DS90UH926Q-Q1 [TI]

具有 HDCP 的 5 - 85MHz 24 位彩色 FPD-Link III 解串器;
DS90UH926Q-Q1
型号: DS90UH926Q-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 HDCP 的 5 - 85MHz 24 位彩色 FPD-Link III 解串器

光电二极管
文件: 总62页 (文件大小:1315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
支持 HDCP DS90UH926Q-Q1 720p 24 位彩色 FPD-Link III 解串器  
1 特性  
3 说明  
1
符合 AEC-Q100 的汽车应用 标准  
DS90UH926Q-Q1 解串器与 DS90UH925Q-Q1 串行  
器配套使用,可针对汽车娱乐系统内的内容受保护数字  
视频的安全分发提供一套解决方案。该芯片组可将并行  
RGB 视频接口转换为单对高速串行化接口。数字视频  
数据采用业界标准的 HDCP 复制保护方案加以保护。  
FPD-Link III 串行总线方案支持通过单条差分链路实现  
高速正向数据传输和低速反向通道通信的全双工控制。  
通过单个差分对整合视频数据和控制可减小互连线尺寸  
和重量,同时还消除了偏差问题并简化了系统设计。  
器件温度等级 2 级:环境工作温度范围为  
–40°C +105°C  
器件 HBM ESD 分类等级 3B  
器件 CDM ESD 分类等级 C6  
器件 MM ESD 分类等级 M3  
具有片上密钥存储的集成型 HDCP 密码引擎  
具有 I2C 兼容型串行控制总线的双向控制接口通道  
接口  
支持高清 (720p) 数字视频格式  
DS90UH926Q-Q1 解串器具有一个 31 位并行  
LVCMOS 输出接口,可针对 RGB、视频控制和音频数  
据进行调整。器件会从高速串行数据流中提取出时钟。  
LOCK 输出引脚会在传入数据流被锁定时提供链路状  
态,而无需使用训练序列或特殊的 SYNC(同步)模  
式,也不需要基准时钟。  
支持 RGB888 + VSHSDE I2S 音频  
支持 5 85MHz 像素时钟 (PCLK)  
通过 1.8V 3.3V 兼容 LVCMOS I/O 接口实现  
3.3V 单电源运行  
长达 10 米的交流耦合屏蔽双绞线 (STP) 互连  
并行 LVCMOS 视频输出  
具有嵌入式时钟的直流平衡和扰频数据  
自适应电缆均衡  
自适应均衡器优化了最大电缆长度。输出扩频时钟发生  
(SSCG) 和增强型渐进接通 (EPTO) 功能大大降低  
了电磁干扰 (EMI) 特性的反馈。  
支持 HDCP 中继器应用  
图像增强(白平衡和抖动)和内部模式生成  
串化器和解串器上都执行 HDCP 密钥引擎。HDCP 密  
钥被存储在片载存储器中。  
EMI 最小化(展频时钟生成 (SSCG) 和增强型累进  
接通 (EPTO))  
器件信息(1)  
低功率模式大大减少了功率耗散  
向后兼容模式  
器件型号  
封装  
WQFN (60)  
封装尺寸(标称值)  
DS90UH926Q-Q1  
9.00mm x 9.00mm  
2 应用范围  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
汽车导航显示屏  
后座娱乐系统  
应用图表  
V
DD33  
V
DDIO  
V
DDIO  
V
DD33  
(1.8V or3.3V) (3.3V)  
(3.3V) (1.8V or3.3V)  
R[7:0]  
G[7:0]  
R[7:0]  
G[7:0]  
FPD-Link III  
1 Pair /AC Coupled  
B[7:0]  
B[7:0]  
0.1 mF  
0.1 mF  
0.1 mF  
0.1 mF  
HOST  
Graphics  
Processor  
RGB Display  
720p  
24-bit color depth  
HS  
HS  
DOUT+  
DOUT-  
RIN+  
RIN-  
VS  
DE  
PCLK  
VS  
DE  
PCLK  
100 ohm STP Cable  
DS90UH925Q  
Serializer  
DS90UH926Q  
Deserializer  
LOCK  
PASS  
PDB  
PDB  
OSS_SEL  
OEN  
MODE_SEL  
3
/
I2S AUDIO  
(STEREO)  
3
/
I2S AUDIO  
(STEREO)  
MODE_SEL  
INTB  
INTB_IN  
MCLK  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
DAP  
DAP  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNLS337  
 
 
 
 
 
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 16  
7.4 Device Functional Modes........................................ 28  
7.5 Programming........................................................... 32  
7.6 Register Maps......................................................... 33  
Application and Implementation ........................ 47  
8.1 Application Information............................................ 47  
8.2 Typical Application .................................................. 47  
Power Supply Recommendations...................... 50  
9.1 Power-Up Requirements and PDB Pin................... 50  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
6.1 Absolute Maximum Ratings ..................................... 7  
6.2 ESD Ratings.............................................................. 7  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 8  
6.5 DC Electrical Characteristics .................................... 8  
6.6 AC Electrical Characteristics................................... 10  
6.7 DC and AC Serial Control Bus Characteristics....... 10  
8
9
10 Layout................................................................... 51  
10.1 Layout Guidelines ................................................. 51  
10.2 Layout Examples................................................... 53  
11 器件和文档支持 ..................................................... 54  
11.1 文档支持................................................................ 54  
11.2 接收文档更新通知 ................................................. 54  
11.3 社区资源................................................................ 54  
11.4 ....................................................................... 54  
11.5 静电放电警告......................................................... 54  
11.6 Glossary................................................................ 54  
12 机械、封装和可订购信息....................................... 54  
6.8 Recommended Timing Requirements for the Serial  
Control Bus .............................................................. 11  
6.9 Switching Characteristics........................................ 11  
6.10 Timing Diagrams................................................... 12  
6.11 Typical Characteristics.......................................... 15  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 16  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision L (February 2017) to Revision M  
Page  
将修订版 L 中以前所做的所有 MLCK 内容更改恢复为修订版 K............................................................................................. 1  
Removed disable jitter cleaner note ....................................................................................................................................... 5  
Changes from Revision K (January 2015) to Revision L  
Page  
Changed top view pin out diagram ........................................................................................................................................ 4  
Changed CLK to RES2 .......................................................................................................................................................... 5  
Added note to disable jitter cleaner ....................................................................................................................................... 5  
Changed MCLK to RES2 ....................................................................................................................................................... 5  
Deleted reference to MCLK in this section ............................................................................................................................ 8  
Deleted reference to MCLK in this section .......................................................................................................................... 11  
Deleted reference to MCLK ................................................................................................................................................. 25  
Deleted I2S Jitter Cleaning section ..................................................................................................................................... 25  
Deleted MCLK section ......................................................................................................................................................... 25  
Deleted MCLK columns in the Audio Interface Frequencies table....................................................................................... 26  
Changed values in columns 2 to 5 of Configuration Select (MODE_SEL) table.................................................................. 29  
Changed values in columns 2 to 5 of IDx table ................................................................................................................... 32  
Changed Removed register reference to MCLK .................................................................................................................. 42  
Changed Typical Display System Diagram (removed MCLK) ............................................................................................. 47  
Changed Power-Up Requirements and PDB pin description and added Power-Up Sequence graphic. ........................... 50  
2
版权 © 2010–2017, Texas Instruments Incorporated  
 
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
Changes from Revision J (April 2013) to Revision K  
Page  
已添加 引脚配置和功能 部分、ESD 额定值 表、特性 说明 部分、器件功能模式应用和实施 部分、电源相关建议 部  
分、布局 部分、器件和文档支持 部分以及机械、封装和可订购信息 部分 ............................................................................. 1  
Changes from Revision I (August 2012) to Revision J  
Page  
将美国国家半导体产品说明书的布局更改为 TI ............................................................................................................... 1  
Changes from Revision H (March 2012) to Revision I  
Page  
:配置选择 (MODE_SEL) #6 I2S 通道 B18 位模式)从 L H,将直流和交流串行控制总线特征表中的拼写错误  
VDDIO 纠正为 VDD33,添加了推荐 FRC 设置表,在功能说明部分下添加了当向后兼容模式 = ON 时,  
LFMODE 设置 = 0”。重新设置了表格 9 的格式,并添加了澄清说明。在功能说明、降低 EMI 特性、扩频时钟发生器  
(SSCG)”部分下添加了有关串行控制总线寄存器,地址 0x02[3:0](向后兼容和 LFMODE 寄存器)的澄清说明,添  
加了 注意:如果进入 SER PCLK 源 已经有一个 SSC 时钟,请勿启用 SSCG 功能。”................................................... 1  
Changes from Revision G (February 2012) to Revision H  
Page  
删除了直流电气特性下的 PDB VDDIO = 1.71 1.89V,在电源电流下添加了 IDDZDDIOZIDDIOZ 最大值 =  
10mA”,在“CML 显示器驱动程序输出交流规范下,添加了 EW 最小值 = 0.3 UI EH 最小值 = 200mV,在功能说  
部分添加了中断引脚 功能 说明 及使用 (INTB)” , 更新了功能说明部分下的 断电 (PDB) 说明VDDIO 更  
新为 VDDIO = 3 3.6V VDD33,更新了图 24 ................................................................................................................. 1  
Copyright © 2010–2017, Texas Instruments Incorporated  
3
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
5 Pin Configuration and Functions  
NKB Package  
60 Pin WQFN With Exposed Thermal Pad  
Top View  
OSS_SEL  
RES0  
46  
47  
48  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
I2S_WC/GPO_REG7  
VDD33_B  
VDD33_A  
G0/GPIO2  
RIN+  
RIN-  
G1/GPIO3  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
G2  
G3  
CMF  
CMLOUTP  
CMLOUTN  
NC  
VDDIO  
DS90UH926Q-Q1  
TOP VIEW  
G4  
G5  
DAP = GND  
CAPR12  
IDx  
G6  
G7  
CAPP12  
CAPI2S  
PDB  
B0/GPO_REG4  
B1/I2S_DB/GPO_REG5  
B2  
MCLK  
BISTC/INTB_IN  
Pin Functions  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
LVCMOS PARALLEL INTERFACE  
RED Parallel Interface Data Output Pins  
Leave open if unused  
R0 can optionally be used as GPIO0 and R1 can optionally be used as GPIO1  
33, 34, 35, 36, O, LVCMOS  
37, 39, 40, 41 with pulldown  
R[7:0]  
G[7:0]  
GREEN Parallel Interface Data Output Pins  
Leave open if unused  
G0 can optionally be used as GPIO2 and G1 can optionally be used as GPIO3.  
20, 21, 22, 23, O, LVCMOS  
25, 26, 27, 28 with pulldown  
BLUE Parallel Interface Data Output Pins  
9, 10, 11, 12,  
O, LVCMOS Leave open if unused  
B[7:0]  
HS  
14, 17, 18, 19 with pulldown B0 can optionally be used as GPO_REG4 and B1 can optionally be used as I2S_DB or  
GPO_REG5.  
Horizontal Sync Output Pin  
Video control signal pulse width must be 3 PCLKs or longer to be transmitted when the  
O, LVCMOS  
with pulldown  
8
Control Signal Filter is enabled. There is no restriction on the minimum transition pulse  
when the Control Signal Filter is disabled. The signal is limited to 2 transitions per 130  
PCLKs. See Table 11  
4
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
Vertical Sync Output Pin  
Video control signal is limited to 1 transition per 130 PCLKs. Thus, the minimum pulse  
width is 130 PCLKs.  
O, LVCMOS  
with pulldown  
VS  
DE  
7
Data Enable Output Pin  
Video control signal pulse width must be 3 PCLKs or longer to be transmitted when the  
Control Signal Filter is enabled. There is no restriction on the minimum transition pulse  
when the Control Signal Filter is disabled. The signal is limited to 2 transitions per 130  
PCLKs. See Table 11  
O, LVCMOS  
with pulldown  
6
O, LVCMOS  
with pulldown  
PCLK  
5
1, 30, 45  
60  
Pixel Clock Output Pin. Strobe edge set by RFB configuration register. See Table 11  
Digital Audio Interface Data Output Pins  
I2S_CLK,  
I2S_WC,  
I2S_DA  
O, LVCMOS Leave open if unused  
with pulldown I2S_CLK can optionally be used as GPO_REG8, I2S_WC can optionally be used as  
GPO_REG7, and I2S_DA can optionally be used as GPO_REG6.  
O, LVCMOS I2S Master Clock Output  
with pulldown x1, x2, or x4 of I2S_CLK Frequency  
MCLK  
OPTIONAL PARALLEL INTERFACE  
Second Channel Digital Audio Interface Data Output pin at 18–bit color mode and set by  
O, LVCMOS MODE_SEL or configuration register  
with pulldown Leave open if unused  
I2S_B can optionally be used as BI or GPO_REG5.  
I2S_DB  
18  
Standard General Purpose IOs.  
Available only in 18-bit color mode, and set by MODE_SEL or configuration register.  
See Table 11  
Leave open if unused  
Shared with G1, G0, R1 and R0.  
I/O, LVCMOS  
with pulldown  
GPIO[3:0]  
27, 28, 40, 41  
GPO_REG[8: 1, 30, 45, 18,  
O, LVCMOS General Purpose Outputs and set by configuration register. See Table 11  
with pulldown Shared with I2S_CLK, I2S_WC, I2S_DA, I2S_DB or B1, B0.  
4]  
19  
Input,  
Interrupt Input  
INTB_IN  
CONTROL  
16  
LVCMOS  
with pulldown  
Shared with BISTC  
Power-down Mode Input Pin  
PDB = H, device is enabled (normal operation)  
I, LVCMOS Refer to Power Supply Recommendations.  
with pulldown PDB = L, device is powered down.  
PDB  
OEN  
59  
31  
When the device is in the POWER DOWN state, the LVCMOS Outputs are in TRI-STATE,  
the PLL is shutdown and IDD is minimized.  
Input,  
LVCMOS  
Output Enable Pin.  
See Table 8  
with pulldown  
Input,  
LVCMOS  
Output Sleep State Select Pin.  
See Table 8  
OSS_SEL  
MODE_SEL  
BISTEN  
46  
15  
44  
with pulldown  
I, Analog  
Device Configuration Select. See Table 9  
BIST Enable Pin.  
0: BIST Mode is disabled.  
1: BIST Mode is enabled.  
I, LVCMOS  
with pulldown  
BIST Clock Select.  
Shared with INTB_IN  
0: PCLK; 1: 33 MHz  
I, LVCMOS  
with pulldown  
BISTC  
16  
Copyright © 2010–2017, Texas Instruments Incorporated  
5
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
I2C  
I2C Serial Control Bus Device ID Address Select  
External pull-up to VDD33 is required under all conditions, DO NOT FLOAT.  
Connect to external pullup and pulldown resistor to create a voltage divider.  
See Figure 23  
IDx  
56  
I, Analog  
I2C Clock Input / Output Interface  
Must have an external pullup to VDD33, DO NOT FLOAT.  
Recommended pullup: 4.7 kΩ.  
I/O, LVCMOS  
Open-Drain  
SCL  
3
2
I2C Data Input / Output Interface  
Must have an external pullup to VDD33, DO NOT FLOAT.  
Recommended pullup: 4.7 kΩ.  
I/O, LVCMOS  
Open-Drain  
SDA  
STATUS  
LOCK Status Output Pin  
O, LVCMOS 0: PLL is unlocked, RGB[7:0], I2S[2:0], HS, VS, DE and PCLK output states are controlled  
with pulldown by OEN. May be used as Link Status or Display Enable  
1: PLL is Locked, outputs are active  
LOCK  
PASS  
32  
42  
PASS Output Pin  
O, LVCMOS 0: One or more errors were detected in the received payload  
with pulldown 1: ERROR FREE Transmission  
Leave Open if unused. Route to test point (pad) recommended  
FPD-LINK III SERIAL INTERFACE  
True Input.  
RIN+  
49  
50  
52  
I, LVDS  
I, LVDS  
O, LVDS  
The interconnection should be AC-coupled to this pin with a 0.1 μF capacitor.  
Inverting Input.  
RIN–  
The interconnection should be AC-coupled to this pin with a 0.1 μF capacitor.  
True CML Output  
Monitor point for equalized differential signal  
CMLOUTP  
Inverting CML Output  
Monitor point for equalized differential signal  
CMLOUTN  
CMF  
53  
51  
O, LVDS  
Analog  
Common Mode Filter. Connect 0.1-μF capacitor to GND.  
POWER(1) AND GROUND  
VDD33_A,  
48, 29  
Power  
Power  
Ground  
Power to on-chip regulator 3 V – 3.6 V. Requires 4.7 uF to GND at each VDD pin.  
VDD33_B  
LVCMOS I/O Power 1.8 V ±5% OR 3 V – 3.6 V. Requires 4.7 uF to GND at each VDDIO  
pin.  
VDDIO  
GND  
13, 24, 38  
DAP  
DAP is the large metal contact at the bottom side, located at the center of the WQFN  
package. Connect to the ground plane (GND) with at least 9 vias.  
REGULATOR CAPACITOR  
CAPR12  
CAPP12  
CAPI2S  
55  
57  
58  
Decoupling capacitor connection for on-chip regulator. Requires a 4.7-µF to GND at each  
CAP pin.  
CAP  
CAP  
Decoupling capacitor connection for on-chip regulator. Requires two 4.7-µF to GND at this  
CAP pin.  
CAPL12  
4
OTHERS  
NC  
54  
NC  
No connect. This pin may be left open or tied to any level.  
Reserved - tie to Ground  
RES[1:0]  
43.47  
GND  
(1) The VDD (VDD33 and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise.  
6
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)(2)(3)  
See  
MIN  
0.3  
0.3  
0.3  
0.3  
MAX  
UNIT  
V
Supply voltage – VDD33  
Supply voltage – VDDIO  
LVCMOS I/O voltage  
Deserializer input voltage  
Junction temperature  
4
4
(VDDIO + 0.3)  
2.75  
V
V
V
150  
°C  
60-pin WQFN Package  
Maximum power dissipation  
capacity at 25°C  
Derate above 25 °C  
1/ RθJA  
31  
°C/W  
°C/W  
°C/W  
°C  
RθJA  
RθJC  
2.4  
Storage temperature, Tstg  
65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) For soldering specifications, see product folder at www.ti.com and Absolute Maximum Ratings for Soldering (SNOA549).  
6.2 ESD Ratings  
VALUE  
±8000  
±1250  
±250  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Machine model, all pins  
Air Discharge (Pin 49 and 50)  
±15000  
±8000  
±15000  
±8000  
±15000  
±8000  
(IEC, powered-up only)  
RD = 330 Ω, CS = 150 pF  
Electrostatic  
discharge  
V(ESD)  
Contact Discharge (Pin 49 and 50)  
Air Discharge (Pin 49 and 50)  
V
(ISO10605)  
RD = 330 Ω, CS = 150 pF  
Contact Discharge (Pin 49 and 50)  
Air Discharge (Pin 49 and 50)  
(ISO10605)  
RD = 2 kΩ, CS = 150 & 330 pF  
Contact Discharge (Pin 49 and 50)  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
3
NOM  
3.3  
3.3  
1.8  
25  
MAX UNIT  
Supply voltage (VDD33  
)
3.6  
3.6  
V
V
LVCMOS supply voltage (VDDIO  
)
Connect VDDIO to 3.3 V and use 3.3-V IOs  
Connect VDDIO to 1.8 V and use 1.8-V IOs  
3
1.71  
40  
5
1.89  
105  
85  
V
Operating free air temperature (TA)  
PCLK frequency  
°C  
MHz  
Supply noise(1)  
100 mVP-P  
(1) Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal signal is AC-coupled to the VDD33 and VDDIO supplies  
with amplitude = 100 mVp-p measured at the device VDD33 and VDDIO pins. Bit error rate testing of input to the Ser and output of the  
Des with 10-meter cable shows no error when the noise frequency on the Ser is less than 50 MHz. The Des on the other hand shows  
no error when the noise frequency is less than 50 MHz.  
Copyright © 2010–2017, Texas Instruments Incorporated  
7
 
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
6.4 Thermal Information  
DS90UH926Q-Q1  
THERMAL METRIC(1)  
NKB (WQFN)  
UNIT  
60 PINS  
26.2  
8.1  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
5.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
5.2  
RθJC(bot)  
1.1  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
6.5 DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)(3)  
PARAMETER  
LVCMOS I/O DC SPECIFICATIONS  
High Level Input  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
VIH  
VDDIO = 3 to 3.6 V  
2
VDDIO  
0.8  
V
V
Voltage  
Low Level Input  
Voltage  
PDB  
VIL  
IIN  
VDDIO = 3 to 3.6 V  
GND  
Input Current  
VIN = 0 V or VDDIO = 3 to 3.6 V  
VDDIO = 3 to 3.6 V  
10  
±1  
10  
μA  
2
VDDIO  
V
High Level Input  
Voltage  
VIH  
0.65 ×  
VDDIO  
VDDIO = 1.71 to 1.89 V  
VDDIO = 3 to 3.6 V  
VDDIO  
V
V
V
GND  
0.8  
Low Level Input  
Voltage  
OEN, OSS_SEL,  
BISTEN, BISTC /  
INTB_IN, GPIO[3:0]  
VIL  
0.35 ×  
VDDIO  
VDDIO = 1.71 to 1.89 V  
GND  
VDDIO = 3  
to 3.6 V  
10  
±1  
±1  
10  
μA  
IIN  
Input Current  
VIN = 0 V or VDDIO  
VDDIO = 1.7  
to 1.89 V  
10  
10  
VDDIO  
VDDIO  
0.4  
μA  
V
VDDIO = 3 to 3.6 V  
2.4  
High Level Output  
Voltage  
VOH  
IOH = 4 mA  
VDDIO = 1.7  
to 1.89 V  
VDDIO-  
0.45  
V
R[7:0], G[7:0], B[7:0],  
HS, VS, DE, PCLK,  
LOCK, PASS, MCLK,  
I2S_CLK, I2S_WC,  
I2S_DA, I2S_DB,  
GPO_REG[8:4]  
VDDIO = 3 to 3.6 V  
GND  
V
Low Level Output  
Voltage  
VOL  
IOL = 4 mA  
VOUT = 0 V  
VDDIO = 1.7  
to 1.89 V  
GND  
0.35  
V
Output Short-Circuit  
Current  
IOS  
IOZ  
60  
mA  
Tri-state Output Current VOUT = 0 V or VDDIO, PDB = L  
10  
10  
μA  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the electrical characteristics conditions and/or notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 3.3 V, TA = 25 °C, and at Recommended Operating Conditions at the  
time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
8
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
FPD-LINK III CML RECEIVER INPUT DC SPECIFICATIONS  
Differential Threshold  
VTH  
50  
mV  
mV  
V
High Voltage  
VCM = 2.5 V  
(Internal VBIAS  
)
Differential Threshold  
Low Voltage  
VTL  
VCM  
RT  
50  
RIN+, RIN–  
Differential Common-  
mode Voltage  
1.8  
Internal Termination  
Resistor - Differential  
80  
100  
120  
CML MONITOR DRIVER OUTPUT DC SPECIFICATIONS  
Differential Output  
Voltage  
CMLOUTP,  
CMLOUTN  
VODp-p  
RL = 100 Ω  
360  
mVp-p  
SUPPLY CURRENT  
IDD1  
VDD33= 3.6 V  
VDD33  
VDDIO  
VDD33  
VDDIO  
VDD33  
VDDIO  
VDD33  
VDDIO  
125  
110  
60  
145  
118  
75  
145  
85  
65  
115  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Supply Current  
(includes load current)  
f = 85 MHz  
CL = 12 pF,  
Checker Board Pattern VDDIO= 3.6 V  
IDDIO1  
IDD2  
IDDIO2  
IDDS  
IDDIOS  
IDDZ  
Figure 1  
VDDIO = 1.89 V  
VDD33 = 3.6 V  
CL = 4 pF  
Checker Board Pattern, VDDIO = 3.6 V  
125  
75  
Supply Current  
(includes load current)  
f = 85 MHz  
Figure 1  
VDDIO = 1.89 V  
50  
VDD33 = 3.6 V  
Without Input Serial  
VDDIO = 3.6 V  
Stream  
90  
Supply Current Sleep  
Mode  
3
VDDIO = 1.89 V  
2
3
VDD33 = 3.6 V  
2
10  
10  
10  
PDB = L, All LVCMOS  
inputs are floating or  
tied to GND  
Supply Current Power  
Down  
VDDIO = 3.6 V  
VDDIO = 1.89 V  
0.05  
0.05  
IDDIOZ  
Copyright © 2010–2017, Texas Instruments Incorporated  
9
 
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
MAX UNIT  
6.6 AC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)(3)  
PARAMETER  
GPIO BIT RATE  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
Forward Channel Bit Rate  
Back Channel Bit Rate  
f = 5 – 85  
MHz,  
GPIO[3:0]  
0.25 × f  
> 75  
Mbps  
kbps  
BR  
See(4) (5)  
> 50  
CML MONITOR DRIVER OUTPUT AC SPECIFICATIONS  
Differential Output Eye Opening  
Width(6)  
RL = 100 ,  
CMLOUTP,  
CMLOUTN,  
f = 85 MHz  
EW  
0.3  
0.4  
UI  
Jitter Freq > f / 40  
(4)(5)  
Figure 2  
EH  
Differential Output Eye Height  
200  
300  
mV  
BIST MODE  
tPASS BIST PASS Valid Time  
BISTEN = H  
800  
ns  
PASS  
(4)(5)  
Figure 8  
SSCG MODE  
Spread Spectrum Clocking  
Deviation Frequency  
±0.5%  
8
±2.5%  
fDEV  
SeeFigure 14, Table 1 and  
Table 2  
f = 85 MHz,  
SSCG = ON  
(4)(5)  
Spread Spectrum Clocking  
Modulation Frequency  
100  
kHz  
fMOD  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the electrical characteristics conditions and/or notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 3.3 V, TA = 25 °C, and at Recommended Operating Conditions at the  
time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
(4) Specification is ensured by characterization and is not tested in production.  
(5) Specification is ensured by design and is not tested in production.  
(6) UI – Unit Interval is equivalent to one serialized data bit width (1UI = 1 / 35 × PCLK). The UI scales with PCLK frequency.  
6.7 DC and AC Serial Control Bus Characteristics  
Over 3.3-V supply and temperature ranges unless otherwise specified.(1)  
(2) (3)  
PARAMETER  
Input High Level  
TEST CONDITIONS  
SDA and SCL  
MIN  
0.7 × VDD33  
GND  
TYP  
MAX UNIT  
VIH  
VIL  
VHY  
VOL  
IIN  
VDD33  
V
V
Input Low Level Voltage  
Input Hysteresis  
SDA and SCL  
0.3 × VDD33  
> 50  
mV  
V
SDA, IOL = 1.25 mA  
0
0.36  
10  
SDA or SCL, VIN = VDD33 or GND  
–10  
µA  
ns  
ns  
ns  
ns  
ns  
pF  
tR  
SDA Rise Time – READ  
SDA Fall Time – READ  
430  
20  
SDA, RPU = 10 k, Cb 400 pF, Figure 9  
tF  
tSU;DAT Setup Time — READ  
tHD;DAT Holdup Time — READ  
SeeFigure 9  
SeeFigure 9  
560  
615  
50  
tSP  
Input Filter  
CIN  
Input Capacitance  
SDA or SCL  
<5  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the electrical characteristics conditions and/or notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 3.3 V, TA = 25 °C, and at Recommended Operating Conditions at the  
time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
10  
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
6.8 Recommended Timing Requirements for the Serial Control Bus  
Over 3.3-V supply and temperature ranges unless otherwise specified.  
MIN  
0
NOM  
MAX UNIT  
fSCL  
Standard Mode  
Fast Mode  
100  
400  
kHz  
kHz  
µs  
SCL Clock Frequency  
SCL Low Period  
0
tLOW  
Standard Mode  
Fast Mode  
4.7  
1.3  
4
µs  
tHIGH  
Standard Mode  
Fast Mode  
µs  
SCL High Period  
0.6  
4
µs  
tHD;STA  
Hold time for a start or a  
repeated start condition  
Figure 9  
Standard Mode  
µs  
Fast Mode  
0.6  
4.7  
0.6  
µs  
µs  
µs  
tSU:STA  
Setup time for a start or a  
repeated start condition  
Figure 9  
Standard Mode  
Fast Mode  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Standard Mode  
Fast Mode  
0
0
3.45  
0.9  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
Data Hold Time  
Figure 9  
Standard Mode  
Fast Mode  
250  
100  
4
Data Setup Time  
Figure 9  
Standard Mode  
Fast Mode  
Setup Time for STOP  
Condition, Figure 9  
0.6  
4.7  
Bus Free Time  
Standard Mode  
Between STOP and START,  
Figure 9  
Fast Mode  
1.3  
µs  
tr  
tf  
Standard Mode  
Fast Mode  
1000  
300  
300  
300  
ns  
ns  
ns  
ns  
SCL and SDA Rise Time,  
Figure 9  
Standard Mode  
Fast mode  
SCL and SDA Fall Time,  
Figure 9  
6.9 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
tRCP = tTCP  
PIN/FREQ.  
PCLK  
MIN  
TYP  
MAX UNIT  
tRCP  
tRDC  
PCLK Output Period  
PCLK Output Duty Cycle  
11.76  
45%  
T
200  
ns  
50%  
55%  
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
2
2
2
2
3
3
3
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LVCMOS Low-to-High Transition  
Time  
Figure 3  
tCLH  
tCHL  
tROS  
tROH  
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
R[7:0], G[7:0],  
B[7:0], HS,  
VS, DE,  
PCLK, LOCK,  
PASS, MCLK,  
I2S_CLK,  
I2S_WC,  
I2S_DA,  
I2S_DB  
LVCMOS High-to-Low Transition  
Time  
Figure 3  
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
Data Valid before PCLK – Setup  
Time  
SSCG = OFF  
Figure 6  
2.2  
2.2  
3
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
Data Valid after PCLK – Hold  
Time  
SSCG = OFF  
Figure 6  
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
3
Copyright © 2010–2017, Texas Instruments Incorporated  
11  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
Switching Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
R[7:0], G[7:0],  
B[7:0]  
10  
ns  
HS, VS, DE,  
PCLK, LOCK,  
PASS  
15  
60  
ns  
ns  
Active to OFF Delay  
tXZR  
OEN = L, OSS_SEL = H  
Figure 5(1)(2)  
MCLK,I2S_CL  
K, I2S_WC,  
I2S_DA,  
I2S_DB  
Lock Time  
tDDLT  
tDD  
SSCG = OFF  
SSCG = OFF  
f = 5 – 85 MHz  
f = 5 – 85 MHz  
5
147 × T  
0.5  
40  
ms  
ns  
ns  
Figure 5(1)(2)(3)  
Delay – Latency(1)(2)  
f = 5 to <15  
MHz  
f = 15 to 85  
MHz  
tDCCJ  
Cycle-to-Cycle Jitter(1)(2)  
0.2  
±2  
50  
50  
50  
50  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
I2S_CLK = 1  
to 12.28 MHz  
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
Data Valid After OEN = H  
SetupTime  
tONS  
tONH  
tSES  
tSEH  
Figure 7(1)(2)  
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
R[7:0], G[7:0],  
B[7:0], HS,  
VS, DE,  
Data Tri-State After OEN = L  
SetupTime  
(1) (2)  
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
Figure 7  
PCLK,  
MCLK,I2S_CL  
K, I2S_WC,  
I2S_DA,  
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
Data Tri-State after OSS_ SEL =  
H, Setup Time  
(1) (2)  
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
Figure 7  
I2S_DB  
5
VDDIO = 1.71 to 1.89 V,  
CL = 12 pF  
5
Data to Low after OSS_SEL = L  
Setup Time  
(1) (2)  
VDDIO = 3 to 3.6 V,  
CL = 12 pF  
Figure 7  
5
(1) Specification is ensured by characterization and is not tested in production.  
(2) Specification is ensured by design and is not tested in production.  
(3) tDDLT is the time required by the device to obtain lock when exiting power-down state with an active serial stream.  
6.10 Timing Diagrams  
V
DDIO  
PCLK  
GND  
V
DDIO  
RGB[n] (odd),  
VS, HS  
GND  
V
DDIO  
RGB[n] (even),  
DE  
GND  
Figure 1. Checker Board Data Pattern  
12  
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
Timing Diagrams (continued)  
EW  
VOD (+)  
CMLOUT  
(Diff.)  
EH  
0V  
EH  
VOD (-)  
t
(1 UI)  
BIT  
Figure 2. CML Output Driver  
V
DDIO  
80%  
20%  
GND  
t
t
CHL  
CLH  
Figure 3. LVCMOS Transition Times  
START  
BIT  
STOP  
BIT  
START  
BIT  
STOP  
BIT  
RIN  
0
1
2
33  
0
1
2
33  
(Diff.)  
SYMBOL N  
SYMBOL N+1  
t
DD  
PCLK  
(RFB = L)  
RGB[7:0],  
I2S[2:0],  
SYMBOL N-2  
SYMBOL N-1  
SYMBOL N  
HS, VS, DE  
Figure 4. Delay - Latency  
2.0ë  
PDB  
0.8ë  
RIN  
(Diff.)  
5}v[š /ꢀŒꢁ  
t
DDLT  
TRI-STATE  
or LOW  
LOCK  
ù or [  
t
XZR  
RGB[7:0],  
HS, VS, DE,  
I2S  
ÇwL-{Ç!Ç9 or [hí or tulled Üp  
ù or [ or tÜ  
PCLK  
(RFB = L)  
ÇwL-{Ç!Ç9 or [hí  
ù or [  
OFF  
IN LOCK TIME  
ACTIVE  
OFF  
Figure 5. PLL Lock Times and PDB Tri-State Delay  
Copyright © 2010–2017, Texas Instruments Incorporated  
13  
 
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
Timing Diagrams (continued)  
V
PCLK  
DDIO  
w/RFB = H  
1/2 V  
DDIO  
GND  
V
DDIO  
RGB[7:0],  
VS, HS, DE,  
I2S  
V
OHmin  
V
OLmax  
GND  
t
t
ROH  
ROS  
Figure 6. Output Data Valid (Setup and Hold) Times With SSCG = OFF  
PDB = H  
ëLI  
OSS_SEL  
OEN  
ëL[  
ëLI  
ëL[  
RIN  
(Diff.)  
5}v[š /ꢀŒꢁ  
t
SEH  
t
SES  
t
t
ONH  
ONS  
ÇwL-{Ç!Ç9  
LOCK  
(ILDI)  
!/ÇLë9  
PASS  
ILDI  
ILDI  
RGB[7:0],  
HS, VS, DE,  
I2S[2:0]  
ÇwL-{Ç!Ç9  
ÇwL-{Ç!Ç9  
[hí  
ÇwL-{Ç!Ç9  
ÇwL-{Ç!Ç9  
!/ÇLë9  
!/ÇLë9  
[hí  
[hí  
PCLK  
(RFB = L)  
[hí  
Figure 7. Output State (Setup and Hold) Times  
BISTEN  
1/2 V  
DDIO  
t
PASS  
1/2 V  
PASS  
(w/errors)  
DDIO  
Result Held  
Prior BIST Result  
Current BIST Test - Toggle on Error  
Figure 8. BIST PASS Waveform  
14  
Copyright © 2010–2017, Texas Instruments Incorporated  
 
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
Timing Diagrams (continued)  
SDA  
t
BUF  
t
t
f
t
HD;STA  
t
r
LOW  
t
t
SP  
t
f
r
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 9. Serial Control Bus Timing Diagram  
6.11 Typical Characteristics  
78 MHz TX  
Pixel Clock  
Input  
(2 V/DIV)  
78 MHz RX  
Pixel Clock  
Output  
(2 V/DIV)  
Time (1.25 ns/DIV)  
Time (10 ns/DIV)  
NOTE: On the rising edge of each clock period, the CML driver  
outputs a low stop bit, high start bit, and 33 DC-scrambled data  
bits.  
Figure 11. Comparison of Deserializer LVCMOS RX PCLK  
Output Locked to a 78-MHz TX PCLK  
Figure 10. Serializer CML Driver Output  
With 78-MHZ TX Pixel Clock  
Copyright © 2010–2017, Texas Instruments Incorporated  
15  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DS90UH926Q-Q1 deserializer receives a 35 bits symbol over a single serial FPD-Link III pair operating up to  
a 2.975 Gbps application payload. The serial stream contains an embedded clock, video control signals and the  
DC-balanced video data and audio data which enhance signal quality to support AC coupling.  
The DS90UH926Q-Q1 deserializer attains lock to a data stream without the use of a separate reference clock  
source, which greatly simplifies system complexity and overall cost. The deserializer also synchronizes to the  
serializer regardless of the data pattern, delivering true automatic plug and lock performance. It can lock to the  
incoming serial stream without the need of special training patterns or sync characters. The deserializer recovers  
the clock and data by extracting the embedded clock information, validating then deserializing the incoming data  
stream. It also applies decryption through a High-Bandwidth Digital Content Protection (HDCP) Cipher to this  
video and audio data stream following reception of the data from the FPD-Link III decoder. The decrypted parallel  
LVCMOS video bus is provided to the display. The deserializer is intended for use with the DS90UH925Q  
serializer, but is also backward-compatible with DS90UR905Q or DS90UR907Q FPD-Link II serializer.  
7.2 Functional Block Diagram  
w9DÜ[!Çhw  
SSCG  
CMF  
24  
RGB [7:0]  
HS  
VS  
DE  
RIN+  
RIN-  
I2S_CLK  
I2S_WC  
I2S_DA  
MCLK  
4
CMLOUTP  
CMLOUTN  
Error  
Detector  
BISTEN  
BISTC  
PASS  
PDB  
SCL  
Clock and  
Data  
Recovery  
Timing and  
Control  
PCLK  
LOCK  
SCA  
IDx  
MODE_SEL  
7.3 Feature Description  
7.3.1 High-Speed Forward Channel Data Transfer  
The high-speed forward channel (HS_FC) is composed of 35 bits of data containing RGB data, sync signals,  
HDCP, I2C, and I2S audio transmitted from Serializer to Deserializer. Figure 12 illustrates the serial stream per  
PCLK cycle. This data payload is optimized for signal transmission over an AC-coupled link. Data is randomized,  
balanced and scrambled.  
C1  
C0  
Figure 12. FPD-Link III Serial Stream  
16  
Copyright © 2010–2017, Texas Instruments Incorporated  
 
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
Feature Description (continued)  
The device supports clocks in the range of 5 MHz to 85 MHz. The application payload rate is 2.975-Gbps  
maximum (175 Mbps minimum) with the actual line rate of 2.975 Gbps maximum and 525 Mbps minimum.  
7.3.2 Low-Speed Back Channel Data Transfer  
The low-speed backward channel (LS_BC) of the DS90UH926Q-Q1 provides bidirectional communication  
between the display and host processor. The information is carried back from the Deserializer to the Serializer  
per serial symbol. The back channel control data is transferred over the single serial link along with the high-  
speed forward data, DC balance coding, and embedded clock information. This architecture provides a backward  
path across the serial link together with a high-speed forward channel. The back channel contains the I2C,  
HDCP, CRC and 4 bits of standard GPIO information with 10-Mbps line rate.  
7.3.3 Backward Compatible Mode  
The DS90UH926Q-Q1 is also backward-compatible to DS90UR905Q and DS90UR907Q FPD Link II serializers  
with 15- to 65-MHz pixel clock frequencies supported. It receives 28 bits of data over a single serial FPD-Link II  
pair operating at the line rate of 420 Mbps to 1.82 Gbps. This backward-compatible mode is provided through the  
MODE_SEL pin (Table 9) or the configuration register (Table 11). When backward-compatible mode = ON, set  
LFMODE = 0.  
7.3.4 Input Equalization Gain  
FPD-Link III input adaptive equalizer provides compensation for transmission medium losses and reduces the  
medium-induced deterministic jitter. It equalizes up to 10 meter STP cables with 3 connection breaks at  
maximum serialized stream payload rate of 2.975 Gbps.  
7.3.5 Common-Mode Filter Pin (CMF)  
The deserializer provides access to the center tap of the internal termination. A capacitor must be placed on this  
pin for additional common-mode filtering of the differential pair. This can be useful in high noise environments for  
additional noise rejection capability. A 0.1-μF capacitor has to be connected to this pin to Ground.  
7.3.6 Video Control Signal Filter  
When operating the devices in Normal Mode, the Video Control Signals (DE, HS, VS) have the following  
restrictions:  
Normal Mode with Control Signal Filter Enabled: DE and HS — Only 2 transitions per 130 clock cycles are  
transmitted, the transition pulse must be 3 PCLK or longer.  
Normal Mode with Control Signal Filter Disabled: DE and HS — Only 2 transitions per 130 clock cycles are  
transmitted, no restriction on minimum transition pulse.  
VS — Only 1 transition per 130 clock cycles are transmitted, minimum pulse width is 130 clock cycles.  
Video Control Signals are defined as low-frequency signals with limited transitions. Glitches of a control signal  
can cause a visual display error. This feature allows for the chipset to validate and filter out any high-frequency  
noise on the control signals. See Figure 13.  
Copyright © 2010–2017, Texas Instruments Incorporated  
17  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
Feature Description (continued)  
PCLK  
IN  
HS/VS/DE  
IN  
Latency  
PCLK  
OUT  
Pulses 1 or 2  
PCLKs wide  
HS/VS/DE  
OUT  
Filetered OUT  
Figure 13. Video Control Signal Filter Waveform  
7.3.7 EMI Reduction Features  
7.3.7.1 Spread Spectrum Clock Generation (SSCG)  
The DS90UH926Q-Q1 provides an internally-generated spread spectrum clock (SSCG) to modulate its outputs.  
Both clock and data outputs are modulated. This will aid to lower system EMI. Output SSCG deviations to ±2.5%  
(5% total) at up to 100-kHz modulations are available. This feature may be controlled by register. See Table 1,  
Table 2 and Table 11. Do not enable the SSCG feature if the source PCLK into the SER has a clock with spread  
spectrum already.  
Frequency  
fdev(max)  
F
PCLK+  
F
PCLK  
F
fdev(min)  
Time  
PCLK-  
1/fmod  
Figure 14. SSCG Waveform  
Table 1. SSCG Configuration  
LFMODE = L (15 to 85 MHz)  
SSCG CONFIGURATION (0x2C) LFMODE = L (15 to 85 MHz)  
SPREAD SPECTRUM OUTPUT  
Fdev (%) Fmod (kHz)  
SSC[2]  
SSC[1]  
SSC[0]  
L
L
L
L
L
H
L
±0.9  
±1.2  
±1.9  
±2.5  
±0.7  
±1.3  
±2.0  
±2.5  
PCLK / 2168  
L
H
H
L
L
H
L
H
H
H
H
PCLK / 1300  
L
H
L
H
H
H
18  
Copyright © 2010–2017, Texas Instruments Incorporated  
 
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
Table 2. SSCG Configuration  
LFMODE = H (5 to < 15 MHz)  
SSCG CONFIGURATION (0x2C) LFMODE = H (5 to <15 MHz)  
SPREAD SPECTRUM OUTPUT  
SSC[2]  
SSC[1]  
SSC[0]  
Fdev (%)  
±0.5  
±1.3  
±1.8  
±2.5  
±0.7  
±1.2  
±2  
Fmod (kHz)  
L
L
L
L
L
H
L
PCLK / 628  
L
H
H
L
L
H
L
H
H
H
H
PCLK / 388  
L
H
L
H
H
H
±2.5  
7.3.8 Enhanced Progressive Turnon (EPTO)  
The deserializer LVCMOS parallel outputs timing are delayed. Groups of 8-bit R, G and B outputs switch in a  
different time. This minimizes the number of outputs switching simultaneously and helps to reduce supply noise.  
In addition it spreads the noise spectrum out reducing overall EMI.  
7.3.9 LVCMOS VDDIO Option  
The deserializer parallel bus can operate with 1.8 V or 3.3 V levels (VDDIO) for target (Display) compatibility.  
The 1.8 V levels will offer a lower noise (EMI) and also a system power savings.  
7.3.10 Power Down (PDB)  
The Serializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin can be controlled by the  
host or through the VDDIO, where VDDIO = 3 to 3.6 V or VDD33. To save power disable the link when the display is  
not needed (PDB = LOW). When the pin is driven by the host, make sure to release it after VDD33 and VDDIO have  
reached final levels; no external components are required. In the case of driven by the VDDIO = 3 to 3.6 V or  
VDD33 directly, a 10 kΩ resistor to the VDDIO = 3 to 3.6 V or VDD33 , and a > 10 µF capacitor to the ground are  
required (See Figure 24).  
7.3.11 Stop Stream Sleep  
The deserializer enters a low power SLEEP state when the input serial stream is stopped. A STOP condition is  
detected when the embedded clock bits are not present. When the serial stream starts again, the deserializer will  
then lock to the incoming signal and recover the data.  
NOTE  
In STOP STREAM SLEEP, the Serial Control Bus Registers values are retained.  
7.3.12 Serial Link Fault Detect  
The serial link fault detection is able to detect any of following 7 conditions  
1. cable open  
2. + to - short  
3. + short to GND  
4. - short to GND  
5. + short to battery  
6. - short to battery  
7. Cable is linked incorrectly  
If any one of the fault conditions occurs, The Link Detect Status is 0 (cable is not detected) on the Serial Control  
Bus Register bit 0 of address 0x1C Table 11. The link errors can be monitored though Link Error Count of the  
Serial Control Bus Register bit [4:0] of address 0x41 Table 11.  
Copyright © 2010–2017, Texas Instruments Incorporated  
19  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
7.3.13 Oscillator Output  
The deserializer provides an optional PCLK output when the input clock (serial stream) has been lost. This is  
based on an internal oscillator. The frequency of the oscillator may be selected. This feature is controlled by  
register Address 0x02, bit 5 (OSC Clock Enable). See Table 11.  
7.3.14 Pixel Clock Edge Select (RFB)  
The RFB determines the edge that the data is strobed on. If RFB is High (‘1’), output data is strobed on the  
Rising edge of the PCLK. If RFB is Low (‘0’), data is strobed on the Falling edge of the PCLK. This allows for  
inter-operability with downstream devices. The deserializer output does not need to use the same edge as the  
Ser input. This feature may be controlled by register. See Table 11.  
7.3.15 Built In Self Test (BIST)  
An optional At-Speed, Built-In Self Test (BIST) feature supports the testing of the high speed serial link and the  
low- speed back channel. This is useful in the prototype stage, equipment production, in-system test and also for  
system diagnostics. The BIST is not available in backwards-compatible mode.  
7.3.15.1 BIST Configuration and Status  
The BIST mode is enabled at the deserializer by the Pin select (Pin 44 BISTEN and Pin 16 BISTC) or  
configuration register (Table 11) through the deserializer. When LFMODE = 0, the pin based configuration  
defaults to external PCLK or 33 MHz internal Oscillator clock (OSC) frequency. In the absence of PCLK, the user  
can select the desired OSC frequency (default 33 MHz or 25 MHz) through the register bit. When LFMODE = 1,  
the pin based configuration defaults to external PCLK or 12.5 MHz MHz internal Oscillator clock (OSC)  
frequency.  
When BISTEN of the deserializer is high, the BIST mode enable information is sent to the serializer through the  
Back Channel. The serializer outputs a test pattern and drives the link at speed. The deserializer detects the test  
pattern and monitors it for errors. The PASS output pin toggles to flag any payloads that are received with 1- to  
35-bit errors.  
The BIST status is monitored real time on PASS pin. The result of the test is held on the PASS output until reset  
(new BIST test or Power Down). A High on PASS indicates NO ERRORS were detected. A Low on PASS  
indicates one or more errors were detected. The duration of the test is controlled by the pulse width applied to  
the deserializer BISTEN pin. This BIST feature also contains a Link Error Count and a Lock Status. If the  
connection of the serial link is broken, then the link error count is shown in the register. When the PLL of the  
deserializer is locked or unlocked, the lock status can be read in the register. See Table 11.  
7.3.15.1.1 Sample BIST Sequence  
See Figure 15 for the BIST mode flow diagram.  
1. For the DS90UH925Q-Q1 and DS90UH926Q-Q1 FPD-Link III chipset, BIST Mode is enabled through the  
BISTEN pin of DS90UH926Q-Q1 FPD-Link III deserializer. The desired clock source is selected through  
BISTC pin.  
2. The DS90UH925Q-Q1 serializer is woken up through the back channel if it is not already on. The all zero  
pattern on the data pins is sent through the FPD-Link III to the deserializer. Once the serializer and the  
deserializer are in BIST mode and the deserializer acquires Lock, the PASS pin of the deserializer goes high  
and BIST starts checking the data stream. If an error in the payload (1 to 35) is detected, the PASS pin will  
switch low for one half of the clock period. During the BIST test, the PASS output can be monitored and  
counted to determine the payload error rate.  
3. To Stop the BIST mode, the deserializer BISTEN pin is set Low. The deserializer stops checking the data.  
The final test result is held on the PASS pin. If the test ran error free, the PASS output will be High. If there  
was one or more errors detected, the PASS output will be Low. The PASS output state is held until a new  
BIST is run, the device is RESET, or Powered Down. The BIST duration is user controlled by the duration of  
the BISTEN signal.  
4. The Link returns to normal operation after the deserializer BISTEN pin is low. Figure 16 shows the waveform  
diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2 shows one with multiple errors.  
In most cases it is difficult to generate errors due to the robustness of the link (differential data transmission  
etc.), thus they may be introduced by greatly extending the cable length, faulting the interconnect, reducing  
20  
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
signal condition enhancements ( Rx Equalization).  
Normal  
Step 1: DES in BIST  
BIST  
Wait  
Step 2: Wait, SER in BIST  
BIST  
start  
Step 3: DES in Normal Mode -  
check PASS  
BIST  
stop  
Step 4: DES/SER in Normal  
Figure 15. BIST Mode Flow Diagram  
7.3.15.2 Forward-Channel and Back-Channel Error Checking  
While in BIST mode, the serializer stops sampling RGB input pins and switches over to an internal all-zero  
pattern. The internal all-zeroes pattern goes through scrambler, dc-balancing etc. and goes over the serial link to  
the deserializer. The deserializer on locking to the serial stream compares the recovered serial stream with all-  
zeroes and records any errors in status registers and dynamically indicates the status on PASS pin. The  
deserializer then outputs a SSO pattern on the RGB output pins.  
The back-channel data is checked for CRC errors once the serializer locks onto back-channel serial stream as  
indicated by link detect status (register bit 0x0C[0]). The CRC errors are recorded in an 8-bit register. The  
register is cleared when the serializer enters the BIST mode. As soon as the serializer exits BIST mode, the  
functional mode CRC register starts recording the CRC errors. The BIST mode CRC error register is active in  
BIST mode only and keeps the record of last BIST run until it clears or enters BIST mode again.  
BISTEN  
(DES)  
PCLK  
(RFB = L)  
ROUT[23:0]  
HS, VS, DE  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
BIST  
Result  
Held  
Normal  
SSO  
Normal  
BIST Test  
BIST Duration  
Figure 16. BIST Waveforms  
Copyright © 2010–2017, Texas Instruments Incorporated  
21  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
7.3.16 Image Enhancement Features  
Several image enhancement features are provided. White balance LUTs allow the user to define and target the  
color temperature of the display. Adaptive Hi-FRC dithering enables the presentation of “true-color” images on an  
18–bit color display.  
7.3.16.1 White Balance  
The White Balance feature enables similar display appearance when using LCDs from different vendors. It  
compensates for native color temperature of the display, and adjusts relative intensities of R, G, B to maintain  
specified color temperature. Programmable control registers are used to define the contents of three LUTs (8-bit  
color value for Red, Green and Blue) for the white balance feature. The LUTs map input RGB values to new  
output RGB values. There are three LUTs, one LUT for each color. Each LUT contains 256 entries, 8 bits per  
entry with a total size of 6144 bits (3 x 256 x 8). All entries are readable and writable. Calibrated values are  
loaded into registers through the I2C interface (deserializer is a slave device). This feature may also be applied  
to lower color depth applications such as 18–bit (666) and 16–bit (565). White balance is enabled and configured  
through that serial control bus register.  
7.3.16.1.1 LUT Contents  
The user must define and load the contents of the LUT for each color (R,G,B). Regardless of the color depth  
being driven (888, 666, 656), the user must always provide contents for 3 complete LUTs - 256 colors x 8 bits x 3  
tables. Unused bits - LSBs -shall be set to 0 by the user.  
When 24-bit (888) input data is being driven to a 24-bit display, each LUT (R, G and B) must contain 256 unique  
8-bit entries. The 8-bit white balanced data is then available at the output of the DS90UH926Q-Q1 deserializer,  
and driven to the display.  
When 18-bit (666) input data is being driven to an 18-bit display, the white balance feature may be used in one of  
two ways. First, simply load each LUT with 256, 8-bit entries. Each 8-bit entry is a 6-bit value (6 MSBs) with the 2  
LSBs set to 00. Thus as total of 64 unique 6-bit white balance output values are available for each color (R, G  
and B). The 6-bit white balanced data is available at the output of the DS90UH926Q-Q1 deserializer, and driven  
directly to the display.  
Alternatively, with 6-bit input data the user may choose to load complete 8-bit values into each LUT. This mode  
of operation provides the user with finer resolution at the LUT output to more closely achieve the desired white  
point of the calibrated display. Although 8-bit data is loaded, only 64 unique 8-bit white balance output values are  
available for each color (R, G and B). The result is 8-bit white balanced data. Before driving to the output of the  
deserializer, the 8-bit data must be reduced to 6-bit with an FRC dithering function. To operate in this mode, the  
user must configure the DS90UH926Q-Q1 to enable the FRC2 function.  
Examples of the three types of LUT configurations described are shown in Figure 17  
7.3.16.1.2 Enabling White Balance  
The user must load all 3 LUTs prior to enabling the white balance feature. The following sequence must be  
followed by the user.  
To initialize white balance after power-on (Table 3):  
1. Load contents of all 3 LUTs . This requires a sequential loading of LUTs - first RED, second GREEN, third  
BLUE. 256, 8-bit entries must be loaded to each LUT. Page registers must be set to select each LUT.  
2. Enable white balance.  
By default, the LUT data may not be reloaded after initialization at power-on.  
An option does exist to allow LUT reloading after power-on and initial LUT loading (as described above). This  
option may only be used after enabling the white balance reload feature through the associated serial control bus  
register. In this mode the LUTs may be reloaded by the master controller through the I2C. This provides the user  
with the flexibility to refresh LUTs periodically , or upon system requirements to change to a new set of LUT  
values. The host controller loads the updated LUT values through the serial bus interface. There is no need to  
disable the white balance feature while reloading the LUT data. Refreshing the white balance to the new set of  
LUT data will be seamless - no interruption of displayed data.  
It is important to note that initial loading of LUT values requires that all three LUTs be loaded sequentially. When  
reloading, partial LUT updates may be made.  
22  
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
8-bit in / 8 bit out  
6-bit in / 6 bit out  
6-bit in / 8 bit out  
Gray level Data Out  
Gray level Data Out  
Gray level Data Out  
Entry  
(8-bits)  
Entry  
(8-bits)  
Entry  
(8-bits)  
0
1
2
3
4
5
6
7
8
9
00000000b  
00000001b  
00000011b  
00000011b  
00000110b  
00000110b  
00000111b  
00000111b  
00001000b  
00001010b  
0
00000000b  
0
00000001b  
1 N/A  
2 N/A  
3 N/A  
1 N/A  
2 N/A  
3 N/A  
4
00000100b  
4
00000110b  
5 N/A  
6 N/A  
7 N/A  
5 N/A  
6 N/A  
7 N/A  
8
00001000b  
8
00001011b  
9 N/A  
10 N/A  
11 N/A  
9 N/A  
10 N/A  
11 N/A  
10 00001001b  
11 00001011b  
248 11111010b  
249 11111010b  
250 11111011b  
251 11111011b  
252 11111110b  
253 11111101b  
254 11111101b  
255 11111111b  
248 11111000b  
249 N/A  
248 11111010b  
249 N/A  
250 N/A  
250 N/A  
251 N/A  
252 11111100b  
253 N/A  
251 N/A  
252 11111111b  
253 N/A  
254 N/A  
255 N/A  
254 N/A  
255 N/A  
Figure 17. White Balance LUT Configurations  
Table 3. White Balance Register Table  
DEFAU  
LT  
(hex)  
ADD  
(dec)  
ADD  
(hex)  
PAGE  
REGISTER NAME BITS ACCESS  
FUNCTION  
DESCRIPTION  
00: Configuration Registers  
01: Red LUT  
10: Green LUT  
7:6  
5
RW  
Page Setting  
11: Blue LUT  
White Balance  
Control  
White Balance 0: White Balance Disable  
0
42  
0x2A  
0x00  
RW  
RW  
Enable  
1: White Balance Enable  
0: Reload Disable  
1: Reload Enable  
4
3:0  
Reserved  
0 –  
255  
White Balance Red  
LUT  
256 8–bit entries to be applied to the Red  
subpixel data  
1
2
3
00 – FF  
00 – FF  
00 – FF  
FF:0  
RW  
RW  
RW  
N/A  
N/A  
N/A  
Red LUT  
Green LUT  
Blue LUT  
0 –  
255  
White Balance  
Green LUT  
256 8–bit entries to be applied to the Green  
subpixel data  
FF:0  
FF:0  
0 –  
255  
White Balance  
Blue LUT  
256 8–bit entries to be applied to the Blue  
subpixel data  
7.3.16.2 Adaptive HI-FRC Dithering  
The Adaptive FRC Dithering Feature delivers product-differentiating image quality. It reduces 24-bit RGB (8 bits  
per subpixel) to 18-bit RGB (6 bits per sub-pixel), smoothing color gradients, and allowing the flexibility to use  
lower cost 18-bit displays. FRC (Frame Rate Control) dithering is a method to emulate “missing” colors on a  
lower color depth LCD display by changing the pixel color slightly with every frame. FRC is achieved by  
controlling on and off pixels over multiple frames (Temporal). Static dithering regulates the number of on and off  
pixels in a small defined pixel group (Spatial). The FRC module includes both Temporal and Spatial methods and  
also Hi-FRC. Conventional FRC can display only 16,194,277 colors with 6-bit RGB source. “Hi-FRC” enables full  
(16,777,216) color on an 18-bit LCD panel. The “adaptive” FRC module also includes input pixel detection to  
apply specific Spatial dithering methods for smoother gray level transitions. When enabled, the lower LSBs of  
each RGB output are not active; only 18 bit data (6 bits per R,G and B) are driven to the display. This feature is  
enabled through the serial control bus register.  
Copyright © 2010–2017, Texas Instruments Incorporated  
23  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
Two FRC functional blocks are available, and may be independently enabled. FRC1 precedes the white balance  
LUT, and is intended to be used when 24-bit data is being driven to an 18-bit display with a white balance LUT  
that is calibrated for an 18-bit data source. The second FRC block, FRC2, follows the white balance block and is  
intended to be used when fine adjustment of color temperature is required on an 18-bit color display, or when a  
24-bit source drives an 18-bit display with a white balance LUT calibrated for 24-bit source data.  
For proper operation of the FRC dithering feature, the user must provide a description of the display timing  
control signals. The timing mode, “sync mode” (HS, VS) or “DE only” must be specified, along with the active  
polarity of the timing control signals. All this information is entered to DS90UH926Q-Q1 control registers through  
the serial bus interface.  
Adaptive Hi-FRC dithering consists of several components. Initially, the incoming 8-bit data is expanded to 9-bit  
data. This allows the effective dithered result to support a total of 16.7 million colors. The incoming 9-bit data is  
evaluated, and one of four possible algorithms is selected. The majority of incoming data sequences are  
supported by the default dithering algorithm. Certain incoming data patterns (black/white pixel, full on/off sub-  
pixel) require special algorithms designed to eliminate visual artifacts associated with these specific gray level  
transitions. Three algorithms are defined to support these critical transitions.  
An example of the default dithering algorithm is illustrated in Figure 18. The 1 or 0 value shown in the table  
describes whether the 6-bit value is increased by 1 (1) or left unchanged (0). In this case, the 3 truncated LSBs  
are 001.  
F0L0  
PD1  
Frame = 0, Line = 0  
Pixel Data one  
Cell Value 010  
R[7:2]+0, G[7:2]+1, B[7:2]+0  
LSB=001  
three lsb of 9 bit data (8 to 9 for Hi-Frc)  
Pixel Index  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PD8  
LSB = 001  
F0L0  
F0L1  
F0L2  
F0L3  
010  
101  
000  
000  
000  
000  
000  
000  
000  
000  
010  
101  
000  
000  
000  
000  
000  
101  
010  
000  
000  
000  
000  
000  
010  
000  
000  
101  
000  
000  
000  
000  
R = 4/32  
G = 4/32  
B = 4/32  
F1L0  
F1L1  
F1L2  
F1L3  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
000  
000  
000  
000  
111  
R = 4/32  
G = 4/32  
B = 4/32  
F2L0  
F2L1  
F2L2  
F2L3  
000  
000  
010  
101  
000  
000  
000  
000  
010  
101  
000  
000  
000  
000  
000  
000  
010  
000  
000  
101  
000  
000  
000  
000  
000  
101  
010  
000  
000  
000  
000  
000  
R = 4/32  
G = 4/32  
B = 4/32  
F3L0  
F3L1  
F3L2  
F3L3  
000  
000  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
111  
000  
000  
R = 4/32  
G = 4/32  
B = 4/32  
Figure 18. Default FRC Algorithm  
24  
Copyright © 2010–2017, Texas Instruments Incorporated  
 
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
Table 4. Recommended FRC Settings  
SOURCE  
WHITE BALANCE LUT  
DISPLAY  
24–bit  
18–bit  
18–bit  
24–bit  
18–bit  
18–bit  
FRC1  
FRC2  
24–bit  
24–bit  
24–bit  
18–bit  
18–bit  
18–bit  
24–bit  
24–bit  
18–bit  
24–bit  
24–bit  
18–bit  
Disabled  
Disabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Disabled  
Disabled  
Enabled  
Disabled  
7.3.17 Internal Pattern Generation  
The DS90UH926Q-Q1 serializer supports the internal pattern generation feature. It allows basic testing and  
debugging of an integrated panel. The test patterns are simple and repetitive and allow for a quick visual  
verification of panel operation. As long as the device is not in power down mode, the test pattern will be  
displayed even if no parallel input is applied. If no PCLK is received, the test pattern can be configured to use a  
programmed oscillator frequency. For detailed information, refer to AN-2198 Exploring the Internal Test Pattern  
Generation Feature of 720p FPD-Link III Devices (SNLA132).  
7.3.18 I2S Receiving  
In normal 24-bit RGB operation mode, the DS90UH926Q-Q1 provides up to 3-bit of I2S. They are I2S_CLK,  
I2S_WC and I2S_DA, as well as the Master I2S Clock (MCLK). The audio is received through the forward video  
frame, or can be configured to receive during video blanking periods. A jitter cleaning feature reduces I2S_CLK  
output jitter to +/- 2ns. The encrypted and packetized audio information is received during the video blanking  
periods along with specific information about the clock frequency. The bit rates of any I2S input bits must  
maintain one fourth of the PCLK rate. The audio decryption is supported per HDCP v1.3.  
7.3.18.1 I2S Jitter Cleaning  
In 18-bit RGB operation mode, the secondary I2S data (I2S_DB) can be used as the additional I2S audio  
channel in additional to the 3–bit of I2S. The I2S_DB is synchronized to the I2S_CLK. To enable this  
synchronization feature on this bit, set the MODE_SEL (Table 9) or program through the register bit ()  
7.3.18.2 Secondary I2S Channel  
In 18-bit RGB operation mode, the secondary I2S data (I2S_DB) can be used as the additional I2S audio  
channel in additional to the 3–bit of I2S. The I2S_DB is synchronized to the I2S_CLK. To enable this  
synchronization feature on this bit, set the MODE_SEL (Table 9) or program through the register bit (Table 11).  
7.3.18.2.1 MCLK  
The deserializer has an I2S Master Clock Output. It supports x1, x2, or x4 of I2S CLK Frequency. When the I2S  
PLL is disabled, the MCLK output is off. Table 5 below covers the range of I2S sample rates and MCLK  
frequencies. By default, all the MCLK output frequencies are x2 of the I2S CLK frequencies. The MCLK  
frequencies can also be enabled through the register bit [7:4] (I2S MCLK Output) of 0x3A shown in Table 11. To  
select desired MCLK frequency, write bit 7 (0x3A) = 1, then write to bit [6:4] accordingly.  
Copyright © 2010–2017, Texas Instruments Incorporated  
25  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
Table 5. Audio Interface Frequencies  
SAMPLE RATE  
(kHz)  
I2S DATA WORD SIZE  
(BITS)  
I2S CLK  
(MHz)  
MCLK OUTPUT  
(MHz)  
REGISTER 0x3A[6:4]'b  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
000  
001  
010  
000  
001  
010  
000  
001  
010  
001  
010  
011  
010  
011  
100  
000  
001  
010  
001  
010  
011  
001  
010  
011  
010  
011  
100  
011  
100  
101  
001  
010  
011  
001  
010  
011  
001  
010  
011  
010  
011  
100  
011  
100  
110  
32  
44.1  
48  
1.024  
1.4112  
1.536  
3.072  
6.144  
1.536  
2.117  
2.304  
4.608  
9.216  
2.048  
2.8224  
3.072  
6.144  
12.288  
16  
24  
32  
96  
192  
32  
44.1  
48  
96  
192  
32  
44.1  
48  
96  
192  
26  
Copyright © 2010–2017, Texas Instruments Incorporated  
 
