DS90UH929-Q1 [TI]

具有 HDCP 的 720p FPD-Link III 串行器;
DS90UH929-Q1
型号: DS90UH929-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 HDCP 的 720p FPD-Link III 串行器

光电二极管
文件: 总83页 (文件大小:2551K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
具有 HDCP 的 具有 HDCP DS90UH929-Q1 720p HDMI FPD-Link  
III 桥接串行器  
1 特性  
3 说明  
1
符合面向汽车应用的 AEC-Q100 标准  
器件温度等级 2–40°C +105°CTA  
DS90UH929-Q1 是一款 HDMI FPD-Link III 桥接器  
件,与 FPD-Link III DS90UH926Q-Q1/DS90UH928Q-  
Q1解串器配合使用,可通过经济高效的 50Ω 单端同轴  
电缆或 100Ω 差分屏蔽双绞线 (STP) 电缆提供单通道  
高速串行流。该器件可串行化 HDMI v1.4b输入,最高  
可支持 WXGA 720p 视频分辨率(24 位色深)。  
DS90UH929-Q1 还兼容 DS90UH940-  
TMDS 时钟高达 96MHz,支持 WXGA 以及  
720p60 1080i60 分辨率(24 位色深)  
FPD-Link III 输出  
高清多媒体 (HDMI) v1.4b 输入  
HDMI 模式 DisplayPort (DP++) 输入  
具有片上密钥存储的集成型 HDCP v1.4 密码引擎  
最多支持 8 通道的 HDMI 音频提取  
Q1/DS90UH948-Q1 解串器。  
FPD-Link III 接口支持通过同一条差分链路进行视频和  
音频数据传输以及全双工控制(包括 I2C 通信)。通  
过一个差分对实现视频数据和控制的整合可减小互连线  
尺寸和重量,并简化系统设计。通过使用低压差分信  
令、数据换序和随机生成更大限度地减少了电磁干扰  
(EMI)。  
具有自动温度和老化补偿功能,支持长达 15 米的  
电缆  
可监视扩频输入时钟以降低 EMI  
具有 1Mbps 快速模式增强版的 I2C(主/从)  
兼容 DS90UH926Q-Q1 DS90UH928Q-Q1  
FPD-Link III 解串器  
DS90UH929-Q1 支持 HDCP 中继器 应用, 在这些应  
用中,无需外部控制器即可实现所有身份验证和加密功  
能。在输入端对 HDMI 音频和视频数据进行解密,并  
在将数据发送给 FPD-Link III 接口前重新加密。  
2 应用  
汽车信息娱乐系统:  
车载信息娱乐 (IVI) 主机和人机交互界面 (HMI)  
模块  
DS90UH929-Q1 支持通过 HDMI 或外部 I2S 接口接收  
多通道音频。该器件还提供可选的辅助音频接口。  
后座娱乐系统  
数字仪表组  
器件信息(1)  
监控摄像头  
消费类输入 HDMI 端口  
器件型号  
封装  
VQFN (64)  
封装尺寸(标称值)  
DS90UH929-Q1  
9.00mm x 9.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
应用图表  
V
DDIO  
1.8V  
V
DDIO  
3.3V 1.8Vor3.3V  
1.1V  
HDMI  
R[7:0]  
G[7:0]  
FPD-Link III  
1 Pair /AC Coupled  
IN_CLK+  
B[7:0]  
HS  
VS  
DE  
PCLK  
Mobile Device  
/Graphics  
Processor  
IN_D0+  
IN_D1+  
IN_D2+  
CEC  
RGB Display  
720p  
24-bit color depth  
DOUT+  
DOUT-  
RIN+  
RIN-  
LOCK  
PASS  
DS90UH929-Q1  
Serializer  
PDB  
OSS_SEL  
OEN  
DS90UH926Q-Q1  
Deserializer  
DDC  
HPD  
4
/
3
/
I2S AUDIO  
(STEREO)  
MCLK  
GPIO  
MODE_SEL  
INTB_IN  
I2C_SCL  
I2C_SDA  
IDx  
SCL  
SDA  
IDx  
DAP  
DAP  
HDCP œ High-Bandwidth Digital Content Protection  
TMDS œ Transition-Minimized Differential Signaling  
HDMI œ High Definition Multimedia Interface  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNLS458  
 
 
 
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 17  
7.4 Device Functional Modes........................................ 27  
7.5 Programming........................................................... 28  
7.6 Register Maps......................................................... 32  
Application and Implementation ........................ 63  
8.1 Applications Information.......................................... 63  
8.2 Typical Applications ................................................ 63  
Power Supply Recommendations...................... 68  
9.1 Power-Up Requirements and PDB Pin................... 68  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ..................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 7  
6.5 DC Electrical Characteristics .................................... 7  
6.6 AC Electrical Characteristics................................... 10  
6.7 DC And AC Serial Control Bus Characteristics ...... 11  
6.8 Recommended Timing for the Serial Control Bus .. 12  
6.9 Timing Diagrams..................................................... 13  
6.10 Typical Characteristics.......................................... 15  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 16  
8
9
10 Layout................................................................... 72  
10.1 Layout Guidelines ................................................. 72  
10.2 Layout Example .................................................... 73  
11 器件和文档支持 ..................................................... 74  
11.1 文档支持 ............................................................... 74  
11.2 接收文档更新通知 ................................................. 74  
11.3 ....................................................................... 74  
11.4 静电放电警告......................................................... 74  
11.5 Glossary................................................................ 74  
12 机械、封装和可订购信息....................................... 74  
7
4 修订历史记录  
Changes from Revision A (March 2019) to Revision B  
Page  
Changed VDD11 maximum from 1.32 V back to 1.7 V............................................................................................................. 6  
添加了接收文档更新通知 .............................................................................................................................................. 74  
Changes from Original (November 2014) to Revision A  
Page  
Changed all references of HDMI Clock to TMDS Clock......................................................................................................... 3  
Changed the VTERM pin description ..................................................................................................................................... 5  
Changed VDD11 maximum from: 1.7 V to: 1.32 V ................................................................................................................... 6  
Added RX_5V parameter to the Recommended Operating Conditions................................................................................. 7  
Added TCLH1/2 and TCHL1/2 parameters to the Recommended Operating Conditions.............................................................. 7  
Changed the TMDS jitter specification in the AC Electrical Characteristics table................................................................ 10  
Added information about using I2S with the DS90UH926-Q1 in the Audio Modes section................................................. 21  
Deleted Auto Soft Sleep mode from the MODE_SEL[1:0] Settings table ............................................................................ 27  
Added Frequency Detection Circuit section ......................................................................................................................... 28  
Added 5% resistor information to the Serial Control Bus section......................................................................................... 29  
Added information to Multi-Master Arbitration Support section............................................................................................ 30  
Added additional information to register 0x01...................................................................................................................... 32  
Added registers 0x00, 0x13, 0x15, 0x5B, 0xC0, 0xC2, 0xC3, 0xC6, 0xC8, 0xCE, and 0xD0 to default list ....................... 32  
Changed information about GPIO0 modes x00 and x10 ..................................................................................................... 36  
Changed information about GPIO1 modes x00 and x10 ..................................................................................................... 36  
Added reset information to register 0x15 ............................................................................................................................. 40  
Changed the register 0x1A information................................................................................................................................ 41  
Added Registers 0x40, 0x41, and 0x42 ............................................................................................................................... 46  
Deleted Rev A1 silicon information....................................................................................................................................... 50  
Added 'Set to 0' test to the 0x5B register description........................................................................................................... 51  
2
Copyright © 2014–2019, Texas Instruments Incorporated  
 
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Changed register 0x5C[4:3] information. ............................................................................................................................. 51  
Added Page 0x10 Register................................................................................................................................................... 62  
Added Page 0x14 Register................................................................................................................................................... 62  
Changed graph caption from: 1080p60 Video at 2.6 Gbps Serial Line Rate (One of Two Lanes) to: 720p60 Video at  
2.6-Gbps Serial Line Rate, Single Lane FPD-Link III Output............................................................................................... 67  
Changed Power-Up Requirements section .......................................................................................................................... 68  
5 Pin Configuration and Functions  
RGC Package  
64-Pin VQFN  
Top View  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
MODE_SEL1  
PDB  
IN_CLK-  
IN_CLK+  
VDD18  
RES2  
VDDHA11  
NC8  
RES1  
VDDHS11  
DOUT+  
VDDHA11  
IN_D0-  
DOUT-  
DS90UH929-Q1  
IN_D0+  
VTERM  
VDDHA11  
IN_D1-  
VDDS11  
VDD18  
64 VQFN  
Top View  
NC5  
NC4  
VDDHS11  
IN_D1+  
VDDHA11  
IN_D2-  
LFT  
IDx  
DAP = GND  
MODE_SEL0  
VDDP11  
IN_D2+  
VDD18  
Pin Functions  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
HDMI TMDS INPUT  
IN_CLK-  
IN_CLK+  
49  
50  
I, TMDS  
I, TMDS  
I, TMDS  
TMDS Clock Differential Input  
IN_D0-  
IN_D0+  
55  
56  
TMDS Data Channel 0 Differential Input  
TMDS Data Channel 1 Differential Input  
IN_D1-  
IN_D1+  
59  
60  
Copyright © 2014–2019, Texas Instruments Incorporated  
3
 
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
IN_D2-  
IN_D2+  
62  
63  
I, TMDS  
TMDS Data Channel 2 Differential Input  
OTHER HDMI  
HPD  
42  
O, Open-  
Drain  
Hot Plug Detect Output. Pull up to RX_5V with a 1-kΩ resistor  
RX_5V  
43  
44  
I
HDMI 5-V Detect Input  
DDC_SDA  
IO, Open-  
Drain  
DDC Slave Serial Data  
Pullup to RX_5V with a 47-kΩ resistor  
DDC_SCL  
CEC  
45  
1
I, Open-Drain DDC Slave Serial Clock  
Pullup to RX_5V with a 47-kΩ resistor  
IO, Open-  
Drain  
Consumer Electronic Control Channel Input/Output Interface.  
Pullup with a 27-kΩ resistor to 3.3 V  
X1  
39  
I, LVCMOS Optional Oscillator Input: This pin is the optional reference clock for CEC. It must be  
connected to a 25 MHz 0.1% (1000ppm), 45-55% duty cycle clock source at CMOS-level  
1.8 V. Leave it open if unused.  
FPD-LINK III SERIAL  
DOUT-  
26  
27  
20  
O
O
FPD-Link III Inverting Output  
The output must be AC-coupled with a 0.1-µF capacitor for interfacing with 92x deserializers  
and 33-nF capacitor for 94x deserializers  
DOUT+  
LFT  
FPD-Link III True Output  
The output must be AC-coupled with a 0.1-µF capacitor for interfacing with 92x deserializers  
and 33-nF capacitor for 94x deserializers  
Analog  
FPD-Link III Loop Filter  
Connect to a 10-nF capacitor to GND  
CONTROL  
SDA  
14  
15  
6
IO, Open-  
Drain  
I2C Data Input / Output Interface  
Open-drain. Must have an external pullup to resistor to 1.8 V or 3.3 V. See I2CSEL pin. DO  
NOT FLOAT.  
Recommended pullup: 4.7 kΩ.  
SCL  
IO, Open-  
Drain  
I2C Clock Input / Output Interface  
Open-drain. Must have an external pullup resistor to 1.8 V or 3.3 V. See I2CSEL pin. DO  
NOT FLOAT.  
Recommended pullup: 4.7 kΩ.  
I2CSEL  
I, LVCMOS I2C Voltage Level Strap Option  
Tie to VDDIO with a 10-kΩ resistor for 1.8-V I2C operation.  
Leave floating for 3.3-V I2C operation.  
This pin is read as an input at power up.  
IDx  
19  
18  
32  
31  
13  
Analog  
Analog  
Analog  
I2C Serial Control Bus Device ID Address Select  
Mode Select 0. See Table 4.  
MODE_SEL0  
MODE_SEL1  
PDB  
Mode Select 1. See Table 4.  
I, LVCMOS Power-Down Mode Input Pin  
INTB  
O, Open-  
Drain  
Open Drain. Remote interrupt. Active LOW.  
Pullup to VDDIO with a 4.7-kΩ resistor.  
REM_INTB  
40  
O, Open-  
Drain  
Remote interrupt. Mirrors status of INTB_IN from the deserializer.  
Note: External pullup to 1.8 V required. Recommended pullup: 4.7 kΩ.  
INTB = H, Normal Operation  
INTB = L, Interrupt Request  
BIDIRECTIONAL CONTROL CHANNEL (BCC) GPIO PINS  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
4
5
IO, LVCMOS BCC GPIO0. Shared with SDIN  
IO, LVCMOS BCC GPIO1. Shared with SWC  
IO, LVCMOS BCC GPIO2. Shared with I2S_DC  
IO, LVCMOS BCC GPIO3. Shared with I2S_DD  
37  
38  
REGISTER-ONLY GPIO  
4
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
GPIO5_REG  
36  
IO, LVCMOS General-Purpose Input/Output 5  
Local register control only. Shared with I2S_DB  
IO, LVCMOS General-Purpose Input/Output 6  
Local register control only. Shared with I2S_DA  
IO, LVCMOS General-Purpose Input/Output 7  
Local register control only. Shared with I2S_WC  
GPIO6_REG  
GPIO7_REG  
GPIO8_REG  
35  
33  
34  
IO, LVCMOS General-Purpose Input/Output 8  
Local register control only. Shared with I2S_CLK  
SLAVE MODE LOCAL I2S CHANNEL PINS  
I2S_WC  
I2S_CLK  
I2S_DA  
I2S_DB  
I2S_DC  
I2S_DD  
33  
34  
35  
36  
37  
38  
I, LVCMOS Slave Mode I2S Word Clock Input. Shared with GPIO7_REG  
I, LVCMOS Slave Mode I2S Clock Input. Shared with GPIO8_REG  
I, LVCMOS Slave Mode I2S Data Input. Shared with GPIO6_REG  
I, LVCMOS Slave Mode I2S Data Input. Shared with GPIO5_REG  
I, LVCMOS Slave Mode I2S Data Input. Shared with GPIO2  
I, LVCMOS Slave Mode I2S Data Input. Shared with GPIO3  
AUXILIARY I2S CHANNEL PINS  
SWC  
5
6
O, LVCMOS Master Mode I2S Word Clock Output. Shared with GPIO1  
SCLK  
O, LVCMOS Master Mode I2S Clock Output. Shared with I2CSEL. This pin is sampled following power-  
up as I2CSEL, then it will switch to SCLK operation as an output.  
SDIN  
4
I, LVCMOS Master Mode I2S Data Input. Shared with GPIO0  
IO, LVCMOS Master Mode I2S System Clock Input/Output  
MCLK  
16  
POWER AND GROUND  
VTERM  
VDD18  
57  
Power  
Power  
Must be connected to 3.3-V or 1.8-V supply.  
Connect to 3.3-V (±5%) Supply if incoming video is DC coupled OR  
Connect to 1.8-V (±5%) Supply if incoming video is AC coupled  
Refer to Figure 22 or Figure 21.  
24  
51  
64  
1.8-V (±5%) Analog supply. Refer to Figure 22 or Figure 21.  
VDDA11  
9
Power  
Power  
1.1-V (±5%) Analog supply. Refer to Figure 22 or Figure 21.  
1.1-V (±5%) TMDS supply. Refer to Figure 22 or Figure 21.  
VDDHA11  
52  
54  
58  
61  
VDDHS11  
VDDL11  
21  
28  
Power  
Power  
1.1-V (±5%) supply. Refer to Figure 22 or Figure 21.  
7
1.1-V (±5%) Digital supply. Refer to Figure 22 or Figure 21.  
41  
VDDP11  
VDDS11  
VDDIO  
17  
25  
Power  
Power  
Power  
1.1-V (±5%) PLL supply. Refer to Figure 22 or Figure 21.  
1.1-V (±5%) Serializer supply. Refer to Figure 22 or Figure 21.  
1.8-V (±5%) IO supply. Refer to Figure 22 or Figure 21.  
3
46  
GND  
Thermal  
Pad  
GND  
Ground. Connect to Ground plane with at least 9 vias.  
OTHER  
RES0  
RES1  
2
29  
Reserved. Tie to GND.  
RES2  
30  
Reserved. Connect with 50Ω to GND.  
Copyright © 2014–2019, Texas Instruments Incorporated  
5
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
NC0  
NC1  
NC2  
NC3  
NC4  
NC5  
NC6  
NC7  
NC8  
8
No connect. Leave floating. Do not connect to VDD or GND.  
10  
11  
12  
22  
23  
47  
48  
53  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)(2)  
See  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.3  
MAX  
1.7  
UNIT  
V
VDD11  
VDD18  
VDDIO  
Supply Voltage  
Supply Voltage  
2.5  
V
Supply Voltage  
2.5  
V
OpenLDI Inputs  
2.75  
VDDIO + 0.3  
2.5  
V
LVCMOS I/O Voltage  
1.8-V Tolerant I/O  
3.3-V Tolerant I/O  
5-V Tolerant I/O  
V
V
4.0  
V
5.3  
V
FPD-Link III Output Voltage  
Junction Temperature  
Storage Temperature  
1.7  
V
150  
°C  
°C  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) For soldering specifications, see product folder at www.ti.com and Absolute Maximum Ratings for Soldering (SNOA549).  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±2000  
Charged device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C5  
±750  
±15000  
±8000  
±15000  
±8000  
Air Discharge (DOUT+  
,
,
DOUT-  
)
ESD Rating (IEC 61000-4-2)  
V(ESD)  
Electrostatic discharge  
V
RD = 330 Ω, CS = 150 pF  
Contact Discharge  
(DOUT+, DOUT-  
)
Air Discharge (DOUT+  
DOUT-  
ESD Rating (ISO10605)  
RD = 330 Ω, CS = 150 pF  
RD = 2 kΩ, CS = 150 pF or 330 pF  
)
Contact Discharge  
(DOUT+, DOUT-  
)
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
1.045  
1.71  
NOM  
1.1  
MAX  
UNIT  
VDD11  
VDD18  
VDDIO  
Supply Voltage  
1.155  
1.89  
1.89  
V
V
V
Supply Voltage  
1.8  
LVCMOS Supply Voltage  
1.71  
1.8  
6
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Recommended Operating Conditions (continued)  
MIN  
1.71  
NOM  
1.8  
3.3  
3.3  
1.8  
5
MAX  
1.89  
UNIT  
V
VDDI2C, 1.8-V Operation  
VDDI2C, 3.3-V Operation  
3.135  
3.135  
1.71  
3.465  
3.465  
1.89  
V
HDMI Termination (VTERM), DC-coupled  
HDMI Termination (VTERM), AC-coupled  
V
V
VRX_5V  
TA  
HDMI Detect Voltage  
4.25  
5.25  
V
Operating Free Air Temperature  
40  
25  
105  
°C  
Allowable ending ambient temperature for continuous PLL lock when ambient  
temperature is rising under the following condition:  
TCLH1  
TCLH2  
TCHL1  
TCHL2  
TS  
TS  
25  
80  
105  
TS  
°C  
°C  
°C  
–40°C starting ambient temperature (Ts) < 0°C.(1)  
Allowable ending ambient temperature for continuous PLL lock when ambient  
temperature is rising under the following condition:  
0°C starting ambient temperature (Ts) 105°C.(1)  
Allowable ending ambient temperature for continuous PLL lock when ambient  
temperature is falling under the following condition:  
45°C < starting ambient temperature (Ts) 105°C.(1)  
Allowable ending ambient temperature for continuous PLL lock when ambient  
temperature is falling under the following condition:  
T
S 20  
TS  
96  
°C  
(1)  
–20°C starting ambient temperature (Ts) 45°C.  
TMDS Frequency  
25  
MHz  
(1) The input and output PLLs are calibrated at the ambient start up temperature (TS) when the device is powered on or when reset using  
the PDB pin. The PLLs will stay locked up to the specified ending temperature. A more detailed description can be found in “Handling  
System Temperature Ramps on the DS90Ux949, DS90Ux929 and DS90Ux947”.  
6.4 Thermal Information  
DS90UH929-Q1  
THERMAL METRIC(1)  
RGC (VQFN)  
64 PINS  
25.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
11.4  
5.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
5.1  
RθJC(bot)  
0.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
6.5 DC Electrical Characteristics  
over recommended operating supply and temperature ranges (unless otherwise noted)  
PARAMETER  
1.8-V LVCMOS I/O  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
High Level Input  
Voltage  
SCLK/I2CSEL, PDB,  
SDIN/GPIO0,  
SWC/GPIO1, MCLK  
I2S_DC/GPIO2,  
VIH  
VIL  
0.65 × VDDIO  
0
V
V
Low Level Input  
Voltage  
0.35 × VDDIO  
I2S_DD/GPIO3,  
I2S_DB/GPIO5_REG,  
I2S_DA/GPIO6_REG,  
I2S_CLK/GPIO8_REG,  
I2S_WC/GPIO7_REG  
IIN  
Input Current  
VIN = 0 V or 1.89 V  
10  
10  
μA  
Copyright © 2014–2019, Texas Instruments Incorporated  
7
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
DC Electrical Characteristics (continued)  
over recommended operating supply and temperature ranges (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
High Level Output  
Voltage  
VOH  
VOL  
IOS  
IOH = 4 mA  
0.7 × VDDIO  
VDDIO  
V
Low Level Output  
Voltage  
IOL = 4 mA  
GND  
0.26 × VDDIO  
V
Same as above  
Output Short Circuit  
Current  
VOUT = 0 V  
-50  
mA  
μA  
TRI-STATE™ Output  
Current  
IOZ  
VOUT = 0 V or VDDIO, PDB = L  
10  
10  
TMDS INPUTS -- FROM HDMI v1.4b SECTION 4.2.5  
Input Common-Mode  
Voltage  
VICM1  
VTERM - 300  
VTERM - 10  
150  
VTERM - 37.5  
VTERM + 10  
1200  
mV  
mV  
IN_D[2:0]+, IN_D[2:0]-  
IN_CLK+, IN_CLK-  
VTERM = 1.8V (±5%) or  
VTERM = 3.3 V (±5%)  
Input Common-Mode  
Voltage  
VICM2  
VIDIFF  
RTMDS  
IN_CLK 96MHz  
Input Differential  
Voltage Level  
mVP-P  
Ω
Termination  
Resistance  
IN_D[2:0]+, IN_D[2:0]-  
IN_CLK+, IN_CLK-  
Differential  
90  
100  
110  
HDMI IO -- FROM HDMI v1.4b SECTION 4.2.7 to 4.2.9  
4.8  
5.3  
50  
V
VRX_5V 5-V Power Signal  
RX_5V  
mA  
I5V_Sink 5-V Input Current  
High Level Output  
VOH,HPD  
VOL,HPD  
IIZ,HPD  
IOH = –4 mA  
IOL = 4 mA  
PDB = L  
2.4  
GND  
–10  
5.3  
0.4  
10  
V
V
Voltage, HPD  
HPD, RPU = 1 kΩ  
Low Level Output  
Voltage, HPD  
Power-Down Input  
Current, HPD  
uA  
V
Low Level Input  
Voltage, DDC  
0.3 ×  
VDD,DDC  
VIL,DDC  
VIH,DDC  
IIZ,DDC  
High Level Input  
Voltage, DDC  
DDC_SCL, DDC_SDA  
2.7  
–10  
2
V
Power-Down Input  
Current, DDC  
PDB = L  
10  
µA  
V
High Level Input  
Voltage, CEC  
VIH,CEC  
VIL,CEC  
VHY,CEC  
VOL,CEC  
VOH,CEC  
Low Level Input  
Voltage, CEC  
0.8  
V
Input Hysteresis,  
CEC  
0.4  
V
CEC  
Low Level Output  
Voltage, CEC  
GND  
2.5  
0.6  
3.63  
1.8  
V
High Level Output  
Voltage, CEC  
V
IOFF_CE Power-Down Input  
PDB = L  
–1.8  
µA  
Current, CEC  
C
8
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
DC Electrical Characteristics (continued)  
over recommended operating supply and temperature ranges (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
FPD-LINK III DIFFERENTIAL DRIVER  
Output Differential  
Voltage  
VODp-p  
900  
1200  
mVp-p  
mV  
mV  
mV  
mA  
Output Voltage  
ΔVOD  
1
50  
50  
60  
Unbalance  
Output Differential  
VOS  
550  
Offset Voltage  
DOUT+, DOUT-  
Offset Voltage  
ΔVOS  
1
Unbalance  
Output Short Circuit  
Current  
IOS  
RT  
FPD-Link III Outputs = 0 V  
Single-ended  
-50  
50  
Termination  
Resistance  
40  
(1)  
SUPPLY CURRENT  
IDD11  
IDD18  
330  
50  
mA  
mA  
Supply Current,  
Normal Operation  
Colorbar Pattern  
Colorbar Pattern  
PDB = L  
IDD,VTER VTERM Current,  
M
60  
mA  
Normal Operation  
IDDZ11  
IDDZ18  
15  
5
mA  
mA  
Supply Current,  
Power Down Mode  
IDDZ,VTE VTERM Current,  
Colorbar Pattern  
5
mA  
Power Down Mode  
RM  
(1) Specification is tested by bench characterization.  
Copyright © 2014–2019, Texas Instruments Incorporated  
9
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
6.6 AC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
GPIO FREQUENCY(1)  
Rb,FC  
Forward Channel GPIO IN_CLK = 25 MHz - 96 MHz  
Frequency  
GPIO[3:0]  
GPIO[3:0]  
0.25 ×  
IN_CLK  
MHz  
s
tGPIO,FC  
GPIO Pulse Width,  
Forward Channel  
IN_CLK = 25 MHz - 96 MHz  
>2 / IN_CLK  
TMDS INPUT  
(2)  
(2)  
Skew-Intra Maximum Intra-Pair  
Skew  
IN_CLK±,  
IN_D[2:0]±  
0.4 UITMDS  
0.2 × ns  
Skew-Inter Maximum Inter-Pair  
Skew  
(3)  
Tchar  
+
1.78  
tIJIT  
TMDS Clock Input Jitter Bit Error Rate 1E-10  
IN_CLK±  
0.3 UITMDS  
FPD-LINK III OUTPUT  
tLHT  
tHLT  
tXZD  
Low Voltage Differential  
Low-to-High Transition  
Time  
80  
80  
ps  
Low Voltage Differential  
High-to-Low Transition  
Time  
ps  
ns  
Output Active to OFF  
Delay  
PDB = L  
100  
tPLD  
tSD  
Lock Time (HDMI Rx)  
Delay — Latency  
5
ms  
s
IN_CLK±  
145*T(2)  
Random Pattern  
Low pass  
filter  
IN_CLK/20  
Output Total Jitter  
(Figure 5 )  
(4)  
tDJIT  
0.3  
UIFPD3  
Jitter Transfer Function  
(-3-dB Bandwidth)  
λSTXBW  
δSTX  
960  
0.1  
kHz  
dB  
Jitter Transfer Function  
Peaking  
(1) Back channel rates are available on the companion deserializer datasheet.  
(2) One bit period of the TMDS input.  
(3) Ten bit periods of the TMDS input.  
(4) One bit period of the serializer output.  
10  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
6.7 DC And AC Serial Control Bus Characteristics  
over VDDI2C supply and temperature ranges unless otherwise specified. VDDI2C can be 1.8V (±5%) or 3.3V (±5%) (refer to  
I2CSEL pin description for 1.8-V or 3.3-V operation).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIH,I2C  
0.7 ×  
VDDI2C  
SDA and SCL, VDDI2C = 1.8 V  
V
Input High Level, I2C  
0.7 ×  
VDDI2C  
SDA and SCL, VDDI2C = 3.3 V  
SDA and SCL, VDDI2C = 1.8 V  
V
V
VIL,I2C  
0.3 ×  
VDDI2C  
Input Low Level Voltage, I2C  
0.3 ×  
VDDI2C  
SDA and SCL, VDDI2C = 3.3 V  
V
mV  
V
VHY  
Input Hysteresis, I2C  
Output Low Level, I2C  
SDA and SCL, VDDI2C = 1.8 V or 3.3 V  
>50  
VOL,I2C  
SDA and SCL, VDDI2C = 1.8-V, Fast-Mode, 3-mA Sink  
Current  
0.2 ×  
VDDI2C  
GND  
SDA and SCL, VDDI2C = 3.3-V, 3-mA Sink Current  
SDA and SCL, VDDI2C = 0 V  
GND  
-800  
-10  
0.4  
-600  
10  
V
IIN,I2C  
Input Current, I2C  
µA  
µA  
pF  
SDA and SCL, VDDI2C = VDD18 or VDD33  
SDA and SCL  
CIN,I2C  
Input Capacitance, I2C  
5
Copyright © 2014–2019, Texas Instruments Incorporated  
11  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
6.8 Recommended Timing for the Serial Control Bus  
over I2C supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Standard-Mode  
Fast-Mode  
>0  
>0  
>0  
100 kHz  
400 kHz  
fSCL  
SCL Clock Frequency  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
1
MHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
4.0  
0.6  
0.26  
4.7  
0.6  
0.26  
0
tLOW  
SCL Low Period  
SCL High Period  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
tHIGH  
tHD;STA  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
Hold time for a start or a  
repeated start condition  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
Set Up time for a start or a  
repeated start condition  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
Data Hold Time  
0
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
0
250  
100  
50  
Data Set-Up Time  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
4.0  
0.6  
0.26  
4.7  
1.3  
0.5  
Set Up Time for STOP  
Condition  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
Bus Free Time  
Between STOP and START  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
1000  
300  
120  
300  
300  
120  
50  
tr  
SCL and SDA Rise Time,  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
tf  
SCL and SDA Fall Time,  
Input Filter  
Fast-Mode Plus  
Fast-Mode  
tSP  
Fast-Mode Plus  
50  
12  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
6.9 Timing Diagrams  
DOUT+  
DOUT-  
100 nF  
100 nF  
Differential probe  
Input Impedance 100 kW  
CL 0.5 pf  
IN_CLK  
IN_D[2:0]  
SCOPE  
BW 4 GHz  
100 W  
D
BW 3.5 GHz  
DOUT  
-
VOD/2  
Single Ended  
VOD/2  
DOUT+  
VOS  
ö
0 V  
VOD  
(DOUT+) - (DOUT-)  
Differential  
0 V  
Figure 1. Serializer VOD Output  
80%  
20%  
(DOUT+) - (DOUT-)  
0 V  
VOD  
tLHT  
tHLT  
Figure 2. Output Transition Times  
VDD  
VDDIO  
PDB  
RX_5V  
IN_CLK  
(Diff.)  
tPLD  
DOUT  
(Diff.)  
Driver OFF, VOD = 0V  
Driver On  
Figure 3. Serializer Lock Time  
Copyright © 2014–2019, Texas Instruments Incorporated  
13  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Timing Diagrams (continued)  
IN_D[2:0]  
N-1  
N
N+1  
N+2  
tSD  
IN_CLK  
STOP START  
BIT BIT  
STOP START  
BIT BIT  
STOP START  
BIT BIT  
STOP START  
BIT BIT  
SYMBOL N  
STOP  
BIT  
SYMBOL N-4  
SYMBOL N-3  
SYMBOL N-2  
SYMBOL N-1  
DOUT  
0
1
2
0
1
2
0
1
2
0
1
2
0
1
2
Figure 4. Latency Delay  
tDJIT  
tDJIT  
DOUT  
(Diff.)  
EYE OPENING  
0 V  
tBIT (1 UI)  
Figure 5. Serializer Output Jitter  
SDA  
SCL  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
SP  
t
f
r
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 6. Serial Control Bus Timing Diagram  
T
t
LC  
t
HC  
V
IH  
I2S_CLK  
V
IL  
t
t
hr  
sr  
I2S_WC  
I2S_D[A,B,C,D]  
Figure 7. I2S Timing Diagram  
14  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
6.10 Typical Characteristics  
Figure 8. Serializer Output at 2.975 Gbps (85-MHz TMDS  
Clock)  
Figure 9. Serializer Output at 3.36 Gbps (96-MHz TMDS  
Clock)  
Copyright © 2014–2019, Texas Instruments Incorporated  
15  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DS90UH929-Q1 converts an HDMI interface (3 TMDS data channels + 1 TMDS Clock) to an FPD-Link III  
interface. This device transmits a 35-bit symbol over a single serial pair operating up to 3.36-Gbps line rate. The  
serial stream contains an embedded clock, video control signals, RGB video data, and audio data. The payload  
is DC-balanced to enhance signal quality and support AC coupling.  
The DS90UH929-Q1 serializer is intended for use with a DS90UH926Q-Q1, DS90UH928Q-Q1, DS90UH940-Q1,  
DS90UH948-Q1 deserializer.  
The DS90UH929-Q1 serializer and companion deserializer incorporate an I2C-compatible interface. The I2C-  
compatible interface allows programming of serializer or deserializer devices from a local host controller. In  
addition, the device incorporates a bidirectional control channel (BCC) that allows communication between  
serializer and deserializer, as well as remote I2C slave devices.  
The bidirectional control channel (BCC) is implemented through embedded signaling in the high-speed forward  
channel (serializer to deserializer) combined with lower speed signaling in the reverse channel (deserializer to  
serializer). Through this interface, the BCC provides a mechanism to bridge I2C transactions across the serial  
link from one I2C bus to another. The implementation allows for arbitration with other I2C-compatible masters at  
either side of the serial link.  
7.2 Functional Block Diagram  
KSV  
FIFO  
Packet  
FIFO  
Audio  
PLL  
Audio  
FIFO  
HDCP  
Key  
NVM  
H
D
C
P
FPD-Link  
III TX  
Digital  
Video  
Digital  
TMDS  
Interface  
PAT  
GEN  
TMDS  
I2S Audio  
HDMI Controller  
Digital  
HDMI RX  
PHY  
FPD3 TX  
Analog  
FPD-Link III  
FPD-Link III Digital  
H
HPA  
FPD-Link  
III TX  
Digital  
D
C
P
RX_5V  
DDC  
Bridge Control  
Digital  
EDID  
I/F  
EDID/  
Config  
NVM  
Optional  
Secondary  
I2S  
I2C  
16  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
7.3 Feature Description  
7.3.1 High-Definition Multimedia Interface (HDMI)  
HDMI is a leading interface standard used to transmit digital video and audio from sources (such as a DVD  
player) to sinks (such as an LCD display). The interface is capable of transmitting high-definition video, audio,  
and also supports HDCP. Other HDMI signals consist of various control and status data that travel bidirectionally.  
7.3.1.1 HDMI Receive Controller  
The HDMI Receiver is an HDMI version 1.4b compliant receiver. The HDMI receiver is capable of operation at  
greater than 1080p resolutions. The DS90UH929-Q1 implementation is restricted to 720p operation (or 1080i or  
1080p/30). The configuration used in the DS90UH929-Q1does not include version 1.4b features such as the  
ethernet channel (HEC) or Audio Return Channel (ARC).  
7.3.2 Transition Minimized Differential Signaling  
HDMI uses Transition Minimized Differential Signaling (TMDS) over four differential pairs (3 TMDS channels and  
1 TMDS clock) to transmit video and audio data. TMDS is widely used to transmit high-speed serial data. The  
technology incorporates a form of 8b/10b encoding and the differential signaling allows the device to reduce  
electromagnetic interference (EMI) and achieve high skew tolerance.  
7.3.3 Enhanced Display Data Channel  
The Display Data Channel or DDC is a collection of digital communication protocols between a computer display  
and a graphics adapter that enables the display to list and send all the supported display modes to the adapter  
and allow the computer host to adjust monitor parameters, such as brightness and contrast.  
7.3.4 Extended Display Identification Data (EDID)  
EDID is a data structure provided by a digital display to list all the capabilities of the display to a video source.  
After receiving this information, the video source can send back video data with proper timing and resolution the  
display can support. The DS90UH929-Q1 supports several options for delivering display identification (EDID)  
information to the HDMI graphics source. The EDID information is accessible through the DDC interface and  
comply with the DDC and EDID requirements given in the HDMI v1.4b specification.  
The EDID configurations supported are as follows:  
External local EDID (EEPROM)  
Internal EDID loaded into device memory  
Remote EDID connected to I2C bus at deserializer side  
Internal pre-programmed EDID  
The selected EDID mode should be configurable from either the MODE_SEL pins or from internal control  
registers. For all modes, the EDID information should be accessible at the default address of 0xA0.  
7.3.4.1 External Local EDID (EEPROM)  
The DS90UH929-Q1 can be configured to allow a local EEPROM EDID device. The local EDID device may  
implement any EDID configuration allowable by the HDMI v1.4b and DVI 1.0 standards, including multiple  
extension blocks up to 32KB.  
7.3.4.2 Internal EDID (SRAM)  
The DS90UH929-Q1 also allows internal loading of an EDID profile up to 256 bytes. This SRAM storage is  
volatile and requires loading from an external I2C master (local or remote). The internal EDID is reloadable and  
readable (local/remote) from control registers during normal operation.  
7.3.4.3 External Remote EDID  
The serializer copies the remote EDID connected to the I2C bus of the remote deserializer into its internal  
SRAM. The remote EDID device can be a standalone I2C EEPROM, or integrated into the digital display panel.  
In this mode, the serializer automatically accesses the Bidirectional Control Channel to search for the EDID  
information at the default address 0xA0. Once found, the serializer copies the remote EDID into local SRAM.  
Copyright © 2014–2019, Texas Instruments Incorporated  
17  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Feature Description (continued)  
7.3.4.4 Internal Pre-Programmed EDID  
The serializer also has an internal eFuse that is loaded into the internal SRAM with pre-programmed 256-byte  
EDID data at start-up. This EDID profile supports several generic video (480p, 720p) and audio (2-channel audio)  
timing profiles within the single-link operating range of the device (25-MHz to 96-MHz pixel clock). In this mode,  
the internal EDID SRAM data is readable from the DDC interface. The EDID contents are below:  
0x00 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0x00 0x53 0x0E 0x49 0x09 0x01 0x00 0x00 0x00  
0x1C 0x18 0x01 0x03 0x80 0x34 0x20 0x78 0x0A 0xEC 0x18 0xA3 0x54 0x46 0x98 0x25  
0x0F 0x48 0x4C 0x00 0x00 0x00 0x01 0x01 0x01 0x01 0x01 0x01 0x01 0x01 0x01 0x01  
0x01 0x01 0x01 0x01 0x01 0x01 0x01 0x1D 0x00 0x72 0x51 0xD0 0x1E 0x20 0x6E 0x50  
0x55 0x00 0x00 0x20 0x21 0x00 0x00 0x18 0x00 0x00 0x00 0xFD 0x00 0x3B 0x3D 0x62  
0x64 0x08 0x00 0x0A 0x20 0x20 0x20 0x20 0x20 0x20 0x00 0x00 0x00 0xFC 0x00 0x54  
0x49 0x2D 0x44 0x53 0x39 0x30 0x55 0x78 0x39 0x34 0x39 0x0A 0x00 0x00 0x00 0x10  
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x57  
0x02 0x03 0x15 0x40 0x41 0x84 0x23 0x09 0x7F 0x05 0x83 0x01 0x00 0x00 0x66 0x03  
0x0C 0x00 0x10 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00  
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00  
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00  
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00  
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00  
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00  
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x28  
7.3.5 Consumer Electronics Control (CEC)  
Consumer Electronics Control (CEC) is designed to allow the system user to command and control up-to ten  
CEC-enabled devices connected through HDMI, using only one of their remote controls (for example by  
controlling a television set, set-top box, and DVD player using only the remote control of the TV). CEC also  
allows for individual CEC-enabled devices to command and control each other without user intervention. CEC is  
a one-wire open drain bus with an external 27-kΩ (±10%) resistor pullup to 3.3 V.  
CEC protocol can be implemented using an external clock reference or the 25-MHz internal oscillator inside the  
DS90UH929-Q1.  
7.3.6 +5-V Power Signal  
5 V is asserted by the HDMI source through the HDMI interface. The 5-V signal propagates through the  
connector and cable until it reaches the sink. The 5-V supply is used for various HDMI functions, such as HPD  
and DDC signals.  
7.3.7 Hot Plug Detect (HPD)  
The HPD pin is asserted by the sink to let the source know that it is ready to receive the HDMI signal. The  
source initiates the connection by first providing the 5-V power signal through the HDMI interface. The sink holds  
HPD low until it is ready to receive signals from the source, at which point it will release HPD to be pulled up to 5  
V.  
7.3.8 High-Speed Forward Channel Data Transfer  
The High-Speed Forward Channel is composed of 35 bits of data containing RGB data, sync signals, HDCP,  
I2C, GPIOs, and I2S audio transmitted from serializer to deserializer. Figure 10 shows the serial stream per clock  
cycle. This data payload is optimized for signal transmission over an AC-coupled link. Data is randomized,  
balanced, and scrambled.  
C0  
C1  
Figure 10. FPD-Link III Serial Stream  
18  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Feature Description (continued)  
The device supports TMDS clocks in the range of 25 MHz to 96 MHz over one lane. The FPD-Link III serial  
stream rate is 3.36 Gbps maximum (875 Mbps minimum).  
7.3.9 Back Channel Data Transfer  
The Back Channel provides bidirectional communication between the display and host processor. The  
information is carried from the deserializer to the serializer as serial frames. The back channel control data is  
transferred over both serial links along with the high-speed forward data, DC balance coding and embedded  
clock information. This architecture provides a backward path across the serial link together with a high-speed  
forward channel. The back channel contains the I2C, HDCP, CRC and 4 bits of standard GPIO information with  
5-Mbps, 10-Mbps, or 20-Mbps line rate (configured by the compatible deserializer).  
7.3.10 Power Down (PDB)  
The Serializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin may be controlled by an  
external device, or through VDDIO, where VDDIO = 1.71 V to 1.89 V. To save power, disable the link when the  
display is not necessary (PDB = LOW). Ensure that this pin is not driven HIGH before all power supplies have  
reached final levels. When PDB is driven low, ensure that the pin is driven to 0 V for at least 3 ms before  
releasing or driving high. In the case where PDB is pulled up to VDDIO directly, a 10-kpullup resistor and a >10-  
µF capacitor to ground are required (See Power-Up Requirements and PDB Pin).  
Toggling PDB low will POWER DOWN the device and RESET all control registers to default. During this time,  
PDB must be held low for a minimum of 3 ms before going high again.  
7.3.11 Serial Link Fault Detect  
The DS90UH929-Q1 can detect fault conditions in the FPD-Link III interconnect. If a fault condition occurs, the  
Link Detect Status is 0 (cable is not detected) on bit 0 of address 0x0C (Table 8). The DS90UH929-Q1 will  
detect any of the following conditions:  
1. Cable open  
2. “+” to “-” short  
3. ”+” to GND short  
4. ”-” to GND short  
5. ”+” to battery short  
6. ”-” to battery short  
7. Cable is linked incorrectly (DOUT+/DOUT- connections reversed)  
The device will detect any of the above conditions, but does not report specifically which one has occurred.  
7.3.12 Interrupt Pin (INTB)  
The INTB pin is an active low interrupt output pin that acts as an interrupt for various local and remote interrupt  
conditions (see registers 0xC6 and 0xC7 of Register Maps). For the remote interrupt condition, the INTB pin  
works in conjunction with the INTB_IN pin on the deserializer. This interrupt signal, when configured, will  
propagate from the deserializer to the serializer.  
1. On the Serializer, set register 0xC6[5] = 1 and 0xC6[0] = 1  
2. Deserializer INTB_IN pin is set LOW by some downstream device.  
3. Serializer pulls INTB pin LOW. The signal is active LOW, so a LOW indicates an interrupt condition.  
4. External controller detects INTB = LOW; to determine interrupt source, read ISR register.  
5. A read to ISR will clear the interrupt at the Serializer, releasing INTB.  
6. The external controller typically must then access the remote device to determine downstream interrupt  
source and clear the interrupt driving the Deserializer INTB_IN. This would be when the downstream device  
releases the INTB_IN pin on the Deserializer. The system is now ready to return to step (2) at next falling  
edge of INTB_IN.  
Copyright © 2014–2019, Texas Instruments Incorporated  
19  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Feature Description (continued)  
7.3.13 Remote Interrupt Pin (REM_INTB)  
REM_INTB will mirror the status of INTB_IN pin on the deserializer and does not need to be cleared. If the  
serializer is not linked to the deserializer, REM_INTB will be high.  
7.3.14 General-Purpose I/O  
7.3.14.1 GPIO[3:0] Configuration  
In normal operation, GPIO[3:0] may be used as general-purpose IOs in either forward channel (outputs) or back  
channel (inputs) mode. GPIO modes may be configured from the registers. See Table 1 for GPIO enable and  
configuration.  
Table 1. GPIO Enable and Configuration  
DESCRIPTION  
DEVICE  
Serializer  
FORWARD CHANNEL  
0x0F[3:0] = 0x3  
0x1F[3:0] = 0x5  
0x0E[7:4] = 0x3  
0x1E[7:4] = 0x5  
0x0E[3:0] = 0x3  
0x1E[3:0] = 0x5  
0x0D[3:0] = 0x3  
0x1D[3:0] = 0x5  
BACK CHANNEL  
0x0F[3:0] = 0x5  
0x1F[3:0] = 0x3  
0x0E[7:4] = 0x5  
0x1E[7:4] = 0x3  
0x0E[3:0] = 0x5  
0x1E[3:0] = 0x3  
0x0D[3:0] = 0x5  
0x1D[3:0] = 0x3  
GPIO3  
Deserializer  
Serializer  
GPIO2  
GPIO1  
GPIO0  
Deserializer  
Serializer  
Deserializer  
Serializer  
Deserializer  
7.3.14.2 GPIO_REG[8:5] Configuration  
GPIO_REG[8:5] are register-only GPIOs and may be programmed as outputs or read as inputs through local  
register bits only. Where applicable, these bits are shared with I2S pins and will override I2S input if enabled into  
GPIO_REG mode. See Table 2 for GPIO enable and configuration.  
A local GPIO value may be configured and read either through local register access, or remote register access  
through the Bidirectional Control Channel. Configuration and state of these pins are not transported from  
serializer to deserializer as is the case for GPIO[3:0].  
Table 2. GPIO_REG and GPIO Local Enable and Configuration  
DESCRIPTION  
REGISTER CONFIGURATION  
0x11[7:4] = 0x01  
0x11[7:4] = 0x09  
0x11[7:4] = 0x03  
0x11[3:0] = 0x1  
0x11[3:0] = 0x9  
0x11[3:0] = 0x3  
0x10[7:4] = 0x1  
0x10[7:4] = 0x9  
0x10[7:4] = 0x3  
0x10[3:0] = 0x1  
0x10[3:0] = 0x9  
0x10[3:0] = 0x3  
0x0F[3:0] = 0x1  
0x0F[3:0] = 0x9  
0x0F[3:0] = 0x3  
FUNCTION  
Output, L  
GPIO_REG8  
Output, H  
Input, Read: 0x1D[0]  
Output, L  
GPIO_REG7  
GPIO_REG6  
GPIO_REG5  
GPIO3  
Output, H  
Input, Read: 0x1C[7]  
Output, L  
Output, H  
Input, Read: 0x1C[6]  
Output, L  
Output, H  
Input, Read: 0x1C[5]  
Output, L  
Output, H  
Input, Read: 0x1C[3]  
20  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Table 2. GPIO_REG and GPIO Local Enable and Configuration (continued)  
DESCRIPTION  
REGISTER CONFIGURATION  
0x0E[7:4] = 0x1  
0x0E[7:4] = 0x9  
0x0E[7:4] = 0x3  
0x0E[3:0] = 0x1  
0x0E[3:0] = 0x9  
0x0E[3:0] = 0x3  
0x0D[3:0] = 0x1  
0x0D[3:0] = 0x9  
0x0D[3:0] = 0x3  
FUNCTION  
Output, L  
GPIO2  
GPIO1  
GPIO0  
Output, H  
Input, Read: 0x1C[2]  
Output, L  
Output, H  
Input, Read: 0x1C[1]  
Output, L  
Output, H  
Input, Read: 0x1C[0]  
7.3.15 Backward Compatibility  
This FPD-Link III serializer is backward-compatible to the DS90UH926Q-Q1 and DS90UH928Q-Q1 for TMDS  
clock frequencies ranging from 25 MHz to 85 MHz. Backward compatibility does not need to be enabled.  
7.3.16 Audio Modes  
The DS90UH929-Q1 supports several audio modes and functions:  
HDMI Mode  
DVI Mode  
AUX Audio Channel  
When using with the DS90UH926-Q1 because the default audio mode is I2S Surround Sound and DS90UH926-  
Q1 can not receive more than 2 channels of audio while in 24-bit mode, the DS90UH929-Q1 will automatically  
transmit 18-bit video to a DS90UH926-Q1. To transmit 24-bit video to a DS90UH926-Q1, I2S Surround must be  
disabled by writing to register 0x1A[0]=0.  
7.3.16.1 HDMI Audio  
The DS90UH929-Q1 allows embedded audio in the HDMI interface to be transported over the FPD-Link III serial  
link and output on the compatible deserializer. Depending on the number of channels, HDMI audio can be output  
on several I2S pins on the deserializer, or it can be converted to TDM to output on one audio output pin on the  
deserializer.  
7.3.16.2 DVI I2S Audio Interface  
The DS90UH929-Q1 serializer features six I2S input pins that, when paired with a compatible deserializer,  
supports 7.1 High-Definition (HD) Surround Sound audio applications. The bit clock (I2S_CLK) supports  
frequencies between 1 MHz and the lesser of IN_CLK/2 or 13 MHz. Four I2S data inputs transport two channels  
of I2S-formatted digital audio each, with each channel delineated by the word select (I2S_WC) input. Refer to  
Figure 11 and Figure 12 for I2S connection diagram and timing information.  
Serializer  
Bit Clock  
I2S_CLK  
I2S  
Transmitter  
Word Select  
Data  
I2S_WC  
I2S_Dx  
4
Figure 11. I2S Connection Diagram  
Copyright © 2014–2019, Texas Instruments Incorporated  
21  
 
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
I2S_WC  
I2S_CLK  
MSB  
LSB MSB  
LSB  
I2S_Dx  
Figure 12. I2S Frame Timing Diagram  
Table 3 covers several common I2S sample rates:  
Table 3. Audio Interface Frequencies  
SAMPLE RATE (kHz)  
I2S DATA WORD SIZE (BITS)  
I2S CLK (MHz)  
1.024  
32  
44.1  
48  
16  
16  
16  
16  
16  
24  
24  
24  
24  
24  
32  
32  
32  
32  
32  
1.411  
1.536  
96  
3.072  
192  
32  
6.144  
1.536  
44.1  
48  
2.117  
2.304  
96  
4.608  
192  
32  
9.216  
2.048  
44.1  
48  
2.822  
3.072  
96  
6.144  
192  
12.288  
7.3.16.2.1 I2S Transport Modes  
By default, audio is packetized and transmitted during video blanking periods in dedicated Data Island Transport  
frames. Data Island frames may be disabled from control registers if Forward Channel Frame Transport of I2S  
data is desired. In this mode, only I2S_DA is transmitted to a DS90UH928Q-Q1, DS90UH940-Q1, or a  
DS90UH948-Q1 deserializer. If connected to a DS90UH926Q-Q1 deserializer, I2S_DA and I2S_DB are  
transmitted. Surround Sound Mode, which transmits all four I2S data inputs (I2S_D[A..D]), may only be operated  
in Data Island Transport mode. This mode is only available when connected to a DS90UH928Q-Q1,  
DS90UH940-Q1, or a DS90UH948-Q1 deserializer.  
7.3.16.2.2 I2S Repeater  
I2S audio may be fanned-out and propagated in the repeater application. By default, data is propagated through  
Data Island Transport during the video blanking periods. If frame transport is desired, then the I2S pins should be  
connected from the deserializer to all serializers. Activating surround sound at the top-level deserializer  
automatically configures downstream serializers and deserializers for surround sound transport using Data Island  
Transport. If 4-channel operation using I2S_DA and I2S_DB only is desired, this mode must be explicitly set in  
each serializer and deserializer control register throughout the repeater tree (Table 8).  
7.3.16.3 AUX Audio Channel  
The AUX Audio Channel is a single separate I2S audio data channel that may be transported independently of  
the main audio stream received in either HDMI Mode or DVI Mode. This channel is shared with the GPIO[1:0]  
interface and is supported by DS90UH940-Q1 and DS90UH948-Q1 deserializers.  
22  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
7.3.16.4 TDM Audio Interface  
In addition to the I2S audio interface, the DS90UH929-Q1 serializer also supports TDM format. Since a number  
of specifications for TDM format are in common use, the DS90UH929-Q1 offers flexible support for word length,  
bit clock, number of channels to be multiplexed, and so forth. For example, assume that the word clock signal  
(I2S_WC) period = 256 × bit clock (I2S_CLK) time period. In this case, the DS90UH929-Q1 can multiplex 4  
channels with maximum word length of 64 bits each, or 8 channels with maximum word length of 32 bits each.  
Figure 13 shows the multiplexing of 8 channels with 24-bit word length, in a format similar to I2S.  
t1/fS (256 BCKs at Single Rate, 128 BCKs at Dual Rate)t  
I2S_WC  
I2S_CLK  
Ch 1  
t32 BCKst  
Ch 2  
t32 BCKst  
Ch 3  
t32 BCKst  
Ch 4  
t32 BCKst  
Ch 5  
t32 BCKst  
Ch 6  
t32 BCKst  
Ch 7  
t32 BCKst  
Ch 8  
t32 BCKst  
I2S Mode  
DIN1  
(Single)  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
Figure 13. TDM Format  
7.3.17 HDCP  
The HDCP Cipher function is implemented in the serializer per HDCP v1.4 specification. The serializer provides  
HDCP encryption of audiovisual content when connected to an HDCP capable source. HDCP authentication and  
shared key generation is performed using the HDCP Control Channel, which is embedded in the forward and  
backward channels of the serial link. On-chip Non-Volatile Memory (NVM) is used to store the HDCP keys. The  
confidential HDCP keys are loaded by TI during the manufacturing process and are not accessible external to the  
device.  
7.3.17.1 HDCP I2S Audio Encryption  
Depending on the quality and specifications of the audiovisual source, HDCP encryption of digital audio may be  
required. When HDCP is active, packetized Data Island Transport audio is also encrypted along with the video  
data per HDCP v.1.4. I2S audio transmitted in Forward Channel Frame Transport mode is not encrypted. System  
designers should consult the specific HDCP specifications to determine if encryption of digital audio is required  
by the specific application audiovisual source.  
7.3.18 Built-In Self Test (BIST)  
An optional At-Speed Built-In Self Test (BIST) feature supports testing of the high-speed serial link and back  
channel without external data connections. This is useful in the prototype stage, equipment production, in-system  
test, and system diagnostics.  
7.3.18.1 BIST Configuration And Status  
The BIST mode is enabled at the deserializer by pin (BISTEN) or BIST configuration register. The test may  
select either an external TMDS clock or the internal Oscillator clock (OSC) frequency. In the absence of the  
TMDS clock, the user can select the internal OSC frequency at the deserializer through the BISTC pin or BIST  
configuration register.  
When BIST is activated at the deserializer, a BIST enable signal is sent to the serializer through the Back  
Channel. The serializer outputs a test pattern and drives the link at speed. The deserializer detects the test  
pattern and monitors it for errors. The deserializer PASS output pin toggles to flag each frame received  
containing one or more errors. The serializer also tracks errors indicated by the CRC fields in each back channel  
frame.  
Copyright © 2014–2019, Texas Instruments Incorporated  
23  
 
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
The BIST status can be monitored in real time on the deserializer PASS pin with each detected error resulting in  
a half-pixel clock period toggled LOW. After BIST is deactivated, the result of the last test is held on the PASS  
output until reset (new BIST test or Power Down). A High on PASS indicates no errors were detected. A Low on  
PASS indicates one or more errors were detected. The duration of the test is controlled by the pulse width  
applied to the deserializer BISTEN pin. LOCK is valid throughout the entire duration of BIST.  
See Figure 14 for the BIST mode flow diagram.  
Step 1: The Serializer is paired with another FPD-Link III Deserializer, then BIST Mode is enabled through the  
BISTEN pin or through register on the Deserializer. Right after BIST is enabled, part of the BIST sequence  
requires bit 0x04[5] be toggled locally on the Serializer (set 0x04[5]=1, then set 0x04[5]=0). The desired clock  
source is selected through the deserializer BISTC pin or through register on the Deserializer.  
Step 2: An all-zeros pattern is balanced, scrambled, randomized, and sent through the FPD-Link III interface to  
the deserializer. When the serializer and the deserializer are in BIST mode and the deserializer acquires Lock,  
the PASS pin of the deserializer goes high and BIST starts checking the data stream. If an error in the payload (1  
to 35) is detected, the PASS pin will switch low for one-half of the clock period. During the BIST test, the PASS  
output can be monitored and counted to determine the payload error rate.  
Step 3: To stop the BIST mode, the deserializer BISTEN pin is set low. The deserializer stops checking the data.  
The final test result is held on the PASS pin. If the test ran error-free, the PASS output will remain HIGH. If there  
one or more errors were detected, the PASS output will output constant LOW. The PASS output state is held  
until a new BIST is run, the device is reset, or the device is powered down. The BIST duration is user-controlled  
by the duration of the BISTEN signal.  
Step 4: The link returns to normal operation after the deserializer BISTEN pin is low. Figure 15 shows the  
waveform diagram of a typical BIST test for two cases. Case 1 is error-free, and Case 2 shows one with multiple  
errors. In most cases, it is difficult to generate errors due to the robustness of the link (differential data  
transmission and so forth), thus they may be introduced by greatly extending the cable length, faulting the  
interconnect medium, or reducing signal condition enhancements (Rx Equalization).  
For more information on using BIST, refer to the white paper: Using BIST on 94x.  
Normal  
Step 1: DES in BIST  
BIST  
Wait  
Step 2: Wait, SER in BIST  
BIST  
start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
stop  
Step 4: DES/SER in Normal  
Figure 14. BIST Mode Flow Diagram  
7.3.18.2 Forward Channel and Back Channel Error Checking  
While in BIST mode, the serializer stops sampling the FPD-Link input pins and switches over to an internal all-  
zeroes pattern. The internal all-zeroes pattern goes through the scrambler, DC-balancing, and so forth and is  
transmitted over the serial link to the deserializer. The deserializer, on locking to the serial stream, compares the  
recovered serial stream with all-zeroes and records any errors in status registers. Errors are also dynamically  
reported on the PASS pin of the deserializer.  
The back-channel data is checked for CRC errors once the serializer locks onto the back-channel serial stream,  
as indicated by link detect status (register bit 0x0C[0] - Table 8). CRC errors are recorded in an 8-bit register in  
the deserializer. The register is cleared when the serializer enters BIST mode. As soon as the serializer enters  
BIST mode, the functional mode CRC register starts recording any back channel CRC errors. The BIST mode  
CRC error register is active in BIST mode only, and the register keeps a record of the last BIST run until the  
register is cleared or the serializer enters BIST mode again.  
24  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
BISTEN  
(DES)  
TxCLKOUT  
TxOUT[3:0]  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
X
DATA  
(internal)  
X
X
PASS  
BIST  
Normal  
PRBS  
Normal  
Result  
Held  
BIST Test  
BIST Duration  
Figure 15. BIST Waveforms, in Conjunction With Deserializer Signals  
7.3.19 Internal Pattern Generation  
The DS90UH929-Q1 serializer provides an internal pattern generation feature that allows for basic testing and  
debugging of an integrated panel. The test patterns are simple and repetitive and provide quick visual verification  
of panel operation. As long as the device is not in power down mode, the test pattern will be displayed even if no  
input is applied. If no clock is received, the test pattern can be configured to use a programmed oscillator  
frequency. For more information, refer to Exploring the Internal Test Pattern Generation Feature of 720p FPD-  
Link III Devices (SNLA132).  
7.3.19.1 Pattern Options  
The DS90UH929-Q1 serializer pattern generator is capable of generating 17 default patterns designers can use  
for basic testing and debugging of panels. Each can be inverted using register bits (Table 8), shown below:  
1. White/Black (default/inverted)  
2. Black/White  
3. Red/Cyan  
4. Green/Magenta  
5. Blue/Yellow  
6. Horizontally Scaled Black to White/White to Black  
7. Horizontally Scaled Black to Red/Cyan to White  
8. Horizontally Scaled Black to Green/Magenta to White  
9. Horizontally Scaled Black to Blue/Yellow to White  
10. Vertically Scaled Black to White/White to Black  
11. Vertically Scaled Black to Red/Cyan to White  
12. Vertically Scaled Black to Green/Magenta to White  
13. Vertically Scaled Black to Blue/Yellow to White  
14. Custom Color (or its inversion) configured in PGRS  
15. Black-White/White-Black Checkerboard (or custom checkerboard color, configured in PGCTL)  
16. YCBR/RBCY VCOM pattern, orientation is configurable from PGCTL  
17. Color Bars (White, Yellow, Cyan, Green, Magenta, Red, Blue, Black) – Note: not included in the auto-  
scrolling feature  
Additionally, the Pattern Generator incorporates one configurable full-screen, 24-bit color pattern, which is  
controlled by the PGRS, PGGS, and PGBS registers. This is pattern #14. One of the pattern options is statically  
selected in the PGCTL register when Auto-Scrolling is disabled. The PGTSC and PGTSO1-8 registers control  
the pattern selection and order when Auto-Scrolling is enabled.  
Copyright © 2014–2019, Texas Instruments Incorporated  
25  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
7.3.19.2 Color Modes  
By default, the Pattern Generator operates in 24-bit color mode, where all bits of the Red, Green, and Blue  
outputs are enabled. 18-bit color mode can be activated from the configuration registers (Table 8). In 18-bit  
mode, the 6 most significant bits (bits 7-2) of the Red, Green, and Blue outputs are enabled; the 2 least  
significant bits will be 0.  
7.3.19.3 Video Timing Modes  
The Pattern Generator has two video timing modes—external and internal. In external timing mode, the Pattern  
Generator detects the video frame timing present on the DE and VS inputs. If Vertical Sync signaling is not  
present on VS, the Pattern Generator determines Vertical Blank by detecting when the number of inactive pixel  
clocks (DE = 0) exceeds twice the detected active line length. In internal timing mode, the Pattern Generator  
uses custom video timing as configured in the control registers. The internal timing generation may also be  
driven by an external clock. By default, external timing mode is enabled. Internal timing or internal timing with  
external clock are enabled by the control registers (Table 8).  
7.3.19.4 External Timing  
In external timing mode, the Pattern Generator passes the incoming DE, HS, and VS signals unmodified to the  
video control outputs after a two-pixel clock delay. It extracts the active frame dimensions from the incoming  
signals to properly scale the brightness patterns. If the incoming video stream does not use the VS signal, the  
Pattern Generator determines the Vertical Blank time by detecting a long period of pixel clocks without DE  
asserted.  
7.3.19.5 Pattern Inversion  
The Pattern Generator also incorporates a global inversion control, located in the PGCFG register, which causes  
the output pattern to be bitwise-inverted. For example, the full screen Red pattern becomes full-screen Cyan, and  
the Vertically Scaled Black to Green pattern becomes Vertically Scaled White to Magenta.  
7.3.19.6 Auto Scrolling  
The Pattern Generator supports an Auto-Scrolling mode, in which the output pattern cycles through a list of  
enabled pattern types. A sequence of up to 16 patterns may be defined in the registers. The patterns may  
appear in any order in the sequence and may also appear more than once.  
7.3.19.7 Additional Features  
Additional pattern generator features can be accessed through the Pattern Generator Indirect Register Map. It  
consists of the Pattern Generator Indirect Address (PGIA reg_0x66 — Table 8) and the Pattern Generator  
Indirect Data (PGID reg_0x67 — Table 8). See Exploring the Internal Test Pattern Generation Feature of 720p  
FPD-Link III Devices (SNLA132).  
7.3.20 Spread Spectrum Clock Tolerance  
The DS90UH929-Q1 (for DVI mode) tolerates a spread spectrum input clock to help reduce EMI. The following  
triangular SSC profile is supported:  
Frequency deviation 2.5%  
Modulation rate 100 kHz  
Maximum frequency deviation and maximum modulation rate are not supported simultaneously. Some typical  
examples:  
Frequency deviation: 2.5%, modulation rate: 50 kHz  
Frequency deviation: 1.25%, modulation rate: 100 kHz  
26  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
7.4 Device Functional Modes  
7.4.1 Mode Select Configuration Settings (MODE_SEL[1:0])  
Configuration of the device may be done through the MODE_SEL[1:0] input pins, or through the configuration  
register bits. A pullup resistor and a pulldown resistor of suggested values may be used to set the voltage ratio of  
the MODE_SEL[1:0] inputs. See Table 5 and Table 6. These values will be latched into the register location  
during power-up:  
Table 4. MODE_SEL[1:0] Settings  
MODE  
SETTING  
FUNCTION  
Look for remote EDID. If none found, use internal SRAM EDID. Can be overridden  
from register. Remote EDID address may be overridden from default 0xA0.  
0
EDID_SEL: Display ID Select  
1
0
1
0
1
0
1
0
1
Use external local EDID.  
HDMI audio.  
AUX_I2S: AUX Audio Channel  
HDMI + AUX audio channel.  
Internal HDCP/HDMI control.  
EXT_CTL: External Controller  
Override  
External HDCP/HDMI control from I2C interface pins.  
Enable FPD-Link III for twisted-pair cabling.  
Enable FPD-Link III for coaxial cabling.  
Use internal SRAM EDID.  
COAX: Cable Type  
REM_EDID_LOAD: Remote  
EDID Load  
If available, remote EDID is copied into internal SRAM EDID.  
1.8V  
R
3
VR4  
MODE_SEL0  
MODE_SEL1  
1.8V  
R
4
Serializer  
R5  
VR6  
R
6
Figure 16. MODE_SEL[1:0] Connection Diagram  
Table 5. Configuration Select (MODE_SEL0)  
RATIO  
VR4/VDD18  
TARGET VR4  
SUGGESTED  
RESISTOR  
PULLDOWN R4 k  
(1% tol)  
SUGGESTED  
RESISTOR PULLUP  
R3 k(1% tol)  
(V)  
#
EDID_SEL  
AUX_I2S  
1
0
0
OPEN  
Any value less than  
100(1)  
0
0
2
3
4
0.208  
0.553  
0.668  
0.374  
0.995  
1.202  
118  
82.5  
68.1  
30.9  
102  
137  
0
1
1
1
0
1
(1) This resistor does not need to be 1% tolerance. 5% is acceptable.  
Table 6. Configuration Select (MODE_SEL1)  
RATIO  
VR6/VDD18  
TARGET VR6  
(V)  
SUGGESTED  
RESISTOR  
SUGGESTED  
RESISTOR  
REM_EDID_LOA  
D
#
EXT_CTL  
COAX  
PULLUP R5 kΩ  
(1% tol)  
PULLDOWN R6  
k(1% tol)  
1
0
0
OPEN  
Any value less  
than 100(1)  
0
0
0
(1) This resistor does not need to be 1% tolerance. 5% is acceptable.  
Copyright © 2014–2019, Texas Instruments Incorporated  
27  
 
 
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Table 6. Configuration Select (MODE_SEL1) (continued)  
RATIO  
VR6/VDD18  
TARGET VR6  
(V)  
SUGGESTED  
RESISTOR  
SUGGESTED  
RESISTOR  
REM_EDID_LOA  
D
#
EXT_CTL  
COAX  
PULLUP R5 kΩ  
(1% tol)  
PULLDOWN R6  
k(1% tol)  
2
3
4
5
6
7
8
0.208  
0.323  
0.440  
0.553  
0.668  
0.789  
1
0.374  
0.582  
0.792  
0.995  
1.202  
1.420  
1.8  
118  
107  
113  
82.5  
68.1  
56.2  
30.9  
51.1  
88.7  
102  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
137  
210  
Any value less  
than 100(1)  
OPEN  
The strapped values can be viewed and/or modified in the following locations:  
EDID_SEL : Latched into BRIDGE_CTL[0], EDID_DISABLE (0x4F[0]).  
AUX_I2S : Latched into BRIDGE_CFG[1], AUDIO_MODE[1] (0x54[1]).  
EXT_CTL: Latched into BRIDGE_CFG[7], EXT_CONTROL (0x54[7]).  
COAX : Latched into DUAL_CTL1[7], COAX_MODE (0x5B[7]).  
REM_EDID_LOAD : Latched into BRIDGE_CFG[5] (0x54[5]).  
7.4.2 FPD-Link III Single Link Operation  
The single link mode of the device transmits the video over a single FPD-Link III to a single receiver. Single link  
mode supports frequencies up to 96 MHz for 24-bit video when paired with the DS90UH940-Q1/DS90UH948-Q1.  
This mode is compatible with the DS90UH926Q-Q1/DS90UH928Q-Q1 when operating below 85 MHz.  
7.4.3 Frequency Detection Circuit May Reset the FPD-Link III PLL During a Temperature Ramp  
When ambient temperature around the DS90UH929-Q1 changes by more than 40°C, the frequency detection  
logic in the device can RESET the FPD-Link III PLL even though the input PCLK has not changed. This behavior  
may result in a loss of lock in the Deserializer and flicker on the system display.  
The following programming sequence is required for all systems. This should be written after the user register  
configuration of the DS90UH929-Q1 and downstream deserializer configuration.  
Disable the “Reset FPD-Link III PLL on Frequency Change” feature after the DS90UX9X9-Q1 power-up.  
Set Reg0x5B[5]=0b (Disable PLL reset feature via RST_PLL_FREQ field in DUAL_CTL1 register)  
Any device configuration including this one should be written as a part of the Init A sequence as shown in  
Figure 29.  
7.5 Programming  
7.5.1 Serial Control Bus  
This serializer may also be configured by the use of a I2C-compatible serial control bus. Multiple devices may  
share the serial control bus (up to 8 device addresses supported). The device address is set through a resistor  
divider (R1 and R2 — see Figure 17 below) connected to the IDx pin.  
28  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Programming (continued)  
VDD18  
VDDI2C  
R1  
R2  
VR2  
IDx  
4.7k  
4.7k  
HOST  
SER  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
Figure 17. Serial Control Bus Connection  
The serial control bus consists of two signals, SCL and SDA. SCL is a Serial Bus Clock Input. SDA is the Serial  
Bus Data Input / Output signal. Both SCL and SDA signals require an external pullup resistor to VDD18 or VDD33  
.
For most applications, a 4.7-kpullup resistor is recommended. However, the pullup resistor value may be  
adjusted for capacitive loading and data rate requirements. The signals are either pulled High, or driven Low.  
The IDx pin configures the control interface to one of 8 possible device addresses. A pullup resistor and a  
pulldown resistor may be used to set the appropriate voltage on the IDx input pin See Table 8. 1% or 5%  
resistors can be used.  
Table 7. Serial Control Bus Addresses for IDx  
SUGGESTED  
RESISTOR R1 kΩ  
(1% tol)  
SUGGESTED  
RESISTOR R2 kΩ  
(1% tol)  
RATIO  
VR2 / VDD18  
IDEAL VR2  
(V)  
#
7-BIT ADDRESS  
8-BIT ADDRESS  
1
0
0
OPEN  
Any value less than  
100(1)  
0x0C  
0x18  
2
3
4
5
6
7
8
0.208  
0.323  
0.440  
0.553  
0.668  
0.789  
1
0.374  
0.582  
0.792  
0.995  
1.202  
1.420  
1.8  
118  
107  
113  
82.5  
68.1  
56.2  
30.9  
51.1  
88.7  
102  
0x0E  
0x10  
0x12  
0x14  
0x16  
0x18  
0x1A  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
137  
210  
Any value less than  
100(1)  
OPEN  
(1) This resistor does not need to be 1% tolerance. 5% is acceptable.  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SCL transitions Low while SDA is High. A STOP occurs when SDA transitions High while SCL is also HIGH. See  
Figure 18.  
SDA  
SCL  
S
P
START condition, or  
START repeat condition  
STOP condition  
Figure 18. Start and Stop Conditions  
Copyright © 2014–2019, Texas Instruments Incorporated  
29  
 
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
To communicate with an I2C slave, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it Acknowledges (ACKs) the master by driving the SDA bus Low. If the address does not  
match a slave address of the device, it Not-acknowledges (NACKs) the master by letting SDA be pulled High.  
ACKs also occur on the bus when data is being transmitted. When the master is writing data, the slave ACKs  
after every data byte is successfully received. When the master is reading data, the master ACKs after every  
data byte is received to let the slave know that the host is ready to receive another data byte. When the master  
wants to stop reading, it NACKs after the last data byte and creates a stop condition on the bus. All  
communication on the bus begins with either a Start condition or a Repeated Start condition. All communication  
on the bus ends with a Stop condition. A READ is shown in Figure 19 and a WRITE is shown in Figure 20.  
Register Address  
Slave Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
A
2
A
1
A
0
0
S
Sr  
1
P
Figure 19. Serial Control Bus — Read  
Register Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
0
S
P
Figure 20. Serial Control Bus — Write  
The I2C Master located at the serializer must support I2C clock stretching. For more information on I2C interface  
requirements and throughput considerations, refer to the TI Application Note AN-2173 I2C Communication Over  
FPD-Link III with Bidirectional Control Channel (SNLA131).  
7.5.2 Multi-Master Arbitration Support  
The Bidirectional Control Channel in the FPD-Link III devices implements I2C-compatible bus arbitration in the  
proxy I2C master implementation. When sending a data bit, each I2C master senses the value on the SDA line.  
If the master is sending a logic 1 but senses a logic 0, the master has lost arbitration. It will stop driving SDA,  
retrying the transaction when the bus becomes idle. Thus, multiple I2C masters may be implemented in the  
system.  
Ensure that all I2C masters on the bus support multi-master arbitration.  
Assign I2C addresses with more than a single bit set to 1 for all devices on the I2C bus. 0x6A, 0x7B, and 0x37  
are examples of good choices for an I2C address. 0x40 and 0x20 are examples of bad choices for an I2C  
address.  
If the system does require master-slave operation in both directions across the BCC, some method of  
communication must be used to ensure only one direction of operation occurs at any time. The communication  
method could include using available read/write registers in the deserializer to allow masters to communicate  
with each other to pass control between the two masters. An example would be to use register 0x18 or 0x19 in  
the deserializer as a mailbox register to pass control of the channel from one master to another.  
7.5.3 I2C Restrictions on Multi-Master Operation  
The I2C specification does not provide for arbitration between masters under certain conditions. The system  
should make sure the following conditions cannot occur to prevent undefined conditions on the I2C bus:  
One master generates a repeated Start while another master is sending a data bit.  
One master generates a Stop while another master is sending a data bit.  
One master generates a repeated Start while another master sends a Stop.  
Note that these restrictions mainly apply to accessing the same register offsets within a specific I2C slave.  
30  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
7.5.4 Multi-Master Access to Device Registers for Newer FPD-Link III Devices  
When using the latest generation of FPD-Link III devices, DS90UH929-Q1 or DS90UH940-Q1/DS90UH948-Q1  
registers may be accessed simultaneously from both local and remote I2C masters. These devices have internal  
logic to properly arbitrate between sources to allow proper read and write access without risk of corruption.  
Access to remote I2C slaves would still be allowed in only one direction at a time.  
7.5.5 Multi-Master Access to Device Registers for Older FPD-Link III Devices  
When using older FPD-Link III devices, simultaneous access to serializer or deserializer registers from both local  
and remote I2C masters may cause incorrect operation, thus restrictions should be imposed on accessing of  
serializer and deserializer registers. The likelihood of an error occurrence is relatively small, but it is possible for  
collision on reads and writes to occur, resulting in an errored read or write.  
Two basic options are recommended. The first is to allow device register access only from one controller. This  
would allow only the Host controller to access the serializer registers (local) and the deserializer registers  
(remote). A controller at the deserializer would not be allowed to access the deserializer or serializer registers.  
The second basic option is to allow local register access only with no access to remote serializer or deserializer  
registers. The Host controller would be allowed to access the serializer registers while a controller at the  
deserializer could access those register only. Access to remote I2C slaves would still be allowed in one direction.  
In a very limited case, remote and local access could be allowed to the deserializer registers at the same time.  
Register access can work as intended if both local and remote masters are accessing the same deserializer  
register. This allows a simple method of passing control of the Bidirectional Control Channel from one master to  
another.  
7.5.6 Restrictions on Control Channel Direction for Multi-Master Operation  
Only one direction should be active at any time across the Bidirectional Control Channel. If both directions are  
required, some method of transferring control between I2C masters should be implemented.  
Copyright © 2014–2019, Texas Instruments Incorporated  
31  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
7.6 Register Maps  
Table 8. Serial Control Bus Registers  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
FUNCTION  
(hex)  
BIT(S)  
DESCRIPTION  
0
0x00  
I2C Device ID  
7:1  
0
RW  
RW  
Strap  
0x00  
DEVICE_ID  
ID Setting  
7-bit address of Serializer. Defaults to address configured by the IDx strap pin.  
I2C ID setting.  
0: Device I2C address is from IDx strap pin (default).  
1: Device I2C address is from 0x00[7:1].  
1
0x01  
Reset  
7:5  
4
0x00  
Reserved.  
A software I2C  
reset command  
issued by writing  
to register 0x01  
is supported only  
when operating  
I2C in the 3.3V  
mode.  
RW  
RW  
HDMI Reset  
HDMI Digital Reset.  
Resets the HDMI digital block. This bit is self-clearing.  
0: Normal operation.  
1: Reset.  
3:2  
1
Reserved.  
Digital  
RESET1  
Reset the entire digital block including registers. This bit is self-clearing.  
0: Normal operation (default).  
1: Reset.  
Following the setting of this bit, the software should also set bit 0x4F[1] (BRIDGE_CTL  
register). This will restore register values that are initially loaded from Non-Volatile  
Memory to their default state.  
0
RW  
Digital  
RESET0  
Reset the entire digital block except registers. This bit is self-clearing.  
0: Normal operation (default).  
1: Reset.  
Registers which are loaded by pin strap will be restored to their original strap value when  
this bit is set. These registers show 'Strap' as their default value in this table.  
Registers 0x00, 0x13, 0x15, 0x18, 0x19, 0x1A, 0x48-0x55, 0x58, 0x5B, 0xC0, 0xC2,  
0xC3, 0xC6, 0xC8, 0xCE and 0xD0 are also restored to their default value when this bit  
is set.  
32  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
3
0x03  
General  
7
RW  
0xD2  
Back channel  
Enable/disable back channel CRC Checker.  
Configuration  
CRC Checker 0: Disable.  
Enable  
1: Enable (default).  
6
5
Reserved.  
RW  
I2C Remote  
Write Auto  
Acknowledge  
Automatically acknowledge I2C remote writes. When enabled, I2C writes to the  
Deserializer (or any remote I2C Slave, if I2C PASS ALL is enabled) are immediately  
acknowledged without waiting for the Deserializer to acknowledge the write. This allows  
higher throughput on the I2C bus. Note: this mode will prevent any NACK from a remote  
device from reaching the I2C master.  
0: Disable (default).  
1: Enable.  
4
3
RW  
RW  
Filter Enable  
HS, VS, DE two-clock filter. When enabled, pulses less than two full TMDS clock cycles  
on the DE, HS, and VS inputs will be rejected.  
0: Filtering disable.  
1: Filtering enable (default).  
I2C Pass-  
through  
I2C pass-through mode. Read/Write transactions matching any entry in the Slave Alias  
registers will be passed through to the remote Deserializer.  
0: Pass-through disabled (default).  
1: Pass-through enabled.  
2
1
Reserved.  
RW  
RW  
TMDS Clock  
Auto  
Switch over to internal oscillator in the absence of TMDS Clock.  
0: Disable auto-switch.  
1: Enable auto-switch (default).  
0
7
Reserved.  
4
0x04  
Mode Select  
0x80  
Failsafe State Input failsafe state.  
0: Failsafe to High.  
1: Failsafe to Low (default).  
6
5
Reserved.  
RW  
RW  
CRC Error  
Reset  
Clear back channel CRC Error counters. This bit is NOT self-clearing.  
0: Normal operation (default).  
1: Clear counters.  
4
Video gate  
Set to 1. This prevents video from being sent during the blanking interval.  
Reserved.  
3:0  
Copyright © 2014–2019, Texas Instruments Incorporated  
33  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
5
0x05  
I2C Control  
7:5  
4:3  
0x00  
Reserved.  
RW  
SDA Output  
Delay  
Configures output delay on the SDA output. Setting this value will increase output delay  
in units of 40ns.  
Nominal output delay values for SCL to SDA are:  
00: 240ns (default).  
01: 280ns.  
10: 320ns.  
11: 360ns.  
2
RW  
Local Write  
Disable  
Disable remote writes to local registers. Setting this bit to 1 will prevent remote writes to  
local device registers from across the control channel. This prevents writes to the  
Serializer registers from an I2C master attached to the Deserializer. Setting this bit does  
not affect remote access to I2C slaves at the Serializer.  
0: Enable (default).  
1: Disable.  
1
0
RW  
RW  
I2C Bus Timer Speed up I2C bus Watchdog Timer.  
Speedup 0: Watchdog Timer expires after approximately 1s (default).  
1: Watchdog Timer expires after approximately 50µs.  
I2C Bus Timer Disable I2C bus Watchdog Timer. The I2C Watchdog Timer may be used to detect when  
Disable  
the I2C bus is free or hung up following an invalid termination of a transaction. If SDA is  
high and no signaling occurs for approximately 1s, the I2C bus will be assumed to be  
free. If SDA is low and no signaling occurs, the device will attempt to clear the bus by  
driving 9 clocks on SCL.  
0: Enable (default).  
1: Disable.  
6
0x06  
DES ID  
7:1  
0
RW  
RW  
RW  
0x00  
DES Device ID 7-bit I2C address of the remote Deserializer. A value of 0 in this field disables I2C access  
to the remote Deserializer. This field is automatically configured by the Bidirectional  
Control Channel once RX Lock has been detected. Software may overwrite this value,  
but should also assert the FREEZE DEVICE ID bit to prevent overwriting by the  
Bidirectional Control Channel.  
Freeze Device Freeze Deserializer Device ID.  
ID  
1: Prevents auto-loading of the Deserializer Device ID by the Bidirectional Control  
Channel. The ID will be frozen at the value written.  
0: Allows auto-loading of the Deserializer Device ID from the Bidirectional Control  
Channel.  
7
0x07  
Slave ID[0]  
7:1  
0
0x00  
Slave ID 0  
7-bit I2C address of the remote Slave 0 attached to the remote Deserializer. If an I2C  
transaction is addressed to Slave Alias ID 0, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote Slave 0.  
Reserved.  
34  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
8
0x08  
Slave Alias[0]  
7:1  
RW  
0x00  
Slave Alias ID 7-bit Slave Alias ID of the remote Slave 0 attached to the remote Deserializer. The  
0
transaction will be remapped to the address specified in the Slave ID 0 register. A value  
of 0 in this field disables access to the remote Slave 0.  
0
Reserved.  
10  
11  
12  
0x0A  
0x0B  
0x0C  
CRC Errors  
7:0  
R
R
0x00  
0x00  
CRC Error  
LSB  
Number of back channel CRC errors – 8 least significant bits. Cleared by 0x04[5].  
7:0  
CRC Error  
MSB  
Number of back channel CRC errors – 8 most significant bits. Cleared by 0x04[5].  
General Status  
7:5  
4
Reserved.  
0x00  
Link Lost  
Link lost flag for selected port:  
This bit indicates that loss of link has been detected. This register bit will stay high until  
cleared using the CRC Error Reset in register 0x04.  
3
R
BIST CRC  
Error  
Back channel CRC error(s) during BIST communication with Deserializer. This bit is  
cleared upon loss of link, restart of BIST, or assertion of CRC Error Reset bit in 0x04[5].  
0: No CRC errors detected during BIST.  
1: CRC error(s) detected during BIST.  
2
1
R
R
TMDS Clock  
Detect  
Pixel clock status:  
0: Valid clock not detected at HDMI input.  
1: Valid clock detected at HDMI input.  
DES Error  
CRC error(s) during normal communication with Deserializer. This bit is cleared upon  
loss of link or assertion of 0x04[5].  
0: No CRC errors detected.  
1: CRC error(s) detected.  
0
R
Link Detect  
Link detect status:  
0: Cable link not detected.  
1: Cable link detected.  
Copyright © 2014–2019, Texas Instruments Incorporated  
35  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
13  
0x0D  
GPIO0  
Configuration  
7:4  
3
R
Revision ID  
Revision ID.  
RW  
0x00  
GPIO0 Output Local GPIO Output Value. This value is output on the GPIO pin when the GPIO function  
Value  
is enabled, the local GPIO direction is set to output, and remote GPIO control is disabled.  
0: Output LOW (default).  
1: Output HIGH.  
2:0  
RW  
GPIO0 Mode  
Determines operating mode for the GPIO pin:  
x00: Functional input mode.  
x10: TRI-STATE™  
001: GPIO mode, output.  
011: GPIO mode, input.  
101: Remote-hold mode. The GPIO pin will be an output, and the value is received from  
the remote Deserializer. In remote-hold mode, data is maintained on link loss.  
111: Remote-default mode. The GPIO pin will be an output, and the value is received  
from the remote Deserializer. In remote-default mode, GPIO's Output Value bit is output  
on link loss.  
14  
0x0E  
GPIO1 and  
GPIO2  
Configuration  
7
RW  
RW  
0x00  
GPIO2 Output Local GPIO Output Value. This value is output on the GPIO pin when the GPIO function  
Value  
is enabled, the local GPIO direction is set to output, and remote GPIO control is disabled.  
0: Output LOW (default).  
1: Output HIGH.  
6:4  
GPIO2 Mode  
Determines operating mode for the GPIO pin:  
x00: Functional input mode.  
x10: TRI-STATE™.  
001: GPIO mode, output.  
011: GPIO mode, input.  
101: Remote-hold mode. The GPIO pin will be an output, and the value is received from  
the remote Deserializer. In remote-hold mode, data is maintained on link loss.  
111: Remote-default mode. The GPIO pin will be an output, and the value is received  
from the remote Deserializer. In remote-default mode, GPIO's Output Value bit is output  
on link loss.  
3
RW  
RW  
GPIO1 Output Local GPIO Output Value. This value is output on the GPIO pin when the GPIO function  
Value  
is enabled, the local GPIO direction is set to output, and remote GPIO control is disabled.  
0: Output LOW (default).  
1: Output HIGH.  
2:0  
GPIO1 Mode  
Determines operating mode for the GPIO pin:  
x00: Functional input mode.  
x10: TRI-STATE™.  
001: GPIO mode, output.  
011: GPIO mode, input.  
101: Remote-hold mode. The GPIO pin will be an output, and the value is received from  
the remote Deserializer. In remote-hold mode, data is maintained on link loss.  
111: Remote-default mode. The GPIO pin will be an output, and the value is received  
from the remote Deserializer. In remote-default mode, GPIO's Output Value bit is output  
on link loss.  
36  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
15  
0x0F  
GPIO3  
Configuration  
7:4  
3
0x00  
Reserved.  
GPIO3 Output Local GPIO Output Value. This value is output on the GPIO pin when the GPIO function  
RW  
Value  
is enabled, the local GPIO direction is set to output, and remote GPIO control is disabled.  
0: Output LOW (default).  
1: Output HIGH.  
2:0  
RW  
GPIO3 Mode  
Determines operating mode for the GPIO pin:  
x00: Functional input mode.  
x10: TRI-STATE.  
001: GPIO mode, output.  
011: GPIO mode, input.  
101: Remote-hold mode. The GPIO pin will be an output, and the value is received from  
the remote Deserializer. In remote-hold mode, data is maintained on link loss.  
111: Remote-default mode. The GPIO pin will be an output, and the value is received  
from the remote Deserializer. In remote-default mode, GPIO's Output Value bit is output  
on link loss.  
16  
0x10  
GPIO5_REG  
and  
GPIO6_REG  
Configuration  
7
RW  
0x00  
GPIO6_REG  
Output Value  
Local GPIO Output Value. This value is output on the GPIO pin when the GPIO function  
is enabled and the local GPIO direction is set to output.  
0: Output LOW (default).  
1: Output HIGH.  
6
Reserved.  
5:4  
RW  
RW  
GPIO6_REG  
Mode  
Determines operating mode for the GPIO pin:  
00: Functional input mode.  
10: TRI-STATE™.  
01: GPIO mode, output.  
11: GPIO mode; input.  
3
GPIO5_REG  
Output Value  
Local GPIO Output Value. This value is output on the GPIO pin when the GPIO function  
is enabled and the local GPIO direction is set to output.  
0: Output LOW (default).  
1: Output HIGH.  
2
Reserved.  
1:0  
RW  
GPIO5_REG  
Mode  
Determines operating mode for the GPIO pin:  
00: Functional input mode.  
10: TRI-STATE™.  
01: GPIO mode, output.  
11: GPIO mode; input.  
Copyright © 2014–2019, Texas Instruments Incorporated  
37  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
17  
0x11  
GPIO7_REG  
and  
GPIO8_REG  
Configuration  
7
RW  
0x00  
GPIO8_REG  
Output Value  
Local GPIO Output Value. This value is output on the GPIO pin when the GPIO function  
is enabled and the local GPIO direction is set to output.  
0: Output LOW (default).  
1: Output HIGH.  
6
Reserved.  
5:4  
RW  
RW  
GPIO8_REG  
Mode  
Determines operating mode for the GPIO pin:  
00: Functional input mode.  
10: TRI-STATE.  
01: GPIO mode, output.  
11: GPIO mode; input.  
3
GPIO7_REG  
Output Value  
Local GPIO Output Value. This value is output on the GPIO pin when the GPIO function  
is enabled and the local GPIO direction is set to output.  
0: Output LOW (default).  
1: Output HIGH.  
2
Reserved.  
1:0  
RW  
GPIO7_REG  
Mode  
Determines operating mode for the GPIO pin:  
00: Functional input mode.  
10: TRI-STATE.  
01: GPIO mode, output.  
11: GPIO mode; input.  
38  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
18  
0x12  
Data Path  
Control  
7
6
0x00  
Reserved.  
RW  
Pass RGB  
Setting this bit causes RGB data to be sent independent of DE. However, setting this bit  
prevents HDCP operation and blocks packetized audio.  
0: Normal operation.  
1: Pass RGB independent of DE.  
5
4
3
RW  
RW  
RW  
DE Polarity  
This bit indicates the polarity of the DE (Data Enable) signal.  
0: DE is positive (active high, idle low).  
1: DE is inverted (active low, idle high).  
I2S Repeater  
Regen  
Regenerate I2S data from Repeater I2S pins.  
0: Repeater pass through I2S from video pins (default).  
1: Repeater regenerate I2S from I2S pins.  
I2S Channel B I2S Channel B Enable Override.  
Enable  
0: Disable I2S Channel B override.  
Override  
1: Set I2S Channel B Enable from 0x12[0].  
2
1
RW  
RW  
18-Bit Video  
Select  
0: Select 24-bit video mode.  
1: Select 18-bit video mode.  
I2S Transport  
Select  
Select I2S transport mode:  
0: Enable I2S Data Island transport (default).  
1: Enable I2S Data Forward Channel Frame transport.  
0
RW  
I2S Channel B I2S Channel B Enable.  
Enable  
0: I2S Channel B disabled.  
1: Enable I2S Channel B on B1 input.  
Note that in a repeater, this bit may be overridden by the in-band I2S mode detection.  
19  
0x13  
General Purpose  
Control  
7
6:4  
3
R
R
R
R
0x88  
MODE_SEL1  
Done  
Indicates MODE_SEL1 value has stabilized and has been latched.  
MODE_SEL1  
Decode  
Returns the 3-bit decode of the MODE_SEL1 pin.  
MODE_SEL0  
Done  
Indicates MODE_SEL0 value has stabilized and has been latched.  
Returns the 3-bit decode of the MODE_SEL0 pin.  
2:0  
MODE_SEL0  
Decode  
Copyright © 2014–2019, Texas Instruments Incorporated  
39  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
20  
0x14  
BIST Control  
7:3  
2:1  
0x00  
Reserved.  
Allows choosing different OSC clock frequencies for forward channel frame.  
OSC clock frequency in functional mode when TMDS clock is not present and 0x03[2]=1:  
RW  
OSC Clock  
Source  
00: 50 MHz oscillator.  
01: 50 MHz oscillator.  
10: 100 MHz oscillator.  
11: 25 MHz oscillator.  
Clock source in BIST mode i.e. when 0x14[0]=1:  
00: External pixel clock.  
01: 33 MHz oscillator.  
1x: 100 MHz oscillator.  
0
RW  
RW  
BIST Enable  
BIST control:  
0: Disabled (default).  
1: Enabled.  
21  
0x15  
I2C Voltage  
Select  
7:0  
0x01  
I2C Voltage  
Select  
Selects 1.8 or 3.3V for the I2C_SDA and I2C_SCL pins. This register is loaded from the  
I2C_VSEL strap option from the SCLK pin at power-up. At power-up, a logic LOW will  
select 3.3V operation, while a logic HIGH (pull-up resistor attached) will select 1.8V  
signaling. Issuing either of the digital resets via register 0x01 will cause the I2C_VSEL  
value to be reset to 3.3V operation.  
Reads of this register return the status of the I2C_VSEL control:  
0: Select 1.8V signaling.  
1: Select 3.3V signaling.  
This bit may be overwritten via register access or via eFuse program by writing an 8-bit  
value to this register:  
Write 0xb5 to set I2C_VSEL.  
Write 0xb6 to clear I2C_VSEL.  
22  
23  
0x16  
0x17  
BCC Watchdog  
Control  
7:1  
RW  
0xFE  
0x1E  
Timer Value  
The watchdog timer allows termination of a control channel transaction if it fails to  
complete within a programmed amount of time. This field sets the Bidirectional Control  
Channel Watchdog Timeout value in units of 2 milliseconds. This field should not be set  
to 0. Set to 0x01.  
0
7
RW  
RW  
Timer Control  
I2C Pass All  
Disable Bidirectional Control Channel (BCC) Watchdog Timer:  
0: Enable BCC Watchdog Timer operation (default).  
1: Disable BCC Watchdog Timer operation.  
I2C Control  
0: Enable Forward Control Channel pass-through only of I2C accesses to I2C Slave IDs  
matching either the remote Deserializer Slave ID or the remote Slave ID (default).  
1: Enable Forward Control Channel pass-through of all I2C accesses to I2C Slave IDs  
that do not match the Serializer I2C Slave ID.  
6:4  
3:0  
RW  
RW  
SDA Hold  
Time  
Internal SDA hold time:  
Configures the amount of internal hold time provided for the SDA input relative to the  
SCL input. Units are 40 nanoseconds.  
I2C Filter  
Depth  
Configures the maximum width of glitch pulses on the SCL and SDA inputs that will be  
rejected. Units are 5 nanoseconds.  
40  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
24  
0x18  
SCL High Time  
7:0  
RW  
0x7F  
TX_SCL_HIGH I2C Master SCL high time:  
This field configures the high pulse width of the SCL output when the Serializer is the  
Master on the local I2C bus. Units are 40 ns for the nominal oscillator clock frequency.  
The default value is set to provide a minimum 5us SCL high time with the internal  
oscillator clock running at 26.25MHz rather than the nominal 25MHz. Delay includes 5  
additional oscillator clock periods.  
Min_delay = 38.0952ns * (TX_SCL_HIGH + 5).  
25  
0x19  
SCL Low Time  
7:0  
RW  
0x7F  
TX_SCL_LOW I2C Master SCL low time:  
This field configures the low pulse width of the SCL output when the Serializer is the  
Master on the local I2C bus. This value is also used as the SDA setup time by the I2C  
Slave for providing data prior to releasing SCL during accesses over the Bidirectional  
Control Channel. Units are 40 ns for the nominal oscillator clock frequency. The default  
value is set to provide a minimum 5us SCL low time with the internal oscillator clock  
running at 26.25MHz rather than the nominal 25MHz. Delay includes 5 additional clock  
periods.  
Min_delay = 38.0952ns * (TX_SCL_LOW + 5).  
26  
0x1A  
Data Path  
Control 2  
7:4  
3
Reserved.  
R
Strap  
0x01  
SECONDARY Enable Secondary Audio.  
_AUDIO  
This register indicates that the AUX audio channel is enabled. The control for this  
function is via the AUX_AUDIO bit in the BRIDGE_CFG register register offset 0x54).  
The AUX_AUDIO control is strapped from the MODE_SEL0 pin at power-up.  
2
1
Reserved.  
RW  
RW  
MODE_28B  
Enable 28-bit Serializer Mode.  
0: 24-bit high-speed data + 3 low-speed control (DE, HS, VS).  
1: 28-bit high-speed data mode.  
0
I2S Surround  
Enable 5.1- or 7.1-channel I2S audio transport:  
0: 2-channel or 4-channel I2S audio is enabled as configured in register 0x12 bits 3 and  
0.  
1: 5.1- or 7.1-channel audio is enabled.  
Note that I2S Data Island Transport is the only option for surround audio. Also note that  
in a repeater, this bit may be overridden by the in-band I2S mode detection (default).  
27  
0x1B  
BIST BC Error  
Count  
7:0  
R
0x00  
BIST BC Error BIST back channel CRC error counter.  
This register stores the back channel CRC error count during BIST Mode (saturates at  
255 errors). Clears when a new BIST is initiated or by 0x04[5].  
Copyright © 2014–2019, Texas Instruments Incorporated  
41  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
28  
0x1C  
GPIO Pin Status  
1
7
R
0x00  
GPIO7_REG  
Pin Status  
GPIO7_REG input pin status.  
Note: status valid only if pin is set to GPI (input) mode.  
6
5
R
R
GPIO6_REG  
Pin Status  
GPIO6_REG input pin status.  
Note: status valid only if pin is set to GPI (input) mode.  
GPIO5_REG  
Pin Status  
GPIO5_REG input pin status.  
Note: status valid only if pin is set to GPI (input) mode.  
4
3
Reserved.  
R
R
R
R
GPIO3 Pin  
Status  
GPIO3 input pin status.  
Note: status valid only if pin is set to GPI (input) mode.  
2
1
0
GPIO2 Pin  
Status  
GPIO2 input pin status.  
Note: status valid only if pin is set to GPI (input) mode.  
GPIO1 Pin  
Status  
GPIO1 input pin status.  
Note: status valid only if pin is set to GPI (input) mode.  
GPIO0 Pin  
Status  
GPIO0 input pin status.  
Note: status valid only if pin is set to GPI (input) mode.  
29  
30  
0x1D  
0x1E  
GPIO Pin Status  
2
7:1  
0
0x00  
0x01  
Reserved  
R
GPIO8_REG  
Pin Status  
GPIO8_REG input pin status.  
Note: status valid only if pin is set to GPI (input) mode.  
Transmitter Port  
Select  
7:3  
2
Reserved.  
RW  
PORT1_I2C_E Port1 I2C Enable.  
N
Enables secondary I2C address. The second I2C address provides access to Port1  
registers as well as registers that are shared between Port0 and Port1. The second I2C  
address value will be set to DeviceID + 1 (7-bit format). The PORT1_I2C_EN bit must  
also be set to allow accessing remote devices over the second link when the device is in  
Replicate mode.  
1
0
RW  
RW  
PORT1_SEL  
PORT0_SEL  
Selects Port1 for register access from primary I2C address.  
For writes, Port1 registers and shared registers will both be written.  
For reads, Port1 registers and shared registers will be read. This bit must be cleared to  
read Port0 registers.  
This bit is ignored if PORT1_I2C_EN is set.  
Selects Port0 for register access from primary I2C address.  
For writes, Port0 registers and shared registers will both be written.  
For reads, Port0 registers and shared registers will be read. Note that if PORT1_SEL is  
also set, then Port1 registers will be read.  
This bit is ignored if PORT1_I2C_EN is set.  
42  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
31  
0x1F  
Frequency  
Counter  
7:0  
RW  
0x00  
Frequency  
Count  
Frequency counter control.  
A write to this register will enable a frequency counter to count the number of pixel clock  
during a specified time interval. The time interval is equal to the value written multiplied  
by the oscillator clock period (nominally 40ns). A read of the register returns the number  
of pixel clock edges seen during the enabled interval. The frequency counter will freeze  
at 0xff if it reaches the maximum value. The frequency counter will provide a rough  
estimate of the pixel clock period. If the pixel clock frequency is known, the frequency  
counter may be used to determine the actual oscillator clock frequency.  
32  
0x20  
Deserializer  
7
RW  
0x00  
FREEZE_DES Freeze Deserializer Capabilities.  
Capabilities 1  
_CAP  
Prevent auto-loading of the Deserializer Capabilities by the Bidirectional Control Channel.  
The Capabilities will be frozen at the values written in registers 0x20 and 0x21.  
6
5
Reserved.  
SEND_FREQ  
Send Frequency Training Pattern.  
Indicates the DS90UH929-Q1 should send the Frequency Training Pattern. This field is  
automatically configured by the Bidirectional Control Channel once RX Lock has been  
detected. Software may overwrite this value, but must also set the FREEZE DES CAP bit  
to prevent overwriting by the Bidirectional Control Channel.  
4
3
2
RW  
RW  
RW  
0x00  
SEND_EQ  
Send Equalization Training Pattern.  
Indicates the DS90UH929-Q1 should send the Equalization Training Pattern. This field is  
automatically configured by the Bidirectional Control Channel once RX Lock has been  
detected. Software may overwrite this value, but must also set the FREEZE DES CAP bit  
to prevent overwriting by the Bidirectional Control Channel.  
DUAL_LINK_C Dual link Capabilities.  
AP Indicates if the Deserializer is capable of dual link operation. This field is automatically  
configured by the Bidirectional Control Channel once RX Lock has been detected.  
Software may overwrite this value, but must also set the FREEZE DES CAP bit to  
prevent overwriting by the Bidirectional Control Channel.  
DUAL_CHANN Dual Channel 0/1 Indication.  
EL In a dual-link capable device, indicates if this is the primary or secondary channel.  
0: Primary channel (channel 0).  
1: Secondary channel (channel 1).  
This field is automatically configured by the Bidirectional Control Channel once RX Lock  
has been detected. Software may overwrite this value, but must also set the FREEZE  
DES CAP bit to prevent overwriting by the Bidirectional Control Channel.  
Copyright © 2014–2019, Texas Instruments Incorporated  
43  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
32  
0x20  
Deserializer  
1
RW  
0x00  
VID_24B_HD_ Deserializer supports 24-bit video concurrently with HD audio.  
Capabilities 1  
AUD  
This field is automatically configured by the Bidirectional Control Channel once RX Lock  
has been detected. Software may overwrite this value, but must also set the FREEZE  
DES CAP bit to prevent overwriting by the Bidirectional Control Channel.  
0
RW  
RW  
DES_CAP_FC Deserializer supports GPIO in the Forward Channel Frame.  
_GPIO  
This field is automatically configured by the Bidirectional Control Channel once RX Lock  
has been detected. Software may overwrite this value, but must also set the FREEZE  
DES CAP bit to prevent overwriting by the Bidirectional Control Channel.  
33  
38  
0x21  
0x26  
Deserializer  
Capabilities 2  
7:2  
1:0  
7:3  
2:0  
Reserved.  
Reserved.  
Reserved.  
Link Detect  
Control  
0x00  
LINK DETECT Bidirectional Control Channel Link Detect Timer.  
TIMER This field configures the link detection timeout period. If the timer expires without valid  
communication over the reverse channel, link detect will be deasserted.  
000: 162 microseconds.  
001: 325 microseconds.  
010: 650 microseconds.  
011: 1.3 milliseconds.  
100: 10.25 microseconds.  
101: 20.5 microseconds.  
110: 41 microseconds.  
111: 82 microseconds.  
44  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
48  
0x30  
SCLK_CTRL  
7
RW  
0x00  
SCLK/WS  
SCLK to Word Select Ratio.  
0 : 64.  
1 : 32.  
6:5  
4:3  
2:1  
RW  
RW  
RW  
MCLK/SCLK  
MCLK to SCLK Select Ratio.  
00 : 4.  
01 : 2.  
10 : 1.  
11 : 8.  
CLEAN  
CLOCK_DIV  
Clock Cleaner divider.  
00 : FPD_VCO_CLOCK/8.  
01 : FPD_VCO_CLOCK/4.  
10 : FPD_VCO_CLOCK/2.  
11 : AON_OSC.  
CLEAN Mode If non-zero, the SCLK Input or HDMI N/CTS generated Audio Clock is cleaned digitally  
before being used.  
00 : Off.  
01 : ratio of 1.  
10 : ratio of 2.  
11 : ratio of 4.  
0
RW  
MASTER  
If set, the SCLK I/O and the WS_IO are used as an output and the Clock Generation  
Circuits are enabled, otherwise they are inputs.  
49  
50  
51  
52  
53  
54  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
AUDIO_CTS0  
AUDIO_CTS1  
AUDIO_CTS2  
AUDIO_N0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:4  
3:0  
7:6  
5:3  
2:0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
CTS[7:0]  
CTS[15:8]  
CTS[23:16]  
N[7:0]  
If non-zero, the CTS value is used to generate a new clock from the PFD PLLs VCO.  
If non-zero, the CTS value is used to generate a new clock from the PFD PLLs VCO.  
If non-zero, the CTS value is used to generate a new clock from the PFD PLLs VCO.  
If non-zero, the CTS value is used to generate a new clock from the PFD PLLs VCO.  
If non-zero, the CTS value is used to generate a new clock from the PFD PLLs VCO.  
Selects the LPF_COEFF in the Clock Cleaner (Feedback is divided by 2^COEFF).  
If non-zero, the CTS value is used to generate a new clock from the PFD PLLs VCO.  
Reserved.  
AUDIO_N1  
N[15:8]  
AUDIO_N2_CO  
EFF  
COEFF[3:0]  
N[19:16]  
55  
0x37  
CLK_CLEAN_ST  
S
R
R
0x00  
0x00  
IN_FIFO_LVL Clock Cleaner Input FIFO Level.  
OUT_FIFO_LV Clock Cleaner Output FIFO Level.  
L
Copyright © 2014–2019, Texas Instruments Incorporated  
45  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
64  
0x40  
ANA_IA_CNTL  
7:5  
4:2  
0x00  
Reserved.  
RW  
ANA_IA_SEL  
Analog register select  
Selects target for register access  
000b: Disabled  
001b - 011b: Reserved  
100b: HDMI Registers  
101b: FPD3 TX Registers  
11xb: Reserved  
1
0
RW  
RW  
ANA_AUTO_I Analog Register Auto Increment  
NC 0: Disable auto-increment mode  
1: Enable auto-increment mode. Upon completion of a read or write, the register address  
will automatically be incremented by 1.  
ANA_IA_REA Start Analog Register Read  
D
0: Write analog register  
1: Read analog register  
65  
66  
0x41  
0x42  
ANA_IA_ADDR  
ANA_IA_DATA  
7:0  
7:0  
RW  
RW  
0x00  
0x00  
ANA_IA_ADD Analog register offset  
R
This register contains the 8-bit register offset for the indirect access.  
ANA_IA_DATA Analog register data  
Writing this register will cause an indirect write of the ANA_IA_DATA value to the  
selected analog block register. Reading this register will return the value of the selected  
analog block register.  
72  
0x48  
APB_CTL  
7:5  
4:3  
Reserved.  
RW  
0x00  
APB_SELECT APB Select: Selects target for register access.  
00 : HDMI APB interface.  
01 : EDID SRAM.  
10 : Configuration Data (read only).  
11 : Die ID (read only).  
2
1
0
RW  
RW  
RW  
APB_AUTO_I APB Auto Increment: Enables auto-increment mode. Upon completion of an APB read or  
NC  
write, the APB address will automatically be incremented by 0x4 for HDMI registers or by  
0x1 for others.  
APB_READ  
Start APB Read: Setting this bit to a 1 will begin an APB read. Read data will be available  
in the APB_DATAx registers. The APB_ADRx registers should be programmed prior to  
setting this bit. This bit will be cleared when the read is complete.  
APB_ENABLE APB Interface Enable: Set to a 1 to enable the APB interface. The APB_SELECT bits  
indicate what device is selected.  
73  
74  
75  
76  
0x49  
0x4A  
0x4B  
0x4C  
APB_ADR0  
APB_ADR1  
APB_DATA0  
APB_DATA1  
7:0  
7:0  
7:0  
7:0  
RW  
RW  
RW  
RW  
0x00  
0x00  
0x00  
0x00  
APB_ADR0  
APB_ADR1  
APB_DATA0  
APB_DATA1  
APB Address byte 0 (LSB).  
APB Address byte 1 (MSB).  
Byte 0 (LSB) of the APB Interface Data.  
Byte 1 of the APB Interface Data.  
46  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
77  
78  
79  
0x4D  
0x4E  
0x4F  
APB_DATA2  
APB_DATA3  
BRIDGE_CTL  
7:0  
7:0  
7:5  
4
RW  
0x00  
0x00  
APB_DATA2  
APB_DATA3  
Byte 2 of the APB Interface Data.  
RW  
Byte 3 (MSB) of the APB Interface Data.  
Reserved.  
RW  
0x00  
CEC_CLK_SR CEC Clock Source Select: Selects clock source for generating the 32.768kHz clock for  
C
CEC operations in the HDMI Receive Controller.  
0 : Selects internal generated clock.  
1 : Selects external 25MHz oscillator clock.  
3
2
RW  
RW  
CEC_CLK_EN CEC Clock Enable: Enable CEC clock generation. Enables generation of the 32.768kHz  
clock for the HDMI Receive controller. This bit should be set prior to enabling CEC  
operation via the HDMI controller registers.  
EDID_CLEAR Clear EDID SRAM: Set to 1 to enable clearing the EDID SRAM. The EDID_INIT bit must  
be set at the same time for the clear to occur. This bit will be cleared when the  
initialization is complete.  
1
0
7
6
5
4
3
RW  
R
EDID_INIT  
Initialize EDID SRAM from EEPROM: Causes a reload of the EDID SRAM from the non-  
volatile EDID EEPROM. This bit will be cleared when the initialization is complete.  
Strap  
0x03  
EDID_DISABL Disable EDID access via DDC/I2C: Disables access to the EDID SRAM via the HDMI  
DDC interface. This value is loaded from the MODE_SEL0 pin at power-up.  
E
80  
0x50  
BRIDGE_STS  
R
RX5V_DETEC RX +5V detect: Indicates status of the RX_5V pin. When asserted, indicates the HDMI  
T
interface has detected valid voltage on the RX_5V input.  
R
HDMI_INT  
HDMI Interrupt Status: Indicates an HDMI Interrupt is pending. HDMI interrupts are  
serviced through the HDMI Registers via the APB Interface.  
R
HDCP_INT  
INIT_DONE  
HDCP Interrupt Status: Indicates an HDCP Transmitter Interrupt is pending. HDCP  
Transmit interrupts are serviced through the HDCP Interrupt Control and Status registers.  
R
Initialization Done: Initialization sequence has completed. This step will complete after  
configuration complete (CFG_DONE).  
R
REM_EDID_L Remote EDID Loaded: Indicates EDID SRAM has been loaded from a remote EDID  
OAD  
EEPROM device over the Bidirectional Control Channel. The EDID_CKSUM value  
indicates if the EDID load was successful.  
2
1
R
R
CFG_DONE  
Configuration Complete: Indicates automatic configuration has completed. This step will  
complete prior to initialization complete (INIT_DONE).  
CFG_CKSUM Configuration checksum status: Indicates result of Configuration checksum during  
initialization. The device verifies the 2’s complement checksum in the last 128 bytes of  
the EEPROM. A value of 1 indicates the checksum passed.  
0
R
EDID_CKSUM EDID checksum Status: Indicates result of EDID checksum during EDID initialization. The  
device verifies the 2’s complement checksum in the first 256 bytes of the EEPROM. A  
value of 1 indicates the checksum passed.  
Copyright © 2014–2019, Texas Instruments Incorporated  
47  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
81  
0x51  
EDID_ID  
7:1  
RW  
0x50  
EDID_ID  
EDID I2C Slave Address: I2C address used for accessing the EDID information. These  
are the upper 7 bits in 8-bit format addressing, where the lowest bit is the Read/Write  
control.  
0
RW  
RW  
0
EDID_RDONL EDID Read Only: Set to a 1 puts the EDID SRAM memory in read-only mode for access  
Y
via the HDMI DDC interface. Setting to a 0 allows writes to the EDID SRAM memory.  
82  
0x52  
EDID_CFG0  
7
Reserved.  
6:4  
0x01  
EDID_SDA_H Internal SDA Hold Time: This field configures the amount of internal hold time provided  
OLD  
for the DDC_SDA input relative to the DDC_SCL input. Units are 40 nanoseconds. The  
hold time is used to qualify the start detection to avoid false detection of Start or Stop  
conditions.  
3:0  
RW  
RW  
0x0E  
0x00  
EDID_FLTR_D I2C Glitch Filter Depth: This field configures the maximum width of glitch pulses on the  
PTH  
DDC_SCL and DDC_SDA inputs that will be rejected. Units are 5 nanoseconds.  
83  
0x53  
EDID_CFG1  
7:2  
1:0  
Reserved.  
EDID_SDA_DL SDA Output Delay: This field configures output delay on the DDC_SDA output when the  
Y
EDID memory is accessed. Setting this value will increase output delay in units of 40ns.  
Nominal output delay values for DDC_SCL to DDC_SDA are:  
00 : 240ns.  
01 : 280ns.  
10 : 320ns.  
11 : 360ns.  
48  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
84  
0x54  
BRIDGE_CFG  
7
RW  
Strap  
EXT_CTL  
External Control: When this bit Is set, the internal bridge control function is disabled. This  
disables initialization of the HDMI Receiver as well as initiation of HDCP functions. These  
operations must be controlled by an external controller attached to the I2C interface. This  
value is loaded from the MODE_SEL1 pin at power-up.  
6
5
RW  
RW  
0x00  
HDMI_INT_EN HDMI Interrupt Enable: When this bit is set, Interrupts from the HDMI Receive controller  
will be reported on the INTB pin. Software may check the BRIDGE_STS register to  
determine if the interrupt is from the HDMI Receiver or the HDCP Transmitter.  
Strap  
DIS_REM_EDI Disable Remote EDID load: Disables automatic load of EDID SRAM from a remote EDID  
D
EEPROM. By default, the device will check the remote I2C bus for an EEPROM with a  
valid EDID, and load the EDID data to local EDID SRAM. If this bit is set to a 1, the  
remote EDID load will be bypassed. This value is loaded from the MODE_SEL1 pin at  
power-up.  
4
3
RW  
RW  
0x00  
0x00  
0x00  
AUTO_INIT_DI Disable Automatic initialization: The Bridge control will automatically initialize the HDMI  
S
Receiver for operation. Setting this bit to a 1 will disable automatic initialization of the  
HDMI Receiver. In this mode, initialization of the HDMI Receiver must be done through  
EEPROM configuration or via external control.  
AUTO_HDCP_ Disable Automatic HDCP_CTRL setting: By default the internal bridge control function will  
DIS  
configure the HDMI Receiver for HDCP operation using default settings for bits in the  
HDCP_CTRL register. Setting this bit to a 1 will disable automatic control of the  
HDCP_CTRL register in the HDMI Receiver.  
2
1
RW  
RW  
AUDIO_TDM  
Enable TDM Audio: Setting this bit to a 1 will enable TDM audio for the HDMI audio.  
AUDIO_MODE Audio Mode: Selects source for audio to be sent over the FPD-Link III downstream link.  
0 : HDMI audio.  
1 : Local/DVI audio.  
Local audio is sourced from the device I2S pins rather than from HDMI, and is useful in  
modes such as DVI that do not include audio.  
0
RW  
Strap  
AUX_AUDIO_ AUX Audio Channel Enable: Setting this bit to a 1 will enable the AUX audio channel.  
EN  
This allows sending additional 2-channel audio in addition to the HDMI or DVI audio. This  
bit is loaded from the MODE_SEL0 pin at power-up.  
Copyright © 2014–2019, Texas Instruments Incorporated  
49  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
85  
0x55  
AUDIO_CFG  
7
RW  
0x00  
TDM_2_PARA Enable I2S TDM to parallel audio conversion: When this bit is set, the i2s tdm to parallel  
LLEL  
conversion module is enabled. The clock output from the i2s tdm to parallel conversion  
module is them used to send data to the deserializer.  
6
RW  
HDMI_I2S_OU HDMI Audio Output Enable: When this bit is set, the HDMI I2S audio data will be output  
T
on the I2S audio interface pins. This control is ignored if the  
BRIDGE_CFG:AUDIO_MODE is not set to 00 (HDMI audio only).  
5:4  
3
Reserved.  
RW  
RW  
RW  
0x0C  
RST_ON_TYP Reset Audio FIFO on Type Change: When this bit is set, the internal bridge control  
function will reset the HDMI Audio FIFO on a change in the Audio type.  
E
2
1
RST_ON_AIF Reset Audio FIFO on Audio Infoframe: When this bit is set, the internal bridge control  
function will reset the HDMI Audio FIFO on a change in the Audio Infoframe checksum.  
RST_ON_AVI Reset Audio FIFO on Audio Video Information Infoframe: When this bit is set, the internal  
bridge control function will reset the HDMI Audio FIFO on a change in the Audio Video  
Information Infoframe checksum.  
0
RW  
RST_ON_ACR Reset Audio FIFO on Audio Control Frame: When this bit is set, the internal bridge  
control function will reset the HDMI Audio FIFO on a change in the Audio Control Frame  
N or CTS fields.  
90  
0x5A  
FPD3_STS  
7
6
R
R
0x00  
FPD3_LINK_R This bit indicates that the FPD-Link III has detected a valid downstream connection and  
DY  
FPD3_TX_ST FPD-Link III transmit status:  
This bit indicates that the FPD-Link III transmitter is active and the receiver is LOCKED to  
determined capabilities for the downstream link.  
S
the transmit clock. It is only asserted once a valid input has been detected, and the FPD-  
Link III transmit connection has entered the correct mode (Single vs. Dual mode).  
5:4  
R
FPD3_PORT_ FPD3 Port Status: If FPD3_TX_STS is set to a 1, this field indicates the port mode status  
STS  
as follows:  
01: Single FPD-Link III Transmit on port 0.  
3
2
1
0
R
R
R
R
TMDS_VALID HDMI TMDS Valid: This bit indicates the TMDS interface is recovering valid TMDS data  
from HDMI.  
HDMI_PLL_LO HDMI PLL lock status: Indicates the HDMI PLL has locked to the incoming TMDS clock.  
CK  
NO_HDMI_CL No TMDS Clock Detected: This bit indicates the Frequency Detect circuit did not detect  
K
an TMDS clock greater than the value specified in the FREQ_LOW register.  
FREQ_STABL HDMI Frequency is Stable: Indicates the Frequency Detection circuit has detected a  
stable TMDS clock frequency.  
E
50  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
91  
0x5B  
FPD3_CTL1  
7
RW  
Strap  
FPD3_COAX_ FPD3 Coax Mode: Enables configuration for the FPD3 Interface cabling type.  
MODE  
0 : Twisted Pair.  
1 : Coax This bit is loaded from the MODE_SEL1 pin at power-up.  
6
5
Reserved.  
RW  
RW  
1
0
RST_PLL_FR Reset FPD3 PLL on Frequency Change: When set to a 1, frequency changes detected  
EQ by the Frequency Detect circuit will result in a reset of the FPD3 PLL. Set to 0.  
4
FREQ_DET_P Frequency Detect Select PLL Clock: Determines the clock source for the Frequency  
LL  
detection circuit:  
0 : TMDS clock (prior to PLL).  
1: HDMI PLL clock.  
3
2
1
0
7
6
Reserved.  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
92  
0x5C  
FPD3_CTL2  
RW  
RW  
0x00  
FORCE_LINK_ Force Link Ready: Forces link ready indication, bypassing back channel link detection.  
RDY  
5
FORCE_CLK_ Force Clock Detect: Forces the HDMI/OpenLDI clock detect circuit to indicate presence  
DET  
of a valid input clock. This bypasses the clock detect circuit, allowing operation with an  
input clock that does not meet frequency or stability requirements.  
4:3  
RW  
FREQ_STBL_ Frequency Stability Threshold: The Frequency detect circuit can be used to detect a  
THR  
stable clock frequency. The Stability Threshold determines the amount of time required  
for the clock frequency to stay within the FREQ_HYST range to be considered stable:  
00 : 40us.  
01 : 80us.  
10 : 320us.  
11 : 1.28ms.  
2:0  
RW  
0x02  
FREQ_HYST  
Frequency Detect Hysteresis: The Frequency detect hysteresis setting allows ignoring  
minor fluctuations in frequency. A new frequency measurement will be captured only if  
the measured frequency differs from the current measured frequency by more than the  
FREQ_HYST setting. The FREQ_HYST setting is in MHz.  
93  
0x5D  
FREQ_LOW  
7
6
Reserved.  
RW  
RW  
0
6
HDMI_RST_M HDMI Phy Reset Mode:  
ODE 0 : Reset HDMI Phy on change in mode or frequency.  
1 : Don't reset HDMI Phy on change in mode or frequency if +5 V is asserted.  
5:0  
FREQ_LO_TH Frequency Low Threshold: Sets the low threshold for the TMDS Clock frequency detect  
R
circuit in MHz. This value is used to determine if the TMDS clock frequency is too low for  
proper operation.  
Copyright © 2014–2019, Texas Instruments Incorporated  
51  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
95  
0x5F  
HDMI Frequency  
7:0  
R
0x00  
HDMI_FREQ  
HDMI frequency:  
Returns the value of the HDMI frequency in MHz. A value of 0 indicates the HDMI  
receiver is not detecting a valid signal.  
100  
0x64  
Pattern  
Generator  
Control  
7:4  
RW  
0x10  
Pattern  
Generator  
Select  
Fixed Pattern Select  
Selects the pattern to output when in Fixed Pattern Mode. Scaled patterns are evenly  
distributed across the horizontal or vertical active regions. This field is ignored when  
Auto-Scrolling Mode is enabled.  
xxxx: normal/inverted.  
0000: Checkerboard.  
0001: White/Black (default).  
0010: Black/White.  
0011: Red/Cyan.  
0100: Green/Magenta.  
0101: Blue/Yellow.  
0110: Horizontal Black-White/White-Black.  
0111: Horizontal Black-Red/White-Cyan.  
1000: Horizontal Black-Green/White-Magenta.  
1001: Horizontal Black-Blue/White-Yellow.  
1010: Vertical Black-White/White-Black.  
1011: Vertical Black-Red/White-Cyan.  
1100: Vertical Black-Green/White-Magenta.  
1101: Vertical Black-Blue/White-Yellow.  
1110: Custom color (or its inversion) configured in PGRS, PGGS, PGBS registers.  
1111: VCOM.  
See TI App Note AN-2198.  
3
2
Reserved.  
RW  
Color Bars  
Pattern  
Enable color bars:  
0: Color Bars disabled (default).  
1: Color Bars enabled.  
Overrides the selection from reg_0x64[7:4].  
1
0
RW  
RW  
VCOM Pattern Reverse order of color bands in VCOM pattern:  
Reverse  
0: Color sequence from top left is (YCBR) (default).  
1: Color sequence from top left is (RBCY).  
Pattern  
Pattern Generator enable:  
Generator  
Enable  
0: Disable Pattern Generator (default).  
1: Enable Pattern Generator.  
52  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
101  
0x65  
Pattern  
Generator  
Configuration  
7
6
0x00  
Reserved.  
Checkerboard Scale Checkered Patterns:  
RW  
Scale  
0: Normal operation (each square is 1x1 pixel) (default).  
1: Scale checkered patterns (VCOM and checkerboard) by 8 (each square is 8x8 pixels).  
Setting this bit gives better visibility of the checkered patterns.  
5
4
RW  
RW  
Custom  
Use Custom Checkerboard Color:  
Checkerboard 0: Use white and black in the Checkerboard pattern (default).  
1: Use the Custom Color and black in the Checkerboard pattern.  
PG 18–bit  
Mode  
18-bit Mode Select:  
0: Enable 24-bit pattern generation. Scaled patterns use 256 levels of brightness  
(default).  
1: Enable 18-bit color pattern generation. Scaled patterns will have 64 levels of  
brightness and the R, G, and B outputs use the six most significant color bits.  
3
2
RW  
RW  
External Clock Select External Clock Source:  
0: Selects the internal divided clock when using internal timing (default).  
1: Selects the external pixel clock when using internal timing.  
This bit has no effect in external timing mode (PATGEN_TSEL = 0).  
Timing Select  
Timing Select Control:  
0: The Pattern Generator uses external video timing from the pixel clock, Data Enable,  
Horizontal Sync, and Vertical Sync signals (default).  
1: The Pattern Generator creates its own video timing as configured in the Pattern  
Generator Total Frame Size, Active Frame Size. Horizontal Sync Width, Vertical Sync  
Width, Horizontal Back Porch, Vertical Back Porch, and Sync Configuration registers.  
See Exploring the Internal Test Pattern Generation Feature of 720p FPD-Link III Devices  
(SNLA132).  
1
0
RW  
RW  
Color Invert  
Auto Scroll  
Enable Inverted Color Patterns:  
0: Do not invert the color output (default).  
1: Invert the color output.  
See Exploring the Internal Test Pattern Generation Feature of 720p FPD-Link III Devices  
(SNLA132).  
Auto Scroll Enable:  
0: The Pattern Generator retains the current pattern (default).  
1: The Pattern Generator will automatically move to the next enabled pattern after the  
number of frames specified in the Pattern Generator Frame Time (PGFT) register.  
See Exploring the Internal Test Pattern Generation Feature of 720p FPD-Link III Devices  
(SNLA132).  
102  
0x66  
PGIA  
7:0  
RW  
0x00  
PG Indirect  
Address  
This 8-bit field sets the indirect address for accesses to indirectly-mapped registers. It  
should be written prior to reading or writing the Pattern Generator Indirect Data register.  
See Exploring the Internal Test Pattern Generation Feature of 720p FPD-Link III Devices  
(SNLA132).  
Copyright © 2014–2019, Texas Instruments Incorporated  
53  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
103  
0x67  
PGID  
7:0  
RW  
0x00  
PG Indirect  
Data  
When writing to indirect registers, this register contains the data to be written. When  
reading from indirect registers, this register contains the read back value.  
See Exploring the Internal Test Pattern Generation Feature of 720p FPD-Link III Devices  
(SNLA132).  
112  
0x70  
Slave ID[1]  
7:1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x00  
Slave ID 1  
Slave ID 2  
Slave ID 3  
Slave ID 4  
Slave ID 5  
Slave ID 6  
Slave ID 7  
7-bit I2C address of the remote Slave 1 attached to the remote Deserializer. If an I2C  
transaction is addressed to Slave Alias ID 1, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote Slave 1.  
0
Reserved.  
113  
114  
115  
116  
117  
118  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
Slave ID[2]  
Slave ID[3]  
Slave ID[4]  
Slave ID[5]  
Slave ID[6]  
Slave ID[7]  
7:1  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
7-bit I2C address of the remote Slave 2 attached to the remote Deserializer. If an I2C  
transaction is addressed to Slave Alias ID 2, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote Slave 2.  
0
Reserved.  
7:1  
7-bit I2C address of the remote Slave 3 attached to the remote Deserializer. If an I2C  
transaction is addressed to Slave Alias ID 3, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote Slave 3.  
0
Reserved.  
7:1  
7-bit I2C address of the remote Slave 4 attached to the remote Deserializer. If an I2C  
transaction is addressed to Slave Alias ID 4, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote Slave 4.  
0
Reserved.  
7:1  
7-bit I2C address of the remote Slave 5 attached to the remote Deserializer. If an I2C  
transaction is addressed to Slave Alias ID 5, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote Slave 5.  
0
Reserved.  
7:1  
7-bit I2C address of the remote Slave 6 attached to the remote Deserializer. If an I2C  
transaction is addressed to Slave Alias ID 6, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote Slave 6.  
0
Reserved.  
7:1  
7-bit I2C address of the remote Slave 7 attached to the remote Deserializer. If an I2C  
transaction is addressed to Slave Alias ID 7, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote Slave 7.  
0
Reserved.  
54  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
119  
120  
121  
122  
123  
124  
125  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
Slave Alias[1]  
Slave Alias[2]  
Slave Alias[3]  
Slave Alias[4]  
Slave Alias[5]  
Slave Alias[6]  
Slave Alias[7]  
7:1  
RW  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Slave Alias ID 7-bit Slave Alias ID of the remote Slave 1 attached to the remote Deserializer. The  
1
transaction will be remapped to the address specified in the Slave ID 1 register. A value  
of 0 in this field disables access to the remote Slave 1.  
0
Reserved.  
7:1  
RW  
RW  
RW  
RW  
RW  
RW  
Slave Alias ID 7-bit Slave Alias ID of the remote Slave 2 attached to the remote Deserializer. The  
2
transaction will be remapped to the address specified in the Slave ID 2 register. A value  
of 0 in this field disables access to the remote Slave 2.  
0
Reserved.  
7:1  
Slave Alias ID 7-bit Slave Alias ID of the remote Slave 3 attached to the remote Deserializer. The  
3
transaction will be remapped to the address specified in the Slave ID 3 register. A value  
of 0 in this field disables access to the remote Slave 3.  
0
Reserved.  
7:1  
Slave Alias ID 7-bit Slave Alias ID of the remote Slave 4 attached to the remote Deserializer. The  
4
transaction will be remapped to the address specified in the Slave ID 4 register. A value  
of 0 in this field disables access to the remote Slave 4.  
0
Reserved.  
7:1  
Slave Alias ID 7-bit Slave Alias ID of the remote Slave 5 attached to the remote Deserializer. The  
5
transaction will be remapped to the address specified in the Slave ID 5 register. A value  
of 0 in this field disables access to the remote Slave 5.  
0
Reserved.  
7:1  
Slave Alias ID 7-bit Slave Alias ID of the remote Slave 6 attached to the remote Deserializer. The  
6
transaction will be remapped to the address specified in the Slave ID 6 register. A value  
of 0 in this field disables access to the remote Slave 6.  
0
Reserved.  
7:1  
Slave Alias ID 7-bit Slave Alias ID of the remote Slave 7 attached to the remote Deserializer. The  
7
transaction will be remapped to the address specified in the Slave ID 7 register. A value  
of 0 in this field disables access to the remote Slave 7.  
0
Reserved.  
128  
129  
130  
131  
132  
144  
145  
146  
0x80  
0x81  
0x82  
0x83  
0x84  
0x90  
0x91  
0x92  
RX_BKSV0  
RX_BKSV1  
RX_BKSV2  
RX_BKSV3  
RX_BKSV4  
TX_KSV0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
R
R
R
R
R
R
R
R
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
RX_BKSV0  
RX_BKSV1  
RX_BKSV2  
RX_BKSV3  
RX_BKSV4  
TX_KSV0  
BKSV0: Value of byte0 of the Receiver KSV.  
BKSV1: Value of byte1 of the Receiver KSV.  
BKSV2: Value of byte2 of the Receiver KSV.  
BKSV3: Value of byte3 of the Receiver KSV.  
BKSV4: Value of byte4 of the Receiver KSV.  
TX_KSV0: Value of byte0 of the Transmitter KSV.  
TX_KSV1: Value of byte1 of the Transmitter KSV.  
TX_KSV2: Value of byte2 of the Transmitter KSV.  
TX_KSV1  
TX_KSV1  
TX_KSV2  
TX_KSV2  
Copyright © 2014–2019, Texas Instruments Incorporated  
55  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
147  
148  
160  
0x93  
0x94  
0xA0  
TX_KSV3  
TX_KSV4  
RX_BCAPS  
7:0  
7:0  
7
R
R
0x00  
0x00  
TX_KSV3  
TX_KSV4  
TX_KSV3: Value of byte3 of the Transmitter KSV.  
TX_KSV4: Value of byte4 of the Transmitter KSV.  
Reserved.  
6
R
R
R
0x01  
Repeater  
Repeater: Indicates if the attached Receiver supports downstream connections. This bit  
is valid once the Bksv is ready as indicated by the BKSV_RDY bit in the HDCP.  
5
4
KSV_FIFO_RD KSV FIFO Ready: Indicates the receiver has built the list of attached KSVs and computed  
Y
the verification value V’.  
FAST_I2C  
Fast I2C: The HDCP Receiver supports fast I2C. Since the I2C is embedded in the serial  
data, this bit is not relevant.  
3:2  
1
Reserved.  
R
R
R
R
0x03  
0x00  
FEATURES_1 1.1_Features: The HDCP Receiver supports the Enhanced Encryption Status Signaling  
_1 (EESS), Advance Cipher, and Enhanced Link Verification options.  
0
7
FAST_REAUT Fast Reauthentication: The HDCP Receiver is capable of receiving (unencrypted) video  
signal during the session re-authentication.  
H
161  
162  
0xA1  
0xA2  
RX_BSTATUS0  
RX_BSTATUS1  
MAX_DEVS_E Maximum Devices Exceeded: Indicates a topology error was detected. Indicates the  
XCEEDED number of downstream devices has exceeded the depth of the Repeater's KSV FIFO.  
6:0  
DEVICE_COU Device Count: Total number of attached downstream device. For a Repeater, this will  
NT  
indicate the number of downstream devices, not including the Repeater. For an HDCP  
Receiver that is not also a Repeater, this field will be 0.  
7:4  
3
Reserved.  
R
R
R
0x00  
0x00  
MAX_CASC_E Maximum Cascade Exceeded: Indicates a topology error was detected. Indicates that  
XCEEDED  
more than seven levels of repeaters have been cascaded together.  
2:0  
7:0  
Cascade  
Depth  
Cascade Depth: Indicates the number of attached levels of devices for the Repeater.  
163  
0xA3  
KSV_FIFO  
KSV_FIFO  
KSV FIFO: Each read of the KSV FIFO returns one byte of the KSV FIFO list composed  
by the downstream Receiver.  
56  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
192  
0xC0  
HDCP_DBG  
7
6
Reserved.  
RW  
0x00  
0x00  
HDCP_I2C_T  
O_DIS  
HDCP I2C Timeout Disable: Setting this bit to a 1 will disable the bus timeout function in  
the HDCP I2C master. When enabled, the bus timeout function allows the I2C master to  
assume the bus is free if no signaling occurs for more than 1 second.  
5
4
Reserved.  
RW  
DIS_RI_SYNC Disable Ri Synchronization check: Ri is normally checked both before and after the start  
of frame 128. The check at frame 127 ensures synchronization between the two. Setting  
this bit to a 1 will disable the check at frame 127.  
3
2
RW  
RW  
RGB_CHKSU Enable RBG video line checksum: Enables sending of ones-complement checksum for  
M_EN  
each 8-bit RBG data channel following end of each video data line.  
FC_TESTMOD Frame Counter Test mode: Speeds up frame counter used for Pj and Ri verification.  
E
When set to a 1, Pj is computed every 2 frames and Ri is computed every 16 frames.  
When set to a 0, Pj is computed every 16 frames and Ri is computed every 128 frames.  
1
0
RW  
RW  
TMR_SPEEDU Timer Speedup: Speed up HDCP authentication timers.  
P
HDCP_I2C_FA HDCP I2C Fast Mode Enable Setting this bit to a 1 will enable the HDCP I2C Master in  
ST  
the HDCP Receiver to operation with Fast mode timing. If set to a 0, the I2C Master will  
operation with Standard mode timing. This bit is mirrored in the IND_STS register.  
Copyright © 2014–2019, Texas Instruments Incorporated  
57  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
194  
0xC2  
HDCP_CFG  
7
RW  
0xA8  
ENH_LV  
Enable Enhanced Link Verification: Enables enhanced link verification. Allows checking  
of the encryption Pj value on every 16th frame.  
0 = Enhanced Link Verification disabled.  
1 = Enhanced Link Verification enabled.  
6
5
RW  
RW  
HDCP_EESS  
TX_RPTR  
Enable Enhanced Encryption Status Signaling: Enables Enhanced Encryption Status  
Signaling (EESS) instead of the Original Encryption Status Signaling (OESS).  
0 = OESS mode enabled.  
1 = EESS mode enabled.  
Transmit Repeater Enable: Enables the transmitter to act as a repeater. In this mode, the  
HDCP Transmitter incorporates the additional authentication steps required of an HDCP  
Repeater.  
0 = Transmit Repeater mode disabled.  
1 = Transmit Repeater mode enabled.  
4:3  
RW  
ENC_MODE  
Encryption Control Mode: Determines mode for controlling whether encryption is required  
for video frames.  
00 = Enc_Authenticated.  
01 = Enc_Reg_Control.  
10 = Enc_Always.  
11 = Enc_InBand_Control (per frame).  
2
1
0
RW  
RW  
RW  
WAIT_100MS Enable 100MS Wait: The HDCP 1.3 specification allows for a 100Ms wait to allow the  
HDCP Receiver to compute the initial encryption values. The FPD-Link III implementation  
guarantees that the Receiver will complete the computations before the HDCP  
Transmitter. Thus the timer is unnecessary. To enable the 100ms timer, set this bit to a 1.  
RX_DET_SEL RX Detect Select: Controls assertion of the Receiver Detect Interrupt. If set to 0, the  
Receiver Detect Interrupt will be asserted on detection of an FPD-Link III Receiver. If set  
to 1, the Receiver Detect Interrupt will also require a receive lock indication from the  
receiver.  
HDCP_AVMU Enable AVMUTE: Setting this bit to a 1 will initiate AVMUTE operation. The transmitter  
TE  
will ignore encryption status controls while in this state. If this bit is set to a 0, normal  
operation will resume. This bit may only be set if the HDCP_EESS bit is also set.  
58  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
195  
0xC3  
HDCP_CTL  
7
RW  
0x00  
0x00  
HDCP_RST  
HDCP Reset : Setting this bit will reset the HDCP transmitter and dis-able HDCP  
authentication. This bit is self-clearing.  
6
5
Reserved.  
RW  
RW  
KSV_LIST_VA KSV List Valid : The controller sets this bit after validating the Repeater’s KSV List  
LID  
against the Key revocation list. This allows completion of the Authentication process. This  
bit is self-clearing.  
4
KSV_VALID  
KSV Valid : The controller sets this bit after validating the Receiver’s KSV against the  
Key revocation list. This allows continuation of the Authentication process. This bit will be  
cleared upon assertion of the KSV_RDY flag in the HDCP_STS register. Setting this bit  
to a 0 will have no effect.  
3
2
RW  
RW  
HDCP_ENC_D HDCP Encrypt Disable : Disables HDCP encryption. Setting this bit to a 1 will cause  
IS  
video data to be sent without encryption. Authentication status will be maintained. This bit  
is self-clearing.  
HDCP_ENC_E HDCP Encrypt Enable : Enables HDCP encryption. When set, if the device is  
N
authenticated, encrypted data will be sent. If device is not authenticated, a blue screen  
will be sent. Encryption should always be enabled when video data requiring content  
protection is being supplied to the transmitter. When this bit is not set, video data will be  
sent without encryption. Note that when CFG_ENC_MODE is set to Enc_Always, this bit  
will be read only with a value of 1.  
1
0
RW  
RW  
HDCP_DIS  
HDCP_EN  
HDCP Disable: Disables HDCP authentication. Setting this bit to a 1 will disable the  
HDCP authentication. This bit is self-clearing.  
HDCP Enable/Restart: Enables HDCP authentication. If HDCP is already enabled, setting  
this bit to a 1 will restart authentication. Setting this bit to a 0 will have no effect. A  
register read will return the current HDCP enabled status.  
Copyright © 2014–2019, Texas Instruments Incorporated  
59  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
196  
0xC4  
HDCP_STS  
7
R
0x00  
I2C_ERR_DET HDCP I2C Error Detected: This bit indicates an error was detected on the embedded  
communications channel with the HDCP Receiver. Setting of this bit might indicate that a  
problem exists on the link between the HDCP Transmitter and HDCP Receiver. This bit  
will be cleared on read.  
6
R
RX_INT  
RX Interrupt : Status of the RX Interrupt signal. The signal is received from the attached  
HDCP Receiver and is the status on the INTB_IN pin of the HDCP Receiver. The signal  
is active low, so a 0 indicates an interrupt condition.  
5
4
R
R
RX_LOCK_DE Receiver Lock Detect : This bit indicates that the downstream Receiver has indicated  
T
Receive Lock to incoming serial data.  
DOWN_HPD  
Downstream Hot Plug Detect: This bit indicates a downstream repeater has reported a  
Hot Plug event, indicating addition of a new receiver. This bit will be cleared on read.  
3
2
R
R
RX_DETECT  
Receiver Detect : This bit indicates that a downstream Receiver has been detected.  
KSV_LIST_RD HDCP Repeater KSV List Ready : This bit indicates that the Receiver KSV list has been  
Y
read and is available in the KSV_FIFO registers. The device will wait for the controller to  
set the KSV_LIST_VALID bit in the HDCP_CTL register before continuing. This bit will be  
cleared once the controller sets the KSV_LIST_VALID bit.  
1
0
R
R
KSV_RDY  
HDCP Receiver KSV Ready : This bit indicates that the Receiver KSV has been read and  
is available in the HDCP_BKSV registers. If the de-vice is not a Repeater, it will wait for  
the controller to set the KSV_VALID bit in the HDCP_CTL register before continuing. This  
bit will be cleared once the controller sets the KSV_VALID bit.  
AUTHED  
HDCP Authenticated: Indicates the HDCP authentication has completed successfully.  
The controller may now send video data requiring content protection. This bit will be  
cleared if authentication is lost or if the controller restarts authentication.  
198  
0xC6  
ICR  
7
6
5
RW  
RW  
RW  
0x00  
IE_IND_ACC  
Interrupt on Indirect Access Complete: Enables interrupt on completion of Indirect  
Register Access.  
IE_RXDET_IN Interrupt on Receiver Detect: Enables interrupt on detection of a downstream Receiver. If  
T
HDCP_CFG:RX_DET_SEL is set to a 1, the interrupt will wait for Receiver Lock Detect.  
IE_RX_INT  
Interrupt on Receiver interrupt: Enables interrupt on indication from the HDCP Receiver.  
Allows propagation of interrupts from downstream devices.  
4
3
2
RW  
RW  
RW  
IE_LIST_RDY Interrupt on KSV List Ready: Enables interrupt on KSV List Ready.  
IE_KSV_RDY Interrupt on KSV Ready: Enables interrupt on KSV Ready.  
IE_AUTH_FAI Interrupt on Authentication Failure: Enables interrupt on authentication failure or loss of  
L
authentication.  
1
0
RW  
RW  
IE_AUTH_PAS Interrupt on Authentication Pass: Enables interrupt on successful completion of  
S
authentication.  
INT_EN  
Global Interrupt Enable: Enables interrupt on the interrupt signal to the controller.  
60  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
199  
0xC7  
ISR  
7
6
R
R
0x00  
IS_IND_ACC  
Interrupt on Indirect Access Complete: Indirect Register Access has completed.  
IS_RXDET_IN Interrupt on Receiver Detect interrupt: A downstream receiver has been detected. If  
T
HDCP_CFG:RX_DET_SEL is set to a 1, the interrupt will wait for Receiver Lock Detect.  
5
R
IS_RX_INT  
Interrupt on Receiver interrupt: Receiver has indicated an interrupt request from down-  
stream device.  
4
3
2
R
R
R
IS_LIST_RDY Interrupt on KSV List Ready: The KSV list is ready for reading by the controller.  
IS_KSV_RDY Interrupt on KSV Ready: The Receiver KSV is ready for reading by the controller.  
IS_AUTH_FAI Interrupt on Authentication Failure: Authentication failure or loss of authentication has  
L
occurred.  
1
R
IS_AUTH_PAS Interrupt on Authentication Pass: Authentication has completed successfully.  
S
0
7
R
R
INT  
Global Interrupt: Set if any enabled interrupt is indicated.  
200  
0xC8  
NVM_CTL  
0x00  
NVM_PASS  
NVM Verify pass: This bit indicates the completion status of the NVM verification process.  
This bit is valid only when NVM_DONE is asserted.  
0: NVM Verify failed.  
1: NVM Verify passed.  
6
5
R
NVM_DONE  
NVM Verify done: This bit indicates that the NVM Verification has completed.  
RW  
NVM_PARALL NVM Parallel Load Enable: Setting this bit enables external parallel data to be written to  
EL  
NVM SRAM. Byte data and a memory clock are brought in on the R[7:0] and G[0] pins  
respectively. In this mode of operation NVM_DATA[0] acts as a memory enable to enable  
writes to the NVM SRAM.  
4:3  
2
Reserved.  
RW  
0x00  
0xFF  
NVM_VFY  
NVM Verify: Setting this bit will enable a verification of the NVM contents. This is done by  
reading all NVM keys, computing a SHA-1 hash value, and verifying against the SHA-1  
hash stored in NVM. This bit will be cleared upon completion of the NVM Verification.  
1
RW  
RW  
RW  
R
NVM_PROG  
NVM Program: Setting this bit to a 1 allows programming of the NVM memory from the  
NVM SRAM.  
0
NVM_PROG_ NVM Program Enable: Set to a 1 to allow erase or programming of NVM.  
EN  
206  
224  
226  
227  
0xCE  
0xE0  
0xE2  
0xE3  
BLUE_SCREEN  
7:0  
7:0  
7:0  
7:0  
BLUE_SCREE Blue Screen Data Value: Provides the 8-bit data value sent on the Blue channel when the  
N_VAL  
HDCP Transmitter is sending a blue screen.  
HDCP_DBG_ALI  
AS  
HDCP_DBG  
Read-only alias of HDCP_DBG register.  
HDCP_CFG_ALI  
AS  
R
HDCP_CFG  
HDCP_CTL  
Read-only alias of HDCP_CFG register.  
Read-only alias of HDCP_CTL register.  
HDCP_CTL_ALI  
AS  
R
Copyright © 2014–2019, Texas Instruments Incorporated  
61  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 8. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
Read-only alias of HDCP_STS register.  
228  
230  
231  
0xE4  
0xE6  
0xE7  
HDCP_STS_ALI  
AS  
7:0  
R
HDCP_STS  
HDCP_ICR_ALI  
AS  
7:0  
7:0  
R
R
HDCP_ICR  
HDCP_ISR  
Read-only alias of HDCP_ICR register.  
Read-only alias of HDCP_ISR register.  
HDCP_ISR_ALI  
AS  
240  
241  
242  
243  
244  
245  
0xF0  
0xF1  
0xF2  
0xF3  
0xF4  
0xF5  
TX ID  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
R
R
R
R
R
R
0x5F  
0x55  
0x48  
0x39  
0x32  
0x39  
ID0  
ID1  
ID2  
ID3  
ID4  
ID5  
First byte ID code: "_".  
Second byte of ID code: "U".  
Third byte of ID code: "H".  
Fourth byte of ID code: "9".  
Fifth byte of ID code: "2".  
Sixth byte of ID code: “9”.  
NOTE  
Registers 0x40, 0x41, and 0x42 of the Serial Control Bus Registers are used to access the Page 0x10 and 0x14 registers.  
Table 9. Page 0x10 Register  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
73  
0x49  
OLDI_PLL_STA  
TE_MC_CNTL  
7:5  
4
0x00  
Reserved  
OLDI_STATE_ Enable HDMI PLL reset state  
RW  
MC_RESET  
0: Disable state machine reset (normal operation).  
1: Enable state machine reset.  
3:0  
Reserved, when writing to this register always write '0000b to these bits.  
Table 10. Page 0x14 Register  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
REGISTER  
TYPE  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
73  
0x49  
FPD_PLL_STAT  
E_MC_CNTL  
7:5  
4
0x00  
Reserved  
FPD_STATE_ Enable FPD PLL reset state  
RW  
MC_RESET  
0: Disable state machine reset (normal operation).  
1: Enable state machine reset.  
3:0  
Reserved, when writing to this register always write '0000b to these bits.  
62  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Applications Information  
The DS90UH929-Q1, in conjunction with the DS90UH926Q-Q1/DS90UH928Q-Q1deserializer, is intended to  
interface between a host (graphics processor) and a display, supporting 24-bit color depth (RGB888) and high  
definition (720p) digital video format. It can receive an 8-bit RGB stream with a pixel clock rate up to 96 MHz  
together with four I2S audio streams when paired with the DS90UH940-Q1/DS90UH948-Q1 deserializer.  
8.2 Typical Applications  
Bypass capacitors should be placed near the power supply pins. A capacitor and resistor are placed on the PDB  
pin to delay the enabling of the device until power is stable. See and for typical STP and coax connection  
diagrams.  
Copyright © 2014–2019, Texas Instruments Incorporated  
63  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Typical Applications (continued)  
VDD18  
(Filtered 1.8V)  
1.8V  
VDD18  
VDDHA11  
VDDHA11  
VDDHA11  
VDDHA11  
VDDHS11  
VDDHS11  
VDDS11  
1.1V  
FB3  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
FB1  
0.1µF 1µF 10µF  
10µF 1µF 0.1µF  
VDD18  
VDD18  
VDDIO  
VDDIO  
VDDL11  
VDDL11  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
1µF  
1µF  
10µF 1µF 0.1µF  
0.1µF  
0.1µF  
0.01µF  
- 0.1µF  
FB4  
0.1µF 1µF 10µF  
1.1V  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
FB2  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
3.3V (DC coupled)/1.8V (AC coupled)  
VDDA11  
0.01µF  
- 0.1µF  
VTERM  
FB5  
VDDP11  
0.01µF  
0.01µF  
- 0.1µF  
IN_CLK+  
IN_CLK-  
C1  
C2  
DOUT+  
DOUT-  
IN_D0+  
IN_D0-  
FPD-Link III  
TMDS  
(DC coupled)  
50  
IN_D1+  
IN_D1-  
LFT  
IN_D2+  
IN_D2-  
10nF  
R1  
VDD18  
(Filtered 1.8V)  
IDx  
MODE_SEL0  
MODE_SEL1  
R2 0.1µF  
R3  
R4  
0.1µF  
RX_5V  
HPD  
R5  
Hot Plug Detect  
3.3V  
1k  
R6  
0.1µF  
27k  
47k 47k  
DDC_SDA  
DDC_SCL  
CEC  
VDDI2C  
HDMI Control  
1.8V  
4.7k 4.7k 4.7k 4.7k  
1.8V  
SDA  
SCL  
I2C  
10k  
INTB  
Interrupts  
Controller (Optional)  
>10µF  
PDB  
X1  
REM_INTB  
REF CLKIN  
SCLK  
SWC  
I2S_WC  
I2S_CLK  
I2S_DA  
I2S_DB  
I2S_DC  
I2S_DD  
Aux Audio  
SDIN  
MCLK  
I2S Audio  
RES0  
RES1  
RES2  
NOTE:  
50  
float  
NC[8:0]  
DAP  
FB1,FB5: DCR<=0.3Ohm; Z=1Kohm@100MHz  
FB2-FB4: DCR<=25mOhm; Z=120ohm@100MHz  
C1 = 0.033µF (50 WV; 0402)  
C2 = 0.015µF (50 WV; 0402)  
DS90UH929-Q1  
R1 œ R2 (see IDx Resistor Values Table)  
R3 œ R6 (see MODE_SEL Resistor Values Table)  
VDDI2C = Pull up voltage of I2C bus. Refer to I2CSEL pin  
description for 1.8V or 3.3V operation.  
Figure 21. Typical Application Connection -- Coax  
64  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Typical Applications (continued)  
VDD18  
(Filtered 1.8V)  
1.8V  
VDD18  
VDD18  
VDD18  
VDDIO  
VDDIO  
VDDL11  
VDDL11  
VDDHA11  
1.1V  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
FB1  
FB3  
0.1µF 1µF 10µF  
10µF 1µF 0.1µF  
VDDHA11  
VDDHA11  
VDDHA11  
VDDHS11  
VDDHS11  
VDDS11  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
1µF  
1µF  
0.1µF  
0.1µF  
0.01µF  
- 0.1µF  
FB4  
0.1µF 1µF 10µF  
1.1V  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
FB2  
10µF 1µF 0.1µF  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
3.3V (DC coupled)/1.8V (AC coupled)  
VDDA11  
VDDP11  
0.01µF  
- 0.1µF  
VTERM  
FB5  
0.01µF  
0.01µF  
- 0.1µF  
IN_CLK+  
IN_CLK-  
C1  
C2  
DOUT+  
DOUT-  
IN_D0+  
IN_D0-  
FPD-Link III  
TMDS  
(DC coupled)  
IN_D1+  
IN_D1-  
LFT  
IN_D2+  
IN_D2-  
10nF  
R1  
VDD18  
(Filtered 1.8V)  
IDx  
MODE_SEL0  
MODE_SEL1  
R2 0.1µF  
R3  
R4  
0.1µF  
RX_5V  
HPD  
R5  
R6  
Hot Plug Detect  
3.3V  
1k  
0.1µF  
27k  
47k 47k  
DDC_SDA  
DDC_SCL  
CEC  
VDDI2C  
HDMI Control  
1.8V  
4.7k 4.7k 4.7k 4.7k  
1.8V  
SDA  
SCL  
I2C  
Interrupts  
10k  
INTB  
Controller (Optional)  
>10µF  
PDB  
X1  
REM_INTB  
REF CLKIN  
SCLK  
SWC  
I2S_WC  
I2S_CLK  
I2S_DA  
I2S_DB  
I2S_DC  
I2S_DD  
Aux Audio  
SDIN  
MCLK  
I2S Audio  
RES0  
RES1  
RES2  
NOTE:  
50  
float  
NC[8:0]  
DAP  
FB1,FB5: DCR<=0.3Ohm; Z=1Kohm@100MHz  
FB2-FB4: DCR<=25mOhm; Z=120ohm@100MHz  
C1-C2 = 0.1µF (50 WV; 0402) with DS90UH926/928  
C1-C2 = 0.033µF (50 WV; 0402) with DS90UH940/948  
R1 œ R2 (see IDx Resistor Values Table)  
DS90UH929-Q1  
R3 œ R6 (see MODE_SEL Resistor Values Table)  
VDDI2C = Pull up voltage of I2C bus. Refer to I2CSEL pin  
description for 1.8V or 3.3V operation.  
Figure 22. Typical Application Connection -- STP  
Copyright © 2014–2019, Texas Instruments Incorporated  
65  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Typical Applications (continued)  
V
DDIO  
1.8V  
V
DDIO  
3.3V 1.8Vor3.3V  
1.1V  
HDMI  
R[7:0]  
G[7:0]  
FPD-Link III  
1 Pair /AC Coupled  
IN_CLK+  
B[7:0]  
HS  
VS  
DE  
PCLK  
Mobile Device  
/Graphics  
Processor  
IN_D0+  
IN_D1+  
IN_D2+  
CEC  
RGB Display  
720p  
24-bit color depth  
DOUT+  
DOUT-  
RIN+  
RIN-  
LOCK  
PASS  
DS90UH929-Q1  
Serializer  
PDB  
OSS_SEL  
OEN  
DS90UH926Q-Q1  
Deserializer  
DDC  
HPD  
4
/
3
/
I2S AUDIO  
(STEREO)  
MCLK  
GPIO  
MODE_SEL  
INTB_IN  
I2C_SCL  
I2C_SDA  
IDx  
SCL  
SDA  
IDx  
DAP  
DAP  
HDCP œ High-Bandwidth Digital Content Protection  
TMDS œ Transition-Minimized Differential Signaling  
HDMI œ High Definition Multimedia Interface  
Figure 23. Typical System Diagram  
8.2.1 Design Requirements  
The SER/DES supports only AC-coupled interconnects through an integrated DC-balanced decoding scheme.  
External AC-coupling capacitors must be placed in series in the FPD-Link III signal path as shown in Figure 24.  
Table 11. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VDDIO  
1.8 V  
AC-Coupling Capacitor for DOUT0± and DOUT1± with 92x  
deserializers  
100 nF  
33 nF  
AC-Coupling Capacitor for DOUT0± and DOUT1± with 94x  
deserializers  
For applications using single-ended 50-Ω coaxial cable, the unused data pins (DOUT-) should use a 15-nF  
capacitor and should be terminated with a 50-Ω resistor.  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
Figure 24. AC-Coupled Connection (STP)  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
50Q  
50Q  
Figure 25. AC-Coupled Connection (Coaxial)  
For high-speed FPD–Link III transmissions, the smallest available package should be used for the AC-coupling  
capacitor. This will help minimize degradation of signal quality due to package parasitics.  
66  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
8.2.2 Detailed Design Procedure  
8.2.2.1 High-Speed Interconnect Guidelines  
See LVDS SerDes Gen I PCB and Interconnect Design-In Guidelines (SNLA008) and Transmission Line  
RAPIDESIGNER Operation and Applications Guide (SNLA035) for full details.  
Use 100-Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
S = space between the pair  
2S = space between pairs  
3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500-Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Terminate as close to the TX outputs and RX inputs as possible  
Additional general guidance can be found in the LVDS Owner’s Manual - available in PDF format from the Texas  
Instruments web site at: LVDS Owner's Manual (SNLA187).  
8.2.3 Application Curves  
8.2.3.1 Application Performance Plots  
Figure 26 corresponds to 720p60 video application with single lane FPD-Link III output. Figure 27 corresponds to  
3.36-Gbps single-lane output from 96-MHz input TMDS clock.  
Figure 26. 720p60 Video at 2.6-Gbps Serial Line Rate,  
Single Lane FPD-Link III output  
Figure 27. Serializer Output at 3.36-Gbps (96-MHz TMDS  
Clock)  
Copyright © 2014–2019, Texas Instruments Incorporated  
67  
 
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
This device provides separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. The Pin Functions table in the Pin Configuration and Functions section provides guidance on which  
circuit blocks are connected to which power pins. In some cases, an external filter many be used to provide clean  
power to sensitive circuits such as PLLs.  
9.1 Power-Up Requirements and PDB Pin  
The power supply ramp should be faster than 1.5 ms with a monotonic rise. A large capacitor on the PDB pin  
may be used to ensure PDB arrives after all the supply pins have settled to the recommended operating voltage.  
When PDB pin is pulled up to VDDIO, a 10-kpullup and a >10-μF capacitor to GND are required to delay the  
PDB input signal rise. All inputs must not be driven until all power supplies have reached steady state.  
The recommended power up sequence is as follows:  
VDD18  
VTERM  
VDD11  
Wait until all supplies have settled  
Activate PDB  
Apply HDMI input  
There will be no functional impact to using a different sequence than shown below, but the current draw on  
VTERM during power up may be higher in other cases.  
The initialization sequence A shown in Figure 29 consists of any user-defined device configurations and the  
following:  
1. Set Register 0x5B bit 5 to 0. This disables the FPD3 PLL from resetting when a frequency change is  
detected.  
2. Set Register 0x16 to 0x02. This minimizes the duration of inadvertent I2C events.  
3. Set Register 0x04 bit 4 to 1. This prevents video from being sent during the blanking interval.  
The initialization sequence B shown in Figure 29 should be performed after the TMDS clock has stabilized.  
Sequence B consists of the following:  
1. Reset the HDMI PLL by writing the following registers:  
Register 0x40 = 0x10  
Register 0x41 = 0x49  
Register 0x42 = 0x10  
Register 0x42 = 0x00  
2. Reset the FPD PLL by writing the following registers:  
Register 0x40 = 0x14  
Register 0x41 = 0x49  
Register 0x42 = 0x10  
Register 0x42 = 0x00  
68  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Power-Up Requirements and PDB Pin (continued)  
tr0  
VTERM  
GND  
tr0  
VDDIO  
VDD18  
GND  
tr1  
t0  
VDD11  
GND  
t1  
VDDIO  
t2  
VPDB_HIGH  
VPDB_LOW  
PDB(*)  
GND  
t4  
t3  
t3  
t5  
GPIO  
(*) TI recommends that the designer assert PDB (active High) with a microcontroller rather than an RC filter network to  
help ensure proper sequencing of PDB pin after settling of power supplies.  
Figure 28. Recommended Power Sequencing  
Copyright © 2014–2019, Texas Instruments Incorporated  
69  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
Power-Up Requirements and PDB Pin (continued)  
VDDx  
t2  
PDB  
t3  
TMDS clock  
HDMI  
...  
...  
+/-0.5% variation  
t6  
Init A  
Init B  
I2C Local  
Valid Data  
DOUT0/1  
Figure 29. Initialization Sequencing  
Table 12. Power-Up Sequencing Constraints  
SYMBOL  
DESCRIPTION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD18 / VDDIO voltage  
range  
VDD18, VDDIO  
1.71  
1.89  
V
DC-coupled HDMI termination  
AC-coupled HDMI termination  
3.135  
1.71  
3.465  
1.89  
V
V
V
VTERM  
VDD11  
VTERM voltage range  
VDD11 voltage range  
1.045  
1.155  
PDB LOW threshold  
Note: VPDB should not exceed  
limit for respective I/O voltage  
before 90% voltage of VDD12  
0.35 *  
VDDIO  
VPDB_LOW  
VDDIO = 1.8V ± 5%  
VDDIO = 1.8V ± 5%  
V
0.65 *  
VDDIO  
VPDB_HIGH  
PDB HIGH threshold  
V
These time constants are specified for  
rise time of power supply voltage ramp  
(10% -90%).  
VTERM / VDDIO / VDD18 rise  
time  
tr0  
1.5  
1.5  
ms  
These time constants are specified for  
rise time of power supply voltage ramp  
(10% -90%).  
tr1  
VDD11 rise time  
ms  
VTERM needs to ramp-up before VDD18  
and VDDIO.  
t0  
t1  
t2  
t3  
t4  
VDDIO / VDD18 delay time  
VDD11 delay time  
PDB delay time  
0
0
0
2
2
ms  
ms  
ms  
ms  
ms  
VDDIO and VDD18 need to ramp-up  
before VDD11.  
PDB should be released after all supplies  
are stable.  
Starting from PDB high, the local I2C  
access is available after this time.  
I2C ready time  
PDB negative pulse width required for the  
device reset.  
Hard reset time  
70  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
Power-Up Requirements and PDB Pin (continued)  
Table 12. Power-Up Sequencing Constraints (continued)  
SYMBOL  
DESCRIPTION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Keep GPIOs low or high until after PDB  
release.  
t5  
PDB to HDMI delay time  
0
ms  
TMDS Clock Stable to PLL  
Reset (Init B)  
TMDS Clock must be within 0.5% of the  
target frequency and stable.  
t6  
1
µs  
Copyright © 2014–2019, Texas Instruments Incorporated  
71  
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Circuit board layout and stack-up for the LVDS serializer and deserializer devices should be designed to provide  
low-noise power to the device. Good layout practice will also separate high frequency or high-level inputs and  
outputs to minimize unwanted stray noise, feedback and interference. Power system performance may be greatly  
improved by using thin dielectrics (2 to 4 mil) for power / ground sandwiches. This arrangement uses the plane  
capacitance for the PCB power system and has low-inductance, which has proven effectiveness especially at  
high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01-μF to 10-μF. Tantalum capacitors may be in the 2.2-μF to 10-μF range. The voltage rating of the  
tantalum capacitors should be at least 5X the power supply voltage being used.  
MLCC surface mount capacitors are recommended due to their smaller parasitic properties. When using multiple  
capacitors per supply pin, place the smaller value closer to the pin. A large bulk capacitor is recommended at the  
point of power entry. This is typically in the 50-μF to 100-μF range and will smooth low frequency switching noise.  
TI recommends to connect power and ground pins directly to the power and ground planes with bypass  
capacitors connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an  
external bypass capacitor will increase the inductance of the path. A small body size X7R chip capacitor, such as  
0603 or 0805, is recommended for external bypass. A small body sized capacitor has less inductance. The user  
must pay attention to the resonance frequency of these external bypass capacitors, usually in the range of 20  
MHz to 30 MHz. To provide effective bypassing, multiple capacitors are often used to achieve low impedance  
between the supply rails over the frequency of interest. At high frequency, it is also a common practice to use  
two vias from power and ground pins to the planes, reducing the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter many be used to provide clean power to sensitive circuits such as  
PLLs. For DS90UH929-Q1, only one common ground plane is required to connect all device related ground pins.  
Use at least a four-layer board with a power and ground plane. Place LVCMOS signals away from the LVDS  
lines to prevent coupling from the LVCMOS lines to the LVDS lines. Closely coupled differential lines of 100 Ω  
are typically recommended for LVDS interconnect. The closely coupled lines help to ensure that coupled noise  
will appear as common mode and thus is rejected by the receivers. The tightly coupled lines will also radiate  
less.  
At least 9 thermal vias are necessary from the device center DAP to the ground plane. They connect the device  
ground to the PCB ground plane, as well as conduct heat from the exposed pad of the package to the PCB  
ground plane. More information on the LLP style package, including PCB design and manufacturing  
requirements, is provided in TI Application Note: AN-1187 (SNOA401).  
72  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH929-Q1  
www.ti.com.cn  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
10.2 Layout Example  
Figure 30 is derived from a layout design of the DS90UH929-Q1. This graphic is used to demonstrate proper  
high-speed routing when designing in the Serializer.  
Figure 30. DS90UH929-Q1 Serializer Layout Example  
版权 © 2014–2019, Texas Instruments Incorporated  
73  
 
DS90UH929-Q1  
ZHCSD39B NOVEMBER 2014REVISED AUGUST 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
《焊接的绝对最大额定值》 (SNOA549)  
《半导体和 IC 封装热指标》 (SPRA953)  
《通道链路 PCB 和互连设计指南》 (SNLA008)  
《传输线路 RAPIDESIGNER 操作和应用指南》 (SNLA035)  
《无引线框架封装 (LLP) 应用报告》 (SNOA401)  
LVDS 用户手册》 (SNLA187)  
《通过具有双向控制通道的 FPD-Link III 进行 I2C 通信》 (SNLA131)  
《使用 DS90Ux92x FPD-Link III 器件的 I2s 音频接口》 (SNLA221)  
《探索 720p FPD-Link III 器件的内部测试图案生成特性》 (SNLA132)  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 商标  
TRI-STATE is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
74  
版权 © 2014–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UH929TRGCRQ1  
DS90UH929TRGCTQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
(UH929EQ, UH929Q)  
(UH929EQ, UH929Q)  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Feb-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jul-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UH929TRGCRQ1  
DS90UH929TRGCTQ1  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
2000  
250  
330.0  
180.0  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jul-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UH929TRGCRQ1  
DS90UH929TRGCTQ1  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
2000  
250  
367.0  
210.0  
367.0  
185.0  
38.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGC0064K  
PLASTIC QUAD FLAT PACK- NO LEAD  
A
9.1  
8.9  
B
9.1  
8.9  
PIN 1 INDEX AREA  
1.00  
0.80  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
7.5  
5.75±0.1  
(0.2) TYP  
32  
17  
60X 0.5  
16  
33  
SYMM  
65  
7.5  
1
48  
0.30  
64X  
PIN 1 ID  
(OPTIONAL)  
64  
0.18  
49  
SYMM  
0.5  
0.3  
0.1  
C A B  
C
64X  
0.05  
4224668/B 08/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGC0064K  
PLASTIC QUAD FLAT PACK- NO LEAD  
2X (8.8)  
2X (7.5)  
(
5.75)  
64X (0.6)  
49  
64  
64X (0.24)  
1
48  
60X (0.5)  
2X  
(1.36)  
SYMM  
65  
2X  
2X  
(7.5) (8.8)  
(Ø0.2) VIA  
TYP  
2X  
(1.265)  
(R0.05)  
TYP  
16  
33  
17  
32  
2X (1.36)  
2X (1.265)  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4224668/B 08/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGC0064K  
PLASTIC QUAD FLAT PACK- NO LEAD  
2X (8.8)  
2X (7.5)  
16X ( 1.16)  
64X (0.6)  
49  
64  
64X (0.24)  
1
48  
60X (0.5)  
65  
2X  
(0.68)  
SYMM  
2X  
2X  
(7.5) (8.8)  
METAL  
TYP  
2X  
(1.36)  
(R0.05)  
TYP  
16  
33  
17  
32  
2X (0.68)  
2X (1.36)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
65% PRINTED COVERAGE BY AREA  
SCALE: 8X  
4224668/B 08/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY