE (7-179) allow control of the input enable and the pulldown, respectively. For  
most applications, there is no need to modify the default register settings.  
7.4.12 RAW Mode LV / FV Controls  
The Raw modes provide FrameValid (FV) and LineValid (LV) controls for the video framing. The FV is equivalent  
to a Vertical Sync (VSYNC) while the LineValid is equivalent to a Horizontal Sync (HSYNC) input to the  
DS90UB913A-Q1 / DS90UB933-Q1 device.  
The DS90UB960-Q1 allows setting the polarity of these signals by register programming. The FV and LV polarity  
are controlled on a per-port basis and can be independently set in the PORT_CONFIG2 register 0x7C (表  
7-141).  
To prevent false detection of FrameValid, FV must be asserted for a minimum number of clocks prior to first  
video line to be considered valid. The minimum FrameValid time is programmable in the FV_MIN_TIME register  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
0xBC. Because the measurement is in FPD3 clocks, the minimum FrameValid setup to LineValid timing at the  
Serializer will vary based on operating mode.  
A minimum FV to LV timing is required when processing video frames at the serializer input. If the FV to LV  
minimum setup is not met (by default), the first video line is discarded. Optionally, a register control  
(PORT_CONFIG:DISCARD_1ST_ON_ERR) forwards the first video line missing some number of pixels at the  
start of the line. There is no timing restrictions at the end of the frame.  
FV  
TFV_LV  
LV  
7-6. Minimum FV to LV  
7-13. Minimum FV to LV Setup Requirement (in Serializer PCLKs)  
FV_MIN_TIME  
Conversion Factor  
Absolute Min  
(FV_MIN_TIME = 0)  
Default  
(FV_MIN_TIME = 128)  
MODE  
RAW12 LF  
RAW12 HF  
RAW10  
1
1.5  
2
2
3
5
130  
195  
261  
For other settings of FV_MIN_TIME, use 方程1 to determine the required FV to LV setup in Serializer PCLKs.  
Absolute Min + (FV_MIN_TIME × Conversion factor)  
(1)  
7.4.13 CSI-2 Protocol Layer  
The DS90UB960-Q1 implements High-Speed mode to forward CSI-2 Low Level Protocol data. This includes  
features as described in the Low Level Protocol section of the MIPI CSI-2 Specification. It supports short and  
long packet formats.  
The feature set of the protocol layer implemented by the CSI-2 TX is:  
Transport of arbitrary data (payload-independent)  
8-bit word size  
Support for up to four interleaved virtual channels on the same link  
Special packets for frame start, frame end, line start, and line end information  
Descriptor for the type, pixel depth, and format of the Application Specific Payload data  
16-bit Checksum Code for error detection  
7-7 shows the CSI-2 protocol layer with short and long packets.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
38  
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
DATA:  
Short  
Packet  
Long  
Packet  
Long  
Packet  
Short  
Packet  
ST SP ET  
ST PH  
DATA  
PF ET  
ST PH  
DATA  
PF ET  
ST SP ET  
LPS  
LPS  
LPS  
KEY:  
ST œ Start of Transmission  
ET œ End of Transmission  
LPS œ Low Power State  
PH œ Packet Header  
PF œ Packet Footer  
7-7. CSI-2 Protocol Layer With Short and Long Packets  
7.4.14 CSI-2 Short Packet  
The short packet provides frame or line synchronization. 7-8 shows the structure of a short packet. A short  
packet is identified by data types 0x00 to 0x0F.  
32-bit SHORT PACKET (SH)  
Data Type (DT) = 0x00 œ 0x0F  
7-8. CSI-2 Short Packet Structure  
7.4.15 CSI-2 Long Packet  
A long packet consists of three elements: a 32-bit packet header (PH), an application-specific data payload with  
a variable number of 8-bit data words, and a 16-bit packet footer (PF). The packet header is further composed of  
three elements: an 8-bit data identifier, a 16-bit word count field, and an 8-bit ECC. The packet footer has one  
element, a 16-bit checksum. 7-9 shows the structure of a long packet.  
32-bit  
PACKET  
HEADER  
(PH)  
PACKET DATA:  
16-bit  
PACKET  
FOOTER  
(PF)  
Length = Word Count (WC) * Data Word  
Width (8-bits). There are NO restrictions  
on the values of the data words  
7-9. CSI-2 Long Packet Structure  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
English Data Sheet: SNLS589  
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-14. CSI-2 Long Packet Structure Description  
PACKET PART  
FIELD NAME  
VC / Data ID  
Word Count  
SIZE (BIT)  
DESCRIPTION  
8
Contains the virtual channel identifier and the data-type information.  
Number of data words in the packet data. A word is 8 bits.  
16  
Header  
ECC for data ID and WC field. Allows 1-bit error recovery and 2-bit  
error detection.  
ECC  
8
Data  
Data  
WC * 8  
16  
Application-specific payload (WC words of 8 bits).  
16-bit cyclic redundancy check (CRC) for packet data.  
Footer  
Checksum  
7.4.16 CSI-2 Data Identifier  
The DS90UB960-Q1 MIPI CSI-2 protocol interface transmits the data identifier byte containing the values for the  
virtual channel ID (VC) and data type (DT) for the application specific payload data, as shown in 7-10. The  
virtual channel ID is contained in the 2 MSbs of the data identifier byte and identify the data as directed to one of  
four virtual channels. The value of the data type is contained in the 6 LSbs of the data identifier byte. When  
partnered with a DS90UB935-Q1 or DS90UB953-Q1 serializer, the Data Type is passed through from the  
received CSI-2 packets. When partnered with a DS90UB933-Q1 or DS90UB913A-Q1 the received RAW mode  
data is converted to CSI-2 Tx packets with assigned data type and virtual channel ID.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
40  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
For each RX Port, register defines with which channel and data type the context is associated:  
For FPD Receiver port operating in RAW input mode connected to a DS90UB933-Q1 or DS90UB913A-Q1  
serializer, register 0x70 describes RAW10 Mode and 0x71 RAW12 Mode.  
RAW1x_VC[7:6] field defines the associated virtual ID transported by the CSI-2 protocol from the camera  
sensor.  
RAW1x_ID[5:0] field defines the associated data type. The data type is a combination of the data type  
transported by the CSI-2 protocol.  
Data Identifier (DI) Byte  
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0  
VC  
DT  
Virtual Channel  
Indentifier  
(VC)  
Data Type  
(DT)  
7-10. CSI-2 Data Identifier Structure  
7.4.17 Virtual Channel and Context  
The CSI-2 protocol layer transports virtual channels. The purpose of virtual channels is to separate different data  
flows interleaved in the same data stream. Each virtual channel is identified by a unique channel identification  
number in the packet header. Therefore, a CSI-2 TX context can be associated with a virtual channel and a data  
type. Virtual channels are defined by a 2-bit field. This channel identification number is encoded in the 2-bit code.  
The CSI-2 TX transmits the channel identifier number and multiplexes the interleaved data streams. The CSI-2  
TX supports up to four concurrent virtual channels.  
7.4.18 CSI-2 Mode Virtual Channel Mapping  
The CSI-2 Mode provides per-port Virtual Channel ID mapping. For each FPD-Link III input port, separate  
mapping may be done for each input VC-ID to any of the four VC-ID values. The mapping is controlled by the  
VC_ID_MAP register. This function sends the output as a time-multiplexed CSI-2 stream, where the video  
sources are differentiated by the virtual channel.  
7.4.18.1 Example 1  
The DS90UB960-Q1 is receiving data from sensors attached to each port. Each port is sending a video stream  
using VC-ID of 0. The DS90UB960-Q1 can be configured to re-map the incoming VC-IDs to ensure each video  
stream has a unique ID. The direct implementation would map incoming VC-ID of 0 for RX Port 0, VC-ID of 1 for  
RX Port 1, VC-ID of 2 for RX Port 2, and VC-ID of 3 for RX Port 3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
HUB Deserializer  
FPD3 RX  
Sensor 0  
VC-ID = 0  
VC-ID = 0  
RIN0  
VC-ID = 1  
Sensor 1  
VC-ID = 0  
FPD3 RX  
RIN1  
CSI TX 0  
VC-ID = 2  
Sensor 2  
VC-ID = 0  
FPD3 RX  
RIN2  
VC-ID = 3  
Sensor 3  
VC-ID = 0  
FPD3 RX  
RIN3  
7-11. VC-ID Mapping Example 1  
7.4.18.2 Example 2:  
The DS90UB960-Q1 is receiving two video streams from sensors on each input port. Each sensor is sending  
video streams using VC-IDs 0 and 1. Receive Ports 0 and 2 map the VC-IDs directly without change. Receive  
Ports 1 and 3 map the VC-IDs 0 and 1 to VC-IDs 2 and 3. In addition, RX Ports 0 and 1 are assigned to CSI-2  
Transmitter 0 which RX Ports 2 and 3 are assigned to CSI-2 Transmitter 1. This is required because each CSI-2  
transmitter is limited to 4 VC-IDs per MIPI specification.  
HUB Deserializer  
Sensor 0  
VC-ID = 0,1  
FPD3 RX  
RIN0  
VC-ID = 0,1  
VC-ID = 2,3  
CSI TX 0  
Sensor 1  
VC-ID = 0,1  
FPD3 RX  
RIN1  
Sensor 2  
VC-ID = 0,1  
FPD3 RX  
RIN2  
VC-ID = 0,1  
CSI TX 1  
Sensor 3  
VC-ID = 0,1  
FPD3 RX  
RIN3  
VC-ID = 2,3  
7-12. VC-ID Mapping Example 2  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
42  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
CSI-2 TX port0, 1 CK lane, up to 4 data lanes  
FPD-Link III  
Serializer  
A1  
A2  
A3  
A4  
Sensor A  
A1  
B1  
C1  
D1  
A2  
B2  
C2  
D2  
A3  
B3  
C3  
D3  
A4  
B4  
C4  
D4  
FPD-Link III  
Serializer  
B1  
C1  
B2  
C2  
B3  
C3  
B4  
C4  
Sensor B  
Sensor C  
Color of the packet  
represents the VC-ID  
HUB  
Deserializer  
FPD-Link III  
Serializer  
FPD-Link III  
Serializer  
D1  
D2  
D3  
D4  
Sensor D  
7-13. Four Sensor Data onto CSI-2 With Virtual Channels (VC-ID)  
CSI-2 TX port0, 1 CK lane, up to 4 data lanes  
FPD-Link III  
Serializer  
A1  
A2  
A3  
A4  
Sensor A  
A1  
B1  
C1  
A2  
B2  
C2  
A3  
B3  
C3  
A4  
C4  
FPD-Link III  
Serializer  
B1  
C1  
B2  
C2  
B3  
C3  
Sensor B  
Sensor C  
Color of the packet  
represents the VC-ID  
HUB  
Deserializer  
Sensor B has less packets (because  
Sensors A and C have, e.g.  
embedded data)  
Not shown:  
One FS packet  
for each VC-ID  
FPD-Link III  
Serializer  
C4  
D4  
Each CSI-2 port can carry data  
from 1,2,3, or all sensors,  
depending on bandwidth  
D1  
D2  
D3  
D4  
FPD-Link III  
Serializer  
D1  
D2  
D3  
Sensor D  
CSI-2 TX port1, 1 CK lane, up to 4 data lanes  
7-14. Four Sensor Data onto CSI-2 With Virtual Channels (VC-ID) With Different Frame Size  
CSI-2 TX port0, 1 CK lane, up to 4 data lanes  
FPD-Link III  
A1  
A2  
A3  
A4  
Sensor A  
Serializer  
A1  
B1  
C1  
D1  
A2  
B2  
C2  
D2  
A3  
B3  
C3  
A4  
C4  
FPD-Link III  
Serializer  
B1  
C1  
B2  
C2  
B3  
C3  
Sensor B  
Sensor C  
Sensor B and Sensor D have less  
packets  
HUB  
Deserializer  
FPD-Link III  
Serializer  
C4  
A1  
B1  
C1  
D1  
A2  
B2  
C2  
D2  
A3  
B3  
C3  
A4  
C4  
FPD-Link III  
Serializer  
D1  
D2  
Sensor D  
CSI-2 TX port1, 1 CK lane, up to 4 data lanes  
Port1 can be the  
Replica of Port0  
7-15. Four Sensor Data onto 1xCSI-2 Replicated With Virtual Channels (VC-ID) With Different Frame  
Size  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.4.19 CSI-2 Transmitter Frequency  
The CSI-2 Transmitters may operate at 400 Mbps, 800 Mbps, 1.2 Gbps (not available on prototype devices,  
PDS90UB960 A0 or A1) or 1.6 Gbps per data lane. This operation is controlled through the CSI_PLL_CTL 0x1F  
register (7-52).  
7-15. CSI-2 Transmitter Data Rate vs CSI_PLL_CTL  
CSI_PLL_CTL[1:0]  
CSI-2 TX Data Rate  
1.664 Gbps  
1.6 Gbps  
REFCLK Frequency  
26 MHz  
00  
25 MHz  
1.472 Gbps  
1.2 Gbps  
23 MHz  
01  
10  
11  
25 MHz  
800 Mbps  
25 MHz  
400 Mbps  
25 MHz  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
44  
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
When configuring to 800 Mbps or 1.6 Gbps, the CSI-2 timing parameters are automatically set based on the  
CSI_PLL_CTL 0x1F register. In the case of 400 Mbps, the respective CSI-2 timing parameters registers must be  
programmed, and the appropriate override bit must be set. To enable CSI-2 400 Mbps mode, set the following  
registers:  
# Set CSI-2 Timing parameters  
WriteI2C(0xB0,0x2)  
WriteI2C(0xB1,0x40)  
WriteI2C(0xB2,0x83)  
WriteI2C(0xB2,0x8D)  
WriteI2C(0xB2,0x87)  
WriteI2C(0xB2,0x87)  
WriteI2C(0xB2,0x83)  
WriteI2C(0xB2,0x86)  
WriteI2C(0xB2,0x84)  
WriteI2C(0xB2,0x86)  
WriteI2C(0xB2,0x84)  
# set auto-increment, page 0  
# CSI-2 Port 0  
# TCK Prep  
# TCK Zero  
# TCK Trail  
# TCK Post  
# THS Prep  
# THS Zero  
# THS Trail  
# THS Exit  
# TLPX  
# Set CSI-2 Timing parameters  
WriteI2C(0xB0,0x2)  
WriteI2C(0xB1,0x60)  
WriteI2C(0xB2,0x83)  
WriteI2C(0xB2,0x8D)  
WriteI2C(0xB2,0x87)  
WriteI2C(0xB2,0x87)  
WriteI2C(0xB2,0x83)  
WriteI2C(0xB2,0x86)  
WriteI2C(0xB2,0x84)  
WriteI2C(0xB2,0x86)  
WriteI2C(0xB2,0x84)  
# set auto-increment, page 0  
# CSI-2 Port 1  
# TCK Prep  
# TCK Zero  
# TCK Trail  
# TCK Post  
# THS Prep  
# THS Zero  
# THS Trail  
# THS Exit  
# TLPX  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.4.20 CSI-2 Output Bandwidth  
During normal operation, CSI-2 transmitter output bandwidth is reduced as it needs to transition between Low-  
Power and High-Speed modes. The minimum CSI-2 High-Speed data transmission overhead consists of TLPX  
HS-PREPARE, THS-ZERO, THS-SYNC, THS-TRAIL, and THS-EXIT as shown in 6-6 . The bandwidth is further reduced  
,
T
when operating in Discontinuous CSI-2 Clock mode as the CSI-2 clock requires additional overhead time to  
transition between Low-Power and Clock Transmission modes. The minimum CSI-2 Discontinuous Clock timing  
overhead consists of TCLK-POST, TCLK-TRAIL, TCLK-PREPARE, TCLK-ZERO, and TCLK-PRE as shown in 6-7 . The  
typical CSI-2 timing overhead is given in .  
7-16. CSI-2 Transmitter Overhead vs Data Rate  
CSI-2 TX Overhead, tCSI_Overhead [µs]  
CSI-2 TX Data Rate  
Continuos CSI-2 Clock (0x33[1]=1)  
Discontinuous CSI-2 Clock (0x33[1]=0)  
1.664 Gbps  
1.6 Gbps  
0.73  
0.76  
0.83  
0.91  
0.93  
1.30  
1.68  
1.74  
1.89  
1.92  
2.06  
2.65  
1.472 Gbps  
1.2 Gbps  
800 Mbps  
400 Mbps  
For Best-Effort Round Robin, Basic Synchronized or Line-Interleaved CSI-2 Forwarding, the maximum CSI-2  
bandwidth for each CSI-2 port is defined in 方程2.  
Hactive Nbits/pxl  
BW =  
Hactive Nbits/pxl  
+ tCSI_ Overhead  
NCSI_Lanes fCSI  
(2)  
For Line-Concatenated CSI-2 Forwarding, the maximum CSI-2 output bandwidth for each CSI-2 port is defined  
in 方程3.  
Nsensor Hactive Nbits/pxl  
BWLC  
=
Nsensor Hactive Nbits/pxl  
+ tCSI_ Overhead  
NCSI_Lanes fCSI  
(3)  
where  
Nsensor is the number of sensors attached to the DS90UB960-Q1  
Hactive is the horizontal line length of the active video frame in pixels  
Nbits/pxl is the number of bits per pixel  
NCSI_Lanes is the number of CSI-2 Lanes  
fCSI is the CSI-2 TX data rate per lane in Hz  
tCSI_Overhead is the CSI-2 High-speed data and clock timing overhead as given in 7-16  
7.4.20.1 CSI-2 Output Bandwidth Calculation Example  
Assuming the following:  
Four identical sensors are attached to the DS90UB960-Q1 (Nsensor = 4)  
Each sensor outputs active video frame with the horizontal line length of 1080 pixels (Hactive = 1080 pixels)  
Video format is RAW12 (Nbits/pxl = 12 bits/pixel)  
DS90UB960-Q1 is configured to use a single CSI-2 port with all four CSI-2 lanes enabled (NCSI_Lanes = 4)  
DS90UB960-Q1 CSI-2 TX is configured to operate at 800 Mbps / lane (fCSI = 800 MHz )  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
46  
Submit Document Feedback  
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
For Best-Effort Round Robin, Basic Synchronized or Line-Interleaved CSI-2 Forwarding, 方程式 2 gives the  
maximum bandwidth of about 2.60 Gbps (out of 3.2 Gbps for 4 lanes) with continuous CSI-2 clock and about  
2.12 Gbps without continuous CSI-2 clock.  
For Line-Concatenated CSI-2 Forwarding, 方程3 gives us the maximum bandwidth of about 3.03 Gbps (out of  
3.2 Gbps for 4 lanes) with continuous CSI-2 clock and about 2.84 Gbps without continuous CSI-2 clock.  
7.4.21 CSI-2 Transmitter Status  
The status of the CSI-2 Transmitter may be monitored by readback of the CSI_STS register 0x35 (7-74), or  
brought to one of the configurable GPIO pins as an output. The TX_PORT_PASS 0x35[0] indicates valid CSI-2  
data being presented on CSI-2 port. If no data is being forwarded or if error conditions have been detected on  
the video data, the CSI-2 Pass signal will be cleared. The TX_PORT_SYNC 0x35[0] indicates the CSI-2 Tx port  
is able to properly synchronize input data streams from multiple sources. TX_PORT_SYNC will always return 0 if  
Synchronized Forwarding is disabled. Interrupts may also be generated based on changes in the CSI-2 port  
status.  
7.4.22 Video Buffers  
The DS90UB960-Q1 implements four video line buffer/FIFO, one for each RX channel. The video buffers  
provide storage of data payload and forward requirements for sending multiple video streams on the CSI-2  
transmit ports. The total line buffer memory size is a 16-kB block for each RX port.  
The CSI-2 transmitter waits for an entire packet to be available before pulling data from the video buffers.  
7.4.23 CSI-2 Line Count and Line Length  
The DS90UB960-Q1 counts the number of lines (long packets) to determine line count on LINE_COUNT_1/0  
registers 0x7374. For line length, DS90UB960-Q1 generates the word count field in the CSI-2 header on  
LINE_LEN_1/0 registers 0x75 0x76 (7-134 and 7-135).  
7.4.24 FrameSync Operation  
A frame synchronization signal (FrameSync) can be sent through the back channel using any of the back  
channel GPIOs. The signal can be generated in two different methods. The first option offers sending the  
external FrameSync using one of the available GPIO pins on the DS90UB960-Q1 and mapping that GPIO to a  
back channel GPIO on one or more of the FPD-Link III ports.  
The second option is to have the DS90UB960-Q1 internally generate a FrameSync signal to send through GPIO  
to one or more of the attached Serializers.  
FrameSync signaling on the four back channels is synchronous. Thus, the FrameSync signal arrives at each of  
the four serializers with limited skew.  
7.4.24.1 External FrameSync Control  
In External FrameSync mode, an external signal is input to the DS90UB960-Q1 through one of the GPIO pins on  
the device. The external FrameSync signal may be propagated to one or more of the attached FPD3 Serializers  
through a GPIO signal in the back channel.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
HUB Deserializer  
FPD-Link III  
FPD-Link III  
FPD-Link III  
FPD-Link III  
GPIOx  
BC_GPIOx  
Serializer  
GPIOx  
BC_GPIOx  
BC_GPIOx  
BC_GPIOx  
Serializer  
GPIOx  
Serializer  
GPIOx  
Serializer  
GPIOy  
7-16. External FrameSync  
Enabling the external FrameSync mode is done by setting the FS_MODE control in the FS_CTL register to a  
value between 0x8 (GPIO0 pin) to 0xF (GPIO7 pin). Set FS_GEN_ENABLE to 0 for this mode.  
To send the FrameSync signal on the BC_GPIOx port signal, the BC_GPIO_CTL0 or BC_GPIO_CTL1 register  
should be programmed for that port to select the FrameSync signal.  
7.4.24.2 Internally Generated FrameSync  
In Internal FrameSync mode, an internally generated FrameSync signal is sent to one or more of the attached  
FPD3 Serializers through a GPIO signal in the back channel.  
FrameSync operation is controlled by the FS_CTL, FS_HIGH_TIME_x, and FS_LOW_TIME_x 0x18 0x1C  
registers (7-45 through 7-49). The resolution of the FrameSync generator clock (FS_CLK_PD) is derived  
from the back channel frame period (BC_FREQ_SELECT register). For 50-Mbps back-channel operation, the  
frame period is 600 ns (30 bits × 20 ns/bit). For 2.5-Mbps back channel operation, the frame period is 12 µs (30  
bits × 400 ns/bit).  
Once enabled, the FrameSync signal is sent continuously based on the programmed conditions.  
Enabling the internal FrameSync mode is done by setting the FS_GEN_ENABLE control in the FS_CTL register  
to a value of 1. The FS_MODE field controls the clock source used for the FrameSync generation. The  
FS_GEN_MODE field configures whether the duty cycle of the FrameSync is 50/50 or whether the high and low  
periods are controlled separately. The FrameSync high and low periods are controlled by the FS_HIGH_TIME  
and FS_LOW_TIME registers.  
The accuracy of the internally generated FrameSync is directly dependent on the accuracy of the 25-MHz  
oscillator used as the reference clock.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
48  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
HUB Deserializer  
FPD-Link III  
FPD-Link III  
FPD-Link III  
FPD-Link III  
GPIOx  
GPIOx  
GPIOx  
GPIOx  
BC_GPIOx  
Serializer  
Serializer  
Serializer  
Serializer  
BC_GPIOx  
BC_GPIOx  
BC_GPIOx  
FrameSync  
Generator  
7-17. Internal FrameSync  
FS_HIGH  
FS_LOW  
FS_LOW = FS_LOW_TIME * FS_CLK_PD  
FS_HIGH = FS_HIGH_TIME * FS_CLK_PD  
where FS_CLK_PD is the resolution of the FrameSync generator clock  
7-18. Internal FrameSync Signal  
The following example shows generation of a FrameSync signal at 60 pulses per second. Mode settings:  
Programmable High/Low periods: FS_GEN_MODE 0x18[1]=0  
Use port 0 back channel frame period: FS_MODE 0x18[7:4]=0x0  
Back channel rate of 50 Mbps: BC_FREQ_SELECT for port 0 0x58[2:0]=110b  
Initial FS state of 0: FS_INIT_STATE 0x18[2]=0  
Based on mode settings, the FrameSync is generated based upon FS_CLK_PD of 12 us.  
The total period of the FrameSync is (1 sec / 60 hz) / 600 ns or approximately 27,778 counts.  
For a 10% duty cycle, set the high time to 2,776 (0x0AD7) cycles, and the low time to 24,992 (0x61A0) cycles:  
FS_HIGH_TIME_1: 0x19=0x0A  
FS_HIGH_TIME_0: 0x1A=0xD7  
FS_LOW_TIME_1: 0x1B=0x61  
FS_LOW_TIME_0: 0x1C=0xA0  
7.4.24.2.1 Code Example for Internally Generated FrameSync  
WriteI2C(0x4C,0x01) # RX0  
WriteI2C(0x6E,0xAA) # BC_GPIO_CTL0: FrameSync signal to GPIO0/1  
WriteI2C(0x4C,0x12) # RX1  
WriteI2C(0x6E,0xAA) # BC_GPIO_CTL0: FrameSync signal to GPIO0/1  
WriteI2C(0x4C,0x24) # RX2  
WriteI2C(0x6E,0xAA) # BC_GPIO_CTL0: FrameSync signal to GPIO0/1  
WriteI2C(0x4C,0x38) # RX3  
WriteI2C(0x6E,0xAA) # BC_GPIO_CTL0: FrameSync signal to GPIO0/1  
WriteI2C(0x10,0x91) # FrameSync signal; Device Status; Enabled  
WriteI2C(0x58,0x5E) # BC FREQ SELECT: 50 Mbps  
WriteI2C(0x19,0x0A) # FS_HIGH_TIME_1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
WriteI2C(0x1A,0xD7) # FS_HIGH_TIME_0  
WriteI2C(0x1B,0x61) # FS_LOW_TIME_1  
WriteI2C(0x1C,0xA0) # FS_LOW_TIME_0  
WriteI2C(0x18,0x01) # Enable FrameSync  
7.4.25 CSI-2 Forwarding  
Video stream forwarding is handled by the forwarding control in the DS90UB960-Q1 on FWD_CTL1 register  
0x20 (7-53). The forwarding control pulls data from the video buffers for each FPD3 RX port and forwards the  
data to one of the CSI-2 output interfaces. It also handles generation of transitions between LP and HS modes  
as well as sending of Synchronization frames. The forwarding control monitors each of the video buffers for  
packet and data availability.  
Forwarding from input ports may be disabled using per-port controls. Each of the forwarding engines may be  
configured to pull data from any of the four video buffers, although a buffer may only be assigned to one CSI-2  
Transmitter at a time. The two forwarding engines operate independently. Video buffers are assigned to the  
CSI-2 Transmitters using the mapping bits in the FWD_CTL1 register 0x20[7:4].  
7.4.25.1 Best-Effort Round Robin CSI-2 Forwarding  
By default, the round-robin (RR) forwarding of packets use standard CSI-2 method of video stream  
determination. No special ordering of CSI-2 packets are specified, effectively relying on the Virtual Channel  
Identifier (VC) and Data Type (DT) fields to distinguish video streams. Each image sensor is assigned a VC-ID to  
identify the source. Different data types within a virtual channel is also supported in this mode.  
The forwarding engine forwards packets as they become available to the forwarding engine. In the case where  
multiple packets may be available to transmit, the forwarding engine typically operates in an RR fashion based  
on the input port from which the packets are received.  
Best-effort CSI-2 RR forwarding has the following characteristics and capabilities:  
Uses Virtual Channel ID to differentiate each video stream  
Separate Frame Synchronization packets for each VC  
No synchronization requirements  
This mode of operation allows input RX ports to have different video characteristics and there is no requirement  
that the video be synchronized between ports. The attached video processor would be required to properly  
decode the various video streams based on the VC and DT fields.  
Best-effort forwarding is enabled by setting the CSIx_RR_FWD bits in the FWD_CTL2 register 0x21 (7-54).  
7.4.25.2 Synchronized CSI-2 Forwarding  
In cases with multiple input sources, synchronized forwarding offers synchronization of all incoming data stored  
within the buffer. If packets arrive within a certain window, the forwarding control may be programmed to attempt  
to synchronize the video buffer data. In this mode, it attempts to send each channel synchronization packets in  
order (VC0, VC1, VC2, VC3) as well as sending packet data in the same order. In the following sections, Sensor  
0 (S0), Sensor 1 (S1), Sensor 2 (S2), and Sensor 3 (S3) refers to the sensors connected at FPD3 RX port 0, RX  
port 1, RX port 2, and RX port 3, respectively. The following describe only the 4-port operation, but other  
possible port combinations can be applied.  
The forwarding engine for each CSI-2 Transmitter can be configured independently and synchronize up to all  
four video sources.  
Requirements:  
Video arriving at input ports should be synchronized within approximately 1 video line period  
All enabled ports should have valid, synchronized video  
Each port must have identical video parameters, including number and size of video lines, presence of  
synchronization packets, and so forth.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
50  
Submit Document Feedback  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
The forwarding engine attempts to send the video synchronized. If synchronization fails, the CSI-2 transmitter  
stops forwarding packets and attempt to restart sending synchronized video at the next FrameStart indication.  
Packets are discarded as long as the forwarding engine is unable to send the synchronized video.  
Status is provided to indicate when the forwarding engine is synchronized. In addition, a flag is used to indicate  
that synchronization has been lost (status is cleared on a read).  
Three options are available for Synchronized forwarding:  
Basic Synchronized forwarding  
Line-Interleave forwarding  
Line-Concatenated forwarding  
Synchronized forwarding modes are selected by setting the CSIx_SYNC_FWD controls in the FWD_CTL2  
register. To enable synchronized forwarding the following order of operations is recommended:  
1. Disable Best-effort forwarding by clearing the CSIx_RR_FWD bits in the FWD_CTL2 register  
2. Enable forwarding per Receive port by clearing the FWD_PORTx_DIS bits in the FWD_CTL1 register  
3. Enable Synchronized forwarding in the FWD_CTL2 register  
7.4.25.3 Basic Synchronized CSI-2 Forwarding  
During Basic Synchronized Forwarding each forwarded frame is an independent CSI-2 video frame including  
FrameStart (FS), video lines, and FrameEnd (FE) packets. Each forwarded stream may have a unique VC ID. If  
the forwarded streams do not have a unique VC-ID, the receiving process may use the frame order to  
differentiate the video stream packets.  
The forwarding engine attempts to send the video synchronized. If synchronization fails, the CSI-2 transmitter  
stops forwarding packets and attempts to restart sending synchronized video at the next FS indication. Packets  
are discarded as long as the forwarding engine is unable to send the synchronized video.  
Example Synchronized traffic to CSI-2 Transmit port at start of frame:  
FS0 FS1 FS2 FS3 S0L1 S1L1 S2L1 S3L1 S0L2 S1L2 S2L2 S3L2 S0L3 …  
Example Synchronized traffic to CSI-2 Transmit port at end of frame:  
... S0LN S1LN S2LN S3LN FE0 FE1 FE2 FE3  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Notes:  
FSx  
FrameStart for Sensor X  
FEx  
FrameEnd for Sensor X  
SxLy  
SxLN  
Line Y for Sensor X video frame  
Last line for Sensor X video frame  
Each packet includes the virtual channel ID assigned to receive port for each sensor.  
7.4.25.3.1 Code Example for Basic Synchronized CSI-2 Forwarding  
# "*** RX0 VC=0 ***"  
WriteI2C(0x4C,0x01) # RX0  
WriteI2C(0x70,0x1F) # RAW10_datatype_yuv422b10_VC0  
# "*** RX1 VC=1 ***"  
WriteI2C(0x4C,0x12) # RX1  
WriteI2C(0x70,0x5F) # RAW10_datatype_yuv422b10_VC1  
# "*** RX2 VC=2 ***"  
WriteI2C(0x4C,0x24) # RX2  
WriteI2C(0x70,0x9F) # RAW10_datatype_yuv422b10_VC2  
# "*** RX3 VC=3 ***"  
WriteI2C(0x4C,0x38) # RX3  
WriteI2C(0x70,0xDF) # RAW10_datatype_yuv422b10_VC3  
#
"CSI_PORT_SEL"  
WriteI2C(0x32,0x01) # CSI0 select  
"CSI_EN"  
WriteI2C(0x33,0x1) # CSI_EN & CSI0 4L  
"***Basic_FWD"  
WriteI2C(0x21,0x14) # Synchronized Basic_FWD  
"***FWD_PORT all RX to CSI0"  
#
#
#
WriteI2C(0x20,0x00) # forwarding of all RX to CSI0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
52  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Frame Blanking  
S0L1  
S1L1  
FS0 FS1 FS2 FS3  
S2L1  
S3L1  
.
.
.
Frame 1  
Image Data  
{Sensor 0}  
{Sensor 1}  
{Sensor 2}  
{Sensor 3}  
Line Blanking  
.
.
.
S0LN  
S1LN  
S2LN  
S3LN  
FE0 FE1 FE2 FE3  
Frame Blanking  
KEY:  
PH œ Packet Header  
FS œ Frame Start  
LS œ Line Start  
PF œ Packet Footer + Filler (if applicable)  
FE œ Frame End  
LE œ Line End  
Sensor 0  
VC-ID = 0  
Sensor 1  
VC-ID = 1  
Sensor 2  
VC-ID = 2  
Sensor 3  
VC-ID = 3  
*Blanking intervals do not provide accurate synchronization timing  
7-19. Basic Synchronized Format  
7.4.25.4 Line-Interleaved CSI-2 Forwarding  
In synchronized forwarding, the forwarding engine may be programmed to send only one of each  
synchronization packet. For example, if forwarding from all four input ports, only one FS, FE packet is sent for  
each video frame. The synchronization packets for the other 3 ports are dropped. The video line packets for  
each video stream are sent as individual packets. This effectively merges the frames from N video sources into a  
single frame that has N times the number of video lines.  
In this mode, all video streams must also have the same VC, although this is not checked by the forwarding  
engine. This is useful when connected to a controller that does not support multiple VCs. The receiving  
processor must process the image based on order of video line reception.  
Example Synchronized traffic to CSI-2 Transmit port at start of frame:  
FS0 S0L1 S1L1 S2L1 S3L1 S0L2 S1L2 S2L2 S3L2 S0L3 …  
Example Synchronized traffic to CSI-2 Transmit port at end of frame:  
... S0LN S1LN S2LN S3LN FE0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Notes:  
FSx  
FrameStart for Sensor X  
FEx  
FrameEnd for Sensor X  
SxLy  
SxLN  
Line Y for Sensor X video frame  
Last line for Sensor X video frame  
All packets would have the same VC ID.  
7.4.25.4.1 Code Example for Line-Interleaved CSI-2 Forwarding  
# "*** RX0 VC=0 ***"  
WriteI2C(0x4c,0x01) # RX0  
WriteI2C(0x70,0x1f) # RAW10_datatype_yuv422b10_VC0  
# "*** RX1 VC=0 ***"  
WriteI2C(0x4c,0x12) # RX1  
WriteI2C(0x70,0x1f) # RAW10_datatype_yuv422b10_VC0  
# "*** RX2 VC=0 ***"  
WriteI2C(0x4c,0x24) # RX2  
WriteI2C(0x70,0x1f) # RAW10_datatype_yuv422b10_VC0  
# "*** RX3 VC=0 ***"  
WriteI2C(0x4c,0x38) # RX3  
WriteI2C(0x70,0x1f) # RAW10_datatype_yuv422b10_VC0  
#
"CSI_PORT_SEL"  
WriteI2C(0x32,0x01) # CSI0 select  
"CSI_EN"  
#
WriteI2C(0x33,0x1) # CSI_EN & CSI0 4L  
# "*** CSI0_SYNC_FWD synchronous forwarding with line interleaving ***"  
WriteI2C(0x21,0x28) # synchronous forwarding with line interleaving  
# "*** FWD_PORT all RX to CSI0"  
WriteI2C(0x20,0x00) # forwarding of all RX to CSI0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
54  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Frame Blanking  
S0L1  
S1L1  
FS0  
S2L1  
S3L1  
.
.
.
Frame 1  
Image Data  
{Sensor 0}  
{Sensor 1}  
{Sensor 2}  
{Sensor 3}  
Line Blanking  
.
.
.
S0LN  
S1LN  
S2LN  
S3LN  
FE0  
Frame Blanking  
KEY:  
PH œ Packet Header  
FS œ Frame Start  
LS œ Line Start  
PF œ Packet Footer + Filler (if applicable)  
FE œ Frame End  
LE œ Line End  
Sensor 0  
VC-ID = 0  
Sensor 1  
VC-ID = 0  
Sensor 2  
VC-ID = 0  
Sensor 3  
VC-ID = 0  
*Blanking intervals do not provide accurate synchronization timing  
7-20. Line-Interleave Format  
7.4.25.5 Line-Concatenated CSI-2 Forwarding  
In synchronized forwarding, the forwarding engine may be programmed to merge video frames from multiple  
sources into a single video frame by concatenating video lines. Each of the sensors for each RX carry different  
data streams that get concatenated into one CSI-2 stream. For example, if forwarding from all four input ports,  
only one FS, an FE packet is sent for each video frame. The synchronization packets for the other 3 ports are  
dropped. In addition, the video lines from each sensor are combined into a single line. The controller must  
separate the single video line into the separate components based on position within the concatenated video  
line.  
Example Synchronized traffic to CSI-2 Transmit port at start of frame:  
FS0 S0L1,S1L1,S2L1,S3L1 S0L2,S1L2,S2L2,S3L2 S0L3,S1L3,S2L3,S3L3 …  
Example Synchronized traffic to CSI-2 Transmit port at end of frame:  
... S0LN,S1LN,S2LN,S3LN FE0  
Notes:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
FSx  
FrameStart for Sensor X  
FEx  
FrameEnd for Sensor X  
SxLy  
SxLN  
Line Y for Sensor X video frame  
Last line for Sensor X video frame  
S0L1,S1L1,S2L1,S3L1 indicates concatenation of the first video line from each sensor into a single video line.  
This packet has a modified header and footer that matches the concatenated line data.  
Packets would have the same VC ID, based on the VC ID for the lowest number sensor port being forwarded.  
Lines are concatenated on a byte basis without padding between video line data.  
7.4.25.5.1 Code Example for Line-Concatenated CSI-2 Forwarding  
# "*** RX0 VC=0 ***"  
WriteI2C(0x4c,0x01) # RX0  
WriteI2C(0x70,0x1f) # RAW10_datatype_yuv422b10_VC0  
# "*** RX1 VC=0 ***"  
WriteI2C(0x4c,0x12) # RX1  
WriteI2C(0x70,0x1f) # RAW10_datatype_yuv422b10_VC0  
# "*** RX2 VC=0 ***"  
WriteI2C(0x4c,0x24) # RX2  
WriteI2C(0x70,0x1f) # RAW10_datatype_yuv422b10_VC0  
# "*** RX3 VC=0 ***"  
WriteI2C(0x4c,0x38) # RX3  
WriteI2C(0x70,0x1f) # RAW10_datatype_yuv422b10_VC0  
#
"CSI_PORT_SEL"  
WriteI2C(0x32,0x01) # CSI0 select  
"CSI_EN"  
#
WriteI2C(0x33,0x1) # CSI_EN & CSI0 4L  
# "*** CSI0_SYNC_FWD synchronous forwarding with line concatenation ***"  
WriteI2C(0x21,0x3c) # synchronous forwarding with line concatenation  
# "***FWD_PORT all RX to CSI0"  
WriteI2C(0x20,0x00) # forwarding of all RX to CSI0  
Frame Blanking  
FS0  
S0L1  
S0L2  
S1L1  
S1L2  
S2L1  
S2L2  
S3L1  
S3L2  
.