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
7.3.19 Interrupt Pin: Functional Description and Usage (INTB)  
1. On DS90UH925Q-Q1, set register 0xC6[5] = 1 and 0xC6[0] = 1  
2. DS90UH926Q-Q1 deserializer INTB_IN (pin 16) is set LOW by some downstream device.  
3. DS90UH925Q-Q1 serializer pulls INTB (pin 31) LOW. The signal is active low, so a LOW indicates an  
interrupt condition.  
4. External controller detects INTB = LOW; to determine interrupt source, read HDCP_ISR register .  
5. A read to HDCP_ISR will clear the interrupt at the DS90UH925, releasing INTB.  
6. The external controller typically must then access the remote device to determine downstream interrupt  
source and clear the interrupt driving INTB_IN. This would be when the downstream device releases the  
INTB_IN (pin 16) on the DS90UH926Q-Q1. The system is now ready to return to step (1) at next falling edge  
of INTB_IN.  
7.3.20 GPIO[3:0] and GPO_REG[8:4]  
In 18-bit RGB operation mode, the optional R[1:0] and G[1:0] of the DS90UH926Q-Q1 can be used as the  
general purpose IOs GPIO[3:0] in either forward channel (Outputs) or back channel (Inputs) application.  
7.3.20.1 GPIO[3:0] Enable Sequence  
See Table 6 for the GPIO enable sequencing.  
1. Enable the 18-bit mode either through the configuration register bit Table 11 on DS90UH925Q-Q1 only.  
DS90UH926Q-Q1 is automatically configured as in the 18-bit mode.  
2. To enable GPIO3 forward channel, write 0x03 to address 0x0F on DS90UH925Q-Q1, then write 0x05 to  
address 0x1F on DS90UH926Q-Q1.  
Table 6. GPIO Enable Sequencing Table  
NO.  
DESCRIPTION  
DEVICE  
FORWARD CHANNEL  
0x12 = 0x04  
BACK CHANNEL  
0x12 = 0x04  
1
Enable 18-bit mode  
DS90UH925Q-Q1  
DS90UH926Q-Q1  
DS90UH925Q-Q1  
DS90UH926Q-Q1  
DS90UH925Q-Q1  
DS90UH926Q-Q1  
DS90UH925Q-Q1  
DS90UH926Q-Q1  
DS90UH925Q-Q1  
DS90UH926Q-Q1  
Auto Load from DS90UH925Q-Q1  
0x0F = 0x03  
Auto Load from DS90UH925Q-Q1  
0x0F = 0x05  
2
3
4
5
GPIO3  
GPIO2  
GPIO1  
GPIO0  
0x1F = 0x05  
0x1F = 0x03  
0x0E = 0x30  
0x0E = 0x50  
0x1E = 0x50  
0x1E = 0x30  
0x0E = 0x03  
0x0E = 0x05  
0x1E = 0x05  
0x0E = 0x05  
0x0D = 0x93  
0x0D = 0x95  
0x1D = 0x95  
0x1D = 0x93  
7.3.20.2 GPO_REG[8:4] Enable Sequence  
GPO_REG[8:4] are the outputs only pins. They must be programmed through the local register bits. See  
Table 11 for the GPO_REG enable sequencing.  
1. Enable the 18-bit mode either through the configuration register bit Table 11 on DS90UH925Q-Q1 only.  
DS90UH926Q-Q1 is automatically configured as in the 18-bit mode.  
2. To enable GPO_REG8 outputs a 1, write 0x90 to address 0x11 on DS90UH925Q.  
Table 7. GPO_REG Enable Sequencing Table  
NO.  
DESCRIPTION  
DEVICE  
LOCAL ACCESS  
LOCAL OUTPUT VALUE  
1
Enable 18-bit mode  
DS90UH926Q-Q1  
0x12 = 0x04  
(on DS90UH925Q-Q1)  
2
3
GPO_REG8  
GPO_REG7  
DS90UH926Q-Q1  
DS90UH926Q-Q1  
0x21 = 0x90  
0x21 = 0x10  
0x21 = 0x09  
0x21 = 0x01  
1
0
1
0
Copyright © 2010–2017, Texas Instruments Incorporated  
27  
 
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
Table 7. GPO_REG Enable Sequencing Table (continued)  
NO.  
DESCRIPTION  
DEVICE  
LOCAL ACCESS  
0x20 = 0x90  
0x20 = 0x10  
0x20 = 0x09  
0x20 = 0x01  
0x1F = 0x90  
0x1F = 0x10  
LOCAL OUTPUT VALUE  
4
GPO_REG6  
DS90UH926Q-Q1  
1
0
1
0
1
0
5
6
GPO_REG5  
GPO_REG4  
DS90UH926Q-Q1  
DS90UH926Q-Q1  
7.4 Device Functional Modes  
7.4.1 Clock-Data Recovery Status Flag (LOCK), Output Enable (OEN), and Output State Select  
(OSS_SEL)  
When PDB is driven HIGH, the CDR PLL begins locking to the serial input and LOCK is TRI-STATE or LOW  
(depending on the value of the OEN setting). After the DS90UH926Q-Q1 completes its lock sequence to the  
input serial data, the LOCK output is driven HIGH, indicating valid data and clock recovered from the serial input  
is available on the parallel bus and PCLK outputs. The State of the outputs are based on the OEN and  
OSS_SEL setting (Table 8) or register bit (Table 11). See Figure 7.  
Table 8. Output States  
INPUTS  
OUTPUTS  
Serial  
input  
PDB  
OEN  
OSS_SEL  
Lock  
Pass  
Data, GPIO, I2S  
CLK  
X
X
X
0
1
1
X
0
0
X
0
1
Z
Z
L
Z
Z
L
Z
Z
L
Z
L or H  
L or H  
L/OSC (Register bit  
enable)  
Static  
1
1
0
L
L
L
Static  
Active  
Active  
1
1
1
1
1
1
1
0
1
L
H
H
Previous Status  
L
L
L
L
L
Valid  
Valid  
Valid  
7.4.2 Low Frequency Optimization (LFMODE)  
The LFMODE is set through a register (Table 11) or MODE_SEL Pin 24 (Table 9). It controls the operating  
frequency of the deserializer. If LFMODE is Low (default), the PCLK frequency is between 15 MHz and 85 MHz.  
If LFMODE is High, the PCLK frequency is between 5 MHz and <15 MHz. Please note: when the device  
LFMODE is changed, a PDB reset is required.  
7.4.3 Configuration Select (MODE_SEL)  
Configuration of the device may be done through the MODE_SEL input pin, or through the configuration register  
bit. A pullup resistor and a pulldown resistor of suggested values may be used to set the voltage ratio of the  
MODE_SEL input (VR4) and VDD33 to select one of the other 10 possible selected modes. See Figure 19 and  
Table 9.  
VDD33  
R
R
3
4
MODE_SEL  
VR4  
DES  
Figure 19. MODE_SEL Connection Diagram  
28  
Copyright © 2010–2017, Texas Instruments Incorporated  
 
 
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
Table 9. Configuration Select (MODE_SEL)  
IDEAL  
RATIO  
VR4/VDD33  
SUGGESTED SUGGESTED  
IDEAL VR4  
(V)  
BACKWARD  
I2S CHANNEL B  
NO.  
RESISTOR R3 RESISTOR R4 LFMODE(1) REPEATER(2)  
COMPATIBLE(3) (18–bit MODE)(4)  
k(1% tol)  
Open  
115  
k(1% tol)  
1
2
3
4
5
6
7
8
9
0
0
40.2  
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
L
0.123  
0.167  
0.227  
0.291  
0.366  
0.458  
0.542  
0.611  
0.407  
0.552  
0.748  
0.960  
1.209  
1.510  
1.790  
2.016  
16.2  
121  
24.3  
L
H
H
L
162  
47.5  
L
H
L
137  
56.2  
H
H
H
H
L
107  
61.9  
L
H
L
113  
95.3  
H
H
L
95.3  
113  
H
L
73.2  
115  
(1) LFMODE:  
L = frequency range is 15 MHz to 85 MHz (Default)  
H = frequency range is 5 to < 15 MHz  
(2) Repeater:  
L = Repeater mode is OFF (Default)  
H = Repeater mode is ON  
(3) Backward Compatible:  
L = Backward Compatible mode is OFF (Default)  
H = Backward Compatible mode is ON; SER = DS90UR905Q or DS90UR907Q  
– frequency range = 15 to 65 MHz, set LFMODE = L  
(4) I2S Channel B:  
L = I2S Channel B mode is OFF, normal 24-bit RGB Mode (Default)  
H = I2S Channel B mode is ON, 18-bit RGB Mode with I2S_DB Enabled. Note: use of GPIO(s) on unused inputs must be enabled by  
register.  
7.4.4 HDCP Repeater  
When DS90UH925Q-Q1 and DS90UH926Q-Q1 are configured as the HDCP Repeater application, it provides a  
mechanism to extend HDCP transmission over multiple links to multiple display devices. This repeater  
application provides a mechanism to authenticate all HDCP Receivers in the system and distribute protected  
content to the HDCP Receivers using the encryption mechanisms provided in the HDCP specification.  
In this document, the DS90UH925Q-Q1 is referred to as the HDCP Transmitter or transmit port (TX), and the  
DS90UH926Q-Q1 is referred to as the HDCP Receiver (RX). Figure 20 shows the maximum configuration  
supported for HDCP Repeater implementations using the DS90UH925Q-Q1 (TX) and DS90UH926Q-Q1 (RX).  
Two levels of HDCP Repeaters are supported with a maximum of three HDCP Transmitters per HDCP Receiver.  
Copyright © 2010–2017, Texas Instruments Incorporated  
29  
 
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
1:3 Repeater  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
RX  
TX  
Source  
TX  
RX  
TX  
TX  
TX  
TX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
Figure 20. HDCP Maximum Repeater Application  
To support HDCP Repeater operation, the DS90UH926Q-Q1 Deserializer includes the ability to control the  
downstream authentication process, assemble the KSV list for downstream HDCP Receivers, and pass the KSV  
list to the upstream HDCP Transmitter. An I2C master within the DS90UH926Q-Q1 communicates with the I2C  
slave within the DS90UH925Q-Q1 Serializer. The DS90UH925Q-Q1 Serializer handles authenticating with a  
downstream HDCP Receiver and makes status available through the I2C interface. The DS90UH926Q-Q1  
monitors the transmit port status for each DS90UH925Q-Q1 and reads downstream KSV and KSV list values  
from the DS90UH925Q-Q1.  
In addition to the I2C interface used to control the authentication process, the HDCP Repeater implementation  
includes two other interfaces. A parallel LVCMOS interface provides the unencrypted video data in 24-bit RGB  
format and includes the DE/VS/HS control signals. In addition to providing the RGB video data, the parallel  
LVCMOS interface communicates control information and packetized audio data during video blanking intervals.  
A separate I2S audio interface may optionally be used to send I2S audio data between the HDCP Receiver and  
HDCP Transmitter in place of using the packetized audio over the parallel LVCMOS interface. All audio and  
video data is decrypted at the output of the HDCP Receiver and is re-encrypted by the HDCP Transmitter.  
Figure 21 provides more detailed block diagram of a 1:2 HDCP repeater configuration.  
30  
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
HDCP Transmitter  
DS90UH925Q-Q1  
downstream  
Receiver  
or  
I2C  
Slave  
I2C  
I2C  
Master  
Repeater  
upstream  
Transmitter  
Parallel  
LVCMOS  
HDCP Transmitter  
DS90UH925Q-Q1  
HDCP Receiver  
DS90UH926Q-Q1  
I2S Audio  
downstream  
Receiver  
or  
I2C  
Slave  
Repeater  
FPD-Link III interfaces  
Figure 21. HDCP 1:2 Repeater Configuration  
7.4.4.1 Repeater Connections  
The HDCP Repeater requires the following connections between the HDCP Receiver and each HDCP  
Transmitter Figure 22.  
1. Video Data – Connect PCLK, RGB and control signals (DE, VS, HS).  
2. I2C – Connect SCL and SDA signals. Both signals should be pulled up to VDD33 with 4.7-kresistors  
3. Audio – Connect I2S_CLK, I2S_WC, and I2S_DA signals.  
4. IDx pin – Each HDCP Transmitter and Receiver must have an unique I2C address.  
5. MODE_SEL pin – All HDCP Transmitter and Receiver must be set into the Repeater Mode.  
6. Interrupt pin– Connect DS90UH926Q-Q1 INTB_IN pin to DS90UH925Q-Q1 INTB pin. The signal must be  
pulled up to VDDIO  
.
DS90UH926Q-Q1  
DS90UH925Q-Q1  
R[7:0]  
G[7:0]  
B[7:0]  
R[7:0]  
G[7:0]  
B[7:0]  
DE  
VS  
HS  
DE  
VS  
HS  
I2S_CLK  
I2S_WC  
I2S_DA  
I2S_CLK  
I2S_WC  
I2S_DA  
VDD33  
VDD33  
hptional  
VDDIO  
MODE_SEL  
MODE_SEL  
INTB_IN  
INTB  
VDD33  
VDD33  
VDD33  
ID[x]  
SDA  
ID[x]  
SDA  
SCL  
SCL  
Figure 22. HDCP Repeater Connection Diagram  
Copyright © 2010–2017, Texas Instruments Incorporated  
31  
 
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
7.5 Programming  
7.5.1 Serial Control Bus  
The DS90UH926Q-Q1 is configured by the use of a serial control bus that is I2C protocol compatible. . Multiple  
deserializer devices may share the serial control bus since 16 device addresses are supported. Device address  
is set through the R1 and R2 values on IDx pin. See Figure 23.  
The serial control bus consists of two signals and a configuration pin. The SCL is a Serial Bus Clock Input /  
Output. The SDA is the Serial Bus Data Input / Output signal. Both SCL and SDA signals require an external  
pull-up resistor to VDD33. For most applications a 4.7 kΩ pull-up resistor to VDD33 may be used. The resistor value  
may be adjusted for capacitive loading and data rate requirements. The signals are either pulled High, or driven  
Low.  
V
DD33  
R
R
1
2
V
DD33  
IDx  
VR2  
4.7k  
4.7k  
HOST  
or  
SER  
or  
Salve  
DES  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
Figure 23. Serial Control Bus Connection  
The configuration pin is the IDx pin. This pin sets one of 16 possible device addresses. A pull-up resistor and a  
pull-down resistor of suggested values may be used to set the voltage ratio of the IDx input (VR2) and VDD33 to  
select one of the other 16 possible addresses. See Table 10  
Table 10. Serial Control Bus Addresses for IDx  
SUGGESTED  
RESISTOR R1 kΩ  
(1% tol)  
SUGGESTED  
RESISTOR R2 kΩ  
(1% tol)  
IDEAL RATIO  
VR2 / VDD33  
IDEAL VR2  
(V)  
ADDRESS 8'b  
APPENDED  
NO.  
ADDRESS 7'b  
1
2
0
0
Open  
124  
107  
133  
113  
137  
102  
115  
102  
115  
115  
56.2  
93.1  
82.5  
73.2  
57.6  
40.2  
17.4  
19.1  
29.4  
30.1  
43.2  
37.4  
49.9  
53.6  
73.2  
86.6  
51.1  
102  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x58  
0x5A  
0x5C  
0x5E  
0x60  
0x62  
0x64  
0x66  
0x68  
0x6A  
0x6C  
0x6E  
0x70  
0x72  
0x74  
0x76  
0.123  
0.151  
0.181  
0.210  
0.240  
0.268  
0.303  
0.344  
0.389  
0.430  
0.476  
0.523  
0.565  
0.611  
0.677  
0.406  
0.500  
0.597  
0.694  
0.791  
0.885  
0.999  
1.137  
1.284  
1.418  
1.572  
1.725  
1.863  
2.016  
2.236  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
107  
115  
121  
32  
Copyright © 2010–2017, Texas Instruments Incorporated  
 
 
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
7.6 Register Maps  
Table 11. Serial Control Bus Registers  
ADD  
ADD Register  
Bit(s)  
7:1  
0
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
0
1
0x00 I2C Device ID  
RW  
Device ID  
7–bit address of Deserializer  
See Table 9  
RW  
ID Setting  
I2C ID Setting  
1: Register I2C Device ID (Overrides IDx pin)  
0: Device ID is from IDx pin  
0x01 Reset  
7
RW  
0x04 Remote  
Remote Auto Power Down  
Auto Power 1: Power down when no forward channel link is detected  
Down  
0: Do not power down when no forward channel link is  
detected  
6:3  
2
Reserved.  
RW  
RW  
BC Enable  
Back channel enable  
1: Enable  
0: Disable  
1
0
Digital  
RESET1  
Reset the entire digital block including registers  
This bit is self-clearing.  
1: Reset  
0: Normal operation  
RW  
Digital  
RESET0  
Reset the entire digital block except registers  
This bit is self-clearing  
1: Reset  
0: Normal operation  
2
0x02 Configuration  
[0]  
7
6
5
RW  
RW  
RW  
0x00 Output  
LVCMOS Output Enable.  
1: Enable  
0: Disable. Tri-state Outputs  
Enable  
OEN and  
OSS_SEL  
Override  
Overrides Output Enable Pin and Output State pin  
1: Enable override  
0: Disable - no override  
OSC Clock OSC Clock Output Enable  
Enable  
If loss of lock OSC clock is output onto PCLK  
0: Disable  
1: Enable  
4
3
RW  
RW  
Output  
Sleep State Period  
Select  
(OSS_SEL) 0: Disable  
OSS Select to Control Output State during Lock Low  
1: Enable  
Backward  
Backward Compatible (BC) mode set by MODE_SEL pin  
Compatible or register.  
select by  
pin or  
1: BC is set by register bit. Use register bit reg_0x02[2] to  
set BC Mode  
register  
control  
0: Use MODE_SEL pin.  
2
RW  
Backward  
Backward compatible (BC) mode to DS90UR905Q or  
Compatible DS90UR907Q, if reg_0x02[3] = 1  
Mode  
1: Backward compatible with DS90UR905Q or  
Select  
DS90UR907Q  
(Set LFMODE = 0)  
0: Backward Compatible is OFF (default)  
1
0
RW  
RW  
LFMODE  
select by  
pin or  
register  
control  
Frequency range is set by MODE_SEL pin or register  
1: Frequency range is set by register. Use register  
bitreg_0x02[0] to set LFMODE  
0: Frequency range is set by MODE_SEL pin.  
LFMODE  
Frequency range select  
1: PCLK range = 5 to <15 MHz, if reg_0x02[1] = 1  
0: PCLK range = 15 to 85 MHz (default)  
Copyright © 2010–2017, Texas Instruments Incorporated  
33  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
3
0x03 Configuration  
7
6
0xF0  
Reserved.  
[1]  
RW  
RW  
CRC  
Generator  
Enable  
CRC Generator Enable (Back Channel)  
1: Enable  
0: Disable  
5
4
Reserved  
Filter  
Enable  
HS, VS, DE two clock filter When enabled, pulses less  
than two full PCLK cycles on the DE, HS, and VS inputs  
will be rejected  
1: Filtering enable  
0: Filtering disable  
3
2
RW  
RW  
I2C Pass-  
through  
I2C Pass-Through Mode  
1: Pass-Through Enabled  
0: Pass-Through Disabled  
Auto ACK  
ACK Select  
1: Auto ACK enable  
0: Self ACK  
1
0
Reserved  
RW  
RW  
RRFB  
Pixel Clock Edge Select  
1: Parallel Interface Data is strobed on the Rising Clock  
Edge.  
0: Parallel Interface Data is strobed on the Falling Clock  
Edge.  
4
0x04 BCC  
7:1  
0xFE BCC  
Watchdog  
Timer  
The watchdog timer allows termination of a control channel  
transaction, if it fails to complete within a programmed  
amount of time. This field sets the Bidirectional Control  
Channel Watchdog Timeout value in units of 2  
milliseconds.  
Watchdog  
Control  
This field should not be set to 0  
0
RW  
BCC  
Watchdog  
Timer  
Disable Bidirectional Control Channel Watchdog Timer  
1: Disables BCC Watchdog Timer operation  
0: Enables BCC Watchdog Timer operation"  
Disable  
5
0x05 I2C Control [1]  
7
RW  
RW  
RW  
0x2E I2C Pass  
I2C Pass-Through All Transactions  
Through All 1: Enabled  
0: Disabled  
6:4  
3:0  
I2C SDA  
Hold Time  
Internal I2C SDA Hold Time  
It configures the amount of internal hold time provided for  
the SDA input relative to the SCL input. Units are 50 ns.  
I2C Filter  
Depth  
I2C Glitch Filter Depth  
It configures the maximum width of glitch pulses on the  
SCL and SDA inputs that will be rejected. Units are 5 ns.  
34  
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
6 0x06 I2C Control [2]  
7
R
0x00 Forward  
Channel  
Control Channel Sequence Error Detected It indicates a  
sequence error has been detected in forward control  
channel. It this bit is set, an error may have occurred in the  
control channel operation.  
Sequence  
Error  
6
RW  
Clear  
Sequence  
Error  
It clears the Sequence Error Detect bit  
This bit is not self-clearing.  
5
Reserved  
4:3  
RW  
RW  
SDA Output SDA Output Delay  
Delay  
This field configures output delay on the SDA output.  
Setting this value will increase output delay in units of 50  
ns. Nominal output delay values for SCL to SDA are:  
00 : 250 ns  
01: 300 ns  
10: 350 ns  
11: 400 ns  
2
Local Write Disable Remote Writes to Local Registers through  
Serializer (Does not affect remote access to I2C slaves at  
Deserializer)  
1: Stop remote write to local device registers  
0: remote write to local device registers  
1
0
RW  
RW  
I2C Bus  
Timer  
Speed  
Speed up I2C Bus Watchdog Timer  
1: Timer expires after approximately 50 ms  
0: Timer expires after approximately 1 s  
I2C Bus  
Timer  
Disable  
Disable I2C Bus Timer When the I2C Timer may be used  
to detect when the I2C bus is free or hung up following an  
invalid termination of a transaction. If SDA is high and no  
signalling occurs for approximately 1 s, the I2C bus is  
assumed to be free. If SDA is low and no signaling occurs,  
the device will try to clear the bus by driving 9 clocks on  
SCL  
7
0x07 Remote  
Device ID  
7:1  
RW  
0x18 Remote ID  
Remote ID  
Configures the I2C Slave ID of the remote Serializer. A  
value of 0 in this field disables I2C access to remote  
Serializer. This field is automatically configured through the  
Serializer Forward Channel. Software may overwrite this  
value, but should also set the FREEZE DEVICE ID bit to  
prevent overwriting by the Forward Channel.  
0
RW  
RW  
Freeze  
Device ID  
Freeze Serializer Device ID  
1: Prevent auto-loading of the Serializer Device ID from the  
Forward Channel. The ID will be frozen at the value  
written.  
0: Update  
8
9
0x08 SlaveID[0]  
7:1  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 0  
Configures the physical I2C address of the remote I2C  
Device ID0 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID0, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
0x09 SlaveID[1]  
7:1  
RW  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 1  
Configures the physical I2C address of the remote I2C  
Device ID1 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID1, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
Copyright © 2010–2017, Texas Instruments Incorporated  
35  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
10  
11  
12  
13  
14  
15  
16  
0x0A SlaveID[2]  
0x0B SlaveID[3]  
0x0C SlaveID[4]  
0x0D SlaveID[5]  
0x0E SlaveID[6]  
0x0F SlaveID[7]  
0x10 SlaveAlias[0]  
7:1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 2  
Configures the physical I2C address of the remote I2C  
Device ID2 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID2, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
7:1  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 3  
Configures the physical I2C address of the remote I2C  
Device ID3 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID3, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
7:1  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 4  
Configures the physical I2C address of the remote I2C  
Device ID4 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID4, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
7:1  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 5  
Configures the physical I2C address of the remote I2C  
Device ID5 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID5, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
7:1  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 6  
Configures the physical I2C address of the remote I2C  
Device ID6 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID6, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
7:1  
0x00 Target  
Slave  
7-bit Remote Slave Device ID 7  
Configures the physical I2C address of the remote I2C  
Device ID7 Slave device attached to the remote Serializer. If an I2C  
transaction is addressed to the Slave Alias ID7, the  
transaction will be remapped to this address before  
passing the transaction across the Bidirectional Control  
Channel to the Serializer.  
0
Reserved  
7:1  
0x00 ID[0] Match 7-bit Remote Slave Device Alias ID 0  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID0 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
Reserved  
36  
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
17  
18  
19  
20  
21  
22  
23  
0x11 SlaveAlias[1]  
7:1  
RW  
RW  
RW  
RW  
RW  
RW  
0x00 ID[1] Match 7-bit Remote Slave Device Alias ID 1  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID1 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
Reserved  
0x12 SlaveAlias[2]  
0x13 SlaveAlias[3]  
0x14 SlaveAlias[4]  
0x15 SlaveAlias[5]  
0x16 SlaveAlias[6]  
0x17 SlaveAlias[7]  
7:1  
0x00 ID[2] Match 7-bit Remote Slave Device Alias ID 2  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID2 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
Reserved  
7:1  
0x10 ID[3] Match 7-bit Remote Slave Device Alias ID 3  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID3 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
Reserved  
7:1  
0x00 ID[4] Match 7-bit Remote Slave Device Alias ID 4  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID4 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
Reserved  
7:1  
0x00 ID[5] Match 7-bit Remote Slave Device Alias ID 5  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID5 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
Reserved  
7:1  
0x00 ID[6] Match 7-bit Remote Slave Device Alias ID 6  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID6 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
RW  
RW  
Reserved  
7:1  
0x00 ID[7] Match 7-bit Remote Slave Device Alias ID 7  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the remote  
Serializer. The transaction will be remapped to the address  
specified in the Slave ID7 register.  
A value of 0 in this field disables access to the remote I2C  
Slave.  
0
Reserved  
Copyright © 2010–2017, Texas Instruments Incorporated  
37  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
28 0x1C General Status  
7:4  
3
RW  
R
0x00  
Reserved  
I2S Locked I2S Lock Status  
0: I2S PLL controller not locked  
1: I2S PLL controller locked to input I2S clock  
2
1
Reserved  
R
R
Signal  
Detect  
Signal Detect  
1: Serial input detected  
0: Serial input not detected  
0
Lock  
Deserializer CDR, PLL's clock to recovered clock  
frequency  
1: Deserializer locked to recovered clock  
0: Deserializer not locked  
29  
0x1D GPIO0 Config  
7:4  
3
R
0xA0 Rev-ID  
Revision ID: 1010: Production Device  
RW  
GPIO0  
Output  
Value  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO  
function is enabled, the local GPIO direction is Output, and  
remote GPIO control is disabled.  
2
RW  
GPIO0  
Remote  
Enable  
Remote GPIO0 Control  
1: Enable GPIO control from remote Serializer. The GPIO  
pin will be an output, and the value is received from the  
remote Deserializer.  
0: Disable GPIO control from remote Serializer  
1
0
7
RW  
RW  
RW  
GPIO0  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO0  
Enable  
GPIO Function Enable  
1: Enable GPIO operation  
0: Enable normal operation  
30  
0x1E GPIO2 and  
GPIO1 Config  
0x00 GPIO2  
Output  
Local GPIO Output Value  
This value is output on the GPIO when the GPIO function  
is enabled, the local GPIO direction is Output, and remote  
GPIO control is disabled.  
Value  
6
RW  
GPIO2  
Remote  
Enable  
Remote GPIO2 Control  
1: Enable GPIO control from remote Serializer. The GPIO  
pin will be an output, and the value is received from the  
remote Deserializer.  
0: Disable GPIO control from remote Serializer.  
5
4
3
RW  
RW  
RW  
GPIO2  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO2  
Enable  
GPIO Function Enable  
1: Enable GPIO operation  
0: Enable normal operation  
GPIO1  
Output  
Value  
Local GPIO Output Value  
This value is output on the GPIO when the GPIO function  
is enabled, the local GPIO direction is Output, and remote  
GPIO control is disabled.  
2
RW  
GPIO1  
Remote  
Enable  
Remote GPIO1 Control  
1: Enable GPIO control from remote Serializer. The GPIO  
pin will be an output, and the value is received from the  
remote Deserializer.  
0: Disable GPIO control from remote Serializer.  
1
0
RW  
RW  
GPIO1  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO1  
Enable  
GPIO Function Enable  
1: Enable GPIO operation  
0: Enable normal operation  
38  
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
31  
0x1F GPO_REG4  
7
RW  
0x00 GPO_REG4 Local GPO_REG4 Output Value  
and GPO3  
Config  
Output  
Value  
This value is output on the GPO when the GPO function is  
enabled, the local GPO direction is Output, and remote  
GPO control is disabled.  
6:5  
4
Reserved  
RW  
RW  
RW  
GPO_REG4 GPO_REG4 Function Enable  
Enable  
1: Enable GPO operation  
0: Enable normal operation  
3
2
GPIO3  
Output  
Value  
Local GPIO Output Value This value is output on the GPIO  
when the GPIO function is enabled, the local GPIO  
direction is Output, and remote GPIO control is disabled.  
GPIO3  
Remote  
Enable  
Remote GPIO3 Control  
1: Enable GPIO control from remote Serializer. The GPIO  
pin will be an output, and the value is received from the  
remote Deserializer.  
0: Disable GPIO control from remote Serializer.  
1
0
7
RW  
RW  
RW  
GPIO3  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO3  
Enable  
GPIO Function Enable  
1: Enable GPIO operation  
0: Enable normal operation  
32  
0x20 GPO_REG6  
and  
0x00 GPO_REG6 Local GPO_REG6 Output Value  
Output  
Value  
This value is output on the GPO when the GPO function is  
enabled, the local GPO direction is Output, and remote  
GPO control is disabled.  
GPO_REG5  
Config  
6:5  
4
Reserved  
RW  
RW  
GPO_REG6 GPO_REG6 Function Enable  
Enable  
1: Enable GPO operation  
0: Enable normal operation  
3
GPO_REG5 Local GPO_REG5 Output Value  
Output  
Value  
This value is output on the GPO when the GPO function is  
enabled, the local GPO direction is Output, and remote  
GPO control is disabled.  
2:1  
0
Reserved  
RW  
RW  
GPO_REG5 GPO_REG5 Function Enable  
Enable  
1: Enable GPO operation  
0: Enable normal operation  
33  
0x21 GPO8 and  
GPO7 Config  
7
0x00 GPO_REG8 Local GPO_REG8 Output Value  
Output  
Value  
This value is output on the GPO when the GPO function is  
enabled, the local GPO direction is Output, and remote  
GPO control is disabled.  
6:5  
4
Reserved  
RW  
RW  
GPO_REG8 GPO_REG8 Function Enable  
Enable  
1: Enable GPO operation  
0: Enable normal operation  
3
GPO_REG7 Local GPO_REG7 Output Value  
Output  
Value  
This value is output on the GPO when the GPO function is  
enabled, the local GPO direction is Output, and remote  
GPO control is disabled.  
2:1  
0
Reserved  
RW  
GPO_REG7 GPO_REG7 Function Enable  
Enable  
1: Enable GPO operation  
0: Enable normal operation  
Copyright © 2010–2017, Texas Instruments Incorporated  
39  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
34  
0x22 Data Path  
Control  
7
RW  
0x00 Override FC 1: Disable loading of this register from the forward channel,  
Config  
keeping locally written values intact  
0: Allow forward channel loading of this register  
6
RW  
Pass RGB  
Setting this bit causes RGB data to be sent independent of  
DE. This allows operation in systems which may not use  
DE to frame video data or send other data when DE is  
deasserted. Note that setting this bit prevents HDCP  
operation and blocks packetized audio. This bit does not  
need to be set in DS90UB925 or in Backward Compatible  
mode.  
1: Pass RGB independent of DE  
0: Normal operation  
Note: this bit is automatically loaded from the remote  
serializer unless bit 7 of this register is set.  
5
4
RW  
RW  
DE Polarity This bit indicates the polarity of the DE (Data Enable)  
signal.  
1: DE is inverted (active low, idle high)  
0: DE is positive (active high, idle low)  
Note: this bit is automatically loaded from the remote  
serializer unless bit 7 of this register is set.  
I2S_Gen  
This bit controls whether the HDCP Receiver outputs  
packetized Auxiliary/Audio data on the RGB video output  
pins.  
1: Don't output packetized audio data on RGB video output  
pins  
0: Output packetized audio on RGB video output pins.  
Note: this bit is automatically loaded from the remote  
serializer unless bit 7 of this register is set.  
3
2
RW  
RW  
I2S Channel 1: Set I2S Channel B Enable from reg_0x22[0]  
B Enable  
Override  
0: Set I2S Channel B Enable from MODE_SEL pin  
Note: this bit is automatically loaded from the remote  
serializer unless bit 7 of this register is set.  
18-bit Video 1: Select 18-bit video mode  
Select  
Note: use of GPIO(s) on unused inputs must be enabled  
by register.  
0: Select 24-bit video mode  
Note: this bit is automatically loaded from the remote  
serializer unless bit 7 of this register is set.  
1
0
RW  
RW  
I2S  
Transport  
Select  
1: Enable I2S Data Forward Channel Frame Transport  
0: Enable I2S Data Island Transport  
Note: this bit is automatically loaded from the remote  
serializer unless bit 7 of this register is set.  
I2S Channel I2S Channel B Enable  
B Enable  
1: Enable I2S Channel B on B1 output  
0: I2S Channel B disabled  
Note: this bit is automatically loaded from the remote  
serializer unless bit 7 of this register is set.  
35  
0x23 General  
Purpose  
7
RW  
0x10 Rx RGB  
Checksum  
RX RGB Checksum Enable Setting this bit enables the  
Receiver to validate a one-byte checksum following each  
video line. Checksum failures are reported in the  
HDCP_STS register  
Control  
6:5  
4
Reserved  
Mode Status  
R
R
R
R
R
Mode_Sel  
LFMODE  
Repeater  
Backward  
Mode Select is Done  
3
Low Frequency Mode Status  
Repeater Mode Status  
Backward Compatible Mode Status  
2
1
0
I2S Channel I2S Channel B Status  
B
40  
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
36  
0x24 BIST Control  
7:4  
3
0x08  
Reserved  
RW  
RW  
BIST Pin  
Config  
BIST Configured through Pin  
1: BIST configured through pin  
0: BIST configured through register bit  
2:1  
0
BIST Clock BIST Clock Source  
Source  
00: External Pixel Clock  
01: 33 MHz Oscillator  
10: Reserved  
11: 25 MHz Oscillator  
RW  
BIST  
Enable  
BIST Control  
1: Enabled  
0: Disabled  
37  
38  
0x25 BIST Error  
7:0  
7:0  
R
0x00 BIST Error  
Count  
BIST Error Count  
0x26 SCL High  
Time  
RW  
0x83 SCL High  
Time  
I2C Master SCL High Time  
This field configures the high pulse width of the SCL output  
when the Deserializer is the Master on the local I2C bus.  
Units are 50 ns for the nominal oscillator clock frequency.  
The default value is set to provide a minimum 5 us SCL  
high time with the internal oscillator clock running at 26  
MHz rather than the nominal 20 MHz.  
39  
0x27 SCL Low Time  
7:0  
RW  
0x84 SCL Low  
Time  
I2C SCL Low Time  
This field configures the low pulse width of the SCL output  
when the De-Serializer is the Master on the local I2C bus.  
This value is also used as the SDA setup time by the I2C  
Slave for providing data prior to releasing SCL during  
accesses over the Bidirectional Control Channel. Units are  
50 ns for the nominal oscillator clock frequency. The  
default value is set to provide a minimum 5 us SCL low  
time with the internal oscillator clock running at 26 MHz  
rather than the nominal 20 MHz.  
41  
0x29 FRC Control  
7
RW  
0x00 Timing  
Mode  
Select display timing mode  
0: DE only Mode  
Select  
1: Sync Mode (VS,HS)  
6
5
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VS Polarity 0: Active High  
1: Active Low  
HS Polarity 0: Active High  
1: Active Low  
4
DE Polarity 0: Active High  
1: Active Low  
3
FRC2  
Enable  
0: FRC2 Disable  
1: FRC2 Enable  
2
FRC1  
Enable  
0: FRC1 Disable  
1: FRC1 Enable  
1
Hi-FRC 2  
Disable  
0: Hi-FRC2 Enable  
1: Hi-FRC2 Disable  
0
Hi-FRC 1  
Disable  
0: Hi-FRC1 Enable  
1: Hi-FRC1 Disable  
42  
0x2A White Balance  
Control  
7:6  
0x00 Page  
00: Configuration Registers  
01: Red LUT  
Setting  
10: Green LUT  
11: Blue LUT  
5
RW  
RW  
White  
Balance  
Enable  
0: White Balance Disable  
1: White Balance Enable  
4
LUT Reload 0: Reload Disable  
Enable  
1: Reload Enable  
3:0  
Reserved  
Copyright © 2010–2017, Texas Instruments Incorporated  
41  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
43  
44  
0x2B I2S Control  
7
RW  
0x00 I2S PLL  
I2S PLL Control  
0: I2S PLL is ON for I2S data jitter cleaning  
1: I2S PLL is OFF. No jitter cleaning  
6:1  
0
Reserved  
RW  
I2S Clock  
Edge  
I2S Clock Edge Select  
0: I2S Data is strobed on the Rising Clock Edge  
1: I2S Data is strobed on the Falling Clock Edge  
0x2C SSCG Control  
7:4  
3
0x00  
Reserved  
RW  
RW  
SSCG  
Enable  
Enable Spread Spectrum Clock Generator  
0: Disable  
1: Enable  
2:0  
SSCG  
Selection  
SSCG Frequency Deviation:  
When LFMODE = H  
fdev fmod  
000: ±0.7 CLK / 628  
001: ±1.3  
010: ±1.8  
011: ±2.5  
100: ±0.7 CLK / 388  
101: ±1.2  
110: ±2.0  
111: ±2.5  
When LFMODE = L  
fdev fmod  
000: ±0.9 CLK / 2168  
001: ±1.2  
010: ±1.9  
011: ±2.5  
100: ±0.7 CLK / 1300  
101: ±1.3  
110: ±2.0  
111: ±2.5  
58  
65  
0x3A I2S DIVSEL  
7
RW  
RW  
0x00 MCLK Div  
Override  
0: No override for MCLK divider (default)  
1: Override divider select for MCLK  
6:4  
3:0  
7:5  
4
MCLK Div  
See Table 5  
Reserved  
Reserved  
0x41 Link Error  
Count  
0x03  
RW  
RW  
Link Error  
Count  
Enable  
Enable serial link data integrity error count  
1: Enable error count  
0: Disable  
3:0  
Link Error  
Count  
Link error count threshold.  
Counter is pixel clock based. clk0, clk1 and DCA are  
monitored for link errors, if error count is enabled,  
deserializer loose lock once error count reaches threshold.  
If disabled deserilizer loose lock with one error.  
42  
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
68  
0x44 Equalization  
7:5  
RW  
0x60 EQ Stage 1 EQ select value.  
Select Used if adaptive EQ is bypassed.  
000 Min EQ 1st Stage  
001  
010  
011  
100  
101  
110  
111 Max EQ 1st Stage  
4
Reserved  
3:1  
RW  
EQ Stage 2 EQ select value.  
Select  
Used if adaptive EQ is bypassed.  
000 Min EQ 2nd Stage  
001  
010  
011  
100  
101  
110  
111 Max EQ 2nd Stage  
0
RW  
RW  
RW  
Adaptive  
EQ  
1: Disable adaptive EQ (to write EQ select values)  
0: Enable adaptive EQ  
86  
0x56 CML Output  
7:4  
3
0x08  
Reserved  
CMLOUT+/- 1: Disabled (Default)  
Enable  
0: Enabled  
2:0  
7:4  
Reserved  
100  
0x64 Pattern  
Generator  
Control  
0x10 Pattern  
Generator  
Fixed Pattern Select  
This field selects the pattern to output when in Fixed  
Pattern Mode. Scaled patterns are evenly distributed  
across the horizontal or vertical active regions. This field is  
ignored when Auto-Scrolling Mode is enabled. The  
following table shows the color selections in non-inverted  
followed by inverted color mode  
Select  
0000: Reserved 0001: White/Black  
0010: Black/White  
0011: Red/Cyan  
0100: Green/Magenta  
0101: Blue/Yellow  
0110: Horizontally Scaled Black to White/White to Black  
0111: Horizontally Scaled Black to Red/Cyan to White  
1000: Horizontally Scaled Black to Green/Magenta to  
White  
1001: Horizontally Scaled Black to Blue/Yellow to White  
1010: Vertically Scaled Black to White/White to Black  
1011: Vertically Scaled Black to Red/Cyan to White  
1100: Vertically Scaled Black to Green/Magenta to White  
1101: Vertically Scaled Black to Blue/Yellow to White  
1110: Custom color (or its inversion) configured in PGRS,  
PGGS, PGBS registers  
1111: Reserved  
3:1  
0
Reserved  
RW  
Pattern  
Generator  
Enable  
Pattern Generator Enable  
1: Enable Pattern Generator  
0: Disable Pattern Generator  
Copyright © 2010–2017, Texas Instruments Incorporated  
43  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
101  
0x65 Pattern  
Generator  
Configuration  
7:5  
4
0x00  
Reserved  
RW  
RW  
Pattern  
Generator  
18 Bits  
18-bit Mode Select  
1: Enable 18-bit color pattern generation. Scaled patterns  
will have 64 levels of brightness and the R, G, and B  
outputs use the six most significant color bits.  
0: Enable 24-bit pattern generation. Scaled patterns use  
256 levels of brightness.  
3
2
Pattern  
Generator  
External  
Clock  
Select External Clock Source  
1: Selects the external pixel clock when using internal  
timing.  
0: Selects the internal divided clock when using internal  
timing  
This bit has no effect in external timing mode  
(PATGEN_TSEL = 0).  
RW  
Pattern  
Generator  
Timing  
Timing Select Control  
1: The Pattern Generator creates its own video timing as  
configured in the Pattern Generator Total Frame Size,  
Active Frame Size. Horizontal Sync Width, Vertical Sync  
Width, Horizontal Back Porch, Vertical Back Porch, and  
Sync Configuration registers.  
Select  
0: the Pattern Generator uses external video timing from  
the pixel clock, Data Enable, Horizontal Sync, and Vertical  
Sync signals.  
1
0
RW  
RW  
Pattern  
Generator  
Enable Inverted Color Patterns  
1: Invert the color output.  
Color Invert 0: Do not invert the color output.  
Pattern  
Auto-Scroll Enable:  
Generator  
1: The Pattern Generator will automatically move to the  
Auto-Scroll next enabled pattern after the number of frames specified  
Enable  
in the Pattern Generator Frame Time (PGFT) register.  
0: The Pattern Generator retains the current pattern.  
102  
103  
0x66 Pattern  
7:0  
7:0  
RW  
RW  
0x00 Indirect  
Address  
This 8-bit field sets the indirect address for accesses to  
indirectly-mapped registers. It should be written prior to  
reading or writing the Pattern Generator Indirect Data  
register.  
See AN-2198 Exploring Int Test Patt Gen Feat of 720p  
FPD-Link III Devices (SNLA132)  
Generator  
Indirect  
Address  
0x67 Pattern  
0x00 Indirect  
Data  
When writing to indirect registers, this register contains the  
data to be written. When reading from indirect registers,  
this register contains the read back value.  
Generator  
Indirect Data  
See AN-2198 Exploring Int Test Patt Gen Feat of 720p  
FPD-Link III Devices (SNLA132)  
128  
129  
130  
131  
132  
144  
145  
146  
147  
148  
0x80 RX_BKSV0  
0x81 RX_BKSV1  
0x82 RX_BKSV2  
0x83 RX_BKSV3  
0x84 RX_BKSV4  
0x90 TX_KSV0  
0x91 TX_KSV1  
0x92 TX_KSV2  
0x93 TX_KSV3  
0x94 TX_KSV4  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
R
R
R
R
R
R
R
R
R
R
0x00 RX BKSV0 BKSV0: Value of byte 0 of the Deserializer KSV  
0x00 RX BKSV1 BKSV1: Value of byte 1 of the Deserializer KSV  
0x00 RX BKSV2 BKSV2: Value of byte 2 of the Deserializer KSV  
0x00 RX BKSV3 BKSV3: Value of byte 3 of the Deserializer KSV.  
0x00 RX BKSV4 BKSV4: Value of byte 4 of the Deserializer KSV.  
0x00 TX KSV0  
0x00 TX KSV1  
0x00 TX KSV2  
0x00 TX KSV3  
0x00 TX KSV4  
KSV0: Value of byte 0 of the Serializer KSV.  
KSV1: Value of byte 1 of the Serializer KSV.  
KSV2: Value of byte 2 of the Serializer KSV.  
KSV3: Value of byte 3 of the Serializer KSV.  
KSV4: Value of byte 4 of the Serializer KSV.  
44  
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
192  
0xC0 HDCP_DBG  
7:4  
3
0x00  
Reserved  
RGB_CHK Enable RBG video line checksum.  
R
R
SUM_EN  
1: Enables sending of ones-complement checksum for  
each 8-bit RBG data channel following end of each video  
data line.  
0: Checksum disabled  
Set via the HDCP_DBG register in the HDCP Transmitter.  
2
FC_TEST  
MODE  
Frame Counter Testmode:  
1: Speeds up frame counter used for Pj and Ri verification.  
When set to a 1, Pj is computed every 2 frames and Ri is  
computed every 16 frames.  
0: Pj is computed every 16 frames and Ri is computed  
every 128 frames.  
Set via the HDCP_DBG register in the HDCP Transmitter.  
1
0
R
R
TMR_  
SPEEDUP  
Timer Speedup:  
1: Speed up HDCP authentication timers.  
0: Standard authentication timing  
Set via the HDCP_DBG register in the HDCP Transmitter.  
HDCP_I2C HDCP I2C Fast mode Enable:  
_FAST  
1: Enable the HDCP I2C Master in the HDCP Receiver to  
operation with Fast mode timing.  
0:Tthe I2C Master will operate with Standard mode timing.  
Set via the HDCP_DBG register in the HDCP Transmitter.  
193  
0xC1 HDCP_DBG2  
7:2  
1
0x00  
Reserved  
RW  
NO_  
No Decrypt:  
DECRYPT  
1: The HDCP Receiver outputs the encrypted data on the  
RGB pins. All other functions will work normally. This  
provides a simple way of showing that the link is  
encrypted.  
0: Normal Operation  
0
7:2  
1
Reserved  
Reserved  
196  
0xC4 HDCP Status  
0x00  
R
R
RGB_CHK RGB Checksum Error Detected:  
SUM_ERR If RGB Checksum in enabled through the HDCP  
Transmitter HDCP_DBG register, this bit will indicate if a  
checksum error is detected. This register may be cleared  
by writing any value to this register.  
0
HDCP  
Status  
HDCP Authenticated:  
Indicates the HDCP authentication has completed  
successfully. The controller may now send video data  
requiring content protection. This bit will be cleared if  
authentication is lost or if the controller restarts  
authentication.  
224  
225  
226  
0xE0 RPTR TX0  
0xE1 RPTR TX1  
0xE2 RPTR TX2  
7:1  
0
R
R
0x0  
HDCP  
Serializer  
Port 0  
Serializer Port 0 I2C Address:  
Indicates the I2C address for the Repeater Serializer Port.  
Serializer Port 0 Valid:  
Indicates that the HDCP Repeater has a Serializer port at  
the I2C Address identified by upper 7 bits of this register.  
Address  
7:1  
0
R
R
0x00 HDCP  
Serializer  
Serializer Port 1 I2C Address: Indicates the I2C address  
for the Repeater Serializer Port.  
Port 1  
Address  
Serializer Port 1 Valid: Indicates that the HDCP Repeater  
has a Serializer port at the I2C Address identified by upper  
7 bits of this register.  
7:1  
0
0x00 HDCP  
Serializer  
Port 2  
Serializer Port 2 I2C Address: Indicates the I2C address  
for the Repeater Serializer Port.  
R
Serializer Port 2 Valid: Indicates that the HDCP Repeater  
has a Serializer port at the I2C Address identified by upper  
7 bits of this register.  
Address  
Copyright © 2010–2017, Texas Instruments Incorporated  
45  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
Register Maps (continued)  
Table 11. Serial Control Bus Registers (continued)  
ADD  
ADD Register  
Bit(s)  
7:1  
0
Register  
Type  
Default Function  
(hex)  
Descriptions  
(dec) (hex) Name  
227  
0xE3 RPTR TX3  
R
0x00 HDCP  
Serializer  
Port 3  
Serializer Port 3 I2C Address: Indicates the I2C address  
for the Repeater Serializer Port.  
R
Serializer Port 3 Valid: Indicates that the HDCP Repeater  
has a Serializer port at the I2C Address identified by upper  
7 bits of this register  
Address  
240  
241  
242  
0xF0 HDCP RX ID  
7:0  
7:0  
7:0  
R
R
R
0x5F ID0  
0x55 ID1  
0x48 ID2  
First byte ID code: _  
0xF1  
0xF2  
Second byte of ID code: U  
Third byte of ID code, Value will be either ‘B’ or ‘H’. ‘H’  
indicates an HDCP capable device.  
243  
244  
245  
0xF3  
0xF4  
0xF5  
7:0  
7:0  
7:0  
R
R
R
0x39 ID3  
0x32 ID4  
0x36 ID5  
Fourth byte of ID code: 9  
Fifth byte of ID code: 2  
Sixth byte of ID code: 6  
46  
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DS90UH926Q-Q1, in conjunction with the DS90UH925Q-Q1, is intended for interface between a HDCP  
compliant host (graphics processor) and a Display. It supports an 24-bit color depth (RGB888) and high definition  
(720p) digital video format. It allows to receive a three 8-bit RGB stream with a pixel rate up to 85 MHz together  
with three control bits (VS, HS and DE) and three I2S-bus audio stream with an audio sampling rate up to 192  
kHz. The included HDCP 1.3 compliant cipher block allows the authentication of the DS90UH926Q, which  
decrypts both video and audio contents. The keys are pre-loaded by TI into non-volatile memory (NVM) for  
maximum security.  
8.1.1 Display Application  
The deserializer is expected to be located close to its target device. The interconnect between the deserializer  
and the target device is typically in the 1-inch to 3-inch separation range. The input capacitance of the target  
device is expected to be in the 5-pF to 10-pF range. Take care of the PCLK output trace as this signal is edge-  
sensitive and strobes the data. It is also assumed that the fanout of the deserializer is up to three in the repeater  
mode. If additional loads need to be driven, a logic buffer or mux device is recommended.  
8.2 Typical Application  
Figure 24 shows a typical application of the DS90UH926Q-Q1 deserializer for an 85 MHz 24-bit color display  
application. Inputs utilize 0.1-μF coupling capacitors to the line and the deserializer provides internal termination.  
Bypass capacitors are placed near the power supply pins. At a minimum, seven 0.1-μF capacitors and two 4.7-  
μF capacitors should be used for local device bypassing. Ferrite beads are placed on the power lines for effective  
noise suppression. Because the device in the Pin/STRAP mode, two 10 kpull-up resistors are used on the  
parallel output bus to select the desired device features.  
The interface to the target display is with 3.3-V LVCMOS levels, thus the VDDIO pins are connected to the 3.3-V  
rail. A delay cap is placed on the PDB signal to delay the enabling of the device until power is stable.  
Copyright © 2010–2017, Texas Instruments Incorporated  
47  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
Typical Application (continued)  
3.3V/1.8V  
DS90UH926Q-Q1  
3.3V  
VDDIO  
VDD33_A  
C6  
FB2  
FB1  
C4  
C5  
VDDIO  
VDD33_B  
C7  
C8  
VDDIO  
CAPP12  
C9  
CAPR12  
C13  
CAPI2S  
PASS  
LOCK  
C10  
R7  
CAPL12  
R6  
R5  
R4  
R3  
R2  
R1  
C12  
C11  
C1  
C2  
Serial  
FPD-Link III  
Interface  
RIN+  
RIN-  
R0  
CMF  
G7  
G6  
G5  
C3  
CMLOUTP  
CMLOUTN  
G4  
G3  
G2  
G1  
G0  
VDD33_B*  
R
5
LVCMOS  
Parallel  
Video / Audio  
Interface  
OSS_SEL  
OEN  
BISTEN  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Host Control  
BISTC / INTB_IN  
PDB  
C14  
VDD33_B  
HS  
VS  
DE  
VDD33_B  
SDA  
SCL  
PCLK  
R
1
R
2
FB1 œ FB2: Impedance = 1 kW @ 100 MHz,  
Low DC resistance (<1W)  
C1 œ C3 = 0.1 mF (50 WV; C1, C2: 0402; C3: 0603)  
C4 œ C13 = 4.7 mF  
I2S_CLK  
ID[X]  
I2S_WC  
I2S_DA  
MCLK  
VDD33_B  
C14 =>10 mF  
R
3
4
NC  
RES  
R
1
R
3
R
5
and R (see IDx Resistor Values Table 8)  
2
2
MODE_SEL  
and R (see MODE_SEL Resistor Values Table 4)  
4
DAP (GND)  
R
= 10 kW  
* or VDDIO = 3.3V+0.3V  
Figure 24. Typical Connection Diagram  
48  
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
Typical Application (continued)  
V
DD33  
V
DDIO  
V
DDIO  
V
DD33  
(1.8V or3.3V)  
(3.3V) (1.8V or3.3V)  
(3.3V)  
R[7:0]  
G[7:0]  
R[7:0]  
G[7:0]  
FPD-Link III  
1 Pair /AC Coupled  
B[7:0]  
B[7:0]  
0.1 mF  
0.1 mF  
0.1 mF  
0.1 mF  
HOST  
Graphics  
Processor  
RGB Display  
720p  
24-bit color depth  
HS  
HS  
DOUT+  
DOUT-  
RIN+  
RIN-  
VS  
DE  
PCLK  
VS  
DE  
PCLK  
100 ohm STP Cable  
DS90UH925Q  
Serializer  
DS90UH926Q  
Deserializer  
LOCK  
PASS  
PDB  
PDB  
OSS_SEL  
OEN  
MODE_SEL  
3
/
I2S AUDIO  
(STEREO)  
3
/
I2S AUDIO  
(STEREO)  
MODE_SEL  
INTB  
INTB_IN  
MCLK  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
DAP  
DAP  
Figure 25. Typical Display System Diagram  
8.2.1 Design Requirements  
For the typical design application, use the following as input parameters:  
Table 12. Design Parameters  
DESIGN PARAMETER  
VDDIO  
EXAMPLE VALUE  
1.8 V or 3.3 V  
3.3 V  
VDD33  
AC-Coupling Capacitor for RIN±  
PCLK Frequency  
100 nF  
78 MHz  
8.2.2 Detailed Design Procedure  
8.2.2.1 Transmission Media  
The DS90UH925Q-Q1 and DS90UH926Q-Q1 chipset is intended to be used in a point-to-point configuration  
through a shielded twisted pair cable. The serializer and deserializer provide internal termination to minimize  
impedance discontinuities. The interconnect (cable and connector) between the serializer and deserializer should  
have a differential impedance of 100 Ω. The maximum length of cable that can be used is dependant on the  
quality of the cable (gauge, impedance), connector, board (discontinuities, power plane), the electrical  
environment (for example, power stability, ground noise, input clock jitter, PCLK frequency, etc.) and the  
application environment.  
The resulting signal quality at the receiving end of the transmission media may be assessed by monitoring the  
differential eye opening of the serial data stream. The Receiver CML Monitor Driver Output Specifications define  
the acceptable data eye opening width and eye opening height. A differential probe should be used to measure  
across the termination resistor at the CMLOUT± pin Figure 2.  
Copyright © 2010–2017, Texas Instruments Incorporated  
49  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
8.2.3 Application Curves  
Time (100 ps/DIV)  
Time (2.5 ns/DIV)  
Figure 26. Deserializer CMLOUT Eye Diagram With 78-MHz  
TX Pixel Clock  
Figure 27. Deserializer FPD-Link III Input With 78-MHz TX  
Pixel Clock  
9 Power Supply Recommendations  
9.1 Power-Up Requirements and PDB Pin  
When VDDIO and VDD33_X are powered separately, the VDDIO supply (1.8 V or 3.3 V) ramps up 100 µs before  
the other supply (VDD33_X) begins to ramp. If VDDIO is tied with VDD33_X, both supplies may ramp at the  
same time. The VDDs (VDD33_X and VDDIO) supply ramp must be faster than 1.5 ms with a monotonic rise.  
Use a large capacitor on the PDB pin to ensure PDB arrives after all the VDDs have settled to the recommended  
operating voltage. When PDB pin is pulled to VDDIO = 3 V to 3.6 V or VDD33_X, TI recommends using a 10-kΩ  
pullup and a > 10-µF cap to GND to delay the PDB input signal.  
All inputs must not be driven until VDD33_X and VDDIO has reached its steady-state value.  
< 1.5 ms  
1.8 V or 3.3 V  
VDDIO  
100 µs  
3.3 V  
VDD33_X  
< 1.5 ms  
3.3 V  
PDB  
PDB starts to ramp after all supplies have settled  
Figure 28. Power-Up Sequence of DS90UH926Q-Q1  
50  
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
10 Layout  
10.1 Layout Guidelines  
Design the circuit board layout and stack-up for the FPD-Link III devices to provide low-noise power feed to the  
device. Good layout practice also separates high-frequency or high-level inputs and outputs to minimize  
unwanted stray noise pickup, feedback, and interference. Power system performance may be greatly improved  
by using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane  
capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at  
high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01 µF to 0.1 µF. Tantalum capacitors may be in the 2.2-µF to 10-µF range. Voltage rating of the  
tantalum capacitors should be at least 5× the power supply voltage being used.  
Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per  
supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 50 µF to 100 µF range and will smooth low-frequency switching noise. TI  
recommends connecting the power and ground pins directly to the power and ground planes with bypass  
capacitors connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an  
external bypass capacitor will increase the inductance of the path.  
TI recommends a small body size X7R chip capacitor, such as 0603 or 0402, for external bypass. Its small body  
size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of  
these external bypass capacitors, usually in the range of 20 to 30 MHz. To provide effective bypassing, multiple  
capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At  
high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing  
the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as  
PLLs.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the CML  
lines to prevent coupling from the LVCMOS lines to the CML lines. Closely-coupled differential lines of 100 Ω are  
typically recommended for CML interconnect. The closely coupled lines help to ensure that coupled noise will  
appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also radiate less.  
Information on the WQFN style package is provided in AN-1187 Leadless Leadframe Package (LLP)  
(SNOA401).  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the WQFN package is highly recommended to improve  
board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP. Stencil parameters for aperture opening and via locations are shown in Table 13:  
Table 13. No Pullback WQFN Stencil Aperture Summary  
DEVICE  
PIN  
COUNT  
MKT Dwg  
PCB I/O  
Pad Size  
(mm)  
PCB PITCH PCB DAP SIZE  
STENCIL I/O  
APERTURE (mm)  
STENCIL DAP  
Aperture (mm)  
NUMBER of DAP  
APERTURE  
OPENINGS  
(mm)  
(mm)  
DS90UH926Q-Q1  
60  
NKB0060B  
0.25 × 0.6  
0.5  
6.3 × 6.3  
0.25 × 0.8  
6.3 × 6.3  
1
Figure 29 shows the PCB layout example derived from the layout design of the DS90UH926QSEVB Evaluation  
Board. The graphic and layout description are used to determine both proper routing and proper solder  
techniques when designing the Serializer board.  
Copyright © 2010–2017, Texas Instruments Incorporated  
51  
 
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
10.1.1 CML Interconnect Guidelines  
See AN-1108 Channel-Link PCB and Interconnect Design-In Guidelines (SNLA008) and AN-905 Transmission  
Line RAPIDESIGNER® Operation and Applications Guide (SNLA035) for full details.  
Use 100-Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
S = space between the pair  
2S = space between pairs  
3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500 Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Additional general guidance can be found in the LVDS Owner’s Manual - available in PDF format from the TI  
web site at: www.ti.com/lvds.  
52  
Copyright © 2010–2017, Texas Instruments Incorporated  
DS90UH926Q-Q1  
www.ti.com.cn  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
10.2 Layout Examples  
Length-Matched RGB  
Output Traces  
AC Capacitors  
High-Speed Traces  
Figure 29. DS90UH926Q-Q1 Deserializer Example Layout  
Figure 30. 60-Pin WQFN Stencil Example of Via and Opening Placement  
版权 © 2010–2017, Texas Instruments Incorporated  
53  
DS90UH926Q-Q1  
ZHCSAP4M OCTOBER 2010REVISED AUGUST 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
《探索 AN-2198 720p FPD-Link III 器件的内部测试图案生成特性》(SNLA132)  
AN-1187 无引线框架封装 (LLP)(SNOA401)  
AN-1108 通道链路 PCB 和互连设计指南》(SNLA008)  
AN-905 传输线路 RAPIDESIGNER® 操作和 应用 指南》(SNLA035)  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每  
周接收产品信息更改摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
54  
版权 © 2010–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UH926QSQ/NOPB  
DS90UH926QSQE/NOPB  
DS90UH926QSQX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
NKB  
NKB  
NKB  
60  
60  
60  
1000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
-40 to 105  
UH926QSQ  
Samples  
Samples  
Samples  
SN  
SN  
UH926QSQ  
UH926QSQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jun-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UH926QSQ/NOPB WQFN  
DS90UH926QSQE/NOPB WQFN  
DS90UH926QSQX/NOPB WQFN  
NKB  
NKB  
NKB  
60  
60  
60  
1000  
250  
330.0  
178.0  
330.0  
16.4  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
1.3  
1.3  
1.3  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
2000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UH926QSQ/NOPB  
DS90UH926QSQE/NOPB  
DS90UH926QSQX/NOPB  
WQFN  
WQFN  
WQFN  
NKB  
NKB  
NKB  
60  
60  
60  
1000  
250  
356.0  
208.0  
356.0  
356.0  
191.0  
356.0  
35.0  
35.0  
35.0  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
NKB0060B  
VQFN - 0.8 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.1  
8.9  
A
B
PIN 1 INDEX AREA  
9.1  
8.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7  
6.3 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.1) TYP  
16  
30  
15  
31  
SYMM  
61  
2X 7  
1
0.3  
60X  
45  
0.2  
56X 0.5  
60  
46  
0.1  
C A B  
0.7  
0.5  
PIN 1 ID  
0.05  
60X  
4214995/A 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NKB0060B  
VQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
6.3)  
SYMM  
SEE SOLDER MASK  
DETAIL  
60X (0.8)  
60X (0.25)  
46  
60  
1
45  
56X (0.5)  
(1.1) TYP  
(1.2) TYP  
SYMM  
(R0.05) TYP  
(
0.2) TYP  
VIA  
61  
(0.6) TYP  
(8.6)  
15  
31  
30  
16  
(0.6) TYP  
(1.2) TYP  
(1.1) TYP  
(8.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214995/A 03/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NKB0060B  
VQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
25X ( 1)  
(1.2) TYP  
46  
60X (0.8)  
60X (0.25)  
60  
1
45  
56X (0.5)  
(R0.05) TYP  
(1.2) TYP  
(8.6)  
61  
SYMM  
15  
31  
16  
30  
SYMM  
(8.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 8X  
EXPOSED PAD 61  
63% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4214995/A 03/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY