DS90UH927QSQ/NOPB [TI]

具有 HDCP 的 5MHz - 85MHz 24 位彩色 FPD-Link III 串行器 | RTA | 40 | -40 to 105;
DS90UH927QSQ/NOPB
型号: DS90UH927QSQ/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 HDCP 的 5MHz - 85MHz 24 位彩色 FPD-Link III 串行器 | RTA | 40 | -40 to 105

光电二极管
文件: 总68页 (文件大小:1304K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
DS90UH927Q-Q1 具有 HDCP 5MHz 85MHz 24 位彩色 FPD-Link III  
串行器  
1 特性  
3 说明  
1
具有片上密钥存储器的集成型高带宽数字内容保护  
(HDCP) 加密引擎  
双向控制通道接口,可连接到 I2C 兼容串行控制总  
线
DS90UH927Q-Q1 串行器与 DS90UH928Q-Q1 或  
DS90UH926Q-Q1 解串器配套使用,可针对汽车娱乐  
系统内的内容受保护数字视频的安全分发提供一套解决  
方案。 该芯片组将 FPD-Link 视频接口转换为单对高  
速串行化接口。 数字视频数据采用业界标准的高带宽  
数字内容保护 (HDCP) 复制保护方案加以保护。 FPD-  
Link III 串行总线方案支持通过单个差分链路实现高速  
正向通道数据传输和低速反向通道通信的全双工控制。  
通过单个差分对整合音频、视频和和控制数据可减小互  
连线尺寸和重量,同时还消除了偏差问题并简化了系统  
设计。  
低电磁干扰 (EMI) FPD-Link 视频输入  
支持高清 (720p) 数字视频格式  
支持 5MHz 85MHz 像素时钟 (PCLK)  
支持 RGB888 + VSHSDE I2S 音频  
多达 4 个针对环绕立体声应用的 I2S 数字音频输入  
4 条具有 2 个专用引脚的双向通用输入输出 (GPIO)  
通道  
通过 1.8V 3.3V 兼容 LVCMOS I/O 接口实现  
3.3V 单电源运行  
DS90UH927Q-Q1 串行器嵌入时钟,内容保护数据有  
效载荷,并将信号电平位移至高速差分信令。 多达 24  
RGB 数据位连同 3 个视频控制信号和多达 4 I2S  
数据输入一起被串行化。  
长达 10 米的交流耦合屏蔽双绞线 (STP) 互连  
具有嵌入式时钟的直流均衡和扰频数据  
支持 HDCP 中继器应用  
内部模式生成  
凭借 FPD-Link 数据接口,该器件可轻松连接数据源,  
同时还能减小 EMI 和总线宽度。 通过使用低压差分信  
令、数据扰频和随机生成以及直流均衡功能可最大程度  
减少高速 FPD-Link III 总线上的 EMI。  
低功率模式最大限度地减少了功率耗散  
汽车应用级产品:符合 AEC-Q100 2 级要求  
>8kV 的人体模型 (HBM) ISO 10605 静电放电  
(ESD) 额定值  
串化器和解串器上都执行 HDCP 密钥引擎。 HDCP 密  
钥被存储在片载存储器中。  
向后兼容模式  
2 应用范围  
器件信息(1)  
汽车导航显示屏  
后座娱乐系统  
器件型号  
封装  
封装尺寸(标称值)  
DS90UH927Q-Q1  
WQFN (40)  
6.00mm x 6.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
应用图  
FPD-Link  
FPD-Link  
VDDIO  
VDD33  
VDD33  
VDDIO  
(1.8V or 3.3V) (3.3V)  
(3.3V) (1.8V or 3.3V)  
RxIN3+/-  
RxIN2+/-  
TxOUT3+/-  
TxOUT2+/-  
FPD-Link III  
1 Pair/AC Coupled  
DOUT+  
DOUT-  
RIN+  
RIN-  
HOST  
Graphics  
Processor  
RGB Display  
720p  
24-bit Color Depth  
RxIN1+/-  
RxIN0+/-  
TxOUT1+/-  
TxOUT0+/-  
100Q STP Cable  
RxCLKIN+/-  
TxCLKOUT+/-  
INTB_IN  
DS90UH927Q-Q1  
Serializer  
DS90UH928Q-Q1  
Deserializer  
OEN  
LOCK  
PDB  
INTB  
I2S  
OSS_SEL  
PDB  
PASS  
I2S  
6
6
MAPSEL  
LFMODE  
REPEAT  
BKWD  
MAPSEL  
LFMODE  
BISTEN  
MCLK  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
MODE_SEL  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNLS433  
 
 
 
 
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
目录  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 16  
7.4 Device Functional Modes........................................ 24  
7.5 Programming........................................................... 30  
7.6 Register Maps......................................................... 32  
Application and Implementation ........................ 52  
8.1 Application Information............................................ 52  
8.2 Typical Application .................................................. 52  
Power Supply Recommendations...................... 54  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 DC Electrical Characteristics .................................... 7  
6.6 AC Electrical Characteristics..................................... 9  
6.7 DC and AC Serial Control Bus Characteristics....... 10  
8
9
10 Layout................................................................... 55  
10.1 Layout Guidelines ................................................. 55  
10.2 Layout Example .................................................... 56  
11 器件和文档支持 ..................................................... 60  
11.1 文档支持................................................................ 60  
11.2 ....................................................................... 60  
11.3 静电放电警告......................................................... 60  
11.4 术语表 ................................................................... 60  
12 机械封装和可订购信息 .......................................... 60  
6.8 Recommended Timing Requirements for the Serial  
Control Bus .............................................................. 10  
6.9 Timing Requirements.............................................. 11  
6.10 Typical Characteristics.......................................... 14  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (June 2013) to Revision C  
Page  
已添加 ESD 额定值表,特性描述部分,器件功能模式应用和实施部分,电源相关建议部分,布局部分,器件和文档  
支持部分以及机械、封装和可订购信息部分 ........................................................................................................................... 1  
Changes from Revision A (November 2012) to Revision B  
Page  
Changed layout of National data sheet to TI format............................................................................................................. 56  
2
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
5 Pin Configuration and Functions  
RTA Package  
40-Pin WQFN With Exposed Thermal Pad  
Top View  
RxIN1- 31  
RxIN1+ 32  
RxIN2- 33  
RxIN2+ 34  
RxCLKIN- 35  
RxCLKIN+ 36  
RxIN3- 37  
RxIN3+ 38  
GPIO0 39  
20 CMF  
19 VDD33_A  
18 PDB  
17 DOUT+  
16 DOUT-  
15 RES1  
14 CAPHS12  
13 RES0  
12 CAPP12  
11 IDx  
DS90UH927Q-Q1  
TOP VIEW  
DAP = GND  
GPIO1 40  
Pin Functions  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
FPD-LINK INPUT INTERFACE  
RxCLKIN-  
RxCLKIN+  
RxIN[3:0]-  
RxIN[3:0]+  
35  
I, LVDS  
I, LVDS  
I, LVDS  
I, LVDS  
Inverting LVDS Clock Input  
The pair requires external 100-Ω differential termination for standard LVDS levels  
36  
True LVDS Clock Input  
The pair requires external 100-Ω differential termination for standard LVDS levels  
37, 33, 31, 29  
38, 34, 32, 30  
Inverting LVDS Data Inputs  
Each pair requires external 100-differential termination for standard LVDS levels  
True LVDS Data Inputs  
Each pair requires external 100-differential termination for standard LVDS levels  
LVCMOS PARALLEL INTERFACE  
BKWD  
22  
I, LVCMOS Backward Compatible Mode Select  
w/ pull down BKWD = 0, interfacing to DS90UH926/8Q-Q1 (Default)  
BKWD = 1, interfacing to DS90UR906/8Q-Q1, DS90UR916Q  
Requires a 10-kpullup if set HIGH  
GPIO[1:0]  
40, 39  
I/O, LVCMOS General Purpose I/O  
w/ pull down See Table 1  
Copyright © 2012–2015, Texas Instruments Incorporated  
3
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
I2S_DA  
I2S_DB  
I2S_DC  
I2S_DD  
3
4
5
6
I, LVCMOS Digital Audio Interface I2S Data Inputs  
w/ pull down Shared with GPIO_REG6, GPIO_REG5, GPIO2, GPIO3  
I2S_WC  
I2S_CLK  
1
2
I, LVCMOS Digital Audio Interface I2S Word Clock and I2S Bit Clock Inputs  
w/ pull down Shared with GPIO_REG7 and GPIO_REG8  
Table 3  
LFMODE  
25  
I, LVCMOS Low Frequency Mode Select  
w/ pull down LFMODE = 0, 15 MHz RxCLKIN 85 MHz (Default)  
LFMODE = 1, 5 MHz RxCLKIN < 15 MHz  
Requires a 10-kpullup if set HIGH  
MAPSEL  
23  
I, LVCMOS FPD-Link Input Map Select  
w/ pull down MAPSEL = 0, LSBs on RxIN3± (Default)  
MAPSEL = 1, MSBs on RxIN3±  
See Figure 19 and Figure 20  
Requires a 10-kpullup if set HIGH  
REPEAT  
21  
I, LVCMOS Repeater Mode Select  
w/ pull down REPEAT = 0, Repeater Mode disabled (Default)  
REPEAT = 1, Repeater Mode enabled  
Requires a 10-kpullup if set HIGH  
OPTIONAL PARALLEL INTERFACE  
GPIO[3:2]  
6, 5  
I/O, LVCMOS General Purpose I/O  
w/ pull down Shared with I2S_DD and I2S_DC  
See Table 1  
GPIO_REG[  
8:5]  
2, 1, 3, 4  
I/O, LVCMOS Register-Only General Purpose I/O  
w/ pull down Shared with I2S_CLK, I2S_WC, I2S_DA, I2S_DB  
See Table 2  
CONTROL AND CONFIGURATION  
IDx  
11  
I, Analog  
I2C Address Select  
External pullup to VDD33 is required under all conditions. DO NOT FLOAT.  
Connect to external pullup to VDD33 and pulldown to GND to create a voltage divider.  
See Figure 25 and Table 4  
PDB  
18  
I, LVCMOS Power-down Mode Input Pin  
w/ pulldown Must be driven or pulled up to VDD33. Refer to Power Supply Recommendations.  
PDB = H, device is enabled (normal operation)  
PDB = L, device is powered down.  
When the device is in the powered down state, the Driver Outputs are both HIGH, the PLL is  
shutdown, and IDD is minimized. Control Registers are RESET.  
SCL  
SDA  
9
I/O, LVCMOS I2C Clock Input / Output Interface  
Open Drain Must have an external pullup to VDD33. DO NOT FLOAT.  
Recommended pullup: 4.7 kΩ.  
I/O, LVCMOS I2C Data Input / Output Interface  
Open Drain Must have an external pullup to VDD33. DO NOT FLOAT.  
Recommended pullup: 4.7 kΩ.  
10  
STATUS  
INTB  
27  
O, LVCMOS HDCP Interrupt  
Open Drain INTB = H, normal  
INTB = L, Interrupt request  
Recommended pullup: 4.7 kΩ to VDDIO. DO NOT FLOAT.  
FPD-LINK III SERIAL INTERFACE  
CMF  
20  
16  
17  
Analog  
Common Mode Filter.  
Connect 0.1 µF to GND (required)  
DOUT-  
DOUT+  
I/O, LVDS  
I/O, LVDS  
Inverting Output  
The output must be AC-coupled with a 0.1-µF capacitor.  
True Output  
The output must be AC-coupled with a 0.1-µF capacitor.  
4
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
POWER AND GROUND(1)  
GND  
DAP  
Ground  
Power  
Power  
Large metal contact at the bottom center of the device package Connect to the ground  
plane (GND) with at least 9 vias.  
VDD33_A  
VDD33_B  
19  
26  
Power to on-chip regulator 3.0 V - 3.6 V. Each pin requires a 4.7 µF capacitor to GND  
VDDIO  
7, 24  
LVCMOS I/O Power 1.8 V ±5% OR 3.0 V - 3.6 V. Each pin requires 4.7 µF capacitor to GND  
REGULATOR CAPACITOR  
CAPP12  
CAPHS12  
CAPLVD12  
12  
14  
28  
CAP  
CAP  
Decoupling capacitor connection for on-chip regulator  
Each requires a 4.7-µF decoupling capacitor to GND.  
CAPL12  
8
Decoupling capacitor connection for on-chip regulator  
Requires two 4.7-µF decoupling capacitors to GND  
OTHER  
RES[1:0]  
15, 13  
GND  
Reserved  
Connect to GND.  
(1) The VDD (VDD33 and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise.  
6 Specifications  
6.1 Absolute Maximum Ratings(1)(2)(3)  
MIN  
0.3  
0.3  
MAX  
4.0  
UNIT  
V
(4)  
Supply Voltage – VDD33  
(4)  
Supply Voltage – VDDIO  
4.0  
V
LVCMOS I/O Voltage  
(VDDIO  
0.3)  
+
0.3  
0.3  
V
V
Serializer Output Voltage  
Junction Temperature  
2.75  
150  
150  
°C  
°C  
Storage Temperature, Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) For soldering specifications, see product folder at www.ti.com and www.ti.com/lit/an/snoa549c/snoa549c.pdf.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(4) The DS90UH927Q-Q1 VDD33 and VDDIO voltages require a specific ramp rate during power up. The power supply ramp time must be  
less than 1.5 ms with a monotonic rise  
6.2 ESD Ratings  
VALUE  
±8000  
±1250  
±250  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
Machine model (MM)  
V
(IEC 61000-4-2, powered-up only)  
Air Discharge  
RD = 330 Ω, CS = 150 pF  
(Pin 16 and 17)  
±15000  
±8000  
Electrostatic  
discharge  
V(ESD)  
Contact Discharge  
(Pin 16 and 17)  
V
(ISO 10605)  
Air Discharge  
RD = 330 Ω, CS = 150 pF/330 pF  
RD = 2 kΩ, CS = 150 pF/330 pF  
(Pin 16 and 17)  
±15000  
±8000  
Contact Discharge  
(Pin 16 and 17)  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2012–2015, Texas Instruments Incorporated  
5
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
MIN  
3
NOM  
3.3  
MAX  
UNIT  
V
Supply Voltage (VDD33  
)
3.6  
3.6  
(1)  
LVCMOS Supply Voltage (VDDIO  
)
Connect VDDIO to 3.3 V and use 3.3-V IOs  
Connect VDDIO to 1.8 V and use 1.8-V IOs  
3
3.3  
V
1.71  
40  
5
1.8  
1.89  
+105  
85  
V
Operating Free Air Temperature (TA)  
PCLK Frequency  
Supply Noise(2)  
+25  
°C  
MHz  
mVP-P  
100  
(1) VDDIO < VDD33 + 0.3 V  
(2) Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal signal is AC coupled to the VDD33 and VDDIOsupplies  
with amplitude = 100 mVp-p measured at the device VDD33 and VDDIO pins. Bit error rate testing of input to the Ser and output of the  
Des with 10 meter cable shows no error when the noise frequency on the Ser is less than 50 MHz. The Des on the other hand shows no  
error when the noise frequency is less than 50 MHz.  
6.4 Thermal Information  
DS90UH927Q-Q1  
THERMAL METRIC(1)  
RTA (WQFN)  
UNIT  
40 PINS  
29.0  
14.4  
5.1  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
5.1  
RθJC(bot)  
1.4  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
6.5 DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
LVCMOS I/O  
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
VDDIO = 3.0 V to 3.6 V(4)  
VDDIO = 3.0 V to 3.6 V(4)  
2.0  
VDDIO  
0.8  
V
V
GND  
PDB  
VIN = 0 V or VDDIO = 3.0 V to  
3.6 V(4)  
IIN  
Input Current  
15  
±1  
+15  
VDDIO  
VDDIO  
0.8  
μA  
V
VDDIO = 3.0 V to 3.6 V  
VDDIO = 1.71 V to 1.89 V  
VDDIO = 3.0 V to 3.6 V  
VDDIO = 1.71 V to 1.89 V  
VDDIO = 3.0 V  
2.0  
VIH  
High Level Input Voltage  
0.65×  
VDDIO  
GPIO[1:0]  
I2S_CLK  
I2S_WC  
I2S_D  
[A,B,C,D]  
LFMODE  
MAPSEL  
BKWD  
V
GND  
V
VIL  
Low Level Input Voltage  
Input Current  
0.35*  
VDDIO  
GND  
V
15  
15  
2.4  
±1  
±1  
+15  
+15  
μA  
μA  
V
to 3.6 V  
VIN = 0 V or  
VDDIO  
IIN  
REPEAT  
VDDIO = 1.71  
V to 1.89 V  
VDDIO = 3.0 V  
to 3.6 V  
VDDIO  
VDDIO  
0.4  
VOH  
High Level Output Voltage  
Low Level Output Voltage  
IOH = 4 mA  
VDDIO = 1.71  
V to 1.89 V  
VDDIO -  
0.45  
V
GPIO[3:0],  
GPO_REG  
[8:5]  
VDDIO = 3.0 V  
to 3.6 V  
IOL = +4 mA  
GND  
V
VOL  
VDDIO = 1.71  
V to 1.89 V  
GND  
0.45  
V
IOS  
IOZ  
Output Short Circuit Current(5)  
TRI-STATE® Output Current  
VOUT = 0 V  
55  
mA  
VOUT = 0 V or VDDIO, PDB = L,  
15  
+15  
μA  
FPD-LINK LVDS RECEIVER  
VTH  
VTL  
|VID  
Threshold High Voltage  
+100  
mV  
mV  
mV  
V
Threshold Low Voltage  
Differential Input Voltage Swing  
Common Mode Voltage  
Input Current  
VCM = 1.2 V  
100  
200  
0
RxCLKIN±  
RxIN[3:0]±  
|
600  
2.4  
VCM  
IIN  
1.2  
10  
+10  
μA  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics conditions and/or notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD33 = 3.3V, VDDIO = 1.8V or 3.3V, TA = 25°C, and at the Recommended  
Operating Conditions at the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages. Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal  
signal is AC coupled to the supply pins with amplitude = 100 mVp-p measured at the device VDD33 and VDDIO pins. Bit error rate testing  
of input to the serializer and output of the deserializer with 10 meter cable shows no error when the noise frequency is less than 50  
MHz.  
(4) PDB is specified to 3.3-V LVCMOS only and must be driven or pulled up to VDD33 or to VDDIO 3.0 V  
(5) IOS is not specified for an indefinite period of time. Do not hold in short circuit for more than 500 ms or part damage may result  
Copyright © 2012–2015, Texas Instruments Incorporated  
7
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
FPD-LINK III CML DRIVER  
Differential Output Voltage  
(DOUT+) – (DOUT-)  
VODp-p  
RL = 100 Ω  
800  
1000  
1
1200 mVp-p  
ΔVOD  
Output Voltage Unbalance  
50  
mV  
2.5-  
0.25*  
VODp-p  
VOS  
Offset Voltage – Single-ended  
RL = 100 Ω  
V
DOUT±  
(TYP)  
Offset Voltage Unbalance  
Single-ended  
ΔVOS  
IOS  
1
50  
mV  
mA  
Output Short Circuit Current  
DOUT+/- = 0V, PDB = L or H  
Internal Termination Resistance -  
Differential  
RT  
80  
100  
120  
SUPPLY CURRENT  
IDD1  
VDD33= 3.6 V  
VDDIO = 3.6 V  
VDDIO = 1.89 V  
VDD33= 3.6 V  
VDDIO = 3.6 V  
VDDIO = 1.89 V  
VDD33 = 3.6 V  
VDDIO = 3.6 V  
VDDIO = 1.89 V  
VDD33 = 3.6 V  
VDDIO = 3.6 V  
VDDIO = 1.89 V  
135  
100  
200  
133  
100  
100  
1.2  
4
160  
500  
600  
mA  
μA  
μA  
mA  
μA  
μA  
mA  
μA  
μA  
mA  
μA  
μA  
Checkerboard Pattern  
IDDIO1  
Supply Current  
RL = 100,  
PCLK = 85MHz  
IDD2  
Random Pattern  
PRBS7  
IDDIO2  
IDDS  
IDDIOS  
IDDZ  
2.4  
30  
30  
2.2  
20  
20  
Supply Current — Remote Auto  
Power Down  
reg_0x01[7]=1, Back channel  
Idle  
5
1
PDB = 0 V, All other LVCMOS  
inputs = 0 V  
Supply Current — Power Down  
8
IDDIOZ  
4
8
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
6.6 AC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)(3)  
PARAMETER  
FPD-LINK LVDS INPUT  
tRSP Receiver Strobe Position  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
See Figure 4  
RxCLKIN±,  
RXIN[3:0]±  
0.25  
0.5  
0.75  
UI  
FPD-LINK III CML I/O  
tLHT  
tHLT  
tPLD  
tSD  
CML Output Low-to-High Transition  
Time  
100  
100  
140  
140  
5
ps  
ps  
DOUT+,  
DOUT-  
See Figure 3  
CML Output High-to-Low Transition  
Time  
(4)  
See Figure 5,  
See Figure 6  
PCLK = 5 MHz  
to 85 MHz  
Serializer PLL Lock Time  
Delay — Latency  
ms  
ns  
UI  
146*T  
0.17  
Checkerboard Pattern  
PCLK=5 MHz, see Figure 8  
0.2  
Output Total Jitter,  
(5)  
tTJIT  
Bit Error Rate 1E-9, see Figure 7,  
RxCLKIN±  
(6) (7) (8)(9)  
Checkerboard Pattern  
PCLK=85 MHz, see Figure 8  
0.26  
0.6  
0.29  
UI  
UI  
UI  
f/40 < Jitter Freq < f/20, DES =  
DS90UH926Q-Q1  
Input Jitter Tolerance, Bit Error Rate  
RxCLKIN±, f =  
78 MHz  
tIJIT  
(8) (10)  
1E-9  
f/40 < Jitter Freq < f/20, DES =  
DS90UH928Q-Q1  
0.5  
I2S RECEIVER  
(7) (11)  
I2S Clock Period, see Figure 10,  
TI2S  
RxCLKIN± f=5 MHz to 85 MHz  
I2S_CLK,  
PCLK = 5 MHz  
to 85 MHz  
>4 /  
PCLK or  
>77  
ns  
I2S Clock High Time, see Figure 10,  
THC  
I2S_CLK  
0.35  
TI2S  
(11)  
(11)  
I2S Clock Low Time, see Figure 10,  
I2S Set-up Time  
TLC  
tsr  
I2S_CLK  
0.35  
0.2  
TI2S  
TI2S  
I2S_WC  
I2S_D[A,B,C,D]  
I2S Hold Time  
thtr  
I2S_WC  
I2S_D[A,B,C,D]  
0.2  
TI2S  
OTHER I/O  
tGPIO,FC  
tGPIO,BC  
GPIO[3:0],  
PCLK = 5 MHz  
to 85 MHz  
GPIO Pulse Width, Forward Channel  
GPIO Pulse Width, Back Channel  
>2/PCLK  
20  
s
GPIO[3:0]  
µs  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics conditions and/or notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD33 = 3.3V, VDDIO = 1.8V or 3.3V, TA = 25°C, and at the Recommended  
Operating Conditions at the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages. Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal  
signal is AC coupled to the supply pins with amplitude = 100 mVp-p measured at the device VDD33 and VDDIO pins. Bit error rate testing  
of input to the serializer and output of the deserializer with 10 meter cable shows no error when the noise frequency is less than 50  
MHz.  
(4) tPLD is the time required by the device to obtain lock when exiting power-down state with an active PCLK.  
(5) Output jitter specs are dependent upon the input clock jitter at the SER.  
(6) UI – Unit Interval is equivalent to one ideal serialized bit width. The UI scales with PCLK frequency.  
(7) Specification is ensured by design and is not tested in production.  
(8) Specification is ensured by characterization and is not tested in production.  
(9) tTJIT (@BER of 1E-9) specifies the allowable jitter on RxCLKIN±.  
(10) Jitter Frequency is specified in conjunction with DS90UH928Q-Q1 PLL bandwidth.  
(11) I2S specifications for tLC and tHC pulses must each be greater than 2 PCLK periods to ensure sampling and supersedes the  
0.35*TI2S_CLK requirement. tLC and tHC must be longer than the greater of either 0.35*TI2S_CLK or 2*PCLK.  
Copyright © 2012–2015, Texas Instruments Incorporated  
9
 
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
MAX UNIT  
6.7 DC and AC Serial Control Bus Characteristics  
Over 3.3-V supply and temperature ranges unless otherwise specified.(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
VIH  
VIL  
0.7*  
VDDIO  
Input High Level  
SDA and SCL  
SDA and SCL  
VDD33  
V
V
0.3*  
VDD33  
Input Low Level Voltage  
Input Hysteresis  
GND  
VHY  
VOL  
Iin  
>50  
<5  
mV  
V
SDA or SCL, IOL = 1.25 mA  
SDA or SCL, Vin = VDDIO or GND  
SDA or SCL  
0
0.36  
+10  
-10  
µA  
pF  
Cin  
Input Capacitance  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics conditions and/or notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD33 = 3.3V, VDDIO = 1.8V or 3.3V, TA = 25°C, and at the Recommended  
Operating Conditions at the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages. Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal  
signal is AC coupled to the supply pins with amplitude = 100 mVp-p measured at the device VDD33 and VDDIO pins. Bit error rate testing  
of input to the serializer and output of the deserializer with 10 meter cable shows no error when the noise frequency is less than 50  
MHz.  
6.8 Recommended Timing Requirements for the Serial Control Bus  
Over 3.3-V supply and temperature ranges unless otherwise specified.(1)(2)(3)  
MIN  
0
NOM  
MAX UNIT  
fSCL  
Standard Mode  
Fast Mode  
100 kHz  
SCL Clock Frequency  
SCL Low Period  
0
400 kHz  
tLOW  
Standard Mode  
Fast Mode  
4.7  
1.3  
4.0  
0.6  
4.0  
µs  
µs  
µs  
µs  
µs  
tHIGH  
Standard Mode  
Fast Mode  
SCL High Period  
tHD;STA  
Hold time for a start or a  
repeated start condition, see  
Figure 9  
Standard Mode  
Fast Mode  
0.6  
4.7  
0.6  
µs  
µs  
µs  
tSU:STA  
Set Up time for a start or a  
repeated start condition, see  
Figure 9  
Standard Mode  
Fast Mode  
tHD;DAT  
tSU;DAT  
tSU;STO  
Standard Mode  
Fast Mode  
0
0
3.45  
0.9  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
Data Hold Time, see Figure 9  
Data Set Up Time, see Figure 9  
Standard Mode  
Fast Mode  
250  
100  
4.0  
0.6  
4.7  
Standard Mode  
Fast Mode  
Set Up Time for STOP  
Condition, see Figure 9  
Bus Free Time  
Standard Mode  
tBUF  
Between STOP and START,  
see Figure 9  
Fast Mode  
1.3  
µs  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics conditions and/or notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD33 = 3.3V, VDDIO = 1.8V or 3.3V, TA = 25°C, and at the Recommended  
Operating Conditions at the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages. Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal  
signal is AC coupled to the supply pins with amplitude = 100 mVp-p measured at the device VDD33 and VDDIO pins. Bit error rate testing  
of input to the serializer and output of the deserializer with 10 meter cable shows no error when the noise frequency is less than 50  
MHz.  
10  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Recommended Timing Requirements for the Serial Control Bus (continued)  
Over 3.3-V supply and temperature ranges unless otherwise specified.(1)(2)(3)  
MIN  
NOM  
MAX UNIT  
Standard Mode  
Fast Mode  
1000  
300  
300  
300  
ns  
ns  
ns  
ns  
SCL & SDA Rise Time, see  
Figure 9  
tr  
tf  
Standard Mode  
Fast mode  
SCL & SDA Fall Time, see  
Figure 9  
6.9 Timing Requirements  
MIN  
NOM  
MAX UNIT  
tR  
SDA RiseTime – READ  
SDA Fall Time – READ  
Set Up Time — READ  
Hold Up Time — READ  
Input Filter  
430  
20  
ns  
ns  
ns  
ns  
ns  
SDA, RPU = 10 k, Cb 400 pF, see Figure 9  
tF  
tSU;DAT  
tHD;DAT  
tSP  
See Figure 9  
See Figure 9  
560  
615  
50  
RxIN[3:0]+  
RxCLKIN+  
+VOD/4  
VTL  
VCM  
VTH  
RxIN[3:0]-  
RxClkIN-  
-VOD/4  
GND  
Figure 1. FPD-Link DC VTH/VTL Definition  
DOUT+  
DOUT-  
100 nF  
100 nF  
RxCLKIN  
18  
Differential probe  
SCOPE  
BW û 4GHz  
RxIN[3:0]  
I2S  
Input Impedance û 100 k:  
100:  
D
C
ú 0.5 pf  
L
BW û 3.5 GHz  
GPIO[1:0]  
D
OUT  
-
V
OD-  
Single Ended  
V
OD  
V
OD+  
D
OUT  
+
V
OS  
|
0V  
V
OD+  
(D  
+) - (D -)  
OUT OUT  
0V  
Differential  
V
OD-  
Figure 2. Serializer VOD DC Output  
Copyright © 2012–2015, Texas Instruments Incorporated  
11  
 
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
+VOD  
0V  
80%  
20%  
(DOUT+) - (DOUT-)  
-VOD  
t
t
HLT  
LHT  
Figure 3. Output Transition Times  
Previous Cycle  
Next Cycle  
RxCLKIN  
(Differential)  
1 UI  
1 UI  
1 UI  
1 UI  
1 UI  
1 UI  
1 UI  
1 UI  
1 UI  
RxIN[3:0]  
(Differential)  
tRSP(min)  
tRSP(typ)  
tRSP(max)  
Figure 4. FPD-Link Input Strobe Position  
VDD  
VDDIO  
PDB  
1/2 V  
DD33  
RxCLKIN  
t
PLD  
DOUT  
(Diff.)  
Driver On  
Driver OFF, V  
OD  
= 0V  
Figure 5. Serializer Lock Time  
N-1  
N
N+1  
N+2  
RxIN[3:0]  
RxCLKIN  
t
SD  
STOP START  
STOP  
BIT  
START  
BIT  
STOP  
BIT  
START  
STOP  
BIT  
START STOP  
BIT BIT  
SYMBOL N  
BIT BIT  
BIT  
SYMBOL N-4  
SYMBOL N-3  
SYMBOL N-2  
SYMBOL N-1  
0
1
2
0
1
2
0
1
2
0
1
2
0
1
2
DOUT  
Figure 6. Latency Delay  
12  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
t
t
TJIT  
TJIT  
VOD (+)  
DOUT  
(Diff.)  
EYE OPENING  
0V  
VOD (-)  
t
(1 UI)  
BIT  
Figure 7. CML Serializer Output Jitter  
+VOD  
-VOD  
RxCLKIN  
RxIN3  
+VOD  
-VOD  
+VOD  
-VOD  
+VOD  
-VOD  
RxIN2  
RxIN1  
RxIN0  
+VOD  
-VOD  
Cycle N  
Cycle N+1  
Figure 8. Checkerboard Data Pattern  
SDA  
SCL  
t
BUF  
t
f
t
HD;STA  
t
t
r
LOW  
t
t
SP  
t
f
r
t
t
SU;STA  
t
SU;STO  
HD;STA  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 9. Serial Control Bus Timing Diagram  
Copyright © 2012–2015, Texas Instruments Incorporated  
13  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
T
t
t
t
HC  
LC  
V
IH  
I2S_CLK  
V
IL  
t
hr  
sr  
I2S_WC  
I2S_D[A,B,C,D]  
Figure 10. I2S Timing Diagram  
6.10 Typical Characteristics  
Input to Serializer  
Output at Deserializer  
Figure 11. Serializer Eye with 78-MHz Input Clock  
Figure 12. 78-MHz Clock at Serializer and Deserializer  
14  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
7 Detailed Description  
7.1 Overview  
The DS90UH927Q-Q1 converts a FPD-Link interface (4 LVDS data channels + 1 LVDS Clock) to a FPD-Link III  
interface. This device transmits a 35-bit symbol over a single serial pair operating at up to a 2.975-Gbps line rate.  
The serial stream contains an embedded clock, video control signals, RGB video data, and audio data. The  
payload is DC-balanced to enhance signal quality and support AC coupling.  
The DS90UH927Q-Q1 applies encryption to the video data using a High-Bandwidth Digital Content Protection  
(HDCP) Cipher, and transmits the encrypted data out through the FPD-Link III interface. Audio encryption is  
supported. On chip non-volatile memory stores the HDCP keys. All key exchanges are conducted over the FPD-  
Link III bidirectional control interface.  
The DS90UH927Q-Q1 serializer is intended for use with a DS90UH928Q-Q1 or DS90UH926Q-Q1 deserializer,  
but is also backward compatible with DS90UR906Q, DS90UR908Q, DS90UR910Q, and DS90UR916Q FPD-Link  
II deserializers.  
The DS90UH927Q-Q1 serializer and DS90UH928Q-Q1 or DS90UH926Q-Q1 deserializer incorporate an I2C  
compatible interface. The I2C compatible interface allows programming of serializer or deserializer devices from a  
local host controller. In addition, the devices incorporate a bidirectional control channel (BCC) that allows  
communication between serializer/deserializer as well as remote I2C slave devices.  
The bidirectional control channel (BCC) is implemented via embedded signaling in the high-speed forward  
channel (serializer to deserializer) combined with lower speed signaling in the reverse channel (deserializer to  
serializer). Through this interface, the BCC provides a mechanism to bridge I2C transactions across the serial link  
from one I2C bus to another. The implementation allows for arbitration with other I2C compatible masters at either  
side of the serial link.  
7.2 Functional Block Diagram  
REGULATOR  
CMF  
RxIN3+/-  
RxIN2+/-  
DOUT+  
RxIN1+/-  
DOUT-  
RxIN0+/-  
RxCLKIN+/-  
8
I2S / GPIO  
LFMODE  
MAPSEL  
PLL  
BKWD  
REPEAT  
PDB  
INTB  
Timing and  
Control  
SDA  
SCL  
IDx  
Copyright © 2012–2015, Texas Instruments Incorporated  
15  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 High-Speed Forward Channel Data Transfer  
The High-Speed Forward Channel is composed of a 35-bit frame containing RGB data, sync signals, HDCP, I2C,  
and I2S audio transmitted from Serializer to Deserializer. Figure 13 illustrates the serial stream generated per  
PCLK cycle into RxCLKIN±. This data payload is optimized for signal transmission over an AC coupled link. Data  
is randomized, DC-balanced and scrambled.  
C0  
C1  
Figure 13. FPD-Link III Serial Stream  
The device supports pixel clock ranges of 5 MHz to 15 MHz (LFMODE=1) and 15 MHz to 85 MHz (LFMODE=0).  
This corresponds to an application payload rate range of 155 Mbps to 2.635 Gbps, with an actual line rate range  
of 525 Mbps to 2.975 Gbps.  
7.3.2 Low-Speed Back Channel Data Transfer  
The Low-Speed Back Channel of the DS90UH927Q-Q1 provides bidirectional communication between the  
display and host processor. Data is transferred simultaneously over the same physical link as the high-speed  
forward channel data. The back channel transports I2C, HDCP, CRC, and 4 bits of standard GPIO information  
with a 10 Mbps line rate.  
7.3.3 Common Mode Filter Pin (CMF)  
The serializer provides access to the center tap of the internal CML termination. A 0.1-μF capacitor must be  
connected from this pin to GND for additional common-mode filtering of the differential pair (Figure 29). This  
increases noise rejection capability in high-noise environments.  
7.3.4 Video Control Signals  
The video control signal bits embedded in the high-speed FPD-Link LVDS are subject to certain limitations  
relative to the video pixel clock period (PCLK). By default, the DS90UH927Q-Q1 applies a minimum pulse width  
filter on these signals to help eliminate spurious transitions.  
Normal Mode Control Signals (VS, HS, DE) have the following restrictions:  
Horizontal Sync (HS): The video control signal pulse width must be 3 PCLKs or longer when the Control  
Signal Filter (register bit 0x03[4]) is enabled (default). Disabling the Control Signal Filter removes this  
restriction (minimum is 1 PCLK). See Table 5. HS can have at most two transitions per 130 PCLKs.  
Vertical Sync (VS): The video control signal pulse is limited to 1 transition per 130 PCLKs. Thus, the minimum  
pulse width is 130 PCLKs.  
Data Enable Input (DE): The video control signal pulse width must be 3 PCLKs or longer when the Control  
Signal Filter (register bit 0x03[4]) is enabled (default). Disabling the Control Signal Filter removes this  
restriction (minimum is 1 PCLK). See Table 5. DE can have at most two transitions per 130 PCLKs.  
7.3.5 EMI Reduction Features  
7.3.5.1 LVCMOS VDDIO Option  
The 1.8-V or 3.3-V LVCMOS inputs and outputs are powered from separate VDDIO supply pins to offer  
compatibility with external system interface signals. Note: When configuring the VDDIO power supplies, all the  
single-ended control input pins for device need to scale together with the same operating VDDIO levels. If VDDIO is  
selected to operate in the 3.0 V to 3.6 V range, VDDIO must be operated within 300 mV of VDD33  
.
7.3.6 Built-In Self Test (BIST)  
An optional At-Speed Built-In Self Test (BIST) feature supports testing of the high speed serial link and the low-  
speed back channel without external data connections. This is useful in the prototype stage, equipment  
production, in-system test, and system diagnostics.  
16  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Feature Description (continued)  
7.3.6.1 BIST Configuration and Status  
The BIST mode is enabled at the deserializer by pin (BISTEN) or BIST configuration register. The test may  
select either an external PCLK or the 33 MHz internal Oscillator clock (OSC) frequency. In the absence of PCLK,  
the user can select the internal OSC frequency at the deserializer through the BISTC pin or BIST configuration  
register.  
When BIST is activated at the deserializer, a BIST enable signal is sent to the serializer through the Back  
Channel. The serializer outputs a test pattern and drives the link at speed. The deserializer detects the test  
pattern and monitors it for errors. The deserializer PASS output pin toggles to flag each frame received  
containing one or more errors. The serializer also tracks errors indicated by the CRC fields in each back channel  
frame.  
The BIST status can be monitored real time on the deserializer PASS pin, with each detected error resulting in a  
half pixel clock period toggled LOW. After BIST is deactivated, the result of the last test is held on the PASS  
output until reset (new BIST or Power Down). A high on PASS indicates NO ERRORS were detected. A Low on  
PASS indicates one or more errors were detected. The duration of the test is controlled by the pulse width  
applied to the deserializer BISTEN pin. LOCK status is valid throughout the entire duration of BIST.  
See Figure 14 for the BIST mode flow diagram.  
Sample BIST Sequence  
Step 1: For the DS90UH927Q-Q1 paired with a FPD-Link III Deserializer, BIST Mode is enabled via the BISTEN  
pin of Deserializer. The desired clock source is selected through the deserializer BISTC pin.  
Step 2: The DS90UH927Q-Q1 serializer is awakened through the back channel if it is not already on. An all-  
zeros pattern is balanced, scrambled, randomized, and sent through the FPD-Link III interface to the deserializer.  
Once the serializer and the deserializer are in BIST mode and the deserializer acquires Lock, the PASS pin of  
the deserializer goes high and BIST starts checking the data stream. If an error in the payload (1 to 35) is  
detected, the PASS pin will switch low for one half of the clock period. During the BIST, the PASS output can be  
monitored and counted to determine the payload error rate.  
Step 3: To Stop the BIST mode, the deserializer BISTEN pin is set Low. The deserializer stops checking the  
data. The final test result is held on the PASS pin. If the test ran error free, the PASS output will remain HIGH. If  
there one or more errors were detected, the PASS output will output constant LOW. The PASS output state is  
held until a new BIST is run, the device is RESET, or the device is powered down. BIST duration is user-  
controlled and may be of any length.  
The link returns to normal operation after the deserializer BISTEN pin is low. Figure 15 shows the waveform  
diagram of a typical BIST for two cases. Case 1 is error free, and Case 2 shows one with multiple errors. In most  
cases it is difficult to generate errors due to the robustness of the link (differential data transmission, and so  
forth), thus they may be introduced by greatly extending the cable length, faulting the interconnect medium, or  
reducing signal condition enhancements (Rx Equalization).  
Copyright © 2012–2015, Texas Instruments Incorporated  
17  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Feature Description (continued)  
Normal  
Step 1: DES in BIST  
BIST  
Wait  
Step 2: Wait, SER in BIST  
BIST  
start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
stop  
Step 4: DES/SER in Normal  
Figure 14. BIST Mode Flow Diagram  
7.3.7 Forward Channel and Back Channel Error Checking  
While in BIST mode, the serializer stops sampling the FPD-Link input pins and switches over to an internal all  
zeroes pattern. The internal all-zeroes pattern goes through scrambler, DC-balancing, and so forth, and is  
transmitted over the serial link to the deserializer. The deserializer, on locking to the serial stream, compares the  
recovered serial stream with all-zeroes and records any errors in status registers. Errors are also dynamically  
reported on the PASS pin of the deserializer.  
The back-channel data is checked for CRC errors once the serializer locks onto the back-channel serial stream,  
as indicated by link detect status (register bit 0x0C[0] - Table 5). CRC errors are recorded in an 8-bit register in  
the serializer. The register is cleared when the serializer enters the BIST mode. As soon as the serializer enters  
BIST mode, the functional mode CRC register starts recording any back channel CRC errors. The BIST mode  
CRC error register is active in BIST mode only and keeps the record of the last BIST run until cleared or the  
serializer enters BIST mode again.  
BISTEN  
(DES)  
TxCLKOUT±  
TxOUT[3:0]±  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
X
DATA  
(internal)  
X
X
PASS  
BIST  
Result  
Held  
Normal  
PRBS  
Normal  
BIST Test  
BIST Duration  
Figure 15. BIST Waveforms  
18  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Feature Description (continued)  
7.3.8 Internal Pattern Generation  
The DS90UH927Q-Q1 serializer provides an internal pattern generation feature. It allows basic testing and  
debugging of an integrated panel. The test patterns are simple and repetitive and allow for a quick visual  
verification of panel operation. As long as the device is not in power down mode, the test pattern will be  
displayed even if no input is applied. If no clock is received, the test pattern can be configured to use a  
programmed oscillator frequency. For detailed information, refer to Application Note AN-2198 Exploring the  
Internal Test Pattern Generation Feature of 720p (SNLA132).  
7.3.8.1 Pattern Options  
The DS90UH927Q-Q1 serializer pattern generator is capable of generating 17 default patterns for use in basic  
testing and debugging of panels. Each pattern can be inverted using register bits (Table 5). The 17 default  
patterns are listed as follows:  
1. White/Black (default/inverted)  
2. Black/White  
3. Red/Cyan  
4. Green/Magenta  
5. Blue/Yellow  
6. Horizontally Scaled Black to White/White to Black  
7. Horizontally Scaled Black to Red/Cyan to White  
8. Horizontally Scaled Black to Green/Magenta to White  
9. Horizontally Scaled Black to Blue/Yellow to White  
10. Vertically Scaled Black to White/White to Black  
11. Vertically Scaled Black to Red/Cyan to White  
12. Vertically Scaled Black to Green/Magenta to White  
13. Vertically Scaled Black to Blue/Yellow to White  
14. Custom Color (or its inversion) configured in PGRS  
15. Black-White/White-Black Checkerboard (or custom checkerboard color, configured in PGCTL)  
16. YCBR/RBCY VCOM pattern, orientation is configurable from PGCTL  
17. Color Bars (White, Yellow, Cyan, Green, Magenta, Red, Blue, Black) – Note: not included in the auto-  
scrolling feature  
Additionally, the Pattern Generator incorporates one user-configurable full-screen 24-bit color, which is controlled  
by the PGRS, PGGS, and PGBS registers. This is pattern #14. One of the pattern options is statically selected in  
the PGCTL register when Auto-Scrolling is disabled. The PGTSC and PGTSO1-8 registers control the pattern  
selection and order when Auto-Scrolling is enabled.  
7.3.8.2 Color Modes  
By default, the Pattern Generator operates in 24-bit color mode, where all bits of the Red, Green, and Blue  
outputs are enabled. 18-bit color mode can be activated from the configuration registers (Table 5). In 18-bit  
mode, the 6 most significant bits (bits 7-2) of the Red, Green, and Blue outputs are enabled; the 2 least  
significant bits will be 0.  
7.3.8.3 Video Timing Modes  
The Pattern Generator has two video timing modes – external and internal. In external timing mode, the Pattern  
Generator detects the video frame timing present on the DE and VS inputs. If Vertical Sync signaling is not  
present on VS, the Pattern Generator determines Vertical Blank by detecting when the number of inactive pixel  
clocks (DE = 0) exceeds twice the detected active line length. In internal timing mode, the Pattern Generator  
uses custom video timing as configured in the control registers. The internal timing generation may also be  
driven by an external clock. By default, external timing mode is enabled. Internal timing or Internal timing with  
External Clock are enabled by the control registers (Table 5).  
Copyright © 2012–2015, Texas Instruments Incorporated  
19  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Feature Description (continued)  
7.3.8.4 External Timing  
In external timing mode, the Pattern Generator passes the incoming DE, HS, and VS signals unmodified to the  
video control outputs after a two pixel clock delay. It extracts the active frame dimensions from the incoming  
signals in order to properly scale the brightness patterns. If the incoming video stream does not use the VS  
signal, the Pattern Generator determines the Vertical Blank time by detecting a long period of pixel clocks without  
DE asserted.  
7.3.8.5 Pattern Inversion  
The Pattern Generator also incorporates a global inversion control, located in the PGCFG register, which causes  
the output pattern to be bitwise-inverted. For example, the full screen Red pattern becomes full-screen cyan, and  
the Vertically Scaled Black to Green pattern becomes Vertically Scaled White to Magenta.  
7.3.8.6 Auto Scrolling  
The Pattern Generator supports an Auto-Scrolling mode, in which the output pattern cycles through a list of  
enabled pattern types. A sequence of up to 16 patterns may be defined in the registers. The patterns may  
appear in any order in the sequence and may also appear more than once.  
7.3.9 Remote Auto Power Down Mode  
The DS90UH927Q-Q1 serializer features a Remote Auto Power Down mode. This feature is enabled and  
disabled through the register bit 0x01[7] (Table 5). When the back channel is not detected, either due to an idle  
or powered-down deserializer, the serializer enters remote auto power down mode. Power dissipation of the  
serializer is significantly reduced in this mode. The serializer automatically attempts to resume normal operation  
upon detection of an active back channel from the deserializer. To complete the wake-up process and reactivate  
forward channel operation, the remote power-down feature must be disabled by either a local I2C host, or by an  
auto-ACK I2C transaction from a remote I2C host located at the deserializer. The Remote Auto Power Down  
Sleep/Wake cycle is shown below in Figure 16:  
Enable  
Set reg_0x01[7]=1  
Back Channel IDLE  
Remote Auto Power  
Down Enabled  
Forward-channel  
OFF  
Normal Operation  
Sleep  
Disable  
Back Channel ACTIVE  
Set reg_0x01[7]=0  
Figure 16. Remote Auto Power Down Sleep/Wake Cycle  
To resume normal operation, the Remote Auto Power Down feature must be disabled in the device control  
register. This may be accomplished from a local I2C controller by writing reg_0x01[7]=0 (Table 5). To disable  
from a remote I2C controller located at the deserializer, perform the following procedure to complete the wake-up  
process:  
1. Power up remote deserializer (back channel must be active)  
2. Enable I2C PASS-THROUGH ALL by setting deserializer register reg_0x05[7]=1  
3. Enable I2C AUTO ACK by setting deserializer register reg_0x03[2]=1  
4. Disable Remote Auto Power Down by setting serializer register reg_0x01[7]=0  
5. Disable I2C AUTO ACK by setting deserializer register reg_0x03[2]=0  
20  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Feature Description (continued)  
6. Disable I2C PASS-THROUGH ALL by setting deserializer register reg_0x05[7]=0  
7.3.10 Input RxCLKIN Loss Detect  
The serializer can be programmed to enter a low power SLEEP state when the input clock (PCLK) is lost. A  
clock loss condition is detected when PCLK drops below approximately 1MHz. When a PCLK is detected again,  
the serializer will then lock to the incoming RxCLKIN±. Note: when RxCLKIN± is lost, the optional Serial Bus  
Control Registers values are still retained. See (Table 5) for more information.  
7.3.11 Serial Link Fault Detect  
The DS90UH927Q-Q1 can detect fault conditions in the FPD-Link III interconnect. If a fault condition occurs, the  
Link Detect Status is 0 (cable is not detected) on bit 0 of address 0x0C (Table 5). The DS90UH927Q-Q1 will  
detect any of the following conditions:  
1. Cable open  
2. + to - short  
3. + to GND short  
4. - to GND short  
5. + to battery short  
6. - to battery short  
7. Cable is linked incorrectly (DOUT+/DOUT- connections reversed)  
NOTE  
The device will detect any of the above conditions, but does not report specifically which  
one has occurred.  
7.3.12 INTERRUPT Pin (INTB)  
1. On the DS90UH927Q-Q1 serializer, set register reg_0xC6[5] = 1 and 0xC6[0] = 1 (Table 5) to configure the  
interrupt.  
2. On the serializer, read from HDCP_ISR register 0xC7 to arm the interrupt for the first time.  
3. When INTB_IN on the deserializer (DS90UH926Q-Q1 or DS90UH928Q-Q1) is set LOW, the INTB pin on the  
serializer also pulls low, indicating an interrupt condition.  
4. The external controller detects INTB = LOW and reads the HDCP_ISR register (Table 5) to determine the  
interrupt source. Reading this register also clears and resets the interrupt.  
7.3.13 General-Purpose I/O  
7.3.13.1 GPIO[3:0]  
In normal operation, GPIO[3:0] may be used as general purpose IOs in either forward channel (inputs) or back  
channel (outputs) applications. GPIO modes may be configured from the registers (Table 5). GPIO[1:0] are  
dedicated pins and GPIO[3:2] are shared with I2S_DC and I2S_DD respectively. Note: if the DS90UH927Q-Q1 is  
paired with a DS90UH926Q-Q1 deserializer, the devices must be configured into 18-bit mode to allow usage of  
GPIO pins on the DS90UH927 serializer. To enable 18-bit mode, set serializer register reg_0x12[2] = 1. 18-bit  
mode will be auto-loaded into the deserializer from the serializer. See Table 1 for GPIO enable and configuration.  
Table 1. GPIO Enable and Configuration  
DESCRIPTION  
DEVICE  
FORWARD CHANNEL  
0x0F = 0x03  
BACK CHANNEL  
0x0F = 0x05  
0x1F = 0x03  
0x0E = 0x50  
0x1E = 0x30  
GPIO3  
DS90UH927Q-Q1  
DS90UH926/8Q-Q1  
DS90UH927Q-Q1  
DS90UH926/8Q-Q1  
0x1F = 0x05  
GPIO2  
0x0E = 0x30  
0x1E = 0x50  
Copyright © 2012–2015, Texas Instruments Incorporated  
21  
 
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Feature Description (continued)  
Table 1. GPIO Enable and Configuration (continued)  
DESCRIPTION  
DEVICE  
FORWARD CHANNEL  
0x0E = 0x03  
BACK CHANNEL  
GPIO1  
DS90UH927Q-Q1  
DS90UH926/8Q-Q1  
DS90UH927Q-Q1  
DS90UH926/8Q-Q1  
0x0E = 0x05  
0x1E = 0x03  
0x0D = 0x05  
0x1D = 0x03  
0x1E = 0x05  
GPIO0  
0x0D = 0x03  
0x1D = 0x05  
The input value present on GPIO[3:0] may also be read from register, or configured to local output mode  
(Table 5).  
7.3.13.2 GPIO[8:5]  
GPIO_REG[8:5] are register-only GPIOs and may be programmed as outputs or read as inputs through local  
register bits only. Where applicable, these bits are shared with I2S pins and will override I2S input if enabled into  
REG_GPIO mode. See Table 2 for GPIO enable and configuration.  
Note: Local GPIO value may be configured and read either through local register access, or remote register  
access through the Low-Speed Bidirectional Control Channel. Configuration and state of these pins are not  
transported from serializer to deserializer as is the case for GPIO[3:0].  
Table 2. GPIO_REG and GPIO Local Enable and Configuration  
DESCRIPTION  
REGISTER CONFIGURATION  
0x11 = 0x01  
0x11 = 0x09  
0x11 = 0x03  
0x10 = 0x01  
0x10 = 0x09  
0x10 = 0x03  
0x10 = 0x01  
0x10 = 0x09  
0x10 = 0x03  
0x0F = 0x01  
0x0F = 0x09  
0x0F = 0x03  
0x0F = 0x01  
0x0F = 0x09  
0x0F = 0x03  
0x0E = 0x01  
0x0E = 0x09  
0x0E = 0x03  
0x0E = 0x01  
0x0E = 0x09  
0x0E = 0x03  
0x0D = 0x01  
0x0D = 0x09  
0x0D = 0x03  
FUNCTION  
Output, L  
GPIO_REG8  
Output, H  
Input, Read: 0x1D[0]  
Output, L  
GPIO_REG7  
GPIO_REG6  
GPIO_REG5  
GPIO3  
Output, H  
Input, Read: 0x1C[7]  
Output, L  
Output, H  
Input, Read: 0x1C[6]  
Output, L  
Output, H  
Input, Read: 0x1C[5]  
Output, L  
Output, H  
Input, Read: 0x1C[3]  
Output, L  
GPIO2  
Output, H  
Input, Read: 0x1C[2]  
Output, L  
GPIO1  
Output, H  
Input, Read: 0x1C[1]  
Output, L  
GPIO0  
Output, H  
Input, Read: 0x1C[0]  
22  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
7.3.14 I2S Audio Interface  
The DS90UH927Q-Q1 serializer features six I2S input pins that, when paired with a DS90UH928Q-Q1  
deserializer, supports surround sound audio applications. The bit clock (I2S_CLK) supports frequencies between  
1 MHz and the smaller of <PCLK/2 or <13 MHz. Four I2S data inputs transport two channels of I2S-formatted  
digital audio each, with each channel delineated by the word select (I2C_WC) input. I2S audio transport is not  
available in Backwards Compatibility Mode (BKWD = 1).  
DS90UH927Q-Q1  
Bit Clock  
Word Select  
Data  
I2S_CLK  
I2S_WC  
I2S_Dx  
I2S  
Transmitter  
4
Figure 17. I2S Connection Diagram  
I2S_WC  
I2S_CLK  
MSB  
LSB MSB  
LSB  
I2S_Dx  
Figure 18. I2S Frame Timing Diagram  
When paired with a DS90UH926Q-Q1, the DS90UH927Q-Q1 I2S interface supports a single I2S data input  
through I2S_DA (24-bit video mode), or two I2S data inputs through I2S_DA and I2S_DB (18-bit video mode).  
Table 3 covers several common I2S sample rates:  
Table 3. Audio Interface Frequencies  
Sample Rate (kHz)  
I2S Data Word Size (bits)  
I2S CLK (MHz)  
1.024  
32  
44.1  
48  
16  
16  
16  
16  
16  
24  
24  
24  
24  
24  
32  
32  
32  
32  
32  
1.411  
1.536  
96  
3.072  
192  
32  
6.144  
1.536  
44.1  
48  
2.117  
2.304  
96  
4.608  
192  
32  
9.216  
2.048  
44.1  
48  
2.822  
3.072  
96  
6.144  
192  
12.288  
Copyright © 2012–2015, Texas Instruments Incorporated  
23  
 
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
7.3.14.1 I2S Transport Modes  
By default, audio is packetized and transmitted during video blanking periods in dedicated Data Island Transport  
frames. Data Island frames may be disabled from control registers if Forward Channel Frame Transport of I2S  
data is desired. In this mode, only I2S_DA is transmitted to the DS90UH928Q-Q1 deserializer. If connected to a  
DS90UH926Q-Q1 deserializer, I2S_DA and I2S_DB are transmitted. Surround Sound Mode, which transmits all  
four I2S data inputs (I2S_D[A..D]), may only be operated in Data Island Transport mode. This mode is only  
available when connected to a DS90UH928Q-Q1 deserializer.  
7.3.14.2 I2S Repeater  
I2S audio may be fanned-out and propagated in the repeater application. By default, data is propagated via Data  
Island Transport on the FPD-Link interface during the video blanking periods. If frame transport is desired, then  
the I2S pins should be connected from the deserializer to all serializers. Activating surround sound at the top-  
level deserializer automatically configures downstream DS90UH927Q-Q1 serializers and DS90UH928Q-Q1  
deserializers for surround sound transport utilizing Data Island Transport. If 4-channel operation utilizing I2S_DA  
and I2S_DB only is desired, this mode must be explicitly set in each serializer and deserializer control register  
throughout the repeater tree (Table 5).  
A DS90UH927Q-Q1 serializer configured in repeater mode may also regenerate I2S audio from its I2S input pins  
in lieu of Data Island frames. See the HDCP Repeater Connection Diagram (Figure 23) and the I2C Control  
Registers (Table 5) for additional details.  
7.3.15 Additional Features  
Additional pattern generator features can be accessed through the Pattern Generator Indirect Register Map. It  
consists of the Pattern Generator Indirect Address (PGIA reg_0x66 — Table 5) and the Pattern Generator  
Indirect Data (PGID reg_0x67 — Table 5). See Application Note AN-2198 Exploring the Internal Test Pattern  
Generation Feature of 720p (SNLA132).  
7.4 Device Functional Modes  
7.4.1 Power Down (PDB)  
The Serializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin may be controlled by an  
external device, or through VDDIO, where VDDIO = 3.0 V to 3.6 V or VDD33. To save power, disable the link when  
the display is not needed (PDB = LOW). Ensure that this pin is not driven HIGH before VDD33 and VDDIO have  
reached final levels. When PDB is driven low, ensure that the pin is driven to 0 V for at least 1.5 ms before  
releasing or driving high. In the case where PDB is pulled up to VDDIO = 3.0 V to 3.6 V or VDD33 directly, a 10-kΩ  
pullup resistor and a >10-µF capacitor to ground are required (See Figure 29).  
Toggling PDB low will POWER DOWN the device and RESET all control registers to default. During this time,  
PDB must be held low for a minimum period of time. See AC Electrical Characteristics for more information.  
7.4.2 Backward Compatible Mode  
The DS90UH927Q-Q1 is also backward compatible to DS90UR906Q, DS90UR908Q FPD, and DS90UR916Q  
FPD-Link II deserializers for PCLK frequencies ranging from 5 MHz to 65 MHz. It is also backward compatible  
with the DS90UR910Q for PCLK frequencies ranging from 5 MHz to 75 MHz. The serializer transmits 28-bits of  
data over a single serial FPD-Link II pair operating at a payload rate of 120 Mbps to 1.8 Gbps, corresponding to  
a line rate of 140 Mbps to 2.1 Gbps. The Backward Compatibility configuration can be selected through the  
BKWD pin or programmed through the configuration register (Table 5). The bidirectional control channel, HDCP,  
bidirectional GPIOs, I2S, and interrupt (INTB) are not active in this mode. However, local I2C access to the  
serializer is still available. Note: PCLK frequency range in this mode is 15 MHz to 75 MHz for LFMODE=0 and 5  
MHZ to <15 MHz for LFMODE=1.  
24  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Device Functional Modes (continued)  
7.4.3 Low Frequency Optimization (LFMODE)  
The LFMODE is set via register (Table 5) or LFMODE Pin. This mode optimizes device operation for lower input  
data clock ranges supported by the serializer. If LFMODE is Low (LFMODE = 0, default), the RxCLKIN±  
frequency is between 15 MHz and 85 MHz. If LFMODE is High (LFMODE = 1), the RxCLKIN± frequency is  
between 5 MHz and <15 MHz. Note: when the device LFMODE is changed, a PDB reset is required. When  
LFMODE is high (LFMODE=1), the line rate relative to the input data rate is multiplied by four. Thus, for the  
operating range of 5 MHz to <15 MHz, the line rate is 700 Mbps to <2.1 Gbps with an effective data payload of  
175 Mbps to 525 Mbps. Note: for Backwards Compatibility Mode (BKWD=1), the line rate relative to the input  
data rate remains the same.  
7.4.4 FPD-Link Input Frame and Color Bit Mapping Select  
The DS90UH927Q-Q1 can be configured to accept 24-bit color (8-bit RGB) with 2 different mapping schemes:  
LSBs on RxIN[3]±, shown in Figure 19, or MSBs on RxIN[3], shown in Figure 20. Each frame corresponds to a  
single pixel clock (PCLK) cycle. The LVDS clock input to RxCLKIN± follows a 4:3 duty cycle scheme, with each  
28-bit pixel frame starting with two LVDS bit clock periods high, three low, and ending with two high. The  
mapping scheme is controlled by MAPSEL pin or by Register (Table 5).  
RxCLKIN +/-  
Previous cycle  
Current cycle (PCLK Period)  
R[1]  
(bit 22)  
R[0]  
(bit 21)  
B[1]  
(bit 26)  
B[0]  
(bit 25)  
G[1]  
(bit 24)  
G[0]  
(bit 23)  
RxIN3 +/-  
DE  
VS  
HS  
B[7]  
B[6]  
B[5]  
B[4]  
(bit 20)  
(bit 19)  
(bit 18)  
(bit 17)  
(bit 16)  
(bit 15)  
(bit 14)  
RxIN2 +/-  
RxIN1 +/-  
G[5]  
(bit 9)  
G[4]  
(bit 8)  
G[3]  
(bit 7)  
B[3]  
(bit 13)  
B[2]  
(bit 12)  
G[7]  
(bit 11)  
G[6]  
(bit 10)  
G[2]  
(bit 6)  
R[7]  
(bit 5)  
R[6]  
(bit 4)  
R[5]  
(bit 3)  
R[4]  
(bit 2)  
R[3]  
(bit 1)  
R[2]  
(bit 0)  
RxIN0 +/-  
Figure 19. FPD-Link Mapping: LSBs on RxIN3 (MAPSEL=L)  
Copyright © 2012–2015, Texas Instruments Incorporated  
25  
 
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
RxCLKIN +/-  
Previous cycle  
Current cycle (PCLK Period)  
R[7]  
(bit 22)  
R[6]  
(bit 21)  
B[7]  
(bit 26)  
B[6]  
(bit 25)  
G[7]  
(bit 24)  
G[6]  
(bit 23)  
RxIN3 +/-  
DE  
(bit 20)  
VS  
(bit 19)  
HS  
(bit 18)  
B[5]  
(bit 17)  
B[4]  
(bit 16)  
B[3]  
(bit 15)  
B[2]  
(bit 14)  
RxIN2 +/-  
G[3]  
(bit 9)  
G[2]  
(bit 8)  
G[1]  
(bit 7)  
B[1]  
(bit 13)  
B[0]  
(bit 12)  
G[5]  
(bit 11)  
G[4]  
(bit 10)  
RxIN1 +/-  
G[0]  
(bit 6)  
R[5]  
(bit 5)  
R[4]  
(bit 4)  
R[3]  
(bit 3)  
R[2]  
(bit 2)  
R[1]  
(bit 1)  
R[0]  
(bit 0)  
RxIN0 +/-  
Figure 20. FPD-Link Mapping: MSBs on RxIN3 (MAPSEL=H)  
7.4.5 HDCP  
The Cipher function is implemented in the serializer per HDCP v1.3 specification. The DS90UH927Q-Q1  
provides HDCP encryption of audiovisual content when connected to an HDCP capable FPD-Link III deserializer.  
HDCP authentication and shared key generation is performed using the HDCP Control Channel which is  
embedded in the forward and backward channels of the serial link. On-chip Non-Volatile Memory (NVM) is used  
to store the HDCP keys. The confidential HDCP keys are loaded by TI during the manufacturing process and are  
not accessible external to the device.  
The DS90UH927Q-Q1 uses the Cipher engine to encrypt the data as per HDCP v1.3. The encrypted data is sent  
through the FPD-Link III interface.  
7.4.5.1 HDCP Repeater  
The supported HDCP Repeater application provides a mechanism to extend HDCP transmission over multiple  
links to multiple display devices. It authenticates all HDCP Receivers in the system and distributes protected  
content to the HDCP Receivers using the encryption mechanisms provided in the HDCP specification.  
7.4.5.2 HDCP I2S Audio Encryption  
When HDCP is active, packetized Data Island Transport audio is also encrypted along with the video data per  
HDCP v.1.3. I2S audio transmitted in Forward Channel Frame Transport mode is not encrypted. Depending on  
the quality and specifications of the audiovisual source, HDCP encryption of digital audio may be required.  
System designers should consult the specific HDCP specifications to determine if encryption of digital audio is  
required by the specific application audiovisual source.  
7.4.5.3 Repeater Configuration  
In HDCP repeater application, this document refers to the DS90UH927Q-Q1 as the HDCP Transmitter (TX), and  
refers to the DS90UH928Q-Q1 as the HDCP Receiver (RX). Figure 21 shows the maximum configuration  
supported for HDCP Repeater implementations using the DS90UH925/7Q-Q1 (TX), and DS90UH926/8Q-Q1  
(RX). Two levels of HDCP Repeaters are supported with a maximum of three HDCP Transmitters per HDCP  
Receiver. To ensure parallel video interface compatibility, repeater nodes should feature either the  
DS90UH926Q-Q1/DS90UH925Q (RX/TX) chipset or the DS90UH927Q-Q1/DS90UH928Q-Q1 (TX/RX) chipset.  
26  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Device Functional Modes (continued)  
1:3 Repeater  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
TX  
Source  
TX  
RX  
TX  
TX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
Figure 21. HDCP Maximum Repeater Application  
In a repeater application, the I2C interface at each TX and RX may be configured to transparently pass I2C  
communications upstream or downstream to any I2C device within the system. This includes a mechanism for  
assigning alternate IDs (Slave Aliases) to downstream devices in the case of duplicate addresses.  
To support HDCP Repeater operation, the RX includes the ability to control the downstream authentication  
process, assemble the KSV list for downstream HDCP Receivers, and pass the KSV list to the upstream HDCP  
Transmitter. An I2C master within the RX communicates with the I2C slave within the TX. The TX handles  
authenticating with a downstream HDCP Receiver and makes status available through the I2C interface. The RX  
monitors the transmit port status for each TX and reads downstream KSV and KSV list values from the TX.  
In addition to the I2C interface used to control the authentication process, the HDCP Repeater implementation  
includes two other interfaces. The FPD-Link LVDS interface provides the unencrypted video data in 24-bit RGB  
format and includes the DE/VS/HS control signals. In addition to providing the RGB video data, the LVDS  
interface communicates control information and packetized audio data during video blanking intervals. A  
separate I2S audio interface may optionally be used to send I2S audio data between the HDCP Receiver and  
HDCP Transmitter in place of using the packetized audio. All audio and video data is decrypted at the output of  
the HDCP Receiver and is re-encrypted by the HDCP Transmitter. Figure 22 provides more detailed block  
diagram of a 1:2 HDCP repeater configuration.  
If video data is output to a local display, White Balancing and Hi-FRC dithering functions should not be used as  
they will block encrypted I2S audio.  
Copyright © 2012–2015, Texas Instruments Incorporated  
27  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
HDCP Transmitter  
TX  
downstream  
Receiver  
or  
I2C  
Slave  
I2C  
I2C  
Master  
Repeater  
upstream  
Transmitter  
FPD-Link  
I2S Audio  
HDCP Transmitter  
TX  
HDCP Receiver  
(RX)  
downstream  
Receiver  
or  
I2C  
Slave  
Repeater  
FPD-Link III interfaces  
Figure 22. HDCP 1:2 Repeater Configuration  
28  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Device Functional Modes (continued)  
7.4.5.4 Repeater Connections  
The HDCP Repeater requires the following connections between the HDCP Receiver and each HDCP  
Transmitter Figure 23.  
1. Video Data – Connect all FPD-Link data and clock pairs  
2. I2C – Connect SCL and SDA signals. Both signals should be pulled up to VDD33 or VDDIO = 3.0 V to 3.6 V with  
4.7-kresistors.  
3. Audio (optional) – Connect I2S_CLK, I2S_WC, and I2S_Dx signals.  
4. IDx pin – Each HDCP Transmitter and Receiver must have a unique I2C address.  
5. REPEAT pin — All HDCP Transmitters and Receivers must be set into Repeater Mode.  
6. Interrupt pin – Connect DS90UH928Q-Q1 INTB_IN pin to DS90UH927Q-Q1 INTB pin. The signal must be  
pulled up to VDDIO  
.
DS90UH928Q-Q1  
DS90UH927Q-Q1  
RxIN0+  
TxOUT0+  
TxOUT0-  
TxOUT1+  
TxOUT1-  
TxOUT2+  
TxOUT2-  
TxOUT3+  
TxOUT3-  
TxCLK+  
RxIN0-  
RxIN1+  
RxIN1-  
RxIN2+  
RxIN2-  
RxIN3+  
RxIN3-  
RxCLK+  
RxCLK-  
VDD33  
VDD33  
TxCLK-  
MODE_SEL  
REPEAT  
I2S_CLK  
I2S_WC  
I2S_Dx  
I2S_CLK  
I2S_WC  
I2S_Dx  
Optional  
VDDIO  
VDD33  
VDD33  
IDx  
IDx  
INTB  
INTB_IN  
VDD33  
SDA  
SCL  
SDA  
SCL  
Figure 23. HDCP Repeater Connection Diagram  
7.4.5.4.1 Repeater Fan-Out Electrical Requirements  
Repeater applications requiring fan-out from one DS90UH928Q-Q1 deserializer to up to three DS90UH927Q-Q1  
serializers requires special considerations for routing and termination of the FPD-Link differential traces.  
Figure 24 details the requirements that must be met for each signal pair:  
Copyright © 2012–2015, Texas Instruments Incorporated  
29  
 
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
L3 < 60 mm  
TX  
(UH927)  
RX  
TX  
(UH927)  
R1=100  
(UH928)  
R2=100 ꢀ  
L1 < 75 mm  
L2 < 60 mm  
TX  
(UH927)  
L3 < 60 mm  
Figure 24. FPD-Link Fan-Out Electrical Requirements  
7.5 Programming  
7.5.1 Serial Control Bus  
The DS90UH927Q-Q1 may also be configured by the use of an I2C compatible serial control bus. Multiple  
devices may share the serial control bus (up to 10 device addresses supported). The device address is set via a  
resistor divider (R1 and R2 — see Figure 25) connected to the IDx pin.  
VDD33  
VDD33  
R1  
R2  
VR2  
IDx  
4.7k  
4.7k  
HOST  
SER  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
Figure 25. Serial Control Bus Connection  
The serial control bus consists of two signals, SCL and SDA. SCL is a Serial Bus Clock Input. SDA is the Serial  
Bus Data Input / Output signal. Both SCL and SDA signals require an external pullup resistor to VDD33 or VDDIO  
3.0 V to 3.6 V. For most applications, a 4.7-kpullup resistor to VDD33 is recommended. However, the pullup  
resistor value may be adjusted for capacitive loading and data rate requirements. The signals are either pulled  
High, or driven Low.  
=
The IDx pin configures the control interface to one of 10 possible device addresses. A pullup resistor and a  
pulldown resistor may be used to set the appropriate voltage ratio between the IDx input pin (VR2) and VDD33  
,
each ratio corresponding to a specific device address. See Table 5.  
30  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Programming (continued)  
Table 4. Serial Control Bus Addresses for IDx  
Ideal Ratio  
VR2 / VDD33  
Ideal VR2  
Suggested Resistor Suggested Resistor  
#
Address 7'b  
Address 8'b  
(V)  
R1 k(1% tol)  
R2 k(1% tol)  
1
2
0
0
Open  
221  
210  
196  
182  
169  
147  
143  
121  
90.9  
40.2 or >10  
97.6  
113  
0x0C  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x18  
0x26  
0x28  
0x2A  
0x2C  
0x2E  
0x30  
0x32  
0x34  
0x36  
0.306  
0.350  
0.393  
0.440  
0.483  
0.529  
0.572  
0.618  
0.768  
1.011  
1.154  
1.298  
1.452  
1.594  
1.745  
1.887  
2.040  
2.535  
3
4
127  
5
143  
6
158  
7
165  
8
191  
9
196  
10  
301  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SCL transitions Low while SDA is High. A STOP occurs when SDA transitions High while SCL is also HIGH. See  
Figure 26.  
SDA  
SCL  
S
P
START condition, or  
STOP condition  
START repeat condition  
Figure 26. START and STOP Conditions  
To communicate with a remote device, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it Acknowledges (ACKs) the master by driving the SDA bus low. If the address doesn't  
match a device's slave address, it Not-acknowledges (NACKs) the master by letting SDA be pulled High. ACKs  
also occur on the bus when data is being transmitted. When the master is writing data, the slave ACKs after  
every data byte is successfully received. When the master is reading data, the master ACKs after every data  
byte is received to let the slave know it wants to receive another data byte. When the master wants to stop  
reading, it NACKs after the last data byte and creates a stop condition on the bus. All communication on the bus  
begins with either a Start condition or a Repeated Start condition. All communication on the bus ends with a Stop  
condition. A READ is shown in Figure 27 and a WRITE is shown in Figure 28.  
Register Address  
Slave Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
A
2
A
1
A
0
0
S
S
1
P
Figure 27. Serial Control Bus — READ  
Register Address  
Slave Address  
Data  
a
c
a
c
k
a
c
k
A
2
A
1
A
0
0
S
P
k
Figure 28. Serial Control Bus — WRITE  
Copyright © 2012–2015, Texas Instruments Incorporated  
31  
 
 
 
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
The I2C Master located at the DS90UH927Q-Q1 serializer must support I2C clock stretching. For more  
information on I2C interface requirements and throughput considerations, please refer to I2C Communication  
Over FPD-Link III with Bidirectional Control Channel (SNLA131).  
7.6 Register Maps  
Table 5. Serial Control Bus Registers  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
0
0x00 I2C Device ID  
7:1  
RW  
IDx  
Device ID  
7–bit address of Serializer  
Note: Read-only unless bit 0 is set  
0
7
RW  
ID Setting  
I2C ID Setting  
0: Device ID is from IDx pin  
1: Register I2C Device ID overrides IDx pin  
1
0x01 Reset  
RW  
0x00  
Remote  
Remote Auto Power Down  
Auto Power 0: Do not power down when no Bidirectional Control  
Down  
Channel link is detected (default)  
1: Enable power down when no Bidirectional Control  
Channel link is detected  
6:2  
1
Reserved.  
RW  
RW  
RW  
Digital  
RESET1  
Reset the entire digital block including registers  
This bit is self-clearing.  
0: Normal operation (default)  
1: Reset  
0
7
Digital  
RESET0  
Reset the entire digital block except registers  
This bit is self-clearing  
0: Normal operation (default)  
1: Reset  
3
0x03 General  
Configuration  
0xD2  
Back  
channel  
CRC  
Back Channel Check Enable  
0: Disable  
1: Enable (default)  
Checker  
Enable  
6
5
Reserved.  
RW  
I2C Remote Automatically Acknowledge I2C Remote Write When  
Write Auto  
enabled, I2C writes to the Deserializer (or any remote  
Acknowledg I2C Slave, if I2C PASS ALL is enabled) are  
e
immediately acknowledged without waiting for the  
Deserializer to acknowledge the write. This allows  
higher throughput on the I2C bus. Note: this mode will  
prevent any NACK or read/write error indication from  
a remote device from reaching the I2C master.  
0: Disable (default)  
1: Enable  
4
3
RW  
RW  
Filter  
Enable  
HS, VS, DE two clock filter When enabled, pulses  
less than two full PCLK cycles on the DE, HS, and VS  
inputs will be rejected  
0: Filtering disable  
1: Filtering enable (default)  
I2C Pass-Through Mode  
Read/Write transactions matching any entry in the  
DeviceAlias registers will be passed through to the  
remote deserializer I2C interface.  
I2C Pass-  
through  
0: Pass-Through Disabled (default)  
1: Pass-Through Enabled  
2
1
Reserved  
RW  
RW  
PCLK Auto Switch over to internal OSC in the absence of PCLK  
0: Disable auto-switch  
1: Enable auto-switch (default)  
0
TRFB  
Reserved  
32  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
4
0x04 Mode Select  
7
RW  
0x80  
Failsafe  
State  
Input Failsafe State  
0: Failsafe to High  
1: Failsafe to Low (default)  
6
5
Reserved  
RW  
CRC Error  
Reset  
Clear back channel CRC Error Counters  
This bit is NOT self-clearing  
0: Normal Operation (default)  
1: Clear Counters  
4
3
Reserved  
RW  
RW  
BKWD  
Backward Compatible mode set by BKWD pin or  
ModeOverri register  
de  
0: BC mode is set by BKWD pin (default)  
1: BC mode is set by register bit  
2
BKWD  
Backward compatibility mode, device to pair with  
DS90UR906Q, DS90UR908Q, or DS90UR916Q  
0: Normal HDCP device (default)  
1: Compatible with 906/908/916  
1
0
RW  
RW  
LFMODE  
Override  
Frequency mode set by LFMODE pin or register  
0: Frequency mode is set by LFMODE pin (default)  
1: Frequency mode is set by register bit  
LFMODE  
Frequency mode select  
0: High frequency mode (15 MHz RxCLKIN 85  
MHz) (default)  
1: Low frequency mode (5 MHz RxCLKIN < 15  
MHz)  
5
0x05 I2C Control  
7:5  
4:3  
0x00  
Reserved  
RW  
RW  
SDA Output SDA output delay  
Delay Configures output delay on the SDA output. Setting  
this value will increase output delay in units of 40 ns.  
Nominal output delay values for SCL to SDA are:  
00: 240 ns (default)  
01: 280 ns  
10: 320 ns  
11: 360 ns  
2
Local Write Disable Remote Writes to Local Registers  
Disable  
Setting this bit to a 1 will prevent remote writes to  
local device registers from across the control channel.  
This prevents writes to the Serializer registers from an  
I2C master attached to the Deserializer. Setting this  
bit does not affect remote access to I2C slaves at the  
Serializer.  
0: Enable (default)  
1: Disable  
1
0
RW  
RW  
I2C Bus  
Timer  
Speedup  
I2C Bus  
timer  
Disable  
Speed up I2C Bus Watchdog Timer  
0: Watchdog Timer expires after ~1 s (default)  
1: Watchdog Timer expires after ~50 µs  
Disable I2C Bus Watchdog Timer  
When the I2C Watchdog Timer may be used to detect  
when the I2C bus is free or hung up following an  
invalid termination of a transaction. If SDA is high and  
no signaling occurs for approximately 1s, the I2C bus  
will be assumed to be free. If SDA is low and no  
signaling occurs, the device will attempt to clear the  
bus by driving 9 clocks on SCL  
0: Enable (default)  
1: Disable  
Copyright © 2012–2015, Texas Instruments Incorporated  
33  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
6
0x06 DES ID  
7:1  
RW  
0x00  
DES Device 7-bit Deserializer Device ID  
ID  
Configures the I2C Slave ID of the remote  
Deserializer. A value of 0 in this field disables I2C  
access to the remote Deserializer. This field is  
automatically configured by the Bidirectional Control  
Channel once RX Lock has been detected. Software  
may overwrite this value, but should also assert the  
FREEZE DEVICE ID bit to prevent overwriting by the  
Bidirectional Control Channel.  
0
Reserved  
7
8
0x07 Slave ID 0  
7:1  
RW  
RW  
0X00  
Slave  
7-bit Remote Slave Device ID 0  
Device ID 0 Configures the physical I2C address of the remote I2C  
Slave device attached to the remote Deserializer. If an  
I2C transaction is addressed to the Slave Device Alias  
ID 0, the transaction will be remapped to this address  
before passing the transaction across the Bidirectional  
Control Channel to the Deserializer.  
0
Reserved  
0x08 Slave Alias 0  
7:1  
0x00  
Slave  
Device  
Alias ID 0  
7-bit Remote Slave Device Alias ID 0 Configures the  
decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Deserializer.  
The transaction will be remapped to the address  
specified in the Slave ID 0 register. A value of 0 in this  
field disables access to the remote I2C Slave.  
0
Reserved  
10  
11  
12  
0x0A CRC Errors  
0x0B  
7:0  
R
R
0x00  
0x00  
0x00  
CRC Error  
LSB  
Number of Back Channel CRC errors – 8 least  
significant bits. Cleared by 0x04[5]  
7:0  
CRC Error  
MSB  
Number of Back Channel CRC errors – 8 most  
significant bits. Cleared by 0x04[5]  
0x0C General Status  
7:4  
3
Reserved  
R
BIST CRC  
Error  
Back Channel CRC error during BIST communication  
with Deserializer. This bit is cleared upon loss of link,  
restart of BIST, or assertion of CRC ERROR RESET  
in register 0x04.  
0: No CRC errors detected during BIST (default)  
1: CRC Errors detected during BIST  
2
1
R
R
PCLK  
Detect  
Pixel Clock Status  
0: Valid PCLK not detected (default)  
1: Valid PCLK detected  
DES Error  
CRC error during BIST communication with  
Deserializer. This bit is cleared upon loss of link or  
assertion of 0x04[5]  
0: No CRC errors detected (default)  
1: CRC errors detected  
0
R
LINK Detect LINK Detect Status  
0: Cable link not detected (default)  
1: Cable link detected  
34  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
13  
0x0D GPIO0  
Configuration  
7:4  
R
0x20  
Revision ID Revision ID:  
0010: Production Device  
3
2
RW  
GPIO0  
Output  
Value  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the  
local GPIO direction is Output, and remote GPIO  
control is disabled.  
0: Output LOW (default)  
1: Output HIGH  
RW  
GPIO0  
Remote  
Enable  
Remote GPIO Control  
0: Disable GPIO control from remote Deserializer  
(default)  
1: Enable GPIO control from remote Deserializer. The  
GPIO pin will be an output, and the value is received  
from the remote Deserializer.  
1
0
7
RW  
RW  
RW  
GPIO0  
Direction  
Local GPIO Direction  
0: Output (default)  
1: Input  
GPIO0  
Enable  
GPIO Function Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
14  
0x0E GPIO1 and  
GPIO2  
0x00  
GPIO2  
Output  
Value  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the  
local GPIO direction is Output, and remote GPIO  
control is disabled.  
Configuration  
0: Output LOW (default)  
1: Output HIGH  
6
RW  
GPIO2  
Remote  
Enable  
Remote GPIO Control  
0: Disable GPIO control from remote Deserializer  
(default)  
1: Enable GPIO control from remote Deserializer. The  
GPIO pin will be an output, and the value is received  
from the remote Deserializer.  
5
4
3
RW  
RW  
RW  
GPIO2  
Direction  
Local GPIO Direction  
0: Output (default)  
1: Input  
GPIO2  
Enable  
GPIO Function Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
GPIO1  
Output  
Value  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the  
local GPIO direction is Output, and remote GPIO  
control is disabled.  
0: Output LOW (default)  
1: Output HIGH  
2
RW  
GPIO1  
Remote  
Enable  
Remote GPIO Control  
0: Disable GPIO control from remote Deserializer  
(default)  
1: Enable GPIO control from remote Deserializer. The  
GPIO pin will be an output, and the value is received  
from the remote Deserializer.  
1
0
RW  
RW  
GPIO1  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO1  
Enable  
GPIO function enable  
1: Enable GPIO operation  
0: Enable normal operation  
Copyright © 2012–2015, Texas Instruments Incorporated  
35  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
15  
0x0F GPIO3  
Configuration  
7:4  
3
0x00  
Reserved  
RW  
RW  
GPIO3  
Output  
Value  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the  
local GPIO direction is Output, and remote GPIO  
control is disabled.  
0: Output LOW (default)  
1: Output HIGH  
2
GPIO3  
Remote  
Enable  
Remote GPIO Control  
0: Disable GPIO control from remote Deserializer  
(default)  
1: Enable GPIO control from remote Deserializer. The  
GPIO pin will be an output, and the value is received  
from the remote Deserializer.  
1
0
7
RW  
RW  
RW  
GPIO3  
Direction  
Local GPIO Direction  
0: Output (default)  
1: Input  
GPIO3  
Enable  
GPIO Function Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
16  
0x10 GPIO_REG5  
and  
0x00  
GPIO_REG Local GPIO Output Value This value is output on the  
6 Output  
Value  
GPIO pin when the GPIO function is enabled, and the  
local GPIO direction is Output.  
0: Output LOW (default)  
GPIO_REG6  
Configuration  
1: Output HIGH  
6
5
Reserved  
RW  
RW  
RW  
GPIO_REG Local GPIO Direction  
6 Direction 0: Output (default)  
1: Input  
4
3
GPIO_REG GPIO Function Enable  
6 Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
GPIO_REG Local GPIO Output Value This value is output on the  
5 Output  
Value  
GPIO pin when the GPIO function is enabled, and the  
local GPIO direction is Output.  
0: Output LOW (default)  
1: Output HIGH  
2
1
Reserved  
RW  
RW  
GPIO_REG GPIO Function Enable  
5 Direction 0: Enable normal operation (default)  
1: Enable GPIO operation  
0
GPIO_REG GPIO Function Enable  
5 Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
36  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
17  
0x11 GPIO_REG7  
and  
7
RW  
0x00  
GPIO_REG Local GPIO Output Value This value is output on the  
8 Output  
Value  
GPIO pin when the GPIO function is enabled, and the  
local GPIO direction is Output.  
0: Output LOW (default)  
GPIO_REG8  
Configuration  
1: Output HIGH  
6
5
Reserved  
RW  
RW  
RW  
GPIO_REG Local GPIO Direction  
8 Direction 0: Output (default)  
1: Input  
4
3
GPIO_REG GPIO Function Enable  
8 Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
GPIO_REG Local GPIO Output Value This value is output on the  
7 Output  
Value  
GPIO pin when the GPIO function is enabled, and the  
local GPIO direction is Output.  
0: Output LOW (default)  
1: Output HIGH  
2
1
Reserved  
RW  
RW  
GPIO_REG Local GPIO Direction  
7 Direction 0: Output (default)  
1: Input  
0
GPO_REG GPIO Function Enable  
7 Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
18  
0x12 Data Path  
Control  
7
6
0x00  
Reserved  
RW  
Pass RGB  
Pass RGB on DE  
Setting this bit causes RGB data to be sent  
independent of DE in DS90UH927, which can be  
used to allow DS90UH927 to interoperate with  
DS90UB926, DS90UB928, and DS90UR906.  
However, setting this bit prevents HDCP operation  
and blocks packetized audio. This bit does not need  
to be set in Backward Compatibility mode.  
0: Normal operation (default)  
1: Pass RGB independent of DE  
5
RW  
DE Polarity This bit indicates the polarity of the DE (Data Enable)  
signal.  
0: DE is positive (active high, idle low) (default)  
1: DE is inverted (active low, idle high)  
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
I2S  
Repeater  
Regen  
Regenerate I2S Data From Repeater I2S Pins  
0: Repeater pass through I2S from video pins (default)  
1: Repeater regenerate I2S from I2S pins  
I2S Channel I2S Channel B Override  
B Enable  
Override  
0: Set I2S Channel B Disabled (default)  
1: Set I2S Channel B Enable from reg_12[0]  
18-bit Video Video Color Depth Mode  
Select  
0: Select 24-bit video mode (default)  
1: Select 18-bit video mode  
I2S  
Transport  
Select  
Select I2S Transport Mode  
0: Enable I2S Data Island Transport (default)  
1: Enable I2S Data Forward Channel Frame Transport  
I2S Channel I2S Channel B Enable  
B Enable  
0: I2S Channel B disabled (default)  
1: Enable I2S Channel B  
Copyright © 2012–2015, Texas Instruments Incorporated  
37  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
19  
0x13 General  
Purpose Control  
7
R
0x10  
MAPSEL  
Mode  
Returns Map Select Mode (MAPSEL) pin status  
6
5
RW  
MAPSEL  
Override  
FPD-Link Map Select (MAPSEL) set by input pin or  
register  
0: Map Select is set by input pin (default)  
1: Map Select is set by register bit 0x13[5]  
RW  
MAPSEL  
Value  
FPD-Link Map Select (MAPSEL) value when 0x13[6]  
is set  
0: LSBs on RxIN3± (default)  
1: MSBs on RxIN3±  
4
3
Reserved  
R
R
R
R
LFMODE  
Status  
Low Frequency Mode (LFMODE) pin status  
0: 15 RxCLKIN 85 MHz (default)  
1: 5 RxCLKIN < 15 MHz  
2
1
0
REPEAT  
Status  
Repeater Mode (REPEAT) pin Status  
0: Non-repeater (default)  
1: Repeater  
BKWD  
Status  
Backward Compatible Mode (BKWD) Status  
0: Compatible to DS90UB926/8Q-Q1 (default)  
1: Backward compatible to DS90UR906/8Q-Q1  
I2S Channel B Mode (I2S_DB) Status  
0: I2S_DB inactive (default)  
1: I2S_DB active  
I2S_DB  
Status  
20  
0x14 BIST Control  
7:3  
2:1  
0x00  
Reserved  
RW  
OSC Clock Internal OSC clock select for Functional Mode or  
Source  
BIST. Functional Mode when PCLK is not present and  
0x03[1]=1.  
00: 33-MHz Oscillator (default)  
01: 33-MHz Oscillator  
Clock Source in BIST mode  
00: External Pixel Clock (default)  
01: 33-MHz Oscillator  
Note: In LFMODE=1, the internal oscillator is 12.5  
MHz  
0
R
BIST  
BIST Control  
Enable  
0: Disabled (default)  
1: Enabled  
22  
0x16 BCC Watchdog  
Control  
7:1  
RW  
0xFE  
Timer Value The watchdog timer allows termination of a control  
channel transaction if it fails to complete within a  
programmed amount of time. This field sets the  
Bidirectional Control Channel Watchdog Timeout  
value in units of 2 milliseconds. This field should not  
be set to 0.  
0
RW  
Timer  
Disable BCC Watchdog Timer  
Control  
0: Enable BCC Watchdog Timer operation (default)  
1: Disable BCC Watchdog Timer operation  
38  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
23  
0x17 I2C Control  
7
RW  
0x1E  
I2C Pass All Pass All  
0: Enable Forward Control Channel pass-through only  
of I2C accesses to I2C Slave IDs matching either the  
remote Deserializer Slave ID or the remote Slave ID.  
(default)  
1: Enable Forward Control Channel pass-through of  
all I2C accesses to I2C Slave IDs that do not match  
the Serializer I2C Slave ID.  
6:4  
RW  
SDA Hold  
Time  
Internal SDA Hold Time  
Configures the amount of internal hold time provided  
for the SDA input relative to the SCL input. Units are  
40 nanoseconds.  
3:0  
7:0  
RW  
RW  
I2C Filter  
Depth  
Configures the maximum width of glitch pulses on the  
SCL and SDA inputs that will be rejected. Units are 5  
nanoseconds.  
24  
25  
0x18 SCL High Time  
0x19 SCL Low Time  
0xA1  
0xA5  
SCL HIGH I2C Master SCL High Time  
Time  
This field configures the high pulse width of the SCL  
output when the Serializer is the Master on the local  
I2C bus. Units are 40 ns for the nominal oscillator  
clock frequency.  
I2C SCL Low Time  
This field configures the low pulse width of the SCL  
output when the Serializer is the Master on the local  
I2C bus. This value is also used as the SDA setup  
time by the I2C Slave for providing data prior to  
releasing SCL during accesses over the Bidirectional  
Control Channel. Units are 40 ns for the nominal  
oscillator clock frequency.  
7:0  
RW  
SCL LOW  
Time  
26  
0x1A Data Path  
Control 2  
7
RW  
RW  
0x00  
Block I2S  
Auto Config (repeater only)  
Block automatic I2S mode configuration  
0: I2S mode (2-channel, 4-channel, or surround) is  
detected from the in-band audio signaling  
1: Disable automatic detection of I2S mode  
6:1  
0
Reserved  
I2S  
Surround  
Enable 5.1- or 7.1-channel I2S audio transport  
0: 2-channel or 4-channel I2S audio is enabled as  
configured in register 0x12 bits 3 and 0 (default)  
1: 5.1- or 7.1-channel audio is enabled  
Note that I2S Data Island Transport is the only option  
for surround audio. Also note that in a repeater, this  
bit may be overridden by the in-band I2S mode  
detection.  
27  
0x1B BIST BC Error  
Count  
7:0  
R
0x00  
BIST BC  
Errorr  
BIST Back Channel CRC Error Counter  
This register stores the back-channel CRC error count  
during BIST Mode (saturates at 255 errors). Clears  
when a new BIST is initiated or by 0x04[5]  
Copyright © 2012–2015, Texas Instruments Incorporated  
39  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
28  
0x1C GPIO Pin  
Status 1  
7
R
R
R
0x00  
GPIO_REG GPIO_REG7 Input Pin Status  
7 Pin Status Status valid only if set to GPI (input) mode  
6
5
GPIO_REG GPIO_REG6 Input Pin Status  
6 Pin Status Status valid only if set to GPI (input) mode  
GPIO_REG GPIO_REG5 Input Pin Status  
5 Pin Status Status valid only if set to GPI (input) mode  
4
3
Reserved  
R
R
R
R
GPIO3 Pin GPIO3 Input Pin Status  
Status  
Status valid only if set to GPI (input) mode  
2
1
0
GPIO2 Pin GPIO2 Input Pin Status  
Status  
Status valid only if set to GPI (input) mode  
GPIO1 Pin GPIO1 Input Pin Status  
Status  
Status valid only if set to GPI (input) mode  
GPIO0 Pin GPIO0 Input Pin Status  
Status  
Status valid only if set to GPI (input) mode  
29  
30  
0x1D GPIO Pin  
Status 2  
7:1  
0
0x00  
0x00  
Reserved  
R
GPIO_REG GPIO_REG8 Input Pin Status  
8 Pin Status Status valid only if set to GPI (input) mode  
0x1F Frequency  
Counter  
7:0  
RW  
Frequency  
Counter  
Frequency Counter Control  
Write: Measure number of pixel clock periods in  
written interval (40ns units)  
Read: Return number of pixel clock periods counted  
32  
0x20 Deserializer  
Capabilities  
7
RW  
RW  
0x00  
Freeze DES Freeze Deserializer Capabilities  
CAP  
Prevent auto-loading of the Deserializer Capabilities  
by the Bidirectional Control Channel. The Capabilities  
will be frozen at the values written in registers 0x20  
and 0x21.  
0: Normal operation (default)  
1: Freeze  
6:2  
1
Reserved  
HD Audio  
Deserializer supports 24-bit video concurrently with  
HD audio  
This field is automatically configured by the  
Bidirectional Control Channel once RX Lock has been  
detected. Software may overwrite this value, but must  
also set the FREEZE DES CAP bit to prevent  
overwriting by the Bidirectional Control Channel.  
0: Normal operation (default)  
1: Freeze  
0
RW  
FC GPIO  
Deserializer supports GPIO in the Forward Channel  
Frame  
This field is automatically configured by the  
Bidirectional Control Channel once RX Lock has been  
detected. Software may overwrite this value, but must  
also set the FREEZE DES CAP bit to prevent  
overwriting by the Bidirectional Control Channel.  
0: Normal operation (default)  
1: Freeze  
40  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
100  
0x64 Pattern  
Generator  
Control  
7:4  
RW  
0x10  
Pattern  
Generator  
Select  
Fixed Pattern Select  
Selects the pattern to output when in Fixed Pattern  
Mode. Scaled patterns are evenly distributed across  
the horizontal or vertical active regions. This field is  
ignored when Auto-Scrolling Mode is enabled.  
xxxx: normal/inverted  
0000: Checkerboard  
0001: White/Black (default)  
0010: Black/White  
0011: Red/Cyan  
0100: Green/Magenta  
0101: Blue/Yellow  
0110: Horizontal Black-White/White-Black  
0111: Horizontal Black-Red/White-Cyan  
1000: Horizontal Black-Green/White-Magenta  
1001: Horizontal Black-Blue/White-Yellow  
1010: Vertical Black-White/White— Black  
1011: Vertically Scaled Black to Red/White to Cyan  
1100: Vertical Black-Green/White-Magenta  
1101: Vertical Black-Blue/White-Yellow  
1110: Custom color (or its inversion) configured in  
PGRS, PGGS, PGBS registers  
1111: VCOM  
See TI App Note AN-2198 Exploring the Internal Test  
Pattern Generation Feature of 720p (SNLA132).  
3
2
Reserved  
RW  
Color Bars Enable Color Bars  
Pattern  
0: Color Bars disabled (default)  
1: Color Bars enabled  
Overrides the selection from reg_0x64[7:4]  
1
0
RW  
RW  
VCOM  
Pattern  
Reverse  
Reverse order of color bands in VCOM pattern  
0: Color sequence from top left is (YCBR) (default)  
1: Color sequence from top left is (RBCY)  
Pattern  
Pattern Generator Enable  
Generator  
Enable  
0: Disable Pattern Generator (default)  
1: Enable Pattern Generator  
Copyright © 2012–2015, Texas Instruments Incorporated  
41  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
101  
0x65 Pattern  
Generator  
Configuration  
7
6
0x00  
Reserved  
RW  
Checkerboa Scale Checkered Patterns:  
rd Scale  
0: Normal operation (each square is 1x1 pixel)  
(default)  
1: Scale checkered patterns (VCOM and  
checkerboard) by 8 (each square is 8x8 pixels)  
Setting this bit gives better visibility of the checkered  
patterns.  
5
4
RW  
RW  
Custom  
Use Custom Checkerboard Color  
Checkerboa 0: Use white and black in the Checkerboard pattern  
rd  
(default)  
1: Use the Custom Color and black in the  
Checkerboard pattern  
PG 18–bit  
Mode  
18-bit Mode Select:  
0: Enable 24-bit pattern generation. Scaled patterns  
use 256 levels of brightness. (default)  
1: Enable 18-bit color pattern generation. Scaled  
patterns will have 64 levels of brightness and the R,  
G, and B outputs use the six most significant color  
bits.  
3
2
RW  
RW  
External  
Clock  
Select External Clock Source:  
0: Selects the internal divided clock when using  
internal timing (default)  
1: Selects the external pixel clock when using internal  
timing. This bit has no effect in external timing mode  
(PATGEN_TSEL = 0).  
Timing  
Select  
Timing Select Control:  
0: the Pattern Generator uses external video timing  
from the pixel clock, Data Enable, Horizontal Sync,  
and Vertical Sync signals. (default)  
1: The Pattern Generator creates its own video timing  
as configured in the Pattern Generator Total Frame  
Size, Active Frame Size. Horizontal Sync Width,  
Vertical Sync Width, Horizontal Back Porch, Vertical  
Back Porch, and Sync Configuration registers.  
See TI App Note AN-2198 Exploring the Internal Test  
Pattern Generation Feature of 720p (SNLA132).  
1
0
RW  
RW  
Color Invert Enable Inverted Color Patterns:  
0: Do not invert the color output. (default)  
1: Invert the color output.  
See TI App Note AN-2198 Exploring the Internal Test  
Pattern Generation Feature of 720p (SNLA132).  
Auto Scroll Auto Scroll Enable:  
0: The Pattern Generator retains the current pattern.  
(default)  
1: The Pattern Generator will automatically move to  
the next enabled pattern after the number of frames  
specified in the Pattern Generator Frame Time  
(PGFT) register.  
See TI App Note AN-2198 Exploring the Internal Test  
Pattern Generation Feature of 720p (SNLA132).  
102  
0x66 PGIA  
7:0  
RW  
0x00  
PG Indirect This 8-bit field sets the indirect address for accesses  
Address  
to indirectly-mapped registers. It should be written  
prior to reading or writing the Pattern Generator  
Indirect Data register.  
See TI App Note AN-2198 Exploring the Internal Test  
Pattern Generation Feature of 720p (SNLA132)  
42  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
103  
0x67 PGID  
7:0  
RW  
0x00  
PG Indirect When writing to indirect registers, this register  
Data  
contains the data to be written. When reading from  
indirect registers, this register contains the read back  
value.  
See TI App Note AN-2198 Exploring the Internal Test  
Pattern Generation Feature of 720p (SNLA132)  
112  
0x70 Slave ID[1]  
7:1  
RW  
0x00  
Slave ID 1  
7-bit Remote Slave Device ID 1  
Configures the physical I2C address of the remote I2C  
Slave device attached to the remote Deserializer. If an  
I2C transaction is addressed to the Slave Alias ID1,  
the transaction will be remapped to this address  
before passing the transaction across the Bidirectional  
Control Channel to the Deserializer.  
0
Reserved  
113  
114  
115  
116  
117  
0x71 Slave ID[2]  
0x72 Slave ID[3]  
0x73 Slave ID[4]  
0x74 Slave ID[5]  
0x75 Slave ID[6]  
7:1  
RW  
RW  
RW  
RW  
RW  
0x00  
0x00  
0x00  
0x00  
0x00  
Slave ID 2  
Slave ID 3  
Slave ID 4  
Slave ID 5  
Slave ID 6  
7-bit Remote Slave Device ID 2  
Configures the physical I2C address of the remote I2C  
Slave device attached to the remote Deserializer. If an  
I2C transaction is addressed to the Slave Alias ID2,  
the transaction will be remapped to this address  
before passing the transaction across the Bidirectional  
Control Channel to the Deserializer.  
0
Reserved  
7:1  
7-bit Remote Slave Device ID 3  
Configures the physical I2C address of the remote I2C  
Slave device attached to the remote Deserializer. If an  
I2C transaction is addressed to the Slave Alias ID3,  
the transaction will be remapped to this address  
before passing the transaction across the Bidirectional  
Control Channel to the Deserializer.  
0
Reserved  
7:1  
7-bit Remote Slave Device ID 4  
Configures the physical I2C address of the remote I2C  
Slave device attached to the remote Deserializer. If an  
I2C transaction is addressed to the Slave Alias ID4,  
the transaction will be remapped to this address  
before passing the transaction across the Bidirectional  
Control Channel to the Deserializer.  
0
Reserved  
7:1  
7-bit Remote Slave Device ID 5  
Configures the physical I2C address of the remote I2C  
Slave device attached to the remote Deserializer. If an  
I2C transaction is addressed to the Slave Alias ID5,  
the transaction will be remapped to this address  
before passing the transaction across the Bidirectional  
Control Channel to the Deserializer.  
0
Reserved  
7:1  
7-bit Remote Slave Device ID 6  
Configures the physical I2C address of the remote I2C  
Slave device attached to the remote Deserializer. If an  
I2C transaction is addressed to the Slave Alias ID6,  
the transaction will be remapped to this address  
before passing the transaction across the Bidirectional  
Control Channel to the Deserializer.  
0
Reserved  
Copyright © 2012–2015, Texas Instruments Incorporated  
43  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
118  
119  
120  
121  
122  
123  
124  
0x76 Slave ID[7]  
7:1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Slave ID 7  
7-bit Remote Slave Device ID 7  
Configures the physical I2C address of the remote I2C  
Slave device attached to the remote Deserializer. If an  
I2C transaction is addressed to the Slave Alias ID7,  
the transaction will be remapped to this address  
before passing the transaction across the Bidirectional  
Control Channel to the Deserializer.  
0
Reserved  
0x77 Slave Alias[1]  
0x78 Slave Alias[2]  
0x79 Slave Alias[3]  
0x7A Slave Alias[4]  
0x7B Slave Alias[5]  
0x7C Slave Alias[6]  
7:1  
Slave Alias 7-bit Remote Slave Device Alias ID 1  
ID 1  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the  
remote Deserializer. The transaction will be remapped  
to the address specified in the Slave ID1 register. A  
value of 0 in this field disables access to the remote  
I2C Slave.  
0
Reserved  
7:1  
Slave Alias 7-bit Remote Slave Device Alias ID 2  
ID 2  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the  
remote Deserializer. The transaction will be remapped  
to the address specified in the Slave ID2 register. A  
value of 0 in this field disables access to the remote  
I2C Slave.  
0
Reserved  
7:1  
Slave Alias 7-bit Remote Slave Device Alias ID 3  
ID 3  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the  
remote Deserializer. The transaction will be remapped  
to the address specified in the Slave ID3 register. A  
value of 0 in this field disables access to the remote  
I2C Slave.  
0
Reserved  
7:1  
Slave Alias 7-bit Remote Slave Device Alias ID 4  
ID 4  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the  
remote Deserializer. The transaction will be remapped  
to the address specified in the Slave ID4 register. A  
value of 0 in this field disables access to the remote  
I2C Slave.  
0
Reserved  
7:1  
Slave Alias 7-bit Remote Slave Device Alias ID 5  
ID 5  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the  
remote Deserializer. The transaction will be remapped  
to the address specified in the Slave ID5 register. A  
value of 0 in this field disables access to the remote  
I2C Slave.  
0
Reserved  
7:1  
Slave Alias 7-bit Remote Slave Device Alias ID 6  
ID 6  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the  
remote Deserializer. The transaction will be remapped  
to the address specified in the Slave ID6 register. A  
value of 0 in this field disables access to the remote  
I2C Slave.  
0
Reserved  
44  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
125  
0x7D Slave Alias[7]  
7:1  
RW  
0x00  
Slave Alias 7-bit Remote Slave Device Alias ID 7  
ID 7  
Configures the decoder for detecting transactions  
designated for an I2C Slave device attached to the  
remote Deserializer. The transaction will be remapped  
to the address specified in the Slave ID7 register. A  
value of 0 in this field disables access to the remote  
I2C Slave.  
0
Reserved  
128  
129  
130  
131  
132  
144  
145  
146  
147  
148  
152  
153  
154  
155  
156  
157  
158  
159  
160  
0x80 RX_BKSV0  
0x81 RX_BKSV1  
0x82 RX_BKSV2  
0x83 RX_BKSV3  
0x84 RX_BKSV4  
0x90 TX_KSV0  
0x91 TX_KSV1  
0x92 TX_KSV2  
0x93 TX_KSV3  
0x94 TX_KSV4  
0x98 TX_AN0  
0x99 TX_AN1  
0x9A TX_AN2  
0x9B TX_AN3  
0x9C TX_AN4  
0x9D TX_AN5  
0x9E TX_AN6  
0x9F TX_AN7  
0xA0 RX BCAPS  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
RX BKSV0 BKSV0: Value of byte 0 of the Deserializer KSV  
RX BKSV1 BKSV1: Value of byte 1 of the Deserializer KSV  
RX BKSV2 BKSV2: Value of byte 2 of the Deserializer KSV  
RX BKSV3 BKSV3: Value of byte 3 of the Deserializer KSV.  
RX BKSV4 BKSV4: Value of byte 4 of the Deserializer KSV.  
TX KSV0  
TX KSV1  
TX KSV2  
TX KSV3  
TX KSV4  
TX AN0  
TX AN1  
TX AN2  
TX AN3  
TX AN4  
TX AN5  
TX AN6  
TX AN7  
KSV0: Value of byte 0 of the Serializer KSV.  
KSV1: Value of byte 1 of the Serializer KSV.  
KSV2: Value of byte 2 of the Serializer KSV.  
KSV3: Value of byte 3 of the Serializer KSV.  
KSV4: Value of byte 4 of the Serializer KSV.  
TX_AN0: Value of byte 0 of the Serializer AN Value  
TX_AN1: Value of byte 1 of the Serializer AN Value  
TX_AN2: Value of byte 2 of the Serializer AN Value  
TX_AN3: Value of byte 3 of the Serializer AN Value  
TX_AN4: Value of byte 4 of the Serializer AN Value  
TX_AN5: Value of byte 5 of the Serializer AN Value  
TX_AN6: Value of byte 6 of the Serializer AN Value  
TX_AN7: Value of byte 7 of the Serializer AN Value  
Reserved  
6
R
R
Repeater  
Indicates if the attached Receiver supports  
downstream connections. This bit is valid once the  
Bksv is ready as indicated by the BKSV_RDY bit in  
the HDCP  
5
KSV FIFO  
KSV FIFO Ready  
Indicates the receiver has built the list of attached  
KSVs and computed the verification value  
4:2  
1
Reserved  
R
Features  
HDCP v1.1_Features  
The HDCP Receiver supports the Enhanced  
Encryption Status Signaling (EESS), Advance Cipher,  
and Enhanced Link Verification options.  
0
7
R
R
Fast Re-  
auth  
The HDCP Receiver is capable of receiving  
(unencrypted) video signal during the session re-  
authentication.  
161  
0xA1 RX BSTATUS0  
0x00  
Max  
Devices  
Maximum Devices Exceeded: Indicates a topology  
error was detected. Indicates the number of  
downstream devices has exceeded the depth of the  
Repeater's KSV FIFO.  
6:0  
R
Device  
Count  
Total number of attached downstream device. For a  
Repeater, this will indicate the number of downstream  
devices, not including the Repeater. For an HDCP  
Receiver that is not also a Repeater, this field will be  
0.  
Copyright © 2012–2015, Texas Instruments Incorporated  
45  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
162  
0xA2 RX BSTATUS1  
7:4  
3
0x00  
Reserved  
R
Max  
Cascade  
Maximum Cascade Exceeded: Indicates a topology  
error was detected — more than seven levels of  
repeaters have been cascaded together.  
2:0  
7:0  
R
R
Cascade  
Depth  
Indicates the number of attached levels of devices for  
the Repeater.  
163  
192  
0xA3 KSV FIFO  
0xC0 HDCP DBG  
0x00  
0x00  
KSV FIFO  
KSV FIFO  
Each read of the KSV FIFO returns one byte of the  
KSV FIFO list composed by the downstream  
Receiver.  
7:4  
3
Reserved  
RW  
RW  
RGB  
CHKSUM  
Enable RGB video line checksum  
Enables sending of ones-complement checksum for  
each 8-bit RGB data channel following end of each  
video data line.  
2
Fast LV  
Fast Link Verification  
HDCP periodically verifies that the HDCP Receiver is  
correctly synchronized. Setting this bit will increase  
the rate at which synchronization is verified. When set  
to a 1, Pj is computed every 2 frames and Ri is  
computed every 16 frames. When set to a 0, Pj is  
computed every 16 frames and Ri is computed every  
128 frames.  
1
0
RW  
RW  
TMR Speed Timer Speedup  
Up  
Speed up HDCP authentication timers.  
HDCP I2C  
Fast  
HDCP I2C Fast Mode Enable  
Setting this bit to a 1 will enable the HDCP I2C Master  
in the HDCP Receiver to operate with Fast mode  
timing. If set to a 0, the I2C Master will operate with  
Standard mode timing. This bit is mirrored in the  
IND_STS register.  
46  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
194  
0xC2 HDCP CFG  
7
RW  
RW  
RW  
0x80  
ENH LV  
Enable Enhanced Link Verification  
Allows checking of the encryption Pj value on every  
16th frame.  
0: Enhanced Link Verification disabled  
1: Enhanced Link Verification enabled (default)  
6
5
HDCP  
EESS  
Enables Enhanced Encryption Status Signaling  
(EESS) instead of the Original Encryption Status  
Signaling (OESS).  
0: OESS mode enabled (default)  
1: EESS mode enabled  
TX RPTR  
Transmit Repeater Enable  
Enables the transmitter to act as a repeater. In this  
mode, the HDCP Transmitter incorporates the  
additional authentication steps required of an HDCP  
Repeater.  
0: Transmit Repeater mode disabled (default)  
1: Transmit Repeater mode enabled  
4:3  
RW  
ENC Mode Encryption Control Mode  
Determines mode for controlling whether encryption is  
required for video frames.  
00: Enc_Authenticated (default)  
01: Enc_Reg_Control  
10: Enc_Always  
11: Enc_InBand_Control (per frame)  
If the Repeater strap option is set at power-up,  
Enc_InBand_Control (ENC_MODE == 11) will be  
selected. Otherwise, the default will be  
Enc_Authenticated mode (ENC_MODE == 00).  
2
RW  
Wait  
Enable 100 ms Wait: The HDCP 1.3 specification  
allows for a 100 ms wait to allow the HDCP Receiver  
to compute the initial encryption values. The FPD-Link  
III implementation ensures that the Receiver will  
complete the computations before the HDCP  
Transmitter. Thus the timer is unnecessary.  
0: 100 ms timer disabled (default)  
1: 100 ms timer enabled  
1
0
RW  
RW  
RX DET  
SEL  
RX Detect Select: Controls assertion of the Receiver  
Detect Interrupt.  
0: The Receiver Detect Interrupt will be asserted on  
detection of an FPD-Link III Receiver. (default)  
1: the Receiver Detect Interrupt will also require a  
receive lock indication from the receiver.  
HDCP AV  
MUTE  
Enable AVMUTE This bit may only be set if the  
HDCP_EESS bit is also set.  
0: Resume normal operation (default)  
1: Initiate AVMUTE operation. The transmitter will  
ignore encryption status controls while in this state.  
Copyright © 2012–2015, Texas Instruments Incorporated  
47  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
195  
0xC3 HDCP CTL  
7
RW  
0x00  
HDCP RST HDCP Reset  
Setting this bit will reset the HDCP transmitter and  
disable HDCP authentication. This bit is self-clearing.  
6
5
Reserved  
RW  
RW  
KSV List  
Valid  
The controller sets this bit after validating the  
Repeater’s KSV List against the Key revocation list.  
This allows completion of the Authentication process.  
This bit is self-clearing.  
4
KSV Valid  
The controller sets this bit after validating the  
Receiver’s KSV against the Key revocation list. This  
allows continuation of the Authentication process. This  
bit will be cleared upon assertion of the KSV_RDY  
flag in the HDCP_STS register. Setting this bit to a 0  
will have no effect.  
3
2
RW  
RW  
HDCP ENC HDCP Encrypt Disable  
DIS Disables HDCP encryption. Setting this bit to a 1 will  
cause video data to be sent without encryption.  
Authentication status will be maintained. This bit is  
self-clearing.  
HDCP ENC HDCP Encrypt Enable  
EN Enables HDCP encryption. When set, if the device is  
authenticated, encrypted data will be sent. If device is  
not authenticated, a blue screen will be sent.  
Encryption should always be enabled when video  
data requiring content protection is being supplied to  
the transmitter. When this bit is not set, video data will  
be sent without encryption. Note that when  
CFG_ENC_MODE is set to Enc_Always, this bit will  
be read only with a value of 1.  
1
0
RW  
RW  
HDCP DIS HDCP Disable  
Disables HDCP authentication. Setting this bit to a 1  
will disable the HDCP authentication.  
This bit is self-clearing.  
HDCP EN  
HDCP Enable/Restart  
Enables HDCP authentication. If HDCP is already  
enabled, setting this bit to a 1 will restart  
authentication. Setting this bit to a 0 will have no  
effect. A register read will return the current HDCP  
enabled status.  
48  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
196  
0xC4 HDCP STS  
7
R
0x00  
I2C ERR  
DET  
HDCP I2C Error Detected  
This bit indicates an error was detected on the  
embedded communications channel with the HDCP  
Receiver. Setting of this bit might indicate that a  
problem exists on the link between the HDCP  
Transmitter and HDCP Receiver. This bit will be  
cleared on read.  
6
R
RX INT  
RX Interrupt  
Status of the RX Interrupt signal.  
The signal is received from the attached HDCP  
Receiver and is the status on the INTB_IN pin of the  
HDCP Receiver. The signal is active low, a 0  
indicates an interrupt condition.  
5
4
R
R
RX Lock  
DET  
Receiver Lock Detect  
This bit indicates that the downstream Receiver has  
indicated Receive Lock to incoming serial data.  
DOWN  
HPD  
Downstream Hot Plug Detect  
This bit indicates the local device or a downstream  
repeater has reported a Hot Plug event, indicating  
addition of a new receiver. This bit will be cleared on  
read.  
3
2
R
R
RX DET  
Receiver Detect  
This bit indicates that a downstream Receiver has  
been detected.  
KSV LIST  
RDY  
HDCP Repeater KSV List Ready  
This bit indicates that the Receiver KSV list has been  
read and is available in the KSV_FIFO registers. The  
device will wait for the controller to set the  
KSV_LIST_VALID bit in the HDCP_CTL register  
before continuing. This bit will be cleared once the  
controller sets the KSV_LIST_VALID bit.  
1
R
KSV RDY  
HDCP Receiver KSV Ready  
This bit indicates that the Receiver KSV has been  
read and is available in the HDCP_ BKSV registers. If  
the device is not a Repeater, it will wait for the  
controller to set the KSV_VALID bit in the HDCP_CTL  
register before continuing.  
This bit will be cleared once the controller sets the  
KSV_VALID bit.. The bit will also be cleared if  
authentication fails.  
0
R
AUTHED  
HDCP Authenticated  
Indicates the HDCP authentication has completed  
successfully. The controller may now send video data  
requiring content protection. This bit will be cleared if  
authentication is lost or if the controller restarts  
authentication.  
Copyright © 2012–2015, Texas Instruments Incorporated  
49  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
198  
0xC6 HDCP ICR  
7
RW  
0x00  
IE IND ACC Interrupt on Indirect Access Complete  
Enables interrupt on completion of Indirect Register  
Access.  
6
5
RW  
IE RXDET  
INT  
Interrupt on Receiver Detect  
Enables interrupt on detection of a downstream  
Receiver. If HDCP_CFG:RX_DET_SEL is set to a 1,  
the interrupt will wait for Receiver Lock Detect.  
RW  
IS_RX_INT Interrupt on Receiver Interrupt  
Enables interrupt on indication from the HDCP  
Receiver. Allows propagation of interrupts from  
downstream devices.  
4
3
2
RW  
RW  
RW  
IE LIST  
RDY  
Interrupt on KSV List Ready  
Enables interrupt on KSV List Ready.  
IE KSV  
RDY  
Interrupt on KSV Ready  
Enables interrupt on KSV Ready.  
IE AUTH  
FAIL  
Interrupt on Authentication Failure  
Enables interrupt on authentication failure or loss of  
authentication.  
1
0
RW  
RW  
IE AUTH  
PASS  
Interrupt on Authentication Pass  
Enables interrupt on successful completion of  
authentication.  
INT Enable Global Interrupt Enable  
Enables interrupt on the interrupt signal to the  
controller.  
199  
0xC7 HDCP ISR  
7
6
5
R
R
R
0x00  
IS IND ACC Interrupt on Indirect Access Complete  
Indirect Register Access has completed.  
INT Detect Interrupt on Receiver Detect interrupt  
A downstream receiver has been detected.  
IS RX INT  
Interrupt on Receiver interrupt  
Receiver has indicated an interrupt request from  
downstream device.  
4
3
R
R
IS LIST  
RDY  
Interrupt on KSV List Ready  
The KSV list is ready for reading by the controller.  
IS KSV  
RDY  
Interrupt on KSV Ready  
The Receiver KSV is ready for reading by the  
controller.  
2
R
IS AUTH  
FAIL  
Interrupt on Authentication Failure  
Authentication failure or loss of authentication has  
occurred.  
1
0
R
R
IS AUTH  
PASS  
Interrupt on Authentication Pass  
Authentication has completed successfully.  
INT  
Global Interrupt  
Set if any enabled interrupt is indicated.  
50  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Register Maps (continued)  
Table 5. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
208  
0xD0 IND STS  
7
RW  
0x00  
IA Reset  
Indirect Access Reset  
Setting this bit to a 1 will reset the I2C Master in the  
HDCP Receiver. As this may leave the I2C bus in an  
indeterminate state, it should only be done if the  
Indirect Access mechanism is not able to complete  
due to an error on the destination I2C bus.  
6
5
Reserved  
I2C TO DIS I2C Timeout Disable  
RW  
RW  
Setting this bit to a 1 will disable the bus timeout  
function in the I2C master. When enabled, the bus  
timeout function allows the I2C master to assume the  
bus is free if no signaling occurs for more than 1  
second.  
4
I2C Fast  
I2C Fast mode Enable  
Setting this bit to a 1 will enable the I2C Master in the  
HDCP Receiver to operation with Fast mode timing. If  
set to a 0 (default), the I2C Master will operate with  
Standard mode timing.  
3:2  
1
Reserved  
R
R
IA ACK  
Indirect Access Acknowledge  
The acknowledge bit indicates that a valid  
acknowledge was received upon completion of the I2C  
read or write to the slave. A value of 0 (default)  
indicates the read/write did not complete successfully.  
0
IA DONE  
Indirect Access Done  
Set to a 1 to indicate completion of Indirect Register  
Access. This bit will be cleared or read or by start of a  
new Indirect Register Access.  
209  
0xD1 IND SAR  
7:1  
0
RW  
RW  
RW  
RW  
0x00  
IA SADDR Indirect Access Slave Address  
This field should be programmed with the slave  
address for the I2C slave to be accessed.  
IA RW  
Indirect Access Read/Write  
0: Write (default)  
1: Read  
210  
211  
0xD2 IND OAR  
0xD3 IND DATA  
7:0  
7:0  
0x00  
0x00  
IA Offset  
IA Data  
Indirect Access Offset  
It is programmed with the register address for the I2C  
indirect access.  
Indirect Access Data  
For an indirect write, It is written with the write data.  
For an indirect read, it contains the result of a  
successful read.  
240  
241  
242  
243  
244  
245  
0xF0 HDCP TX ID  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
R
R
R
R
R
R
0x5F  
0x55  
0x48  
0x39  
0x32  
0x37  
ID0  
ID1  
ID2  
ID3  
ID4  
ID5  
First byte ID code, ‘_’  
0xF1  
0xF2  
0xF3  
0xF4  
0xF5  
Second byte of ID code, ‘U’  
Third byte of ID code. ‘H'  
Forth byte of ID code: ‘9’  
Fifth byte of ID code: “2”  
Sixth byte of ID code: “7”  
Copyright © 2012–2015, Texas Instruments Incorporated  
51  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DS90UH927Q-Q1, in conjunction with the DS90UH928Q-Q1 or DS90UH926Q-Q1, is intended for interface  
between a HDCP compliant host (graphics processor) and a display supporting 24-bit color depth (RGB888) and  
high definition (720p) digital video format. It can receive an 8-bit RGB stream with a pixel clock rate up to 85 MHz  
together with three control bits (VS, HS and DE) and four I2S audio streams. The included HDCP 1.3 compliant  
cipher block allows the authentication of the HDCP Deserializer, which decrypts both video and audio contents.  
The HDCP keys are pre-loaded by TI into Non-Volatile Memory (NVM) for maximum security.  
8.2 Typical Application  
Figure 29 shows a typical application of the DS90UH927Q-Q1 serializer for an 85 MHz 24-bit Color Display  
Application. The 5 LVDS input pairs require external 100terminations. The CML outputs must have an external  
0.1-µF AC coupling capacitor on the high speed serial lines. The serializer has internal CML termination on its  
high speed outputs.  
Bypass capacitors should be placed near the power supply pins. At a minimum, four (4) 4.7-µF capacitors should  
be used for local device bypassing. Ferrite beads are placed on the two sets of supply pins (VDD33 and VDDIO)  
for effective noise suppression. The interface to the graphics source is LVDS. The VDDIO pins may be  
connected to 3.3 V or 1.8 V. A capacitor and resistor are placed on the PDB pin to delay the enabling of the  
device until power is stable.  
52  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Typical Application (continued)  
3.3V or 1.8V (VDDIO  
)
3.3V (VDD33)  
DS90UH927Q-Q1  
VDD33_A  
VDDIO  
C6  
C4  
C5  
FB1  
FB2  
VDD33_B  
VDDIO  
C7  
C11  
C12  
CAPLVD12  
CAPP12  
CAPL12  
C8  
C9  
CAPHS12  
C10  
C1  
C2  
Serial  
FPD-Link III  
Interface  
RxCLKIN-  
RxCLKIN+  
DOUT+  
100:  
100:  
100:  
100:  
100:  
DOUT-  
CMF  
RxIN3-  
RxIN3+  
C3  
RxIN2-  
RxIN2+  
FPD-Link  
Interface  
RxIN1-  
RxIN1+  
MAPSEL  
BKWD  
LVCMOS  
Control  
Interface  
LFMODE  
REPEAT  
RxIN0-  
RxIN0+  
VDD33  
VDD33  
R4  
VDDIO  
R5  
R1  
Notes:  
FB1-FB2: Impedance = 1k:ꢀ@100MHz  
Low DC resistance (<1:)  
IDx  
INTB  
PDB  
SCL  
R2  
SDA  
C1-C3 = 0.1 PF  
C13  
(50 WV; C1, C2: 0402; C3: 0603)  
C4-C12 = 4.7 PF  
C13 = >10 PF  
R1/R2: see IDx Resistor Value Table  
R4 = 10k:  
R5= 4.7k:  
I2S_CLK  
I2S_WC  
I2S_Dx  
RESx  
DAP (GND)  
4
Figure 29. Typical Connection Diagram  
FPD-Link  
FPD-Link  
VDDIO  
VDD33  
VDD33  
VDDIO  
(1.8V or 3.3V) (3.3V)  
(3.3V) (1.8V or 3.3V)  
RxIN3+/-  
RxIN2+/-  
TxOUT3+/-  
TxOUT2+/-  
FPD-Link III  
1 Pair/AC Coupled  
DOUT+  
DOUT-  
RIN+  
RIN-  
HOST  
Graphics  
Processor  
RGB Display  
720p  
24-bit Color Depth  
RxIN1+/-  
RxIN0+/-  
TxOUT1+/-  
TxOUT0+/-  
100Q STP Cable  
RxCLKIN+/-  
TxCLKOUT+/-  
INTB_IN  
DS90UH927Q-Q1  
Serializer  
DS90UH928Q-Q1  
Deserializer  
OEN  
LOCK  
PDB  
INTB  
I2S  
OSS_SEL  
PDB  
PASS  
I2S  
6
6
MAPSEL  
LFMODE  
REPEAT  
BKWD  
MAPSEL  
LFMODE  
BISTEN  
MCLK  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
MODE_SEL  
Figure 30. Display Application  
Copyright © 2012–2015, Texas Instruments Incorporated  
53  
 
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Design Requirements  
For the typical design application, use the following as input parameters.  
Table 6. Design Parameters  
DESIGN PARAMETER  
VDDIO  
EXAMPLE VALUE  
1.8 V or 3.3 V  
3.3 V  
VDD33  
AC Coupling Capacitor for DOUT±  
PCLK Frequency  
100 nF  
85 MHz  
8.2.2 Detailed Design Procedure  
Figure 29 shows a typical application of the DS90UH927Q-Q1 serializer for an 85-MHz 24-bit Color Display  
Application. The CML outputs must have an external 0.1-μF AC coupling capacitor on the high speed serial lines.  
Bypass capacitors are placed near the power supply pins. At a minimum, six (6) 4.7-μF capacitors and two (2)  
additional 1-μF capacitors should be used for local device bypassing. Ferrite beads are placed on the two (2)  
VDDs (VDD33 and VDDIO) for effective noise suppression. An RC delay is placed on the PDB signal to delay  
the enabling of the device until power is stable.  
8.2.3 Application Curves  
Figure 31. Serializer Output Stream with 48-MHz Input  
Clock  
Figure 32. Serializer Eye with 48-MHz Input Clock  
9 Power Supply Recommendations  
The power supply ramp (VDD33 and VDDIO) should be faster than 1.5 ms with a monotonic rise. A large capacitor  
on the PDB pin is needed to ensure PDB arrives after all the supply pins have settled to the recommended  
operating voltage. When PDB pin is pulled up to VDD33, a 10-kpullup and a > 10-μF capacitor to GND are  
required to delay the PDB input signal rise. All inputs must not be driven until both VDD33 and VDDIO has reached  
steady state. Pins VDD33_A and VDD33_B should both be externally connected, bypassed, and driven to the  
same potential (they are not internally connected).  
54  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
10 Layout  
10.1 Layout Guidelines  
Circuit board layout and stack-up for the LVDS serializer and deserializer devices should be designed to provide  
low-noise power to the device. Good layout practice will also separate high frequency or high-level inputs and  
outputs to minimize unwanted stray noise, feedback and interference. Power system performance may be greatly  
improved by using thin dielectrics (2 to 4 mil) for power / ground sandwiches. This arrangement utilizes the plane  
capacitance for the PCB power system and has low-inductance, which has proven effectiveness especially at  
high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01 μF to 10 μF. Tantalum capacitors may be in the 2.2 μF to 10 μF range. The voltage rating of the  
tantalum capacitors should be at least 5X the power supply voltage being used.  
MLCC surface mount capacitors are recommended due to their smaller parasitic properties. When using multiple  
capacitors per supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommended at  
the point of power entry. This is typically in the 50 μF to 100 μF range and will smooth low frequency switching  
noise. It is recommended to connect power and ground pins directly to the power and ground planes with bypass  
capacitors connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an  
external bypass capacitor will increase the inductance of the path. A small body size X7R chip capacitor, such as  
0603 or 0805, is recommended for external bypass. A small body sized capacitor has less inductance. The user  
must pay attention to the resonance frequency of these external bypass capacitors, usually in the range of 20  
MHz to 30 MHz. To provide effective bypassing, multiple capacitors are often used to achieve low impedance  
between the supply rails over the frequency of interest. At high frequency, it is also a common practice to use  
two vias from power and ground pins to the planes, reducing the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as  
PLLs. For DS90UH927Q-Q1, only one common ground plane is required to connect all device related ground  
pins.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the LVDS  
lines to prevent coupling from the LVCMOS lines to the LVDS lines. Closely coupled differential lines of 100 Ω  
are typically recommended for LVDS interconnect. The closely coupled lines help to ensure that coupled noise  
will appear as common mode and thus is rejected by the receivers. The tightly coupled lines will also radiate  
less.  
At least 9 thermal vias are necessary from the device center DAP to the ground plane. They connect the device  
ground to the PCB ground plane, as well as conduct heat from the exposed pad of the package to the PCB  
ground plane. More information on the WQFN style package, including PCB design and manufacturing  
requirements, is provided in TI Application Note: AN-1187 Leadless Leadframe Package (LLP) (SNOA401).  
Copyright © 2012–2015, Texas Instruments Incorporated  
55  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Layout Guidelines (continued)  
10.1.1 CML Interconnect Guidelines  
See SNLA008 and SNLA035 for full details.  
Use 100-Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
– S = space between the pair  
– 2S = space between pairs  
– 3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500 Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Terminate as close to the TX outputs and RX inputs as possible.  
Additional general guidance can be found in the LVDS Owner’s Manual - available in PDF format from the Texas  
Instruments web site at: http://www.ti.com/lit/ml/snla187/snla187.pdf  
10.2 Layout Example  
Notes:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning  
and tolerancing per ASME Y14.5M  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical  
performance.  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas  
Instruments literature number SLUA271.  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525  
may have alternate design recommendations.  
56  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Layout Example (continued)  
(
4.6)  
SYMM  
40  
31  
40X (0.6)  
40X (0.25)  
1
30  
36X (0.5)  
SYMM  
(0.74)  
TYP  
(5.8)  
(1.48)  
TYP  
(
0.2) TYP  
VIA  
10  
21  
(R0.05) TYP  
11  
20  
(0.74) TYP  
(1.48) TYP  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
Figure 33. Land Pattern Example and Solder Mask Details  
Copyright © 2012–2015, Texas Instruments Incorporated  
57  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
Layout Example (continued)  
(1.48) TYP  
9X ( 1.28)  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
36X (0.5)  
(1.48)  
TYP  
SYMM  
(5.8)  
METAL  
TYP  
10  
21  
(R0.05) TYP  
11  
20  
SYMM  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
70% PRINTED SOLDER COVERAGE BY AREA  
SCALE:15X  
Figure 34. Solder Paste Example  
Figure 35 PCB layout example is derived from the layout design of the DS90UH927Q-Q1 Evaluation Board. The  
graphic and layout description are used to determine both proper routing and proper solder techniques when  
designing the Serializer board.  
58  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UH927Q-Q1  
www.ti.com.cn  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
Layout Example (continued)  
AC Capacitors  
Length-  
Matched  
OLDI Traces  
High-Speed  
Traces  
Figure 35. DS90UH927Q-Q1 Serializer Example Layout  
版权 © 2012–2015, Texas Instruments Incorporated  
59  
DS90UH927Q-Q1  
ZHCSDA4C NOVEMBER 2012REVISED JANUARY 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
相关文档如下:  
AN-2198《探讨 720p 的内部测试图案生成特性》SNLA132  
《通过具有双向控制通道的 FPD-Link III 进行 I2C 通信》SNLA131  
AN-1187《无引线框架封装 (LLP)SNOA401  
AN-1108《通道链路 PCB 和互连设计指南》SNLA008  
AN-905《传输线路 RAPIDESIGNER 操作和应用指南》SNLA035  
LVDS 所有者手册》SNLA187  
QFN/SON PCB 连接》SLUA271  
11.2 商标  
All trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
60  
版权 © 2012–2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UH927QSQ/NOPB  
DS90UH927QSQE/NOPB  
DS90UH927QSQX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
RTA  
RTA  
RTA  
40  
40  
40  
1000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
-40 to 105  
UH927QSQ  
SN  
SN  
UH927QSQ  
UH927QSQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UH927QSQ/NOPB WQFN  
DS90UH927QSQE/NOPB WQFN  
DS90UH927QSQX/NOPB WQFN  
RTA  
RTA  
RTA  
40  
40  
40  
1000  
250  
330.0  
178.0  
330.0  
16.4  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UH927QSQ/NOPB  
DS90UH927QSQE/NOPB  
DS90UH927QSQX/NOPB  
WQFN  
WQFN  
WQFN  
RTA  
RTA  
RTA  
40  
40  
40  
1000  
250  
356.0  
208.0  
356.0  
356.0  
191.0  
356.0  
35.0  
35.0  
35.0  
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RTA0040A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
6.1  
5.9  
0.5  
0.3  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
(0.2) TYP  
(0.1) TYP  
4.6 0.1  
EXPOSED  
THERMAL PAD  
20  
11  
36X 0.5  
10  
21  
4X  
4.5  
SEE TERMINAL  
DETAIL  
1
30  
0.3  
40X  
40  
31  
0.2  
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
0.1  
C A B  
40X  
0.05  
4214989/B 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTA0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.6)  
SYMM  
40  
31  
40X (0.6)  
40X (0.25)  
1
30  
36X (0.5)  
SYMM  
(5.8)  
(0.74)  
TYP  
(
0.2) TYP  
VIA  
(1.31)  
TYP  
10  
21  
(R0.05) TYP  
11  
20  
(0.74) TYP  
(1.31 TYP)  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214989/B 02/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTA0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.48) TYP  
9X ( 1.28)  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
36X (0.5)  
(1.48)  
TYP  
SYMM  
(5.8)  
METAL  
TYP  
10  
21  
(R0.05) TYP  
11  
20  
SYMM  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
70% PRINTED SOLDER COVERAGE BY AREA  
SCALE:15X  
4214989/B 02/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DS90UH927QSQE

5MHz - 85MHz 24-bit Color FPD-Link III Serializer with HDCP
TI

DS90UH927QSQE/NOPB

具有 HDCP 的 5MHz - 85MHz 24 位彩色 FPD-Link III 串行器 | RTA | 40 | -40 to 105
TI

DS90UH927QSQX

5MHz - 85MHz 24-bit Color FPD-Link III Serializer with HDCP
TI

DS90UH927QSQX/NOPB

具有 HDCP 的 5MHz - 85MHz 24 位彩色 FPD-Link III 串行器 | RTA | 40 | -40 to 105
TI

DS90UH928Q-Q1

具有 HDCP 的 5MHz 至 85MHz 24 位彩色 FPD-Link III 转 FPD-Link 解串器
TI

DS90UH928QSQ/NOPB

具有 HDCP 的 5MHz 至 85MHz 24 位彩色 FPD-Link III 转 FPD-Link 解串器 | RHS | 48 | -40 to 105
TI

DS90UH928QSQE/NOPB

具有 HDCP 的 5MHz 至 85MHz 24 位彩色 FPD-Link III 转 FPD-Link 解串器 | RHS | 48 | -40 to 105
TI

DS90UH928QSQX/NOPB

具有 HDCP 的 5MHz 至 85MHz 24 位彩色 FPD-Link III 转 FPD-Link 解串器 | RHS | 48 | -40 to 105
TI

DS90UH929-Q1

具有 HDCP 的 720p FPD-Link III 串行器
TI

DS90UH929TRGCRQ1

具有 HDCP 的 720p FPD-Link III 串行器 | RGC | 64 | -40 to 105
TI

DS90UH929TRGCTQ1

具有 HDCP 的 720p FPD-Link III 串行器 | RGC | 64 | -40 to 105
TI

DS90UH940-Q1

支持 HDCP 的 1080p 双路 FPD-Link III 转 CSI-2 解串器
TI