.
.
.
.
.
.
.
.
.
.
.
Line Blanking  
Frame 1  
Image Data  
{Sensor 0}  
Frame 1  
Image Data  
{Sensor 1}  
Frame 1  
Image Data  
{Sensor 2}  
Frame 1  
Image Data  
{Sensor 3}  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
S0LN  
S1LN  
S2LN  
S3LN  
FE0  
Frame Blanking  
Sensor 0  
VC-ID = 0  
Sensor 1  
VC-ID = 0  
KEY:  
PH œ Packet Header  
FS œ Frame Start  
LS œ Line Start  
PF œ Packet Footer + Filler (if applicable)  
FE œ Frame End  
LE œ Line End  
Sensor 3  
VC-ID = 0  
Sensor 2  
VC-ID = 0  
*Blanking intervals do not provide accurate synchronization timing  
7-21. Line-Concatenated Format  
7.4.25.6 CSI-2 Replicate Mode  
In CSI-2 Replicate mode, both ports can be programmed to output the same data. The output from CSI-2 port 0  
is also presented on CSI-2 port 1.  
To configure this mode of operation, set the CSI_REPLICATE bit in the FWD_CTL2 register (7-54).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
56  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.4.25.7 CSI-2 Transmitter Output Control  
Two register controls allow control of CSI-2 Transmitter outputs to disable the CSI-2 Transmitter outputs. If the  
OUTPUT_SLEEP_STATE_SELECT (OSS_SEL) control is set to 0 in the GENERAL_CFG 0x02 register (表  
7-23), the CSI-2 Transmitter outputs are forced to the HS-0 state. If the OUTPUT_ENABLE (OEN) register bit is  
set to 0 in the GENERAL_CFG register, the CSI-2 pins are set to the high-impedance state.  
For normal operation (OSS_SEL and OEN both set to 1), the detection of activity on FPD3 inputs determines the  
state of the CSI-2 outputs. The FPD3 inputs are considered active if the Receiver indicates valid lock to the  
incoming signal. For a CSI-2 TX port, lock is considered valid if any Received port mapped to the TX port is  
indicating Lock.  
7-17. CSI-2 Output Control Options  
PDB pin  
OSS_SEL  
OEN  
FPD3 INPUT  
CSI-2 PIN STATE  
0
1
1
1
1
X
0
1
1
1
X
X
0
1
1
X
X
Hi-Z  
HS-0  
Hi-Z  
Hi-Z  
Valid  
X
Inactive  
Active  
7.4.25.8 Enabling and Disabling CSI-2 Transmitters  
Once enabled, it is typically best to leave the CSI-2 Transmitter enabled, and only change the forwarding  
controls if changes are required to the system. When enabling and disabling the CSI-2 Transmitter, forwarding  
should be disabled to ensure proper start and stop of the CSI-2 Transmitter.  
When enabling and disabling the CSI-2 Transmitter, use the following sequence:  
To Disable:  
1. Disable Forwarding for assigned ports in the FWD_CTL1 register  
2. Disable CSI-2 Periodic Calibration (if enabled) in the CSI_ CTL2 register  
3. Disable Continuous Clock operation (if enabled) in the CSI_ CTL register  
4. Clear CSI-2 Transmit enable in CSI_ CTL register  
To Enable:  
1. Set CSI-2 Transmit enable (and Continuous clock if desired) in CSI_ CTL register  
2. Enable CSI-2 Periodic Calibration (if desired) in the CSI_CTL2 register  
3. Enable Forwarding for assigned ports in the FWD_CTL1 register  
7.5 Programming  
7.5.1 Serial Control Bus  
The DS90UB960-Q1 implements two I2C-compatible serial control buses. Both I2C ports support local device  
configuration and incorporate a bidirectional control channel (BCC) that allows communication with a remote  
serializers as well as remote I2C slave devices.  
The device address is set through a resistor divider connected to the IDx pin (R1 and R2 see 7-22).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
VDD18  
R
HIGH  
VI2C VI2C  
IDX  
RPU  
RPU  
R
LOW  
HOST  
Deserializer  
SCL  
SCL  
SDA  
SDA  
To other Devices  
7-22. Serial Control Bus Connection  
The serial control bus consists of two signals, SCL and SDA. SCL is a Serial Bus Clock Input. SDA is the Serial  
Bus Data Input / Output signal. Both SCL and SDA signals require an external pullup resistor to VDDIO. For  
most applications, TI recommends a 4.7-kpullup resistor to VDDIO. However, the pullup resistor value may be  
adjusted for capacitive loading and data rate requirements. The signals are either pulled High, or driven Low.  
The IDX pin configures the control interface to one of eight possible device addresses. A pullup resistor and a  
pulldown resistor may be used to set the appropriate voltage ratio between the IDX input pin (VIDX) and V(VDD18)  
,
each ratio corresponding to a specific device address. See 7-18, Serial Control Bus Addresses for IDX.  
7-18. Serial Control Bus Addresses for IDX  
VIDX VOLTAGE RANGE  
VIDX TARGET  
VOLTAGE  
SUGGESTED STRAP RESISTORS PRIMARY ASSIGNED I2C  
(1% TOL)  
ADDRESS  
7-BIT  
0x30  
NO.  
VMIN  
VTYP  
VMAX  
VDD18 = 1.80 V  
0
8-BIT  
RHIGH ( k)  
RLOW ( k)  
10.0  
0
1
2
3
4
5
6
7
0
0
0.131 × V(VDD18)  
0.247 × V(VDD18)  
0.362 × V(VDD18)  
0.474 × V(VDD18)  
0.592 × V(VDD18)  
0.704 × V(VDD18)  
0.823 × V(VDD18)  
V(VDD18)  
OPEN  
88.7  
75.0  
71.5  
78.7  
39.2  
25.5  
10.0  
0x60  
0x64  
0x68  
0x6C  
0x70  
0x74  
0x78  
0x7A  
0.179 × V(VDD18)  
0.296 × V(VDD18)  
0.412 × V(VDD18)  
0.525 × V(VDD18)  
0.642 × V(VDD18)  
0.761 × V(VDD18)  
0.876 × V(VDD18)  
0.213 × V(VDD18)  
0.330 × V(VDD18)  
0.443 × V(VDD18)  
0.559 × V(VDD18)  
0.673 × V(VDD18)  
0.792 × V(VDD18)  
V(VDD18)  
0.374  
0.582  
0.792  
0.995  
1.202  
1.420  
1.8  
23.2  
0x32  
35.7  
0x34  
56.2  
0x36  
97.6  
0x38  
78.7  
0x3A  
95.3  
0x3C  
0x3D  
OPEN  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SDA transitions Low while SCL is High. A STOP occurs when SDA transitions High while SCL is also HIGH. See  
7-23.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
58  
Submit Document Feedback  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
SDA  
SCL  
S
P
START condition, or  
START repeat condition  
STOP condition  
7-23. START and STOP Conditions  
To communicate with a remote device, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it acknowledges (ACKs) the master by driving the SDA bus low. If the address does not  
match one of the slave addresses of the device, it not-acknowledges (NACKs) the master by letting SDA be  
pulled High. ACKs can also occur on the bus when data transmissions are in process. When the master is  
writing data, the slave ACKs after every data byte is successfully received. When the master is reading data, the  
master ACKs after every data byte is received to let the slave know it wants to receive another data byte. When  
the master wants to stop reading, it NACKs after the last data byte and creates a stop condition on the bus. All  
communication on the bus begins with either a Start condition or a Repeated Start condition. All communication  
on the bus ends with a Stop condition. A READ is shown in 7-24 and a WRITE is shown in 7-25.  
N
A
C
K
Bus Activity:  
Master  
Register  
Address  
Slave  
Address  
Slave  
Address  
S
P
SDA  
Line  
S
7-bit Address  
7-bit Address  
0
1
A
C
K
A
C
K
A
C
K
Data  
Bus Activity:  
Slave  
7-24. Serial Control Bus READ  
Bus Activity:  
Master  
Register  
Address  
Slave  
Address  
Data  
SDA Line  
7-bit Address  
P
S
0
A
C
K
A
C
K
A
C
K
Bus Activity:  
Slave  
7-25. Serial Control Bus WRITE  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
English Data Sheet: SNLS589  
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
ACK  
MSB  
N/ACK  
SDA  
MSB  
LSB  
LSB  
R/W  
Direction  
Bit  
7-bit Slave Address  
Data Byte  
Acknowledge  
from the Device  
*Acknowledge  
or Not-ACK  
8
9
8
9
1
2
6
7
1
2
SCL  
Repeated for the Lower Data Byte  
and Additional Data Transfers  
START  
STOP  
7-26. Basic Operation  
The I2C Master located at the Deserializer must support I2C clock stretching. For more information on I2C  
interface requirements and throughput considerations, refer to I2C Communication Over FPD-Link III With  
Bidirectional Control Channel (SNLA131) and I2C over DS90UB913/4 FPD-Link III With Bidirectional Control  
Channel (SNLA222).  
7.5.2 Second I2C Port  
The DS90UB960-Q1 includes a second I2C port that allows bidirectional control channel access to both local  
registers and remote devices. Remote device access is configured on BCCx_MAP register 0x0C[7:4] (7-33).  
The second I2C port uses the same I2C address as the primary I2C port. In addition, RX Port I2C IDs are also  
available for the second I2C port.  
In general, TI recommends that the second I2C port be used in cases where the CSI-2 TX ports are connected  
to separate processors. The second I2C port allows independent control of the DS90UB960-Q1 as well as  
remote devices by the second processor. However, Register 0x01 (RESET_CTL) can only be written by the  
primary I2C port.  
7.5.3 I2C Slave Operation  
The DS90UB960-Q1 implements an I2C-compatible slave capable of operation compliant to the Standard, Fast,  
and Fast-plus modes of operation allowing I2C operation at up to 1-MHz clock frequencies. Local I2C  
transactions to access DS90UB960-Q1 registers can be conducted 2 ms after power supplies are stable and  
PDB is brought high. For accesses to local registers, the I2C Slave operates without stretching the clock. The  
primary I2C slave address is set through the IDx pin. The primary I2C slave address is stored in the I2C Device  
ID register at address 0x0. In addition to the primary I2C slave address, the DS90UB960-Q1 may be  
programmed to respond to up to four other I2C addresses. The four RX Port ID addresses provide direct access  
to the Receive Port registers without the need to set the paging controls normally required to access the port  
registers.  
7.5.4 Remote Slave Operation  
The Bidirectional control channel provides a mechanism to read or write I2C registers in remote devices over the  
FPD-Link III interface. The I2C Master located at the Deserializer must support I2C clock stretching. Accesses to  
serializer or remote slave devices over the Bidirectional Control Channel will result in clock stretching to allow for  
response time across the link. The DS90UB960-Q1 acts as an I2C slave on the local bus, forwards read and  
write requests to the remote device, and returns the response from the remote device to the local I2C bus. To  
allow for the propagation and regeneration of the I2C transaction at the remote device, the DS90UB960-Q1 will  
stretch the I2C clock while waiting for the remote response. To communicate with a remote slave device, the Rx  
Port which is intended for messaging also must be selected in register 0x4C (7-93). The I2C address of the  
currently selected RX Port serializer will be populated in register 0x5B of the DS90UB960-Q1. The  
BCC_CONFIG register 0x58 (7-105) also must have bit 6, I2C_PASS_THROUGH set to one. If enabled, local  
I2C transactions with valid address decode will then be forwarded through the Bidirectional Control Channel to  
the remote I2C bus. When I2C PASS THROUGH is set, the deserializer will only propagate messages that it  
recognizes, such as the registered serializer alias address (SER ALIAS), or any registered remote slave alias  
attached to the serializer I2C bus (SLAVE ALIAS) assigned to the specific Rx Port. Setting PASS THROUGH  
ALL and AUTO ACK are less common use cases and primarily used for debugging I2C messaging as they will  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
60  
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
respectively pass all addresses regardless of valid I2C address (PASS_THROUGH_ALL) and acknowledge all  
I2C commands without waiting for a response from serializer (AUTO_ACK).  
7.5.5 Remote Slave Addressing  
Various system use cases require multiple sensor devices with the same fixed I2C slave address to be remotely  
accessible from the same I2C bus at the deserialilzer. The DS90UB960-Q1 provides slave ID virtual addressing  
to differentiate target slave addresses when connecting two or more remote devices. Eight pairs of SlaveAlias  
and SlaveID registers are allocated for each FPD-Link III Receive port in registers 0x5D through 0x6C (7-110  
through 7-125). The SlaveAlias register allows programming a virtual address which the host controller uses  
to access the remote device. The SlaveID register provides the actual slave address for the device on the  
remote I2C bus. Eight pairs of registers are available for each port (total of 16 pairs), so multiple devices may be  
directly accessible remotely without the need for reprogramming. Multiple SlaveAlias can be assigned to the  
same SlaveID as well.  
7.5.6 Broadcast Write to Remote Devices  
The DS90UB960-Q1 provides a mechanism to broadcast I2C writes to remote devices (either remote slaves or  
serializers). For each Receive port, the SlaveID/Alias register pairs would be programmed with the same  
SlaveAlias value so they would each respond to the local I2C access. The SlaveID value would match the  
intended remote device address, either remote slave or serializers. For each receive port, on of the SlaveAlias  
registers is set with an Alias value. For each port, the SlaveID value is set to the address of the remote device.  
These values may be the same. To access the remote serializer registers rather than a remote slave, the  
serializer ID (SER_IDx or SER_IDy) would be used as the SlaveID value.  
7.5.6.1 Code Example for Broadcast Write  
#
"FPD3_PORT_SEL Boardcast RX0/1/2/3"  
WriteI2C(0x4c,0x0f) # RX_PORT0 read; RX0/1/2/3 write  
"enable pass throu"  
#
WriteI2C(0x58,0x58) # enable pass throu  
WriteI2C(0x5c,0x18) # "SER_ALIAS_ID"  
WriteI2C(0x5d,0x60) # "SlaveID[0]"  
WriteI2C(0x65,0x60) # "SlaveAlias[0]"  
WriteI2C(0x7c,0x01) # "FV_POLARITY"  
WriteI2C(0x70,0x1f) # RAW10_datatype_yuv422b10_VC0  
7.5.7 I2C Master Proxy  
The DS90UB960-Q1 implements an I2C master that acts as a proxy master to regenerate I2C accesses  
originating from a remote serializer (DS90UB933-Q1 or DS90UB953-Q1 ). By default, the I2C Master Enable bit  
(I2C_MASTER_EN) is set = 0 in register 0x02[5] to block Master access to local deserialilzer I2C from remote  
serializers. Set I2C_MASTER_EN] = 1 if the system requires the deserializer to act as proxy master for remote  
serializers on the local deserializer I2C bus. The proxy master is an I2C-compatible master capable of operating  
with Standard-mode, Fast-mode, or Fast-mode Plus I2C timing. It is also capable of arbitration with other  
masters, allowing multiple masters and slaves to exist on the I2C bus. A separate I2C proxy master is  
implemented for each Receive port. This allows independent operation for all sources to the I2C interface.  
Arbitration between multiple sources is handled automatically using I2C multi-master arbitration.  
7.5.8 I2C Master Proxy Timing  
The proxy master timing parameters are based on the REFCLK timing. Timing accuracy for the I2C proxy master  
based on the REFCLK clock source attached to the DS90UB960-Q1 deserializer. Before REFCLK is applied the  
deserializer will default to internal reference clock with accuracy of 25 MHz ±10%. The I2C Master regenerates  
the I2C read or write access using timing controls in the registers 0x0A and 0x0B (7-31 and 7-32) to  
regenerate the clock and data signals to meet the desired I2C timing in standard, fast, or fast-plus modes of  
operation.  
I2C Master SCL High Time is set in register 0x0A[7:0]. This field configures the high pulse width of the SCL  
output when the Serializer is the Master on the local deserializer I2C bus. The default value is set to provide a  
minimum 5-µs SCL high time with the reference clock at 25 MHz + 100 ppm including four additional oscillator  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
clock periods or synchronization and response time. Units are 40 ns for the nominal oscillator clock frequency,  
giving Min_delay = 40 ns × (SCL_HIGH_TIME + 4).  
I2C Master SCL Low Time is set in register 0x0B[7:0]. This field configures the low pulse width of the SCL output  
when the Serializer is the Master on the local deserializer I2C bus. This value is also used as the SDA setup  
time by the I2C Slave for providing data prior to releasing SCL during accesses over the Bidirectional Control  
Channel. The default value is set to provide a minimum 5-µs SCL high time with the reference clock at 25 MHz +  
100ppm including four additional oscillator clock periods or synchronization and response time. Units are 40 ns  
for the nominal oscillator clock frequency, giving Min_delay = 40 ns × (SCL_HIGH_TIME + 4). See 7-19  
example settings for Standard mode, Fast mode and Fast-mode Plus timing.  
7-19. Typical I2C Timing Register Settings  
SCL HIGH TIME  
SCL LOW TIME  
NOMINAL DELAY AT  
I2C MODE  
NOMINAL DELAY AT  
REFCLK = 25 MHz  
0x7A[7:0]  
0x7B[7:0]  
REFCLK = 25 MHz  
Standard  
Fast  
0x7A  
0x13  
0x06  
5.04 µs  
0.920 µs  
0.400 µs  
0x7A  
0x25  
0x0C  
5.04 µs  
1.64 µs  
Fast - Plus  
0.640 µs  
7.5.8.1 Code Example for Configuring Fast-Mode Plus I2C Operation  
#
"RX0 I2C Master Fast Plus Configuration"  
WriteI2C(0x02,0x3E) # Enable Proxy  
WriteI2C(0x4c,0x01) # Select RX_PORT0  
# Set SCL High and Low Time delays  
WriteI2C(0x0a,0x06) # SCL High  
WriteI2C(0x0b,0x0C) # SCL Low  
7.5.9 Interrupt Support  
Interrupts can be brought out on the INTB pin as controlled by the INTERRUPT_CTL 0x23 (7-56) and  
INTERRUPT_STS 0x24 (7-57) registers. The main interrupt control registers provide control and status for  
interrupts from the individual sources. Sources include each of the four FPD3 Receive ports as well as each of  
the two CSI-2 Transmit ports. Clearing interrupt conditions requires reading the associated status register for the  
source. The setting of the individual interrupt status bits is not dependent on the related interrupt enable controls.  
The interrupt enable controls whether an interrupt is generated based on the condition, but does not prevent the  
interrupt status assertion.  
For an interrupt to be generated based on one of the interrupt status assertions, both the individual interrupt  
enable and the INT_EN control must be set in the INTERRUPT_CTL 0x23 register. For example, to generate an  
interrupt if IS_RX0 is set, both the IE_RX0 and INT_EN bits must be set. If IE_RX0 is set but INT_EN is not, the  
INT status is indicated in the INTERRUPT_STS register, and the INTB pin does not indicate the interrupt  
condition.  
See the INTERRUPT_CTL (7-56) and INTERRUPT_STS (7-57) register for details.  
7.5.9.1 Code Example to Enable Interrupts  
#
"RX01/2/3/4 INTERRUPT_CTL enable"  
WriteI2C(0x23,0xBF) # RX all & INTB PIN EN  
# Individual RX01/2/3/4 INTERRUPT_CTL enable  
# "RX0 INTERRUPT_CTL enable"  
WriteI2C(0x4C,0x01) # RX0  
WriteI2C(0x23,0x81) # RX0 & INTB PIN EN  
# "RX1 INTERRUPT_CTL enable"  
WriteI2C(0x4C,0x12) # RX1  
WriteI2C(0x23,0x82) # RX1 & INTB PIN EN  
# "RX2 INTERRUPT_CTL enable"  
WriteI2C(0x4C,0x24) # RX2  
WriteI2C(0x23,0x84) # RX2 & INTB PIN EN  
# "RX3 INTERRUPT_CTL enable"  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
62  
Submit Document Feedback  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
WriteI2C(0x4C,0x38) # RX3  
WriteI2C(0x23,0x88) # RX3 & INTB PIN EN  
7.5.9.2 FPD-Link III Receive Port Interrupts  
For each FPD-Link III Receive port, multiple options are available for generating interrupts. Interrupt generation  
is controlled through the PORT_ICR_HI 0xD8 (7-190) and PORT_ICR_LO 0xD9 (7-191) registers. In  
addition, the PORT_ISR_HI 0xDA (7-192) and PORT_ISR_LO 0xDB (7-193) registers provide read-only  
status for the interrupts. Clearing of interrupt conditions is handled by reading the RX_PORT_STS1,  
RX_PORT_STS2, and CSI_RX_STS registers. The status bits in the PORT_ISR_HI/LO registers are copies of  
the associated bits in the main status registers.  
To enable interrupts from one of the Receive port interrupt sources:  
1. Enable the interrupt source by setting the appropriate interrupt enable bit in the PORT_ICR_HI or  
PORT_ICR_LO register  
2. Set the RX Port X Interrupt control bit (IE_RXx) in the INTERRUPT_CTL register  
3. Set the INT_EN bit in the INTERRUPT_CTL register to allow the interrupt to assert the INTB pin low  
To clear interrupts from one of the Receive port interrupt sources:  
1. (optional) Read the INTERRUPT_STS register to determine which RX Port caused the interrupt  
2. (optional) Read the PORT_ISR_HI and PORT_ISR_LO registers to determine source of interrupt  
3. Read the appropriate RX_PORT_STS1, RX_PORT_STS2, or CSI_RX_STS register to clear the interrupt.  
The first two steps are optional. The interrupt could be determined and cleared by just reading the status  
registers.  
7.5.9.3 Interrupts on Forward Channel GPIO  
When connected to the DS90UB953-Q1 serializer, interrupts can be generated on changes in any of the four  
forward channel GPIOs per port. Interrupts are enabled by setting bits in the FC_GPIO_ICR register. Interrupts  
may be generated on rising and/or falling transitions on the GPIO signal. The GPIO interrupt status is cleared by  
reading the FC_GPIO_STS register.  
Interrupts should only be used for GPIO signals operating at less than 10 MHz. High or low pulses that are less  
than 100 ns might not be detected at the DS90UB960-Q1. To avoid false interrupt indications, the interrupts  
should not be enabled until after the Forward Channel GPIOs are enabled at the serializer.  
7.5.9.4 Interrupts on Change in Sensor Status  
The FPD-Link III Receiver recovers 32-bits of Sensor status from the attached DS90UB953-Q1 serializer.  
Interrupts may be generated based on changes in the Sensor Status values received from the forward channel.  
The Sensor Status consists of 4 bytes of data, which may be read from the SENSOR_STS_x registers for each  
Receive port. Interrupts may be generated based on a change in any of the bits in the first byte  
(SENSOR_STS_0). Each bit can be individually masked for Rising and/or Falling interrupts.  
Two registers control the interrupt masks for the SENSOR_STS bits: SEN_INT_RISE_CTL and  
SEN_INT_FALL_CTL.  
Two registers provide interrupt status: SEN_INT_RISE_STS, SEN_INT_FALL_STS.  
If a mask bit is set, a change in the associated SENSOR_STS_0 bit will be detected and latched in the  
SEN_INT_RISE_STS or SEN_INT_FALL_STS registers. If the mask bit is not set, the associated interrupt status  
bit will always be 0. If any of the SEN_INT_RISE_STS or SEN_INT_FALL_STS bits is set, the IS_FC_SEN_STS  
bit will be set in the PORT_ISR_HI register.  
7.5.9.5 Code Example to Readback Interrupts  
INTERRUPT_STS = ReadI2C(0x24) # 0x24 INTERRUPT_STS  
if ((INTERRUPT_STS & 0x80) >> 7):  
print "# GLOBAL INTERRUPT DETECTED "  
if ((INTERRUPT_STS & 0x40) >> 6):  
print "# RESERVED "  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
if ((INTERRUPT_STS & 0x20) >> 5):  
print "# IS_CSI_TX1 DETECTED "  
if ((INTERRUPT_STS & 0x10) >> 4):  
print "# IS_CSI_TX0 DETECTED "  
if ((INTERRUPT_STS & 0x08) >> 3):  
print "# IS_RX3 DETECTED "  
if ((INTERRUPT_STS & 0x04) >> 2):  
print "# IS_RX2 DETECTED "  
if ((INTERRUPT_STS & 0x02) >> 1):  
print "# IS_RX1 DETECTED "  
if ((INTERRUPT_STS & 0x01) ):  
print "# IS_RX0 DETECTED "  
# "################################################"  
#
"RX0 status"  
# "################################################"  
WriteReg(0x4C,0x01) # RX0  
PORT_ISR_LO = ReadI2C(0xDB)  
print "0xDB PORT_ISR_LO : ", hex(PORT_ISR_LO) # readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_LO & 0x40) >> 6):  
print "# IS_LINE_LEN_CHG INTERRUPT DETECTED "  
if ((PORT_ISR_LO & 0x20) >> 5):  
print "# IS_LINE_CNT_CHG DETECTED "  
if ((PORT_ISR_LO & 0x10) >> 4):  
print "# IS_BUFFER_ERR DETECTED "  
if ((PORT_ISR_LO & 0x08) >> 3):  
print "# IS_CSI_RX_ERR DETECTED "  
if ((PORT_ISR_LO & 0x04) >> 2):  
print "# IS_FPD3_PAR_ERR DETECTED "  
if ((PORT_ISR_LO & 0x02) >> 1):  
print "# IS_PORT_PASS DETECTED "  
if ((PORT_ISR_LO & 0x01) ) :  
print "# IS_LOCK_STS DETECTED "  
################################################  
PORT_ISR_HI = ReadI2C(0xDA)  
print "0xDA PORT_ISR_HI : ", hex(PORT_ISR_HI) # readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_HI & 0x04) >> 2):  
print "# IS_FPD3_ENC_ERR DETECTED "  
if ((PORT_ISR_HI & 0x02) >> 1):  
print "# IS_BCC_SEQ_ERR DETECTED "  
if ((PORT_ISR_HI & 0x01) ) :  
print "# IS_BCC_CRC_ERR DETECTED "  
################################################  
RX_PORT_STS1 = ReadI2C(0x4D) # R/COR  
if ( (RX_PORT_STS1 & 0xc0) >> 6) == 3:  
print "# RX_PORT_NUM = RX3"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 2:  
print "# RX_PORT_NUM = RX2"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 1:  
print "# RX_PORT_NUM = RX1"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 0:  
print "# RX_PORT_NUM = RX0"  
if ((RX_PORT_STS1 & 0x20) >> 5):  
print "# BCC_CRC_ERR DETECTED "  
if ((RX_PORT_STS1 & 0x10) >> 4):  
print "# LOCK_STS_CHG DETECTED "  
if ((RX_PORT_STS1 & 0x08) >> 3):  
print "# BCC_SEQ_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x04) >> 2):  
print "# PARITY_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x02) >> 1):  
print "# PORT_PASS=1 "  
if ((RX_PORT_STS1 & 0x01) ):  
print "# LOCK_STS=1 "  
################################################  
RX_PORT_STS2 = ReadI2C(0x4E)  
if ((RX_PORT_STS2 & 0x80) >> 7):  
print "# LINE_LEN_UNSTABLE DETECTED "  
if ((RX_PORT_STS2 & 0x40) >> 6):  
print "# LINE_LEN_CHG "  
if ((RX_PORT_STS2 & 0x20) >> 5):  
print "# FPD3_ENCODE_ERROR DETECTED "  
if ((RX_PORT_STS2 & 0x10) >> 4):  
print "# BUFFER_ERROR DETECTED "  
if ((RX_PORT_STS2 & 0x08) >> 3):  
print "# CSI_ERR DETECTED "  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
64  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
if ((RX_PORT_STS2 & 0x04) >> 2):  
print "# FREQ_STABLE DETECTED "  
if ((RX_PORT_STS2 & 0x02) >> 1):  
print "# NO_FPD3_CLK DETECTED "  
if ((RX_PORT_STS2 & 0x01) ):  
print "# LINE_CNT_CHG DETECTED "  
################################################  
# "################################################"  
#
"RX1 status"  
# "################################################"  
WriteReg(0x4C,0x12) # RX1  
PORT_ISR_LO = ReadI2C(0xDB) # PORT_ISR_LO readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_LO & 0x40) >> 6):  
print "# IS_LINE_LEN_CHG INTERRUPT DETECTED "  
if ((PORT_ISR_LO & 0x20) >> 5):  
print "# IS_LINE_CNT_CHG DETECTED "  
if ((PORT_ISR_LO & 0x10) >> 4):  
print "# IS_BUFFER_ERR DETECTED "  
if ((PORT_ISR_LO & 0x08) >> 3):  
print "# IS_CSI_RX_ERR DETECTED "  
if ((PORT_ISR_LO & 0x04) >> 2):  
print "# IS_FPD3_PAR_ERR DETECTED "  
if ((PORT_ISR_LO & 0x02) >> 1):  
print "# IS_PORT_PASS DETECTED "  
if ((PORT_ISR_LO & 0x01) ) :  
print "# IS_LOCK_STS DETECTED "  
################################################  
PORT_ISR_HI = ReadI2C(0xDA) # readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_HI & 0x04) >> 2):  
print "# IS_FPD3_ENC_ERR DETECTED "  
if ((PORT_ISR_HI & 0x02) >> 1):  
print "# IS_BCC_SEQ_ERR DETECTED "  
if ((PORT_ISR_HI & 0x01) ) :  
print "# IS_BCC_CRC_ERR DETECTED "  
################################################  
RX_PORT_STS1 = ReadI2C(0x4D) # R/COR  
if ( (RX_PORT_STS1 & 0xc0) >> 6) == 3:  
print "# RX_PORT_NUM = RX3"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 2:  
print "# RX_PORT_NUM = RX2"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 1:  
print "# RX_PORT_NUM = RX1"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 0:  
print "# RX_PORT_NUM = RX0"  
if ((RX_PORT_STS1 & 0x20) >> 5):  
print "# BCC_CRC_ERR DETECTED "  
if ((RX_PORT_STS1 & 0x10) >> 4):  
print "# LOCK_STS_CHG DETECTED "  
if ((RX_PORT_STS1 & 0x08) >> 3):  
print "# BCC_SEQ_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x04) >> 2):  
print "# PARITY_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x02) >> 1):  
print "# PORT_PASS=1 "  
if ((RX_PORT_STS1 & 0x01) ):  
print "# LOCK_STS=1 "  
################################################  
RX_PORT_STS2 = ReadI2C(0x4E)  
if ((RX_PORT_STS2 & 0x80) >> 7):  
print "# LINE_LEN_UNSTABLE DETECTED "  
if ((RX_PORT_STS2 & 0x40) >> 6):  
print "# LINE_LEN_CHG "  
if ((RX_PORT_STS2 & 0x20) >> 5):  
print "# FPD3_ENCODE_ERROR DETECTED "  
if ((RX_PORT_STS2 & 0x10) >> 4):  
print "# BUFFER_ERROR DETECTED "  
if ((RX_PORT_STS2 & 0x08) >> 3):  
print "# CSI_ERR DETECTED "  
if ((RX_PORT_STS2 & 0x04) >> 2):  
print "# FREQ_STABLE DETECTED "  
if ((RX_PORT_STS2 & 0x02) >> 1):  
print "# NO_FPD3_CLK DETECTED "  
if ((RX_PORT_STS2 & 0x01) ):  
print "# LINE_CNT_CHG DETECTED "  
################################################  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
# "################################################"  
"RX2 status"  
#
# "################################################"  
WriteReg(0x4C,0x24) # RX2  
PORT_ISR_LO = ReadI2C(0xDB) # readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_LO & 0x40) >> 6):  
print "# IS_LINE_LEN_CHG INTERRUPT DETECTED "  
if ((PORT_ISR_LO & 0x20) >> 5):  
print "# IS_LINE_CNT_CHG DETECTED "  
if ((PORT_ISR_LO & 0x10) >> 4):  
print "# IS_BUFFER_ERR DETECTED "  
if ((PORT_ISR_LO & 0x08) >> 3):  
print "# IS_CSI_RX_ERR DETECTED "  
if ((PORT_ISR_LO & 0x04) >> 2):  
print "# IS_FPD3_PAR_ERR DETECTED "  
if ((PORT_ISR_LO & 0x02) >> 1):  
print "# IS_PORT_PASS DETECTED "  
if ((PORT_ISR_LO & 0x01) ) :  
print "# IS_LOCK_STS DETECTED "  
################################################  
PORT_ISR_HI = ReadI2C(0xDA) # readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_HI & 0x04) >> 2):  
print "# IS_FPD3_ENC_ERR DETECTED "  
if ((PORT_ISR_HI & 0x02) >> 1):  
print "# IS_BCC_SEQ_ERR DETECTED "  
if ((PORT_ISR_HI & 0x01) ) :  
print "# IS_BCC_CRC_ERR DETECTED "  
################################################  
RX_PORT_STS1 = ReadI2C(0x4D) # R/COR  
if ( (RX_PORT_STS1 & 0xc0) >> 6) == 3:  
print "# RX_PORT_NUM = RX3"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 2:  
print "# RX_PORT_NUM = RX2"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 1:  
print "# RX_PORT_NUM = RX1"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 0:  
print "# RX_PORT_NUM = RX0"  
if ((RX_PORT_STS1 & 0x20) >> 5):  
print "# BCC_CRC_ERR DETECTED "  
if ((RX_PORT_STS1 & 0x10) >> 4):  
print "# LOCK_STS_CHG DETECTED "  
if ((RX_PORT_STS1 & 0x08) >> 3):  
print "# BCC_SEQ_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x04) >> 2):  
print "# PARITY_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x02) >> 1):  
print "# PORT_PASS=1 "  
if ((RX_PORT_STS1 & 0x01) ):  
print "# LOCK_STS=1 "  
################################################  
RX_PORT_STS2 = ReadI2C(0x4E)  
if ((RX_PORT_STS2 & 0x80) >> 7):  
print "# LINE_LEN_UNSTABLE DETECTED "  
if ((RX_PORT_STS2 & 0x40) >> 6):  
print "# LINE_LEN_CHG "  
if ((RX_PORT_STS2 & 0x20) >> 5):  
print "# FPD3_ENCODE_ERROR DETECTED "  
if ((RX_PORT_STS2 & 0x10) >> 4):  
print "# BUFFER_ERROR DETECTED "  
if ((RX_PORT_STS2 & 0x08) >> 3):  
print "# CSI_ERR DETECTED "  
if ((RX_PORT_STS2 & 0x04) >> 2):  
print "# FREQ_STABLE DETECTED "  
if ((RX_PORT_STS2 & 0x02) >> 1):  
print "# NO_FPD3_CLK DETECTED "  
if ((RX_PORT_STS2 & 0x01) ):  
print "# LINE_CNT_CHG DETECTED "  
################################################  
# "################################################"  
#
"RX3 status"  
# "################################################"  
WriteReg(0x4C,0x38) # RX3  
PORT_ISR_LO = ReadI2C(0xDB) # readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_LO & 0x40) >> 6):  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
66  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
print "# IS_LINE_LEN_CHG INTERRUPT DETECTED "  
if ((PORT_ISR_LO & 0x20) >> 5):  
print "# IS_LINE_CNT_CHG DETECTED "  
if ((PORT_ISR_LO & 0x10) >> 4):  
print "# IS_BUFFER_ERR DETECTED "  
if ((PORT_ISR_LO & 0x08) >> 3):  
print "# IS_CSI_RX_ERR DETECTED "  
if ((PORT_ISR_LO & 0x04) >> 2):  
print "# IS_FPD3_PAR_ERR DETECTED "  
if ((PORT_ISR_LO & 0x02) >> 1):  
print "# IS_PORT_PASS DETECTED "  
if ((PORT_ISR_LO & 0x01) ) :  
print "# IS_LOCK_STS DETECTED "  
################################################  
PORT_ISR_HI = ReadI2C(0xDA) # readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_HI & 0x04) >> 2):  
print "# IS_FPD3_ENC_ERR DETECTED "  
if ((PORT_ISR_HI & 0x02) >> 1):  
print "# IS_BCC_SEQ_ERR DETECTED "  
if ((PORT_ISR_HI & 0x01) ) :  
print "# IS_BCC_CRC_ERR DETECTED "  
################################################  
RX_PORT_STS1 = ReadI2C(0x4D) # R/COR  
if ( (RX_PORT_STS1 & 0xc0) >> 6) == 3:  
print "# RX_PORT_NUM = RX3"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 2:  
print "# RX_PORT_NUM = RX2"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 1:  
print "# RX_PORT_NUM = RX1"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 0:  
print "# RX_PORT_NUM = RX0"  
if ((RX_PORT_STS1 & 0x20) >> 5):  
print "# BCC_CRC_ERR DETECTED "  
if ((RX_PORT_STS1 & 0x10) >> 4):  
print "# LOCK_STS_CHG DETECTED "  
if ((RX_PORT_STS1 & 0x08) >> 3):  
print "# BCC_SEQ_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x04) >> 2):  
print "# PARITY_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x02) >> 1):  
print "# PORT_PASS=1 "  
if ((RX_PORT_STS1 & 0x01) ):  
print "# LOCK_STS=1 "  
################################################  
RX_PORT_STS2 = ReadI2C(0x4E)  
if ((RX_PORT_STS2 & 0x80) >> 7):  
print "# LINE_LEN_UNSTABLE DETECTED "  
if ((RX_PORT_STS2 & 0x40) >> 6):  
print "# LINE_LEN_CHG "  
if ((RX_PORT_STS2 & 0x20) >> 5):  
print "# FPD3_ENCODE_ERROR DETECTED "  
if ((RX_PORT_STS2 & 0x10) >> 4):  
print "# BUFFER_ERROR DETECTED "  
if ((RX_PORT_STS2 & 0x08) >> 3):  
print "# CSI_ERR DETECTED "  
if ((RX_PORT_STS2 & 0x04) >> 2):  
print "# FREQ_STABLE DETECTED "  
if ((RX_PORT_STS2 & 0x02) >> 1):  
print "# NO_FPD3_CLK DETECTED "  
if ((RX_PORT_STS2 & 0x01) ):  
print "# LINE_CNT_CHG DETECTED "  
################################################  
7.5.9.6 CSI-2 Transmit Port Interrupts  
The following interrupts are available for each CSI-2 Transmit Port:  
Pass indication  
Synchronized status  
Deassertion of Pass indication for an input port assigned to the CSI-2 TX Port  
Loss of Synchronization between input video streams  
RX Port Interrupt interrupts from RX Ports mapped to this CSI-2 Transmit port  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
See the CSI_TX_ICR address 0x36 (7-75) and CSI_TX_ISR address 0x37 (7-76) registers for details.  
The setting of the individual interrupt status bits is not dependent on the related interrupt enable controls. The  
interrupt enable controls whether an interrupt is generated based on the condition, but the enable does not  
prevent the interrupt status assertion.  
7.5.10 Error Handling  
In the DS90UB960-Q1, the FPD-Link III receiver transfers incoming video frames to internal video buffers for  
forwarding to the CSI-2 Transmit ports. When the DS90UB960-Q1 detects an error condition the standard  
operation would be to flag this error condition, and stop sending the CSI-2 frame to avoid sending corrupted data  
downstream. When the DS90UB960-Q1 recovers from an error condition, it will provide a Start of Frame and  
resume sending valid data. Consequently, when the downstream CSI-2 input receives a repeated Start of Frame  
condition, this will indicate that the data received in between the prior start of frame is suspect and the signal  
processor can then discard the suspected data. The settings in registers PORT_CONFIG2 (7-141) and  
PORT_PASS_CTL (7-142) can be used to change how the DS90UB960-Q1 handles errors when passing  
video frames. The receive ports may be configured to qualify the incoming video and provide a status indication  
and prevent the forwarding of video frames until certain error-free conditions are met. The Pass indication may  
be used to prevent forwarding packets to the internal video buffers by setting the PASS_DISCARD_EN bit in the  
PORT_PASS_CTL register. When this bit is set, video input will be discarded until the Pass signal indicates valid  
receive data. The Receive port will indicate Pass status once specific conditions are met, including a number of  
valid frames received. Valid frames may include requiring no FPD-Link III Parity errors and consistent frame size,  
including video line length and/or number of video lines.  
In addition, the Receive port may be programmed to cut off video frames containing errors and/or prevent  
forwarding of video until the Pass conditions are met. Register settings in PORT_CONFIG2 register (7-141)  
can be used to cut off frames on different line/frame sizes or a CSI-2 parity error is detected. When the  
deserializer cuts off frames in cases of different line/frame sizes different line/frame sizes, the video frame will  
stop immediately with no frame end packet. Often the condition will not be cleared until the next valid frame is  
received.  
The Rx Port PASS indication may be used to prevent forwarding packets to the internal video buffers by setting  
the PASS_DISCARD_EN bit in the PORT_PASS_CTL register (7-142). When this bit is set, video input will be  
discarded until the Pass signal indicates valid receive data. The incoming video frames may be cut off based on  
error conditions or change in video line size or number of lines. These functions are controlled by bits in the  
PORT_CONFIG2 register. When cutting off video frames, the video frame may be cut off after sending any  
number of video lines. A cut off frame will not send a Frame End packet to the CSI-2 Transmit port.  
7.5.10.1 Receive Frame Threshold  
The FPD-Link III Receiver may be programmed to require a specified number of valid video frames prior to  
indicating a Pass condition and forwarding video frames. The number of required valid video frames is  
programmable through the PASS_THRESH field in the PORT_PASS_CTL register (7-142). The threshold can  
be programmed from 0 to 3 video frames. If set to 0, Pass will typically be indicated as soon as the FPD-Link III  
Receiver reports Lock to the incoming signal. If set greater than 0, the Receiver will require that number of valid  
frames before indicating Pass. Determination of valid frames will be dependent on the control bits in the  
PORT_PASS_CTL register. In the case of a Parity Error, when PASS_PARITY_ERR is set to 1 forwarding will be  
enabled one frame early. To ensure at least one good frame occurs following a parity error the counter should be  
set to 2 or higher when PASS_PARITY_ERR = 1.  
7.5.10.2 Port PASS Control  
When the PASS_LINE_SIZE control is set in the PORT_PASS_CTL register, the Receiver will qualify received  
frames based on having a consistent video line size. For PASS_LINE_SIZE to be clear, the deserializer checks  
that the received line length remains consistent during the frame and between frames. For each video line, the  
length (in bytes) will be determined. If it varies then we will flag this condition. Each video line in the packet must  
be the same size, and the line size must be consistent across video frames. A change in video line size will  
restart the valid frame counter.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
68  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
When the PASS_LINE_CNT control is set in the PORT_PASS_CTL register, the Receiver will qualify received  
frames based on having a consistent frame size in number of lines. A change in number of video lines will restart  
the valid frame counter.  
When the PASS_PARITY_ERR control is set in the PORT_PASS_CTL register, the Receiver will clear the Pass  
indication on receipt of a parity error on the FPD-Link III interface. The valid frame counter will also be cleared on  
the parity error event. When PASS_PARITY_ERR is set to 1, TI also recommends that the designer set the  
PASS_THRESHOLD to 2 or higher to ensure at least one good frame occurs following a parity error.  
7.5.11 Timestamp Video Skew Detection  
The DS90UB960-Q1 implements logic to detect skew between video signaling from attached sensors. For each  
input port, the DS90UB960-Q1 provides the ability to capture a time-stamp for both a start-of-frame and start-of-  
line event. Comparison of timestamps can provide information on the relative skew between the ports. Start-of-  
frame timestamps are generated at the active edge of the Vertical Sync signal in Raw mode. Start-of-line  
timestamps are generated at the start of reception of the Nth line of video data after the Start of Frame for either  
mode of operation. The function does not use the Line Start (LS) packet or Horizontal Sync controls to determine  
the start of lines.  
The skew detection can run in either a FrameSync mode or free-run mode.  
Skew detection can be individually enabled for each RX port.  
For start-of-line timestamps, a line number must be programmed. The same line number is used for all 4  
channels. Prior to reading timestamps, the TS_FREEZE bit for each port that will be read should be set. This will  
prevent overwrite of the timestamps by the detection circuit until all timestamps have been read. The freeze  
condition will be released automatically once all frozen timestamps have been read. The freeze bits can also be  
cleared if it does not read all the timestamp values.  
The TS_STATUS register includes the following:  
Flags to indicate multiple start-of-frame per FrameSync period  
Flag to indicate Timestamps Ready  
Flags to indicate Timestamps valid (per port) if ports are not synchronized, all ports may not indicate valid  
timestamps  
The Timestamp Ready flag will be cleared when the TS_FREEZE bit is cleared.  
7.5.12 Pattern Generation  
The deserializer supports internal pattern generation feature to provide a simple way to generate video test  
patterns for the CSI-2 transmitter outputs. CSI-2 port 0 and port 1 each have their own pattern generator. Two  
types of patterns are supported: Reference Color Bar pattern and Fixed Color patterns and accessed by the  
Pattern Generator page 0 in the indirect register set.  
Prior to enabling the Packet Generator, the following should be done:  
1. Select the desired CSI-2 port in CSI_PORT_SEL.  
2. Disable video forwarding by setting bits [5:4] of the FWD_CTL1 register (that is, set register 0x20 to 0x30).  
3. Configure CSI-2 Transmitter operating speed using the CSI_PLL_CTL register.  
4. Enable the CSI-2 Transmitter using the CSI_CTL register.  
7.5.12.1 Reference Color Bar Pattern  
The Reference Color Bar Patterns are based on the pattern defined in Appendix D of the mipi_CTS_for_D-  
PHY_v1-1_r03 specification. The pattern is an eight color bar pattern designed to provide high, low, and medium  
frequency outputs on the CSI-2 transmit data lanes.  
The CSI-2 Reference pattern provides eight color bars by default with the following byte data for the color bars:  
X bytes of 0xAA (high-frequency pattern, inverted) X bytes of 0x33 (mid-frequency pattern) X bytes of 0xF0 (low-  
frequency pattern, inverted) X bytes of 0x7F (lone 0 pattern) X bytes of 0x55 (high-frequency pattern) X bytes of  
0xCC (mid-frequency pattern, inverted) X bytes of 0x0F (low-frequency pattern) Y bytes of 0x80 (lone 1 pattern)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
In most cases, Y will be the same as X. For certain data types, the last color bar may need to be larger than the  
others to properly fill the video line dimensions.  
The Pattern Generator is programmable with the following options:  
Number of color bars (1, 2, 4, or 8)  
Number of bytes per line  
Number of bytes per color bar  
CSI-2 DataType field and VC-ID  
Number of active video lines per frame  
Number of total lines per frame (active plus blanking)  
Line period (possibly program in units of 10 ns)  
Vertical front porch number of blank lines prior to FrameEnd packet  
Vertical back porch number of blank lines following FrameStart packet  
The pattern generator relies on proper programming by software to ensure the color bar widths are set to  
multiples of the block (or word) size required for the specified DataType. For example, for RGB888, the block  
size is 3 bytes which also matches the pixel size. In this case, the number of bytes per color bar must be a  
multiple of 3. The Pattern Generator is implemented in the CSI-2 Transmit clock domain, providing the pattern  
directly to the CSI-2 Transmitter. The circuit generates the CSI-2 formatted data.  
7.5.12.2 Fixed Color Patterns  
When programmed for Fixed Color Pattern mode, Pattern Generator can generate a video image with a  
programmable fixed data pattern. The basic programming fields for image dimensions are the same as used with  
the Color Bar Patterns. When sending Fixed Color Patterns, the color bar controls allow alternating between the  
fixed pattern data and the bit-wise inverse of the fixed pattern data.  
The Fixed Color patterns assume a fixed block size for the byte pattern to be sent. The block size is  
programmable through the register and is designed to support most 8-bit, 10-bit, and 12-bit pixel formats. The  
block size should be set based on the pixel size converted to blocks that are an integer multiple of bytes. For  
example, an RGB888 pattern would consist of 3-byte pixels and therefore require a 3-byte block size. A 2x12-bit  
pixel image would also require 3-byte block size, while a 3x12-bit pixel image would require nine bytes (two  
pixels) to send an integer number of bytes. Sending a RAW10 pattern typically requires a 5-byte block size for  
four pixels, so 1x10-bit and 2x10-bit could both be sent with a 5-byte block size. For 3x10-bit, a 15-byte block  
size would be required.  
The Fixed Color patterns support block sizes up to 16 bytes in length, allowing additional options for patterns in  
some conditions. For example, an RGB888 image could alternate between four different pixels by using a 12-  
byte block size. An alternating black and white RGB888 image could be sent with a block size of 6-bytes and  
setting first three bytes to 0xFF and next three bytes to 0x00.  
To support up to 16-byte block sizes, a set of sixteen registers are implemented to allow programming the value  
for each data byte. The line period is calculated in units of 10 ns, unless the CSI-2 mode is set to 400-Mb  
operation in which case the unit time dependancy is 20 ns.  
7.5.12.3 Packet Generator Programming  
The information in this section provides details on how to program the Pattern Generator to provide a specific  
color bar pattern, based on data type, frame size, and line size.  
Most basic configuration information is determined directly from the expected video frame parameters. The  
requirements should include the data type, frame rate (frames per second), number of active lines per frame,  
number of total lines per frame (active plus blanking), and number of pixels per line.  
PGEN_ACT_LPF Number of active lines per frame  
PGEN_TOT_LPF Number of total lines per frame  
PGEN_LSIZE Video line length size in bytes. Compute based on pixels per line multiplied by pixel size in  
bytes  
CSI-2 DataType field and VC-ID  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
70  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Optional: PGEN_VBP Vertical back porch. This is the number of lines of vertical blanking following Frame  
Valid  
Optional: PGEN_VFP Vertical front porch. This is the number of lines of vertical blanking preceding Frame  
Valid  
PGEN_LINE_PD Line period in 10-ns units. Compute based on Frame Rate and total lines per frame  
PGEN_BAR_SIZE Color bar size in bytes. Compute based on datatype and line length in bytes (see  
details below)  
7.5.12.3.1 Determining Color Bar Size  
The color bar pattern should be programmed in units of a block or word size dependent on the datatype of the  
video being sent. The sizes are defined in the Mipi CSI-2 specification. For example, RGB888 requires a 3-byte  
block size which is the same as the pixel size. RAW10 requires a 5-byte block size which is equal to 4 pixels.  
RAW12 requires a 3-byte block size which is equal to 2 pixels.  
When programming the Pattern Generator, software should compute the required bar size in bytes based on the  
line size and the number of bars. For the standard eight color bar pattern, that would require the following  
algorithm:  
Select the desired data type, and a valid length for that data type (in pixels).  
Convert pixels/line to blocks/line (by dividing by the number of pixels/block, as defined in the data type  
specification).  
Divide the blocks/line result by the number of color bars (8), giving blocks/bar  
Round result down to the nearest integer  
Convert blocks/bar to bytes/bar and program that value into the PGEN_BAR_SIZE register  
As an alternative, the blocks/line can be computed by converting pixels/line to bytes/line and divide by bytes/  
block.  
7.5.12.4 Code Example for Pattern Generator  
Follow the example here to configure a 1280x720 pattern with 30 fps rate and fixed color bar. The user can also  
use the Analog LaunchPad GUI to configure the PatGen register settings based on their desired parameters.  
#Patgen Fixed Colorbar 1280x720p30  
WriteI2C(0x33,0x01) # CSI0 enable  
WriteI2C(0xB0,0x00) # Indirect Pattern Gen Registers  
WriteI2C(0xB1,0x01) # PGEN_CTL  
WriteI2C(0xB2,0x01)  
WriteI2C(0xB1,0x02) # PGEN_CFG  
WriteI2C(0xB2,0x33)  
WriteI2C(0xB1,0x03) # PGEN_CSI_DI  
WriteI2C(0xB2,0x24)  
WriteI2C(0xB1,0x04) # PGEN_LINE_SIZE1  
WriteI2C(0xB2,0x0F)  
WriteI2C(0xB1,0x05) # PGEN_LINE_SIZE0  
WriteI2C(0xB2,0x00)  
WriteI2C(0xB1,0x06) # PGEN_BAR_SIZE1  
WriteI2C(0xB2,0x01)  
WriteI2C(0xB1,0x07) # PGEN_BAR_SIZE0  
WriteI2C(0xB2,0xE0)  
WriteI2C(0xB1,0x08) # PGEN_ACT_LPF1  
WriteI2C(0xB2,0x02)  
WriteI2C(0xB1,0x09) # PGEN_ACT_LPF0  
WriteI2C(0xB2,0xD0)  
WriteI2C(0xB1,0x0A) # PGEN_TOT_LPF1  
WriteI2C(0xB2,0x04)  
WriteI2C(0xB1,0x0B) # PGEN_TOT_LPF0  
WriteI2C(0xB2,0x1A)  
WriteI2C(0xB1,0x0C) # PGEN_LINE_PD1  
WriteI2C(0xB2,0x0C)  
WriteI2C(0xB1,0x0D) # PGEN_LINE_PD0  
WriteI2C(0xB2,0x67)  
WriteI2C(0xB1,0x0E) # PGEN_VBP  
WriteI2C(0xB2,0x21)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
WriteI2C(0xB1,0x0F) # PGEN_VFP  
WriteI2C(0xB2,0x0A)  
7.5.13 FPD-Link BIST Mode  
An optional At-Speed Built-In Self Test (BIST) feature supports testing of the high-speed serial link and the back  
channel without external data connections. The BIST mode is enabled by programming the BIST configuration  
register (7-168). This is useful in the prototype stage, equipment production, in-system test, and system  
diagnostics.  
When BIST is activated, the DS90UB960Q1 sends register writes to the Serializer through the Back Channel.  
The control channel register writes configure the Serializer for BIST mode operation. The serializer outputs a  
continuous stream of a pseudo-random sequence and drives the link at speed. The deserializer detects the test  
pattern and monitors the pattern for errors. The serializer also tracks errors indicated by the CRC fields in each  
back channel frame.  
The CMLOUT output function is also available during BIST mode. While the lock indications are required to  
identify the beginning of proper data reception, for any link failures or data corruption, the best indication is the  
contents of the error counter in the BIST_ERR_COUNT register 0x57 (7-104) for each RX port. The test may  
select whether the Serializer uses an external or internal clock as reference for the BIST pattern frequency.  
7.5.13.1 BIST Operation  
The FPD-Link III BIST is configured and enabled by programming the BIST Control register (7-168). Set 0xB3  
= 0x01 to enable BIST and set 0xB3 = 00 to disable BIST. BIST pass or fail status may be brought to GPIO pins  
by selecting the Pass indication for each receive port using the GPIOx_PIN_CTL registers. The Pass/Fail status  
will be de-asserted low for each data error detected on the selected port input data. In addition, it is advisable to  
bring the Receiver Lock status for selected ports to the GPIO pins as well. After completion of BIST, the BIST  
Error Counter may be read to determine if errors occurred during the test. If the DS90UB960-Q1 failed to lock to  
the input signal or lost lock to the input signal, the BIST Error Counter will indicate 0xFF. The maximum normal  
count value will be 0xFE. The SER_BIST_ACT register bit 0xD0[5] can be monitored during testing to ensure  
BIST is activated in the serializer.  
During BIST, DS90UB960-Q1 output activity are gated by BIST_Control[7:6] (BIST_OUT_MODE[1:0]) as follows:  
00 : Outputs disabled during BIST  
10 : Outputs enabled during BIST  
When enabling the outputs by setting BIST_OUT_MODE = 10, the CSI-2 will be inactive by default (LP11 state).  
To exercise the CSI-2 interface during BIST mode, it is possible to Enable Pattern Generator to send a video  
data pattern on the CSI-2 outputs.  
The BIST clock frequency is controlled by the BIST_CLOCK_SOURCE field in the BIST Control register. This 2-  
bit value will be written to the Serializer register 0x14[2:1]. A value of 00 will select an external clock. A non-zero  
value will enable an internal clock of the frequency defined in the Serializer register 0x14. Note that when the  
DS90UB960-Q1 is paired with DS90UB933-Q1 or DS90UB913A-Q1, a setting of 11 may result in a frequency  
that is too slow for the DS90UB960-Q1 to recover. The BIST_CLOCK_SOURCE field is sampled at the start of  
BIST. Changing this value after BIST is enabled will not change operation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
72  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6 Register Maps  
The DS90UB960-Q1 implements the following register blocks, accessible through I2C as well as the bidirectional  
control channel:  
Main Registers  
FPD3 RX Port Registers (separate register block for each of the four RX ports)  
CSI-2 Port Registers (separate register block for each of the CSI-2 ports)  
7-20. Main Register Map Descriptions  
ADDRESS RANGE  
0x00-0x32  
DESCRIPTION  
ADDRESS MAP  
Digital Registers  
Shared  
0x33-0x3A  
Digital CSI-2 Registers  
(paged, broadcast write allowed)  
CSI-2 TX Port 0  
R: 0x32[4]=0  
W: 0x32[0]=1  
CSI-2 TX Port 1  
R: 0x32[4]=1  
W: 0x32[1]=1  
0x3B-0x3F  
0x40-0x45  
0x46-0x7F  
Reserved Registers  
AEQ Registers  
Reserved  
Shared  
Digital RX Port Registers  
FPD3 RX Port 0 FPD3 RX Port 1 FPD3 RX Port 2 FPD3 RX Port 3  
(paged, broadcast write allowed)  
R: 0x4C[5:4]=00 R: 0x4C[5:4]=01 R: 0x4C[5:4]=10 R: 0x4C[5:4]=11  
W: 0x4C[0]=1  
W: 0x4C[1]=1  
W: 0x4C[2]=1  
W: 0x4C[3]=1  
0x80-0x8F  
0x90-0x9F  
0xA0-0xAF  
0xB0-0xB2  
0xB3-0xBF  
0xC0-0xCF  
0xD0-0xDF  
Reserved Registers  
Reserved  
Digital CSI-2 Debug Registers  
Reserved Registers  
Shared  
Reserved  
Shared  
Indirect Access Registers  
Digital Registers  
Shared  
Reserved Registers  
Reserved  
Digital RX Port Debug Registers  
FPD3 RX Port 0 FPD3 RX Port 1 FPD3 RX Port 2 FPD3 RX Port 3  
R: 0x4C[5:4]=00 R: 0x4C[5:4]=01 R: 0x4C[5:4]=10 R: 0x4C[5:4]=11  
W: 0x4C[0]=1  
W: 0x4C[1]=1  
W: 0x4C[2]=1  
W: 0x4C[3]=1  
0xE0-0xEF  
0xF0-0xF5  
0xF6-0xF7  
0xF8-0xFB  
0xFC-0xFF  
Reserved Registers  
FPD3 RX ID Registers  
Reserved Registers  
Port I2C Addressing  
Reserved Registers  
Reserved  
Shared  
Reserved  
Shared  
Reserved  
7.6.1 Digital Registers (Shared)  
7.6.1.1 I2C Device ID Register  
The I2C Device ID Register field always indicates the current value of the I2C ID. When bit 0 of this register is 0,  
this field is read-only and shows the strapped ID from device initialization after power on. When bit 0 of this  
register is 1, this field is read/write and can be used to assign any valid I2C ID address to the deserializer.  
7-21. I2C_DEVICE_ID Register (Address 0x00)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit I2C ID of Deserializer.  
This field always indicates the current value of the I2C ID. When bit 0  
of this register is 0, this field is read-only and show the strapped ID.  
When bit 0 of this register is 1, this field is read/write and can be  
used to assign any valid I2C ID.  
7:1  
DEVICE_ID  
R/W/S  
Strap  
0: Device ID is from strap  
1: Register I2C Device ID overrides strapped value  
0
DES_ID  
R/W  
0
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.1.2 Reset Control Register  
The Reset Control register allows for soft digital reset of the DS90UB960-Q1 device internal circuitry without  
using PDB hardware analog reset. Digital Reset 0 is recommended if desired to reset without overwriting  
configuration registers to default values.  
7-22. RESET_CTL Register (Address 0x01)  
BIT  
7:6  
5
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RESERVED  
RESERVED  
RESERVED  
-
-
-
0x0  
0
Reserved  
Reserved  
4:3  
0x0  
Reserved  
Restart ROM Auto-load  
Setting this bit to 1 causes a re-load of the ROM. This bit is self-  
clearing. Software may check for Auto-load complete by checking the  
CFG_INIT_DONE bit in the DEVICE_STS register.  
2
1
RESTART_AUTOLOAD R/W/SC  
0
0
Digital Reset  
Resets the entire digital block including registers. This bit is self-  
clearing.  
1: Reset  
0: Normal operation  
DIGITAL_RESET1  
DIGITAL_RESET0  
R/W/SC  
R/W/SC  
Digital Reset  
Resets the entire digital block except registers. This bit is self-  
clearing.  
0
0
1: Reset  
0: Normal operation  
7.6.1.3 General Configuration Register  
The general configuration register enables and disables high level block functionality.  
7-23. GENERAL_CFG Register (Address 0x02)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:6  
RESERVED  
-
0x0  
Reserved  
I2C Master Enable When this bit is 0, the local I2C master is  
disabled, when it is 1, the master is enabled.  
5
I2C_MASTER_EN  
R/W  
0
Output Enable Mode  
If set to 0, the CSI-2 TX output port is forced to the high-impedance  
state if no assigned RX ports have an active Receiver lock.  
If set to 1, the CSI-2 TX output port will continue in normal operation  
if no assigned RX ports have an active Receiver lock. CSI-2 TX  
operation will remain under register control via the CSI_CTL register  
for each port. If no assigned RX ports have an active Receiver lock,  
this will result in the CSI-2 Transmitter entering the LP-11 state.  
4
OUTPUT_EN_MODE  
R/W  
1
Output Enable Control (in conjunction with Output Sleep State  
Select)  
If OUTPUT_SLEEP_STATE_SEL is set to 1 and this bit is set to 0,  
the CSI-2 TX outputs is forced into a high impedance state.  
3
2
OUTPUT_ENABLE  
R/W  
R/W  
1
1
OSS Select to control output state when LOCK is low (used in  
conjunction with Output Enable)  
When this bit is set to 0, the CSI-2 TX outputs is forced into a HS-0  
state.  
OUTPUT_SLEEP  
_STATE_SEL  
FPD3 Receiver Parity Checker Enable When enabled, the parity  
check function is enabled for the FPD3 receiver. This allows  
detection of errors on the FPD3 receiver data bits.  
0: Disable  
RX_PARITY  
_CHECKER_EN  
1
R/W  
1
1: Enable  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
74  
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-23. GENERAL_CFG Register (Address 0x02) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Force indication of external reference clock  
0: Normal operation, reference clock detect circuit indicates the  
presence of an external reference clock  
0
FORCE_REFCLK_DET R/W  
0
1: Force reference clock to be indicated present  
7.6.1.4 Revision / Mask ID Register  
Revision ID field for production silicon version can be read back from this register.  
7-24. REV_MASK_ID Register (Address 0x03)  
BIT  
7:4  
3:0  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Revision ID  
0100: DS90UB960-Q1  
REVISION_ID  
MASK_ID  
R
R
0x4  
0x0  
Mask ID  
7.6.1.5 Device Status Register  
Device status register provides read back access to high level link diagnostics.  
7-25. DEVICE_STS Register (Address 0x04)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Config Checksum Passed  
7
CFG_CKSUM_STS  
R
1
This bit is set following initialization if the Configuration data in the  
eFuse ROM had a valid checksum  
Power-up initialization complete  
6
5
CFG_INIT_DONE  
RESERVED  
R
R
R
-
1
This bit is set after Initialization is complete. Configuration from  
eFuse ROM has completed.  
0
Reserved  
REFCLK valid frequency This bit indicates when a valid frequency  
has been detected on the REFCLK pin. 0 : invalid frequency detected  
1 : REFCLK frequency between 12 MHz and 64 MHz  
4
REFCLK_VALID  
RESERVED  
0
3:0  
0x0  
Reserved  
7.6.1.6 PAR_ERR_THOLD_HI Register  
For each port, if the FPD-Link III receiver detects a number of parity errors greater than or equal to total value in  
PAR_ERR_THOLD[15:0], the PARITY_ERROR flag is set in the RX_PORT_STS1 register.  
PAR_ERR_THOLD_HI contains bits [15:8] of the 16 bit parity error threshold PAR_ERR_THOLD[15:0].  
7-26. PAR_ERR_THOLD_HI Register (Address 0x05)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FPD3 Parity Error Threshold High byte  
This register provides the 8 most significant bits of the Parity Error  
Threshold value. For each port, if the FPD-Link III receiver detects a  
number of parity errors greater than or equal to this value, the  
PARITY_ERROR flag is set in the RX_PORT_STS1 register.  
7:0  
PAR_ERR_THOLD_HI  
R/W  
0x1  
7.6.1.7 PAR_ERR_THOLD_LO Register  
For each port, if the FPD-Link III receiver detects a number of parity errors greater than or equal to total value in  
PAR_ERR_THOLD[15:0], the PARITY_ERROR flag is set in the RX_PORT_STS1 register.  
PAR_ERR_THOLD_LO contains bits [7:0] of the 16-bit parity error threshold PAR_ERR_THOLD[15:0].  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-27. PAR_ERR_THOLD_LO Register (Address 0x06)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FPD3 Parity Error Threshold Low byte  
This register provides the 8 least significant bits of the Parity Error  
Threshold value. For each port, if the FPD-Link III receiver detects a  
number of parity errors greater than or equal to this value, the  
PARITY_ERROR flag is set in the RX_PORT_STS1 register.  
7:0  
PAR_ERR_THOLD_LO R/W  
0x0  
7.6.1.8 BCC_WATCHDOG_CONTROL Register  
The BCC watchdog timer allows termination of a control channel transaction if it fails to complete within a  
programmed amount of time.  
7-28. BCC_WATCHDOG_CONTROL Register (Address 0x07)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
The watchdog timer allows termination of a control channel  
transaction if it fails to complete within a programmed amount of  
time. This field sets the Bi-directional Control Channel Watchdog  
Timeout value in units of 2 milliseconds. This field should not be set  
to 0.  
BCC_WATCHDOG  
_TIMER  
7:1  
R/W  
0x7F  
Disable Bi-directional Control Channel Watchdog Timer  
1: Disables BCC Watchdog Timer operation  
0: Enables BCC Watchdog Timer operation  
BCC_WATCHDOG  
_TIMER_DISABLE  
0
R/W  
0
7.6.1.9 I2C_CONTROL_1 Register  
7-29. I2C_CONTROL_1 Register (Address 0x08)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Disable Remote Writes to Local Registers  
Setting this bit to a 1 will prevent remote writes to local device  
registers from across the control channel. This prevents writes to the  
Deserializer registers from an I2C master attached to the Serializer.  
Setting this bit does not affect remote access to I2C slaves at the  
Deserializer.  
LOCAL_WRITE  
_DISABLE  
7
R/W  
0
Internal SDA Hold Time  
6:4  
3:0  
I2C_SDA_HOLD  
R/W  
R/W  
0x1  
This field configures the amount of internal hold time provided for the  
SDA input relative to the SCL input. Units are 50 nanoseconds.  
I2C Glitch Filter Depth  
This field configures the maximum width of glitch pulses on the SCL  
and SDA inputs that is rejected. Units are 5 nanoseconds.  
I2C_FILTER_DEPTH  
0xC  
7.6.1.10 I2C_CONTROL_2 Register  
7-30. I2C_CONTROL_2 Register (Address 0x09)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Remote Ack SDA Output Setup  
When a Control Channel (remote) access is active, this field  
configures setup time from the SDA output relative to the rising edge  
of SCL during ACK cycles. Setting this value will increase setup time  
in units of 640ns. The nominal output setup time value for SDA to  
SCL when this field is 0 is 80ns.  
7:4  
SDA_OUTPUT_SETUP R/W  
0x1  
SDA Output Delay  
This field configures additional delay on the SDA output relative to  
the falling edge of SCL. Setting this value will increase output delay  
in units of 40ns. Nominal output delay values for SCL to SDA are:  
3:2  
SDA_OUTPUT_DELAY R/W  
0x0  
00: 240ns  
01: 280ns  
10: 320ns  
11: 360ns  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
76  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-30. I2C_CONTROL_2 Register (Address 0x09) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Speed up I2C Bus Watchdog Timer  
1: Watchdog Timer expires after approximately 50 microseconds  
0: Watchdog Timer expires after approximately 1 second.  
I2C_BUS_TIMER  
_SPEEDUP  
1
R/W  
0
Disable I2C Bus Watchdog Timer  
When the I2C Watchdog Timer may be used to detect when the I2C  
bus is free or hung up following an invalid termination of a  
transaction. If SDA is high and no signalling occurs for approximately  
1 second, the I2C bus will assumed to be free. If SDA is low and no  
signaling occurs, the device will attempt to clear the bus by driving 9  
clocks on SCL  
I2C_BUS_TIMER  
_DISABLE  
0
R/W  
0
7.6.1.11 SCL High Time Register  
The SCL High Time register field configures the high pulse width of the I2C SCL output when the Serializer is the  
Master on the local I2C bus. Units are 40 ns for the nominal oscillator clock frequency. The default value is set to  
approximately 100 kHz with the internal oscillator clock running at nominal 25 MHz. Delay includes 4 additional  
oscillator clock periods. The internal oscillator has ±10% variation when REFCLK is not applied, which must be  
taken into account when setting the SCL High and Low Time registers.  
7-31. SCL High Time Register (Address 0x0A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
I2C Master SCL High Time  
This field configures the high pulse width of the SCL output when the  
Serializer is the Master on the local I2C bus. Units are 40 ns for the  
nominal oscillator clock frequency. The default value is set to provide  
a minimum 5us SCL high time with the reference clock at 25 MHz +  
100ppm. The delay includes 5 additional oscillator clock periods.  
Min_delay = 39.996ns * (SCL_HIGH_TIME + 5)  
7:0  
SCL_HIGH_TIME  
R/W  
0x7A  
7.6.1.12 SCL Low Time Register  
The SCL Low Time register field configures the low pulse width of the SCL output when the serializer is the  
master on the local I2C bus. This value is also used as the SDA setup time by the I2C Slave for providing data  
prior to releasing SCL during accesses over the Bidirectional control channel. Units are 40 ns for the nominal  
oscillator clock frequency. The default value is set to approximately 100 kHz with the internal oscillator clock  
running at nominal 25 MHz. Delay includes 4 additional oscillator clock periods. The internal oscillator has ±10%  
variation when REFCLK is not applied, which must be taken into account when setting the SCL High and Low  
Time registers.  
7-32. SCL Low Time Register (Address 0x0B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
I2C SCL Low Time  
This field configures the low pulse width of the SCL output when the  
Serializer is the Master on the local I2C bus. This value is also used  
as the SDA setup time by the I2C Slave for providing data prior to  
releasing SCL during accesses over the Bi-directional Control  
Channel. Units are 40 ns for the nominal oscillator clock frequency.  
The default value is set to provide a minimum 5us SCL low time with  
the reference clock at 25 MHz + 100ppm. The delay includes 5  
additional clock periods.  
7:0  
SCL_LOW_TIME  
R/W  
0x7A  
Min_delay = 39.996ns * (SCL_LOW_TIME+ 5)  
7.6.1.13 RX_PORT_CTL Register  
Receiver port control register assigns rules for lock and pass in the general status register and allows for  
enabling and disabling each Rx port.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-33. RX_PORT_CTL Register (Address 0x0C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Map Control Channel 3 to I2C Slave Port  
0: I2C Slave Port 0  
7
BCC3_MAP  
R/W  
0
1: I2C Slave Port 1  
Map Control Channel 2 to I2C Slave Port  
0: I2C Slave Port 0  
1: I2C Slave Port 1  
6
5
4
3
2
1
0
BCC2_MAP  
BCC1_MAP  
BCC0_MAP  
PORT3_EN  
PORT2_EN  
PORT1_EN  
PORT0_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
1
1
1
1
Map Control Channel 1 to I2C Slave Port  
0: I2C Slave Port 0  
1: I2C Slave Port 1  
Map Control Channel 0 to I2C Slave Port  
0: I2C Slave Port 0  
1: I2C Slave Port 1  
Port 3 Receiver Enable  
0: Disable Port 3 Receiver  
1: Enable Port 3 Receiver  
Port 2 Receiver Enable  
0: Disable Port 2 Receiver  
1: Enable Port 2 Receiver  
Port 1 Receiver Enable  
0: Disable Port 1 Receiver  
1: Enable Port 1 Receiver  
Port 0 Receiver Enable  
0: Disable Port 0 Receiver  
1: Enable Port 0 Receiver  
7.6.1.14 IO_CTL Register  
7-34. IO_CTL Register (Address 0x0D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
3.3V I/O Select on pins INTB, I2C, GPIO  
0: 1.8V I/O Supply  
7
SEL3P3V  
R/W  
0
1: 3.3V I/O Supply  
If IO_SUPPLY_MODE_OV is 0, a read of this register will return the  
detected I/O voltage level.  
Override I/O Supply Mode bit  
If set to 0, the detected voltage level is used for both SEL3P3V and  
IO_SUPPLY_MODE controls.  
6
IO_SUPPLY_MODE_OV R/W  
0
If set to 1, the values written to the SEL3P3V and  
IO_SUPPLY_MODE fields is used.  
I/O Supply Mode  
00: 1.8V  
5:4  
3:0  
IO_SUPPLY_MODE  
RESERVED  
R/W  
-
0x0  
0x9  
11: 3.3V  
If IO_SUPPLY_MODE_OV is 0, a read of this register will return the  
detected I/O voltage level.  
Reserved  
7.6.1.15 GPIO_PIN_STS Register  
This register reads the current values on each of the 8 GPIO pins.  
7-35. GPIO_PIN_STS Register (Address 0x0E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO Pin Status  
7:0  
GPIO_STS  
R
0x0  
This register reads the current values on each of the 8 GPIO pins. Bit  
7 reads GPIO7 and bit 0 reads GPIO0.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
78  
Submit Document Feedback  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.1.16 GPIO_INPUT_CTL Register  
7-36. GPIO_INPUT_CTL Register (Address 0x0F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO7 Input Enable  
0: Disabled  
7
GPIO7_INPUT_EN  
R/W  
1
1: Enabled  
GPIO6 Input Enable  
0: Disabled  
1: Enabled  
6
5
4
3
2
1
0
GPIO6_INPUT_EN  
GPIO5_INPUT_EN  
GPIO4_INPUT_EN  
GPIO3_INPUT_EN  
GPIO2_INPUT_EN  
GPIO1_INPUT_EN  
GPIO0_INPUT_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
1
1
1
GPIO5 Input Enable  
0: Disabled  
1: Enabled  
GPIO4 Input Enable  
0: Disabled  
1: Enabled  
GPIO3 Input Enable  
0: Disabled  
1: Enabled  
GPIO2 Input Enable  
0: Disabled  
1: Enabled  
GPIO1 Input Enable  
0: Disabled  
1: Enabled  
GPIO0 Input Enable  
0: Disabled  
1: Enabled  
7.6.1.17 GPIO0_PIN_CTL Register  
7-37. GPIO0_PIN_CTL Register (Address 0x10)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO0 Output Select  
Determines the output data for the selected source.  
If GPIO0_OUT_SRC is set to 0xx (one of the RX Ports), the following  
selections apply:  
000 : Received GPIO0  
001 : Received GPIO1  
010 : Received GPIO2  
011 : Received GPIO3  
100 : RX Port Lock indication  
101 : RX Port Pass indication  
110 : Frame Valid signal  
111 : Line Valid signal  
If GPIO0_OUT_SRC is set to 100 (Device Status), the following  
selections apply:  
7:5  
GPIO0_OUT_SEL  
R/W  
0x0  
000 : Value in GPIO0_OUT_VAL  
001 : Logical OR of Lock indication from enabled RX ports  
010 : Logical AND of Lock indication from enabled RX ports  
011 : Logical AND of Pass indication from enabled RX ports  
100 : FrameSync signal  
101 - 111 : Reserved  
If GPIO0_OUT_SRC is set to 11x (one of the CSI-2 Transmit ports),  
the following selections apply:  
000 : Pass (AND of selected RX port status)  
001 : Pass (OR of selected RX port status)  
010 : Frame Valid (sending video frame)  
011 : Line Valid (sending video line)  
100 : Synchronized - multi-port data is synchronized  
101 : CSI-2 TX Port Interrupt  
11 : Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-37. GPIO0_PIN_CTL Register (Address 0x10) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO0 Output Source Select  
Selects output source for GPIO0 data:  
000 : RX Port 0  
001 : RX Port 1  
010 : RX Port 2  
011 : RX Port 3  
4:2  
GPIO0_OUT_SRC  
R/W  
0x0  
100 : Device Status  
101 : Reserved  
110 : CSI-2 TX Port 0  
111 : CSI-2 TX Port 1  
GPIO0 Output Value  
1
0
GPIO0_OUT_VAL  
GPIO0_OUT_EN  
R/W  
R/W  
0
0
This register provides the output data value when the GPIO pin is  
enabled to output the local register controlled value.  
GPIO0 Output Enable  
0: Disabled  
1: Enabled  
7.6.1.18 GPIO1_PIN_CTL Register  
7-38. GPIO1_PIN_CTL Register (Address 0x11)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO1 Output Select  
Determines the output data for the selected source.  
If GPIO1_OUT_SRC is set to 0xx (one of the RX Ports), the following  
selections apply:  
000 : Received GPIO0  
001 : Received GPIO1  
010 : Received GPIO2  
011 : Received GPIO3  
100 : RX Port Lock indication  
101 : RX Port Pass indication  
110 : Frame Valid signal  
111 : Line Valid signal  
If GPIO1_OUT_SRC is set to 100 (Device Status), the following  
selections apply:  
7:5  
GPIO1_OUT_SEL  
R/W  
0x0  
000 : Value in GPIO1_OUT_VAL  
001 : Logical OR of Lock indication from enabled RX ports  
010 : Logical AND of Lock indication from enabled RX ports  
011 : Logical AND of Pass indication from enabled RX ports  
100 : FrameSync signal  
101 - 111 : Reserved  
If GPIO1_OUT_SRC is set to 11x (one of the CSI-2 Transmit ports),  
the following selections apply:  
000 : Pass (AND of selected RX port status)  
001 : Pass (OR of selected RX port status)  
010 : Frame Valid (sending video frame)  
011 : Line Valid (sending video line)  
100 : Synchronized - multi-port data is synchronized  
101 : CSI-2 TX Port Interrupt  
111 : Reserved  
GPIO1 Output Source Select  
Selects output source for GPIO1 data:  
000 : RX Port 0  
001 : RX Port 1  
010 : RX Port 2  
011 : RX Port 3  
4:2  
GPIO1_OUT_SRC  
R/W  
0x0  
100 : Device Status  
101 : Reserved  
110 : CSI-2 TX Port 0  
111 : CSI-2 TX Port 1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
80  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-38. GPIO1_PIN_CTL Register (Address 0x11) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO1 Output Value  
1
GPIO1_OUT_VAL  
R/W  
0
This register provides the output data value when the GPIO pin is  
enabled to output the local register controlled value.  
GPIO1 Output Enable  
0: Disabled  
0
GPIO1_OUT_EN  
R/W  
0
1: Enabled  
7.6.1.19 GPIO2_PIN_CTL Register  
7-39. GPIO2_PIN_CTL Register (Address 0x12)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO2 Output Select  
Determines the output data for the selected source.  
If GPIO2_OUT_SRC is set to 0xx (one of the RX Ports), the following  
selections apply:  
000 : Received GPIO0  
001 : Received GPIO1  
010 : Received GPIO2  
011 : Received GPIO3  
100 : RX Port Lock indication  
101 : RX Port Pass indication  
110 : Frame Valid signal  
111 : Line Valid signal  
If GPIO2_OUT_SRC is set to 100 (Device Status), the following  
selections apply:  
7:5  
GPIO2_OUT_SEL  
R/W  
0x0  
000 : Value in GPIO2_OUT_VAL  
001 : Logical OR of Lock indication from enabled RX ports  
010 : Logical AND of Lock indication from enabled RX ports  
011 : Logical AND of Pass indication from enabled RX ports  
100 : FrameSync signal  
101 - 111 : Reserved  
If GPIO2_OUT_SRC is set to 11x (one of the CSI-2 Transmit ports),  
the following selections apply:  
000 : Pass (AND of selected RX port status)  
001 : Pass (OR of selected RX port status)  
010 : Frame Valid (sending video frame)  
011 : Line Valid (sending video line)  
100 : Synchronized - multi-port data is synchronized  
101 : CSI-2 TX Port Interrupt  
111 : Reserved  
GPIO2 Output Source Select  
Selects output source for GPIO2 data:  
000 : RX Port 0  
001 : RX Port 1  
010 : RX Port 2  
011 : RX Port 3  
4:2  
GPIO2_OUT_SRC  
R/W  
0x0  
100 : Device Status  
101 : Reserved  
110 : CSI-2 TX Port 0  
111 : CSI-2 TX Port 1  
GPIO2 Output Value  
1
0
GPIO2_OUT_VAL  
GPIO2_OUT_EN  
R/W  
R/W  
0
0
This register provides the output data value when the GPIO pin is  
enabled to output the local register controlled value.  
GPIO2 Output Enable  
0: Disabled  
1: Enabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.1.20 GPIO3_PIN_CTL Register  
7-40. GPIO3_PIN_CTL Register (Address 0x13)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO3 Output Select  
Determines the output data for the selected source.  
If GPIO3_OUT_SRC is set to 0xx (one of the RX Ports), the following  
selections apply:  
000 : Received GPIO0  
001 : Received GPIO1  
010 : Received GPIO2  
011 : Received GPIO3  
100 : RX Port Lock indication  
101 : RX Port Pass indication  
110 : Frame Valid signal  
111 : Line Valid signal  
If GPIO3_OUT_SRC is set to 100 (Device Status), the following  
selections apply:  
7:5  
GPIO3_OUT_SEL  
R/W  
0x0  
000 : Value in GPIO3_OUT_VAL  
001 : Logical OR of Lock indication from enabled RX ports  
010 : Logical AND of Lock indication from enabled RX ports  
011 : Logical AND of Pass indication from enabled RX ports  
100 : FrameSync signal  
101 - 111 : Reserved  
If GPIO3_OUT_SRC is set to 11x (one of the CSI-2 Transmit ports),  
the following selections apply:  
000 : Pass (AND of selected RX port status)  
001 : Pass (OR of selected RX port status)  
010 : Frame Valid (sending video frame)  
011 : Line Valid (sending video line)  
100 : Synchronized - multi-port data is synchronized  
101 : CSI-2 TX Port Interrupt  
111 : Reserved  
GPIO3 Output Source Select  
Selects output source for GPIO3 data:  
000 : RX Port 0  
001 : RX Port 1  
010 : RX Port 2  
011 : RX Port 3  
4:2  
GPIO3_OUT_SRC  
R/W  
0x0  
100 : Device Status  
101 : Reserved  
110 : CSI-2 TX Port 0  
111 : CSI-2 TX Port 1  
GPIO3 Output Value  
1
0
GPIO3_OUT_VAL  
GPIO3_OUT_EN  
R/W  
R/W  
0
0
This register provides the output data value when the GPIO pin is  
enabled to output the local register controlled value.  
GPIO3 Output Enable  
0: Disabled  
1: Enabled  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
82  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.1.21 GPIO4_PIN_CTL Register  
7-41. GPIO4_PIN_CTL Register (Address 0x14)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO4 Output Select  
Determines the output data for the selected source.  
If GPIO4_OUT_SRC is set to 0xx (one of the RX Ports), the following  
selections apply:  
000 : Received GPIO0  
001 : Received GPIO1  
010 : Received GPIO2  
011 : Received GPIO3  
100 : RX Port Lock indication  
101 : RX Port Pass indication  
110 : Frame Valid signal  
111 : Line Valid signal  
If GPIO4_OUT_SRC is set to 100 (Device Status), the following  
selections apply:  
7:5  
GPIO4_OUT_SEL  
R/W  
0x0  
000 : Value in GPIO4_OUT_VAL  
001 : Logical OR of Lock indication from enabled RX ports  
010 : Logical AND of Lock indication from enabled RX ports  
011 : Logical AND of Pass indication from enabled RX ports  
100 : FrameSync signal  
101 - 111 : Reserved  
If GPIO4_OUT_SRC is set to 11x (one of the CSI-2 Transmit ports),  
the following selections apply:  
000 : Pass (AND of selected RX port status)  
001 : Pass (OR of selected RX port status)  
010 : Frame Valid (sending video frame)  
011 : Line Valid (sending video line)  
100 : Synchronized - multi-port data is synchronized  
101 : CSI-2 TX Port Interrupt  
111 : Reserved  
GPIO4 Output Source Select  
Selects output source for GPIO4 data:  
000 : RX Port 0  
001 : RX Port 1  
010 : RX Port 2  
011 : RX Port 3  
4:2  
GPIO4_OUT_SRC  
R/W  
0x0  
100 : Device Status  
101 : Reserved  
110 : CSI-2 TX Port 0  
111 : CSI-2 TX Port 1  
GPIO4 Output Value  
1
0
GPIO4_OUT_VAL  
GPIO4_OUT_EN  
R/W  
R/W  
0
0
This register provides the output data value when the GPIO pin is  
enabled to output the local register controlled value.  
GPIO4 Output Enable  
0: Disabled  
1: Enabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
83  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.1.22 GPIO5_PIN_CTL Register  
7-42. GPIO5_PIN_CTL Register (Address 0x15)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO5 Output Select  
Determines the output data for the selected source.  
If GPIO5_OUT_SRC is set to 0xx (one of the RX Ports), the following  
selections apply:  
000 : Received GPIO0  
001 : Received GPIO1  
010 : Received GPIO2  
011 : Received GPIO3  
100 : RX Port Lock indication  
101 : RX Port Pass indication  
110 : Frame Valid signal  
111 : Line Valid signal  
If GPIO5_OUT_SRC is set to 100 (Device Status), the following  
selections apply:  
7:5  
GPIO5_OUT_SEL  
R/W  
0x0  
000 : Value in GPIO5_OUT_VAL  
001 : Logical OR of Lock indication from enabled RX ports  
010 : Logical AND of Lock indication from enabled RX ports  
011 : Logical AND of Pass indication from enabled RX ports  
100 : FrameSync signal  
101 - 111 : Reserved  
If GPIO5_OUT_SRC is set to 11x (one of the CSI-2 Transmit ports),  
the following selections apply:  
000 : Pass (AND of selected RX port status)  
001 : Pass (OR of selected RX port status)  
010 : Frame Valid (sending video frame)  
011 : Line Valid (sending video line)  
100 : Synchronized - multi-port data is synchronized  
101 : CSI-2 TX Port Interrupt  
111 : Reserved  
GPIO5 Output Source Select  
Selects output source for GPIO5 data:  
000 : RX Port 0  
001 : RX Port 1  
010 : RX Port 2  
011 : RX Port 3  
4:2  
GPIO5_OUT_SRC  
R/W  
0x0  
100 : Device Status  
101 : Reserved  
110 : CSI-2 TX Port 0  
111 : CSI-2 TX Port 1  
GPIO5 Output Value  
1
0
GPIO5_OUT_VAL  
GPIO5_OUT_EN  
R/W  
R/W  
0
0
This register provides the output data value when the GPIO pin is  
enabled to output the local register controlled value.  
GPIO5 Output Enable  
0: Disabled  
1: Enabled  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
84  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.1.23 GPIO6_PIN_CTL Register  
7-43. GPIO6_PIN_CTL Register (Address 0x16)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO6 Output Select  
Determines the output data for the selected source.  
If GPIO6_OUT_SRC is set to 0xx (one of the RX Ports), the following  
selections apply:  
000 : Received GPIO0  
001 : Received GPIO1  
010 : Received GPIO2  
011 : Received GPIO3  
100 : RX Port Lock indication  
101 : RX Port Pass indication  
110 : Frame Valid signal  
111 : Line Valid signal  
If GPIO6_OUT_SRC is set to 100 (Device Status), the following  
selections apply:  
7:5  
GPIO6_OUT_SEL  
R/W  
0x0  
000 : Value in GPIO6_OUT_VAL  
001 : Logical OR of Lock indication from enabled RX ports  
010 : Logical AND of Lock indication from enabled RX ports  
011 : Logical AND of Pass indication from enabled RX ports  
100 : FrameSync signal  
101 - 111 : Reserved  
If GPIO6_OUT_SRC is set to 11x (one of the CSI-2 Transmit ports),  
the following selections apply:  
000 : Pass (AND of selected RX port status)  
001 : Pass (OR of selected RX port status)  
010 : Frame Valid (sending video frame)  
011 : Line Valid (sending video line)  
100 : Synchronized - multi-port data is synchronized  
101 : CSI-2 TX Port Interrupt  
111 : Reserved  
GPIO6 Output Source Select  
Selects output source for GPIO6 data:  
000 : RX Port 0  
001 : RX Port 1  
010 : RX Port 2  
011 : RX Port 3  
4:2  
GPIO6_OUT_SRC  
R/W  
0x0  
100 : Device Status  
101 : Reserved  
110 : CSI-2 TX Port 0  
111 : CSI-2 TX Port 1  
GPIO6 Output Value  
1
0
GPIO6_OUT_VAL  
GPIO6_OUT_EN  
R/W  
R/W  
0
0
This register provides the output data value when the GPIO pin is  
enabled to output the local register controlled value.  
GPIO6 Output Enable  
0: Disabled  
1: Enabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
85  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.1.24 GPIO7_PIN_CTL Register  
7-44. GPIO7_PIN_CTL Register (Address 0x17)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO7 Output Select  
Determines the output data for the selected source.  
If GPIO7_OUT_SRC is set to 0xx (one of the RX Ports), the following  
selections apply:  
000 : Received GPIO0  
001 : Received GPIO1  
010 : Received GPIO2  
011 : Received GPIO3  
100 : RX Port Lock indication  
101 : RX Port Pass indication  
110 : Frame Valid signal  
111 : Line Valid signal  
If GPIO7_OUT_SRC is set to 100 (Device Status), the following  
selections apply:  
7:5  
GPIO7_OUT_SEL  
R/W  
0x0  
000 : Value in GPIO7_OUT_VAL  
001 : Logical OR of Lock indication from enabled RX ports  
010 : Logical AND of Lock indication from enabled RX ports  
011 : Logical AND of Pass indication from enabled RX ports  
100 : FrameSync signal  
101 - 111 : Reserved  
If GPIO7_OUT_SRC is set to 11x (one of the CSI-2 Transmit ports),  
the following selections apply:  
000 : Pass (AND of selected RX port status)  
001 : Pass (OR of selected RX port status)  
010 : Frame Valid (sending video frame)  
011 : Line Valid (sending video line)  
100 : Synchronized - multi-port data is synchronized  
101 : CSI-2 TX Port Interrupt  
111 : Reserved  
GPIO7 Output Source Select  
Selects output source for GPIO7 data:  
000 : RX Port 0  
001 : RX Port 1  
010 : RX Port 2  
011 : RX Port 3  
4:2  
GPIO7_OUT_SRC  
R/W  
0x0  
100 : Device Status  
101 : Reserved  
110 : CSI-2 TX Port 0  
111 : CSI-2 TX Port 1  
GPIO7 Output Value  
1
0
GPIO7_OUT_VAL  
GPIO7_OUT_EN  
R/W  
R/W  
0
0
This register provides the output data value when the GPIO pin is  
enabled to output the local register controlled value.  
GPIO7 Output Enable  
0: Disabled  
1: Enabled  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
86  
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.1.25 FS_CTL Register  
7-45. FS_CTL Register (Address 0x18)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FrameSync Mode  
0000: Internal Generated FrameSync, use Back-channel frame clock  
from port 0  
0001: Internal Generated FrameSync, use Back-channel frame clock  
from port 1  
0010: Internal Generated FrameSync, use Back-channel frame clock  
from port 2  
0011: Internal Generated FrameSync, use Back-channel frame clock  
from port 3  
7:4  
FS_MODE  
R/W  
0x0  
01xx: Internal Generated FrameSync, use 25MHz clock  
1000: External FrameSync from GPIO0  
1001: External FrameSync from GPIO1  
1010: External FrameSync from GPIO2  
1011: External FrameSync from GPIO3  
1100: External FrameSync from GPIO4  
1101: External FrameSync from GPIO5  
1110: External FrameSync from GPIO6  
1111: External FrameSync from GPIO7  
Generate Single FrameSync pulse  
When this bit is set, a single FrameSync pulse is generated. The  
system should wait for the full duration of the desired pulse before  
generating another pulse. When using this feature, the  
FS_GEN_ENABLE bit should remain set to 0. This bit is self-clearing  
and will always return 0.  
3
2
FS_SINGLE  
R/W/SC  
R/W  
0
0
Initial State  
This register controls the initial state of the FrameSync signal.  
0: FrameSync initial state is 0  
FS_INIT_STATE  
1: FrameSync initial state is 1  
FrameSync Generation Mode  
This control selects between Hi/Lo and 50/50 modes. In Hi/Lo mode,  
the FrameSync generator will use the FS_HIGH_TIME[15:0] and  
FS_LOW_TIME[15:0] register values to separately control the High  
and Low periods for the generated FrameSync signal. In 50/50  
mode, the FrameSync generator will use the values in the  
FS_HIGH_TIME_0, FS_LOW_TIME_1 and FS_LOW_TIME_0  
registers as a 24-bit value for both the High and Low periods of the  
generated FrameSync signal.  
1
0
FS_GEN_MODE  
R/W  
R/W  
0
0
0: Hi/Lo  
1: 50/50  
FrameSync Generation Enable  
0: Disabled  
FS_GEN_ENABLE  
1: Enabled  
7.6.1.26 FS_HIGH_TIME_1 Register  
7-46. FS_HIGH_TIME_1 Register (Address 0x19)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FrameSync High Time bits 15:8  
The value programmed to the FS_HIGH_TIME register should be  
reduced by 1 from the desired delay. For example, a value of 0 in the  
FRAMESYNC_HIGH_TIME field will result in a 1 cycle high pulse on  
the FrameSync signal.  
FRAMESYNC_HIGH  
_TIME_1  
7:0  
R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
87  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.1.27 FS_HIGH_TIME_0 Register  
7-47. FS_HIGH_TIME_0 Register (Address 0x1A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FrameSync High Time bits 7:0  
The value programmed to the FS_HIGH_TIME register should be  
reduced by 1 from the desired delay. For example, a value of 0 in the  
FRAMESYNC_HIGH_TIME field will result in a 1 cycle high pulse on  
the FrameSync signal.  
FRAMESYNC_HIGH  
_TIME_0  
7:0  
R/W  
0x0  
7.6.1.28 FS_LOW_TIME_1 Register  
7-48. FS_LOW_TIME_1 Register (Address 0x1B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FrameSync Low Time bits 15:8  
The value programmed to the FS_LOW_TIME register should be  
reduced by 1 from the desired delay. For example, a value of 0 in the  
FRAMESYNC_LOW_TIME field will result in a 1 cycle high pulse on  
the FrameSync signal.  
FRAMESYNC_LOW  
_TIME_1  
7:0  
R/W  
0x0  
7.6.1.29 FS_LOW_TIME_0 Register  
7-49. FS_LOW_TIME_0 Register (Address 0x1C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FrameSync Low Time bits 7:0  
The value programmed to the FS_LOW_TIME register should be  
reduced by 1 from the desired delay. For example, a value of 0 in the  
FRAMESYNC_LOW_TIME field will result in a 1 cycle high pulse on  
the FrameSync signal.  
FRAMESYNC_LOW  
_TIME_0  
7:0  
R/W  
0x0  
7.6.1.30 MAX_FRM_HI Register  
7-50. MAX_FRM_HI Register (Address 0x1D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Maximum Frame Count bits 15:8  
In RAW mode operation, the FPD3 Receiver will create CSI-2 video  
frames. For the Frame Start and Frame End packets of each video  
frame, a 16-bit frame number field is generated. If the Maximum  
Frame Count value is set to 0, the frame number is disabled and will  
always be 0. If Maximum Frame Count value is non-zero, the frame  
number will increment for each from 1 up to the Maximum Frame  
Count value before resetting to 1.  
7:0  
MAX_FRAME_HI  
R/W  
0x0  
7.6.1.31 MAX_FRM_LO Register  
7-51. MAX_FRM_LO Register (Address 0x1E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Maximum Frame Count bits 7:0  
In RAW mode operation, the FPD3 Receiver will create CSI-2 video  
frames. For the Frame Start and Frame End packets of each video  
frame, a 16-bit frame number field is generated. If the Maximum  
Frame Count value is set to 0, the frame number is disabled and will  
always be 0. If Maximum Frame Count value is non-zero, the frame  
number will increment for each from 1 up to the Maximum Frame  
Count value before resetting to 1.  
7:0  
MAX_FRAME_LO  
R/W  
0x04  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
88  
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.1.32 CSI_PLL_CTL Register  
7-52. CSI_PLL_CTL Register (Address 0x1F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:4  
RESERVED  
-
0x0  
Reserved  
Select 200MHz Oscillator Clock The external reference clock is  
normally used to generate the digital and CSI-2 PLL reference  
clocks. This bit allows the use of the internal 200 MHz always-on  
oscillator clock instead.  
0: Select external reference clock  
1: Select internal always-on clock  
3
2
SEL_OSC_200M  
REF_CLK_MODE  
R/W  
R/W  
0
0
Reference Clock mode  
The digital logic requires a 200 MHz reference clock generated from  
the CSI-2 PLL. If this bit is set to 1, the reference clock will be 100  
MHz.  
0 : clock is 200 MHz  
1 : clock is 100 MHz  
This bit should not be set to 1 if CSI_TX_SPEED is set for 400Mbps  
operation.  
CSI-2 Transmitter Speed select:  
(See 7.4.19)  
Controls the CSI-2 Transmitter frequency.  
00 : 1.472 - 1.664 Gbps serial rate  
01 : 1.2 Gbps serial rate  
1:0  
CSI_TX_SPEED  
R/W  
10  
10 : 800 Mbps serial rate  
11 : 400 Mbps serial rate  
7.6.1.33 FWD_CTL1 Register  
7-53. FWD_CTL1 Register (Address 0x20)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Disable forwarding of RX Port 3  
0: Forwarding enabled  
7
FWD_PORT3_DIS  
R/W  
1
1: Forwarding disabled  
Disable forwarding of RX Port 2  
0: Forwarding enabled  
1: Forwarding disabled  
6
5
4
FWD_PORT2_DIS  
FWD_PORT1_DIS  
FWD_PORT0_DIS  
R/W  
R/W  
R/W  
1
1
1
Disable forwarding of RX Port 1  
0: Forwarding enabled  
1: Forwarding disabled  
Disable forwarding of RX Port 0  
0: Forwarding enabled  
1: Forwarding disabled  
Map RX Port 3 to CSI-2 Port  
0: CSI-2 Port 0  
3
2
1
RX3_MAP  
RX2_MAP  
RX1_MAP  
R/W  
R/W  
R/W  
0
0
0
1: CSI-2 Port 1  
It is recommended to disable forwarding for a port before changing  
the port mapping  
Map RX Port 2 to CSI-2 Port  
0: CSI-2 Port 0  
1: CSI-2 Port 1  
It is recommended to disable forwarding for a port before changing  
the port mapping  
Map RX Port 1 to CSI-2 Port  
0: CSI-2 Port 0  
1: CSI-2 Port 1  
It is recommended to disable forwarding for a port before changing  
the port mapping  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
89  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-53. FWD_CTL1 Register (Address 0x20) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Map RX Port 0 to CSI-2 Port  
0: CSI-2 Port 0  
0
RX0_MAP  
R/W  
0
1: CSI-2 Port 1  
It is recommended to disable forwarding for a port before changing  
the port mapping  
7.6.1.34 FWD_CTL2 Register  
7-54. FWD_CTL2 Register (Address 0x21)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Replicate Mode  
7
CSI_REPLICATE  
R/W  
0
When set to a 1, the CSI-2 output from port 0 will also be generated  
on CSI-2 port 1. The same output data is presented on both ports.  
Synchronized Forwarding As Available  
During Synchronized Forwarding, each forwarding engine will wait for  
video data to be available from each enabled port, prior to sending  
the video line. Setting this bit to a 1 will allow sending the next video  
line as it becomes available. For example if RX Ports 0 and 1 are  
being forwarded, port 0 video line is forwarded when it becomes  
available, rather than waiting until both ports 0 and ports 1 have  
video data available. This operation may reduce the likelihood of  
buffer overflow errors in some conditions. This bit will have no affect  
in video line concatenation mode and only affects video lines (long  
packets) rather than synchronization packets.  
6
FWD_SYNC_AS_AVAIL R/W  
0
This bit applies to both CSI-2 output ports  
Enable synchronized forwarding for CSI-2 output port 1 (see 节  
7.4.25.2)  
00: Synchronized forwarding disabled  
01: Basic Synchronized forwarding enabled  
10: Synchronous forwarding with line interleaving  
11: Synchronous forwarding with line concatenation  
Only one of CSI1_RR_FWD and CSI1_SYNC_FWD must be  
enabled at a time.  
5:4  
3:2  
1
CSI1_SYNC_FWD  
CSI0_SYNC_FWD  
CSI1_RR_FWD  
CSI0_RR_FWD  
R/W  
R/W  
R/W  
R/W  
0x0  
0x0  
1
Enable synchronized forwarding for CSI-2 output port 0 (see 节  
7.4.25.2)  
00: Synchronized forwarding disabled  
01: Basic Synchronized forwarding enabled  
10: Synchronous forwarding with line interleaving  
11: Synchronous forwarding with line concatenation  
Only one of CSI0_RR_FWD and CSI0_SYNC_FWD must be  
enabled at a time.  
Enable best-effort forwarding for CSI-2 output port 1.  
When this mode is enabled, no attempt is made to synchronize the  
video traffic. When multiple sources have data available to forward,  
the data will tend to be forwarded in a round-robin fashion.  
0: Round robin forwarding disabled  
1: Round robin forwarding enabled  
Only one of CSI1_RR_FWD and CSI1_SYNC_FWD must be  
enabled at a time.  
Enable best-effort forwarding for CSI-2 output port 0.  
When this mode is enabled, no attempt is made to synchronize the  
video traffic. When multiple sources have data available to forward,  
the data will tend to be forwarded in a round-robin fashion.  
0: Round robin forwarding disabled  
0
1
1: Round robin forwarding enabled  
Only one of CSI0_RR_FWD and CSI0_SYNC_FWD must be  
enabled at a time.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
90  
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.1.35 FWD_STS Register  
7-55. FWD_STS Register (Address 0x22)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:4  
RESERVED  
-
0x0  
Reserved  
Forwarding synchronization failed for CSI-2 output port 1  
During Synchronized forwarding, this flag indicates a failure of  
synchronized video has been detected. For this bit to be set, the  
forwarding process must have previously been successful at sending  
at least one synchronized video frame.  
3
FWD_SYNC_FAIL1  
R/RC  
0
0: No failure  
1: Synchronization failure  
This bit is cleared on read.  
Forwarding synchronization failed for CSI-2 output port 0 During  
Synchronized forwarding, this flag indicates a failure of synchronized  
video has been detected. For this bit to be set, the forwarding  
process must have previously been successful at sending at least  
one synchronized video frame.  
2
FWD_SYNC_FAIL0  
R/RC  
0
0: No failure  
1: Synchronization failure  
This bit is cleared on read.  
Forwarding synchronized for CSI-2 output port  
During Synchronized forwarding, this bit indicates that the forwarding  
engine is currently able to provide synchronized video from enabled  
Receive ports. This bit will always be 0 if Synchronized forwarding is  
disabled.  
1
0
FWD_SYNC1  
FWD_SYNC0  
R
R
0
0
0: Video is not synchronized  
1: Video is synchronized  
Forwarding synchronized for CSI-2 output port 0  
During Synchronized forwarding, this bit indicates that the forwarding  
engine is currently able to provide synchronized video from enabled  
Receive ports. This bit will always be 0 if Synchronized forwarding is  
disabled.  
0: Video is not synchronized  
1: Video is synchronized  
7.6.1.36 INTERRUPT_CTL Register  
7-56. INTERRUPT_CTL Register (Address 0x23)  
BIT  
FIELD  
TYPE  
R/W  
-
DEFAULT  
DESCRIPTION  
Global Interrupt Enable:  
Enables interrupt on the interrupt signal to the controller.  
7
INT_EN  
0
0
0
6
RESERVED  
IE_CSI_TX1  
Reserved  
CSI-2 Transmit Port 1 Interrupt:  
Enable interrupt from CSI-2 Transmitter Port 1.  
5
R/W  
CSI-2 Transmit Port 0 Interrupt:  
Enable interrupt from CSI-2 Transmitter Port 0.  
4
3
2
1
0
IE_CSI_TX0  
IE_RX3  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
RX Port 3 Interrupt:  
Enable interrupt from Receiver Port 3.  
RX Port 2 Interrupt:  
Enable interrupt from Receiver Port 2.  
IE_RX2  
RX Port 1 Interrupt:  
Enable interrupt from Receiver Port 1.  
IE_RX1  
RX Port 0 Interrupt:  
Enable interrupt from Receiver Port 0.  
IE_RX0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
91  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.1.37 INTERRUPT_STS Register  
7-57. INTERRUPT_STS Register (Address 0x24)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Global Interrupt:  
Set if any enabled interrupt is indicated in the individual status bits in  
this register. The setting of this bit is not dependent on the INT_EN  
bit in the INTERRUPT_CTL register but does depend on the IE_xxx  
bits. For example, if IE_RX0 and IS_RX0 are both asserted, the INT  
bit is set to 1.  
7
INT  
R
0
6
5
RESERVED  
IS_CSI_TX1  
-
0
0
Reserved  
CSI-2 Transmit Port 1 Interrupt:  
An interrupt has occurred for CSI-2 Transmitter Port 1. This interrupt  
is cleared upon reading the CSI_TX_ISR register for CSI-2 Transmit  
Port 1.  
R
CSI-2 Transmit Port 0 Interrupt:  
An interrupt has occurred for CSI-2 Transmitter Port 0. This interrupt  
is cleared upon reading the CSI_TX_ISR register for CSI-2 Transmit  
Port 0.  
4
3
IS_CSI_TX0  
IS_RX3  
R
R
0
0
RX Port 3 Interrupt:  
This interrupt is cleared by reading the associated status register(s)  
for the event(s) that caused the interrupt. The status registers are  
RX_PORT_STS1, RX_PORT_STS2, and CSI_RX_STS.  
RX Port 2 Interrupt:  
An interrupt has occurred for Receive Port 2. This interrupt is cleared  
by reading the associated status register(s) for the event(s) that  
caused the interrupt. The status registers are RX_PORT_STS1,  
RX_PORT_STS2, and CSI_RX_STS.  
2
1
0
IS_RX2  
IS_RX1  
IS_RX0  
R
R
R
0
0
0
RX Port 1 Interrupt:  
0x An interrupt has occurred for Receive Port 1. This interrupt is  
cleared by reading the associated status register(s) for the event(s)  
that caused the interrupt. The status registers are RX_PORT_STS1,  
RX_PORT_STS2, and CSI_RX_STS.  
RX Port 0 Interrupt:  
An interrupt has occurred for Receive Port 0. This interrupt is cleared  
by reading the associated status register(s) for the event(s) that  
caused the interrupt. The status registers are RX_PORT_STS1,  
RX_PORT_STS2, and CSI_RX_STS.  
7.6.1.38 TS_CONFIG Register  
7-58. TS_CONFIG Register (Address 0x25)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
-
0
Reserved  
Framesync Polarity  
Indicates active edge of FrameSync signal  
0: Rising edge  
1: Falling edge  
6
FS_POLARITY  
TS_RES_CTL  
R/W  
R/W  
0
Timestamp Resolution Control  
00: 40 ns  
01: 80 ns  
5:4  
0x0  
10: 160 ns  
11: 1.0 us  
Timestamp Ready Control  
0: Normal operation  
1: Indicate timestamps ready as soon as all port timestamps are  
available  
3
2
TS_AS_AVAIL  
RESERVED  
R/W  
-
0
0
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
92  
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-58. TS_CONFIG Register (Address 0x25) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FreeRun Mode  
1
TS_FREERUN  
R/W  
0
0: FrameSync mode  
1: FreeRun mode  
Timestamp Mode  
0: Line start  
0
TS_MODE  
R/W  
0
1: Frame start  
7.6.1.39 TS_CONTROL Register  
7-59. TS_CONTROL Register (Address 0x26)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
RESERVED  
-
0x0  
Reserved  
Freeze Timestamps  
0: Normal operation  
1: Freeze timestamps  
4
TS_FREEZE  
R/W  
0
Setting this bit will freeze timestamps and clear the TS_READY flag.  
The TS_FREEZE bit should be cleared after reading timestamps to  
resume operation.  
Timestamp Enable RX Port 3  
0: Disabled  
1: Enabled  
3
2
1
0
TS_ENABLE3  
TS_ENABLE2  
TS_ENABLE1  
TS_ENABLE0  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Timestamp Enable RX Port 2  
0: Disabled  
1: Enabled  
Timestamp Enable RX Port 1  
0: Disabled  
1: Enabled  
Timestamp Enable RX Port 0  
0: Disabled  
1: Enabled  
7.6.1.40 TS_LINE_HI Register  
7-60. TS_LINE_HI Register (Address 0x27)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Timestamp Line, upper 8 bits  
This field is the line number at which to capture the timestamp when  
Line Start mode is enabled. For proper operation, the line number  
should be set to a value greater than 1.  
7:0  
TS_LINE_HI  
R/W  
0x0  
During Frame Start mode, if TS_FREERUN is set, the TS_LINE  
value is used to determine when to begin checking for Frame Start  
7.6.1.41 TS_LINE_LO Register  
7-61. TS_LINE_LO Register (Address 0x28)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Timestamp Line, lower 8 bits  
This field is the line number at which to capture the timestamp when  
Line Start mode is enabled. For proper operation, the line number  
should be set to a value greater than 1.  
7:0  
TS_LINE_LO  
R/W  
0x0  
During Frame Start mode, if TS_FREERUN is set, the TS_LINE  
value is used to determine when to begin checking for Frame Start  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
93  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.1.42 TS_STATUS Register  
7-62. TS_STATUS Register (Address 0x29)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
RESERVED  
-
0x0  
Reserved  
Timestamp Ready  
4
TS_READY  
R
0
This flag indicates when timestamps are ready to be read. This flag is  
cleared when the TS_FREEZE bit is set.  
3
2
1
0
TS_VALID3  
TS_VALID2  
TS_VALID1  
TS_VALID0  
R
R
R
R
0
0
0
0
Timestamp Valid, RX Port 3  
Timestamp Valid, RX Port 2  
Timestamp Valid, RX Port 1  
Timestamp Valid, RX Port 0  
7.6.1.43 TIMESTAMP_P0_HI Register  
7-63. TIMESTAMP_P0_HI Register (Address 0x2A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
TIMESTAMP_P0_HI  
R
0x0  
Timestamp, upper 8 bits, RX Port 0  
7.6.1.44 TIMESTAMP_P0_LO Register  
7-64. TIMESTAMP_P0_LO Register (Address 0x2B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
TIMESTAMP_P0_LO  
R
0x0  
Timestamp, lower 8 bits, RX Port 0  
7.6.1.45 TIMESTAMP_P1_HI Register  
7-65. TIMESTAMP_P1_HI Register (Address 0x2C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
TIMESTAMP_P1_HI  
R
0x0  
Timestamp, upper 8 bits, RX Port 1  
7.6.1.46 TIMESTAMP_P1_LO Register  
7-66. TIMESTAMP_P1_LO Register (Address 0x2D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
TIMESTAMP_P1_LO  
R
0x0  
Timestamp, lower 8 bits, RX Port 1  
7.6.1.47 TIMESTAMP_P2_HI Register  
7-67. TIMESTAMP_P2_HI Register (Address 0x2E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
TIMESTAMP_P2_HI  
R
0x0  
Timestamp, upper 8 bits, RX Port 2  
7.6.1.48 TIMESTAMP_P2_LO Register  
7-68. TIMESTAMP_P2_LO Register (Address 0x2F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
TIMESTAMP_P2_LO  
R
0x0  
Timestamp, lower 8 bits, RX Port 2  
7.6.1.49 TIMESTAMP_P3_HI Register  
7-69. TIMESTAMP_P3_HI Register (Address 0x30)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
TIMESTAMP_P3_HI  
R
0x0  
Timestamp, upper 8 bits, RX Port 3  
Copyright © 2023 Texas Instruments Incorporated  
94  
Submit Document Feedback  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.1.50 TIMESTAMP_P3_LO Register  
7-70. TIMESTAMP_P3_LO Register (Address 0x31)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
TIMESTAMP_P3_LO  
R
0x0  
Timestamp, lower 8 bits, RX Port 3  
7.6.2 CSI-2 Port Select Register  
This register selects access to Digital CSI-2 registers.  
7-71. CSI_PORT_SEL Register (Address 0x32)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
RESERVED  
-
0x0  
Reserved  
Select TX port for register read  
This field selects one of the two TX port register blocks for readback.  
This applies to the subsequent registers prefixed "CSI".  
0: Port 0 registers  
4
TX_READ_PORT  
RESERVED  
R/W  
-
0
1: Port 1 registers  
3:2  
0x0  
Reserved  
Write Enable for TX port 1 registers  
This bit enables writes to TX port 1 registers. Any combination of TX  
port registers can be written simultaneously. This applies to the  
subsequent registers prefixed "CSI-2".  
0: Writes disabled  
1
0
TX_WRITE_PORT_1  
TX_WRITE_PORT_0  
R/W  
R/W  
0
0
1: Writes enabled  
Write Enable for TX port 0 registers  
This bit enables writes to TX port 0 registers. Any combination of TX  
port registers can be written simultaneously. This applies to the  
subsequent registers prefixed "CSI-2".  
0: Writes disabled  
1: Writes enabled  
7.6.3 Digital CSI-2 Registers (Paged)  
Use CSI_PORT_SEL (0x32) register to select CSI-2 TX Port 0 or CSI-2 TX Port1 registers.  
CSI-2 TX Port 0:  
Read: 0x32[4] = 0  
Write: 0x32[0] = 1  
CSI-2 TX Port 1:  
Read: 0x32[4] = 1  
Write: 0x32[1] = 1  
7.6.3.1 CSI_CTL Register  
CSI-2 TX port-specific register. The CSI-2 Port Select register 0x32 configures which unique CSI-2 TX port  
registers can be accessed by I2C read and write commands.  
7-72. CSI_CTL Register (Address 0x33)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
-
0
Reserved  
Enable initial CSI-2 Skew-Calibration sequence  
When the initial skew-calibration sequence is enabled, the CSI-2  
Transmitter will send the sequence at initialization, prior to sending  
any HS data. This bit should be set when operating at 1.6 Gbps  
CSI-2 speed (as configured in the CSI_PLL register).  
0: Disabled  
6
CSI_CAL_EN  
R/W  
0
1: Enabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
95  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-72. CSI_CTL Register (Address 0x33) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 lane count  
00: 4 lanes  
01: 3 lanes  
10: 2 lanes  
11: 1 lane  
5:4  
CSI_LANE_COUNT  
R/W  
0x0  
Force LP00 state on data/clock lanes  
00: Normal operation  
3:2  
1
CSI_ULP  
R/W  
R/W  
R/W  
0
0
0
01: LP00 state forced only on data lanes  
10: Reserved  
11: LP00 state forced on data and clock lanes  
Enable CSI-2 continuous clock mode  
0: Disabled  
1: Enabled  
NOTE: When enabled, the CSI-2 Transmitter will enter continuous  
clock mode upon transmission of the first packet  
CSI_CONTS_CLOCK  
CSI_ENABLE  
Enable CSI-2 output  
0: Disabled  
1: Enabled  
0
NOTE: Forwarding should be disabled (via the FWD_CTL1 register)  
prior to enabling or disabling the CSI-2 output.  
7.6.3.2 CSI_CTL2 Register  
CSI-2 TX port-specific register. The CSI-2 Port Select register 0x32 configures which unique CSI-2 TX port  
registers can be accessed by I2C read and write commands.  
7-73. CSI_CTL2 Register (Address 0x34)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:4  
RESERVED  
-
0x0  
Reserved  
CSI-2PASS indication mode  
Determines whether the CSI-2 Pass indication is for a single port or  
all enabled ports.  
3
CSI_PASS_MODE  
R/W  
0
0 : Assert PASS if at least one enabled Receive port is providing  
valid video data  
1 : Assert PASS only if ALL enabled Receive ports are providing valid  
video data  
CSI-2 Calibration Inverted Data pattern  
During the CSI-2 skew-calibration pattern, the CSI-2 Transmitter will  
send a sequence of 01010101 data (first bit 0). Setting this bit to a 1  
will invert the sequence to 10101010 data.  
2
1
CSI_CAL_INV  
R/W  
0
0
Enable single periodic CSI-2 Skew-Calibration sequence  
Setting this bit will send a single skew-calibration sequence from the  
CSI-2 Transmitter. The skew-calibration sequence is the 210 bit  
sequence required for periodic calibration. The calibration sequence  
is sent at the next idle period on the CSI-2 interface. This bit is self-  
clearing and will reset to 0 after the calibration sequence is sent.  
CSI_CAL_SINGLE  
R/W/SC  
Enable periodic CSI-2 Skew-Calibration sequence  
When the periodic skew-calibration sequence is enabled, the CSI-2  
Transmitter will send the periodic skew-calibration sequence  
following the sending of Frame End packets.  
0: Disabled  
0
CSI_CAL_PERIODIC  
R/W  
0
1: Enabled  
7.6.3.3 CSI_STS Register  
CSI-2 TX port-specific register. The CSI-2 Port Select register 0x32 configures which unique CSI-2 TX port  
registers can be accessed by I2C read and write commands.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
96  
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-74. CSI_STS Register (Address 0x35)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
RESERVED  
-
0x0  
Reserved  
TX Port Number  
4
TX_PORT_NUM  
RESERVED  
R
-
0
This read-only field indicates the number of the currently selected TX  
read port.  
3:2  
0x0  
Reserved  
TX Port Synchronized  
This bit indicates the CSI-2 Transmit Port is able to properly  
synchronize input data streams from multiple sources. This bit is 0 if  
synchronization is disabled via the FWD_CTL2 register.  
0 : Input streams are not synchronized  
1
TX_PORT_SYNC  
R
0
1 : Input streams are synchronized  
TX Port Pass  
Indicates valid data is available on at least one port, or on all ports if  
configured for all port status via the CSI_PASS_MODE bit in the  
CSI_CTL2 register. The function differs based on mode of operation.  
In asynchronous operation, the TX_PORT_PASS indicates the CSI-2  
port is actively delivering valid video data. The status is cleared  
based on detection of an error condition that interrupts transmission.  
During Synchronized forwarding, the TX_PORT_PASS indicates  
valid data is available for delivery on the CSI-2 TX output. Data may  
not be delivered if ports are not synchronized. The TX_PORT_SYNC  
status is a better indicator that valid data is being delivered to the  
CSI-2 transmit port.  
0
TX_PORT_PASS  
R
0
7.6.3.4 CSI_TX_ICR Register  
CSI-2 TX port-specific register. The CSI-2 Port Select register 0x32 configures which unique CSI-2 TX port  
registers can be accessed by I2C read and write commands.  
7-75. CSI_TX_ICR Register (Address 0x36)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
RESERVED  
-
0x0  
Reserved  
RX Port Interrupt Enable  
4
3
2
IE_RX_PORT_INT  
R/W  
0
0
0
Enable interrupt based on receiver port interrupt for the RX Ports  
being forwarded to the CSI-2 Transmit Port.  
CSI-2 Sync Error interrupt Enable  
Enable interrupt on CSI-2 Synchronization enable.  
IE_CSI_SYNC_ERROR R/W  
CSI-2 Synchronized interrupt Enable  
Enable interrupts on CSI-2 Transmit Port assertion of CSI-2  
Synchronized Status.  
IE_CSI_SYNC  
R/W  
CSI-2 RX Pass Error interrupt Enable  
Enable interrupt on CSI-2 Pass Error  
1
0
IE_CSI_PASS_ERROR R/W  
IE_CSI_PASS R/W  
0
0
CSI-2 Pass interrupt Enable  
Enable interrupt on CSI-2 Transmit Port assertion of CSI-2 Pass.  
7.6.3.5 CSI_TX_ISR Register  
CSI-2 TX port-specific register. The CSI-2 Port Select register 0x32 configures which unique CSI-2 TX port  
registers can be accessed by I2C read and write commands.  
7-76. CSI_TX_ISR Register (Address 0x37)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
RESERVED  
-
0x0  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
97  
English Data Sheet: SNLS589  
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-76. CSI_TX_ISR Register (Address 0x37) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RX Port Interrupt  
A Receiver port interrupt has been generated for one of the RX Ports  
being forwarded to the CSI-2 Transmit Port. A read of the associated  
port receive status registers will clear this interrupt. See the  
PORT_ISR_HI and PORT_ISR_LO registers for details.  
4
IS_RX_PORT_INT  
R/RC  
0
CSI-2 Sync Error interrupt  
3
2
1
0
IS_CSI_SYNC_ERROR R/RC  
0
0
0
0
A synchronization error has been detected for multiple video stream  
inputs to the CSI-2 Transmitter.  
CSI-2 Synchronized interrupt  
CSI-2 Transmit Port assertion of CSI-2 Synchronized Status. Current  
status for CSI-2 Sync can be read from the TX_PORT_SYNC flag in  
the CSI_STS register.  
IS_CSI_SYNC  
R/RC  
CSI-2 RX Pass Error interrupt  
A deassertion of CSI-2 Pass has been detected on one of the RX  
Ports being forwarded to the CSI-2 Transmit Port  
IS_CSI_PASS_ERROR R/RC  
CSI-2 Pass interrupt  
CSI-2 Transmit Port assertion of CSI-2 Pass detected. Current status  
for the CSI-2 Pass indication can be read from the TX_PORT_PASS  
flag in the CSI_STS register  
IS_CSI_PASS  
R/RC  
7.6.3.6 RESERVED Register  
7-77. RESERVED Register (Address 0x38)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x0  
Reserved  
7.6.3.7 RESERVED Register  
7-78. RESERVED Register (Address 0x39)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x0  
Reserved  
7.6.3.8 RESERVED Register  
7-79. RESERVED Register (Address 0x3A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x0  
Reserved  
7.6.4 RESERVED Registers  
7-80. RESERVED Registers (Address 0x3B - 0x3F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x0  
Reserved  
7.6.5 AEQ Registers (Shared)  
7.6.5.1 RESERVED Register  
7-81. RESERVED Register (Address 0x40)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x0  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
98  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.5.2 SFILTER_CFG Register  
7-82. SFILTER_CFG Register (Address 0x41)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
SFILTER Maximum Setting  
This field controls the maximum SFILTER setting. Allowed values are  
0-14 with 7 being the mid point. These values are used for both AEQ  
adaption and dynamic SFILTER control. The maximum setting must  
be greater than of equal to the SFILTER_MIN.  
7:4  
SFILTER_MAX  
R/W  
0xA  
SFILTER Minimum Setting  
This field controls the minimum SFILTER setting. Allowed values are  
0-14, where 7 is the mid point. These values are used for both AEQ  
adaption and dynamic SFILTER control. The minimum setting must  
be less than or equal to the SFILTER_MAX  
3:0  
SFILTER_MIN  
R/W  
0x9  
7.6.5.3 AEQ_CTL Register  
7-83. AEQ_CTL Register (Address 0x42)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
-
0
Reserved  
AEQ Error Control  
Setting any of these bits will enable FPD3 error checking during the  
Adaptive Equalization process. Errors are accumulated over 1/2 of  
the period of the timer set by the ADAPTIVE_EQ_RELOCK_TIME  
filed in the AEQ_TEST register. If the number of errors is greater  
than the programmed threshold (AEQ_ERR_THOLD), the AEQ will  
attempt to increase the EQ setting. The errors may also be checked  
as part of EQ setting validation if AEQ_2STEP_EN is set. The  
following errors are checked based on this three bit field:  
[2] FPD3 clk1/clk0 errors  
6:4  
AEQ_ERR_CTL  
R/W  
0x7  
[1] DCA sequence errors  
[0] Parity errors  
AEQ SFILTER Adapt order This bit controls the order of adaption for  
SFILTER values during Adaptive Equalization.  
0 : Default order, start at largest clock delay  
3
AEQ_SFIL_ORDER  
R/W  
0
1 : Start at midpoint, no additional clock or data delay  
AEQ 2-step enable  
This bit enables a two-step operation as part of the Adaptive EQ  
algorithm. If disabled, the state machine will wait for a programmed  
period of time, then check status to determine if setting is valid. If  
enabled, the state machine will wait for 1/2 the programmed period,  
then check for errors over an additional 1/2 the programmed period.  
If errors occur during the 2nd step, the state machine will  
immediately move to the next setting.  
2
AEQ_2STEP_EN  
R/W  
0
0 : Wait for full programmed delay, then check instantaneous lock  
value  
1 : Wait for 1/2 programmed time, then check for errors over 1/2  
programmed time. The programmed time is controlled by the  
ADAPTIVE_EQ_RELOCK_TIME field in the AEQ_TEST register  
AEQ outer loop control  
This bit controls whether the Equalizer or SFILTER adaption is the  
outer loop when the AEQ adaption includes SFILTER adaption.  
0 : AEQ is inner loop, SFILTER is outer loop  
1 : AEQ is outer loop, SFILTER is inner loop  
1
0
AEQ_OUTER_LOOP  
AEQ_SFILTER_EN  
R/W  
R/W  
0
1
Enable SFILTER Adaption with AEQ  
Setting this bit allows SFILTER adaption as part of the Adaptive  
Equalizer algorithm.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
99  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.5.4 AEQ_ERR_THOLD Register  
7-84. AEQ_ERR_THOLD Register (Address 0x43)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
AEQ Error Threshold  
AEQ_ERR  
_THRESHOLD  
This register controls the error threshold to determine when to re-  
adapt the EQ settings. This register should not be programmed to a  
value of 0.  
7:0  
R/W  
0x1  
7.6.5.5 RESERVED Register  
7-85. RESERVED Register (Address 0x44)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0
Reserved  
7.6.5.6 RESERVED Register  
7-86. RESERVED Register (Address 0x45)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x0  
Reserved  
7.6.6 Digital RX Port Registers  
Use FPD3_PORT_SEL (0x4C) register to select digital RX Port 0, RX Port1, RX Port 2, or RX Port 3 registers.  
FPD3 RX Port 0:  
Read: 0x4C[5:4] = 00  
Write: 0x4C[0] = 1  
FPD3 RX Port 1:  
Read: 0x4C[5:4] = 01  
Write: 0x4C[1] = 1  
FPD3 RX Port 2:  
Read: 0x4C[5:4] = 10  
Write: 0x4C[2] = 1  
FPD3 RX Port 3:  
Read: 0x4C[5:4] = 11  
Write: 0x4C[3] = 1  
7.6.6.1 BCC_ERR_CTL Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-87. BCC_ERR_CTL Register (Address 0x46)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Enable Control Channel to acknowledge start of remote read. When  
operating with a link partner that supports Enhanced Error Checking  
for the Bidirectional Control Channel, setting this bit allows the  
Deserializer to generate an internal acknowledge to the beginning of  
a remote I2C slave read. This allows additional error detection at the  
Serializer. This bit should not be set when operating with Serializers  
that do not support Enhanced Error Checking.  
BCC_ACK_REMOTE  
_READ  
7
R/W  
0
0: Disable  
1: Enable  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
100 Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
BIT  
7-87. BCC_ERR_CTL Register (Address 0x46) (continued)  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Enable checking of returned data Enhanced Error checking can  
check for errors on returned data during an acknowledge cycle for  
data sent to remote devices over the Bidirectional Control Channel.  
In addition, If an error is detected, this register control will allow  
changing a remote Ack to a Nack to indicate the data error on the  
local I2C interface. This bit should not be set when operating with  
Serializers that do not support Enhanced Error checking as they will  
not always return the correct data during an Ack.  
6
BCC_EN_DATA_CHK  
R/W  
0
0: Disable returned data error detection  
1: Enable returned data error detection  
Enable Enhanced Error checking in Bidirectional Control Channel  
The Bidirectional Control Channel can detect certain error conditions  
and terminate transactions if an error is detected. This capability can  
be disabled by setting this bit to 0.  
5
BCC_EN_ENH_ERROR R/W  
1
0: Disable Enhanced Error checking  
1: Enable Enhanced Error checking  
BCC Force Error The BCC Force Error control causes an error to be  
forced on the BCC over the back channel.  
00 : No error  
01 : Force CRC Error on BCC frame = BCC_FRAME_SEL  
10 : Force CRC Error on normal frame following BCC frame =  
BCC_FRAME_SEL  
11 : FORCE Data Error on BCC frame = BCC_FRAME_SEL  
Setting this control generates a single error on the back channel  
signaling.  
4:3  
2:0  
FORCE_BCC_ERROR  
R/W  
R/W  
0x0  
0x0  
BCC Frame Select The BCC Frame Select allows selection of the  
forward channel BCC frame which will include the error condition  
selected in the force control bits of this register. BCC transfers are  
sent in bytes for each block transferred. This value may be set in  
range of 0 to 7 to force an error on any of the first 8 bytes sent on the  
BCC forward channel.  
BCC_FRAME_SEL  
7.6.6.2 BCC_STATUS Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-88. BCC_STATUS Register (Address 0x47)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:6  
RESERVED  
-
0x0  
Reserved  
Bidirectional Control Channel Sequence Error Detected This bit  
indicates a sequence error has been detected in the forward control  
channel. If this bit is set, an error may have occurred in the control  
channel operation. If BCC_EN_ENH_ERR is 0 (disabled), this  
register is read-only copy of the BCC_SEQ_ERROR bit in the  
RX_PORT_STS1 register. If BCC_EN_ENH_ERR is 1 (enabled), this  
register is cleared on read of this register.  
5
BCC_SEQ_ERROR  
R/RC  
0
BCC Master Error  
This flag indicates a Forward Channel BCC Sequence, BCC CRC, or  
Lock error occurred while waiting for a response from the Serializer  
while the BCC I2C Master is active. This flag is cleared on read of  
this register. This indication is available only if BCC_EN_ENH_ERR  
is set to 1.  
4
3
BCC_MASTER_ERR  
BCC_MASTER_TO  
R/RC  
R/RC  
0
0
BCC Master Timeout Error  
This bit will be set if the BCC Watchdog Timer expires while waiting  
for a response from the Serializer while the BCC I2C Master is  
active. This flag is cleared on read of this register. This indication is  
available only if BCC_EN_ENH_ERR is set to 1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 101  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-88. BCC_STATUS Register (Address 0x47) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
BCC Slave Error  
This flag indicates a Forward Channel BCC Sequence, BCC CRC, or  
Lock error occurred while waiting for a response from the Serializer  
while the BCC I2C Slave is active. This flag is cleared on read of this  
register. This indication is available only if BCC_EN_ENH_ERR is set  
to 1.  
2
BCC_SLAVE_ERR  
R/RC  
0
BCC Slave Timeout Error  
This bit will be set if the BCC Watchdog Timer expires will waiting for  
a response from the Serializer while the BCC I2C Slave is active.  
This flag is cleared on read of this register.  
1
0
BCC_SLAVE_TO  
BCC_RESP_ERR  
R/RC  
R/RC  
0
0
BCC Response Error  
This flag indicates an error has been detected in response to a  
command on the Bidirectional Control Channel. When the I2C Slave  
is active, the Serializer should return data written (I2C address,  
offset, or data). When the I2C Slave is active, the Serializer should  
return data read. The BCC function checks the returned data for  
errors, and will set this flag if an error is detected. This flag is cleared  
on read of this register. This indication is available only if  
BCC_EN_ENH_ERR is set to 1.  
7.6.6.3 RESERVED Register  
7-89. RESERVED (Address 0x48)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x00  
Reserved  
7.6.6.4 RESERVED Register  
7-90. RESERVED (Address 0x49)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x00  
Reserved  
7.6.6.5 FPD3_CAP Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
Recommend to set bit four in the FPD-Link III capabilities register to one in order to flag errors detected from  
enhanced CRC on encoded link control information. The FPD-Link III Encoder CRC must also be enabled by  
setting the FPD3_ENC_CRC_DIS (register 0xBA[7]) to 0.  
7-91. FPD3_CAP (Address 0x4A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:5  
RESERVED  
-
0x0  
Reserved  
FPD3_ENC_CRC  
_CAP  
0: Disable CRC error flag from FPD-Link III encoder  
1: Disable CRC error flag from FPD-Link III encoder (recommended)  
4
R/W  
-
0
3:0  
RESERVED  
0x0  
Reserved  
7.6.6.6 RAW_EMBED_DTYPE Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
When the receiver is programmed for Raw mode data, this register field allows setting the Data Type field for the  
first N lines to indicated embedded non-image data. RAW_EMBED_DTYPE has no effect on CSI-2 receiver  
modes.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
102 Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
BIT  
7-92. RAW_EMBED_DTYPE (Address 0x4B)  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Embedded Data Type Enable.  
00 : All long packets will be forwarded as RAW10 or RAW12 video data  
01, 10, or 11 : Send first N long packets (1, 2, or 3) as Embedded data  
using the data type in the EMBED_DTYPE_ID field of this register. This  
control has no effect if the Receiver is programmed to receive CSI-2  
formatted data.  
EMBED_DTYPE  
_EN  
7:6  
5:0  
R/W  
00  
Embedded Data Type. If sending embedded data is enabled via the  
EMBED_DTYPE_EN control in this register, the Data Type field for the  
first N lines of each frame will use this value rather than the value  
programmed in the RAW12_ID or RAW10_ID registers. The default  
setting matches the CSI-2 specification for Embedded 8-bit non Image  
Data  
EMBED_DTYPE  
_ID  
R/W  
0x12  
7.6.6.7 FPD3_PORT_SEL Register  
The FPD-Link III Port Select register configures which port is accessed in I2C commands to unique Rx Port  
registers 0x4D - 0x7F and 0xD0 - 0xDF. A 2-bit RX_READ_PORT field provides for reading values from a single  
port. The RX_WRITE_PORT fields provide individual enables for each port, allowing simultaneous writes  
broadcast to all of the FPD-Link III Receive port register blocks in unison. The DS90UB960-Q1 maintains  
separate page control, preventing conflict between sources.  
7-93. FPD3_PORT_SEL Register (Address 0x4C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Physical port number  
This field provides the physical port connection when reading from a  
remote device via the Bi-directional Control Channel.  
When accessed via local I2C interfaces, the value returned is always  
0. When accessed via Bi-directional Control Channel, the value  
returned is the port number of the Receive port connection.  
0x0  
Port#  
7:6  
PHYS_PORT_NUM  
R
Select RX port for register read  
This field selects one of the four RX port register blocks for readback.  
This applies to all paged FPD3 Receiver port registers.  
00: Port 0 registers  
0x0  
Port#  
01: Port 1 registers  
10: Port 2 registers  
5:4  
RX_READ_PORT  
R/W  
11: Port 3 registers  
When accessed via local I2C interfaces, the default setting is 0.  
When accessed via Bi-directional Control Channel, the default value  
is the port number of the Receive port connection.  
Write Enable for RX port 3 registers  
This bit enables writes to RX port 3 registers. Any combination of RX  
port registers can be written simultaneously. This applies to all paged  
FPD3 Receiver port registers.  
0: Writes disabled  
1: Writes enabled  
0
3
RX_WRITE_PORT_3  
R/W  
1 for RX  
Port 3  
When accessed via Bi-directional Control Channel, the default value  
is 1 if accessed over RX port 3.  
Write Enable for RX port 2 registers  
This bit enables writes to RX port 2 registers. Any combination of RX  
port registers can be written simultaneously. This applies to all paged  
FPD3 Receiver port registers.  
0: Writes disabled  
1: Writes enabled  
0
2
RX_WRITE_PORT_2  
R/W  
1 for RX  
Port 2  
When accessed via Bi-directional Control Channel, the default value  
is 1 if accessed over RX port 2.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 103  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-93. FPD3_PORT_SEL Register (Address 0x4C) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Write Enable for RX port 1 registers  
This bit enables writes to RX port 1 registers. Any combination of RX  
port registers can be written simultaneously. This applies to all paged  
FPD3 Receiver port registers.  
0: Writes disabled  
1: Writes enabled  
0
1
RX_WRITE_PORT_1  
R/W  
1 for RX  
Port 1  
When accessed via Bi-directional Control Channel, the default value  
is 1 if accessed over RX port 1.  
Write Enable for RX port 0 registers  
This bit enables writes to RX port 0 registers. Any combination of RX  
port registers can be written simultaneously. This applies to all paged  
FPD3 Receiver port registers.  
0: Writes disabled  
1: Writes enabled  
0
0
RX_WRITE_PORT_0  
R/W  
1 for RX  
Port 0  
When accessed via Bi-directional Control Channel, the default value  
is 1 if accessed over RX port 0.  
7.6.6.8 RX_PORT_STS1 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-94. RX_PORT_STS1 Register (Address 0x4D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RX Port Number  
7:6  
RX_PORT_NUM  
R
0x0  
This read-only field indicates the number of the currently selected RX  
read port.  
Bi-directional Control Channel CRC Error Detected  
This bit indicates a CRC error has been detected in the forward  
control channel. If this bit is set, an error may have occurred in the  
control channel operation. This bit is cleared on read.  
5
4
BCC_CRC_ERROR  
LOCK_STS_CHG  
R/RC  
R/RC  
0
0
Lock Status Changed  
This bit is set if a change in receiver lock status has been detected  
since the last read of this register. Current lock status is available in  
the LOCK_STS bit of this register  
This bit is cleared on read.  
The function of this bit depends on the setting of the  
BCC_EN_ENH_ERR control in the BCC_ERR_CTL register.  
If BCC_EN_ENH_ERR is 0 (disabled), this register is defined as  
follows: Bidirectional Control Channel Sequence Error Detected This  
bit indicates a sequence error has been detected in the forward  
control channel. If this bit is set, an error may have occurred in the  
control channel operation. This bit is cleared on read.  
If BCC_EN_ENH_ERR is 1 (enabled), this register is defined as  
follows: Bidirectional Control Channel Error Flag This flag indicates  
one or more errors have been detected during Bidirectional Control  
Channel communication with the Deserializer. The BCC_STATUS  
register contains further information on the type of error detected.  
This bit will be cleared upon read of the BCC_STATUS register.  
BCC_SEQ_ERROR /  
BCC_ERROR  
3
R/RC // R  
0
FPD3 parity errors detected  
This flag is set when the number of parity errors detected is greater  
than the threshold programmed in the PAR_ERR_THOLD registers.  
1: Number of FPD3 parity errors detected is greater than the  
threshold  
0: Number of FPD3 parity errors is below the threshold This bit is  
cleared when the RX_PAR_ERR_HI/LO registers are cleared.  
2
1
PARITY_ERROR  
PORT_PASS  
R
R
0
0
Receiver PASS indication This bit indicates the current status of the  
Receiver PASS indication. The requirements for setting the Receiver  
PASS indication are controlled by the PORT_PASS_CTL register.  
1: Receive input has met PASS criteria  
0: Receive input does not meet PASS criteria  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
104 Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-94. RX_PORT_STS1 Register (Address 0x4D) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FPD-Link III receiver is locked to incoming data  
1: Receiver is locked to incoming data  
0: Receiver is not locked  
0
LOCK_STS  
R
0
7.6.6.9 RX_PORT_STS2 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-95. RX_PORT_STS2 Register (Address 0x4E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Line Length Unstable  
If set, this bit indicates the line length was detected as unstable  
during a previous video frame. The line length is considered to be  
stable if all the lines in the video frame have the same length. This  
flag will remain set until read.  
7
LINE_LEN_UNSTABLE R/RC  
0
Line Length Changed  
6
5
LINE_LEN_CHG  
R/RC  
R/RC  
0
0
1: Change of line length detected  
0: Change of line length not detected This bit is cleared on read.  
FPD3 Encoder error detected  
If set, this flag indicates an error in the FPD-Link III encoding has  
been detected by the FPD-Link III receiver.  
This bit is cleared on read.  
Note, to detect FP3 Encoder errors, the LINK_ERROR_COUNT must  
be enabled with a LINK_ERR_THRESH value greater than 1.  
Otherwise, the loss of Receiver Lock will prevent detection of the  
Encoder error.  
FPD3_ENCODE  
_ERROR  
Packet buffer error detected. If this bit is set, an overflow condition  
has occurred on the packet buffer FIFO.  
1: Packet Buffer error detected  
0: No Packet Buffer errors detected  
This bit is cleared on read.  
4
3
BUFFER_ERROR  
CSI_ERROR  
R/RC  
R
0
0
CSI-2 Receive error detected  
See the CSI_RX_STS register for details.  
2
1
FREQ_STABLE  
NO_FPD3_CLK  
R
R
0
0
Frequency measurement stable  
No FPD-Link III input clock detected  
Line Count Changed  
1: Change of line count detected  
0: Change of line count not detected  
This bit is cleared on read.  
0
LINE_CNT_CHG  
R/RC  
0
7.6.6.10 RX_FREQ_HIGH Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-96. RX_FREQ_HIGH Register (Address 0x4F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Frequency Counter High Byte (MHz)  
7:0  
FREQ_CNT_HIGH  
R
0x0  
The Frequency counter reports the measured frequency for the  
FPD3 Receiver. This portion of the field is the integer value in MHz.  
7.6.6.11 RX_FREQ_LOW Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 105  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-97. RX_FREQ_LOW Register (Address 0x50)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Frequency Counter Low Byte (1/256 MHz)  
The Frequency counter reports the measured frequency for the  
FPD3 Receiver. This portion of the field is the fractional value in  
1/256 MHz.  
7:0  
FREQ_CNT_LOW  
R
0x0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
106 Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.6.12 SENSOR_STS_0 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
Sensor Status Register 0 field provides additional status information when paired with a or DS90UB953-Q1  
Serializer. This field is automatically loaded from the forward channel.  
7-98. SENSOR_STS_0 (Address 0x51)  
BIT  
7:6  
5
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RESERVED  
CSI_ALARM  
BCC_ALARM  
-
00  
0
Reserved  
R
R
Alarm flag for CSI-2 error from serializer  
Alarm flag for back channel error from serializer  
4
0
LINK_DETECT  
_ALARM  
3
2
1
0
R
R
R
R
0
0
0
0
Alarm flag for link detect from serializer  
Alarm flag for temp sensor from serializer  
Alarm flag for voltage sensor 1 from serializer  
Alarm flag for voltage sensor 0 from serializer  
TEMP_SENSE  
_ALARM  
VOLT1_SENSE  
_ALARM  
VOLT0_SENSE  
_ALARM  
7.6.6.13 SENSOR_STS_1 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
Sensor Status Register 1 field provides additional status information when paired with a or DS90UB953-Q1  
Serializer. This field is automatically loaded from the forward channel.  
7-99. SENSOR_STS_1 (Address 0x52)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
-
0
Reserved  
VOLT1_SENSE  
_LEVEL  
6:4  
3
R
-
0x0  
0
Voltage sensor sampled value from serializer  
Reserved  
RESERVED  
VOLT0_SENSE  
_LEVEL  
2:0  
R
0x0  
Voltage sensor sampled value from serializer  
7.6.6.14 SENSOR_STS_2 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
Sensor Status Register 2 field provides additional status information when paired with a or DS90UB953-Q1  
Serializer. This field is automatically loaded from the forward channel.  
7-100. SENSOR_STS_2 (Address 0x53)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:3  
RESERVED  
-
0
TEMP_SENSE  
_LEVEL  
2:0  
R
0x0  
Temperature sensor sampled value from serializer  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 107  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.6.15 SENSOR_STS_3 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
Sensor Status Register 3 field provides additional status information on the CSI-2 input when paired with a or  
DS90UB953-Q1 Serializer. This field is automatically loaded from the forward channel.  
7-101. SENSOR_STS_3 (Address 0x54)  
BIT  
7:5  
4
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RESERVED  
-
0
0
0
0
0
0
Reserved  
CSI_ECC_2BIT_ERR  
CSI_CHKSUM_ERR  
CSI_SOT_ERR  
CSI_SYNC_ERR  
CSI_CNTRL_ERR  
R
R
R
R
R
CSI-2 -2 ECC error flag from serializer  
CSI-2 checksum error from serializer  
CSI-2 start of transmission error from serializer  
CSI-2 synchronization error from serializer  
CSI-2 control error from serializer  
3
2
1
0
7.6.6.16 RX_PAR_ERR_HI Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-102. RX_PAR_ERR_HI Register (Address 0x55)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Number of FPD3 parity errors 8 most significant bits  
The parity error counter registers return the number of data parity  
errors that have been detected on the FPD3 Receiver data since the  
last detection of valid lock or last read of the RX_PAR_ERR_LO  
register. For accurate reading of the parity error count, disable the  
RX PARITY CHECKER ENABLE bit in register 0x2 prior to reading  
the parity error count registers. This register is cleared upon reading  
the RX_PAR_ERR_LO register.  
7:0  
PAR_ERROR_BYTE_1  
R
0x0  
7.6.6.17 RX_PAR_ERR_LO Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-103. RX_PAR_ERR_LO Register (Address 0x56)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Number of FPD3 parity errors 8 least significant bits  
The parity error counter registers return the number of data parity  
errors that have been detected on the FPD3 Receiver data since the  
last detection of valid lock or last read of the RX_PAR_ERR_LO  
register. For accurate reading of the parity error count, disable the  
RX PARITY CHECKER ENABLE bit in register 0x2 prior to reading  
the parity error count registers. This register is cleared on read.  
7:0  
PAR_ERROR_BYTE_0  
R
0x0  
7.6.6.18 BIST_ERR_COUNT Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-104. BIST_ERR_COUNT Register (Address 0x57)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Bist Error Count  
Returns BIST error count  
7:0  
BIST_ERROR_COUNT  
R
0x0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
108 Submit Document Feedback  
 
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.6.19 BCC_CONFIG Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-105. BCC_CONFIG Register (Address 0x58)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
I2C Pass-Through All Transactions  
0: Disabled  
1: Enabled  
I2C_PASS_THROUGH  
_ALL  
7
R/W  
0
I2C Pass-Through to Serializer if decode matches  
0: Pass-Through Disabled  
1: Pass-Through Enabled  
6
5
I2C_PASS_THROUGH  
AUTO_ACK_ALL  
R/W  
R/W  
0
0
Automatically Acknowledge all I2C writes independent of the forward  
channel lock state or status of the remote Acknowledge  
1: Enable  
0: Disable  
Back channel enable  
1: Back channel is always enabled independent of  
I2C_PASS_THROUGH and I2C_PASS_THROUGH_ALL  
0: Back channel enable requires setting of either  
I2C_PASS_THROUGH and I2C_PASS_THROUGH_ALL This bit  
may only be written via a local I2C master.  
4
3
BC_ALWAYS_ON  
R/W  
R/W  
1
1
Back Channel CRC Generator Enable  
0: Disable  
1: Enable  
BC_CRC_GENERATOR  
_ENABLE  
Back Channel Frequency Select  
000: 2.5 Mbps (default for DS90UB913A-Q1 / /DS90UB933-Q1  
compatibility)  
001: Reserved  
010: 10 Mbps  
011: Reserved  
100: Reserved  
2:0  
BC_FREQ_SELECT  
R/W/S  
Strap  
101: Reserved  
110: 50 Mbps (default for DS90UB953-Q1 compatibility)  
111: Reserved  
Note that changing this setting will result in some errors on the back  
channel for a short period of time. If set over the control channel, the  
Deserializer should first be programmed to Auto-Ack operation to  
avoid a control channel timeout due to lack of response from the  
Serializer.  
7.6.6.20 DATAPATH_CTL1 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-106. DATAPATH_CTL1 Register (Address 0x59)  
BIT  
7
FIELD  
TYPE  
R/W  
-
DEFAULT  
DESCRIPTION  
1: Disable loading of the DATAPATH_CTL registers from the forward  
channel, keeping locally written values intact.  
0: Allow forward channel loading of DATAPATH_CTL registers  
OVERRIDE_FC  
_CONFIG  
0
6:2  
RESERVED  
0x0  
Reserved  
Forward Channel GPIO Enable  
Configures the number of enabled forward channel GPIOs  
00: GPIOs disabled  
01: One GPIO  
10: Two GPIOs  
1:0  
FC_GPIO_EN  
R/W  
0x0  
11: Four GPIOs  
This field is normally loaded from the remote serializer. It can be  
overwritten if the OVERRIDE_FC_CONFIG bit in this register is 1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 109  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.6.21 DATAPATH_CTL2 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-107. DATAPATH_CTL2 Register (Address 0x5A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x0  
Reserved  
7.6.6.22 SER_ID Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-108. SER_ID Register (Address 0x5B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Remote Serializer ID  
This field is normally loaded automatically from the remote Serializer.  
7:1  
SER_ID  
R/W  
0x0  
Freeze Serializer Device ID  
0
FREEZE_DEVICE_ID  
R/W  
0
Prevent auto-loading of the Serializer Device ID from the Forward  
Channel. The ID is frozen at the value written.  
7.6.6.23 SER_ALIAS_ID Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-109. SER_ALIAS_ID Register (Address 0x5C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Serializer Alias ID  
Configures the decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Deserializer. The  
transaction is remapped to the address specified in the Slave ID  
register. A value of 0 in this field disables access to the remote I2C  
Slave.  
7:1  
SER_ALIAS_ID  
R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Serializer  
independent of the forward channel lock state or status of the remote  
0
SER_AUTO_ACK  
R/W  
0
Serializer Acknowledge  
1: Enable  
0: Disable  
7.6.6.24 SlaveID[0] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-110. SlaveID[0] Register (Address 0x5D)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
-
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device ID 0  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID0, the transaction is remapped to this address  
before passing the transaction across the Bi-directional Control  
Channel to the Serializer.  
SLAVE_ID0  
RESERVED  
0x0  
0
Reserved.  
7.6.6.25 SlaveID[1] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
110  
Submit Document Feedback  
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
BIT  
7-111. SlaveID[1] Register (Address 0x5E)  
FIELD  
TYPE  
R/W  
-
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device ID 1  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID1, the transaction is remapped to this address  
before passing the transaction across the Bi-directional Control  
Channel to the Serializer.  
7:1  
0
SLAVE_ID1  
RESERVED  
0x0  
0
Reserved.  
7.6.6.26 SlaveID[2] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-112. SlaveID[2] Register (Address 0x5F)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
-
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device ID 2  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID2, the transaction is remapped to this address  
before passing the transaction across the Bi-directional Control  
Channel to the Serializer.  
SLAVE_ID2  
RESERVED  
0x0  
0
Reserved.  
7.6.6.27 SlaveID[3] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-113. SlaveID[3] Register (Address 0x60)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
-
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device ID 3  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID3, the transaction is remapped to this address  
before passing the transaction across the Bi-directional Control  
Channel to the Serializer.  
SLAVE_ID3  
RESERVED  
0x0  
0
Reserved.  
7.6.6.28 SlaveID[4] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-114. SlaveID[4] Register (Address 0x061)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
-
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device ID 4  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID4, the transaction is remapped to this address  
before passing the transaction across the Bi-directional Control  
Channel to the Serializer.  
SLAVE_ID4  
RESERVED  
0x0  
0
Reserved.  
7.6.6.29 SlaveID[5] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
111  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-115. SlaveID[5] Register (Address 0x62)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
-
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device ID 5  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID5, the transaction is remapped to this address  
before passing the transaction across the Bi-directional Control  
Channel to the Serializer.  
SLAVE_ID5  
RESERVED  
0x0  
0
Reserved.  
7.6.6.30 SlaveID[6] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-116. SlaveID[6] Register (Address 0x63)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
-
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device ID 6  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID6, the transaction is remapped to this address  
before passing the transaction across the Bi-directional Control  
Channel to the Serializer.  
SLAVE_ID6  
RESERVED  
0x0  
0
Reserved.  
7.6.6.31 SlaveID[7] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-117. SlaveID[7] Register (Address 0x64)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
-
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device ID 7  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID7, the transaction is remapped to this address  
before passing the transaction across the Bi-directional Control  
Channel to the Serializer.  
SLAVE_ID7  
RESERVED  
0x0  
0
Reserved.  
7.6.6.32 SlaveAlias[0] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-118. SlaveAlias[0] Register (Address 0x65)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device Alias ID 0  
Configures the decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Serializer. The transaction is  
remapped to the address specified in the Slave ID0 register. A value  
of 0 in this field disables access to the remote I2C Slave.  
7:1  
SLAVE_ALIAS_ID0  
R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Slave 0  
independent of the forward channel lock state or status of the remote  
Serializer Acknowledge1: Enable0: Disable  
0
SLAVE_AUTO_ACK_0  
R/W  
0
7.6.6.33 SlaveAlias[1] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
112  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-119. SlaveAlias[1] Register (Address 0x66)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device Alias ID 1  
Configures the decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Serializer. The transaction is  
remapped to the address specified in the Slave ID1 register. A value  
of 0 in this field disables access to the remote I2C Slave.  
7:1  
SLAVE_ALIAS_ID1  
R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Slave 1  
independent of the forward channel lock state or status of the remote  
Serializer Acknowledge1: Enable0: Disable  
0
SLAVE_AUTO_ACK_1  
R/W  
0
7.6.6.34 SlaveAlias[2] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-120. SlaveAlias[2] Register (Address 0x67)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device Alias ID 2  
Configures the decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Serializer. The transaction is  
remapped to the address specified in the Slave ID2 register. A value  
of 0 in this field disables access to the remote I2C Slave.  
7:1  
SLAVE_ALIAS_ID2  
R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Slave 2  
independent of the forward channel lock state or status of the remote  
0
SLAVE_AUTO_ACK_2  
R/W  
0
Serializer Acknowledge  
1: Enable  
0: Disable  
7.6.6.35 SlaveAlias[3] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-121. SlaveAlias[3] Register (Address 0x68)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device Alias ID 3  
Configures the decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Serializer. The transaction is  
remapped to the address specified in the Slave ID3 register. A value  
of 0 in this field disables access to the remote I2C Slave.  
7:1  
SLAVE_ALIAS_ID3  
R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Slave 3  
independent of the forward channel lock state or status of the remote  
0
SLAVE_AUTO_ACK_3  
R/W  
0
Serializer Acknowledge  
1: Enable  
0: Disable  
7.6.6.36 SlaveAlias[4] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-122. SlaveAlias[4] Register (Address 0x69)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device Alias ID 4  
Configures the decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Serializer. The transaction is  
remapped to the address specified in the Slave ID4 register. A value  
of 0 in this field disables access to the remote I2C Slave.  
7:1  
SLAVE_ALIAS_ID4  
R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
113  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-122. SlaveAlias[4] Register (Address 0x69) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Automatically Acknowledge all I2C writes to the remote Slave 4  
independent of the forward channel lock state or status of the remote  
0
SLAVE_AUTO_ACK_4  
R/W  
0
Serializer Acknowledge  
1: Enable  
0: Disable  
7.6.6.37 SlaveAlias[5] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-123. SlaveAlias[5] Register (Address 0x6A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device Alias ID 5  
Configures the decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Serializer. The transaction is  
remapped to the address specified in the Slave ID5 register. A value  
of 0 in this field disables access to the remote I2C Slave.  
7:1  
SLAVE_ALIAS_ID5  
R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Slave 5  
independent of the forward channel lock state or status of the remote  
0
SLAVE_AUTO_ACK_5  
R/W  
0
Serializer Acknowledge  
1: Enable  
0: Disable  
7.6.6.38 SlaveAlias[6] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-124. SlaveAlias[6] Register (Address 0x6B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device Alias ID 6  
Configures the decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Serializer. The transaction is  
remapped to the address specified in the Slave ID6 register. A value  
of 0 in this field disables access to the remote I2C Slave.  
7:1  
SLAVE_ALIAS_ID6  
R/W  
0x0  
Automatically Acknowledge all I2C writes to the remote Slave 6  
independent of the forward channel lock state or status of the remote  
0
SLAVE_AUTO_ACK_6  
R/W  
0
Serializer Acknowledge  
1: Enable  
0: Disable  
7.6.6.39 SlaveAlias[7] Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-125. SlaveAlias[7] Register (Address 0x6C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device Alias ID 7  
Configures the decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Serializer. The transaction is  
remapped to the address specified in the Slave ID7 register. A value  
of 0 in this field disables access to the remote I2C Slave.  
7:1  
SLAVE_ALIAS_ID7  
R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
114  
Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-125. SlaveAlias[7] Register (Address 0x6C) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Automatically Acknowledge all I2C writes to the remote Slave 7  
independent of the forward channel lock state or status of the remote  
0
SLAVE_AUTO_ACK_7  
R/W  
0
Serializer Acknowledge  
1: Enable  
0: Disable  
7.6.6.40 PORT_CONFIG Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-126. PORT_CONFIG Register (Address 0x6D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Wait for FrameStart packet with count 1  
The CSI-2 Receiver will wait for a Frame Start packet with count of 1  
before accepting other packets  
7
CSI_WAIT_FS1  
R/W  
0
This bit has no effect in RAW FPD3 input modes.  
CSI-2 Wait for FrameStart packet  
CSI2 Receiver will wait for a Frame Start packet before accepting  
other packets  
6
CSI_WAIT_FS  
R/W  
1
This bit has no effect in RAW FPD3 input modes.  
Forward CSI-2 packets with checksum errors  
0: Do not forward errored packets  
1: Forward errored packets  
5
4
CSI_FWD_CKSUM  
CSI_FWD_ECC  
R/W  
R/W  
1
1
This bit has no effect in RAW FPD3 input modes.  
Forward CSI-2 packets with ECC errors  
0: Do not forward errored packets  
1: Forward errored packets  
In RAW Mode, Discard first video line if FV to LV setup time is not  
met.  
DISCARD_1ST_LINE  
_ON_ERR  
/ CSI_FWD_LEN  
0 : Forward truncated 1st video line  
1 : Discard truncated 1st video line  
In FPD3 CSI-2 Mode, Forward CSI-2 packets with length errors  
0: Do not forward errored packets  
3
2
R/W  
1
1: Forward errored packets  
RESERVED  
R/W/S  
Strap  
Reserved.  
FPD3 Input Mode  
00: CSI-2 Mode (DS90UB953-Q1 compatible)  
01: RAW12 Low Frequency Mode (DS90UB913A-Q1 / DS90UB933-  
Q1 compatible)  
1:0  
FPD3_MODE  
R/W/S  
Strap  
10: RAW12 High Frequency Mode(DS90UB913A-Q1 / DS90UB933-  
Q1 compatible)  
11: RAW10 Mode (DS90UB913A-Q1 / DS90UB933-Q1 compatible)  
7.6.6.41 BC_GPIO_CTL0 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-127. BC_GPIO_CTL0 Register (Address 0x6E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Back channel GPIO1 Select:  
Determines the data sent on GPIO1 for the port back channel.  
0xxx : Pin GPIOx where x is BC_GPIO1_SEL[2:0]  
1000 : Constant value of 0  
7:4  
BC_GPIO1_SEL  
R/W  
0x8  
1001 : Constant value of 1  
1010 : FrameSync signal  
1011 - 1111 : Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
115  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-127. BC_GPIO_CTL0 Register (Address 0x6E) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Back channel GPIO0 Select:  
Determines the data sent on GPIO0 for the port back channel.  
0xxx : Pin GPIOx where x is BC_GPIO0_SEL[2:0]  
1000 : Constant value of 0  
3:0  
BC_GPIO0_SEL  
R/W  
0x8  
1001 : Constant value of 1  
1010 : FrameSync signal  
1011 - 1111 : Reserved  
7.6.6.42 BC_GPIO_CTL1 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-128. BC_GPIO_CTL1 Register (Address 0x6F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Back channel GPIO3 Select:  
Determines the data sent on GPIO3 for the port back channel.  
0xxx : Pin GPIOx where x is BC_GPIO3_SEL[2:0]  
1000 : Constant value of 0  
7:4  
BC_GPIO3_SEL  
R/W  
0x8  
1001 : Constant value of 1  
1010 : FrameSync signal  
1011 - 1111 : Reserved  
Back channel GPIO2 Select:  
Determines the data sent on GPIO2 for the port back channel.  
0xxx : Pin GPIOx where x is BC_GPIO2_SEL[2:0]  
1000 : Constant value of 0  
3:0  
BC_GPIO2_SEL  
R/W  
0x8  
1001 : Constant value of 1  
1010 : FrameSync signal  
1011 - 1111 : Reserved  
7.6.6.43 RAW10_ID Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
RAW10 virtual channel mapping only applies when FPD-Link III is operating in RAW10 input mode. See register  
0x71 for RAW12 and register 0x72 for CSI-2 mode operation.  
7-129. RAW10_ID Register (Address 0x70)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RAW10 Mode Virtual Channel  
This field configures the CSI-2 Virtual Channel assigned to the port  
7:6  
RAW10_VC  
R/W  
<RX Port #> when receiving RAW10 data.  
The field value defaults to the FPD-Link III receive port number (0, 1,  
2, or 3)  
RAW10 DT  
5:0  
RAW10_DT  
R/W  
0x2B  
This field configures the CSI-2 data type used in RAW10 mode. The  
default of 0x2B matches the CSI-2 specification.  
7.6.6.44 RAW12_ID Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
RAW12 virtual channel mapping only applies when FPD-Link III is operating in RAW12 input mode. See register  
0x70 for RAW10 and register 0x72 for CSI-2 mode operation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
116  
Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-130. RAW12_ID Register (Address 0x71)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RAW12 Mode Virtual Channel  
This field configures the CSI-2 Virtual Channel assigned to the port  
7:6  
RAW12_VC  
R/W  
<RX Port #> when receiving RAW12 data.  
The field value defaults to the FPD-Link III receive port number (0, 1,  
2, or 3)  
RAW12 DT  
5:0  
RAW12_DT  
R/W  
0x2C  
This field configures the CSI-2 data type used in RAW12 mode. The  
default of 0x2C matches the CSI-2 specification.  
7.6.6.45 CSI_VC_MAP Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
CSI-2 virtual channel mapping only applies when FPD-Link III operating in CSI-2 input mode. See registers 0x70  
and 0x71 for RAW mode operation.  
7-131. CSI_VC_MAP Register (Address 0x72)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Virtual Channel Mapping Register This register provides a  
method for replacing the Virtual Channel Identifier (VC-ID) of  
incoming CSI-2 packets.  
7:0  
CSI_VC_MAP  
R/W  
0xE4  
[7:6] : Map value for VC-ID of 3  
[5:4] : Map value for VC-ID of 2  
[3:2] : Map value for VC-ID of 1  
[1:0] : Map value for VC-ID of 0  
7.6.6.46 LINE_COUNT_1 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-132. LINE_COUNT_1 Register (Address 0x73)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
High byte of Line Count  
The Line Count reports the line count for the most recent video  
frame. When interrupts are enabled for the Line Count (via the  
IE_LINE_CNT_CHG register bit), the Line Count value is frozen until  
read.  
7:0  
LINE_COUNT_HI  
R
0x0  
7.6.6.47 LINE_COUNT_0 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-133. LINE_COUNT_0 Register (Address 0x74)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Low byte of Line Count  
The Line Count reports the line count for the most recent video  
frame. When interrupts are enabled for the Line Count (via the  
IE_LINE_CNT_CHG register bit), the Line Count value is frozen until  
read. In addition, when reading the LINE_COUNT registers, the  
LINE_COUNT_LO is latched upon reading LINE_COUNT_HI to  
ensure consistency between the two portions of the Line Count.  
7:0  
LINE_COUNT_LO  
R
0x0  
7.6.6.48 LINE_LEN_1 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
117  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-134. LINE_LEN_1 Register (Address 0x75)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
High byte of Line Length  
The Line Length reports the line length recorded during the most  
recent video frame. If line length is not stable during the frame, this  
register will report the length of the last line in the video frame. When  
interrupts are enabled for the Line Length (via the  
IE_LINE_LEN_CHG register bit), the Line Length value is frozen until  
read.  
7:0  
LINE_LEN_HI  
R
0
7.6.6.49 LINE_LEN_0 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-135. LINE_LEN_0 Register (Address 0x76)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Low byte of Line Length  
The Line Length reports the length of the most recent video line.  
When interrupts are enabled for the Line Length (via the  
IE_LINE_LEN_CHG register bit), the Line Length value is frozen until  
read. In addition, when reading the LINE_LEN registers, the  
LINE_LEN_LO is latched upon reading LINE_LEN_HI to ensure  
consistency between the two portions of the Line Length.  
7:0  
LINE_LEN_LO  
R
0
7.6.6.50 FREQ_DET_CTL Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-136. FREQ_DET_CTL Register (Address 0x77)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Frequency Detect Hysteresis  
The Frequency detect hysteresis setting allows ignoring minor  
fluctuations in frequency. A new frequency measurement will be  
captured only if the measured frequency differs from the current  
measured frequency by more than the FREQ_HYST setting. The  
FREQ_HYST setting is in MHz.  
7:6  
FREQ_HYST  
R/W  
0x3  
Frequency Stable Threshold  
The Frequency detect circuit can be used to detect a stable clock  
frequency. The Stability Threshold determines the amount of time  
required for the clock frequency to stay within the FREQ_HYST  
5:4  
3:0  
FREQ_STABLE_THR  
FREQ_LO_THR  
R/W  
R/W  
0x0  
0x5  
range to be considered stable:  
00 : 40us  
01 : 80us  
10 : 320us  
11 : 1.28ms  
Frequency Low Threshold  
Sets the low threshold for the Clock frequency detect circuit in MHz.  
If the input clock is below this threshold, the NO_FPD3_CLK status  
will be set to 1.  
7.6.6.51 MAILBOX_0 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
118  
Submit Document Feedback  
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-137. MAILBOX_0 Register (Address 0x78)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Mailbox Register  
This register is an unused read/write register that can be used for  
any purpose such as passing messages between I2C masters on  
opposite ends of the link.  
7:0  
MAILBOX_0  
R/W  
0x0  
7.6.6.52 MAILBOX_1 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-138. MAILBOX_1 Register (Address 0x79)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Mailbox Register  
This register is an unused read/write register that can be used for  
any purpose such as passing messages between I2C masters on  
opposite ends of the link.  
7:0  
MAILBOX_1  
R/W  
0x01  
7.6.6.53 CSI_RX_STS Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-139. CSI_RX_STS Register (Address 0x7A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:4  
RESERVED  
-
0x0  
Reserved  
Packet Length Error detected for received CSI-2 packet  
If set, this bit indicates a packet length error was detected on at least  
one CSI-2 packet received from the sensor. Packet length errors  
occur if the data length field in the packet header does not match the  
actual data length for the packet.  
3
LENGTH_ERR  
R/RC  
0
1: One or more Packet Length errors have been detected  
0: No Packet Length errors have been detected  
This bit is cleared on read.  
Data Checksum Error detected for received CSI-2 packet  
If set, this bit indicates a data checksum error was detected on at  
least one CSI-2 packet received from the sensor. Data checksum  
errors indicate an error was detected in the packet data portion of the  
CSI-2 packet.  
2
CKSUM_ERR  
R/RC  
0
1: One or more Data Checksum errors have been detected  
0: No Data Checksum errors have been detected  
This bit is cleared on read.  
2-bit ECC Error detected for received CSI-2 packet  
If set, this bit indicates a multi-bit ECC error was detected on at least  
one CSI-2 packet received from the sensor. Multi-bit errors are not  
corrected by the device.  
1: One or more multi-bit ECC errors have been detected  
0: No multi-bit ECC errors have been detected  
This bit is cleared on read.  
1
0
ECC2_ERR  
ECC1_ERR  
R/RC  
R/RC  
0
0
1-bit ECC Error detected for received CSI-2 packet  
If set, this bit indicates a single-bit ECC error was detected on at  
least one CSI-2 packet received from the sensor. Single-bit errors are  
corrected by the device.  
1: One or more 1-bit ECC errors have been detected  
0: No 1-bit ECC errors have been detected  
This bit is cleared on read.  
7.6.6.54 CSI_ERR_COUNTER Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
119  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-140. CSI_ERR_COUNTER Register (Address 0x7B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Error Counter Register  
7:0  
CSI_ERR_CNT  
R/RC  
0x0  
This register counts the number of CSI-2 packets received with  
errors since the last read of the counter.  
7.6.6.55 PORT_CONFIG2 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-141. PORT_CONFIG2 Register (Address 0x7C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Raw10 8-bit mode  
When Raw10 Mode is enabled for the port, the input data is  
processed as 8-bit data and packed accordingly for transmission  
over CSI.  
7:6  
RAW10_8BIT_CTL  
R/W  
0x0  
00 : Normal Raw10 Mode  
01 : Reserved  
10 : 8-bit processing using upper 8 bits  
11 : 8-bit processing using lower 8 bits  
Discard frames on Parity Error  
0 : Forward packets with parity errors  
1 : Truncate Frames if a parity error is detected  
DISCARD_ON  
_PAR_ERR  
5
4
R/W  
R/W  
1
0
Discard frames on Line Size  
0 : Allow changes in Line Size within packets  
1 : Truncate Frames if a change in line size is detected  
DISCARD_ON  
_LINE_SIZE  
Discard frames on change in Frame Size  
When enabled, a change in the number of lines in a frame will result  
in truncation of the packet. The device will resume forwarding video  
frames based on the PASS_THRESHOLD setting in the  
PORT_PASS_CTL register.  
DISCARD_ON  
_FRAME_SIZE  
3
R/W  
0
0 : Allow changes in Frame Size  
1 : Truncate Frames if a change in frame size is detected  
Automatic Polarity Detection  
This register enables automatic polarity detection. When this bit is  
set, polarity of LineValid and FrameValid will be automatically  
detected from the incoming data. In this mode, at least one initial  
frame will be discarded to allow for proper detection of the incoming  
video.  
2
AUTO_POLARITY  
R/W  
0
1 : Automatically detect LV and FV polarity  
0 : Use LV_POLARITY and FV_POLARITY register settings to  
determine polarity  
LineValid Polarity  
This register indicates the expected polarity for the LineValid  
indication received in Raw mode.  
1 : LineValid is low for the duration of the video frame  
0 : LineValid is high for the duration of the video frame  
1
0
LV_POLARITY  
FV_POLARITY  
R/W  
R/W  
0
0
FrameValid Polarity  
This register indicates the expected polarity for the FrameValid  
indication received in Raw mode.  
1 : FrameValid is low for the duration of the video frame  
0 : FrameValid is high for the duration of the video frame  
7.6.6.56 PORT_PASS_CTL Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
120 Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-142. PORT_PASS_CTL Register (Address 0x7D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pass Discard Enable  
Discard packets if PASS is not indicated.  
0 : Ignore PASS for forwarding packets  
1 : Discard packets when PASS is not true  
7
PASS_DISCARD_EN  
R/W  
0
Pass Clear Count Control  
This bit controls the values read back from the LINE_COUNT_1,  
LINE_COUNT_0, LINE_LEN_1, and LINE_LEN_0 registers.  
0: Registers read back the counter values regardless of the state of  
the PASS flag  
1: Registers read back zero when the PASS flag is de-asserted and  
the counter values when PASS is asserted  
6
5
PASS_CLEAR_CNT  
R/W  
R/W  
0
0
Pass Line Count Control  
This register controls whether the device will include line count in  
qualification of the Pass indication:  
0 : Don't check line count  
1 : Check line count  
PASS_LINE_CNT  
When checking line count, Pass is deasserted upon detection of a  
change in the number of video lines per frame. Pass will not be  
reasserted until the PASS_THRESHOLD setting is met.  
Pass Line Size Control  
This register controls whether the device will include line size in  
qualification of the Pass indication: 0 : Don't check line size 1 : Check  
line size When checking line size, Pass is deasserted upon detection  
of a change in video line size. Pass will not be reasserted until the  
PASS_THRESHOLD setting is met.  
4
3
PASS_LINE_SIZE  
R/W  
R/W  
0
0
Parity Error Mode  
If this bit is set to 0, the port Pass indication is deasserted for every  
parity error detected on the FPD3 Receive interface. If this bit is set  
to a 1, the port Pass indication is cleared on a parity error and remain  
clear until the PASS_THRESHOLD is met.  
PASS_PARITY_ERR  
RX Port Pass Watchdog disable  
When enabled, if the FPD Receiver does not detect a valid frame  
end condition within two video frame periods, the Pass indication is  
deasserted. The watchdog timer will not have any effect if the  
PASS_THRESHOLD is set to 0.  
0 : Enable watchdog timer for RX Pass  
1 : Disable watchdog timer for RX Pass  
2
PASS_WDOG_DIS  
PASS_THRESHOLD  
R/W  
R/W  
0
Pass Threshold Register  
This register controls the number of valid frames before asserting the  
port Pass indication. If set to 0, PASS is asserted after Receiver Lock  
detect. If non-zero, PASS is asserted following reception of the  
programmed number of valid frames.  
1:0  
0x0  
7.6.6.57 SEN_INT_RISE_CTL Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-143. SEN_INT_RISE_CTL Register (Address 0x7E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Sensor Interrupt Rise Mask  
This register provides the interrupt mask for detecting rising edge  
transitions on the bits in SENSOR_STS_0. If a mask bit is set in this  
register, a rising edge transition on the corresponding  
SENSOR_STS_0 bit will generate an interrupt that will be latched in  
the SEN_INT_RISE_STS register.  
7:0  
SEN_INT_RISE_MASK R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 121  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.6.58 SEN_INT_FALL_CTL Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-144. SEN_INT_FALL_CTL Register (Address 0x7F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Sensor Interrupt Fall Mask  
This register provides the interrupt mask for detecting falling edge  
transitions on the bits in SENSOR_STS_0. If a mask bit is set in this  
register, a falling edge transition on the corresponding  
SENSOR_STS_0 bit will generate an interrupt that will be latched in  
the SEN_INT_FALL_STS register.  
7:0  
SEN_INT_FALL_MASK R/W  
0x0  
7.6.7 RESERVED Registers  
7-145. RESERVED (Address 0x80 - 0x8F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x00  
Reserved  
7.6.8 Digital CSI-2 Debug Registers (Shared)  
7.6.8.1 CSI0_FRAME_COUNT_HI Register  
7-146. CSI0_FRAME_COUNT_HI Register (Address 0x90)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 0, Frame Counter MSBs  
CSI0_FRAME  
_COUNT_HI  
When read, this register returns the value of bits [15:8] of the 16-bit  
counter csi1_frame_count. The LSBs of the counter are sampled into  
the CSI0_FRAME_COUNT_LO register and the counter is cleared.  
7:0  
R/RC  
0x0  
7.6.8.2 CSI0_FRAME_COUNT_LO Register  
7-147. CSI0_FRAME_COUNT_LO Register (Address 0x91)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 0, Frame Counter LSBs  
When read, this register returns the value of bits [7:0] of the 16-bit  
counter csi1_frame_count. The CSI0_FRAME_COUNT_HI register  
must be read first to snapshot the LSBs of the counter into this  
register.  
CSI0_FRAME  
_COUNT_LO  
7:0  
R
0x0  
7.6.8.3 CSI0_FRAME_ERR_COUNT_HI Register  
7-148. CSI0_FRAME_ERR_COUNT_HI Register (Address 0x92)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 0, Frame Counter with Errors MSBs  
When read, this register returns the value of bits [15:8] of the 16-bit  
counter csi1_frame_err_count. The LSBs of the counter are sampled  
into the CSI0_FRAME_ERR_COUNT_LO register and the counter is  
cleared.  
CSI0_FRAME_ERR  
_COUNT_HI  
7:0  
R/RC  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
122 Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.8.4 CSI0_FRAME_ERR_COUNT_LO Register  
7-149. CSI0_FRAME_ERR_COUNT_LO Register (Address 0x93)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 0, Frame Counter with Errors LSBs  
When read, this register returns the value of bits [7:0] of the 16-bit  
counter csi1_frame_err_count. The CSI0_FRAME_ERR_COUNT_HI  
register must be read first to snapshot the LSBs of the counter into  
this register.  
CSI0_FRAME_ERR  
_COUNT_LO  
7:0  
R
0x0  
7.6.8.5 CSI0_LINE_COUNT_HI Register  
7-150. CSI0_LINE_COUNT_HI Register (Address 0x94)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 0, Line Counter MSBs  
When read, this register returns the value of bits [15:8] of the 16-bit  
counter csi1_line_count. The LSBs of the counter are sampled into  
the CSI0_LINE_COUNT_LO register and the counter is cleared.  
7:0  
CSI0_LINE_COUNT_HI R/RC  
0x0  
7.6.8.6 CSI0_LINE_COUNT_LO Register  
7-151. CSI0_LINE_COUNT_LO Register (Address 0x95)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 0, Line Counter LSBs  
When read, this register returns the value of bits [7:0] of the 16-bit  
counter csi1_line_count. The CSI0_LINE_COUNT_HI register must  
be read first to snapshot the LSBs of the counter into this register.  
7:0  
CSI0_LINE_COUNT_LO  
R
0x0  
7.6.8.7 CSI0_LINE_ERR_COUNT_HI Register  
7-152. CSI0_LINE_ERR_COUNT_HI Register (Address 0x96)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 0, Line Counter with Errors MSBs  
When read, this register returns the value of bits [15:8] of the 16-bit  
counter csi1_line_err_count. The LSBs of the counter are sampled  
into the CSI0_LINE_ERR_COUNT_LO register and the counter is  
cleared.  
CSI0_LINE_ERR  
_COUNT_HI  
7:0  
R/RC  
0x0  
7.6.8.8 CSI0_LINE_ERR_COUNT_LO Register  
7-153. CSI0_LINE_ERR_COUNT_LO Register (Address 0x97)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 0, Line Counter with Errors LSBs  
When read, this register returns the value of bits [7:0] of the 16-bit  
counter csi1_line_err_count. The CSI0_LINE_ERR_COUNT_HI  
register must be read first to snapshot the LSBs of the counter into  
this register.  
CSI0_LINE_ERR  
_COUNT_LO  
7:0  
R
0x0  
7.6.8.9 CSI1_FRAME_COUNT_HI Register  
7-154. CSI1_FRAME_COUNT_HI Register (Address 0x98)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 1, Frame Counter MSBs  
CSI1_FRAME  
_COUNT_HI  
When read, this register returns the value of bits [15:8] of the 16-bit  
counter csi1_frame_count. The LSBs of the counter are sampled into  
the CSI1_FRAME_COUNT_LO register and the counter is cleared.  
7:0  
R/RC  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 123  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.8.10 CSI1_FRAME_COUNT_LO Register  
7-155. CSI1_FRAME_COUNT_LO Register (Address 0x99)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 1, Frame Counter LSBs  
When read, this register returns the value of bits [7:0] of the 16-bit  
counter csi1_frame_count. The CSI1_FRAME_COUNT_HI register  
must be read first to snapshot the LSBs of the counter into this  
register.  
CSI1_FRAME  
_COUNT_LO  
7:0  
R
0x0  
7.6.8.11 CSI1_FRAME_ERR_COUNT_HI Register  
7-156. CSI1_FRAME_ERR_COUNT_HI Register (Address 0x9A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 1, Frame Counter with Errors MSBs  
When read, this register returns the value of bits [15:8] of the 16-bit  
counter csi1_frame_err_count. The LSBs of the counter are sampled  
into the CSI1_FRAME_ERR_COUNT_LO register and the counter is  
cleared.  
CSI1_FRAME_ERR  
_COUNT_HI  
7:0  
R/RC  
0x0  
7.6.8.12 CSI1_FRAME_ERR_COUNT_LO Register  
7-157. CSI1_FRAME_ERR_COUNT_LO Register (Address 0x9B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 1, Frame Counter with Errors LSBs  
When read, this register returns the value of bits [7:0] of the 16-bit  
counter csi1_frame_err_count. The CSI1_FRAME_ERR_COUNT_HI  
register must be read first to snapshot the LSBs of the counter into  
this register.  
CSI1_FRAME_ERR  
_COUNT_LO  
7:0  
R
0x0  
7.6.8.13 CSI1_LINE_COUNT_HI Register  
7-158. CSI1_LINE_COUNT_HI Register (Address 0x9C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 1, Line Counter MSBs  
When read, this register returns the value of bits [15:8] of the 16-bit  
counter csi1_line_count. The LSBs of the counter are sampled into  
the CSI1_LINE_COUNT_LO register and the counter is cleared.  
7:0  
CSI1_LINE_COUNT_HI R/RC  
0x0  
7.6.8.14 CSI1_LINE_COUNT_LO Register  
7-159. CSI1_LINE_COUNT_LO Register (Address 0x9D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 1, Line Counter LSBs  
When read, this register returns the value of bits [7:0] of the 16-bit  
counter csi1_line_count. The CSI1_LINE_COUNT_HI register must  
be read first to snapshot the LSBs of the counter into this register.  
7:0  
CSI1_LINE_COUNT_LO  
R
0x0  
7.6.8.15 CSI1_LINE_ERR_COUNT_HI Register  
7-160. CSI1_LINE_ERR_COUNT_HI Register (Address 0x9E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 1, Line Counter with Errors MSBs  
When read, this register returns the value of bits [15:8] of the 16-bit  
counter csi1_line_err_count. The LSBs of the counter are sampled  
into the CSI1_LINE_ERR_COUNT_LO register and the counter is  
cleared.  
CSI1_LINE_ERR  
_COUNT_HI  
7:0  
R/RC  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
124 Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.8.16 CSI1_LINE_ERR_COUNT_LO Register  
7-161. CSI1_LINE_ERR_COUNT_LO Register (Address 0x9F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Port 1, Line Counter with Errors LSBs  
When read, this register returns the value of bits [7:0] of the 16-bit  
counter csi1_line_err_count. The CSI1_LINE_ERR_COUNT_HI  
register must be read first to snapshot the LSBs of the counter into  
this register.  
CSI1_LINE_ERR  
_COUNT_LO  
7:0  
R
0x0  
7.6.9 RESERVED (Shared)  
7.6.9.1 RESERVED Registers  
7-162. RESERVED Registers (Address 0xA0 - 0xA4)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x0  
Reserved  
7.6.9.2 REFCLK_FREQ Register  
7-163. REFCLK_FREQ Register (Address 0xA5)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
REFCLK_FREQ  
R
0x0  
REFCLK frequency measurement in MHz.  
7.6.9.3 RESERVED Registers  
7-164. RESERVED Registers (Address 0xA6 - 0xAF)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x0  
Reserved  
7.6.10 Indirect Access Registers (Shared)  
7.6.10.1 IND_ACC_CTL Register  
7-165. IND_ACC_CTL Register (Address 0xB0)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:6  
RESERVED  
-
0x0  
Reserved  
Indirect Access Register Select:  
Selects target for register access  
0000 : CSI-2 Pattern Generator & Timing Registers  
0001 : FPD3 RX Port 0 Reserved Registers  
0010 : FPD3 RX Port 1 Reserved Registers  
0011 : FPD3 RX Port 2 Reserved Registers  
0100 : FPD3 RX Port 3 Reserved Registers  
0101 : FPD3 RX Shared Reserved Registers  
0110 : Simultaneous write to FPD3 RX Reserved Registers  
0111 : CSI-2 Reserved Registers  
5:2  
IA_SEL  
R/W  
0x7  
Indirect Access Auto Increment:  
1
0
IA_AUTO_INC  
IA_READ  
R/W  
R/W  
0
0
Enables auto-increment mode. Upon completion of a read or write,  
the register address will automatically be incremented by 1  
Indirect Access Read:  
Setting this allows generation of a read strobe to the selected register  
block upon setting of the IND_ACC_ADDR register. In auto-  
increment mode, read strobes will also be asserted following a read  
of the IND_ACC_DATA register. This function is only required for  
blocks that need to pre-fetch register data.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 125  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.10.2 IND_ACC_ADDR Register  
7-166. IND_ACC_ADDR Register (Address 0xB1)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Indirect Access Register Offset:  
This register contains the 8-bit register offset for the indirect access.  
7:0  
IA_ADDR  
R/W  
0x3A  
7.6.10.3 IND_ACC_DATA Register  
7-167. IND_ACC_DATA Register (Address 0xB2)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Indirect Access Data:  
Writing this register will cause an indirect write of the  
IND_ACC_DATA value to the selected analog block register. Reading  
this register will return the value of the selected block register.  
The default value may be different from a device to a device.  
7:0  
IA_DATA  
R/W  
0x14  
7.6.11 Digital Registers (Shared)  
7.6.11.1 BIST Control Register  
7-168. BIST Control Register (Address 0xB3)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
BIST Output Mode  
00 : No toggling  
01 : Alternating 1/0 toggling  
1x : Toggle based on BIST data  
7:6  
BIST_OUT_MODE  
R/W  
0x0  
5:4  
3
RESERVED  
RESERVED  
-
0x0  
1
Reserved  
Bist Configuration  
1: Reserved  
R/W  
0: Bist configured through bits 2:0 in this register  
BIST Clock Source  
This register field selects the BIST Clock Source at the Serializer.  
These register bits are automatically written to the CLOCK SOURCE  
bits (register offset 0x14) in the Serializer after BIST is enabled. See  
the appropriate Serializer register descriptions for details.  
2:1  
0
BIST_CLOCK_SOURCE R/W  
0
0
BIST Control  
1: Enabled  
0: Disabled  
BIST_EN  
R/W  
7.6.11.2 RESERVED Register  
7-169. RESERVED Register (Address 0xB4)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x25  
Reserved  
7.6.11.3 RESERVED Register  
7-170. RESERVED Register (Address 0xB5)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x00  
Reserved  
7.6.11.4 RESERVED Register  
7-171. RESERVED Register (Address 0xB6)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x18  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
126 Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.11.5 RESERVED Register  
7-172. RESERVED Register (Address 0xB7)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x00  
Reserved  
7.6.11.6 MODE_IDX_STS Register  
7-173. MODE_IDX_STS Register (Address 0xB8)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
IDX Done  
7
IDX_DONE  
R
1
If set, indicates the IDX decode has completed and latched into the  
IDX status bits.  
IDX Decode  
3-bit decode from IDX pin  
6:4  
3
IDX  
R/S  
R
Strap  
1
MODE Done  
MODE_DONE  
MODE  
If set, indicates the MODE decode has completed and latched into  
the MODE status bits.  
MODE Decode  
3-bit decode from MODE pin  
2:0  
R/S  
Strap  
7.6.11.7 LINK_ERROR_COUNT Register  
7-174. LINK_ERROR_COUNT Register (Address 0xB9)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:6  
RESERVED  
-
0x0  
Reserved  
During SFILTER adaption, setting this bit will cause the Lock detect  
circuit to ignore errors during the SFILTER wait period after the  
SFILTER control is updated.  
1: Errors during SFILTER Wait period will be ignored  
0: Errors during SFILTER Wait period will not be ignored and may  
cause loss of Lock  
5
4
LINK_SFIL_WAIT  
R/W  
1
1
Enable serial link data integrity error count  
1: Enable error count  
LINK_ERR_COUNT_EN R/W  
0: DISABLE  
Link error count threshold.  
The Link Error Counter monitors the forward channel link and  
determines when link will be dropped. The link error counter is pixel  
clock based. clk0, clk1, parity, and DCA are monitored for link errors.  
If the error counter is enabled, the deserializer will lose lock once the  
error counter reaches the LINK_ERR_THRESH value. If the link error  
counter is disabled, the deserilizer will lose lock after one error.  
3:0  
LINK_ERR_THRESH  
R/W  
0x3  
7.6.11.8 FPD3_ENC_CTL Register  
Recommended to set bit seven in the FPD-Link III encoder control register to 0 in order to prevent any updates  
of link information values from encoded packets that do not pass CRC check. The FPD-Link III Encoder CRC  
flag must also be in place by setting FPD3_ENC_CRC_DIS (register 0x4A[4]) to 1.  
7-175. FPD3_ENC_CTL (Address 0xBA)  
BIT  
7
FIELD  
TYPE  
R/W  
-
DEFAULT  
DESCRIPTION  
0: Enable FPD-Link III encoder CRC (recommended)  
1: Disable FPD-Link III encoder CRC  
RESERVED  
RESERVED  
1
6:0  
0x03  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 127  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.11.9 RESERVED Register  
7-176. RESERVED Register (Address 0xBB)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x74  
Reserved  
7.6.11.10 FV_MIN_TIME Register  
7-177. FV_MIN_TIME Register (Address 0xBC)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Frame Valid Minimum Time  
This register controls the minimum time the FrameValid (FV) should  
be active before the Raw mode FPD3 receiver generates a  
FrameStart packet. Duration is in FPD3 clock periods.  
7:0  
FRAME_VALID_MIN  
R/W  
0x80  
7.6.11.11 RESERVED Register  
7-178. RESERVED Register (Address 0xBD)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x00  
Reserved  
7.6.11.12 GPIO_PD_CTL Register  
7-179. GPIO_PD_CTL Register (Address 0xBE)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO7 Pull-down Resistor Disable:  
The GPIO pins by default include a pulldown resistor (25-kΩtyp)  
that is automatically enabled when the GPIO is not in an output  
mode. When this bit is set, the pulldown resistor will also be disabled  
when the GPIO pin is in an input only mode.  
7
GPIO7_PD_DIS  
R/W  
0
1 : Disable GPIO pull-down resistor  
0 : Enable GPIO pull-down resistor  
GPIO6 Pull-down Resistor Disable:  
The GPIO pins by default include a pulldown resistor (25-kΩtyp)  
that is automatically enabled when the GPIO is not in an output  
mode. When this bit is set, the pulldown resistor will also be disabled  
when the GPIO pin is in an input only mode.  
1 : Disable GPIO pull-down resistor  
0 : Enable GPIO pull-down resistor  
6
5
4
3
GPIO6_PD_DIS  
GPIO5_PD_DIS  
GPIO4_PD_DIS  
GPIO3_PD_DIS  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
GPIO5 Pull-down Resistor Disable:  
The GPIO pins by default include a pulldown resistor (25-kΩtyp)  
that is automatically enabled when the GPIO is not in an output  
mode. When this bit is set, the pulldown resistor will also be disabled  
when the GPIO pin is in an input only mode.  
1 : Disable GPIO pull-down resistor  
0 : Enable GPIO pull-down resistor  
GPIO4 Pull-down Resistor Disable:  
The GPIO pins by default include a pulldown resistor (25-kΩtyp)  
that is automatically enabled when the GPIO is not in an output  
mode. When this bit is set, the pulldown resistor will also be disabled  
when the GPIO pin is in an input only mode.  
1 : Disable GPIO pull-down resistor  
0 : Enable GPIO pull-down resistor  
GPIO3 Pull-down Resistor Disable:  
The GPIO pins by default include a pulldown resistor (25-kΩtyp)  
that is automatically enabled when the GPIO is not in an output  
mode. When this bit is set, the pulldown resistor will also be disabled  
when the GPIO pin is in an input only mode.  
1 : Disable GPIO pull-down resistor  
0 : Enable GPIO pull-down resistor  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
128 Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
BIT  
7-179. GPIO_PD_CTL Register (Address 0xBE) (continued)  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO2 Pull-down Resistor Disable:  
The GPIO pins by default include a pulldown resistor (25-kΩtyp)  
that is automatically enabled when the GPIO is not in an output  
mode. When this bit is set, the pulldown resistor will also be disabled  
when the GPIO pin is in an input only mode.  
1 : Disable GPIO pull-down resistor  
0 : Enable GPIO pull-down resistor  
2
1
0
GPIO2_PD_DIS  
R/W  
0
GPIO1 Pull-down Resistor Disable:  
The GPIO pins by default include a pulldown resistor (25-kΩtyp)  
that is automatically enabled when the GPIO is not in an output  
mode. When this bit is set, the pulldown resistor will also be disabled  
when the GPIO pin is in an input only mode.  
1 : Disable GPIO pull-down resistor  
0 : Enable GPIO pull-down resistor  
GPIO1_PD_DIS  
GPIO0_PD_DIS  
R/W  
R/W  
0
0
GPIO0 Pull-down Resistor Disable:  
The GPIO pins by default include a pulldown resistor (25-kΩtyp)  
that is automatically enabled when the GPIO is not in an output  
mode. When this bit is set, the pulldown resistor will also be disabled  
when the GPIO pin is in an input only mode.  
1 : Disable GPIO pull-down resistor  
0 : Enable GPIO pull-down resistor  
7.6.11.13 RESERVED Register  
7-180. RESERVED (Address 0xBF)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x00  
Reserved  
7.6.12 RESERVED Registers  
7-181. RESERVED (Address 0xC0 - 0xCF)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x00  
Reserved  
7.6.13 Digital RX Port Debug Registers (Paged)  
Use FPD3_PORT_SEL (0x4C) register to select digital RX Port 0, RX Port1, RX Port 2, or RX Port 3 debug  
registers.  
FPD3 RX Port 0:  
Read: 0x4C[5:4] = 00  
Write: 0x4C[0] = 1  
FPD3 RX Port 1:  
Read: 0x4C[5:4] = 01  
Write: 0x4C[1] = 1  
FPD3 RX Port 2:  
Read: 0x4C[5:4] = 10  
Write: 0x4C[2] = 1  
FPD3 RX Port 3:  
Read: 0x4C[5:4] = 11  
Write: 0x4C[3] = 1  
7.6.13.1 PORT_DEBUG Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 129  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-182. PORT_DEBUG Register (Address 0xD0)  
BIT  
7
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RESERVED  
RESERVED  
-
-
0
0
Reserved  
6
Reserved  
Serializer BIST active  
This register indicates the Serializer is in BIST mode. If the  
Deserializer is not in BIST mode, this could indicate an error  
condition.  
5
SER_BIST_ACT  
R
0
4:2  
1
RESERVED  
-
0x0  
0
Reserved  
FORCE_BC_ERRORS  
R/W  
This bit introduces continuous errors into Back channel frame.  
This bit introduces one error into Back channel frame. Self clearing  
bit.  
0
FORCE_1_BC_ERROR R/W/SC  
0
7.6.13.2 RESERVED Register  
7-183. RESERVED Register (Address 0xD1)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x43  
Reserved  
7.6.13.3 AEQ_CTL2 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-184. AEQ_CTL2 Register (Address 0xD2)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Time to wait for lock before incrementing the EQ to next setting  
000 : 164 us  
001 : 328 us  
010 : 655 us  
011 : 1.31 ms  
100 : 2.62 ms  
101 : 5.24 ms  
110 : 10.5ms  
111 : 21.0 ms  
ADAPTIVE_EQ  
_RELOCK_TIME  
7:5  
R/W  
0x4  
AEQ First Lock Mode This register bit controls the Adaptive Equalizer  
algorithm operation at initial Receiver Lock.  
0 : Initial AEQ lock may occur at any value  
1 : Initial Receiver lock will restart AEQ at 0, providing a more  
deterministic initial AEQ value  
AEQ_1ST_LOCK  
_MODE  
4
3
R/W  
1
0
Set high to restart AEQ adaptation from initial value. This bit is self  
clearing. Adaption is restarted.  
AEQ_RESTART  
R/W/SC  
AEQ adaptation starts from a pre-set floor value rather than from  
zero - good in long cable situations  
2
SET_AEQ_FLOOR  
RESERVED  
R/W  
-
1
1:0  
0x0  
Reserved  
7.6.13.4 AEQ_STATUS Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-185. AEQ_STATUS Register (Address 0xD3)  
BIT  
7:6  
5:3  
2:0  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
RESERVED  
EQ_STATUS_2  
EQ_STATUS_1  
-
0x0  
Reserved  
R
R
0x0  
Adaptive EQ Status 2  
Adaptive EQ Status 1  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
130 Submit Document Feedback  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.13.5 ADAPTIVE_EQ_BYPASS Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-186. ADAPTIVE EQ BYPASS Register (Address 0xD4)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
EQ_STAGE_1  
_SELECT_VALUE  
7:5  
R/W  
0x3  
EQ select value [5:3] - Used if adaptive EQ is bypassed.  
Adaptive Equalizer lock mode  
When set to a 1, Receiver Lock status requires the Adaptive  
Equalizer to complete adaption.  
4
AEQ_LOCK_MODE  
R/W  
0
When set to a 0, Receiver Lock is based only on the Lock circuit  
itself. AEQ may not have stabilized.  
EQ_STAGE_2  
_SELECT_VALUE  
3:1  
0
R/W  
R/W  
0x0  
0
EQ select value [2:0] - Used if adaptive EQ is bypassed.  
ADAPTIVE_EQ  
_BYPASS  
1: Disable adaptive EQ  
0: Enable adaptive EQ  
7.6.13.6 AEQ_MIN_MAX Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-187. AEQ_MIN_MAX Register (Address 0xD5)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Adaptive Equalizer Maximum value  
This register sets the maximum value for the Adaptive EQ algorithm.  
7:4  
AEQ_MAX  
R/W  
0xF  
ADAPTIVE_EQ  
_FLOOR_VALUE  
When AEQ floor is enabled by register 0xD2[2] the starting setting is  
given by this register.  
3:0  
R/W  
0x2  
7.6.13.7 SFILTER_STS_0 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-188. SFILTER_STS_0 Register (Address 0xD6)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
SFILTER has reached limit  
When set, the adaptive control of the SFILTER has reached the  
maximum limit and the algorithm is unable to further adapt. This  
register is cleared on read.  
7
SFILTER_MAXED  
R/RC  
0
Indicates SFILTER setting is stable  
This register bit value is latched low. Read to clear for current status.  
6
SFILTER_STABLE  
SFILTER_CDLY  
R/LL  
R
0
SFITLER Clock Delay  
Current value of clock delay control to SFILTER circuit  
5:0  
0x0  
7.6.13.8 SFILTER_STS_1 Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-189. SFILTER_STS_1 Register (Address 0xD7)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
-
0
Reserved  
SFILTER measurement error detect  
6
SFILTER_ERROR  
R/RC  
0
If this bit is set, one or more measurements since the last read  
reported invalid results. This register is cleared on read.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 131  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-189. SFILTER_STS_1 Register (Address 0xD7) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
SFITLER Data Delay  
5:0  
SFILTER_DDLY  
R
0x0  
Current value of data delay control to SFILTER circuit (The readout  
may vary depending on device status).  
7.6.13.9 PORT_ICR_HI Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-190. PORT_ICR_HI Register (Address 0xD8)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:3  
RESERVED  
-
0x0  
Reserved  
Interrupt on FPD-Link III Receiver Encoding Error  
When enabled, an interrupt is generated on detection of an encoding  
error on the FPD-Link III interface for the receive port as reported in  
the FPD3_ENC_ERROR bit in the RX_PORT_STS2 register  
2
1
IE_FPD3_ENC_ERR  
IE_BCC_SEQ_ERR  
R/W  
R/W  
0
0
Interrupt on BCC SEQ Sequence Error When enabled, an interrupt is  
generated if a Sequence Error is detected for the Bi-directional  
Control Channel forward channel receiver as reported in the  
BCC_SEQ_ERROR bit in the RX_PORT_STS1 register.  
Interrupt on BCC CRC error detect  
When enabled, an interrupt is generated if a CRC error is detected  
on a Bi-directional Control Channel frame received over the FPD-  
Link III forward channel as reported in the BCC_CRC_ERROR bit in  
the RX_PORT_STS1 register.  
0
IE_BCC_CRC_ERR  
R/W  
0
7.6.13.10 PORT_ICR_LO Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-191. PORT_ICR_LO Register (Address 0xD9)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
-
0
Reserved  
Interrupt on Video Line length  
When enabled, an interrupt is generated if the length of the video line  
changes. Status is reported in the LINE_LEN_CHG bit in the  
RX_PORT_STS2 register.  
6
5
IE_LINE_LEN_CHG  
IE_LINE_CNT_CHG  
R/W  
R/W  
0
0
Interrupt on Video Line count  
When enabled, an interrupt is generated if the number of video lines  
per frame changes. Status is reported in the LINE_CNT_CHG bit in  
the RX_PORT_STS2 register.  
Interrupt on Receiver Buffer Error  
When enabled, an interrupt is generated if the Receive Buffer  
overflow is detected as reported in the BUFFER_ERROR bit in the  
RX_PORT_STS2 register.  
4
3
2
IE_BUFFER_ERR  
RESERVED  
R/W  
-
0
0
0
Reserved  
Interrupt on FPD-Link III Receiver Parity Error  
When enabled, an interrupt is generated on detection of parity errors  
on the FPD-Link III interface for the receive port. Parity error status is  
reported in the PARITY_ERROR bit in the RX_PORT_STS1 register.  
IE_FPD3_PAR_ERR  
R/W  
Interrupt on change in Port PASS status  
When enabled, an interrupt is generated on a change in receiver port  
valid status as reported in the PORT_PASS bit in the PORT_STS1  
register.  
1
IE_PORT_PASS  
R/W  
0
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
132 Submit Document Feedback  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-191. PORT_ICR_LO Register (Address 0xD9) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Interrupt on change in Lock Status  
When enabled, an interrupt is generated on a change in lock status.  
Status is reported in the LOCK_STS_CHG bit in the  
RX_PORT_STS1 register.  
0
IE_LOCK_STS  
R/W  
0
7.6.13.11 PORT_ISR_HI Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-192. PORT_ISR_HI Register (Address 0xDA)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:3  
RESERVED  
-
0x0  
Reserved  
FPD-Link III Receiver Encode Error Interrupt Status  
An encoding error on the FPD-Link III interface for the receive port  
has been detected. Status is reported in the FPD3_ENC_ERROR bit  
in the RX_PORT_STS2 register.  
This interrupt condition is cleared by reading the RX_PORT_STS2  
register.  
2
1
IS_FPD3_ENC_ERR  
IS_BCC_SEQ_ERR  
R
R
0
0
BCC CRC Sequence Error Interrupt Status  
A Sequence Error has been detected for the Bi-directional Control  
Channel forward channel receiver. Status is reported in the  
BCC_SEQ_ERROR bit in the RX_PORT_STS1 register.  
This interrupt condition is cleared by reading the RX_PORT_STS1  
register.  
BCC CRC error detect Interrupt Status  
A CRC error has been detected on a Bi-directional Control Channel  
frame received over the FPD-Link III forward channel. Status is  
reported in the BCC_CRC_ERROR bit in the RX_PORT_STS1  
register.  
0
IS_BCC_CRC_ERR  
R
0
This interrupt condition is cleared by reading the RX_PORT_STS1  
register.  
7.6.13.12 PORT_ISR_LO Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-193. PORT_ISR_LO Register (Address 0xDB)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7
RESERVED  
-
0
Reserved  
Video Line Length Interrupt Status  
A change in video line length has been detected. Status is reported  
in the LINE_LEN_CHG bit in the RX_PORT_STS2 register.  
This interrupt condition is cleared by reading the RX_PORT_STS2  
register.  
6
5
IS_LINE_LEN_CHG  
IS_LINE_CNT_CHG  
R
R
0
0
Video Line Count Interrupt Status  
A change in number of video lines per frame has been detected.  
Status is reported in the LINE_CNT_CHG bit in the RX_PORT_STS2  
register.  
This interrupt condition is cleared by reading the RX_PORT_STS2  
register.  
Receiver Buffer Error Interrupt Status  
A Receive Buffer overflow has been detected as reported in the  
BUFFER_ERROR bit in the RX_PORT_STS2 register. This interrupt  
condition is cleared by reading the RX_PORT_STS2 register.  
4
3
IS_BUFFER_ERR  
RESERVED  
R
-
0
0
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 133  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-193. PORT_ISR_LO Register (Address 0xDB) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
FPD-Link III Receiver Parity Error Interrupt Status  
A parity error on the FPD-Link III interface for the receive port has  
been detected. Parity error status is reported in the PARITY_ERROR  
bit in the RX_PORT_STS1 register.  
2
IS_FPD3_PAR_ERR  
R
0
This interrupt condition is cleared by reading the RX_PORT_STS1  
register.  
Port Valid Interrupt Status  
A change in receiver port valid status as reported in the PORT_PASS  
bit in the PORT_STS1 register. This interrupt condition is cleared by  
reading the RX_PORT_STS1 register.  
1
0
IS_PORT_PASS  
IS_LOCK_STS  
R
R
0
0
Lock Interrupt Status  
A change in lock status has been detected. Status is reported in the  
LOCK_STS_CHG bit in the RX_PORT_STS1 register.  
This interrupt condition is cleared by reading the RX_PORT_STS1  
register.  
7.6.13.13 FC_GPIO_STS Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-194. FC_GPIO_STS Register (Address 0xDC)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO3 Interrupt Status  
7
GPIO3_INT_STS  
R/RC  
0
This bit indicates an interrupt condition has been met for GPIO3. This  
bit is cleared on read.  
GPIO2 Interrupt Status  
6
5
4
GPIO2_INT_STS  
GPIO1_INT_STS  
GPIO0_INT_STS  
R/RC  
R/RC  
R/RC  
0
0
0
This bit indicates an interrupt condition has been met for GPIO2. This  
bit is cleared on read.  
GPIO1 Interrupt Status  
This bit indicates an interrupt condition has been met for GPIO1. This  
bit is cleared on read.  
GPIO0 Interrupt Status  
This bit indicates an interrupt condition has been met for GPIO0. This  
bit is cleared on read.  
Forward Channel GPIO3 Status  
This bit indicates the current value for forward channel GPIO3.  
3
2
1
0
FC_GPIO3_STS  
FC_GPIO2_STS  
FC_GPIO1_STS  
FC_GPIO0_STS  
R
R
R
R
0
0
0
0
Forward Channel GPIO2 Status  
This bit indicates the current value for forward channel GPIO3.  
Forward Channel GPIO1 Status  
This bit indicates the current value for forward channel GPIO3.  
Forward Channel GPIO0 Status  
This bit indicates the current value for forward channel GPIO3.  
7.6.13.14 FC_GPIO_ICR Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-195. FC_GPIO_ICR Register (Address 0xDD)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO3 Fall Interrupt Enable  
7
GPIO3_FALL_IE  
W
0
If this bit is set, an interrupt will be generated based on detection of a  
falling edge on GPIO3.  
GPIO3 Rise Interrupt Enable  
6
GPIO3_RISE_IE  
W
0
If this bit is set, an interrupt will be generated based on detection of a  
rising edge on GPIO3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
134 Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-195. FC_GPIO_ICR Register (Address 0xDD) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
GPIO2 Fall Interrupt Enable  
5
GPIO2_FALL_IE  
W
0
If this bit is set, an interrupt will be generated based on detection of a  
falling edge on GPIO2.  
GPIO2 Rise Interrupt Enable  
4
3
2
1
0
GPIO2_RISE_IE  
GPIO1_FALL_IE  
GPIO1_RISE_IE  
GPIO0_FALL_IE  
GPIO1_RISE_IE  
W
W
W
W
W
0
0
0
0
0
If this bit is set, an interrupt will be generated based on detection of a  
rising edge on GPIO2.  
GPIO1 Fall Interrupt Enable  
If this bit is set, an interrupt will be generated based on detection of a  
falling edge on GPIO1.  
GPIO1 Rise Interrupt Enable  
If this bit is set, an interrupt will be generated based on detection of a  
rising edge on GPIO1.  
GPIO0 Fall Interrupt Enable  
If this bit is set, an interrupt will be generated based on detection of a  
falling edge on GPIO0.  
GPIO3 Rise Interrupt Enable  
If this bit is set, an interrupt will be generated based on detection of a  
rising edge on GPIO0.  
7.6.13.15 SEN_INT_RISE_STS Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-196. SEN_INT_RISE_STS Register (Address 0xDE)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Sensor Interrupt Rise Status  
This register provides the interrupt status for rising edge transitions  
on the bits in SENSOR_STS_0. If a mask bit is set in the  
SEN_INT_RISE_MASK register, a rising edge transition on the  
corresponding SENSOR_STS_0 bit will generate an interrupt that will  
be latched in this register.  
7:0  
SEN_INT_RISE  
R/RC  
0x00  
7.6.13.16 SEN_INT_FALL_STS Register  
RX port-specific register. The FPD-Link III Port Select register 0x4C configures which unique Rx port registers  
can be accessed by I2C read and write commands.  
7-197. SEN_INT_FALL_STS Register (Address 0xDF)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Sensor Interrupt Fall Status  
This register provides the interrupt status for falling edge transitions  
on the bits in SENSOR_STS_0. If a mask bit is set in the  
SEN_INT_FALL_MASK register, a falling edge transition on the  
corresponding SENSOR_STS_0 bit will generate an interrupt that will  
be latched in this register.  
7:0  
SEN_INT_FALL  
R/RC  
0x00  
7.6.14 RESERVED Registers  
7-198. RESERVED (Address 0xE0 - 0xEF)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x00  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 135  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.15 FPD3 RX ID Registers (Shared)  
7.6.15.1 FPD3_RX_ID0 Register  
7-199. FPD3_RX_ID0 Register (Address 0xF0)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
FPD3_RX_ID0  
R
0x5F  
FPD3_RX_ID0: First byte ID code: _’  
7.6.15.2 FPD3_RX_ID1 Register  
7-200. FPD3_RX_ID1 Register (Address 0xF1)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
FPD3_RX_ID1  
R
0x55  
FPD3_RX_ID1: 2nd byte of ID code: U’  
7.6.15.3 FPD3_RX_ID2 Register  
7-201. FPD3_RX_ID2 Register (Address 0xF2)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
FPD3_RX_ID2  
R
0x42  
FPD3_RX_ID2: 3rd byte of ID code: B’  
7.6.15.4 FPD3_RX_ID3 Register  
7-202. FPD3_RX_ID3 Register (Address 0xF3)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
FPD3_RX_ID3  
R
0x39  
FPD3_RX_ID3: 4th byte of ID code: 9’  
7.6.15.5 FPD3_RX_ID4 Register  
7-203. FPD3_RX_ID4 Register (Address 0xF4)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
FPD3_RX_ID4  
R
0x36  
FPD3_RX_ID4: 5th byte of ID code: '6'  
7.6.15.6 FPD3_RX_ID5 Register  
7-204. FPD3_RX_ID5 Register (Address 0xF5)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
FPD3_RX_ID5  
R
0x30  
FPD3_RX_ID5: 6th byte of ID code: '0'  
7.6.16 RESERVED Registers  
7-205. RESERVED (Address 0xF6 - 0xF7)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x00  
Reserved  
7.6.17 RX Port I2C Addressing Registers (Shared)  
7.6.17.1 I2C_RX0_ID Register  
As an alternative to paging to access FPD-Link III receive port 0 registers, a separate I2C address may be  
enabled to allow direct access to the port 0 specific registers. The I2C_RX_0_ID register provides a simpler  
method of accessing device registers specifically for port 0 without having to use the paging function to select  
the register page. Using this address also allows access to all shared registers.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
136 Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
BIT  
7-206. I2C_RX0_ID Register (Address 0xF8)  
FIELD  
TYPE  
R/W  
-
DEFAULT  
DESCRIPTION  
7-bit Receive Port 0 I2C ID  
Configures the decoder for detecting transactions designated for  
Receiver port 0 registers. This provides a simpler method of  
accessing device registers specifically for port 0 without having to  
use the paging function to select the register page. A value of 0 in  
this field disables the Port0 decoder.  
7:1  
0
RX_PORT0_ID  
RESERVED  
0x0  
0
Reserved  
7.6.17.2 I2C_RX1_ID Register  
As an alternative to paging to access FPD-Link III receive port 1 registers, a separate I2C address may be  
enabled to allow direct access to the port 1 specific registers. The I2C_RX_1_ID register provides a simpler  
method of accessing device registers specifically for port 1 without having to use the paging function to select  
the register page. Using this address also allows access to all shared registers.  
7-207. I2C_RX1_ID Register (Address 0xF9)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
-
DEFAULT  
DESCRIPTION  
7-bit Receive Port 1 I2C ID  
Configures the decoder for detecting transactions designated for  
Receiver port 1 registers. This provides a simpler method of  
accessing device registers specifically for port 1 without having to  
use the paging function to select the register page. A value of 0 in  
this field disables the Port1 decoder.  
RX_PORT1_ID  
RESERVED  
0x0  
0
Reserved  
7.6.17.3 I2C_RX2_ID Register  
As an alternative to paging to access FPD-Link III receive port 2 registers, a separate I2C address may be  
enabled to allow direct access to the port 2 specific registers. The I2C_RX_2_ID register provides a simpler  
method of accessing device registers specifically for port 2 without having to use the paging function to select  
the register page. Using this address also allows access to all shared registers.  
7-208. I2C_RX2_ID Register (Address 0xFA)  
BIT  
7:1  
0
FIELD  
TYPE  
R/W  
-
DEFAULT  
DESCRIPTION  
7-bit Receive Port 2 I2C ID  
Configures the decoder for detecting transactions designated for  
Receiver port 2 registers. This provides a simpler method of  
accessing device registers specifically for port 2 without having to  
use the paging function to select the register page. A value of 0 in  
this field disables the Port2 decoder.  
RX_PORT2_ID  
RESERVED  
0x0  
0
Reserved  
7.6.17.4 I2C_RX3_ID Register  
As an alternative to paging to access FPD-Link III receive port 3 registers, a separate I2C address may be  
enabled to allow direct access to the port 3 specific registers. The I2C_RX_3_ID register provides a simpler  
method of accessing device registers specifically for port 3 without having to use the paging function to select  
the register page. Using this address also allows access to all shared registers.  
7-209. I2C_RX3_ID Register (Address 0xFB)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7-bit Receive Port 3 I2C ID  
Configures the decoder for detecting transactions designated for  
Receiver port 3 registers. This provides a simpler method of  
accessing device registers specifically for port 3 without having to  
use the paging function to select the register page. A value of 0 in  
this field disables the Port3 decoder.  
7:1  
RX_PORT3_ID  
R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 137  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-209. I2C_RX3_ID Register (Address 0xFB) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
0
RESERVED  
-
0
Reserved  
7.6.18 RESERVED Registers  
7-210. RESERVED (Address 0xFC - 0xFF)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x00  
Reserved  
7.6.19 Indirect Access Registers  
Several functional blocks include register sets contained in the Indirect Access map (Indirect Register Map  
Description); i.e. Pattern Generator, CSI-2 timing, and Analog controls. Register access is provided via an  
indirect access mechanism through the Indirect Access registers (IND_ACC_CTL, IND_ACC_ADDR, and  
IND_ACC_DATA). These registers are located at offsets 0xB0-0xB2 in the main register space.  
The indirect address mechanism involves setting the control register to select the desired block, setting the  
register offset address, and reading or writing the data register. In addition, an auto-increment function is  
provided in the control register to automatically increment the offset address following each read or write of the  
data register.  
For writes, the process is as follows:  
1. Write to the IND_ACC_CTL register to select the desired register block  
2. Write to the IND_ACC_ADDR register to set the register offset  
3. Write the data value to the IND_ACC_DATA register  
If auto-increment is set in the IND_ACC_CTL register, repeating step 3 will write additional data bytes to  
subsequent register offset locations  
For reads, the process is as follows:  
1. Write to the IND_ACC_CTL register to select the desired register block  
2. Write to the IND_ACC_ADDR register to set the register offset  
3. Read from the IND_ACC_DATA register  
If auto-increment is set in the IND_ACC_CTL register, repeating step 3 will read additional data bytes from  
subsequent register offset locations.  
7.6.20 Digital Page 0 Indirect Registers  
7.6.20.1 RESERVED  
7-211. RESERVED Register (Address 0x00)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x0  
Reserved  
7.6.20.2 PGEN_CTL  
7-212. PGEN_CTL Register (Address 0x01)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:1  
RESERVED  
-
0x0  
Reserved  
Pattern Generator Enable  
1: Enable Pattern Generator  
0: Disable Pattern Generator  
0
PGEN_ENABLE  
R/W  
0
Copyright © 2023 Texas Instruments Incorporated  
138 Submit Document Feedback  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.20.3 PGEN_CFG  
7-213. PGEN_CFG Register (Address 0x02)  
BIT  
7
FIELD  
TYPE  
R/W  
-
DEFAULT  
DESCRIPTION  
Fixed Pattern Enable  
Setting this bit enables Fixed Color Patterns.  
0 : Send Color Bar Pattern  
PGEN_FIXED_EN  
RESERVED  
0
0
1 : Send Fixed Color Pattern  
6
Reserved  
Number of Color Bars  
00 : 1 Color Bar  
5:4  
3:0  
NUM_CBARS  
BLOCK_SIZE  
R/W  
R/W  
0x3  
0x3  
01 : 2 Color Bars  
10 : 4 Color Bars  
11 : 8 Color Bars  
Block Size  
For Fixed Color Patterns, this field controls the size of the fixed color  
field in bytes. Allowed values are 1 to 15.  
7.6.20.4 PGEN_CSI_DI  
7-214. PGEN_CSI_DI Register (Address 0x03)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
CSI-2 Virtual Channel Identifier  
7:6  
PGEN_CSI_VC  
R/W  
0x0  
This field controls the value sent in the CSI-2 packet for the Virtual  
Channel Identifier  
CSI-2 Data Type  
5:0  
PGEN_CSI_DT  
R/W  
0x24  
This field controls the value sent in the CSI-2 packet for the Data  
Type. The default value (0x24) indicates RGB888.  
7.6.20.5 PGEN_LINE_SIZE1  
7-215. PGEN_LINE_SIZE1 Register (Address 0x04)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Most significant byte of the Pattern Generator line size. This is the  
active line length in bytes. Default setting is for 1920 bytes for a 640  
pixel line width.  
7:0  
PGEN_LINE_SIZE[15:8] R/W  
0x07  
7.6.20.6 PGEN_LINE_SIZE0  
7-216. PGEN_LINE_SIZE0 Register (Address 0x05)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Least significant byte of the Pattern Generator line size. This is the  
active line length in bytes. Default setting is for 1920 bytes for a 640  
pixel line width.  
7:0  
PGEN_LINE_SIZE[7:0]  
R/W  
0x80  
7.6.20.7 PGEN_BAR_SIZE1  
7-217. PGEN_BAR_SIZE1 Register (Address 0x06)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Most significant byte of the Pattern Generator color bar size. This is  
the active length in bytes for the color bars. This value is used for all  
except the last color bar. The last color bar is determined by the  
remaining bytes as defined by the PGEN_LINE_SIZE value.  
7:0  
PGEN_BAR_SIZE[15:8] R/W  
0x0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 139  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.20.8 PGEN_BAR_SIZE0  
7-218. PGEN_BAR_SIZE0 Register (Address 0x07)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Least significant byte of the Pattern Generator color bar size. This is  
the active length in bytes for the color bars. This value is used for all  
except the last color bar. The last color bar is determined by the  
remaining bytes as defined by the PGEN_LINE_SIZE value.  
7:0  
PGEN_BAR_SIZE[7:0]  
R/W  
0xF0  
7.6.20.9 PGEN_ACT_LPF1  
7-219. PGEN_ACT_LPF1 Register (Address 0x08)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Active Lines Per Frame  
7:0  
PGEN_ACT_LPF[15:8]  
R/W  
0x01  
Most significant byte of the number of active lines per frame. Default  
setting is for 480 active lines per frame.  
7.6.20.10 PGEN_ACT_LPF0  
7-220. PGEN_ACT_LPF0 Register (Address 0x09)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Active Lines Per Frame  
7:0  
PGEN_ACT_LPF[7:0]  
R/W  
0xE0  
Least significant byte of the number of active lines per frame. Default  
setting is for 480 active lines per frame.  
7.6.20.11 PGEN_TOT_LPF1  
7-221. PGEN_TOT_LPF1 Register (Address 0x0A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Total Lines Per Frame  
7:0  
PGEN_TOT_LPF[15:8]  
R/W  
0x02  
Most significant byte of the number of total lines per frame including  
vertical blanking  
7.6.20.12 PGEN_TOT_LPF0  
7-222. PGEN_TOT_LPF0 Register (Address 0x0B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Total Lines Per Frame  
7:0  
PGEN_TOT_LPF[7:0]  
R/W  
0x0D  
Least significant byte of the number of total lines per frame including  
vertical blanking  
7.6.20.13 PGEN_LINE_PD1  
7-223. PGEN_LINE_PD1 Register (Address 0x0C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Line Period  
Most significant byte of the line period.  
In 800 Mbps and 1.6 Gbps CSI-2 modes, units are 10 ns and the  
default setting for the line period registers sets a line period of 31.75  
microseconds.  
7:0  
PGEN_LINE_PD[15:8]  
R/W  
0x0C  
In 1.2 Gbps CSI-2 mode, units are 13.33 ns and the default setting  
for the line period registers sets a line period of 42.33 microseconds.  
In 400 Mbps CSI-2 mode, units are 20ns and the default setting for  
the line period registers sets a line period of 63.5 microseconds.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
140 Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.20.14 PGEN_LINE_PD0  
7-224. PGEN_LINE_PD0 Register (Address 0x0D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Line Period  
Least significant byte of the line period.  
In 800 Mbps and 1.6 Gbps CSI-2 modes, units are 10 ns and the  
default setting for the line period registers sets a line period of 31.75  
microseconds.  
7:0  
PGEN_LINE_PD[7:0]  
R/W  
0x67  
In 1.2 Gbps CSI-2 mode, units are 13.33 ns and the default setting  
for the line period registers sets a line period of 42.33 microseconds.  
In 400 Mbps CSI-2 mode, units are 20ns and the default setting for  
the line period registers sets a line period of 63.5 microseconds.  
7.6.20.15 PGEN_VBP  
7-225. PGEN_VBP Register (Address 0x0E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Vertical Back Porch  
This value provides the vertical back porch portion of the vertical  
blanking interval. This value provides the number of blank lines  
between the FrameStart packet and the first video data packet.  
7:0  
PGEN_VBP  
R/W  
0x21  
7.6.20.16 PGEN_VFP  
7-226. Register (Address 0x0F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Vertical Front Porch  
This value provides the vertical front porch portion of the vertical  
blanking interval. This value provides the number of blank lines  
between the last video line and the FrameEnd packet.  
7:0  
PGEN_VFP  
R/W  
0x0A  
7.6.20.17 PGEN_COLOR0  
7-227. PGEN_COLOR0 Register (Address 0x10)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 0  
For Reference Color Bar Patterns, this register controls the byte data  
value sent during color bar 0.For Fixed Color Patterns, this register  
controls the first byte of the fixed color pattern.  
7:0  
PGEN_COLOR0  
R/W  
0xAA  
7.6.20.18 PGEN_COLOR1  
7-228. PGEN_COLOR1 Register (Address 0x11)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 1  
For Reference Color Bar Patterns, this register controls the byte data  
value sent during color bar 1.For Fixed Color Patterns, this register  
controls the second byte of the fixed color pattern.  
7:0  
PGEN_COLOR1  
R/W  
0x33  
7.6.20.19 PGEN_COLOR2  
7-229. PGEN_COLOR2 Register (Address 0x12)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 2  
For Reference Color Bar Patterns, this register controls the byte data  
value sent during color bar 2.For Fixed Color Patterns, this register  
controls the third byte of the fixed color pattern.  
7:0  
PGEN_COLOR2  
R/W  
0xF0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 141  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.20.20 PGEN_COLOR3  
7-230. PGEN_COLOR3 Register (Address 0x13)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 3  
For Reference Color Bar Patterns, this register controls the byte data  
value sent during color bar 3.For Fixed Color Patterns, this register  
controls the fourth byte of the fixed color pattern.  
7:0  
PGEN_COLOR3  
R/W  
0x7F  
7.6.20.21 PGEN_COLOR4  
7-231. PGEN_COLOR1 Register (Address 0x14)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 4  
For Reference Color Bar Patterns, this register controls the byte data  
value sent during color bar 4.For Fixed Color Patterns, this register  
controls the fifth byte of the fixed color pattern.  
7:0  
PGEN_COLOR4  
R/W  
0x55  
7.6.20.22 PGEN_COLOR5  
7-232. PGEN_COLOR5 Register (Address 0x15)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 5  
For Reference Color Bar Patterns, this register controls the byte data  
value sent during color bar 5.For Fixed Color Patterns, this register  
controls the sixth byte of the fixed color pattern.  
7:0  
PGEN_COLOR5  
R/W  
0xCC  
7.6.20.23 PGEN_COLOR6  
7-233. PGEN_COLOR6 Register (Address 0x16)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 6  
For Reference Color Bar Patterns, this register controls the byte data  
value sent during color bar 6.For Fixed Color Patterns, this register  
controls the seventh byte of the fixed color pattern.  
7:0  
PGEN_COLOR6  
R/W  
0x0F  
7.6.20.24 PGEN_COLOR7  
7-234. PGEN_COLOR7 Register (Address 0x17)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 7  
For Reference Color Bar Patterns, this register controls the byte data  
value sent during color bar 7.For Fixed Color Patterns, this register  
controls the eighth byte of the fixed color pattern.  
7:0  
PGEN_COLOR7  
R/W  
0x80  
7.6.20.25 PGEN_COLOR8  
7-235. PGEN_COLOR8 Register (Address 0x18)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 8  
7:0  
PGEN_COLOR8  
R/W  
0x0  
For Fixed Color Patterns, this register controls the ninth byte of the  
fixed color pattern.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
142 Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.20.26 PGEN_COLOR9  
7-236. PGEN_COLOR1 Register (Address 0x19)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 9  
7:0  
PGEN_COLOR9  
R/W  
0x0  
For Fixed Color Patterns, this register controls the tenth byte of the  
fixed color pattern.  
7.6.20.27 PGEN_COLOR10  
7-237. PGEN_COLOR10 Register (Address 0x1A)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 10  
7:0  
PGEN_COLOR10  
R/W  
0x0  
For Fixed Color Patterns, this register controls the eleventh byte of  
the fixed color pattern.  
7.6.20.28 PGEN_COLOR11  
7-238. PGEN_COLOR11 Register (Address 0x1B)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 11  
7:0  
PGEN_COLOR11  
R/W  
0x0  
For Fixed Color Patterns, this register controls the twelfth byte of the  
fixed color pattern.  
7.6.20.29 PGEN_COLOR12  
7-239. PGEN_COLOR12 Register (Address 0x1C)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 12  
7:0  
PGEN_COLOR12  
R/W  
0x0  
For Fixed Color Patterns, this register controls the thirteenth byte of  
the fixed color pattern.  
7.6.20.30 PGEN_COLOR13  
7-240. PGEN_COLOR13 Register (Address 0x1D)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 13  
7:0  
PGEN_COLOR13  
R/W  
0x0  
For Fixed Color Patterns, this register controls the fourteenth byte of  
the fixed color pattern.  
7.6.20.31 PGEN_COLOR14  
7-241. PGEN_COLOR14 Register (Address 0x1E)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Pattern Generator Color 14  
7:0  
PGEN_COLOR14  
R/W  
0x0  
For Fixed Color Patterns, this register controls the fifteenth byte of  
the fixed color pattern.  
7.6.20.32 PGEN_COLOR15  
7-242. PGEN_COLOR15 Register (Address 0x1F)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
7:0  
RESERVED  
-
0x0  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 143  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.20.33 CSI0_TCK_PREP  
7-243. CSI0_TCK_PREP Register (Address 0x40)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Tck-prep parameter  
7
MR_TCK_PREP_OV  
R/W  
0
0: Tck-prep is automatically determined  
1: Override Tck-prep with value in bits 6:0 of this register  
Tck-prep value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_TCK_PREP  
0x5  
7.6.20.34 CSI0_TCK_ZERO  
7-244. CSI0_TCK_ZERO Register (Address 0x41)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Tck-zero parameter  
7
MR_TCK_ZERO_OV  
R/W  
0
0: Tck-zero is automatically determined  
1: Override Tck-zero with value in bits 6:0 of this register  
Tck-zero value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_TCK_ZERO  
0x1B  
7.6.20.35 CSI0_TCK_TRAIL  
7-245. CSI0_TCK_TRAIL Register (Address 0x42)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Tck-trail parameter  
7
MR_TCK_TRAIL_OV  
R/W  
0
0: Tck-trail is automatically determined  
1: Override Tck-trail with value in bits 6:0 of this register  
Tck-trail value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_TCK_TRAIL  
0x0B  
7.6.20.36 CSI0_TCK_POST  
7-246. CSI0_TCK_POST Register (Address 0x43)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Tck-post parameter  
7
MR_TCK_POST_OV  
R/W  
0
0: Tck-post is automatically determined  
1: Override Tck-post with value in bits 6:0 of this register  
Tck-post value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_TCK_POST  
0x0A  
7.6.20.37 CSI0_THS_PREP  
7-247. CSI0_THS_PREP Register (Address 0x44)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Ths-prep parameter  
7
MR_THS_PREP_OV  
R/W  
0
0: Ths-prep is automatically determined  
1: Override Ths-prep with value in bits 6:0 of this register  
Copyright © 2023 Texas Instruments Incorporated  
144 Submit Document Feedback  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-247. CSI0_THS_PREP Register (Address 0x44) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Ths-prep value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_THS_PREP  
0x6  
7.6.20.38 CSI0_THS_ZERO  
7-248. CSI0_THS_ZERO Register (Address 0x45)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Ths-zero parameter  
7
MR_THS_ZERO_OV  
R/W  
0
0: Ths-zero is automatically determined  
1: Override Ths-zero with value in bits 6:0 of this register  
Ths-zero value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_THS_ZERO  
0x0C  
7.6.20.39 CSI0_THS_TRAIL  
7-249. CSI0_THS_TRAIL Register (Address 0x46)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Ths-trail parameter  
7
MR_THS_TRAIL_OV  
R/W  
0
0: Ths-trail is automatically determined  
1: Override Ths-trail with value in bits 6:0 of this register  
Ths-trail value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_THS_TRAIL  
0x8  
7.6.20.40 CSI0_THS_EXIT  
7-250. CSI0_THS_EXIT Register (Address 0x47)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Ths-exit parameter  
7
MR_THS_EXIT_OV  
R/W  
0
0: Ths-exit is automatically determined  
1: Override Ths-exit with value in bits 6:0 of this register  
Ths-exit value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_THS_EXIT  
0x0B  
7.6.20.41 CSI0_TPLX  
7-251. CSI0_TPLX Register (Address 0x48)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Tplx parameter  
7
MR_TPLX_OV  
R/W  
0
0: Tplx is automatically determined  
1: Override Tplx with value in bits 6:0 of this register  
Tplx value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_TPLX  
0x6  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 145  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7.6.20.42 CSI1_TCK_PREP  
7-252. CSI1_TCK_PREP Register (Address 0x60)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Tck-prep parameter  
7
MR_TCK_PREP_OV  
R/W  
0
0: Tck-prep is automatically determined  
1: Override Tck-prep with value in bits 6:0 of this register  
Tck-prep value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_TCK_PREP  
0x5  
7.6.20.43 CSI1_TCK_ZERO  
7-253. CSI1_TCK_ZERO Register (Address 0x61)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Tck-zero parameter  
7
MR_TCK_ZERO_OV  
R/W  
0
0: Tck-zero is automatically determined  
1: Override Tck-zero with value in bits 6:0 of this register  
Tck-zero value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_TCK_ZERO  
0x1B  
7.6.20.44 CSI1_TCK_TRAIL  
7-254. CSI1_TCK_TRAIL Register (Address 0x62)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Tck-trail parameter  
7
MR_TCK_TRAIL_OV  
R/W  
0
0: Tck-trail is automatically determined  
1: Override Tck-trail with value in bits 6:0 of this register  
Tck-trail value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_TCK_TRAIL  
0x0B  
7.6.20.45 CSI1_TCK_POST  
7-255. CSI1_TCK_POST Register (Address 0x63)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Tck-post parameter  
7
MR_TCK_POST_OV  
R/W  
0
0: Tck-post is automatically determined  
1: Override Tck-post with value in bits 6:0 of this register  
Tck-post value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_TCK_POST  
0x0A  
7.6.20.46 CSI1_THS_PREP  
7-256. CSI1_THS_PREP Register (Address 0x64)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Ths-prep parameter  
7
MR_THS_PREP_OV  
R/W  
0
0: Ths-prep is automatically determined  
1: Override Ths-prep with value in bits 6:0 of this register  
Copyright © 2023 Texas Instruments Incorporated  
146 Submit Document Feedback  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
7-256. CSI1_THS_PREP Register (Address 0x64) (continued)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Ths-prep value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_THS_PREP  
0x6  
7.6.20.47 CSI1_THS_ZERO  
7-257. CSI1_THS_ZERO Register (Address 0x65)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Ths-zero parameter  
7
MR_THS_ZERO_OV  
R/W  
0
0: Ths-zero is automatically determined  
1: Override Ths-zero with value in bits 6:0 of this register  
Ths-zero value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_THS_ZERO  
0x0C  
7.6.20.48 CSI1_THS_TRAIL  
7-258. CSI1_THS_TRAIL Register (Address 0x66)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Ths-trail parameter  
7
MR_THS_TRAIL_OV  
R/W  
0
0: Ths-trail is automatically determined  
1: Override Ths-trail with value in bits 6:0 of this register  
Ths-trail value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_THS_TRAIL  
0x8  
7.6.20.49 CSI1_THS_EXIT  
7-259. CSI1_THS_EXIT Register (Address 0x67)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Ths-exit parameter  
7
MR_THS_EXIT_OV  
R/W  
0
0: Ths-exit is automatically determined  
1: Override Ths-exit with value in bits 6:0 of this register  
Ths-exit value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_THS_EXIT  
0x0B  
7.6.20.50 CSI1_TPLX  
7-260. CSI1_TPLX Register (Address 0x68)  
BIT  
FIELD  
TYPE  
DEFAULT  
DESCRIPTION  
Override CSI-2 Tplx parameter  
7
MR_TPLX_OV  
R/W  
0
0: Tplx is automatically determined  
1: Override Tplx with value in bits 6:0 of this register  
Tplx value  
If bit 7 of this register is 0, this field is read-only, indicating current  
automatically determined value. The default value is based on the  
800 Mbps CSI-2 rate and may change if different rate is selected.  
If bit 7 of this register is 1, this field is read/write.  
R
R/W  
6:0  
MR_TPLX  
0x6  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 147  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The DS90UB960-Q1 is a highly integrated sensor hub deserializer which includes four FPD-Link III inputs  
targeted at ADAS applications, such as front/rear/surround-view camera sensors, driver monitoring systems, and  
sensor fusion.  
8.1.1 Power Over Coax  
The DS90UB960-Q1 is designed to support the Power-over-Coax (PoC) method of powering remote sensor  
systems. With this method, the power is delivered over the same medium (a coaxial cable) used for high-speed  
digital video data and bidirectional control and diagnostics data transmission. The method uses passive  
networks or filters that isolate the transmission line from the loading of the DC-DC regulator circuits and their  
connecting power traces on both sides of the link as shown in 8-1.  
Sensor Module  
Automotive ECU  
DC-DC  
Regulators  
Power  
Source  
PoC  
PoC  
Coaxial Cable  
POWER  
CAC1  
CAC1  
FPD-Link III  
Serializer  
FPD-Link III  
Deserializer  
Processor  
SoC  
Image Sensor  
FPD-Link III  
Braided  
Shield  
CAC2  
CAC2  
RTERM  
RTERM  
8-1. Power-over-Coax (PoC) System Diagram  
The PoC networks' impedance of 1 kΩ over a specific frequency band is typically sufficient to isolate the  
transmission line from the loading of the regulator circuits provided good layout practices are followed and the  
PCB return loss requirements given in 8-3 are met. The lower limit of the frequency band is defined as ½ of  
the bidirectional control channel's frequency, fBC. The upper limit of the frequency band is the frequency of the  
forward high-speed channel, fFC  
.
8-2 shows a PoC network recommended for a "4G" FPD-Link III consisting of DS90UB953-Q1 and pair with  
the bidirectional channel operating at 50 Mbps (½ fBC = 25 MHz) and the forward channel operating at 4.16  
Gbps (fFC 2.1 GHz). Other PoC networks are possible and may be different on the serializer and deserializer  
boards as long as the PCB board return loss requirements given in 8-3 are met.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
148 Submit Document Feedback  
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
VPoC  
R1  
4.02 kW  
L1  
C1  
C2  
10 mH  
0.1 mF  
>10 mF  
FB3  
FB2  
FB1  
CAC1  
RIN+  
RIN-  
33 nF œ 100 nF  
CAC2  
R2  
49.9 W  
15 nF œ 47 nF  
8-2. Typical PoC Network for a "4G" FPD-Link III  
8-1 lists essential components for this particular PoC network. Note that the impedance characteristic of the  
ferrite beads deviates with the bias current, therefore keeping the current going through the network below 250  
mA is recommended.  
8-1. Suggested Components for a "4G" FPD-Link PoC Network  
Count  
Ref Des  
Description  
Part Number  
MFR  
Inductor, 10 µH, 0.288 Ωmax, 530 mA MIN (Isat, Itemp)  
30 MHz SRF min, 3 mm × 3 mm, General-Purpose  
LQH3NPN100MJR  
LQH3NPZ100MJR  
Murata  
Murata  
Inductor, 10 µH, 0.288 Ωmax, 530 mA MIN (Isat, Itemp)  
30 MHz SRF min, 3 mm × 3 mm, AEC-Q200  
Inductor, 10 µH, 0.360 Ωmax, 450 mA MIN (Isat, Itemp)  
30 MHz SRF min, 3.2 mm × 2.5 mm, AEC-Q200  
1
L1  
NLCV32T-100K-EFD  
TYS3010100M-10  
TYS3015100M-10  
BLM18HE152SN1  
BLM18HE152SZ1  
TDK  
Laird  
Inductor, 10 µH, 0.400 Ωtyp, 550 mA MIN (Isat, Itemp)  
39 MHz SRF typ, 3 mm × 3 mm, AEC-Q200  
Inductor, 10 µH, 0.325 Ωmax, 725 mA MIN (Isat, Itemp)  
41 MHz SRF typ, 3 mm × 3 mm, AEC-Q200  
Laird  
Ferrite Bead, 1500 kΩat 1 GHz, 0.5 Ωmax at DC  
500 mA at 85°C, SM0603, General-Purpose  
Murata  
Murata  
3
FB1-FB3  
Ferrite Bead, 1500 kΩat 1 GHz, 0.5 Ωmax at DC  
500 mA at 85°C, SM0603, AEC-Q200  
8-3 shows a PoC network recommended for a "2G" FPD-Link III consisting of a DS90UB913A-Q1 or  
DS90UB933-Q1 serializer and DS90UB960-Q1 with the bidirectional channel operating at the data rate of 2.5  
Mbps (½ fBC = 1.25 MHz) and the forward channel operating at the data rate as high as 1.87 Gbps (fFC 1  
GHz).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 149  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
VPoC  
R1  
2.0 kW  
L1  
C1  
C2  
100 mH  
0.1 mF  
>10 mF  
R2  
L2  
2.0 kW  
4.7 mH œ 22 mH  
FB1  
CAC1  
RIN+  
RIN-  
100 nF  
CAC2  
R3  
49.9 W  
47 nF  
8-3. Typical PoC Network for a "2G" FPD-Link III  
8-2 lists essential components for this particular PoC network.  
8-2. Suggested Components for a "2G" FPD-Link III PoC Network  
Count  
Ref Des  
Description  
Part Number  
MFR  
Inductor, 100 µH, 0.310 Ωmax, 710 mA MIN (Isat, Itemp)  
7.2 MHz SRF typ, 6.6 mm × 6.6 mm, AEC-Q200  
MSS7341-104ML  
Coilcraft  
1
L1  
Inductor, 100 µH, 0.606 Ωmax, 750 mA MIN (Isat, Itemp)  
NRS6045T101MMGKV  
Taiyo Yuden  
7.2 MHz SRF typ, 6.0 mm × 6.0 mm, AEC-Q200  
Inductor, 4.7 µH, 0.350 Ωmax, 700 mA MIN (Isat, Itemp)  
160 MHz SRF typ, 3.8 mm × 3.8 mm, AEC-Q200  
1008PS-472KL  
Coilcraft  
CBC3225T4R7MRV  
Taiyo Yuden  
Inductor, 4.7 µH, 0.130 Ωmax, 830 mA MIN (Isat, Itemp),  
70 MHz SRF typ, 3.2 mm × 2.5 mm, General Purpose  
1
1
L2  
LQH3NPZ100MJR  
Murata  
Inductor, 10 µH, 0.288 Ωmax, 530 mA MIN (Isat, Itemp)  
30 MHz SRF min, 3 mm × 3 mm, AEC-Q200  
Ferrite Bead, 1500 kΩat 1 GHz, 0.5 Ωmax at DC  
500 mA at 85°C, SM0603, General Purpose  
BLM18HE152SN1  
BLM18HE152SZ1  
Murata  
Murata  
FB1  
Ferrite Bead, 1500 kΩat 1 GHz, 0.5 Ωmax at DC  
500 mA at 85°C, SM0603, AEC-Q200  
Application report Sending Power over Coax in DS90UB913A Designs (SNLA224) discusses and defines the  
PoC networks in more detail.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
150 Submit Document Feedback  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
In addition to the PoC network components selection, their placement and layout play a critical role as well.  
Place the smallest component, typically a ferrite bead or a chip inductor, as close to the connector as  
possible. Route the high-speed trace through one of its pads to avoid stubs.  
Use the smallest component pads as allowed by manufacturer's design rules. Add anti-pads in the inner  
planes below the component pads to minimize impedance drop.  
Consult with connector manufacturer for optimized connector footprint.  
Use coupled 100-Ωdifferential signal traces from the device pins to the AC-coupling caps. Use 50-Ωsingle-  
ended traces from the AC-coupling capacitors to the connector.  
Terminate the inverting signal traces close to the connectors with standard 49.9-Ωresistors.  
The suggested characteristics for single-ended PCB traces (microstrips or striplines) for serializer or deserializer  
boards are detailed in 8-3. The effects of the PoC networks need to be accounted for when testing the traces  
for compliance to the suggested limits.  
8-3. Suggested Characteristics for Single-Ended PCB Traces With Attached PoC Networks  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Ltrace Single-ended PCB trace length from the device pin to the connector pin  
Ztrace Single-ended PCB trace characteristic impedance  
5
55  
cm  
45  
40  
50  
50  
Ω
Ω
Zcon  
Connector (mounted) characteristic impedance  
62.5  
20  
½ fBC < f < 0.1 GHz  
dB  
12 + 8 ×  
RL  
Return Loss, S11  
0.1 GHz < f < 1 GHz (f in GHz)  
dB  
log(f)  
1 GHz < f < fFC  
f < 0.5 GHz  
f = 1 GHz  
dB  
dB  
dB  
dB  
12  
0.35  
0.6  
1.2  
IL  
Insertion Loss, S12  
f = 2.1 GHz  
The VPOC noise must be kept to 10 mVp-p or lower on the source / deserializer side of the system. The VPOC  
fluctuations on the serializer side, caused by the sensor's transient current draw and the DC resistance of cables  
and PoC components, must be kept at minimum as well. Increasing the VPOC voltage and adding extra  
decoupling capacitance (> 10 µF) help reduce the amplitude and slew rate of the VPOC fluctuations.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 151  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
8.2 Typical Application  
1.1V  
VDD_FPD1  
VDD18_P0  
VDD18_P1  
VDD18_P2  
VDD18_P3  
1.8V  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
FB1  
FB4  
1µF  
10µF  
10µF  
1µF  
VDD_FPD2  
VDDL1  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
FB2  
FB3  
10µF  
10µF  
1µF  
1µF  
VDDL2  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
VDD_CSI  
VDD_CSI  
VDD18_FPD0  
VDD18_FPD1  
VDD18_FPD2  
VDD18_FPD3  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
FB5  
1µF  
10µF  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
VDDIO  
VDDIO  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
1µF  
0.01µF  
REFCLK  
RES  
t 0.1µF  
23-26 MHz  
(100ppm)  
VDD18A  
1.8V  
0.01µF  
t 0.1µF  
FB6  
1µF  
10µF  
1.8V  
10k  
R1  
R2  
C1  
C2  
RIN0+  
RIN0-  
0.1µF  
R3  
R4  
RTERM  
IDx  
C3  
C4  
RIN1+  
RIN1-  
MODE  
0.1µF  
FPD-Link III  
RTERM  
C5  
C6  
CSI0_CLKN  
CSI0_CLKP  
CSI0_D0N  
CSI0_D0P  
CSI0_D1N  
CSI0_D1P  
CSI0_D2N  
CSI0_D2P  
CSI0_D3N  
CSI0_D3P  
RIN2+  
RIN2-  
RTERM  
C7  
C8  
RIN3+  
RIN3-  
C9  
RTERM  
CMLOUTP  
CMLOUTN  
Monitoring  
(Optional)  
RT  
C10  
V(I2C)  
CSI-2 Outputs  
RPU  
RPU RPU  
RPU  
CSI1_CLKN  
CSI1_CLKP  
CSI1_D0N  
CSI1_D0P  
CSI1_D1N  
CSI1_D1P  
CSI1_D2N  
CSI1_D2P  
CSI1_D3N  
CSI1_D3P  
I2C_SDA  
I2C_SCL  
I2C  
I2C_SDA2  
I2C_SCL2  
1.8V  
HW Control Option  
10k  
SW Control  
(Recommended)  
PDB  
>10µF  
GPIO[0]  
GPIO[1]  
GPIO[2]  
GPIO[3]  
GPIO[4]  
GPIO[5]  
GPIO[6]  
GPIO[7]  
V(INTB)  
(Filtered)  
4.7k  
INTB  
DAP  
Status  
GPIO[7:0]  
NOTES:  
FB1- FB6: DCR ≤ 25 mΩ; Z = 120 @ 100 MHz  
C1,C3,C5,C7,C9,C10 = 33 nF - 100 nF (50V/X7R/0402) with DS90UB953/935  
= 100 nF (50V/X7R/0402) with DS90UB933/913A  
= 15 nF - 47nF (50V/X7R/0402) with DS90UB953/935  
= 47nF (50V/X7R/0402) with DS90UB933/913A  
C2,C4,C6,C8  
R1 and R2 (see IDx Resistor Values Table)  
R3 and R4 (see MODE Resistor Values Table)  
RTERM = 49.9 Ω  
HUB Deserializer  
RT = 100 Ω  
RPU = 2.2 kΩ for V(I2C) = 1.8 V  
= 4.7 kΩ for V(I2C) = 3.3 V  
R
Copyright © 2018, Texas Instruments Incorporated  
8-4. Typical Connection Diagram (Coaxial)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
152 Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
1.1V  
VDD_FPD1  
VDD_FPD2  
VDDL1  
VDD18_P0  
1.8V  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
FB1  
FB4  
1µF  
10µF  
10µF  
1µF  
VDD18_P1  
VDD18_P2  
VDD18_P3  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
FB2  
FB3  
10µF  
10µF  
1µF  
1µF  
VDDL2  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
VDD_CSI  
VDD_CSI  
VDD18_FPD0  
VDD18_FPD1  
VDD18_FPD2  
VDD18_FPD3  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
FB5  
1µF  
10µF  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
VDDIO  
VDDIO  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
1µF  
0.01µF  
t 0.1µF  
REFCLK  
RES  
23-26 MHz  
(100ppm)  
VDD18A  
1.8V  
0.01µF  
t 0.1µF  
FB6  
1µF  
10µF  
1.8V  
10k  
R1  
R2  
C1  
C2  
RIN0+  
RIN0-  
0.1µF  
R3  
R4  
IDx  
C3  
C4  
RIN1+  
RIN1-  
MODE  
0.1µF  
FPD-Link III  
C5  
C6  
CSI0_CLKN  
CSI0_CLKP  
CSI0_D0N  
CSI0_D0P  
CSI0_D1N  
CSI0_D1P  
CSI0_D2N  
CSI0_D2P  
CSI0_D3N  
CSI0_D3P  
RIN2+  
RIN2-  
C7  
C8  
RIN3+  
RIN3-  
C9  
CMLOUTP  
CMLOUTN  
Monitoring  
(Optional)  
RT  
C10  
V(I2C)  
CSI-2 Outputs  
RPU  
RPU RPU  
RPU  
CSI1_CLKN  
CSI1_CLKP  
CSI1_D0N  
CSI1_D0P  
CSI1_D1N  
CSI1_D1P  
CSI1_D2N  
CSI1_D2P  
CSI1_D3N  
CSI1_D3P  
I2C_SDA  
I2C_SCL  
I2C  
I2C_SDA2  
I2C_SCL2  
1.8V  
HW Control Option  
10k  
SW Control  
(Recommended)  
PDB  
>10µF  
V(INTB)  
(Filtered)  
GPIO[0]  
GPIO[1]  
GPIO[2]  
GPIO[3]  
GPIO[4]  
GPIO[5]  
GPIO[6]  
GPIO[7]  
4.7k  
INTB  
DAP  
Status  
GPIO[7:0]  
NOTES:  
FB1 - FB6: DCR ≤ 25 mΩ; Z = 120 @ 100 MHz  
C1 - C10 = 33 nF - 100 nF (50V/X7R/0402) with DS90UB953/935  
= 100 nF (50V/X7R/0402) with DS90UB933/913A  
R1 and R2 (see IDx Resistor Values Table)  
R3 and R4 (see MODE Resistor Values Table)  
RT = 100 Ω  
HUB Deserializer  
RPU = 2.2 kΩ for V(I2C)= 1.8 V  
= 4.7 kΩ for V(I2C) = 3.3 V  
R
Copyright © 2018, Texas Instruments Incorporated  
8-5. Typical Connection Diagram (STP / STQ)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 153  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
8.2.1 Design Requirements  
For the typical design application, use the parameters listed in 8-4.  
8-4. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
1.8 V or 3.3 V  
VDDIO  
VDD11  
1.1 V  
VDD18  
1.8 V  
AC Coupling Capacitor for STP with 953 / 935: RIN[3:0]±  
AC Coupling Capacitor for Coaxial with 953 / 935: RIN[3:0]+  
AC Coupling Capacitor for Coaxial with 953 / 935: RIN[3:0]-  
AC-Coupling Capacitor for STP with 933A / 913A: RIN[3:0]±  
AC-Coupling Capacitor for Coaxial with 933A / 913A: RIN[3:0]+  
AC-Coupling Capacitor for Coaxial with 933A / 913A: RIN[3:0]-  
33 nF - 100 nF (50V/X7R/0402)  
33 nF - 100 nF (50V/X7R/0402)  
15 nF - 47 nF (50V/X7R/0402)  
100 nF (50V/X7R/0402)  
100 nF (50V/X7R/0402)  
47 nF (50V/X7R/0402)  
The SER/DES supports only AC-coupled interconnects through an integrated DC-balanced decoding scheme.  
External AC-coupling capacitors must be placed in series in the FPD-Link III signal path as shown in 8-6. For  
applications using single-ended 50-Ω coaxial cable, terminate the unused data pins (RIN0, RIN1, RIN2,  
RIN3) with an AC-coupling capacitor and a 50-Ωresistor.  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
8-6. AC-Coupled Connection (STP)  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
50Q  
50Q  
8-7. AC-Coupled Connection (Coaxial)  
For high-speed FPDLink III transmissions, use the smallest available package for the AC-coupling capacitor to  
help minimize degradation of signal quality due to package parasitics.  
8.2.2 Detailed Design Procedure  
8-12 through 8-17 show typical applications of the DS90UB960-Q1 for a multi-camera surround view  
system. The FPD-Link III must have an external 33-nF to 100-nF / 15-nF to 47-nF, AC-coupling capacitors for  
coaxial interconnects. The same AC-coupling capacitor values should be matched on the paired serializer  
boards. The deserializer has an internal termination. Bypass capacitors are placed near the power supply pins.  
At a minimum, 0.1-μF or 0.01-μF capacitors should be used for each of the core supply pins for local device  
bypassing. Ferrite beads are placed on the VDD18 and VDD11 supplies for effective noise suppression.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
154 Submit Document Feedback  
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
8.2.3 Application Curves  
Time (50 ns/DIV)  
Time (50 ns/DIV)  
8-8. CSI-2 DATA and CLK Output  
8-9. CSI-2 DATA and Continuous CLK Output  
P
LP11  
LP01  
LP00  
HS0  
HS Data  
P
N
LP11  
HS Data  
HS0  
N
Time (50 ns/DIV)  
Time (50 ns/DIV)  
8-10. CSI-2 Start of Transmission (SoT)  
8-11. CSI-2 End of Transmission (EoT)  
8.3 System Examples  
MIPI CSI-2  
800 Mbps/lane X 4  
DS90UB953  
Serializer  
MIPI CSI-2  
1.6 Gbps/lane X 4  
Host / ISP  
MIPI CSI-2  
800 Mbps/lane X 4  
DS90UB953  
Serializer  
HUB  
Deserializer  
MIPI CSI-2  
800 Mbps/lane X 4  
DS90UB953  
Serializer  
MIPI CSI-2  
1.6 Gbps/lane X 4  
Host / ISP  
MIPI CSI-2  
800 Mbps/lane X 4  
DS90UB953  
Serializer  
Copyright © 2018, Texas Instruments Incorporated  
8-12. Four DS90UB953-Q1 Sensor Data Onto CSI-2 Over 2 Ports  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 155  
English Data Sheet: SNLS589  
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
MIPI CSI-2  
400 Mbps/lane X 2  
DS90UB953  
Serializer  
MIPI CSI-2  
800 Mbps/lane X 4  
Host / ISP  
MIPI CSI-2  
400 Mbps/lane X 2  
DS90UB953  
Serializer  
HUB  
Deserializer  
MIPI CSI-2  
400 Mbps/lane X 2  
DS90UB953  
Serializer  
MIPI CSI-2  
400 Mbps/lane X 2  
DS90UB953  
Serializer  
Copyright © 2018, Texas Instruments Incorporated  
8-13. Four DS90UB953-Q1 Sensor Data Onto CSI-2 Over 1 Port  
DS90UB933  
RAW10/12  
Serializer  
MIPI CSI-2  
1.6 Gbps/lane X 4  
Host / ISP  
DS90UB933  
RAW10/12  
RAW10/12  
Serializer  
HUB  
Deserializer  
DS90UB933  
Serializer  
DS90UB933  
Serializer  
RAW10/12  
Copyright © 2018, Texas Instruments Incorporated  
8-14. Four DS90UB933-Q1 Sensor Data Onto CSI-2 Over 1 Port  
Copyright © 2023 Texas Instruments Incorporated  
156 Submit Document Feedback  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
DS90UB933  
Serializer  
RAW10/12  
MIPI CSI-2  
1.6 Gbps/lane X 4  
Host / ISP  
DS90UB933  
Serializer  
RAW10/12  
HUB  
Deserializer  
DS90UB933  
Serializer  
RAW10/12  
MIPI CSI-2  
1.6 Gbps/lane X 4  
Host / ISP  
DS90UB933  
Serializer  
RAW10/12  
Copyright © 2018, Texas Instruments Incorporated  
8-15. Four DS90UB933-Q1 Sensor Data Onto CSI-2 Over 2 Ports  
DS90UB953  
MIPI CSI-2  
Serializer  
MIPI CSI-2  
1.6 Gbps/lane X 4  
Host / ISP  
DS90UB953  
MIPI CSI-2  
RAW10/12  
Serializer  
HUB  
Deserializer  
DS90UB933  
Serializer  
DS90UB933  
Serializer  
RAW10/12  
Copyright © 2018, Texas Instruments Incorporated  
8-16. Two DS90UB933-Q1 and Two DS90UB953-Q1 Sensor Data Onto CSI-2 Over 1 Port  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 157  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
DS90UB953  
MIPI CSI-2  
Serializer  
MIPI CSI-2  
1.6 Gbps/lane X 4  
Host / ISP  
DS90UB953  
MIPI CSI-2  
Serializer  
HUB  
Deserializer  
DS90UB933  
RAW10/12  
Serializer  
MIPI CSI-2  
1.6 Gbps/lane X 4  
Host / ISP  
DS90UB933  
RAW10/12  
Serializer  
Copyright © 2018, Texas Instruments Incorporated  
8-17. Two DS90UB933-Q1 and Two DS90UB953-Q1 Sensor Data Onto CSI-2 Over 2 Ports  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
158 Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
9 Power Supply Recommendations  
This device provides separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. The 5 section provides guidance on which circuit blocks are connected to which power pin pairs. In  
some cases, an external filter many be used to provide clean power to sensitive circuits such as PLLs.  
9.1 VDD Power Supply  
Each VDD power supply pin must have a 10-nF (or 100-nF) capacitor to ground connected as close as possible  
to DS90UB960-Q1 device. TI recommends having additional decoupling capacitors (1 µF and 10 µF) and the  
pins connected to a solid power plane.  
9.2 Power-Up Sequencing  
The power-up sequence for the DS90UB960-Q1 is as follows:  
9-1. Timing Diagram for the Power-Up Sequence  
PARAMETER  
MIN  
0.2  
0.05  
0
TYP  
MAX  
UNIT  
ms  
NOTES  
@10/90%  
@10/90%  
tr0  
tr1  
t0  
VDD18 / VDDIO rise time  
VDD11 rise time  
ms  
VDD18 / VDDIO to VDD11 delay  
ms  
Keep REFCLK low  
until all supplies are  
up and stable.  
t1  
VDDx to REFCLK delay  
VDDx to PDB delay  
0
0
ms  
ms  
Release PDB after  
all supplies are up  
and stable.  
t2  
PDB to I2C ready (IDX and MODE valid)  
delay  
t3  
t4  
2
2
ms  
ms  
PDB pulse width  
Hard reset  
Keep GPIOs low or  
high until PDB is  
high.  
t5  
PDB to GPIO delay  
0
ms  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 159  
English Data Sheet: SNLS589  
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
tr0  
VDD18  
GND  
tr0  
VDDIO  
GND  
tr1  
VDD11  
GND  
t0  
t1  
REFCLK  
VDD18  
t2  
VPDB_HIGH  
VPDB_LOW  
PDB(*)  
GND  
t4  
t3  
t3  
t5  
GPIO  
(*) It is recommended to assert PDB (active High) with a microcontroller rather than an RC filter network to help ensure  
proper sequencing of PDB pin after settling of power supplies.  
Copyright © 2018, Texas Instruments Incorporated  
9-1. Power-Up Sequencing  
9.2.1 PDB Pin  
The PDB pin is active HIGH and must remain LOW while the VDD pin power supplies are in transition. An  
external RC network on the PDB pin may be connected to ensure PDB arrives after all the supply pins have  
settled to the recommended operating voltage. When PDB pin is pulled up to VDD18, a 10-kΩ pullup and a >  
10-μF capacitor to GND are required to delay the PDB input signal rise. All inputs must not be driven until both  
power supplies have reached steady state.  
9-2. PDB Reset Signal Pulse Width  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PDB  
tLRST  
PDB Reset Low Pulse  
2
ms  
9.2.2 System Initialization  
When initializing the communications link between the DS90UB960-Q1 deserializer hub and a DS90UB953-Q1  
serializer, the system timing will depend on the mode selected for generating the serializer reference clock.  
When synchronous clocking mode is selected, the serializer will re-lock onto the extracted back channel  
reference clock once available, so there is no need for local crystal oscillator at the sensor module (9-2).  
When the DS90UB953-Q1 is operating in non-synchronous mode, or is connecting to DS90UB933-Q1 or  
DS90UB913A-Q1 serializer, the sensor module requires a local reference clock and the timing would follow 图  
9-3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
160 Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
VDDx  
t1  
REFCLK  
PDB  
t2  
t3  
MODE  
IDX Valid  
GPIO  
LOCK  
960 Lock Time  
960  
Config  
1. CSI Tx Enable  
2. RX Port Forward  
I2C  
Local  
Sensor  
Config  
I2C  
Remote  
SER Lock Time  
RIN  
SER Internal  
Reference  
960 Backchannel Reference to SER  
CSI TX  
CLK  
Copyright © 2018, Texas Instruments Incorporated  
9-2. Power-Up Sequencing With Synchronous Clocking Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 161  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
VDDx  
t1  
REFCLK  
t2  
PDB  
t3  
MODE  
IDX Valid  
GPIO  
962 Lock Time  
LOCK  
962  
Config  
1. CSI Tx Enable  
2. RX Port Forward  
I2C  
Local  
Sensor  
Config  
I2C  
Remote  
RIN  
External CLK Reference to SER  
CSI TX  
CLK  
Copyright © 2018, Texas Instruments Incorporated  
9-3. Power-Up Sequencing With Non-synchronous Clocking Mode  
10 Layout  
10.1 Layout Guidelines  
Circuit board layout and stack-up for the FPD-Link III devices must be designed to provide low-noise power feed  
to the device. Good layout practice also separates high frequency or high-level inputs and outputs to minimize  
unwanted stray noise pick-up, feedback, and interference. Power system performance may be greatly improved  
by using thin dielectrics (2 to 4 mils) for power/ground sandwiches. This arrangement provides plane  
capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at  
high frequencies, and makes the value and placement of external bypass capacitors less critical. External  
bypass capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use  
values in the range of 0.01 µF to 0.1 µF. Ceramic capacitors may be in the 2.2-µF to 10-µF range. The voltage  
rating of the ceramic capacitors must be at least 5× the power supply voltage being used  
TI recommends surface-mount capacitors due to their smaller parasitics. When using multiple capacitors per  
supply pin, place the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 50-µF to 100-µF range, which smooths low frequency switching noise. TI  
recommends connecting power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external  
bypass capacitor increases the inductance of the path.  
A small body size X7R chip capacitor, such as 0603 or 0402, is recommended for external bypass. The small  
body size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance  
frequency of these external bypass capacitors, usually in the range of 20 to 30 MHz. To provide effective  
bypassing, multiple capacitors are often used to achieve low impedance between the supply rails over the  
frequency of interest. At high frequency, it is also common practice to use two vias from power and ground pins  
to the planes to reduce the impedance at high frequency.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
162 Submit Document Feedback  
 
 
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as  
PLLs.  
Use at least a four-layer board with a power and ground plane. Locate LVCMOS signals away from the  
differential lines to prevent coupling from the LVCMOS lines to the differential lines. Differential impedance of  
100 Ω are typically recommended for STP interconnect and single-ended impedance of 50 Ω for coaxial  
interconnect. The closely coupled lines help to ensure that coupled noise appears as common-mode and thus is  
rejected by the receivers. The tightly coupled lines also radiate less.  
10.1.1 Ground  
TI recommends that a consistent ground plane reference for the high-speed signals in the PCB design to provide  
the best image plane for signal traces running parallel to the plane. Connect the thermal pad of the DS90UB960-  
Q1 to this plane with vias.  
10.1.2 Routing FPD-Link III Signal Traces and PoC Filter  
Routing the FPD-Link III signal traces between the RIN pins and the connector as well as connecting the PoC  
filter to these traces are the most critical pieces of a successful DS90UB960-Q1 PCB layout. 10-1 shows an  
example PCB layout of the DS90UB960-Q1 configured for interface to remote sensor modules over coaxial  
cables. The layout example also uses a footprint of an edge-mount Quad Mini-FAKRA connector provided by  
Rosenberger. For additional PCB layout details of the example, refer to the DS90UB960-Q1EVM User's Guide  
(SNLU226).  
The following list provides essential recommendations for routing the FPD-Link III signal traces between the  
DS90UB960-Q1 receiver input pins (RIN) and the FAKRA connector, and connecting the PoC filter.  
The routing of the FPD-Link III traces may be all on the top layer (as shown in the example) or partially  
embedded in middle layers if EMI is a concern.  
The AC-coupling capacitors should be on the top layer and very close to the DS90UB960-Q1 receiver input  
pins to minimize the length of coupled differential trace pair between the pins and the capacitors.  
Route the RIN+ trace between the AC-coupling capacitor and the FAKRA connector as a 50-Ωsingle-ended  
micro-strip with tight impedance control (±10%). Calculate the proper width of the trace for a 50-Ω  
impedance based on the PCB stack-up. Ensure that the trace can carry the PoC current for the maximum  
load presented by the remote sensor module.  
The PoC filter should be connected to the RIN+ trace through the first ferrite bead (FB1). The FB1 should be  
touching the high-speed trace to minimize the stub length seen by the transmission line. Create an anti-pad  
or a moat under the FB1 pad that touches the trace. The anti-pad should be a plane cutout of the ground  
plane directly underneath the top layer without cutting out the ground reference under the trace. The purpose  
of the anti-pad is to maintain the impedance as close to 50 Ωas possible.  
Route the RINtrace with minimum coupling to the RIN+ trace (S > 3W).  
Consult with connector manufacturer for optimized connector footprint. If the connector is mounted on the  
same side as the IC, minimize the impact of the thru-hole connector stubs by routing the high-speed signal  
traces on the opposite side of the connector mounting side.  
When configured for STP and routing differential signals to the DS90UB960-Q1 receiver inputs, the traces  
should maintain a 100-Ω differential impedance routed to the connector. When choosing to implement a  
common mode choke for common mode noise reduction, take care to minimize the effect of any mismatch.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 163  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
10.1.3 CSI-2 Guidelines  
1. Route CSI0_D*P/N and CSI1_D*P/N pairs with controlled 100-Ωdifferential impedance (±20%) or 50-Ω  
single-ended impedance (±15%).  
2. Keep away from other high-speed signals.  
3. Keep intra-pair length mismatch to < 5 mils.  
4. Keep inter-pair length mismatch to < 50 mils within a single CSI-2 TX port. CSI-2 TX Port 0 differential traces  
do not need to match CSI-2 Port 1 differential traces.  
5. Length matching should be near the location of mismatch.  
6. Each pair should be separated at least by 3 times the signal trace width.  
7. Keep the use of bends in differential traces to a minimum. When bends are used, the number of left and right  
bends must be as equal as possible, and the angle of the bend should be 135 degrees. This arrangement  
minimizes any length mismatch caused by the bends and therefore minimizes the impact that bends have on  
EMI.  
8. Route all differential pairs on the same layer.  
9. Keep the number of VIAS to a minimum TI recommends keeping the VIA count to 2 or fewer.  
10. Keep traces on layers adjacent to ground plane.  
11. Do NOT route differential pairs over any plane split.  
12. Adding Test points causes impedance discontinuity and therefore negatively impacts signal performance. If  
test points are used, place them in series and symmetrically. Test points must not be placed in a manner that  
causes a stub on the differential pair.  
10.2 Layout Example  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the VQFN package is highly recommended to improve  
board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP.  
Example PCB layout is used to demonstrate both proper routing and proper solder techniques when designing in  
the Deserializer.  
10-1 shows a PCB layout example are derived from the layout design of the DS90UB960-Q1EVM Evaluation  
Board. The graphic and layout description are used to determine proper routing when designing the board. The  
high-speed FPD-Link III traces routed differentially up to the connector. A 100-Ω differential characteristic  
impedance and 50-Ωsingle-ended characteristic impedance traces are maintained as much as possible for both  
STP and coaxial applications. For the layout of a coaxial interconnects, coupled traces should be used with the  
RINx- termination near to the connector.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
164 Submit Document Feedback  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Quad Mini-Fakra  
Connector  
Top-Mounted  
For Thru-hole  
connectors, route the  
signals on the opposite  
side of the connector  
mounting side to avoid  
the connector via stub  
Follow PCB footprint  
recommendations  
from the connector  
manufacturer to  
maintain 50-W  
Ensure RIN+ trace  
can carry PoC current  
without significant  
temperature rise  
(<10°C)  
impedance through  
the connector  
Place the smallest  
ferrite bead or RF  
inductor orthogonally  
right next to the RIN+  
trace  
Moat the GND plane  
underneath the FB1  
pad touching the RIN+  
trace to minimize  
parasitic capacitance,  
but maintain the GND  
FB1  
FB1  
49.9W  
plane underneath the  
RIN+ trace  
49.9W  
Route RIN+ traces as  
50-W single-ended  
traces with tight  
impedance control  
( 10%)  
Stagger AC coupling  
caps to avoid cross-  
talk between adjacent  
channels  
Route RIN- trace with  
minimal coupling to  
RIN+ trace (S > 3W)  
Alternatively, place  
the connector on the  
bottom side and route  
the signals on the top  
layer to avoid vias  
Thermal vias  
under PAD  
*W is a trace width. S is a  
gap between adjacent  
traces.  
Copyright © 2018, Texas Instruments Incorporated  
10-1. DS90UB960-Q1 Example PCB Layout With Quad Mini-Fakra Connector  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 165  
English Data Sheet: SNLS589  
 
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Follow PCB footprint  
recommendations  
from the connector  
manufacturer to  
maintain 50-W  
impedance through  
the connector  
Surface Mount Single  
FAKRA Connectors  
Route RIN+ trace as a  
50-W single-ended  
trace with tight  
impedance control  
( 10%)  
Ensure RIN+ trace  
can carry PoC current  
without significant  
temperature rise  
(<10°C)  
Place the smallest  
ferrite bead or RF  
inductor orthogonally  
right next to the RIN+  
trace  
49.9W  
PoC Filter  
Route RIN- trace with  
minimal coupling to  
RIN+ trace (S > 3W)  
FB1  
FB2  
Moat the GND plane  
underneath the ferrite  
beads touching the  
RIN+ trace to  
R1  
L1  
minimize parasitic  
capacitance, but  
maintain the GND  
PoC Voltage  
Entry Point  
RIN-  
RIN+  
plane underneath the  
RIN+ trace  
CAC  
CAC  
*W is a trace width. S is a  
gap between adjacent  
traces.  
Copyright © 2018, Texas Instruments Incorporated  
10-2. Example Routing of FPD-Link III Traces to a Single Mini-Fakra Connector and PoC Components  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
166 Submit Document Feedback  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
Optional 0-W resistors  
Bring CSI traces to  
the inner layers close  
to the CSI pins  
Route CSI traces as  
100-W differential  
coupled striplines  
(S=2W*) with tight  
impedance control  
( 10%)  
Ensure CSI trace  
length is matched  
with 5 mils intra-pair  
and 50 mils pair-pair  
skew  
Avoid acute angles  
when routing CSI  
traces  
Ensure pair-pair gap  
is > 5W* for minimal  
pair-pair coupling  
Route CSI traces on 1  
or 2 inner signal  
layers each  
sandwiched with GND  
or power planes to  
form coupled  
striplines  
CSI-2 Connector  
*W is a trace width. S is a  
gap between adjacent  
traces.  
Copyright © 2018, Texas Instruments Incorporated  
10-3. Example Routing of CSI-2 Traces  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 167  
English Data Sheet: SNLS589  
DS90UB960-Q1  
ZHCSIG1C AUGUST 2016 REVISED DECEMBER 2020  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Sending Power over Coax in DS90UB913A Designs (SNLA224)  
I2C Over DS90UB913/4 FPD-Link III With Bidirectional Control Channel (SNLA222)  
DS90UB960-Q1EVM User's Guide (SNLU226)  
I2C Communication Over FPD-Link III With Bidirectional Control Channel (SNLA131)  
I2C Bus Pullup Resistor Calculation (SLVA689)  
FPD-Link University Training Material  
An EMC/EMI System-Design and Testing Methodology for FPD-Link III SerDes (SLYT719)  
Ten Tips for Successfully Designing With Automotive EMC/EMI Requirements (SLYT636) (SLYT636)  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS589  
168 Submit Document Feedback  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UB960WRTDRQ1  
DS90UB960WRTDTQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RTD  
RTD  
64  
64  
2000 RoHS & Green Call TI | NIPDAUAG  
250 RoHS & Green Call TI | NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
UB960Q  
UB960Q  
Samples  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-May-2023  
Addendum-Page 2  
PACKAGE OUTLINE  
RTD0064F  
VQFN - 0.9 mm max height  
SCALE 1.600  
PLASTIC QUAD FLATPACK - NO LEAD  
9.1  
8.9  
A
B
0.15  
0.05  
0.05  
0.00  
PIN 1 ID  
(0.15)  
DETAIL  
A
S
C
A
L
E
2
0
.
0
0
0
DETAIL A  
TYPICAL  
9.1  
8.9  
(
8.75)  
0.2  
0.1  
(0.15)  
DETAIL  
B
S
C
A
L
E
2
0
.
0
0
0
DETAIL B  
TYPICAL  
0.9 MAX  
SEE DETAIL A  
SEE DETAIL B  
C
SEATING PLANE  
0.08 C  
(0.2)  
4X (45 X0.42)  
32  
17  
16  
33  
SYMM  
65  
4X  
5.75 0.1  
7.5  
1
48  
0.3  
64X  
64X 0.5  
64  
49  
0.2  
SYMM  
0.5  
0.3  
0.1  
C B  
C
A
64X  
PIN 1 ID  
(R0.2)  
0.05  
4223128/A 08/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTD0064F  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.75)  
(1.36) TYP  
3X (1.265)  
49  
64X (0.6)  
64  
64X (0.25)  
1
48  
3X  
(1.265)  
60X (0.5)  
SYMM  
(1.36) TYP  
(8.8)  
65  
(
0.2) TYP  
VIA  
16  
33  
32  
17  
SYMM  
(8.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223128/A 08/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTD0064F  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.36)  
TYP  
64X (0.6)  
64X (0.25)  
64  
49  
1
48  
16X ( 1.16)  
(1.36)  
TYP  
60X (0.5)  
SYMM  
65  
(8.8)  
METAL  
TYP  
33  
16  
17  
32  
SYMM  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 65:  
65% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:8X  
4223128/A 08/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY