DS90UH940NTNKDTQ1 [TI]

支持 HDCP 的 1080p FPD-Link III 转 CSI-2 解串器 | NKD | 64 | -40 to 105;
DS90UH940NTNKDTQ1
型号: DS90UH940NTNKDTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

支持 HDCP 的 1080p FPD-Link III 转 CSI-2 解串器 | NKD | 64 | -40 to 105

光电二极管
文件: 总107页 (文件大小:2463K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
DS90UH940N-Q1 1080p FPD-Link III 转支持 HDCP CSI-2 解串器  
1 特性  
3 说明  
1
具有符合 AEC Q100 标准的下列结果:  
DS90UH940N-Q1 是一款 FPD-Link III 解串器,与  
DS90UH949/947/929-Q1 串行器配合使用时可将单通  
道或双通道 FPD-Link III 流转换成 MIPI® CSI-2 格式。  
该解串器能够在经济高效的 50Ω 单端同轴或 100Ω 差  
分屏蔽双绞线 (STP) 电缆上运行。它能够从单通道或  
双通道 FPD-Link III 串行流中恢复数据,然后将其转换  
为摄像机串行接口 (CSI-2) 格式,最高可支持 WUXGA  
1080p60 视频分辨率(24 位色深)。  
器件温度等级 2–40°C +105°C 环境工作温  
度范围  
支持高达 170MHz 的像素时钟频率,可实现  
WUXGA (1920×1200) 1080p60 分辨率和 24 位  
色深  
具有偏移补偿能力的单通道或双通道 FPD-Link III  
接口  
MIPI®D-PHY/CSI-2 发送器  
FPD-Link III 接口支持通过同一条差分链路进行视频和  
音频数据传输以及全双工控制(包括 I2C SPI 通  
信)。通过两个差分对实现视频数据和控制的整合可减  
小互连线尺寸和重量,并简化系统设计。通过使用低压  
差分信令、数据换序和随机生成最大限度地减少了电磁  
干扰 (EMI)。在向后兼容模式下,该器件在单一差分链  
路上最高可支持 WXGA 720p 分辨率(24 位色  
深)。  
具有可选的 2 通道或 4 通道操作(每个通道最  
1.3Gbps)的 CSI-2 输出端口  
视频格  
RGB888/666/565YUV422/420RAW8/10/  
12  
可编程虚拟通道标识符  
具有片上密钥存储的集成型 HDCP 密码引擎  
四通道高速 GPIO(每个通道最高 2Mbps)  
自适应接收均衡  
该器件将自动检测 FPD-Link III 通道并提供一种时钟对  
齐和偏移补偿功能,无需任何特殊的训练模式。这可在  
互连线路(例如,PCB 布线)中出现不匹配问题、电  
缆线对长度存在差异以及连接器不平衡时确保相位偏移  
在容差范围内。  
1.7GHz 时,通道插入损耗补偿高达 –15.3dB  
提供自动温度和电缆老化补偿  
SPI 控制接口速率高达 3.3Mbps  
具有 1Mbps 快速模式增强版的 I2C(主/从)  
支持 7.1 多条 I2S4 个数据)通道  
器件信息(1)  
器件型号  
封装  
WQFN (64)  
封装尺寸(标称值)  
2 应用  
DS90UH940N-Q1  
9.00mm x 9.00mm  
汽车信息娱乐:  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
中央信息显示屏  
后座娱乐系统  
数字仪表板  
典型应用  
FPD-Link III  
2 lanes  
HDMI  
or  
MIPI CSI-2  
DP++  
RIN0+  
RIN0-  
DOUT0+  
DOUT0-  
IN_CLK-/+  
IN_D0-/+  
IN_D1-/+  
D3+/-  
D2+/-  
D1+/-  
D0+/-  
Display  
or  
Graphics  
Processor  
DOUT1+  
DOUT1-  
RIN1+  
RIN1-  
Mobile  
Device  
or  
Graphics  
Processor  
IN_D2-/+  
CLK+/-  
DS90UH949-Q1  
Serializer  
DS90UH940N-Q1  
Deserializer  
CEC  
DDC  
HPD  
I2C  
IDx  
I2C  
IDx  
HS_GPIO  
(SPI)  
HS_GPIO  
(SPI)  
Copyright © 2018, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNLS613  
 
 
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
目录  
7.6 Register Maps......................................................... 48  
Application and Implementation ........................ 86  
8.1 Application Information ......................................... 86  
8.2 Typical Applications ................................................ 86  
Power Supply Recommendations...................... 91  
9.1 Power-Up Requirements and PDB Pin................... 91  
9.2 Power Sequence..................................................... 91  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 8  
6.1 Absolute Maximum Ratings ...................................... 8  
6.2 ESD Ratings.............................................................. 8  
6.3 Recommended Operating Conditions....................... 8  
6.4 Thermal Information.................................................. 9  
6.5 DC Electrical Characteristics .................................... 9  
6.6 AC Electrical Characteristics................................... 13  
6.7 Timing Requirements for the Serial Control Bus .... 14  
6.8 Switching Characteristics........................................ 15  
6.9 Timing Diagrams and Test Circuits......................... 17  
6.10 Typical Characteristics.......................................... 22  
Detailed Description ............................................ 23  
7.1 Overview ................................................................. 23  
7.2 Functional Block Diagram ....................................... 24  
7.3 Feature Description................................................. 24  
7.4 Device Functional Modes........................................ 38  
7.5 Programming........................................................... 45  
8
9
10 Layout................................................................... 93  
10.1 Layout Guidelines ................................................. 93  
10.2 Ground .................................................................. 94  
10.3 Routing FPD-Link III Signal Traces ..................... 94  
10.4 CSI-2 Guidelines .................................................. 95  
10.5 Layout Example .................................................... 96  
11 器件和文档支持 ..................................................... 98  
11.1 文档支持 ............................................................... 98  
11.2 接收文档更新通知 ................................................. 98  
11.3 社区资源................................................................ 98  
11.4 ....................................................................... 98  
11.5 静电放电警告......................................................... 98  
11.6 术语表 ................................................................... 98  
12 机械、封装和可订购信息....................................... 98  
7
4 修订历史记录  
Changes from Original (July 2018) to Revision A  
Page  
将器件状态从预告信息改为了生产数据................................................................................................................................... 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
5 Pin Configuration and Functions  
NKD Package  
64-Pin WQFN  
Top View  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
VDDP12_CSI  
VDD33_B  
CSI0_D3+  
CSI0_D3-  
CSI0_D2+  
CSI0_D2-  
CSI0_D1+  
RES0  
MODE_SEL1  
VDDP12_CH0  
VDDR12_CH0  
RIN0+  
RIN0-  
CMF  
DS90UH940N-Q1  
64 WQFN  
Top Down View  
VDD33_A  
VDDR12_CH1  
RIN1+  
CSI0_D1-  
CSI0_D0+  
CSI0_D0-  
RIN1-  
CSI0_CLK+  
VDDP12_CH1  
MODE_SEL0  
CMLOUTP  
CMLOUTN  
RES1  
CSI0_CLK-  
VDD12_CSI0  
D_GPIO0/MOSI  
DAP  
D_GPIO1/MISO  
D_GPIO2/SPLK  
Pin Functions  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NUMBER  
MIPI DPHY / CSI-2 OUTPUT PINS  
CSI0_CLK–  
CSI0_CLK+  
21  
22  
CSI-2 TX Port 0 differential clock output pins.  
Leave unused pins as No Connect. Do not connect to an external pullup or pulldown.  
O
O
O
O
O
CSI0_D0–  
CSI0_D0+  
23  
24  
CSI0_D1–  
CSI0_D1+  
25  
26  
CSI-2 TX Port 0 differential data output pins.  
Leave unused pins as No Connect. Do not connect to an external pullup or pulldown.  
CSI0_D2–  
CSI0_D2+  
27  
28  
CSI0_D3–  
CSI0_D3+  
29  
30  
Copyright © 2018, Texas Instruments Incorporated  
3
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
CSI1_CLK–  
CSI1_CLK+  
NUMBER  
34  
35  
CSI-2 TX Port 1 differential clock output pins.  
Leave unused pins as No Connect. Do not connect to an external pullup or pulldown.  
O
O
O
O
O
CSI1_D0–  
CSI1_D0+  
36  
37  
CSI1_D1–  
CSI1_D1+  
38  
39  
CSI-2 TX Port 1 differential data output pins.  
Leave unused pins as No Connect. Do not connect to an external pullup or pulldown.  
CSI1_D2–  
CSI1_D2+  
40  
41  
CSI1_D3–  
CSI1_D3+  
42  
43  
FPD-LINK III INTERFACE  
RIN0–  
54  
53  
59  
58  
55  
I/O  
I/O  
I/O  
I/O  
I/O  
FPD-Link III RX Port 0 pins. The port receives FPD-Link III high-speed forward channel  
video and control data and transmits back channel control data. It can interface with a  
compatible FPD-Link III serializer TX through a STP or coaxial cable (see 41 and 图  
42). It must be AC-coupled per 113.  
RIN0+  
RIN1–  
RIN1+  
Leave unused pins as No Connect. Do not connect to an external pullup or pulldown.  
FPD-Link III RX Port 1 pins. The port receives FPD-Link III high-speed forward channel  
video and control data and transmits back channel control data. It can interface with a  
compatible FPD-Link III serializer TX through a STP or coaxial cable (see 41 and 图  
42). It must be AC-coupled per 113.  
Leave unused pins as No Connect. Do not connect to an external pullup or pulldown.  
CMF  
Common mode filter – connect 0.1-µF capacitor to GND  
I2C PINS  
I2C Data Input / Output Interface pin. See Serial Control Bus.  
Recommend a 2.2 kΩ to 4.7 kΩ pullup to 1.8 V or 3.3 V. See I2C Bus Pullup Resistor  
Calculation (SLVA689).  
I2C_SDA  
I2C_SCL  
46  
45  
47  
I/O, OD  
I/O, OD  
I, S  
I2C Cock Input / Output Interface pin. See Serial Control Bus.  
Recommend a 2.2 kΩ to 4.7 kΩ pullup to 1.8 V or 3.3 V. See I2C Bus Pullup Resistor  
Calculation (SLVA689).  
I2C Serial Control Bus Device ID Address Select configuration pin  
Connect to an external pullup to VDD18 and a pulldown to GND to create a voltage  
divider. See 10.  
IDx  
SPI PINS  
SPI Master Output, Slave Input pin (function programmed through register)  
It is a multifunction pin (shared with D_GPIO0) with a weak internal pulldown (3 µA).  
Pin function is programmed through registers. See SPI Mode Configuration. If unused,  
tie to an external pulldown.  
MOSI  
(D_GPIO0)  
19  
18  
17  
16  
I/O, PD  
I/O, PD  
I/O, PD  
I/O, PD  
SPI Master Input, Slave Output pin (function programmed through register)  
It is a multifunction pin (shared with D_GPIO1) with a weak internal pulldown (3 µA).  
Pin function is programmed through registers. See SPI Mode Configuration. If unused,  
tie to an external pulldown.  
MISO  
(D_GPIO1)  
SPI Clock pin (function programmed through register)  
SPLK  
(D_GPIO2)  
It is a multifunction pin (shared with D_GPIO2) with a weak internal pulldown (3 µA).  
Pin function is programmed through registers. See SPI Mode Configuration. If unused,  
tie to an external pulldown.  
SPI Slave Select pin (function programmed through register)  
It is a multifunction pin (shared with D_GPIO0) with a weak internal pulldown (3 µA).  
Pin function is programmed through registers. See SPI Mode Configuration. If unused,  
tie to an external pulldown.  
SS  
(D_GPIO3)  
CONTROL PINS  
Mode Select 0 configuration pin  
MODE_SEL0  
61  
50  
I, S  
I, S  
Connect to an external pullup to VDD33 and pulldown to GND to create a voltage  
divider. See 7.  
Mode Select 1 configuration pin  
Connect to external pullup to VDD33 and pulldown to GND to create a voltage divider.  
MODE_SEL1  
See 8.  
4
Copyright © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NUMBER  
Inverted Power-Down input pin  
Typically connected to a processor GPIO with a pulldown. When PDB input is brought  
HIGH, the device is enabled and internal registers and state machines are reset to  
default values. Asserting PDB signal low will power down the device and consume  
minimum power. The default function of this pin is PDB = LOW; POWER DOWN with a  
weak (3 µA) internal pulldown enabled. PDB should remain low until after power  
supplies are applied and reach minimum required levels.  
PDB  
48  
I, PD  
PDB = 1, device is enabled (normal operation)  
PDB = 0, device is powered down  
When the device is in the POWER DOWN state, the LVCMOS outputs are in tri-state,  
the PLL is shut down, and IDD is minimized.  
BIST Enable pin  
0: BIST mode is disabled  
BISTEN  
5
I, PD  
1: BIST mode is enabled  
It is a configuration pin with a weak (3 µA) internal pulldown. If unused, tie to an  
external pulldown. See Built-In Self Test (BIST) for more information.  
BIST Clock Select pin (function set by BISTEN pin)  
0: PCLK  
1: 33 MHz  
BISTC  
(INTB_IN)  
4
4
I, PD  
I, PD  
It is a multifunction pin (shared with INTB_IN) with a weak internal pulldown (3 µA). Pin  
function is only enabled when in BIST mode. If unused, tie to an external pulldown.  
Interrupt Input pin (default function)  
INTB_IN  
(BISTC)  
It is a multifunction pin (shared with BISTC) with a weak internal pulldown (3 µA). See  
Interrupt Pin — Functional Description and Usage (INTB_IN). If unused, tie to an  
external pulldown.  
GPIO PINS  
General Purpose Input / Output 0 pin (default function)  
default state: logic LOW  
It is a multifunction pin (shared with SDOUT) with a weak internal pulldown (3 µA). Pin  
function is programmed through registers. See General-Purpose I/O (GPIO). If unused,  
tie to an external pulldown.  
GPIO0  
(SDOUT)  
7
8
I/O, PD  
I/O, PD  
I/O, PD  
I/O, PD  
I/O, PD  
General Purpose Input / Output 1 pin (default function)  
default state: logic LOW  
It is a multifunction pin (shared with SWC) with a weak internal pulldown (3 µA). Pin  
function is programmed through registers. See General-Purpose I/O (GPIO). If unused,  
tie to an external pulldown.  
GPIO1  
(SWC)  
General Purpose Input / Output 2 pin (default function)  
default state: logic LOW  
It is a multifunction pin (shared with I2S_DC) with a weak internal pulldown (3 µA). Pin  
function is programmed through registers. See General-Purpose I/O (GPIO). If unused,  
tie to an external pulldown.  
GPIO2  
(I2S_DC)  
10  
9
General Purpose Input / Output 3 pin (default function)  
default state: logic LOW  
It is a multifunction pin (shared with I2S_DD) with a weak internal pulldown (3 µA). Pin  
function is programmed through registers. See General-Purpose I/O (GPIO). If unused,  
tie to an external pulldown.  
GPIO3  
(I2S_DD)  
General Purpose Input / Output 9 pin (default function)  
default state: logic LOW  
It is a multifunction pin (shared with MCLK) with a weak internal pulldown (3 µA). Pin  
function is programmed through registers. See General-Purpose I/O (GPIO). If unused,  
tie to an external pulldown.  
GPIO9  
(MCLK)  
15  
HIGH-SPEED GPIO PINS  
High-Speed General Purpose Input / Output 0 pin (default function)  
default state: tri-state  
Only available in Dual Link Mode. It is a multifunction pin (shared with MOSI) with a  
weak internal pulldown (3 µA). Pin function is programmed through registers. See  
General-Purpose I/O (GPIO). If unused, tie to an external pulldown.  
D_GPIO0  
(MOSI)  
19  
18  
I/O, PD  
I/O, PD  
High-Speed General Purpose Input / Output 1 pin (default function)  
default state: tri-state  
Only available in Dual Link Mode. It is a multifunction pin (shared with MISO) with a  
weak internal pulldown (3 µA). Pin function is programmed through registers. See  
General-Purpose I/O (GPIO). If unused, tie to an external pulldown.  
D_GPIO1  
(MISO)  
Copyright © 2018, Texas Instruments Incorporated  
5
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NUMBER  
High-Speed General Purpose Input / Output 2 pin (default function)  
default state: tri-state  
D_GPIO2  
(SPLK)  
17  
I/O, PD  
I/O, PD  
Only available in Dual Link Mode. It is a multifunction pin (shared with SPLK) with a  
weak internal pulldown (3 µA). Pin function is programmed through registers. See  
General-Purpose I/O (GPIO). If unused, tie to an external pulldown.  
High-Speed General Purpose Input / Output 3 pin (default function)  
default state: tri-state  
Only available in Dual Link Mode. It is a multifunction pin (shared with SS) with a weak  
internal pulldown (3 µA). Pin function is programmed through registers. See General-  
Purpose I/O (GPIO). If unused, tie to an external pulldown.  
D_GPIO3  
(SS)  
16  
REGISTER ONLY GPIO PINS  
High-Speed General Purpose Input / Output 5 pin (default function)  
I2C register control only  
GPIO5_REG  
11  
default state: logic LOW  
I/O, PD  
I/O, PD  
I/O, PD  
I/O, PD  
(I2S_DB)  
It is a multifunction pin (shared with I2S_DB) with a weak internal pulldown (3 µA). Pin  
function is programmed through registers. See General-Purpose I/O (GPIO). If unused,  
tie to an external pulldown.  
High-Speed General Purpose Input / Output 6 pin (default function)  
I2C register control only  
default state: logic LOW  
It is a multifunction pin (shared with I2S_DA) with a weak internal pulldown (3 µA). Pin  
function is programmed through registers. See General-Purpose I/O (GPIO). If unused,  
tie to an external pulldown.  
GPIO6_REG  
12  
(I2S_DA)  
High-Speed General Purpose Input / Output 7 pin (default function)  
I2C register control only  
default state: logic LOW  
It is a multifunction pin (shared with I2S_WC) with a weak internal pulldown (3 µA). Pin  
function is programmed through registers. See General-Purpose I/O (GPIO). If unused,  
tie to an external pulldown.  
GPIO7_REG  
14  
(I2S_WC)  
High-Speed General Purpose Input / Output 8 pin (default function)  
I2C register control only  
default state: logic LOW  
It is a multifunction pin (shared with I2S_CLK) with a weak internal pulldown (3 µA). Pin  
function is programmed through registers. See General-Purpose I/O (GPIO). If unused,  
tie to an external pulldown.  
GPIO8_REG  
13  
(I2S_CLK)  
SLAVE MODE LOCAL I2S CHANNEL PINS  
Slave Mode I2S Word Clock Output pin (function programmed through register)  
It is a multifunction pin (shared with GPIO7_REG). Pin function is programmed through  
registers. See I2S Audio Interface. If unused, tie to an external pulldown.  
I2S_WC  
(GPIO7_REG)  
14  
O
Slave Mode I2S Clock Output pin (function programmed through register)  
NOTE: Disable I2S data jitter cleaner, when using these pins, through the register  
bit I2S Control: 0x2B[7]=1  
It is a multifunction pin (shared with GPIO8_REG). Pin function is programmed through  
registers. See I2S Audio Interface. If unused, tie to an external pulldown.  
I2S_CLK  
(GPIO8_REG)  
13  
O
Slave Mode I2S Data Output pin (function programmed through register)  
It is a multifunction pin (shared with GPIO6_REG). Pin function is programmed through  
registers. See I2S Audio Interface. If unused, tie to an external pulldown.  
I2S_DA  
(GPIO6_REG)  
12  
11  
10  
9
O
O
O
O
Slave Mode I2S Data Output pin (function programmed through register)  
It is a multifunction pin (shared with GPIO5_REG). Pin function is programmed through  
registers. See I2S Audio Interface. If unused, tie to an external pulldown.  
I2S_DB  
(GPIO5_REG)  
Slave Mode I2S Data Output (function programmed through register)  
It is a multifunction pin (shared with GPIO2). Pin function is programmed through  
registers. See I2S Audio Interface. If unused, tie to an external pulldown.  
I2S_DC  
(GPIO2)  
Slave Mode I2S Data Output (function programmed through register)  
It is a multifunction pin (shared with GPIO3). Pin function is programmed through  
registers. See I2S Audio Interface. If unused, tie to an external pulldown.  
I2S_DD  
(GPIO3)  
MASTER MODE LOCAL I2S CHANNEL PINS  
Master Mode I2S Word Clock Output pin (function is programmed through registers)  
(Pin is shared with GPIO1)  
It is a multifunction pin (shared with GPIO1). Pin function is programmed through  
registers. See I2S Audio Interface. If unused, tie to an external pulldown.  
SWC  
(GPIO1)  
8
O
6
Copyright © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NUMBER  
Master Mode I2S Data Output pin (function is programmed through registers)  
(Pin is shared with GPIO0)  
It is a multifunction pin (shared with GPIO0). Pin function is programmed through  
registers. See I2S Audio Interface. If unused, tie to an external pulldown.  
SDOUT  
(GPIO0)  
7
O
Master Mode I2S System Clock Output pin (function is programmed through registers)  
(Pin is shared with GPIO9)  
It is a multifunction pin (shared with GPIO9). Pin function is programmed through  
registers. See I2S Audio Interface. If unused, tie to an external pulldown.  
MCLK  
(GPIO9)  
15  
1
O
O
STATUS PINS  
Lock Status Output pin  
LOCK = 1: PLL acquired lock to the reference clock input; DPHY outputs are active  
LOCK = 0: PLL is unlocked  
LOCK  
Normal mode status output pin (BISTEN = 0)  
PASS = 1: No fault detected on input display timing  
PASS = 0: Indicates an error condition or corruption in display timing. Fault condition  
occurs:  
1. DE length value mismatch measured once in succession  
2. VSync length value mismatch measured twice in succession  
PASS  
7
O
BIST mode status output pin (BISTEN = 1)  
PASS = 1: No error detected  
PASS = 0: Error detected  
POWER and GROUND  
VDD33_A,  
VDD33_B  
56  
31  
3.3-V (±10%) supply. Power to on-chip regulator. Recommend to connect with 10-µF, 1-  
µF, 0.1-µF, and 0.01-µF capacitors to GND.  
P
P
LVCMOS I/O power supply: 1.8 V (±5%) OR 3.3 V (±10%). Recommend to connect  
with 10-µF, 1-µF, 0.1-µF, and 0.01-µF capacitors to GND.  
VDDIO  
3
VDD12_CSI0  
VDDP12_CSI  
VDD12_CSI1  
VDDL12_0  
20  
32  
33  
6
44  
51  
52  
60  
57  
1.2-V (±5%) supply. Recommend to connect with 10-µF, 1-µF, 0.1-µF, and 0.01-µF  
capacitors to GND at each VDD pin.  
P
VDDL12_1  
VDDP12_CH0  
VDDR12_CH0  
VDDP12_CH1  
VDDR12_CH1  
Decoupling capacitor connection for on-chip regulator. Recommend to connect with a  
0.1-µF decoupling capacitor to GND.  
CAP_I2S  
2
D
G
DAP is the large metal contact at the bottom side, located at the center of the WQFN  
package. Connect to the ground plane (GND) with at least 32 vias.  
VSS  
DAP  
OTHER PINS  
Channel Monitor Loop-through Driver differential output pins  
Route to a test point or a pad with 100-Ω termination resistor between pins for channel  
monitoring (recommended). See 38 or 39.  
CMLOUTP  
CMLOUTN  
62  
63  
O
-
RES0  
RES1  
49  
64  
Reserved pins. May be left as No Connect pins.  
The following definitions define the functionality of the I/O cells for each pin.  
I/O TYPE:  
P = Power supply  
G = Ground  
D = Decoupling for an internal linear regulator  
S = Configuration/Strap Input (All strap pins have internal pulldowns determined by IOZ specification. If the default strap value is  
needed to be changed then an external resistor should be used.  
I = Input  
O = Output  
I/O = Input/Output  
PD = Internal pulldown  
Copyright © 2018, Texas Instruments Incorporated  
7
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
(2)  
MIN  
MAX  
UNIT  
VDD33 (VDD33_A, VDD33_B)  
–0.3  
3.96  
1.44  
3.96  
3.96  
3.96  
V
VDD12 (VDD12_CSI0, VDD12_CSI1, VDDP12_CSI, VDDL_1, VDDL_2,  
VDDP12_CH0, VDDP12_CH1, VDDR12_CH0, VDDR12_CH1)  
Supply voltage  
-0.3  
–0.3  
–0.3  
-0.3  
V
V
V
V
VDDIO  
Configuration input  
voltage  
IDX, MODE_SEL0, MODE_SEL1  
PDB, BIST_EN  
GPIO0, GPIO1, GPIO2, GPIO3, D_GPIO0, D_GPIO1, D_GPIO2,  
D_GPIO3, GPIO5_REG, GPIO6_REG, GPIO7_REG, GPIO8_REG, LOCK,  
PASS, INTB_IN, MCLK  
LVCMOS I/O voltage  
Open-drain voltage  
V(VDDIO)  
+
–0.3  
V
0.3  
I2C_SDA, I2C_SCL  
–0.3  
-0.3  
3.96  
2.75  
V
V
CML output voltage CMLOUTP, CMLOUTN  
FPD-Link III input  
RIN0+, RIN0-, RIN1+, RIN1-  
voltage  
–0.3  
2.75  
V
CSI0_D0+, CSI0_D0-, CSI0_D1+, CSI0_D1-, CSI0_D2+, CSI0_D2-,  
CSI0_D3+, CSI0_D3-, CSI0_CLK+, CSI0_CLK-, CSI1_D0+, CSI1_D0-,  
CSI1_D1+, CSI1_D1-, CSI1_D2+, CSI1_D2-, CSI1_D3+, CSI1_D3-,  
CSI1_CLK+, CSI1_CLK-,  
CSI-2 voltage  
–0.3  
1.44  
V
Junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office or Distributors for availability and  
specifications.  
6.2 ESD Ratings  
VALUE  
±8000  
±1250  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Contact Discharge  
(RIN0+, RIN0-, RIN1+, RIN1–  
±8000  
±15000  
±8000  
)
)
)
)
ESD Ratings (IEC 61000-4-2)  
RD = 330 Ω, CS = 150 pF  
Air-gap Discharge  
(RIN0+, RIN0-, RIN1+, RIN1–  
V(ESD) Electrostatic discharge  
V
Contact Discharge  
(RIN0+, RIN0-, RIN1+, RIN1–  
ESD Ratings (ISO 10605)  
RD = 330 Ω, CS = 150 and 330 pF  
RD = 2 kΩ, CS = 150 and 330 pF  
Air-gap Discharge  
(RIN0+, RIN0-, RIN1+, RIN1–  
±15000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordancewith the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
3.3  
MAX  
3.6  
UNIT  
V
V(VDD33)  
Supply voltage  
V(VDD12)  
1.14  
3
1.2  
1.26  
3.6  
V
V(VDDIO) = 3.3 V  
OR V(VDDIO) = 1.8 V  
I2C pins = V(I2C)  
3.3  
V
LVCMOS I/O supply  
voltage  
1.71  
1.71  
40  
1.8  
1.89  
3.6  
V
Open-drain voltage  
V
Operating free air temperature, TA  
25  
105  
°C  
8
Copyright © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Recommended Operating Conditions (continued)  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
25  
NOM  
MAX  
96  
UNIT  
MHz  
Pixel clock frequency (single link)  
Pixel clock frequency (dual link)  
Local I2C frequency, fI2C  
V(VDD33)  
50  
170  
1
MHz  
MHz  
100  
100  
50  
mVP-P  
mVP-P  
mVP-P  
mVP-P  
V(VDDIO) = 3.3 V  
Supply noise(1)  
V(VDDIO) = 1.8 V  
V(VDD12)  
25  
(1) DC to 50 MHz.  
6.4 Thermal Information  
DS90UB940N-Q1  
THERMAL METRIC(1)  
NKD (WQFN)  
UNIT  
64 PINS  
24.8  
6.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
3.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
3.6  
RθJC(bot)  
0.6  
(1) For more information about traditional and new thermalmetrics, see the Semiconductor and IC Package Thermal Metricsapplication  
report.  
6.5 DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
POWER CONSUMPTION  
Total power  
TEST CONDITIONS  
PIN/FREQ.  
MIN TYP  
MAX UNIT  
Checkerboard pattern, 170 MHz. See 1.  
2-lane FPD-Link III input, 2 MIPI lanes output  
PT  
consumption, normal  
operation  
628  
10  
875 mW  
45 mW  
VDD  
Total power  
PZ  
consumption, power- PDB = 0 V  
down mode  
SUPPLY CURRENT  
Supply current,  
normal operation  
VDD12 =  
1.2 V  
IDD12  
IDD33  
150  
90  
250  
122  
mA  
mA  
Supply current,  
normal operation  
VDD33 =  
3.6 V  
Checkerboard pattern, 96 MHz. See 1.  
1-lane FPD-Link III input, 2 MIPI lanes output  
VDDIO =  
1.89 V or  
3.6 V  
Supply current,  
normal operation  
IDDIO  
1
6
mA  
Supply current,  
normal operation  
VDD12 =  
1.2 V  
IDD12  
IDD33  
125  
90  
225  
122  
mA  
mA  
Supply current,  
normal operation  
VDD33 =  
3.6 V  
Checkerboard pattern, 96 MHz. See 1.  
1-lane FPD-Link III input, 4 MIPI lanes output  
VDDIO =  
1.89 V or  
3.6 V  
Supply current,  
normal operation  
IDDIO  
1
6
mA  
Copyright © 2018, Texas Instruments Incorporated  
9
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
MAX UNIT  
DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN TYP  
Supply current,  
normal operation  
VDD12 =  
1.2 V  
IDD12  
IDD33  
250  
345  
122  
mA  
mA  
Supply current,  
normal operation  
VDD33 =  
3.6 V  
Checkerboard pattern, 170 MHz. See 1.  
2-lane FPD-Link III input, 2 MIPI lanes output  
90  
1
VDDIO =  
1.89 V or  
3.6 V  
Supply current,  
normal operation  
IDDIO  
6
mA  
Supply current,  
normal operation  
VDD12 =  
1.2 V  
IDD12  
IDD33  
220  
90  
300  
122  
mA  
mA  
Supply current,  
normal operation  
VDD33 =  
3.6 V  
Checkerboard pattern, 170 MHz. See 1.  
2-lane FPD-Link III input, 4 MIPI lanes output  
VDDIO =  
1.89 V or  
3.6 V  
Supply current,  
normal operation  
IDDIO  
1
6
mA  
Supply current,  
power-down mode  
VDD12 =  
1.2 V  
IDD12Z  
IDD33Z  
2
2
30  
8
mA  
mA  
Supply current,  
power-down mode  
VDD33 =  
3.6 V  
PDB = 0 V  
VDDIO =  
1.89 V or  
3.6 V  
Supply current,  
power-down mode  
IDDIOZ  
0.1  
0.3  
mA  
3.3-V LVCMOS I/O (V(VDDIO) = 3.3 V ± 10%)  
High level input  
voltage  
VIH  
2
0
2
V(VDDIO)  
0.8  
V
V
V
PDB,  
BISTEN  
Low level input  
voltage  
VIL  
High level input  
voltage  
VIH  
V(VDDIO)  
Low level input  
voltage  
VIL  
0
–10  
2.4  
0.8  
10  
V
µA  
V
BISTC,  
GPIO[3:0],  
D_GPIO[3:0],  
I2S_DA,  
IIN  
Input current  
VIN = 0 V or V(VDDIO)  
IOH = –4 mA  
High level output  
voltage  
VOH  
V(VDDIO)  
I2S_DB,  
I2S_DC,  
I2S_DD,  
I2S_CLK,  
I2S_WC,  
LOCK, PASS  
Low level output  
voltage  
VOL  
IOS  
IOL = 4 mA  
VOUT = 0 V  
0
–55  
–20  
0.4  
V
Output short-circuit  
current  
mA  
PDB = 0 V  
VOUT = 0 V or V(VDDIO)  
Tri-state output  
current  
IOZ  
20  
10  
µA  
pF  
CIN  
Input capacitance  
IDX,  
MODE_SEL0  
MODE_SEL1  
IIN-  
STRAP  
Strap pin input current VIN = 0 V or V(VDDIO)  
-1  
1
µA  
1.8-V LVCMOS I/O (V(VDDIO) = 1.8 V ± 5%)  
High level input  
voltage  
VIH  
1.55  
0
V(VDDIO)  
V
V
PDB,  
BISTEN  
Low level input  
voltage  
0.35 ×  
V(VDDIO)  
VIL  
10  
Copyright © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN TYP  
0.65 ×  
V(VDDIO)  
MAX UNIT  
High level input  
voltage  
VIH  
V(VDDIO)  
V
Low level input  
voltage  
0.35 ×  
V(VDDIO)  
VIL  
IIN  
0
V
µA  
V
BISTC,  
GPIO[3:0],  
D_GPIO[3:0],  
I2S_DA,  
I2S_DB,  
I2S_DC,  
I2S_DD,  
I2S_CLK,  
I2S_WC,  
Input current  
VIN = 0V or V(VDDIO)  
–10  
10  
High level output  
voltage  
V(VDDIO)  
– 0.45  
VOH  
IOH = –4 mA  
IOL = 4 mA  
VOUT = 0 V  
V(VDDIO)  
Low level output  
voltage  
VOL  
IOS  
0
0.45  
V
Output short-circuit  
current  
–35  
mA  
LOCK, PASS  
PDB = 0 V  
VOUT = 0 V or V(VDDIO)  
Tri-state output  
current  
IOZ  
–20  
20  
10  
µA  
pF  
CIN  
Input capacitance  
SERIAL CONTROL BUS (V(VDDIO) = 1.8 V ± 5% OR 3.3V ±10%)  
VIH  
VIL  
Input high level  
Input low level  
Input high level  
Input low level  
Input hysteresis  
Output low level  
Input current  
V(VDDIO) = 3.0 V to 3.6 V  
V(VDDIO) = 3.0 V to 3.6 V  
V(VDDIO) = 1.71 V to 1.89 V  
V(VDDIO) = 1.71 V to 1.89 V  
2
0
V(VDDIO)  
0.9  
V
V
VIH  
VIL  
1.575  
0
V(VDDIO)  
0.9  
V
I2C_SDA,  
I2C_SCL  
V
VHYS  
VOL  
IIN  
50  
mV  
V
IOL = 4 mA  
0
0.4  
10  
VIN = 0 V or V(VDDIO)  
–10  
µA  
Copyright © 2018, Texas Instruments Incorporated  
11  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
MAX UNIT  
DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN TYP  
FPD-LINK III INPUT  
Differential threshold  
high voltage  
VTH  
VTL  
VID  
VCM  
RT  
50  
mV  
mV  
mV  
V
Differential threshold  
low voltage  
VCM = 2.1 V  
–50  
RIN0+,  
RIN0–  
RIN1+,  
RIN1–  
Input differential  
threshold  
100  
Differential common-  
mode voltage  
2.1  
Internal termination  
resistor - differential  
80 100  
120  
250  
Ω
HSTX DRIVER  
HS transmit static  
common-mode  
voltage  
VCMTX  
150 200  
140 200  
mV  
|ΔVCMT VCMTX mismatch  
5
270  
14  
mV  
mV  
mV  
mV  
Ω
CSI0_D3±,  
CSI0_D2±,  
CSI0_D1±,  
CSI0_D0±,  
CSI0_CLK±,  
CSI1_D3±,  
CSI1_D2±,  
CSI1_D1±,  
CSI1_D0±,  
CSI1_CLK±  
|
when output is 1 or 0  
X(1,0)  
HS transmit  
differential voltage  
|VOD  
|
VOD mismatch when  
output is 1 or 0  
|ΔVOD  
VOHHS  
ZOS  
|
HS output high  
voltage  
360  
62.5  
Single-ended output  
impedance  
40  
50  
Mismatch in single-  
ended output  
ΔZOS  
10  
%
impedance  
LPTX DRIVER  
High-level output  
voltage  
CSI0_D3±,  
CSI0_D2±,  
CSI0_D1±,  
CSI0_D0±,  
CSI0_CLK±,  
CSI1_D3±,  
CSI1_D2±,  
CSI1_D1±,  
CSI1_D0±,  
CSI1_CLK±  
VOH  
VOL  
IOH = –4 mA  
IOL = 4 mA  
1.05  
–50  
1.2  
1.3  
50  
V
Low-level output  
voltage  
mV  
ZOLP  
Output impedance  
110  
Ω
LOOP-THROUGH MONITOR OUTPUT  
Differential output  
voltage  
CMLOUTP,  
CMLOUTN  
VOD  
RL = 100 Ω  
360  
mV  
12  
Copyright © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
6.6 AC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
GPIO BIT RATE  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
0.25 ×  
PCLK  
Rb,FC  
Rb,BC  
Forward channel bit rate  
Back channel bit rate  
PCLK = 25 MHz - 170 MHz(1)  
Mbps  
kbps  
GPIO[3:0]  
133  
High speed (2-lane mode), 1  
D_GPIO active  
See 3  
2
Mbps  
Mbps  
kbps  
High speed (2-lane mode), 2  
D_GPIOs active  
See 3.  
1.33  
Rb,BC  
Back channel bit rate  
D_GPIO[3:0]  
High speed (2-lane mode), 4  
D_GPIOs active  
See 3  
800  
133  
Normal mode — see 3  
kbps  
s
GPIO pulse width, forward  
channel  
> 2 /  
tGPIO,FC  
GPIO[3:0]  
GPIO[3:0]  
PCLK(1)  
tGPIO,BC  
RESET  
tLRST  
GPIO pulse width, back channel  
20  
2
μs  
PDB reset low pulse  
PDB  
ms  
LOOP-THROUGH MONITOR OUTPUT  
Differential output eye opening  
width  
UI(2)  
mV  
RL = 100 Ω, jitter frequency >  
PCLK(1) / 40  
See 2  
EW  
0.4  
CMLOUTP,  
CMLOUTN  
EH  
Differential output eye height  
> 300  
FPD-LINK III INPUT  
RIN0+,  
RIN0–,  
RIN1+,  
RIN1–  
tDDLT  
Lock time  
See 4  
5
10  
ms  
Single Lane  
PCLK = 96 MHz  
fJIT > PCLK/20  
BER < 1E-10  
10-m DACAR535-2 STQ  
RIN0+,  
RIN0–,  
RIN1+,  
RIN1–  
tIJIT  
Input jitter  
0.3  
UI(2)  
Dual Lane  
PCLK = 170 MHz  
fJIT > PCLK/20  
BER < 1E-10  
10-m DACAR535-2 STQ  
I2S TRANSMITTER  
tJ,I2S Clock output jitter  
2
ns  
ns  
>2 /  
PCLK(1)  
or >77  
tI2S  
I2S clock period(3)  
See 9  
I2S_CLK  
tHC,I2S  
tLC,I2S  
tSR,I2S  
I2S clock high time(3)  
I2S clock low time(3)  
I2S set-up time  
See 9  
See 9  
See 9  
0.48  
0.48  
0.4  
tI2S  
tI2S  
tI2S  
I2S_DA,  
I2S_DB,  
I2S_DC,  
I2S_DD  
tHR,I2S  
I2S hold time  
See 9  
0.4  
tI2S  
(1) PCLK refers to the equivalent pixel clock frequency, which is equal to the FPD-Link III line rate / 35.  
(2) UI – Unit Interval is equivalent to one serialized data bit width. For Single Lane mode 1UI = 1 / (35*PCLK). For Dual Lane mode, 1UI = 1  
/ (35*PCLK/2). The UI scales with PCLK frequency.  
(3) I2S specifications for tLC,I2S and tHC,I2S pulses must each be greater than 1 period to ensure sampling and supersedes the 0.35 × tI2S  
requirement. tLC,I2S and tHC,I2S must be longer than the greater of either 0.35 × tI2S or 2 × PCLK.  
Copyright © 2018, Texas Instruments Incorporated  
13  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
6.7 Timing Requirements for the Serial Control Bus  
Over I2C supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
> 0  
> 0  
> 0  
4.7  
1.3  
0.5  
4
MAX  
100  
400  
1
UNIT  
kHz  
kHz  
MHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
Standard mode  
Fast mode  
fSCL  
SCL clock frequency  
Fast plus mode  
Standard mode  
Fast mode  
tLOW  
tHIGH  
tHD;STA  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
SCL low period  
SCL high period  
Fast plus mode  
Standard mode  
Fast mode  
0.6  
0.26  
4
Fast plus mode  
Standard mode  
Fast mode  
Hold time for a start or a repeated start  
condition  
0.6  
0.26  
4.7  
0.6  
0.26  
0
8  
Fast plus mode  
Standard mode  
Fast mode  
Set-up time for a start or a repeated  
start condition  
8  
Fast plus mode  
Standard mode  
Fast mode  
Data hold time  
0
8  
Fast plus mode  
Standard mode  
Fast mode  
0
250  
100  
50  
Data set-up time  
ns  
8  
Fast plus mode  
Standard mode  
Fast mode  
ns  
4
µs  
µs  
µs  
µs  
µs  
µs  
ns  
Set-up time for STOP condition  
0.6  
0.26  
4.7  
1.3  
0.5  
8  
Fast plus mode  
Standard mode  
Fast mode  
Bus free time  
between STOP and START  
8  
Fast plus mode  
Standard mode  
Fast mode  
1000  
300  
120  
300  
300  
120  
400  
400  
200  
50  
SCL and SDA rise time,  
tr  
ns  
8  
Fast plus mode  
Standard mode  
Fast mode  
ns  
ns  
SCL and SDA fall time,  
tf  
ns  
8  
Fast plus mode  
Standard mode  
Fast mode  
ns  
pF  
pF  
pF  
ns  
Cb  
Capacitive load for each bus line  
Input filter  
Fast plus mode  
Fast mode  
tSP  
Fast plus mode  
50  
ns  
14  
Copyright © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
6.8 Switching Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
HSTX DRIVER  
MIPI 2 lanes  
350  
175  
175  
87.5  
1344  
Mbps  
1190  
HSTXDBR  
fCLK  
Data bit rate  
MIPI 4 lanes  
MIPI 2 lanes  
MIPI 4 lanes  
672  
MHz  
595  
DDR Clock frequency  
Common mode voltage variations  
HF  
ΔVCMTX(HF)  
ΔVCMTX(LF)  
Above 450 MHz  
15 mVRMS  
25 mVRMS  
CSI0_D0±  
CSI0_D1±  
CSI0_D2±  
CSI0_D3±  
CSI1_D0±  
CSI1_D1±  
CSI1_D2±  
CSI1_D3±  
CSI0_CLK±  
CSI1_CLK±  
Common mode voltage variations  
LF  
Between 50 and 450 MHz  
HS bit rates 1 Gbps (UI ≥  
1 ns)  
0.3  
UI  
UI  
HS bit rates > 1 Gbps (UI <  
1 ns)  
0.35  
tRHS  
tFHS  
Applicable for all HS bit  
rates. However, to avoid  
excessive radiation, bit  
rates 1 Gbps (UI 1 ns),  
must not use values below  
150 ps.  
20% to 80% rise and fall HS  
100  
ps  
fLPMAX  
fH  
–18  
-9  
dB  
dB  
dB  
SDDTX  
TX differential return loss  
fMAX  
–3  
LPTX DRIVER  
(1)  
tRLP  
Rise time LP  
15% to 85% rise time  
15% to 85% fall time  
30% to 85% rise time  
25  
25  
35  
ns  
ns  
ns  
(1)  
tFLP  
Fall time LP  
(1)  
tREOT  
Rise time post-EoT  
First LP exclusive-OR clock  
pulse after stop state or last  
pulse before stop state  
40  
ns  
Pulse width of the LP exclusive-  
OR clock  
tLP-PULSE-TX  
(1)  
All other pulses  
20  
90  
ns  
ns  
CSI0_D0±  
CSI0_D1±  
CSI0_D2±  
CSI0_D3±  
CSI1_D0±  
CSI1_D1±  
CSI1_D2±  
CSI1_D3±  
CSI0_CLK±  
CSI1_CLK±  
Period of the LP exclusive-OR  
clock  
tLP-PER-TX  
CLOAD = 0 pF  
CLOAD = 5 pF  
CLOAD = 20 pF  
CLOAD = 70 pF  
500 mV/ns  
300 mV/ns  
250 mV/ns  
150 mV/ns  
CLOAD = 0 to 70 pF (falling  
edge only)  
(1)  
30  
30  
mV/ns  
mV/ns  
DV/DtSR  
Slew rate  
CLOAD = 0 to 70 pF (rising  
edge only)  
30 – 0.075 ×  
(VO,INST –  
700)  
CLOAD = 0 to 70 pF (rising  
edge only)  
mV/ns  
CLOAD  
Load capacitance(1)  
0
70  
pF  
(1) CLOAD includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be  
<10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2-ns delay.  
Copyright © 2018, Texas Instruments Incorporated  
15  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Switching Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
DATA-CLOCK TIMING SPECIFICATIONS (10)  
fCLK = CSI-2 DDR clock  
frequency  
CSI0_D0±  
CSI0_D1±  
CSI0_D2±  
CSI0_D3±  
CSI1_D0±  
CSI1_D1±  
CSI1_D2±  
CSI1_D3±  
CSI0_CLK±  
CSI1_CLK±  
1/(fCLK  
× 2)  
UIINST  
UI instantaneous  
UI variation  
UI  
UI 1 ns  
–10%  
–5%  
10%  
5%  
UI  
UI  
ΔUI  
UI < 1 ns  
Data rate 1 Gbps  
–0.15  
0.15 UIINST  
Data to clock skew (measured at  
transmitter)  
Skew between clock and data  
from ideal center  
tSKEW(TX)  
Data rate > 1 Gbps  
–0.2  
0.2 UIINST  
CSI-2 TIMING SPECIFICATIONS (11, 12)  
Timeout for receiver to detect  
tCLK-MISS  
tCLK-POST  
absence of clock transitions and  
disable the clock lane HS-RX  
60  
ns  
ns  
HS exit  
60 + 52 × UI  
Time HS clock shall be driver  
prior to any associated data lane  
beginning the transition from LP  
to HS mode  
tCLK-PRE  
8
UI  
CSI0_D0±  
CSI0_D1±  
CSI0_D2±  
CSI0_D3±  
CSI1_D0±  
CSI1_D1±  
CSI1_D2±  
CSI1_D3±  
CSI0_CLK±  
CSI1_CLK±  
tCLK-  
PREPARE  
Clock lane HS Entry  
38  
95  
95  
ns  
ns  
Time interval during which the  
tCLK-SETTLE HS receiver shall ignore any  
clock lane HS transitions  
300  
Time for Dn to  
reach VTERM-  
EN  
Timeout at clock lane display  
tCLK-TERM-EN  
38  
ns  
ns  
module to enable HS Termination  
Time that the transmitter drives  
the HS-0 state after the last  
payload clock bit of a HS  
tCLK-TRAIL  
60  
transmission burst  
tCLK-  
PREPARE  
tCLK-ZERO  
TCLK-PREPARE + time that the  
transmitter drives the HS-0 state  
prior to starting the Clock  
+
300  
ns  
ns  
ns  
Time for Dn to  
reach V-  
Time for the Data Lane receiver  
to enable the HS line termination  
35 + 4  
× UI  
tD-TERM-EN  
TERM-EN  
Transmitted time interval from the  
105 +  
12 × UI  
tEOT  
start of tHS-TRAIL to the start of the see(2)  
LP-11 state following a HS burst  
Time that the transmitter drives  
LP=11 following a HS burst  
tHS-EXIT  
100  
ns  
ns  
85 + 6  
× UI  
tHS-PREPARE Data lane HS entry  
40 + 4 × UI  
tHS-PREPARE + time that the  
tHS-PREPARE transmitter drives the HS-0 state  
145 + 10 × UI  
85 + 6 × UI  
ns  
ns  
+ tHS-ZERO  
prior to transmitting the sync  
sequence  
Time interval during which the  
HS receiver ignores any data  
lane HS transitions, starting from  
the beginning of tHS-SETTLE  
145 +  
10 × UI  
tHS-SETTLE  
(2) a. 1280 × 720p60; PCLK = 74.25 MHz; 4 MIPI lanes Reg0x6C = 0x02; Reg0x6D = 0x84  
b. 1280 × 720p60; PCLK = 74.25MHz; 2 MIPI lanes Reg0x6C = 0x02; Reg0x6D = 0x89  
c. 640 × 480p60; PCLK = 25 MHz; 4 MIPI lanes Reg0x6C = 0x02; Reg0x6D = 0x82  
d. 640 × 480p60; PCLK = 25 MHz; 2 MIPI lanes Reg0x6C = 0x02; Reg0x6D = 0x83  
e. Other video formats may require additional register configuration.  
16  
Copyright © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Switching Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
Time interval during which the  
HS-RX should ignore any  
transitions on the data lane,  
following a HS burst. The end  
point of the interval is defined as  
the beginning of the LP-11 state  
following the HS burst.  
55 + 4  
ns  
tHS-SKIP  
40  
× UI  
tHS-TRAIL  
tLPX  
Data lane HS exit  
60 + 4 × UI  
50  
ns  
ns  
Transmitted length of LP state  
Recovery time from ultra-low-  
power state (ULPS)  
tWAKEUP  
1
ms  
6.9 Timing Diagrams and Test Circuits  
+VOD  
CSI0_CLK±,  
CSI1_CLK±  
-VOD  
+VOD  
-VOD  
CSI0_D1±, CSI0_D3±,  
CSI1_D1±, CSI1_D3±  
+VOD  
-VOD  
CSI0_D0±, CSI0_D2±,  
CSI1_D0±, CSI1_D2±  
Cycle N  
Cycle N+1  
1. Checkerboard Data Pattern  
EW  
VOD (+)  
RIN  
(Diff.)  
EH  
0V  
EH  
VOD (-)  
t
(1 UI)  
BIT  
2. CML Output Driver  
V
DDIO  
80%  
20%  
GND  
t
t
CHL  
CLH  
3. LVCMOS Transition Times  
版权 © 2018, Texas Instruments Incorporated  
17  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Timing Diagrams and Test Circuits (接下页)  
PDB  
VIH(min)  
RIN[1:0]±  
tDDLT  
LOCK  
VOH(min)  
TRI-STATE  
4. PLL Lock Time  
RIN[1:0]+  
VTL  
VCM  
VTH  
RIN[1:0]-  
GND  
5. FPD-Link III Receiver DC VTH/VTL Definition  
I2S_CLK,  
MCLK  
V
DDIO  
1/2 V  
DDIO  
GND  
V
DDIO  
V
OHmin  
I2S_WC,  
V
I2S_D[D:A]  
OLmax  
GND  
t
t
ROH  
ROS  
6. Output Data Valid (Setup and Hold) Times  
BISTEN  
1/2 V  
DDIO  
t
PASS  
1/2 V  
PASS  
(w/errors)  
DDIO  
Result Held  
Prior BIST Result  
Current BIST Test - Toggle on Error  
7. BIST PASS Waveform  
SDA  
SCL  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
f
r
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
8. Serial Control Bus Timing Diagram  
18  
版权 © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Timing Diagrams and Test Circuits (接下页)  
tI2S  
tLC,I2S  
t
HC,I2S  
V
IH  
I2S_CLK  
V
IL  
t
t
SR,I2S  
HR,I2S  
I2S_WC  
I2S_D[A,B,C,D]  
9. I2S Timing  
CSI[1:0]_D[3:0]+  
CSI[1:0]_D[3:0]-  
0.5UI +  
tskew  
CSI[1:0]_CLK+  
CSI[1:0]_CLK-  
1 UI  
10. Clock and Data Timing in HS Transmission  
Clock Lane  
Data Lane  
Dp/Dn  
T
T
T
HS-SYNC  
LPX  
HS-ZERO  
Disconnect  
Terminator  
THS-PREPARE  
VIH(min)  
VIL(max)  
T
REOT  
Capture  
1st Data Bit  
T
D-TERM-EN  
LP-01  
T
LP-11  
HS-SKIP  
LP-11  
LP-00  
T
EOT  
HS-TRAIL  
T
HS-SETTLE  
T
T
HS-EXIT  
11. High-Speed Data Transmission Burst  
版权 © 2018, Texas Instruments Incorporated  
19  
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Timing Diagrams and Test Circuits (接下页)  
Disconnect  
Terminator  
Clock Lane  
Dp/Dn  
T
CLK-SETTLE  
T
T
EOT  
CLK-POST  
TCLK-TERM-EN  
T
CLK-MISS  
VIH(min)  
VIL(max)  
T
T
T
LPX  
T
T
CLK-PRE  
CLK-TRAIL  
HS-EXIT  
CLK-ZERO  
T
CLK-PREPARE  
Data Lane  
Dp/Dn  
T
HS-PREPARE  
Disconnect  
Terminator  
T
LPX  
VIH(min)  
VIL(max)  
T
HS-SKIP  
T
D-TERM-EN  
T
HS-SETTLE  
12. Switching the Clock Lane Between Clock Transmission and Low-Power Mode  
VS  
(internal Node)  
Vertical Blanking  
1st  
Line  
2nd  
Line  
Last  
Line  
DE  
(internal Node)  
CSI0_D[3:0]±  
or  
CSI1_D[3:0]±  
1 to 216  
t
LPX  
Line  
Packet  
Line  
Packet  
Line  
Packet  
Line  
Packet  
FS  
FE  
FS  
LPS  
LPS  
LPS  
LPS  
LPS  
LPS  
LPS  
LPS  
Frame  
Sync  
Packet  
Line  
Packet  
13. Long Line Packets and Short Frame Sync Packets  
20  
版权 © 2018, Texas Instruments Incorporated  
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Timing Diagrams and Test Circuits (接下页)  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-4  
EOT  
EOT  
EOT  
EOT  
BYTE n-3  
BYTE n-2  
BYTE n-1  
BYTE 10  
BYTE 11  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
BYTE 10  
BYTE 11  
HS BYTES TRANSMITTED (n) IS 2 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
BYTE 10  
BYTE 11  
EOT  
HS BYTES TRANSMITTED (n) IS 3 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-1  
EOT  
EOT  
BYTE 10  
BYTE 11  
EOT  
EOT  
14. 4 MIPI® Data Lane Configuration  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 2  
LANE 0  
LANE 1  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 2  
LANE 0  
LANE 1  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE n-1  
EOT  
EOT  
15. 2 MIPI® Data Lane Configuration  
版权 © 2018, Texas Instruments Incorporated  
21  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
6.10 Typical Characteristics  
Time (50 ns/DIV)  
Time (50 ns/DIV)  
16. CSI-2 D0± End of Transmission  
17. CSI-2 D0± Start of Transmission  
22  
版权 © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
7 Detailed Description  
7.1 Overview  
The DS90UH940N-Q1 receives a 35-bit symbol over single or dual serial FPD-Link III pairs operating at up to a  
3.36-Gbps line rate in 1-lane FPD-Link III mode and 2.975 Gbps per lane in 2-lane FPD-Link III mode. The  
DS90UH940N-Q1 converts this stream into a CSI-2 MIPI Interface (4 data channels + 1 clock, or 8 data channels  
+ 2 clocks in replicate mode). The FPD-Link III serial stream contains an embedded clock, video control signals,  
audio, GPIOs, I2C, and the DC-balanced video data and audio data which enhance signal quality to support AC  
coupling.  
The DS90UH940N-Q1 is intended for use with the DS90UH949-Q1 or DS90UH947-Q1 serializers, but is also  
backward compatible to the DS90UH925Q-Q1, DS90UH925AQ-Q1, and DS90UH927Q-Q1 FPD-Link III  
serializers.  
The DS90UH940N-Q1 deserializer attains lock to a data stream without the use of a separate reference clock  
source, which greatly simplifies system complexity and overall cost. The deserializer also synchronizes to the  
serializer regardless of the data pattern, delivering true automatic plug and lock performance. It can lock to the  
incoming serial stream without the need of special training patterns or sync characters. The deserializer recovers  
the clock and data by extracting the embedded clock information, validating then deserializing the incoming data  
stream. It also applies decryption through a high-bandwidth digital content protection (HDCP) Cipher to this video  
and audio data stream following reception of the data from the FPD-Link III decoder. On-chip non-volatile  
memory stores the HDCP keys. All key exchange is done through the FPD-Link III bidirectional control interface.  
The decrypted MIPI CSI-2 interface is provided to the processor.  
The DS90UH940N-Q1 deserializer incorporates an I2C-compatible interface. The I2C-compatible interface allows  
programming of serializer or deserializer devices from a local host controller. The devices also incorporate a  
bidirectional control channel (BCC) that allows communication between serializer/deserializer as well as remote  
I2C slave devices.  
The bidirectional control channel (BCC) is implemented through embedded signaling in the high-speed forward  
channel (serializer to deserializer) combined with lower speed signaling in the reverse channel (deserializer to  
serializer). Through this interface, the BCC provides a mechanism to bridge I2C transactions across the serial  
link from one I2C bus to another. The implementation allows for arbitration with other I2C-compatible masters at  
either side of the serial link.  
版权 © 2018, Texas Instruments Incorporated  
23  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.2 Functional Block Diagram  
MIPI CSI-2  
Outputs  
RIN0+  
RIN0-  
RIN1+  
RIN1-  
CMLOUTP  
CMLOUTN  
Timing  
and  
Control  
PDB  
LOCK  
PASS  
MODE_SEL0  
MODE_SEL1  
CLOCK  
MIPI CSI-2  
Outputs  
Clock  
Gen  
4
D_GPIOx / SPI  
I2S / GPIO  
/
I2C_SDA  
I2C_SCL  
IDx  
8
/
I2C  
Controller  
7.3 Feature Description  
7.3.1 High-Speed Forward Channel Data Transfer  
The high-speed forward channel is composed of 35 bits of data containing RGB data, sync signals, HDCP, I2C,  
GPIOs, and I2S audio transmitted from serializer to deserializer. 18 shows the serial stream per clock cycle.  
This data payload is optimized for signal transmission over an AC-coupled link. Data is randomized, balanced,  
and scrambled.  
C0  
C1  
18. FPD-Link III Serial Stream  
The DS90UH940N-Q1 supports clocks in the range of 25 MHz to 96 MHz over 1 lane, or 50 MHz to 170 MHz  
over 2 lanes. The FPD-Link III serial stream rate is 3.36 Gbps maximum (875 Mbps minimum) or 2.975 Gbps  
maximum per lane (875 Mbps minimum), respectively.  
7.3.2 Low-Speed Back Channel Data Transfer  
The Low-Speed Backward Channel provides bidirectional communication between the display and host  
processor. The information is carried from the deserializer to the serializer as serial frames. The back channel  
control data is transferred over both serial links along with the high-speed forward data, DC balance coding and  
embedded clock information. This architecture provides a backward path across the serial link together with a  
high-speed forward channel. The back channel contains the I2C, CRC and 4 bits of standard GPIO information  
with 5-Mbps or 20-Mbps line rate (configured by MODE_SEL1).  
24  
版权 © 2018, Texas Instruments Incorporated  
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Feature Description (接下页)  
7.3.3 FPD-Link III Port Register Access  
Because the DS90UH940N-Q1 contains two ports, some registers must be duplicated to allow control and  
monitoring of the two ports. To facilitate this, PORT1_SEL and PORT0_SEL bits (0x34[1:0]) register controls  
access to the two sets of registers. Registers that are shared between ports (not duplicated) are available  
independent of the settings in the PORT_SEL register.  
Setting the PORT1_SEL and PORT0_SEL bit allows a read of the register for the selected port. If both bits are  
set, port1 registers are returned. Writes occur to ports for which the select bit is set, allowing simultaneous writes  
to both ports if both select bits are set.  
7.3.4 Clock and Output Status  
When PDB is driven HIGH, the CDR PLL begins locking to the serial input and LOCK is tri-state or LOW  
(depending on the value of the OUTPUT ENABLE setting). After the deserializer completes its lock sequence to  
the input serial data, the LOCK output is driven HIGH, indicating valid data and clock recovered from the serial  
input is available on the LVCMOS and LVDS outputs. The state of the outputs is based on the OUTPUT  
ENABLE and OUTPUT SLEEP STATE SELECT register settings. See register 0x02 in Table 11.  
1. Output State Table  
INPUTS  
OUTPUTS  
DATA  
OUTPUT SLEEP  
STATE SELECT  
Reg 0x02 [4]  
OUTPUT ENABLE  
Reg 0x02 [7]  
SERIAL  
INPUT  
PDB  
LOCK  
PASS  
GPIO / D_GPIO CSI-2 OUTPUT  
I2S  
X
L
X
L
X
L
Z
Z
Z
Z
X
H
H
H
H
H
H
L or H  
L
L
Z
HS0  
Z
X
L
H
L
L or H  
Z
Static  
Static  
Active  
Active  
H
H
H
H
L
L
L
L
HS0  
HS0  
HS0  
Valid  
H
L
Previous status  
L
L
L
L
H
H
Valid  
Valid  
7.3.5 LVCMOS VDDIO Option  
The 1.8-V or 3.3-V inputs and outputs are powered from a separate VDDIO supply to offer compatibility with  
external system interface signals.  
When configuring the VDDIO power supplies, all the single-ended data and control input  
pins for device must scale together with the same operating VDDIO levels.  
7.3.6 Power Down (PDB)  
The deserializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin can be controlled by  
the host or through the VDDIO, where VDDIO = 3 V to 3.6 V or VDD33. To save power, disable the link when the  
display is not needed (PDB = LOW). When the pin is driven by the host, make sure to release it after VDD33 and  
VDDIO have reached final levels; no external components are required. When the PDB input pin is driven by the  
VDDIO = 3 V to 3.6 V or VDD33 directly, a 10-kΩ resistor to the VDDIO = 3 V to 3.6 V or VDD33 and a > 10-µF  
capacitor to the GND, are required (see 38 Typical Connection Diagram).  
7.3.7 Interrupt Pin — Functional Description and Usage (INTB_IN)  
The INTB_IN pin is an active low interrupt input pin. This interrupt signal, when configured, propagates to the  
paired serializer. Consult the appropriate serializer data sheet for details of how to configure this interrupt  
functionality.  
1. On the serializer, set register 0xC6[5] = 1 and 0xC6[0] = 1  
2. Deserializer INTB_IN (pin 4) is set LOW by some downstream device.  
版权 © 2018, Texas Instruments Incorporated  
25  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
3. Serializer pulls INTB pin LOW. The signal is active LOW, so a LOW indicates an interrupt condition.  
4. External controller detects INTB = LOW; to determine interrupt source, read ISR register.  
5. A read to ISR clears the interrupt at the Serializer, releasing INTB.  
6. The external controller typically must then access the remote device to determine downstream interrupt  
source and clear the interrupt driving the deserializer INTB_IN. This would be when the downstream device  
releases the INTB_IN (pin 4) on the deserializer. The system is now ready to return to step (2) at next falling  
edge of INTB_IN.  
7.3.8 General-Purpose I/O (GPIO)  
The DS90UH940N-Q1 deserializer features standard General-Purpose I/O (GPIO) and High-speed General-  
Purpose I/O (D_GPIO) pins. The D_GPIO pins are functional only in 2-lane FPD-Link III mode.  
7.3.8.1 GPIOx and D_GPIOx Pin Configuration  
In normal operation, GPIOx pins may be used as GPIOs in either forward channel (outputs) or back channel  
(inputs) mode. GPIO and D_GPIO modes may be configured through the registers (Table 11). The same  
registers configure either GPIOx or D_GPIOx pins, depending on the status of PORT1_SEL and PORT0_SEL  
bits (0x34[1:0]). D_GPIO mode operation requires 2-lane FPD-Link III mode. Consult the appropriate serializer  
data sheet for details on D_GPIOx pin configuration. Note: if paired with a DS90UH925Q-Q1 serializer, the  
devices must be configured into 18-bit mode to allow usage of GPIO pins on the serializer. To enable 18-bit  
mode, set serializer register 0x12[2] = 1. 18-bit mode is auto-loaded into the deserializer from the serializer. See  
2 for GPIOx pins enable and configuration.  
2. GPIO / D_GPIO Enable and Configuration  
DESCRIPTION  
DEVICE  
Serializer  
FORWARD CHANNEL  
0x0F[3:0] = 0x3  
0x1F[3:0] = 0x5  
0x0E[7:4] = 0x3  
0x1E[7:4] = 0x5  
0x0E[3:0] = 0x3  
0x1E[3:0] = 0x5  
0x0D[3:0] = 0x3  
0x1D[3:0] = 0x5  
BACK CHANNEL  
0x0F[3:0] = 0x5  
0x1F[3:0] = 0x3  
0x0E[7:4] = 0x5  
0x1E[7:4] = 0x3  
0x0E[3:0] = 0x5  
0x1E[3:0] = 0x3  
0x0D[3:0] = 0x5  
0x1D[3:0] = 0x3  
GPIO3 / D_GPIO3  
Deserializer  
Serializer  
GPIO2 / D_GPIO2  
GPIO1 / D_GPIO1  
GPIO0 / D_GPIO0  
Deserializer  
Serializer  
Deserializer  
Serializer  
Deserializer  
The input value present on GPIO[3:0] or D_GPIO[3:0] may also be read from register or configured to local  
output mode (Table 11).  
7.3.8.2 Back Channel Configuration  
The D_GPIO[3:0] pins can be configured to obtain different sampling rates depending on the mode as well as  
back channel frequency. The mode is controlled by register 0x43 (Table 11). The back channel frequency can be  
controlled several ways:  
1. Register 0x23[6] sets the divider that controls the back channel frequency based on the internal oscillator.  
0x23[6] = 0 sets the divider to 4 and 0x23[6] = 1 sets the divider to 2. As long as BC_HS_CTL (0x23[4]) is  
set to 0, the back channel frequency is either 5 Mbps or 10 Mbps, based on this bit.  
2. Register 0x23[4] enables the high-speed back channel. This can also be pin-strapped through MODE_SEL1  
(see 3). This bit overrides 0x23[6] and sets the divider for the back channel frequency to 1. Setting this bit  
to 1 sets the back channel frequency to 20 Mbps.  
The back channel frequency has variation of ±20%. Note: The back channel frequency must be set to 5 Mbps  
when paired with a DS90UH925Q-Q1, DS90UH925AQ-Q1, or DS90UH927Q-Q1. See 3 for details about  
configuring the D_GPIOs in various modes.  
26  
版权 © 2018, Texas Instruments Incorporated  
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
3. Back Channel D_GPIO Effective Frequency  
D_GPIO EFFECTIVE FREQUENCY(1) (kHz)  
5 Mbps BC(2) 10 Mbps BC(3) 20 Mbps BC(4)  
HSCC_MODE  
(0x43[2:0])  
NUMBER OF  
D_GPIOs  
SAMPLES  
PER FRAME  
D_GPIOs  
ALLOWED  
MODE  
000  
011  
010  
001  
Normal  
Fast  
4
4
2
1
1
6
33  
66  
400  
666  
1000  
133  
800  
D_GPIO[3:0]  
D_GPIO[3:0]  
D_GPIO[1:0]  
D_GPIO0  
200  
333  
500  
Fast  
10  
15  
1333  
2000  
Fast  
(1) The effective frequency assumes the worst-case back channel frequency (–20%) and a 4×sampling rate.  
(2) 5 Mbps corresponds to BC FREQ SELECT = 0 & BC_HS_CTL = 0.  
(3) 10 Mbps corresponds to BC FREQ SELECT = 1 & BC_HS_CTL = 0.  
(4) 20 Mbps corresponds to BC FREQ SELECT = X & BC_HS_CTL = 1.  
7.3.8.3 GPIO_REG[8:5] Configuration  
GPIO_REG[8:5] are register-only GPIOs and may be programmed as outputs or read as inputs through local  
register bits only. Where applicable, these bits are shared with I2S pins and will override I2S input if enabled into  
GPIO_REG mode. See 4 for GPIO enable and configuration.  
Local GPIO value may be configured and read either through local register access, or  
remote register access through the low-speed bidirectional control channel. Configuration  
and state of these pins are not transported from serializer to deserializer as is the case for  
GPIO[3:0].  
版权 © 2018, Texas Instruments Incorporated  
27  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
4. GPIO_REG and GPIO Local Enable and Configuration  
DESCRIPTION  
REGISTER CONFIGURATION  
0x1A[3:0] = 0x1  
0x1A[3:0] = 0x9  
0x1A[3:0] = 0x3  
0x21[7:4] = 0x1  
0x21[7:4] = 0x9  
0x21[7:4] = 0x3  
0x21[3:0] = 0x1  
0x21[3:0] = 0x9  
0x21[3:0] = 0x3  
0x20[7:4] = 0x1  
0x20[7:4] = 0x9  
0x20[7:4] = 0x3  
0x20[3:0] = 0x1  
0x20[3:0] = 0x9  
0x20[3:0] = 0x3  
0x1F[3:0] = 0x1  
0x1F[3:0] = 0x9  
0x1F[3:0] = 0x3  
0x1E[7:4] = 0x1  
0x1E[7:4] = 0x9  
0x1E[7:4] = 0x3  
0x1E[3:0] = 0x1  
0x1E[3:0] = 0x9  
0x1E[3:0] = 0x3  
0x1D[3:0] = 0x1  
0x1D[3:0] = 0x9  
0x1D[3:0] = 0x3  
FUNCTION  
Output, L  
GPIO9  
Output, H  
Input, Read: 0x6F[1]  
Output, L  
GPIO_REG8  
Output, H  
Input, Read: 0x6F[0]  
Output, L  
GPIO_REG7  
Output, H  
Input, Read: 0x6E[7]  
Output, L  
GPIO_REG6  
Output, H  
Input, Read: 0x6E[6]  
Output, L  
GPIO_REG5  
Output, H  
Input, Read: 0x6E[5]  
Output, L  
GPIO3  
Output, H  
Input, Read: 0x6E[3]  
Output, L  
GPIO2  
Output, H  
Input, Read: 0x6E[2]  
Output, L  
GPIO1  
GPIO0  
Output, H  
Input, Read: 0x6E[1]  
Output, L  
Output, H  
Input, Read: 0x6E[0]  
7.3.9 SPI Communication  
The SPI control channel uses the secondary link in a 2-lane FPD-Link III implementation. Two possible modes  
are available: forward channel and reverse channel modes. In forward channel mode, the SPI master is located  
at the serializer, such that the direction of sending SPI data is in the same direction as the video data. In reverse  
channel mode, the SPI master is located at the deserializer, such that the direction of sending SPI data is in the  
opposite direction as the video data.  
The SPI control channel can operate in a high-speed mode when writing data, but must operate at lower  
frequencies when reading data. During SPI reads, data is clocked from the slave to the master on the SPI clock  
falling edge. Thus, the SPI read must operate with a clock period that is greater than the round trip data latency.  
On the other hand, for SPI writes, data can be sent at much higher frequencies where the MISO pin can be  
ignored by the master.  
SPI data rates are not symmetrical for the two modes of operation. Data over the forward channel can be sent  
much faster than data over the reverse channel.  
SPI cannot be used to access serializer or deserializer registers.  
28  
版权 © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
7.3.9.1 SPI Mode Configuration  
SPI is configured over I2C using the high-speed control channel configuration (HSCC_CONTROL) register, 0x43  
(See Table 11). HSCC_MODE (0x43[2:0]) must be configured for either high-speed, forward channel SPI mode  
(110) or high-speed, reverse channel SPI mode (111).  
7.3.9.2 Forward Channel SPI Operation  
In forward channel SPI operation, the SPI master located at the serializer generates the SPI clock (SPLK),  
master out / slave in data (MOSI), and active low slave select (SS). The serializer oversamples the SPI signals  
directly using the video pixel clock. The three sampled values for SPLK, MOSI, and SS are each sent on data  
bits in the forward channel frame. At the deserializer, the SPI signals are regenerated using the pixel clock. To  
preserve setup and hold time, the deserializer holds MOSI data while the SPLK signal is high. The deserializer  
also delays SPLK by one pixel clock relative to the MOSI data, increasing setup by one pixel clock.  
SERIALIZER  
SS  
SPLK  
MOSI  
D0  
D1  
D2  
D3  
DN  
SS  
DESERIALIZER  
SPLK  
D0  
D1  
D2  
D3  
DN  
MOSI  
19. Forward Channel SPI Write  
版权 © 2018, Texas Instruments Incorporated  
29  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
SERIALIZER  
SS  
SPLK  
MOSI  
MISO  
D0  
D1  
RD0  
RD1  
SS  
DESERIALIZER  
SPLK  
D0  
MOSI  
MISO  
RD0  
RD1  
20. Forward Channel SPI Read  
7.3.9.3 Reverse Channel SPI Operation  
In reverse channel SPI operation, the deserializer samples the slave select (SS), SPI clock (SCLK) into the  
internal oscillator clock domain. Upon detection of the active SPI clock edge, the deserializer also samples the  
SPI data (MOSI). The SPI data samples are stored in a buffer to be passed to the serializer over the back  
channel. The deserializer sends SPI information in a back channel frame to the serializer. In each back channel  
frame, the deserializer sends an indication of the SS value. The SS must be inactive (high) for at least one back-  
channel frame period to ensure propagation to the serializer.  
Because data is delivered in separate back channel frames and buffered, the data may be regenerated in bursts.  
21 shows an example of the SPI data regeneration when the data arrives in three back channel frames. The  
first frame delivered the SS active indication, the second frame delivered the first three data bits, and the third  
frame delivers the additional data bits.  
30  
版权 © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
DESERIALIZER  
SS  
SPLK  
MOSI  
D0  
D1  
D2  
D3  
DN  
SS  
SPLK  
SERIALIZER  
D0  
D1  
D2  
D3  
DN  
MOSI  
21. Reverse Channel SPI Write  
For reverse channel SPI reads, the SPI master must wait for a round-trip response before generating the  
sampling edge of the SPI clock. This is similar to operation in forward channel mode. Note that at most one  
data/clock sample is sent per back channel frame.  
DESERIALIZER  
SS  
SPLK  
MOSI  
MISO  
D0  
D1  
RD0  
RD1  
SS  
SERIALIZER  
SPLK  
D0  
MOSI  
MISO  
RD0  
RD1  
22. Reverse Channel SPI Read  
版权 © 2018, Texas Instruments Incorporated  
31  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
For both reverse-channel SPI writes and reads, the SPI_SS signal must be deasserted for at least one back-  
channel frame period.  
5. SPI SS Deassertion Requirement  
BACK CHANNEL FREQUENCY  
DEASSERTION REQUIREMENT  
5 Mbps  
10 Mbps  
20 Mbps  
7.5 µs  
3.75 µs  
1.875 µs  
7.3.10 Backward Compatibility  
The DS90UH940N-Q1 is also backward compatible to the DS90UH925Q-Q1, DS90UH925AQ-Q1, and  
DS90UH927Q-Q1 for PCLK frequencies ranging from 25 MHz to 85 MHz. Backward compatibility does not need  
to be enabled. When paired with a backward-compatible device, the deserializer auto-detects to 1-lane FPD-Link  
III on the primary channel (RIN0±).  
7.3.11 Adaptive Equalizer  
The FPD-Link III receiver inputs incorporate an adaptive equalizer (AEQ) to compensate for signal degradation  
from the communications channel and interconnect components. Each RX port signal path continuously monitors  
cable characteristics for long-term cable aging and temperature changes. The AEQ is primarily intended to adapt  
and compensate for channel losses over the lifetime of a cable installed in an automobile. The AEQ attempts to  
optimize the equalization setting of the RX receiver. This adaption includes compensating insertion loss from  
temperature effects and aging degradation due to bending and flexion. To determine the maximum cable reach,  
factors that affect signal integrity such as jitter, skew, inter-symbol interference (ISI), crosstalk, and so forth, must  
also be considered. The equalization configuration programmed in registers 0x35 (AEQ_CTL1) and 0x45  
(AEQ_CTL2). See Table 11.  
7.3.11.1 Transmission Distance  
The DS90UH940N-Q1 AEQ can compensate for the transmission channel insertion loss of up to –15.3 dB at 1.7  
GHz. When designing the transmission channel, consider the total insertion loss of all components in the signal  
path between a serializer and a deserializer. Typically, the transmission channel would consist of a serializer  
PCB, two or more connectors, one or more cables, and a deserializer PCB as shown in 23.  
Serializer PCB  
SER  
Deserializer PCB  
DES  
Dacar 535-2  
Dacar 535-2  
Dacar 535-2  
23. Typical Transmission Channel Components With STQ Cables  
7.3.11.2 Adaptive Equalizer Algorithm  
The AEQ process steps through allowed values of the equalizer controls find a value that allows the Clock Data  
Recovery (CDR) circuit to maintain valid lock condition. For each EQ setting, the circuit waits for a programmed  
re-lock time period, then checks results for valid lock. If valid lock is detected, the circuit will stop at the current  
EQ setting and maintain constant value as long as lock state persists. If the deserializer loses LOCK, the  
adaptive equalizer will resume the LOCK algorithm and the EQ setting is incremented to the next valid state.  
Once lock is lost, the circuit will continue searching EQ settings to find a valid setting to reacquire the serial data  
stream sent by the serializer that remains locked.  
32  
版权 © 2018, Texas Instruments Incorporated  
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
7.3.11.3 AEQ Settings  
7.3.11.3.1 AEQ Start-Up and Initialization  
The AEQ circuit can be restarted at any time by setting the AEQ_RESTART bit in the AEQ_CTL1 register 0x35.  
Once the deserializer is powered on, the AEQ is continually searching through EQ settings and could be at any  
setting when signal is supplied from the serializer. If the Rx Port CDR locks to the signal, it may be good enough  
for low bit errors, but could be not optimized or over-equalized. For a consistent initial EQ setting, TI  
recommends that the user applies AEQ_RESTART or DIGITAL_RESET0 when the serializer input signal  
frequency is stable to restart adaption from the minimum EQ gain value.  
7.3.11.3.2 AEQ Range  
The user can program the AEQ circuit with the minimum AEQ level setting used during the EQ adaption. Using  
the full AEQ range will provide the most flexible solution, however, if the channel conditions are known and an  
improved deserializer lock time can be achieved by narrowing the search window for allowable EQ gain settings.  
For example, in a system use case with a longer cable and multiple interconnects creating a higher channel  
attenuation, the AEQ would not adapt to the minimum EQ gain settings. In this case, starting the adaptation from  
a higher AEQ level would improve lock time. The AEQ range is determined by the AEQ_CTL2 register 0x45  
where the ADAPTIVE_EQ_FLOOR_VALUE determines the starting value for EQ gain adaption. The maximum  
AEQ limit is not adjustable. To enable the minimum AEQ limit, OVERRIDE_AEQ_FLOOR and  
SET_AEQ_FLOOR bits in the AEQ_CTL1 register must also be set. The setting for the AEQ after adaption can  
be readback from the AEQ_STATUS register 0x3B. See Table 11.  
7.3.11.3.3 AEQ Timing  
The dwell time for AEQ to wait for either the lock or error-free status is also programmable. When checking each  
EQ setting, the AEQ will wait for a time interval, controlled by the ADAPTIVE_EQ_RELOCK_TIME field in the  
AEQ_CTL2 register (see Table 11) before incrementing to the next allowable EQ gain setting. The default wait  
time is set to 2.62 ms. Once the maximum setting is reached, if there is no lock acquired during the programmed  
relock time, the AEQ will restart adaption at the minimum setting or AEQ_FLOOR value.  
7.3.12 I2S Audio Interface  
This deserializer features six I2S output pins that, when paired with a compatible serializer, support surround-  
sound audio applications. The bit clock (I2S_CLK) supports frequencies between 1 MHz and the smaller of <  
PCLK/2 or < 13 MHz. Four I2S data outputs carry two channels of I2S-formatted digital audio each, with each  
channel delineated by the word select (I2C_WC) input.  
Deserializer  
System Clock  
Bit Clock  
Word Select  
Data  
MCLK  
I2S_CLK  
I2S_WC  
I2S_Dx  
I2S Receiver  
4
24. I2S Connection Diagram  
I2S_WC  
I2S_CLK  
MSB  
LSB  
MSB  
LSB  
I2S_Dx  
25. I2S Frame Timing Diagram  
When paired with a DS90UH925Q , the deserializer I2S interface supports a single I2S data output through  
I2S_DA (24-bit video mode) or two I2S data outputs through I2S_DA and I2S_DB (18-bit video mode).  
版权 © 2018, Texas Instruments Incorporated  
33  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.3.12.1 I2S Transport Modes  
By default, packetized audio is received during video blanking periods in dedicated data island transport frames.  
The transport mode is set in the serializer and auto-loaded into the deserializer by default. The audio  
configuration may be disabled from control registers if forward channel frame transport of I2S data is desired. In  
frame transport, only I2S_DA is received to the deserializer. Surround sound mode, which transmits all four I2S  
data inputs (I2S_D[D:A]), may only be operated in data island transport mode. This mode is only available when  
connected to a DS90UH927Q, DS90UH949-Q1, DS90UH947-Q1, or DS90UH929-Q1 serializer. If connected to a  
DS90UH925Q serializer, only I2S_DA and I2S_DB may be received.  
7.3.12.2 I2S Jitter Cleaning  
This device features a standalone PLL to clean the I2S data jitter, supporting high-end car audio systems. If  
I2S_CLK frequency is less than 1MHz, this feature must be disabled through register 0x2B[7]. See the Table 11  
section.  
7.3.12.3 MCLK  
The deserializer has an I2S Master Clock Output (MCLK). It supports x1, x2, or x4 of I2S CLK Frequency. When  
the I2S PLL is disabled, the MCLK output is off. 6 covers the range of I2S sample rates and MCLK  
frequencies. By default, all the MCLK output frequencies are x2 of the I2S CLK frequencies. The MCLK  
frequencies can also be enabled through the register bits 0x3A[6:4] (I2S DIVSEL), shown in Table 11. To select  
desired MCLK frequency, write 0x3A[7], then write to bit [6:4] accordingly.  
6. Audio Interface Frequencies  
SAMPLE RATE  
(kHz)  
I2S DATA WORD SIZE  
(BITS)  
I2S CLK  
(MHz)  
MCLK OUTPUT  
(MHz)  
REGISTER 0x3A[6:4]'b  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
000  
001  
010  
000  
001  
010  
000  
001  
010  
001  
010  
011  
010  
011  
100  
32  
44.1  
48  
1.024  
1.4112  
1.536  
3.072  
6.144  
16  
96  
192  
34  
版权 © 2018, Texas Instruments Incorporated  
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
6. Audio Interface Frequencies (接下页)  
SAMPLE RATE  
I2S DATA WORD SIZE  
(BITS)  
I2S CLK  
(MHz)  
MCLK OUTPUT  
(MHz)  
REGISTER 0x3A[6:4]'b  
(kHz)  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
000  
001  
010  
001  
010  
011  
001  
010  
011  
010  
011  
100  
011  
100  
101  
001  
010  
011  
001  
010  
011  
001  
010  
011  
010  
011  
100  
011  
100  
110  
32  
1.536  
2.117  
2.304  
4.608  
9.216  
2.048  
2.8224  
3.072  
6.144  
12.288  
44.1  
48  
24  
96  
192  
32  
44.1  
48  
32  
96  
192  
7.3.13 HDCP  
The HDCP Cipher function is implemented in the deserializer per HDCP v1.4 specification. The DS90UH940N-  
Q1 provides HDCP decryption of audiovisual content when connected to an HDCP capable FPD-Link III  
serializer. HDCP authentication and shared key generation is performed using the HDCP control channel, which  
is embedded in the forward and backward channels of the serial link. On-chip non-volatile memory (NVM) is used  
to store the HDCP keys. The confidential HDCP keys are loaded by TI during the manufacturing process and are  
not accessible external to the device.  
7.3.13.1 HDCP I2S Audio Encryption  
Depending on the quality and specifications of the audiovisual source, HDCP encryption of digital audio may be  
required. When HDCP is active, packetized data island transport audio is also encrypted along with the video  
data per HDCP v1.4. I2S audio transmitted in forward channel frame transport mode is not encrypted. System  
designers should consult the specific HDCP specifications to determine if encryption of digital audio is required  
by the specific application audiovisual source.  
版权 © 2018, Texas Instruments Incorporated  
35  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.3.14 Built-In Self Test (BIST)  
An optional at-speed built-in self test (BIST) feature supports testing of the high-speed serial link and the low-  
speed back channel without external data connections. This is useful in the prototype stage, equipment  
production, in-system test, and system diagnostics.  
7.3.14.1 BIST Configuration And Status  
The BIST mode is enabled at the deserializer by pin (BISTEN) or BIST configuration register. The test may  
select either an external PCLK or the 33-MHz internal oscillator clock (OSC) frequency in the serializer. In the  
absence of PCLK, the user can select the internal OSC frequency at the deserializer through the BISTC pin or  
BIST configuration register.  
When BIST is activated at the deserializer, a BIST enable signal is sent to the serializer through the back  
channel. The serializer outputs a test pattern and drives the link at speed. The deserializer detects the test  
pattern and monitors it for errors. The deserializer PASS output pin toggles to flag each frame received  
containing one or more errors. The serializer also tracks errors indicated by the CRC fields in each back channel  
frame.  
The BIST status can be monitored real time on the deserializer PASS pin, with each detected error resulting in a  
half pixel clock period toggled LOW. After BIST is deactivated, the result of the last test is held on the PASS  
output until reset (new BIST test or power down). A high on PASS indicates NO ERRORS were detected. A Low  
on PASS indicates one or more errors were detected. The duration of the test is controlled by the pulse width  
applied to the deserializer BISTEN pin. LOCK status is valid throughout the entire duration of BIST.  
See 26 for the BIST mode flow diagram.  
7.3.14.1.1 Sample BIST Sequence  
Note: Before BIST can be enabled, D_GPIO0 (pin 19) must be strapped HIGH and D_GPIO[3:1] (pins 16, 17,  
and 18) must be strapped LOW.  
1. BIST Mode is enabled through the BISTEN pin of deserializer. The desired clock source is selected through  
the deserializer BISTC pin.  
2. The serializer is awakened through the back channel if it is not already on. An all-zeros pattern is balanced,  
scrambled, randomized, and sent through the FPD-Link III interface to the deserializer. Once the serializer  
and the deserializer are in BIST mode and the deserializer acquires LOCK, the PASS pin of the deserializer  
goes high and BIST starts checking the data stream. If an error in the payload (1 to 35) is detected, the  
PASS pin switches low for one half of the clock period. During the BIST test, the PASS output can be  
monitored and counted to determine the payload error rate per 35 bits.  
3. To stop BIST mode, set the BISTEN pin LOW. The deserializer stops checking the data, and the final test  
result is held on the PASS pin. If the test ran error-free, the PASS output remains HIGH. If there one or more  
errors were detected, the PASS output outputs constant LOW. The PASS output state is held until a new  
BIST is run, the device is RESET, or the device is powered down. BIST duration is user-controlled and may  
be of any length.  
The link returns to normal operation after the deserializer BISTEN pin is low. 27 shows the waveform diagram  
of a typical BIST test for two cases. Case 1 is error-free, and Case 2 shows one with multiple errors. In most  
cases, it is difficult to generate errors due to the robustness of the link (differential data transmission, and so  
forth). Errors may be introduced by greatly extending the cable length, faulting the interconnect medium, or  
reducing signal condition enhancements (Rx equalization).  
36  
版权 © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Normal  
Step 1: DES in BIST  
BIST  
Wait  
Step 2: Wait, SER in BIST  
BIST  
start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
stop  
Step 4: DES/SER in Normal  
26. BIST Mode Flow Diagram  
7.3.14.2 Forward Channel and Back Channel Error Checking  
The deserializer, on locking to the serial stream, compares the recovered serial stream with all-zeroes and  
records any errors in status registers. Errors are also dynamically reported on the PASS pin of the deserializer.  
Forward channel errors may also be read from register 0x25 (Table 11).  
The back-channel data is checked for CRC errors once the serializer locks onto the back-channel serial stream,  
as indicated by link detect status (register bit 0x0C[0] - Table 11). CRC errors are recorded in an 8-bit register in  
the serializer. The register is cleared when the serializer enters the BIST mode. As soon as the serializer enters  
BIST mode, the functional mode CRC register starts recording any back channel CRC errors. The BIST mode  
CRC error register is active in BIST mode only and keeps the record of the last BIST run until either the error is  
cleared or the serializer enters BIST mode again.  
BISTEN  
(DES)  
CLK[2:1]  
D[7:0]  
7 bits/frame  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
BIST  
Result  
Held  
Normal  
SSO  
Normal  
BIST Test  
BIST Duration  
27. BIST Waveforms  
7.3.15 Internal Pattern Generation  
The deserializer supports the internal pattern generation feature. It allows basic testing and debugging of an  
integrated panel. The test patterns are simple and repetitive and allow for a quick visual verification of panel  
operation. As long as the device is not in power down mode, the test pattern is displayed even if no parallel input  
is applied. If no PCLK is received, the test pattern can be configured to use a programmed oscillator frequency.  
For detailed information, refer to Exploring the Internal Test Pattern Generation Feature of 720p FPD-Link III  
Devices (SNLA132).  
版权 © 2018, Texas Instruments Incorporated  
37  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Configuration Select  
The DS90UH940N-Q1 can be configured for several different operating modes either through the  
MODE_SEL[1:0] input pins or through the register bits 0x23 [4:3] (MODE_SEL1) and 0x6A [5:4] (MODE_SEL0).  
A pullup resistor and a pulldown resistor of suggested values may be used to set the voltage ratio of the  
MODE_SEL[1:0] input and VDD33 to select one of the possible selected modes.  
The DS90UH940N-Q1 is capable of operating in either in 1-lane or 2-lane modes for FPD-Link III. By default, the  
FPD-Link III receiver automatically configures the input based on 1- or 2-lane mode operation. Programming  
register 0x34 [4:3] settings overrides the automatic detection. For each FPD-Link III pair, the serial datastream is  
composed of a 35-bit symbol.  
The DS90UH940N-Q1 recovers the FPD-Link III serial datastream(s) and produces CSI-2 TX data driven to the  
MIPI DPHY interface. There are two CSI-2 ports (CSI0_Dn and CSI1_Dn) and each consist of one clock lane  
and four data lanes. The DS90UH940N-Q1 supports two CSI-2 TX ports, and each may be configured to support  
either two or four CSI-2 data lanes. Unused CSI-2 outputs are driven to LP11 states. The MIPI DPHY  
transmission operates in both differential (HS) and single-ended (LP) modes. During HS transmission, the pair of  
outputs operates in differential mode; and in LP mode, the pair operates as two independent single-ended traces.  
Both the data and clock lanes enter LP mode during the horizontal and vertical blanking periods.  
The configurations outlined in 28 apply to DS90UH949-Q1, DS90UH947-Q1, DS90UH929-Q1, DS90UH925Q-  
Q1, DS90UH925AQ-Q1, and DS90UH927Q-Q1 FPD-Link III serializers.  
The configurations outlined in 29 apply to DS90UH949-Q1 and DS90UH947-Q1 FPD-Link III serializers.  
The device can be configured in following modes:  
1-lane FPD-Link III input, 4 MIPI lanes output  
1-lane FPD-Link III input, 2 MIPI lanes output  
2-lane FPD-Link III input, 4 MIPI lanes output  
2-lane FPD-Link III input, 4 MIPI lanes output  
1- or 2-lane FPD-Link III input, 2 or 4 MIPI lanes output (replicate)  
7.4.1.1 1-Lane FPD-Link III Input, 4 MIPI® Lanes Output  
In this configuration the PCLK rate embedded within the 1-lane FPD-Link III frame can range from 25 MHz to 96  
MHz, resulting in a link rate of 875 Mbps (35 bit × 25 MHz) to 3.36 Gbps (35 bit × 96 MHz). Each MIPI data lane  
operates at a speed of 7 × PCLK frequency; resulting in a data rate of 175 Mbps to 672 Mbps. The  
corresponding MIPI transmit clock rate operates between 87.5 MHz to 336 MHz.  
7.4.1.2 1-Lane FPD-Link III Input, 2 MIPI® Lanes Output  
In this configuration, the PCLK rate embedded within the 1-lane FPD-Link III frame can range from 25 MHz to 96  
MHz, resulting in a link rate of 875 Mbps (35 bit × 25 MHz) to 3.36 Gbps (35 bit × 96 MHz). Each MIPI data lane  
operates at a speed of 14 × PCLK frequency; resulting in a data rate of 350 Mbps to 1344 Mbps. The  
corresponding MIPI transmit clock rate operates between 175 MHz to 672 MHz.  
7.4.1.3 2-Lane FPD-Link III Input, 4 MIPI® Lanes Output  
In this configuration, the PCLK rate embedded is split into 2-lane FPD-Link III frame and can range from 50 MHz  
to 170 MHz, resulting in a link rate of 875 Mbps (35 bit × 25 MHz) to 2.975 Gbps (35 bit × 85 MHz). The  
embedded datastreams from the received FPD-Link III inputs are merged in HS mode to form packets that carry  
the video stream. Each MIPI data lane will operate at a speed of 7 × PCLK frequency, resulting in a data rate of  
350 Mbps to 1190 Mbps. The corresponding MIPI transmit clock rate operates between 175 MHz to 595 MHz.  
7.4.1.4 2-Lane FPD-Link III Input, 2 MIPI® Lanes Output  
In this configuration, the PCLK rate embedded is split into 2-lane FPD-Link III frame and can range from 25 MHz  
to 48 MHz, resulting in a link rate of 875 Mbps (35 bit × 25 MHz) to 1.680 Gbps (35 bit × 48 MHz). The  
embedded datastreams from the received FPD-Link III inputs are merged in HS mode to form packets that carry  
the video stream. Each MIPI data lane will operate at a speed of 14 × PCLK frequency, resulting in a data rate of  
700 Mbps to 1344 Mbps. The corresponding MIPI transmit clock rate will operate between 350 MHz to 672 MHz.  
38  
版权 © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Device Functional Modes (接下页)  
7.4.1.5 1- or 2-Lane FPD-Link III Input, 2 or 4 MIPI® Lanes Output in Replicate  
Same as 1- or 2-lane FPD-Link III input(s), this mode can duplicate the MIPI CSI-2 lanes on CSI1_D[3:0] and  
CSI1_CLK outputs.  
7.4.2 MODE_SEL[1:0]  
Configuration of the device may be done either through the MODE_SEL[1:0] input pins or through the  
configuration register bits. A pullup resistor and a pulldown resistor of suggested values may be used to set the  
voltage ratio of the MODE_SEL[1:0] inputs (VR4) and VDD33 to select one of the other eight possible selected  
modes. See 7 and 8. Possible configurations are shown in 28 and 29.  
1 lane FPD-Link III Input, 4 MIPI lanes Output (Replicate)  
1 lane FPD-Link III Input, 4 MIPI lanes Output  
940N  
CSI0_D0  
CSI0_D0  
CSI0_D1  
CSI0_D2  
CSI0_D3  
CSI0_CLK  
940N  
CSI0_D1  
CSI0_D2  
CSI0_D3  
CSI0_CLK  
175 t 672 Mbps  
87.5 t 336 MHz  
175 t 672 Mbps  
87.5 t 336 MHz  
875 Mbps t 3.36 Gbps  
RIN0  
RIN0  
Disabled  
CSI1_D0  
CSI1_D1  
CSI1_D2  
CSI1_D3  
CSI1_CLK  
CSI1_D0  
CSI1_D1  
CSI1_D2  
CSI1_D3  
CSI1_CLK  
Disabled  
RIN1  
RIN1  
{CSI0 replicated}  
LP11  
1 lane FPD-Link III Input, 2 MIPI lanes Output  
1 lane FPD-Link III Input, 2 MIPI lanes Output (Replicate)  
CSI0_D0  
CSI0_D1  
CSI0_D2  
CSI0_D3  
CSI0_CLK  
940N  
CSI0_D0  
940N  
350 t 1344 Mbps  
LP11  
350 t 1344 Mbps  
CSI0_D1  
CSI0_D2  
CSI0_D3  
875 Mbps t 3.36 Gbps  
LP11  
RIN0  
RIN0  
175 t 672 MHz  
CSI0_CLK 175 t 672 MHz  
CSI1_D0  
CSI1_D1  
CSI1_D2  
CSI1_D3  
CSI1_CLK  
Disabled  
RIN1  
CSI1_D0  
CSI1_D1  
CSI1_D2  
CSI1_D3  
CSI1_CLK  
Disabled  
RIN1  
LP11  
{CSI0 replicated}  
28. Data-Path Configurations with 1-Lane FPD-Link III Input  
版权 © 2018, Texas Instruments Incorporated  
39  
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
2 lane FPD-Link III Input, 4 MIPI lanes Output (Replicate)  
2 lane FPD-Link III Input, 4 MIPI lanes Output  
940N  
CSI0_D0  
CSI0_D0  
CSI0_D1  
CSI0_D2  
CSI0_D3  
CSI0_CLK  
940N  
CSI0_D1  
CSI0_D2  
CSI0_D3  
CSI0_CLK  
350 t 1190 Mbps  
175 t 595 MHz  
350 t 1190 Mbps  
175 t 595 MHz  
875 Mbps t 2.975 Gbps  
RIN0  
RIN1  
RIN0  
875 Mbps t 2.975 Gbps  
CSI1_D0  
CSI1_D1  
CSI1_D2 {CSI0 replicated}  
CSI1_D3  
CSI1_CLK  
CSI1_D0  
CSI1_D1  
CSI1_D2  
CSI1_D3  
CSI1_CLK  
RIN1  
LP11  
2 lane FPD-Link III Input, 2 MIPI lanes Output  
2 lane FPD-Link III Input, 2 MIPI lanes Output (Replicate)  
CSI0_D0  
940N  
CSI0_D0  
940N  
700 t 1344 Mbps  
LP11  
700 t 1344 Mbps  
CSI0_D1  
CSI0_D2  
CSI0_D3  
CSI0_CLK  
CSI0_D1  
CSI0_D2  
CSI0_D3  
875 Mbps t 1.680 Gbps  
LP11  
RIN0  
RIN0  
RIN1  
350 t 672 MHz  
CSI0_CLK 350 t 672 MHz  
875 Mbps t 1.680 Gbps  
CSI1_D0  
CSI1_D1  
CSI1_D0  
CSI1_D1  
RIN1  
CSI1_D2 LP11  
CSI1_D3  
CSI1_CLK  
CSI1_D2 {CSI0 replicated}  
CSI1_D3  
CSI1_CLK  
29. Data-Path Configurations with 2-Lane FPD-Link III Inputs  
40  
版权 © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Device Functional Modes (接下页)  
V
DD33  
R1  
VMODE  
MODE_SEL[1:0]  
Deserializer  
R2  
30. MODE_SEL[1:0] Connection Diagram  
7. Configuration Select (MODE_SEL0)  
VMODE  
TARGET VOLTAGE  
SUGGESTED STRAP RESISTORS  
(1% Tolerance)  
VMODE VOLTAGE  
VTYP  
OUTPUT  
MODE  
NO.  
VDD33 = 3.3 V  
R1 (k)  
R2 (k)  
4 data lanes  
1 CSI port active (determined  
by MODE_SEL1 CSI_SEL  
bit)  
0
1
2
3
0
0
Open  
10  
4 data lanes  
both CSI ports active  
(overrides MODE_SEL1)  
0.169 x V(VDD33)  
0.230 x V(VDD33)  
0.295 x V(VDD33)  
0.559  
0.757  
0.974  
73.2  
66.5  
59  
15  
20  
2 data lanes  
1 CSI port active (determined  
by MODE_SEL1 CSI_SEL  
bit)  
2 data lanes  
both CSI port active  
(overrides MODE_SEL1)  
24.9  
4
5
6
7
0.376 x V(VDD33)  
0.466 x V(VDD33)  
0.556 x V(VDD33)  
0.801 x V(VDD33)  
1.241  
1.538  
1.835  
2.642  
49.9  
46.4  
40.2  
18.7  
30.1  
40.2  
49.9  
75  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
8. Configuration Select (MODE_SEL1)  
VMODE  
TARGET  
VOLTAGE  
VMODE  
VOLTAGE  
SUGGESTED STRAP RESISTORS  
HIGH-SPEED  
INPUT  
CSI_SEL  
(CSI PORT)  
(1% Tolerance)  
NO.  
BACK  
MODE  
CHANNEL  
VTYP  
VDD33 = 3.3 V  
0
R1 (k)  
R2 (k)  
10  
0
1
2
3
4
5
6
7
0
Open  
73.2  
66.5  
59  
CSI0  
CSI0  
CSI0  
CSI0  
CSI1  
CSI1  
CSI1  
CSI1  
5 Mbps  
5 Mbps  
20 Mbps  
20 Mbps  
5 Mbps  
5 Mbps  
20 Mbps  
20 Mbps  
STP  
Coax  
STP  
0.169 x V(VDD33)  
0.230 x V(VDD33)  
0.295 x V(VDD33)  
0.376 x V(VDD33)  
0.466 x V(VDD33)  
0.556 x V(VDD33)  
0.801 x V(VDD33)  
0.559  
15  
0.757  
20  
0.974  
24.9  
30.1  
40.2  
49.9  
75  
Coax  
STP  
1.241  
49.9  
46.4  
40.2  
18.7  
1.538  
Coax  
STP  
1.835  
2.642  
Coax  
版权 © 2018, Texas Instruments Incorporated  
41  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.4.3 CSI-2 Interface  
The DS90UH940N-Q1 (in default mode) takes RGB 24-bpp data bits defined in the serializer and directly maps  
the bits to the pixel color space in the data frame. The DS90UH940N-Q1 follows the general frame format as  
described per the CSI-2 standard (31). Upon the end of the vertical sync pulse (VS), the DS90UH940N-Q1  
generates the frame end and frame start synchronization packets within the vertical blanking period. The timing  
of the Frame Start will not reflect the timing of the VS signal.  
Upon the rising edge of the DE signal, each active line is output in a long data packet with the defined data  
format (13). At the end of each packet, the data lanes Dn± return to the LP-11 state, while the clock lane  
CLK± continue outputting the high-speed clock.  
The DS90UH940N-Q1 CSI-2 transmitter consists of a high-speed clock (CLK±) and data (Dn±) outputs based on  
a source synchronous interface. The half rate clock at CLK± is derived from the pixel clock sourced by the  
clock/data recovery circuit of the DS90UH940N-Q1. The CSI-2 clock frequency is 3.5 times (four MIPI lanes) or  
seven times (two MIPI lanes) the recovered pixel clock frequency. The MIPI DPHY outputs either two or four  
high-speed data lanes (Dn±) according to the CSI-2 protocol. The data rate of each lane is seven times (four  
MIPI lanes) or 14 times (two MIPI lanes) the pixel clock. As an example in a 4-MIPI-lane configuration, at a pixel  
clock of 150 MHz, the CLK± runs at 525 MHz, and each data lane runs at 1050 Mbps.  
The half-rate clock maintains a quadrature phase relationship to the data signals and allows receiver to sample  
data at the rising and falling edges of the clock (DDR). 10 shows the timing relationship of the clock and data  
lines. The DS90UH940N-Q1 supports continuous high-speed clock. High speed data are sent out at data lanes  
Dn± in bursts. In between data bursts, the data lanes return to low power (LP) states in according to protocol  
defined in D-PHY standard. The rising edge of the differential clock (CSI_CLK+ – CSI_CLK–) is sent during the  
first payload bit of a transmission burst in the data lanes.  
Frame Blanking  
FS  
Line Blanking  
Line Data  
FE  
Frame Blanking  
(1 to N) t  
LPX  
FS  
Line Blanking  
Line Data  
FE  
Frame Blanking  
31. CSI-2 General Frame Format  
7.4.4 Input Display Timing  
The DS90UH940N-Q1 has built-in support to detect the incoming video format extracted from the FPD-Link III  
datastream(s) and automatically generate CSI-2 output timing parameters, accordingly. The input video format  
detection is derived from progressive display resolutions based on the CEA861D specification. The video data  
rate and frame rate is determined by measuring internal VS and DE signals.  
42  
版权 © 2018, Texas Instruments Incorporated  
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
7.4.5 MIPI® CSI-2 Output Data Formats  
The DS90UH940N-Q1 CSI-2 Tx supports multiple data types. These can be seen in 9.  
9. CSI-2 Output Data Formats(1)  
CSI-2 DATA  
TYPE [5:0]  
Reg0x6B [3:2]  
IFMT  
Reg0x6B [7:4]  
OFMT  
DATA FORMAT  
DESCRIPTION  
RGB888 image data – using 24-bit container for  
RGB 24-bpp  
RGB888  
0x24  
00  
0000  
RGB666  
RGB565  
0x23  
0x22  
0x1A  
0x18  
0x1E  
00  
00  
00  
00  
00  
0001  
0010  
0011  
0100  
0101  
RGB666 image data  
RGB565 image data  
YUV420  
YUV4:2:0 image data, Legacy YUV420 8-bit  
YUV4:2:0 image data  
YUV420 8-bit  
YUV422 8-bit  
YUV4:2:2 image data  
RAW Bayer, 8-bit image data D[0:7] of serializer  
inputs are used as RAW data; alignment is  
configured with CSIIA_{0x6C}_0x09 [4]  
RAW8  
0x2A  
0x2B  
11  
11  
0110  
0111  
RAW Bayer, 10-bit image data D[0:9] of serializer  
inputs are used as RAW data; alignment is  
configured with CSIIA_{0x6C}_0x09 [4]  
RAW10  
RAW Bayer, 12-bit image data D[0:11] of serializer  
inputs are used as RAW data; alignment is  
configured with CSIIA_{0x6C}_0x09 [4]  
RAW12  
0x2C  
0x1C  
11  
00  
1000  
1001  
YUV4:2:0 image data, YUV420 Chroma shifted pixel  
sampling  
YUV420 8-bit (CSPS)  
(1) Note: Color space conversion is only available from RGB to YUV.  
7.4.6 Non-Continuous / Continuous Clock  
DS90UH940N-Q1 D-PHY supports Continuous clock mode and Non-Continuous clock mode on the CSI-2  
interface. Default mode is Non-Continuous Clock mode, where the Clock Lane enters LP mode between the  
transmissions of data packets. Non-continuous clock mode will only be non-continuous during the vertical  
blanking period for lower PCLK rates. For higher PCLK rates, the clock will be non-continuous between line and  
frame packets. Operating modes are configurable through 0x6A [1].  
Clock lane enters LP11 during horizontal blanking if the horizontal blanking period is longer than the overhead  
time to start/stop the clock lane. There is auto-detection of the length of the horizontal blank period. The fixed  
threshold is 96 PCLK cycles.  
7.4.7 Ultra-Low-Power State (ULPS)  
The DS90UH940N-Q1 supports the MIPI defined ultra-low-power state (ULPS). DS90UH940N-Q1 D-PHY lanes  
enter ULPS mode upon software standby mode through 0x6A [2] generated by the processor. When ULPS is  
issued, all active CSI-2 lanes including the clock and data lanes of the enabled CSI-2 port are put in ULPS  
according to the MIPI DPHY protocol. D-PHY can reduce power consumption by entering ULPS mode. ULPS is  
exited by means of a Mark-1 state with a length TWAKEUP followed by a Stop state.  
版权 © 2018, Texas Instruments Incorporated  
43  
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Frame  
End  
Stop  
(LP11)  
Escape  
Mode  
ULPS  
(LP00)  
Mark-1  
(LP10)  
Stop  
(LP11)  
Ultra-Low-Power-State Entry Command 00011110  
Clock Lane  
Dp/Dn  
Data Lane  
Dp/Dn  
t
t
INIT  
WAKEUP  
t
LPX  
32. Ultra-Low-Power State  
7.4.8 CSI-2 Data Identifier  
The DS90UH940N-Q1 MIPI CSI-2 protocol interface transmits the data identifier byte containing the values for  
the virtual channel ID (VC) and data type (DT) for the application specific payload data, as shown in 33. The  
virtual channel ID is contained in the two MSBs of the data identifier byte and identify the data as directed to one  
of four virtual channels. The value of the data type is contained in the 6 LSBs of the data identifier byte.  
CSIIA_{0x6C}_0x2E[7:6] CSI_VC_ID: Configures the virtual ID linked to the current context.  
CSICFG1_0x6B[7:4] OFMT: Configures the data format linked to the current context.  
Data Identifier (DI) Byte  
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0  
VC  
DT  
Virtual Channel  
Indentifier  
(VC)  
Data Type  
(DT)  
33. CSI-2 Data Identifier Structure  
44  
版权 © 2018, Texas Instruments Incorporated  
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
7.5 Programming  
7.5.1 Serial Control Bus  
The device may also be configured by the use of a I2C-compatible serial control bus. Multiple devices may share  
the serial control bus (up to eight device addresses supported). The device address is set through a resistor  
divider (R1 and R2 — see 34 below) connected to the IDx pin.  
VDD33  
VI2C  
R1  
R2  
VIDX  
IDx  
4.7k  
4.7k  
HOST  
Deserializer  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
34. Serial Control Bus Connection  
The serial control bus consists of two signals, SCL and SDA. SCL is a serial bus clock input. SDA is the serial  
bus data input / output signal. Both SCL and SDA signals require an external pullup resistor to 1.8-V or 3.3-V.  
For most applications, TI recommends that the user adds a 4.7-kpullup resistor to the 3.3-V rail, however, the  
pullup resistor value may be adjusted for capacitive loading and data rate requirements. See I2C Bus Pullup  
Resistor Calculation (SLVA689) for more information. The signals are either pulled high or driven low.  
The IDx pin configures the control interface to one of eight possible device addresses. A pullup resistor and a  
pulldown resistor may be used to set the appropriate voltage ratio between the IDx input pin (VR2) and VDD33,  
each ratio corresponding to a specific device address. See 10 for more information.  
10. Serial Control Bus Addresses for IDx  
VIDX  
SUGGESTED STRAP RESISTORS  
(1% Tolerance)  
VIDX VOLTAGE  
PRIMARY ASSIGNED I2C ADDRESS  
TARGET VOLTAGE  
NO.  
VTYP  
VDD33 = 3.3 V  
0
R1 (k)  
Open  
73.2  
66.5  
59  
R2 (k)  
10  
7-BIT  
0x2C  
0x2E  
0x30  
0x32  
0x34  
0x36  
0x38  
0x3C  
8-BIT  
0x58  
0x5C  
0x60  
0x64  
0x68  
0x6C  
0x70  
0x78  
0
1
2
3
4
5
6
7
0
0.169 x V(VDD33)  
0.230 x V(VDD33)  
0.295 x V(VDD33)  
0.376 x V(VDD33)  
0.466 x V(VDD33)  
0.556 x V(VDD33)  
0.801 x V(VDD33)  
0.559  
15  
0.757  
20  
0.974  
24.9  
30.1  
40.2  
49.9  
75  
1.241  
49.9  
46.4  
40.2  
18.7  
1.538  
1.835  
2.642  
版权 © 2018, Texas Instruments Incorporated  
45  
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
The serial bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SDA transitions low while SCL is high. A STOP occurs when SDA transitions high while SCL is also HIGH. See  
35.  
SDA  
SCL  
S
P
START condition, or  
STOP condition  
START repeat condition  
35. START and STOP Conditions  
To communicate with a remote device, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it acknowledges (ACKs) the master by driving the SDA bus low. If the address does not  
match the slave address of a device, the slave not-acknowledges (NACKs) the master by letting the SDA be  
pulled High. ACKs also occur on the bus when data is transmitted. When the master writes data, the slave sends  
an ACK after every data byte is successfully received. When the master reads data, the master sends an ACK  
after every data byte is received to let the slave know that the master is ready to receive another data byte.  
When the master wants to stop reading, the master sends a NACK after the last data byte to create a stop  
condition on the bus. All communication on the bus begins with either a start condition or a repeated Start  
condition. All communication on the bus ends with a stop condition. A READ is shown in 36 and a WRITE is  
shown in 37.  
Register Address  
Slave Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
A
2
A
1
A
0
0
S
Sr  
1
P
36. Serial Control Bus — READ  
Register Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
0
S
P
37. Serial Control Bus — WRITE  
The I2C master located in the deserializer must support I2C clock stretching. For more information on I2C  
interface requirements and throughput considerations, refer to the I2C Communication Over FPD-Link III with  
Bidirectional Control Channel (SNLA131).  
7.5.2 Multi-Master Arbitration Support  
The bidirectional control channel in the FPD-Link III devices implements I2C-compatible bus arbitration in the  
proxy I2C master implementation. When sending a data bit, each I2C master senses the value on the SDA line.  
If the master sends a logic 1 but senses a logic 0, the master loses arbitration. The master will stop driving SDA  
and retry the transaction when the bus becomes idle. Thus, multiple I2C masters may be implemented in the  
system.  
46  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
For example, there might also be a local I2C master at each camera. The local I2C master could access the  
image sensor and EEPROM. The only restriction would be that the remote I2C master at the camera should not  
attempt to access a remote slave through the BCC that is located at the host controller side of the link. In other  
words, the control channel should only operate in camera mode for accessing remote slave devices to avoid  
issues with arbitration across the link. The remote I2C master should also not attempt to access the deserializer  
registers to avoid a conflict in register access with the Host controller.  
If the system does require master-slave operation in both directions across the BCC, some method of  
communication must be used to ensure only one direction of operation occurs at any time. The communication  
method could include using available R/W registers in the deserializer to allow masters to communicate with  
each other to pass control between the two masters. An example would be to use register 0x18 or 0x19 in the  
deserializer as a mailbox register to pass control of the channel from one master to another.  
7.5.3 I2C Restrictions on Multi-Master Operation  
The I2C specification does not provide for arbitration between masters under certain conditions. The system  
should make sure the following conditions cannot occur to prevent undefined conditions on the I2C bus:  
One master generates a repeated start while another master is sending a data bit.  
One master generates a stop while another master is sending a data bit.  
One master generates a repeated start while another master sends a stop.  
Note that these restrictions mainly apply to accessing the same register offsets within a specific I2C slave.  
7.5.4 Multi-Master Access to Device Registers for Newer FPD-Link III Devices  
When using the latest generation of FPD-Link III devices (DS90UH94x-Q1), serializers or deserializer registers  
may be accessed simultaneously from both local and remote I2C masters. These devices have internal logic to  
properly arbitrate between sources to allow proper read and write access without risk of corruption.  
Access to remote I2C slaves is still be allowed in only one direction at a time (camera or display mode).  
7.5.5 Multi-Master Access to Device Registers for Older FPD-Link III Devices  
When using older FPD-Link III devices (in backward compatible mode), simultaneous access to serializer or  
deserializer registers from both local and remote I2C masters may cause incorrect operation. Thus, restrictions  
must be imposed on accessing of serializer and deserializer registers. The likelihood of an error occurrence is  
relatively small, but it is possible for collision on reads and writes to occur, resulting in a read or write error.  
TI recommends two basic options:  
Allow device register access only from one controller.  
In a display mode system, this would allow only the host controller to access the serializer registers (local)  
and the deserializer registers (remote). A controller at the deserializer (local to the display) would not be  
allowed to access the deserializer or serializer registers.  
Allow local register access only with no access to remote serializer or deserializer registers.  
The host controller would be allowed to access the serializer registers while a controller at the deserializer  
could access those register only. Access to remote I2C slaves would still be allowed in one direction (camera  
or display mode).  
In a very limited case, remote and local access could be allowed to the deserializer registers at the same time.  
Register access is ensured to work correctly if both local and remote masters are accessing the same  
deserializer register. This allows a simple method of passing control of the bidirectional control channel from one  
master to another.  
7.5.6 Restrictions on Control Channel Direction for Multi-Master Operation  
Only display or camera mode operation should be active at any time across the bidirectional control channel. If  
both directions are required, some method of transferring control between I2C masters should be implemented.  
版权 © 2018, Texas Instruments Incorporated  
47  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 DS90UH940N-Q1 Registers  
Table 11 lists the memory-mapped registers for the DS90UH940N-Q1 registers. All register offset addresses not  
listed in Table 11 should be considered as reserved locations and the register contents should not be modified.  
In the register definitions under the TYPE heading, the following definitions apply:  
R = Read only access  
R/W = Read / Write access  
R/RC = Read only access, Read to Clear  
R/W/SC = Read / Write access, Self-Clearing bit  
R/W/S = Read / Write access, Set based on strap pin configuration at start-up  
S = Set based on strap pin configuration at start-up  
Table 11. DS90UH940N-Q1 Registers  
Address  
0h  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
I2C_Device_ID  
Reset  
1h  
2h  
General_Configuration_0  
General_Configuration_1  
BCC_Watchdog_Control  
I2C_Control_1  
I2C_Control_2  
REMOTE_ID  
3h  
4h  
5h  
6h  
7h  
8h  
SlaveID_0  
9h  
SlaveID_1  
Ah  
SlaveID_2  
Bh  
SlaveID_3  
Ch  
SlaveID_4  
Dh  
SlaveID_5  
Eh  
SlaveID_6  
Fh  
SlaveID_7  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
SlaveAlias_0  
SlaveAlias_1  
SlaveAlias_2  
SlaveAlias_3  
SlaveAlias_4  
SlaveAlias_5  
SlaveAlias_6  
SlaveAlias_7  
MAILBOX_18  
MAILBOX_19  
GPIO_9__Global_GPIO_Config  
Frequency_Counter  
General_Status  
GPIO0_Config  
GPIO1_2_Config  
GPIO_3_Config  
GPIO_5_6_Config  
GPIO_7_8_Config  
Datapath_Control  
48  
Copyright © 2018, Texas Instruments Incorporated  
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Table 11. DS90UH940N-Q1 Registers (continued)  
Address  
23h  
24h  
25h  
26h  
27h  
28h  
2Bh  
2Eh  
34h  
35h  
37h  
3Ah  
3Bh  
3Dh  
41h  
43h  
44h  
45h  
52h  
56h  
57h  
63h  
64h  
65h  
66h  
67h  
68h  
69h  
6Ah  
6Bh  
6Ch  
6Dh  
6Eh  
6Fh  
80h  
81h  
82h  
83h  
84h  
90h  
91h  
92h  
93h  
94h  
C0h  
C1h  
C4h  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
RX_Mode_Status  
BIST_Control  
BIST_ERROR_COUNT  
SCL_High_Time  
SCL_Low_Time  
Datapath_Control_2  
I2S_Control  
PCLK_Test_Mode  
DUAL_RX_CTL  
AEQ_CTL1  
MODE_SEL  
I2S_DIVSEL  
Adaptive_EQ_Status  
General_Status  
LINK_ERROR_COUNT  
HSCC_CONTROL  
ADAPTIVE_EQ_BYPASS  
ADAPTIVE_EQ_MIN_MAX  
CML_OUTPUT_CTL1  
CML_OUTPUT_ENABLE  
CML_OUTPUT_CTL2  
CML_OUTPUT_CTL3  
PGCTL  
PGCFG  
PGIA  
PGID  
PGDBG  
PGTSTDAT  
CSICFG0  
CSICFG1  
CSIIA  
CSIID  
GPIO_Pin_Status_1  
GPIO_Pin_Status_2  
RX_BKSV0  
RX_BKSV1  
RX_BKSV2  
RX_BKSV3  
RX_BKSV4  
TX_KSV0  
TX_KSV1  
TX_KSV2  
TX_KSV3  
TX_KSV4  
HDCP_DBG  
HDCP_DBG2  
HDCP_STS  
Copyright © 2018, Texas Instruments Incorporated  
49  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Table 11. DS90UH940N-Q1 Registers (continued)  
Address  
C9h  
CAh  
CBh  
E0h  
E1h  
E2h  
E3h  
F0h  
Acronym  
Register Name  
Section  
Go  
KSV_FIFO_DATA  
KSV_FIFO_ADDR0  
KSV_FIFO_ADDR1  
RPTR_TX0  
Go  
Go  
Go  
RPTR_TX1  
Go  
RPTR_TX2  
Go  
RPTR_TX3  
Go  
HDCP_RX_ID0  
HDCP_RX_ID1  
HDCP_RX_ID2  
HDCP_RX_ID3  
HDCP_RX_ID4  
HDCP_RX_ID5  
Go  
F1h  
Go  
F2h  
Go  
F3h  
Go  
F4h  
Go  
F5h  
Go  
7.6.1.1 I2C_Device_ID Register (Address = 0h) [reset = Strap]  
I2C_Device_ID is described in Table 12.  
Return to Summary Table.  
Table 12. I2C_Device_ID Register Field Descriptions  
Bit  
Field  
Type  
R/W/S  
Reset  
Strap  
Description  
7-1  
DEVICE_ID  
7-bit address of Deserializer  
Defaults to address configured by the IDX strap pin. See 10.  
0
DES_ID  
R/W  
0h  
0: Device ID is from IDX strap  
1: Register I2C Device ID overrides IDX strap  
7.6.1.2 Reset Register (Address = 1h) [reset = 4h]  
Reset is described in Table 13.  
Return to Summary Table.  
Table 13. Reset Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DIGITAL_RESET0  
6
R/W  
0h  
5
R/W  
0h  
4
R/W  
0h  
3
R/W  
0h  
2
R/W  
1h  
1
R/W/SC  
0h  
Digital Reset. Resets the entire digital block including registers. This  
bit is self-clearing.  
1: Reset  
0: Normal operation.  
Registers which are loaded by pin strap will be restored to their  
original strap value when this bit is set. These registers show ‘Strap’  
as their default value in this table.  
0
DIGITAL__RESET1  
R/W/SC  
0h  
Digital Reset. Resets the entire digital block except registers. This bit  
is self-clearing.  
1: Reset  
0: Normal operation  
50  
Copyright © 2018, Texas Instruments Incorporated  
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
7.6.1.3 General_Configuration_0 Register (Address = 2h) [reset = 0h]  
General_Configuration_0 is described in Table 14.  
Return to Summary Table.  
Table 14. General_Configuration_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OUTPUT_ENABLE  
R/W  
1h  
Output Enable Override Value (in conjunction with Output Sleep  
State Select).  
If the Override control is not set, the Output Enable will be set to 1.  
A Digital reset 0x01[0] should be asserted after toggling Output  
Enable bit LOW to HIGH  
6
5
OUTPUT_ENABLE_OVE R/W  
RRIDE  
0h  
0h  
Overrides Output Enable and Output Sleep State default  
0: Disable override  
1: Enable override  
OSC_CLOCK_OUTPUT_ R/W  
ENABLE  
(AUTO_CLOCK_EN)  
OSC Clock Output Enable  
If there is a loss of lock, OSC clock is output onto PCLK. The  
frequency is selected in register 0x24.  
1: Enable  
0: Disable  
4
OUTPUT_SLEEP_STATE R/W  
_SELECT  
0h  
OSS Select Override value to control output state when LOCK is low  
(used in conjunction with Output Enable).  
If the Override control is not set, the Output Sleep State Select will  
be set to 1.  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
Reserved  
7.6.1.4 General_Configuration_1 Register (Address = 3h) [reset = F0h]  
General_Configuration_1 is described in Table 15.  
Return to Summary Table.  
Table 15. General_Configuration_1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
1h  
Description  
RESERVED  
R/W  
Reserved  
6
BC_CRC_GENERATOR_ R/W  
ENABLE  
1h  
Back Channel CRC Generator Enable  
0: Disable  
1: Enable  
5
4
FAILSAFE_LOW  
FILTER_ENABLE  
R/W  
R/W  
1h  
1h  
Controls the pull direction for undriven LVCMOS inputs  
1: Pull down  
0: Pull up  
HS,VS,DE two clock filter (FPD-Link III 1-Lane Mode) or four clock  
filter (FPD-Link III 2-Lane Mode)  
When enabled, pulses less than two full PCLK cycles in 1-Lane  
mode (or less than four full PCLK cycles in 2-Lane mode) on the DE,  
HS, and VS inputs will be rejected.  
1: Filtering enable  
0: Filtering disable  
3
2
I2C_PASS-THROUGH  
AUTO_ACK  
R/W  
R/W  
0h  
0h  
I2C Pass-Through to Serializer if decode matches  
0: Pass-Through Disabled  
1: Pass-Through Enabled  
Automatically Acknowledge I2C writes independent of the forward  
channel lock state  
1: Enable  
0: Disable  
Copyright © 2018, Texas Instruments Incorporated  
51  
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Table 15. General_Configuration_1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
DE_GATE_RGB  
R/W  
0h  
Gate RGB data with DE signal. RGB data is gated with DE in order  
to allow packetized audio and block unencrypted data when paired  
with a serializer that supports HDCP. When paired with a serializer  
that does not support HDCP, RGB data is not gated with DE by  
default. However, to enable packetized autio this bit must be set.  
1: Gate RGB data with DE (has no effect when paired with a  
serializer that supports HDCP)  
0: Pass RGB data independent of DE (has no effect when paired  
with a serializer that does not support HDCP)  
0
RESERVED  
R/W  
0h  
Reserved  
7.6.1.5 BCC_Watchdog_Control Register (Address = 4h) [reset = FEh]  
BCC_Watchdog_Control is described in Table 16.  
Return to Summary Table.  
Table 16. BCC_Watchdog_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
BCC_WATCHDOG  
_TIMER  
R/W  
7Fh  
The watchdog timer allows termination of a control channel  
transaction if it fails to complete within a programmed amount of  
time. This field sets the Bidirectional Control Channel Watchdog  
Timeout value in units of 2 milliseconds. This field should not be set  
to 0.  
0
BCC_WATCHDOG  
_TIMER_DISABLE  
R/W  
0h  
Disable Bidirectional Control Channel Watchdog Timer  
1: Disables BCC Watchdog Timer operation  
0: Enables BCC Watchdog Timer operation  
7.6.1.6 I2C_Control_1 Register (Address = 5h) [reset = 1Eh]  
I2C_Control_1 is described in Table 17.  
Return to Summary Table.  
Table 17. I2C_Control_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
I2C_PASS_THROUGH  
_ALL  
R/W  
0h  
I2C Pass-Through All Transactions  
0: Disabled  
1: Enabled  
6-4  
3-0  
I2C_SDA_HOLD  
1h  
Eh  
Internal SDA Hold Time  
This field configures the amount of internal hold time provided for the  
SDA input relative to the SCL input. Units are 50 nanoseconds.  
I2C_FILTER_DEPTH  
I2C Glitch Filter Depth  
This field configures the maximum width of glitch pulses on the SCL  
and SDA inputs that will be rejected. Units are 5 nanoseconds.  
7.6.1.7 I2C_Control_2 Register (Address = 6h) [reset = 0h]  
I2C_Control_2 is described in Table 18.  
Return to Summary Table.  
Table 18. I2C_Control_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FORWARD_CHANNEL  
_SEQUENCE_ERROR  
R
0h  
Control Channel Sequence Error Detected  
This bit indicates a sequence error has been detected in forward  
control channel. If this bit is set, an error may have occurred in the  
control channel operation.  
52  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Table 18. I2C_Control_2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
CLEAR_SEQUENCE  
_ERROR  
R/W  
0h  
Clears the Sequence Error Detect bit  
5
RESERVED  
R
0h  
0h  
Reserved  
4-3  
SDA_Output_Delay  
R/W  
SDA Output Delay  
This field configures output delay on the SDA output. Setting this  
value will increase output delay in units of 50ns. Nominal output  
delay values for SCL to SDA are:  
00 : 250ns  
01: 300ns  
10: 350ns  
11: 400ns  
2
LOCAL_WRITE_DISABLE R/W  
0h  
Disable Remote Writes to Local Registers  
Setting this bit to a 1 will prevent remote writes to local device  
registers from across the control channel. This prevents writes to the  
Deserializer registers from an I2C master attached to the Serializer.  
Setting this bit does not affect remote access to I2C slaves at the  
Deserializer.  
1
0
I2C_BUS_TIMER  
_SPEEDUP  
R/W  
R/W  
0h  
0h  
Speed up I2C Bus Watchdog Timer  
1: Watchdog Timer expires after approximately 50 microseconds  
0: Watchdog Timer expires after approximately 1 second.  
I2C_BUS_TIMER  
_DISABLE  
Disable I2C Bus Watchdog Timer  
When the I2C Watchdog Timer may be used to detect when the I2C  
bus is free or hung up following an invalid termination of a  
transaction. If SDA is high and no signalling occurs for approximately  
1 second, the I2C bus will assumed to be free. If SDA is low and no  
signaling occurs, the device will attempt to clear the bus by driving 9  
clocks on SCL  
7.6.1.8 REMOTE_ID Register (Address = 7h) [reset = 0h]  
REMOTE_ID is described in Table 19.  
Return to Summary Table.  
Table 19. REMOTE_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
REMOTE_ID  
R/W  
0h  
7-bit Serializer Device ID  
Configures the I2C Slave ID of the remote Serializer. A value of 0 in  
this field disables I2C access to the remote Serializer. This field is  
automatically loaded from the Serializer once RX Lock has been  
detected. Software may overwrite this value, but should also assert  
the FREEZE DEVICE ID bit to prevent loading by the Bidirectional  
Control Channel.  
0
FREEZE_DEVICE_ID  
R/W  
0h  
Freeze Serializer Device ID  
Prevent auto-loading of the Serializer Device ID from the Forward  
Channel. The ID will be frozen at the value written.  
Copyright © 2018, Texas Instruments Incorporated  
53  
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.6.1.9 SlaveID_0 Register (Address = 8h) [reset = 0h]  
SlaveID_0 is described in Table 20.  
Return to Summary Table.  
Table 20. SlaveID_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ID0  
R/W  
0h  
7-bit Remote Slave Device ID 0  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID0, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional  
Control Channel to the Serializer.  
0
RESERVED  
R/W  
0h  
Reserved  
7.6.1.10 SlaveID_1 Register (Address = 9h) [reset = 0h]  
SlaveID_1 is described in Table 21.  
Return to Summary Table.  
Table 21. SlaveID_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ID1  
R/W  
0h  
7-bit Remote Slave Device ID 1  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID1, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional  
Control Channel to the Serializer.  
0
RESERVED  
R/W  
0h  
Reserved  
7.6.1.11 SlaveID_2 Register (Address = Ah) [reset = 0h]  
SlaveID_2 is described in Table 22.  
Return to Summary Table.  
Table 22. SlaveID_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ID2  
R/W  
0h  
7-bit Remote Slave Device ID 2  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID2, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional  
Control Channel to the Serializer.  
0
RESERVED  
R/W  
0h  
Reserved  
7.6.1.12 SlaveID_3 Register (Address = Bh) [reset = 0h]  
SlaveID_3 is described in Table 23.  
Return to Summary Table.  
Table 23. SlaveID_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ID3  
R/W  
0h  
7-bit Remote Slave Device ID 3  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID3, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional  
Control Channel to the Serializer.  
54  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Table 23. SlaveID_3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
RESERVED  
R/W  
0h  
Reserved.  
7.6.1.13 SlaveID_4 Register (Address = Ch) [reset = 0h]  
SlaveID_4 is described in Table 24.  
Return to Summary Table.  
Table 24. SlaveID_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ID4  
R/W  
0h  
7-bit Remote Slave Device ID 4  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID4, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional  
Control Channel to the Serializer.  
0
RESERVED  
R/W  
0h  
Reserved  
7.6.1.14 SlaveID_5 Register (Address = Dh) [reset = 0h]  
SlaveID_5 is described in Table 25.  
Return to Summary Table.  
Table 25. SlaveID_5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ID5  
R/W  
0h  
7-bit Remote Slave Device ID 5  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID5, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional  
Control Channel to the Serializer.  
0
RESERVED  
R/W  
0h  
Reserved  
7.6.1.15 SlaveID_6 Register (Address = Eh) [reset = 0h]  
SlaveID_6 is described in Table 26.  
Return to Summary Table.  
Table 26. SlaveID_6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ID6  
R/W  
0h  
7-bit Remote Slave Device ID 6  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID6, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional  
Control Channel to the Serializer.  
0
RESERVED  
R/W  
0h  
Reserved  
Copyright © 2018, Texas Instruments Incorporated  
55  
 
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.6.1.16 SlaveID_7 Register (Address = Fh) [reset = 0h]  
SlaveID_7 is described in Table 27.  
Return to Summary Table.  
Table 27. SlaveID_7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ID7  
R/W  
0h  
7-bit Remote Slave Device ID 7  
Configures the physical I2C address of the remote I2C Slave device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Slave Alias ID7, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional  
Control Channel to the Serializer.  
0
RESERVED  
R/W  
0h  
Reserved  
7.6.1.17 SlaveAlias_0 Register (Address = 10h) [reset = 0h]  
SlaveAlias_0 is described in Table 28.  
Return to Summary Table.  
Table 28. SlaveAlias_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ALIAS_ID0  
R/W  
0h  
7-bit Remote Slave Device Alias ID 0  
Configures the decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Serializer. The transaction  
will be remapped to the address specified in the Slave ID0 register.  
A value of 0 in this field disables access to the remote I2C Slave.  
0
RESERVED  
R
0h  
Reserved  
7.6.1.18 SlaveAlias_1 Register (Address = 11h) [reset = 0h]  
SlaveAlias_1 is described in Table 29.  
Return to Summary Table.  
Table 29. SlaveAlias_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ALIAS_ID1  
R/W  
0h  
7-bit Remote Slave Device Alias ID 1  
Configures the decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Serializer. The transaction  
will be remapped to the address specified in the Slave ID1 register.  
A value of 0 in this field disables access to the remote I2C Slave.  
0
RESERVED  
R
0h  
Reserved  
7.6.1.19 SlaveAlias_2 Register (Address = 12h) [reset = 0h]  
SlaveAlias_2 is described in Table 30.  
Return to Summary Table.  
Table 30. SlaveAlias_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ALIAS_ID2  
R/W  
0h  
7-bit Remote Slave Device Alias ID 2  
Configures the decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Serializer. The transaction  
will be remapped to the address specified in the Slave ID2 register.  
A value of 0 in this field disables access to the remote I2C Slave.  
0
RESERVED  
R
0h  
Reserved  
56  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
7.6.1.20 SlaveAlias_3 Register (Address = 13h) [reset = 0h]  
SlaveAlias_3 is described in Table 31.  
Return to Summary Table.  
Table 31. SlaveAlias_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ALIAS_ID3  
R/W  
0h  
7-bit Remote Slave Device Alias ID 3  
Configures the decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Serializer. The transaction  
will be remapped to the address specified in the Slave ID3 register.  
A value of 0 in this field disables access to the remote I2C Slave.  
0
RESERVED  
R
0h  
Reserved  
7.6.1.21 SlaveAlias_4 Register (Address = 14h) [reset = 0h]  
SlaveAlias_4 is described in Table 32.  
Return to Summary Table.  
Table 32. SlaveAlias_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ALIAS_ID4  
R/W  
0h  
7-bit Remote Slave Device Alias ID 4 Configures the decoder for  
detecting transactions designated for an I2C Slave device attached  
to the remote Serializer. The transaction will be remapped to the  
address specified in the Slave ID4 register. A value of 0 in this field  
disables access to the remote I2C Slave.  
0
RESERVED  
R
0h  
Reserved  
7.6.1.22 SlaveAlias_5 Register (Address = 15h) [reset = 0h]  
SlaveAlias_5 is described in Table 33.  
Return to Summary Table.  
Table 33. SlaveAlias_5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ALIAS_ID5  
R/W  
0h  
7-bit Remote Slave Device Alias ID 5 Configures the decoder for  
detecting transactions designated for an I2C Slave device attached  
to the remote Serializer. The transaction will be remapped to the  
address specified in the Slave ID5 register. A value of 0 in this field  
disables access to the remote I2C Slave.  
0
RESERVED  
R
0h  
Reserved  
7.6.1.23 SlaveAlias_6 Register (Address = 16h) [reset = 0h]  
SlaveAlias_6 is described in Table 34.  
Return to Summary Table.  
Table 34. SlaveAlias_6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ALIAS_ID6  
R/W  
0h  
7-bit Remote Slave Device Alias ID 6  
Configures the decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Serializer. The transaction  
will be remapped to the address specified in the Slave ID6 register.  
A value of 0 in this field disables access to the remote I2C Slave.  
0
RESERVED  
R
0h  
Reserved  
Copyright © 2018, Texas Instruments Incorporated  
57  
 
 
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.6.1.24 SlaveAlias_7 Register (Address = 17h) [reset = 0h]  
SlaveAlias_7 is described in Table 35.  
Return to Summary Table.  
Table 35. SlaveAlias_7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
SLAVE_ALIAS_ID7  
R/W  
0h  
7-bit Remote Slave Device Alias ID 7  
Configures the decoder for detecting transactions designated for an  
I2C Slave device attached to the remote Serializer. The transaction  
will be remapped to the address specified in the Slave ID7 register.  
A value of 0 in this field disables access to the remote I2C Slave.  
0
RESERVED  
R
0h  
Reserved  
7.6.1.25 MAILBOX_18 Register (Address = 18h) [reset = 0h]  
MAILBOX_18 is described in Table 36.  
Return to Summary Table.  
Table 36. MAILBOX_18 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MAILBOX_18  
R/W  
0h  
Mailbox Register  
This register is an unused read/write register that can be used for  
any purpose such as passing messages between I2C masters on  
opposite ends of the link.  
7.6.1.26 MAILBOX_19 Register (Address = 19h) [reset = 1h]  
MAILBOX_19 is described in Table 37.  
Return to Summary Table.  
Table 37. MAILBOX_19 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MAILBOX_19  
R/W  
1h  
Mailbox Register  
This register is an unused read/write register that can be used for  
any purpose such as passing messages between I2C masters on  
opposite ends of the link.  
7.6.1.27 GPIO_9__Global_GPIO_Config Register (Address = 1Ah) [reset = 0h]  
GPIO_9__Global_GPIO_Config is described in Table 38.  
Return to Summary Table.  
Table 38. GPIO_9__Global_GPIO_Config Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GLOBAL_GPIO  
R/W  
0h  
Global GPIO Output Value  
_OUTPUT_VALUE  
This value is output on each GPIO pin when the individual pin is not  
otherwise enabled as a GPIO and the global GPIO direction is  
Output  
6
5
RESERVED  
R/W  
R/W  
0h  
0h  
Reserved  
GLOBAL_GPIO  
_FORCE_DIR  
The GLOBAL GPIO DIR and GLOBAL GPIO EN bits configure the  
pad in input direction or output direction for functional mode or GPIO  
mode. The GLOBAL bits are overridden by the individual GPIO DIR  
and GPIO EN bits. {GLOBAL GPIO DIR, GLOBAL GPIO EN}  
00: Functional mode; output  
10: Tri-state  
01: Force mode; output  
11: Force mode; input  
58  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Table 38. GPIO_9__Global_GPIO_Config Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
GLOBAL_GPIO  
_FORCE_EN  
R/W  
0h  
3
GPIO9_OUTPUT_VALUE R/W  
0h  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
2
1
RESERVED  
GPIO9_DIR  
R/W  
R/W  
0h  
0h  
Reserved  
The GPIO DIR bits configure the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
0
GPIO9_EN  
R/W  
0h  
The GPIO EN bits configure the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
7.6.1.28 Frequency_Counter Register (Address = 1Bh) [reset = 0h]  
Frequency_Counter is described in Table 39.  
Return to Summary Table.  
Table 39. Frequency_Counter Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0h  
Description  
7-0  
Frequency_Count  
Frequency Counter control  
A write to this register will enable a frequency counter to count the  
number of pixel clock during a specified time interval. The time  
interval is equal to the value written multiplied by the oscillator clock  
period (nominally 40ns). A read of the register returns the number of  
pixel clock edges seen during the enabled interval. The frequency  
counter will freeze at 0xff if it reaches the maximum value. The  
frequency counter will provide a rough estimate of the pixel clock  
period. If the pixel clock frequency is known, the frequency counter  
may be used to determine the actual oscillator clock frequency.  
7.6.1.29 General_Status Register (Address = 1Ch) [reset = 0h]  
General_Status is described in Table 40.  
Return to Summary Table.  
Table 40. General_Status Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
0h  
Description  
Reserved  
RESERVED  
DUAL_RX_STS  
R
R
0h  
Receiver Dual Link Status:  
This bit indicates the current operating mode of the FPD-Link III  
Receive port  
1: Dual-link mode active  
0: Single-link mode active  
3
I2S_LOCKED  
R
0h  
I2S LOCK STATUS  
0: I2S PLL controller not locked  
1: I2S PLL controller locked to input i2s clock  
2
1
RESERVED  
RESERVED  
R
R
0h  
Reserved  
Reserved  
0h or 1h  
Copyright © 2018, Texas Instruments Incorporated  
59  
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Table 40. General_Status Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
LOCK  
R
0h  
De-Serializer CDR, PLL's clock to recovered clock frequency  
1: De-Serializer locked to recovered clock  
0: De-Serializer not locked  
In Dual-link mode, this indicates both channels are locked.  
7.6.1.30 GPIO0_Config Register (Address = 1Dh) [reset = 0h]  
GPIO0_Config is described in Table 41.  
Return to Summary Table.  
GPIO0 and D_GPIO0 Configuration  
If PORT1_SEL is set, this register controls the D_GPIO0 pin.  
Table 41. GPIO0_Config Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0h  
Description  
7-4  
Rev-ID  
R
Revision ID  
0100: DS90UH940-Q1  
0110: DS90UH940N-Q1  
3
2
1
GPIO0_OUTPUT  
_VALUE  
_D_GPIO0_OUTPUT  
_VALUE  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
GPIO0_REMOTE  
_ENABLE  
_D_GPIO0_REMOTE  
_ENABLE  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin will be  
an output, and the value is received from the remote Serializer.  
0: Disable GPIO control from remote Serializer.  
GPIO0_DIR  
_D_GPIO0_DIR  
The GPIO DIR configures the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
0
GPIO0_EN  
_D_GPIO0_EN  
R/W  
0h  
The GPIO EN configures the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
7.6.1.31 GPIO1_2_Config Register (Address = 1Eh) [reset = 0h]  
GPIO1_2_Config is described in Table 42.  
Return to Summary Table.  
GPIO1 / GPIO2 and D_GPIO1 / D_GPIO2 Configuration  
If PORT1_SEL is set, this register controls the D_GPIO1 / D_GPIO2 pin.  
Table 42. GPIO1_2_Config Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO2_OUTPUT  
_VALUE  
_D_GPOI2_OUTPUT  
_VALUE  
R/W  
0h  
GPIO1/GPIO2 and D_GPIO1/D_GPIO2 Configuration  
If PORT1_SEL is set, this register controls the D_GPIO1 and  
D_GPIO2 pins  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
60  
Copyright © 2018, Texas Instruments Incorporated  
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Table 42. GPIO1_2_Config Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
GPIO2_REMOTE  
_ENABLE  
_D_GPIO2_REMOTE  
_ENABLE  
R/W  
0h  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin will be  
an output, and the value is received from the remote Serializer.  
0: Disable GPIO control from remote Serializer.  
5
4
GPIO2_DIR  
_D_GPIO2_DIR  
R/W  
R/W  
0h  
0h  
The GPIO DIR configures the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
GPIO2_EN  
_D_GPIO2_EN  
The GPIO EN configures the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
3
2
1
GPIO1_OUTPUT  
_VALUE  
_D_GPIO1_OUTPUT  
_VALUE  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
GPIO1_REMOTE  
_ENABLE  
_D_GPIO1_REMOTE  
_ENABLE  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin will be  
an output, and the value is received from the remote Serializer.  
0: Disable GPIO control from remote Serializer.  
GPIO1_DIR  
_D_GPIO1_DIR  
The GPIO DIR configures the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
0
GPIO1_EN  
_D_GPIO1_EN  
R/W  
0h  
The GPIO EN configures the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
7.6.1.32 GPIO_3_Config Register (Address = 1Fh) [reset = 0h]  
GPIO_3_Config is described in Table 43.  
Return to Summary Table.  
GPIO3 and D_GPIO3 Configuration  
If PORT1_SEL is set, this register controls the D_GPIO3 pin.  
Table 43. GPIO_3_Config Register Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R/W  
Reset  
0h  
Description  
Reserved (No GPIO4)  
RESERVED  
GPIO3_OUTPUT  
_VALUE  
_D_GPIO3_OUTPUT  
_VALUE  
R/W  
0h  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
2
GPIO3_REMOTE  
_ENABLE  
_D_GPIO3_REMOTE  
_ENABLE  
R/W  
0h  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin will be  
an output, and the value is received from the remote Serializer.  
0: Disable GPIO control from remote Serializer.  
Copyright © 2018, Texas Instruments Incorporated  
61  
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Table 43. GPIO_3_Config Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
GPIO3_DIR  
_D_GPIO3_DIR  
R/W  
0h  
The GPIO DIR configures the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
0
GPIO3_EN  
_D_GPIO3_EN  
R/W  
0h  
The GPIO EN configures the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
7.6.1.33 GPIO_5_6_Config Register (Address = 20h) [reset = 0h]  
GPIO_5_6_Config is described in Table 44.  
Return to Summary Table.  
Table 44. GPIO_5_6_Config Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0h  
Description  
7
GPIO6_OUTPUT  
_VALUE  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
6
5
GPIO6_REMOTE  
_ENABLE  
R/W  
R/W  
0h  
0h  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin will be  
an output, and the value is received from the remote Serializer.  
0: Disable GPIO control from remote Serializer.  
GPIO6_DIR  
The GPIO DIR configures the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
4
GPIO6_EN  
R/W  
0h  
The GPIO EN configures the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
3
2
1
GPIO5_OUTPUT  
_VALUE  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
GPIO5_REMOTE  
_ENABLE  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin will be  
an output, and the value is received from the remote Serializer.  
0: Disable GPIO control from remote Serializer.  
GPIO5_DIR  
The GPIO DIR configures the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
62  
Copyright © 2018, Texas Instruments Incorporated  
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Table 44. GPIO_5_6_Config Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
GPIO5_EN  
R/W  
0h  
The GPIO EN configures the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
7.6.1.34 GPIO_7_8_Config Register (Address = 21h) [reset = 0h]  
GPIO_7_8_Config is described in Table 45.  
Return to Summary Table.  
Table 45. GPIO_7_8_Config Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0h  
Description  
7
GPIO8_OUTPUT  
_VALUE  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
6
5
GPIO8_REMOTE  
_ENABLE  
R/W  
R/W  
0h  
0h  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin will be  
an output, and the value is received from the remote Serializer.  
0: Disable GPIO control from remote Serializer.  
GPIO8_DIR  
The GPIO DIR configures the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
4
GPIO8_EN  
R/W  
0h  
The GPIO EN configures the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
3
2
1
GPIO7_OUTPUT  
_VALUE  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
GPIO7_REMOTE  
_ENABLE  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin will be  
an output, and the value is received from the remote Serializer.  
0: Disable GPIO control from remote Serializer.  
GPIO7_DIR  
The GPIO DIR configures the pad in input direction or output  
direction for functional mode or GPIO mode.  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
0
RESERVED  
R/W  
0h  
Reserved  
Copyright © 2018, Texas Instruments Incorporated  
63  
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.6.1.35 Datapath_Control Register (Address = 22h) [reset = 0h]  
Datapath_Control is described in Table 46.  
Return to Summary Table.  
Table 46. Datapath_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0h  
Description  
7
OVERRIDE_FC_CONFIG R/W  
1: Disable loading of this register from the forward channel, keeping  
locally witten values intact 0: Allow forward channel loading of this  
register  
6
PASS_RGB  
R/W  
0h  
Setting this bit causes RGB data to be sent independent of DE. This  
allows operation in systems which may not use DE to frame video  
data or send other data when DE is deasserted. Note that setting  
this bit prevents HDCP operation and blocks packetized audio. This  
bit does not need to be set in DS90UB928 or in Backward  
Compatibility mode. 1: Pass RGB independent of DE 0: Normal  
operation Note: this bit is automatically loaded from the remote  
serializer unless bit 7 of this register is set.  
5
4
DE_POLARITY  
R/W  
R/W  
0h  
0h  
This bit indicates the polarity of the DE (Data Enable) signal. 1: DE is  
inverted (active low, idle high) 0: DE is positive (active high, idle low)  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
I2S_RPTR_REGEN  
This bit controls whether the HDCP Receiver outputs packetized  
Auxiliary/Audio data on the RGB video output pins.  
1: Don't output packetized audio data on RGB video output pins  
0: Output packetized audio on RGB video output pins. Note: this bit  
is automatically loaded from the remote serializer unless bit 7 of this  
register is set.  
3
2
1
0
I2S_4-CHANNEL  
_ENABLE_OVERRIDE  
R/W  
0h  
0h  
0h  
0h  
1: Set I2S 4-Channel Enable from bit of of this register  
0: Set I2S 4-Channel disabled  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
18-BIT_VIDEO_SELECT R/W  
1: Select 18-bit video mode  
0: Select 24-bit video mode  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
I2S_TRANSPORT  
_SELECT  
R/W  
R/W  
1: Enable I2S In-Band Transport  
0: Enable I2S Data Island Transport  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
I2S_4-CHANNEL  
_ENABLE  
I2S 4-Channel Enable  
1: Enable I2S 4-Channel  
0: Disable I2S 4-Channel  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
7.6.1.36 RX_Mode_Status Register (Address = 23h) [reset = Strap]  
RX_Mode_Status is described in Table 47.  
Return to Summary Table.  
Table 47. RX_Mode_Status Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RX_RGB_CHECKSUM  
R/W  
0h  
RX RGB Checksum Enable  
Setting this bit enables the Receiver to validate a one-byte  
checksum following each video line. Checksum failures are reported  
in the HDCP_STS register.  
64  
Copyright © 2018, Texas Instruments Incorporated  
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Table 47. RX_Mode_Status Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
BC_FREQ_SELECT  
R/W  
0h  
Back Channel Frequency Select  
0: Divide-by-4 frequency based on the OSC CLOCK DIVIDER in  
Register 0x32  
1: Divide-by-2 frequency based on the OSC CLOCK DIVIDER in  
Register 0x32  
This bit will be ignored if BC_HIGH_SPEED is set to a 1. Note that  
changing this setting will result in some errors on the back channel  
for a short period of time. If set over the control channel, the  
Serializer should first be programmed to Auto-Ack operation  
(Serializer register 0x03, bit 5) to avoid a control channel timeout  
due to lack of response from the Deserializer.  
5
4
AUTO_I2S  
R/W  
1h  
Auto I2S  
Determine I2S mode from the AUX data codes.  
BC_HIGH_SPEED  
R/W/S  
Strap  
Back-Channel High-Speed control Enables high-speed back-channel  
at 20Mbps This bit will override the BC_FREQ_SELECT setting Note  
that changing this setting will result in some errors on the back  
channel for a short period of time. If set over the control channel, the  
Serializer should first be programmed to Auto-Ack operation  
(Serializer register 0x03, bit 5) to avoid a control channel timeout  
due to lack of response from the Deserializer. BC_HIGH_SPEED is  
loaded from the MODE_SEL1 pin strap options.  
3
2
COAX_MODE  
R/W/S  
Strap  
Strap  
Coax Mode  
Configures the FPD3 Receiver for operation over Coax or STP  
cabling:  
0 : Shielded Twisted pair (STP)  
1 : Coax  
Coax Mode is loaded from the MODE_SEL1 pin strap options.  
REPEATER_MODE  
R/S  
Repeater Mode  
Indicates device is strapped to repeater mode. Repeater Mode is  
loaded from the MODE_SEL1 pin strap options.  
1
0
RESERVED  
RESERVED  
R/W  
R/W  
0h  
0h  
Reserved  
Reserved  
7.6.1.37 BIST_Control Register (Address = 24h) [reset = 8h]  
BIST_Control is described in Table 48.  
Return to Summary Table.  
Table 48. BIST_Control Register Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RESERVED  
AUTO_OSC_FREQ  
Reserved  
0h  
When register 0x02 bit 5 (AUTO)CLOCK_EN) is set, this field  
controls the nominal frequency of the oscillator-based receive clock.  
00: 50 MHz  
01: 25 MHz  
10: 10 MHz  
11: Reserved  
3
BIST_PIN_CONFIG  
R/W  
R/W  
1h  
0h  
Bist Configured through Pin.  
1: Bist configured through pin.  
0: Bist configured through bits 2:0 in this register  
2-1  
BIST_CLOCK_SOURCE  
BIST Clock Source  
This register field selects the BIST Clock Source at the Serializer.  
These register bits are automatically written to the CLOCK SOURCE  
bits (register offset 0x14) in the Serializer after BIST is enabled. See  
the appropriate Serializer register descriptions for details.  
00: External Pixel Clock  
01: Internal Pixel Clock  
1x: Internal Pixel Clock  
Copyright © 2018, Texas Instruments Incorporated  
65  
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Table 48. BIST_Control Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
BIST_EN  
R/W  
0h  
BIST Control  
1: Enabled  
0: Disabled  
7.6.1.38 BIST_ERROR_COUNT Register (Address = 25h) [reset = 0h]  
BIST_ERROR_COUNT is described in Table 49.  
Return to Summary Table.  
Table 49. BIST_ERROR_COUNT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BIST_ERROR_COUNT  
R
0h  
Bist Error Count  
7.6.1.39 SCL_High_Time Register (Address = 26h) [reset = 83h]  
SCL_High_Time is described in Table 50.  
Return to Summary Table.  
Table 50. SCL_High_Time Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
83h  
Description  
7-0  
SCL_HIGH_TIME  
I2C Master SCL High Time  
This field configures the high pulse width of the SCL output when the  
De-Serializer is the Master on the local I2C bus. Units are 50 ns for  
the nominal oscillator clock frequency. The default value is set to  
provide a minimum 5us SCL high time with the internal oscillator  
clock running at 26 MHz rather than the nominal 20 MHz.  
7.6.1.40 SCL_Low_Time Register (Address = 27h) [reset = 84h]  
SCL_Low_Time is described in Table 51.  
Return to Summary Table.  
Table 51. SCL_Low_Time Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
84h  
Description  
7-0  
SCL_LOW_TIME  
I2C SCL Low Time  
This field configures the low pulse width of the SCL output when the  
De-Serializer is the Master on the local I2C bus. This value is also  
used as the SDA setup time by the I2C Slave for providing data prior  
to releasing SCL during accesses over the Bidirectional Control  
Channel. Units are 50 ns for the nominal oscillator clock frequency.  
The default value is set to provide a minimum 5us SCL low time with  
the internal oscillator clock running at 26 MHz rather than the  
nominal 20 MHz.  
7.6.1.41 Datapath_Control_2 Register (Address = 28h) [reset = Loaded from SER]  
Datapath_Control_2 is described in Table 52.  
Return to Summary Table.  
Table 52. Datapath_Control_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OVERRIDE_FC_CONFIG R/W  
0h  
1: Disable loading of this register from the forward channel, keeping  
locally witten values intact  
0: Allow forward channel loading of this register  
6
RESERVED  
R/W  
0h  
Reserved  
66  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Table 52. Datapath_Control_2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
VIDEO_DISABLED  
R/W  
Loaded  
from SER  
Forward channel video disabled (Load from remote Serializer)  
0 : Normal operation  
1 : Video is disabled, control channel is enabled  
This is a status bit indicating the forward channel is not sending  
active video. In this mode, the control channel and GPIO functions  
are enabled. Setting OVERRIDE_FC_CONFIG will prevent this bit  
from changing.  
4
DUAL_LINK  
R
Loaded  
1: Dual-Link mode enabled  
from SER  
0: Single-Link mode enabled  
This bit indicates whether the FPD-Link III serializer is in single link  
or dual link mode. This control is used for recovering forward  
channel data when the FPD-Link III Receiver is in auto-detect mode.  
This bit will always be loaded from forward channel and cannot be  
written locally. To force DUAL_LINK receive mode, use the  
RX_PORT_SEL register (address 0x34)  
3
ALTERNATE_I2S  
_ENABLE  
R/W  
Loaded  
from SER  
1: Enable alternate I2S output on GPIO1 (word clock) and GPIO0  
(data)  
0: Normal Operation  
2
1
I2S_DISABLED  
28BIT_VIDEO  
R/W  
R/W  
Loaded  
from SER  
1: I2S DISABLED  
0: Normal Operation  
Loaded  
1: 28 bit Video enable. i.e. HS, VS, DE are present in forward  
from SER  
channel.  
0: Normal Operation  
0
I2S_SURROUND  
R/W  
Loaded  
from SER  
1: I2S Surround enabled  
0: I2S Surround disabled  
7.6.1.42 I2S_Control Register (Address = 2Bh) [reset = 0h]  
I2S_Control is described in Table 53.  
Return to Summary Table.  
Table 53. I2S_Control Register Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R/W  
R
Reset  
0h  
Description  
RESERVED  
Reserved  
I2S_FIFO  
0h  
I2S FIFO Overrun Status  
_OVERRUN_STATUS  
2
1
0
I2S_FIFO  
_UNDERRUN_STATUS  
R
0h  
0h  
0h  
I2S FIFO Underrun Status  
I2S_FIFO  
_ERROR_RESET  
R/W  
R/W  
I2S Fifo Error Reset  
1: Clears FIFO Error  
I2S_DATA  
I2S Clock Edge Select  
_FALLING_EDGE  
1: I2S Data is strobed on the Rising Clock Edge.  
0: I2S Data is strobed on the Falling Clock Edge.  
7.6.1.43 PCLK_Test_Mode Register (Address = 2Eh) [reset = 0h]  
PCLK_Test_Mode is described in Table 54.  
Return to Summary Table.  
Table 54. PCLK_Test_Mode Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0h  
0h  
Description  
Select pixel clock from BISTC input  
Reserved  
EXTERNAL_PCLK  
RESERVED  
6-0  
Copyright © 2018, Texas Instruments Incorporated  
67  
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.6.1.44 DUAL_RX_CTL Register (Address = 34h) [reset = 1h]  
DUAL_RX_CTL is described in Table 55.  
Return to Summary Table.  
Table 55. DUAL_RX_CTL Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
0h  
Description  
Reserved  
RX Lock Mode:  
RESERVED  
RX_LOCK_MODE  
R
6
R/W  
0h  
Determines operating conditions for indication of RX_LOCK and  
generation of video data.  
0 : RX_LOCK asserted only when receiving active video (Forward  
channel VIDEO_DISABLED bit is 0)  
1 : RX_LOCK asserted when device is linked to a Serializer even if  
active video is not being sent. This allows indication of valid link  
where Bidirectional Control Channel is enabled, but Deserializer is  
not receiving Audio/Video data.  
5
RAW_2ND_BC  
R/W  
R/W  
0h  
0h  
Enable Raw Secondary Back channel  
if this bit is set to a 1, the secondary back channel will operate in a  
raw mode, passing D_GPIO0 from the Deserializer to the Serializer,  
without any oversampling or filtering.  
4-3  
FPD3_INPUT_MODE  
FPD-Link III Input Mode  
Determines operating mode of dual FPD-Link III Receive interface  
00: Auto-detect based on received data  
01: Forced Mode: Dual link  
10: Forced Mode: Single link, primary input  
11: Forced Mode: Single link, secondary input  
2
1
RESERVED  
PORT1_SEL  
R/W  
R/W  
0h  
0h  
Reserved  
Selects Port 1 for Register Access from primary I2C Address For  
writes, port1 registers and shared registers will both be written.  
For reads, port1 registers and shared registers will be read. This bit  
must be cleared to read port0 registers.  
0
PORT0_SEL  
R/W  
1h  
Selects Port 0 for Register Access from primary I2C Address For  
writes, port0 registers and shared registers will both be written.  
For reads, port0 registers and shared registers will be read. Note  
that if PORT1_SEL is also set, then port1 registers will be read.  
7.6.1.45 AEQ_CTL1 Register (Address = 35h) [reset = 0h]  
AEQ_CTL1 is described in Table 56.  
Return to Summary Table.  
Table 56. AEQ_CTL1 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RESERVED  
AEQ_RESTART  
Reserved  
6
0h  
Set high to restart AEQ adaptation from initial value. Method is write  
HIGH then write LOW - not self clearing. Adaption will be restarted  
on both ports.  
5
4
OVERRIDE_AEQ  
_FLOOR  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Enable operation of SET_AEQ_FLOOR  
SET_AEQ_FLOOR  
Enable the ADAPTIVE_EQ_FLOOR_VALUE set in the AEQ_CTL2  
register 0x45.  
3-0  
RESERVED  
Reserved  
68  
Copyright © 2018, Texas Instruments Incorporated  
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
7.6.1.46 MODE_SEL Register (Address = 37h) [reset = 0h]  
MODE_SEL is described in Table 57.  
Return to Summary Table.  
Table 57. MODE_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MODE1_DONE  
R
0h  
MODE_SEL1 Done:  
If set, indicates the MODE_SEL1 decode has completed and latched  
into the MODE_SEL1 status bits.  
6-4  
3
MODE_SEL1  
R
R
0h  
0h  
MODE_SEL1 Decode  
3-bit decode from MODE_SEL1 pin  
MODE0_DONE  
MODE_SEL0 Done:  
If set, indicates the MODE_SEL0 decode has completed and latched  
into the MODE_SEL0 status bits.  
2-0  
MODE_SEL0  
R
0h  
MODE_SEL0 Decode  
3-bit decode from MODE_SEL0 pin  
7.6.1.47 I2S_DIVSEL Register (Address = 3Ah) [reset = 0h]  
I2S_DIVSEL is described in Table 58.  
Return to Summary Table.  
Table 58. I2S_DIVSEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
REG_OV_MDIV  
R/W  
0h  
0: No override for MCLK divider  
1: Override divider select for MCLK  
6-4  
REG_MDIV  
R/W  
0h  
Divide ratio select for VCO output (32*REF/M)  
000: Divide by 32 (=REF/M)  
001: Divide by 16 (=2*REF/M)  
010: Divide by 8 (=4*REF/M)  
011: Divide by 4 (=8*REF/M)  
100,  
101: Divide by 2 (=16*REF/M)  
110,  
111: Divide by 1 (32*REF/M)  
3
2
RESERVED  
R
0h  
0h  
Reserved  
REG_OV_MSELECT  
R/W  
0: Divide ratio of reference clock VCO selected by PLL-SM  
1: Override divide ratio of clock to VCO  
1-0  
REG_MSELECT  
R/W  
0h  
Divide ratio select for VCO input (M)  
00: Divide by 1  
01: Divide by 2  
10: Divide by 4  
11: Divide by 8  
7.6.1.48 Adaptive_EQ_Status Register (Address = 3Bh) [reset = 0h]  
Adaptive_EQ_status is described in Table 59.  
Return to Summary Table.  
Table 59. Adaptive_EQ_Status Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
EQ_STATUS  
Reserved  
R
0h  
Adaptive EQ Status  
Copyright © 2018, Texas Instruments Incorporated  
69  
 
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.6.1.49 LINK_ERROR_COUNT Register (Address = 41h) [reset = 3h]  
LINK_ERROR_COUNT is described in Table 60.  
Return to Summary Table.  
Table 60. LINK_ERROR_COUNT Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RESERVED  
Reserved  
LINK_ERROR_COUNT  
_ENABLE  
0h  
Enable serial link data integrity error count  
1: Enable error count  
0: DISABLE  
3-0  
LINK_ERROR_COUNT  
R/W  
3h  
Link error count threshold. Counter is pixel clock based. clk0, clk1  
and DCA are monitored for link errors, if error count is enabled,  
deserializer loose lock once error count reaches threshold. If  
disabled, Deserializer loses lock with one error.  
7.6.1.50 HSCC_CONTROL Register (Address = 43h) [reset = 0h]  
HSCC_CONTROL is described in Table 61.  
Return to Summary Table.  
Table 61. HSCC_CONTROL Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
Reset  
0h  
Description  
Reserved  
RESERVED  
SPI_MISO_MODE  
R/W  
0h  
SPI MISO pin mode during Reverse SPI mode During Reverse SPI  
mode, SPI_MISO is typically an output signal. For bused SPI  
applications, it may be necessary to tri-state the SPI_MISO output if  
the device is not selected (SPI_SS = 0).  
0 : Always enable SPI_MISO output driver  
1 : Tri-state SPI_MISO output if SPI_SS is not asserted (low)  
3
SPI_CPOL  
R/W  
R/W  
0h  
0h  
SPI Clock Polarity Control  
0 : SPI Data driven on Falling clock edge, sampled on Rising clock  
edge  
1 : SPI Data driven on Rising clock edge, sampled on Falling clock  
edge  
2-0  
HSCC_MODE  
High-Speed Control Channel Mode  
Enables high-speed modes for the secondary link back-channel,  
allowing higher speed signaling of GPIOs or SPI interface:  
These bits indicates the High Speed Control Channel mode of  
operation:  
000: Normal frame, GPIO mode  
001: High Speed GPIO mode, 1 GPIO  
010: High Speed GPIO mode, 2 GPIOs  
011: High Speed GPIO mode: 4 GPIOs  
100: Normal frame, Forward Channel SPI mode  
101: Normal frame, Reverse Channel SPI mode  
110: High Speed, Forward Channel SPI mode  
111: High Speed, Reverse Channel SPI mode  
7.6.1.51 ADAPTIVE_EQ_BYPASS Register (Address = 44h) [reset = 60h]  
ADAPTIVE_EQ_BYPASS is described in Table 62.  
Return to Summary Table.  
Table 62. ADAPTIVE_EQ_BYPASS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
EQ_STAGE_1  
R/W  
3h  
EQ select value[5:3] - Used if adaptive EQ is bypassed.  
_SELECT_VALUE  
4
RESERVED  
R/W  
0h  
Reserved.  
70  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Table 62. ADAPTIVE_EQ_BYPASS Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-1  
EQ_STAGE_2  
R/W  
0h  
EQ select value [2:0] - Used if adaptive EQ is bypassed.  
_SELECT_VALUE  
0
ADAPTIVE_EQ  
_BYPASS  
R/W  
0h  
1: Disable adaptive EQ  
0: Enable adaptive EQ  
7.6.1.52 AEQ_CTL2 Register (Address = 45h) [reset = 88h]  
AEQ_CTL2 is described in Table 63.  
Return to Summary Table.  
If PORT1_SEL is set, this register sets Port1 AEQ configuration  
Table 63. AEQ_CTL2 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RESERVED  
Reserved  
ADAPTIVE_EQ  
_FLOOR_VALUE  
8h  
AEQ adaptation starts from a pre-set floor value rather than from  
zero - good in long cable situations.  
7.6.1.53 CML_OUTPUT_CTL1 Register (Address = 52h) [reset = 0h]  
areg12_2 is described in Table 64.  
Return to Summary Table.  
Table 64. CML_OUTPUT_CTL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CML_CHANNEL  
_SELECT_1  
R/W  
0h  
Selects between PORT0 and PORT1 to output onto CMLOUT±.  
0: Recovered forward channel data from RIN0± is output on  
CMLOUT±  
1: Recovered forward channel data from RIN1± is output on  
CMLOUT±  
CMLOUT driver must be enabled by setting 0x56[3] = 1.  
Note: This bit must match 0x57[2:1] setting for PORT0 or PORT1.  
6-0  
RESERVED  
R/W  
0h  
Reserved  
7.6.1.54 CML_OUTPUT_ENABLE Register (Address = 56h) [reset = 0h]  
CML_OUTPUT_ENABLE is described in Table 65.  
Return to Summary Table.  
Table 65. CML_OUTPUT_ENABLE Register Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RESERVED  
CMLOUT_ENABLE  
Reserved.  
0h  
Enable CMLOUT± Loop-through Driver  
0: Disabled (Default)  
1: Enabled  
2-0  
RESERVED  
R/W  
0h  
Reserved.  
Copyright © 2018, Texas Instruments Incorporated  
71  
 
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.6.1.55 CML_OUTPUT_CTL2 Register (Address = 57h) [reset = 0h]  
CML_OUTPUT_CTL2 is described in Table 66.  
Return to Summary Table.  
Table 66. CML_OUTPUT_CTL2 Field Descriptions  
Bit  
7-3  
2-1  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RESERVED  
Reserved.  
CML_CHANNEL  
_SELECT_2  
0h  
Selects between PORT0 and PORT1 to output onto CMLOUT±.  
01: Recovered forward channel data from RIN0± is output on  
CMLOUT±  
10: Recovered forward channel data from RIN1± is output on  
CMLOUT±  
CMLOUT driver must be enabled by setting 0x56[3] = 1.  
Note: This must match 0x52[7] setting for PORT0 or PORT1.  
0
RESERVED  
R/W  
0h  
Reserved.  
7.6.1.56 CML_OUTPUT_CTL3 Register (Address = 63h) [reset = 0h]  
CML_OUTPUT_CTL3 is described in Table 67.  
Return to Summary Table.  
Table 67. CML_OUTPUT_CTL3 Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RESERVED  
CML_TX_PWDN  
Reserved.  
0h  
Powerdown CML TX  
0: CML TX powered up  
1: CML TX powered down  
NOTE: CML TX must be powered down prior to enabling Pattern  
Generator.  
72  
Copyright © 2018, Texas Instruments Incorporated  
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
7.6.1.57 PGCTL Register (Address = 64h) [reset = 10h]  
PGCTL is described in Table 68.  
Return to Summary Table.  
Table 68. PGCTL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
PATGEN_SEL  
R/W  
1h  
Fixed Pattern Select:  
This field selects the pattern to output when in Fixed Pattern Mode.  
Scaled patterns are evenly distributed across the horizontal or  
vertical active regions. This field is ignored when Auto-Scrolling  
Mode is enabled. The following table shows the color selections in  
non-inverted followed by inverted color mode:  
0000: Reserved  
0001: White/Black  
0010: Black/White  
0011: Red/Cyan  
0100: Green/Magenta  
0101: Blue/Yellow  
0110: Horizontally Scaled Black to White/White to Black  
0111: Horizontally Scaled Black to Red/White to Cyan  
1000: Horizontally Scaled Black to Green/White to Magenta  
1001: Horizontally Scaled Black to Blue/White to Yellow  
1010: Vertically Scaled Black to White/White to Black  
1011: Vertically Scaled Black to Red/White to Cyan  
1100: Vertically Scaled Black to Green/White to Magenta  
1101: Vertically Scaled Black to Blue/White to Yellow  
1110: Custom color (or its inversion) configured in PGRS, PGGS,  
PGBS registers  
1111: ReservedSee TI App Note AN-2198 (SNLA132).  
3
2
PATGEN_UNH  
R/W  
0h  
0h  
Enables the UNH-IOL compliance test pattern:  
0: Pattern type selected by PATGEN_SEL  
1: Compliance test pattern is selected. Value of PATGEN_SEL is  
ignored.  
PATGEN_COLOR_BARS R/W  
Enable Color Bars:  
0: Color Bars disabled  
1: Color Bars enabled (White, Yellow, Cyan, Green, Magenta, Red,  
Blue, Black)  
1
0
PATGEN_VCOM_REV  
PATGEN_EN  
R/W  
R/W  
0h  
0h  
Reverse order of color bands in VCOM pattern:  
0: Color sequence from top left is (Yellow, Cyan, Blue, Red)  
1: Color sequence from top left is (Blue, Cyan, Yellow, Red)  
Pattern Generator Enable:  
1: Enable Pattern Generator  
0: Disable Pattern Generator  
NOTE: CML TX must be powered down prior to enabling Pattern  
Generator by setting register bit 0x63[0]=1.  
7.6.1.58 PGCFG Register (Address = 65h) [reset = 0h]  
PGCFG is described in Table 69.  
Return to Summary Table.  
Table 69. PGCFG Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
PATGEN_18B  
Reserved  
R/W  
0h  
18-bit Mode Select:  
1: Enable 18-bit color pattern generation. Scaled patterns will have  
64 levels of brightness and the R, G, and B outputs use the six most  
significant color bits.  
0: Enable 24-bit pattern generation. Scaled patterns use 256 levels  
of brightness.  
Copyright © 2018, Texas Instruments Incorporated  
73  
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Table 69. PGCFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
PATGEN_EXTCLK  
R/W  
0h  
Select External Clock Source:  
1: Selects the external pixel clock when using internal timing.  
0: Selects the internal divided clock when using internal timing  
This bit has no effect in external timing mode (PATGEN_TSEL = 0).  
2
PATGEN_TSEL  
R/W  
0h  
Timing Select Control:  
1: The Pattern Generator creates its own video timing as configured  
in the Pattern Generator Total Frame Size, Active Frame Size,  
Horizontal Sync Width, Vertical Sync Width, Horizontal Back Porch,  
Vertical Back Porch, and Sync Configuration registers.  
0: the Pattern Generator uses external video timing from the pixel  
clock, Data Enable, Horizontal Sync, and Vertical Sync signals.  
1
0
PATGEN_INV  
R/W  
R/W  
0h  
0h  
Enable Inverted Color Patterns:  
1: Invert the color output.  
0: Do not invert the color output.  
PATGEN_ASCRL  
Auto-Scroll Enable:  
1: The Pattern Generator will automatically move to the next enabled  
pattern after the number of frames specified in the Pattern Generator  
Frame Time (PGFT) register.  
0: The Pattern Generator retains the current pattern.  
7.6.1.59 PGIA Register (Address = 66h) [reset = 0h]  
PGIA is described in Table 70.  
Return to Summary Table.  
Table 70. PGIA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PATGEN_IA  
R/W  
0h  
Indirect Address:  
This 8-bit field sets the indirect address for accesses to indirectly-  
mapped registers. It should be written prior to reading or writing the  
Pattern Generator Indirect Data register.  
See TI App Note AN-2198 (SNLA132).  
7.6.1.60 PGID Register (Address = 67h) [reset = 0h]  
PGID is described in Table 71.  
Return to Summary Table.  
Table 71. PGID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PATGEN_ID  
R/W  
0h  
Indirect Data:  
When writing to indirect registers, this register contains the data to  
be written. When reading from indirect registers, this register  
contains the readback value.  
See TI App Note AN-2198 (SNLA132).  
7.6.1.61 PGDBG Register (Address = 68h) [reset = 0h]  
PGDBG is described in Table 72.  
Return to Summary Table.  
Table 72. PGDBG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
RESERVED  
R/W  
0h  
Reserved.  
74  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Table 72. PGDBG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
PATGEN_BIST_EN  
R/W  
0h  
Pattern Generator BIST Enable:  
Enables Pattern Generator in BIST mode. Pattern Generator will  
compare received video data with local generated pattern. Upstream  
device must be programmed to the same pattern.  
2-0  
RESERVED  
R/W  
0h  
Reserved.  
7.6.1.62 PGTSTDAT Register (Address = 69h) [reset = 0h]  
PGTSTDAT is described in Table 73.  
Return to Summary Table.  
Table 73. PGTSTDAT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PATGEN_BIST_ERR  
R
0h  
Pattern Generator BIST Error Flag  
During Pattern Generator BIST mode, this bit indicates if the BIST  
engine has detected errors. If the BIST Error Count (available in the  
Pattern Generator indirect registers) is non-zero, this flag will be set.  
6-0  
RESERVED  
R
0h  
Reserved  
7.6.1.63 CSICFG0 Register (Address = 6Ah) [reset = 0h]  
CSICFG0 is described in Table 74.  
Return to Summary Table.  
Table 74. CSICFG0 Register Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RSV  
Reserved  
LANE_COUNT  
0h  
Setup number of data lanes for the CSI ports.  
00/01: 4 data lanes  
10: 2 data lanes  
11: 1 data lane  
3
2
1
0
ULPM  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
When set, put the data lanes in ultra-low power mode (LP00) by  
sending out a LP signalling sequence  
ULPS  
When set with ULPM, put the clock lane into ultra-low power mode.  
No effect if ULPM is not set.  
CONTS_CLK  
CSI_DIS  
When set, keep the clock lane running (in HS mode) during line  
blank (DE=0) and frame blank (VS not active)  
When set, disable the CSI state machine. Function as a soft reset  
Copyright © 2018, Texas Instruments Incorporated  
75  
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.6.1.64 CSICFG1 Register (Address = 6Bh) [reset = 0h]  
CSICFG1 is described in Table 75.  
Return to Summary Table.  
Table 75. CSICFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
OFMT  
R/W  
0h  
Program the output CSI data formats  
0000: RGB888  
0001: RGB666  
0010: RGB565  
0011: YUV420 Legacy  
0100: YUV420  
0101: YUV422_8  
0110: RAW8  
0111: RAW10  
1000: RAW12  
1001: YUV420 (CSPS)  
3-2  
IFMT  
R/W  
0h  
Program the input data format in HDMI terminology  
00: RGB444  
01: YUV422  
10: YUV444  
11: RAW  
1
0
INV_VS  
INV_DE  
R/W  
R/W  
0h  
0h  
When set, the VS received from the digital receiver will be inverted.  
Because the CSI logic works on active-high VS, this bit is typically  
set when the VS from the data source is active-low  
When set, the DE received from the digital receiver will be inverted.  
Because the CSI logic works on active-high DE, this bit is typically  
set when the DE from the data source is active-low  
7.6.1.65 CSIIA Register (Address = 6Ch) [reset = 0h]  
CSIIA is described in Table 76.  
Return to Summary Table.  
Table 76. CSIIA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CSI_IA  
R/W  
0h  
Indirect address port for accessing CSI registers  
7.6.1.66 CSIID Register (Address = 6Dh) [reset = 0h]  
CSIID is described in Table 77.  
Return to Summary Table.  
Table 77. CSIID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CSI_ID  
R/W  
0h  
Indirect data port for accessing CSI registers  
7.6.1.67 GPIO_Pin_Status_1 Register (Address = 6Eh) [reset = 0h]  
GPIO_Pin_Status_1 is described in Table 78.  
Return to Summary Table.  
Table 78. GPIO_Pin_Status_1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
0h  
0h  
Description  
GPIO7/I2S_WC pin status  
GPIO6/I2S_DA pin status  
GPIO7_Pin_Status  
GPIO6_Pin_Status  
R
6
R
76  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Table 78. GPIO_Pin_Status_1 Register Field Descriptions (continued)  
Bit  
5
Field  
Type  
R
Reset  
0h  
Description  
GPIO5_Pin_Status  
RESERVED  
GPIO5/I2S_DB pin status  
Reserved  
4
R
0h  
3
GPIO3_Pin_Status  
GPIO2_Pin_Status  
GPIO1_Pin_Status  
GPIO0_Pin_Status  
R
0h  
GPIO3 / I2S_DD pin status  
GPIO2 / I2S_DC pin status  
GPIO1 pin status  
2
R
0h  
1
R
0h  
0
R
0h  
GPIO0 pin status  
7.6.1.68 GPIO_Pin_Status_2 Register (Address = 6Fh) [reset = 0h]  
GPIO_Pin_Status_2 is described in Table 79.  
Return to Summary Table.  
Table 79. GPIO_Pin_Status_2 Register Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
0h  
Description  
Reserved  
RESERVED  
R
GPIO9_Pin_Status  
GPIO8_Pin_Status  
R
R
0h  
0h  
GPIO9/MCLK pin status  
0
GPIO8/I2S_CLK pin status  
7.6.1.69 RX_BKSV0 Register (Address = 80h) [reset = 0h]  
RX_BKSV0 is described in Table 80.  
Return to Summary Table.  
Table 80. RX_BKSV0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BKSV0  
R
0h  
BKSV0: Value of byte0 of the Receiver KSV.  
7.6.1.70 RX_BKSV1 Register (Address = 81h) [reset = 0h]  
RX_BKSV1 is described in Table 81.  
Return to Summary Table.  
Table 81. RX_BKSV1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BKSV1  
R
0h  
BKSV1: Value of byte1 of the Receiver KSV.  
7.6.1.71 RX_BKSV2 Register (Address = 82h) [reset = 0h]  
RX_BKSV2 is described in Table 82.  
Return to Summary Table.  
Table 82. RX_BKSV2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BKSV2  
R
0h  
BKSV2: Value of byte2 of the Receiver KSV.  
Copyright © 2018, Texas Instruments Incorporated  
77  
 
 
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.6.1.72 RX_BKSV3 Register (Address = 83h) [reset = 0h]  
RX_BKSV3 is described in Table 83.  
Return to Summary Table.  
Table 83. RX_BKSV3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BKSV3  
R
0h  
BKSV3: Value of byte3 of the Receiver KSV.  
7.6.1.73 RX_BKSV4 Register (Address = 84h) [reset = 0h]  
RX_BKSV4 is described in Table 84.  
Return to Summary Table.  
Table 84. RX_BKSV4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BKSV4  
R
0h  
BKSV4: Value of byte4 of the Receiver KSV.  
7.6.1.74 TX_KSV0 Register (Address = 90h) [reset = 0h]  
TX_KSV0 is described in Table 85.  
Return to Summary Table.  
Table 85. TX_KSV0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TX_KSV0  
R
0h  
TX_KSV0: Value of byte0 of the Transmitter KSV.  
7.6.1.75 TX_KSV1 Register (Address = 91h) [reset = 0h]  
TX_KSV1 is described in Table 86.  
Return to Summary Table.  
Table 86. TX_KSV1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TX_KSV1  
R
0h  
TX_KSV1: Value of byte1 of the Transmitter KSV.  
7.6.1.76 TX_KSV2 Register (Address = 92h) [reset = 0h]  
TX_KSV2 is described in Table 87.  
Return to Summary Table.  
Table 87. TX_KSV2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TX_KSV2  
R
0h  
TX_KSV2: Value of byte2 of the Transmitter KSV.  
7.6.1.77 TX_KSV3 Register (Address = 93h) [reset = 0h]  
TX_KSV3 is described in Table 88.  
Return to Summary Table.  
Table 88. TX_KSV3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TX_KSV3  
R
0h  
TX_KSV3: Value of byte3 of the Transmitter KSV.  
78  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
7.6.1.78 TX_KSV4 Register (Address = 94h) [reset = 0h]  
TX_KSV4 is described in Table 89.  
Return to Summary Table.  
Table 89. TX_KSV4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TX_KSV4  
R
0h  
TX_KSV4: Value of byte4 of the Transmitter KSV.  
7.6.1.79 HDCP_DBG Register (Address = C0h) [reset = 0h]  
HDCP_DBG is described in Table 90.  
Return to Summary Table.  
Table 90. HDCP_DBG Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
HDCP_I2C_TO_DIS  
Reserved.  
6
R
0h  
HDCP I2C Timeout Disable:  
Setting this bit to a 1 will disable the bus timeout function in the  
HDCP I2C master. When enabled, the bus timeout function allows  
the I2C master to assume the bus is free if no signaling occurs for  
more than 1 second. Set via the HDCP_DBG register in the HDCP  
Transmitter.  
5-4  
3
RESERVED  
R
R
0h  
0h  
Reserved  
RGB_CHKSUM_EN  
Enable RBG video line checksum:  
Enables sending of ones-complement checksum for each 8-bit RBG  
data channel following end of each video data line. Set via the  
HDCP_DBG register in the HDCP Transmitter.  
2
FAST_LV  
R
0h  
Fast Link Verification:  
HDCP periodically verifies that the HDCP Receiver is correctly  
synchronized. Setting this bit will increase the rate at which  
synchronization is verified. When set to a 1, Pj is computed every 2  
frames and Ri is computed every 16 frames. When set to a 0, Pj is  
computed every 16 frames and Ri is computed every 128 frames.  
Set via the HDCP_DBG register in the HDCP Transmitter.  
1
0
TMR_SPEEDUP  
HDCP_I2C_FAST  
R
R
0h  
0h  
Timer Speedup:  
Speed up HDCP authentication timers. Set via the HDCP_DBG  
register in the HDCP Transmitter.  
HDCP I2C Fast mode Enable:  
Setting this bit to a 1 will enable the HDCP I2C Master in the HDCP  
Receiver to operation with Fast mode timing. If set to a 0, the I2C  
Master will operation with Standard mode timing. Set via the  
HDCP_DBG register in the HDCP Transmitter.  
7.6.1.80 HDCP_DBG2 Register (Address = C1h) [reset = 0h]  
HDCP_DBG2 is described in Table 91.  
Return to Summary Table.  
Table 91. HDCP_DBG2 Register Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RESERVED  
NO_DECRYPT  
Reserved  
0h  
No Decrypt:  
When set to a 1, the HDCP Receiver will output the encrypted data  
on the RGB pins. All other functions will work normally. This provides  
a simple way of showing that the link is encrypted.  
Copyright © 2018, Texas Instruments Incorporated  
79  
 
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Table 91. HDCP_DBG2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
HDCP_EN_MODE  
R/W  
0h  
HDCP Enable Mode:  
This bit controls whether the HDCP Repeater function will enable  
HDCP in attached HDCP Transmitters if it detects HDCP is already  
enabled 1 : Don't re-enable HDCP if already enabled 0 : Re-enable  
HDCP at start of authentication, even if HDCP Transmitter already  
has HDCP enabled  
7.6.1.81 HDCP_STS Register (Address = C4h) [reset = 0h]  
HDCP_STS is described in Table 92.  
Return to Summary Table.  
Table 92. HDCP_STS Register Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
RGB_CHKSUM_ERR  
Reserved  
R
0h  
RGB Checksum Error Detected:  
If RGB Checksum in enabled through the HDCP Transmitter  
HDCP_DBG register, this bit will indicate if a checksum error is  
detected. This register may be cleared by writing any value to this  
register  
0
AUTHED  
R
0h  
HDCP Authenticated:  
Indicates the HDCP authentication has completed suc-cessfully. The  
controller may now send video data re-quiring content protection.  
This bit will be cleared if authentication is lost or if the controller  
restarts authen-tication.  
7.6.1.82 KSV_FIFO_DATA Register (Address = C9h) [reset = 0h]  
KSV_FIFO_DATA is described in Table 93.  
Return to Summary Table.  
Table 93. KSV_FIFO_DATA Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0h  
Description  
7-0  
KSV_FIFO_DATA  
KSV_FIFO_DATA:  
During External Repeater Control mode, the External HDCP  
controller writes KSV data to the KSV FIFO through this register. A  
byte written to this register location will write one byte of KSV data to  
the KSV FIFO at the location indicated by the KSV_FIFO_ADDR  
registers.  
7.6.1.83 KSV_FIFO_ADDR0 Register (Address = CAh) [reset = 0h]  
KSV_FIFO_ADDR0 is described in Table 94.  
Return to Summary Table.  
Table 94. KSV_FIFO_ADDR0 Register Field Descriptions  
Bit  
Field  
KSV_FIFO_ADDR0  
Type  
R/W  
Reset  
0h  
Description  
7-0  
KSV FIFO Address Register 0:  
This register contains the lower 8 bits of the KSF FIFO Address. This  
value should be set to 0 before writing the first byte of KSV data to  
the KSV FIFO. The KSV FIFO Address will automatically increment  
for each write to the KSV_FIFO_DATA register.  
80  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
7.6.1.84 KSV_FIFO_ADDR1 Register (Address = CBh) [reset = 0h]  
KSV_FIFO_ADDR1 is described in Table 95.  
Return to Summary Table.  
Table 95. KSV_FIFO_ADDR1 Register Field Descriptions  
Bit  
Field  
KSV_FIFO_ADDR1  
Type  
R/W  
Reset  
0h  
Description  
7-0  
KSV FIFO Address Register 1:  
This register contains the most significant bit of the KSF FIFO  
Address. This value should be set to 0 before writing the first byte of  
KSV data to the KSV FIFO. The KSV FIFO Address will  
automatically increment for each write to the KSV_FIFO_DATA  
register.  
7.6.1.85 RPTR_TX0 Register (Address = E0h) [reset = 0h]  
RPTR_TX0 is described in Table 96.  
Return to Summary Table.  
Table 96. RPTR_TX0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
PORT0_ADDR  
R
0h  
HDCP Repeater Transmit Port 0 I2C Address  
Indicates the I2C address for the Repeater Transmit Port.  
0
PORT0_VALID  
R
0h  
HDCP Repeater Transmit Port 0 Valid  
Indicates that the HDCP Repeater has a transmit port at the I2C  
Address identified by upper 7 bits of this register  
7.6.1.86 RPTR_TX1 Register (Address = E1h) [reset = 0h]  
RPTR_TX1 is described in Table 97.  
Return to Summary Table.  
Table 97. RPTR_TX1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
PORT1_ADDR  
R
0h  
HDCP Repeater Transmit Port 1 I2C Address  
Indicates the I2C address for the Repeater Transmit Port.  
0
PORT1_VALID  
R
0h  
HDCP Repeater Transmit Port 1 Valid  
Indicates that the HDCP Repeater has a transmit port at the I2C  
Address identified by upper 7 bits of this register  
7.6.1.87 RPTR_TX2 Register (Address = E2h) [reset = 0h]  
RPTR_TX2 is described in Table 98.  
Return to Summary Table.  
Table 98. RPTR_TX2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
PORT2_ADDR  
R
0h  
HDCP Repeater Transmit Port 2 I2C Address  
Indicates the I2C address for the Repeater Transmit Port.  
0
PORT2_VALID  
R
0h  
HDCP Repeater Transmit Port 2 Valid  
Indicates that the HDCP Repeater has a transmit port at the I2C  
Address identified by upper 7 bits of this register  
Copyright © 2018, Texas Instruments Incorporated  
81  
 
 
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.6.1.88 RPTR_TX3 Register (Address = E3h) [reset = 0h]  
RPTR_TX3 is described in Table 99.  
Return to Summary Table.  
Table 99. RPTR_TX3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
PORT3_ADDR  
R
0h  
HDCP Repeater Transmit Port 3 I2C Address  
Indicates the I2C address for the Repeater Transmit Port.  
0
PORT3_VALID  
R
0h  
HDCP Repeater Transmit Port 3 Valid  
Indicates that the HDCP Repeater has a transmit port at the I2C  
Address identified by upper 7 bits of this register  
7.6.1.89 HDCP_RX_ID0 Register (Address = F0h) [reset = 5Fh]  
HDCP_RX_ID0 is described in Table 100.  
Return to Summary Table.  
Table 100. HDCP_RX_ID0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
5Fh  
Description  
HDCP_RX_ID0: First byte ID code, '_ '  
7-0  
HDCP_RX_ID0  
R
7.6.1.90 HDCP_RX_ID1 Register (Address = F1h) [reset = 55h]  
HDCP_RX_ID1 is described in Table 101.  
Return to Summary Table.  
Table 101. HDCP_RX_ID1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
55h  
Description  
HDCP_RX_ID1: 2nd byte of ID code, 'U '  
7-0  
HDCP_RX_ID1  
R
7.6.1.91 HDCP_RX_ID2 Register (Address = F2h) [reset = 48h]  
HDCP_RX_ID2 is described in Table 102.  
Return to Summary Table.  
Table 102. HDCP_RX_ID2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
48h  
Description  
7-0  
HDCP_RX_ID2  
R
HDCP_RX_ID2: 3rd byte of ID code. Value will be either 'B ' or 'H '.  
'H ' indicates an HDCP capable device.  
7.6.1.92 HDCP_RX_ID3 Register (Address = F3h) [reset = 39h]  
HDCP_RX_ID3 is described in Table 103.  
Return to Summary Table.  
Table 103. HDCP_RX_ID3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
39h  
Description  
HDCP_RX_ID3: 4th byte of ID code: '9 '  
7-0  
HDCP_RX_ID3  
R
82  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
7.6.1.93 HDCP_RX_ID4 Register (Address = F4h) [reset = 34h]  
HDCP_RX_ID4 is described in Table 104.  
Return to Summary Table.  
Table 104. HDCP_RX_ID4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
34h  
Description  
HDCP_RX_ID4: 5th byte of ID code: '4 '  
7-0  
HDCP_RX_ID4  
R
7.6.1.94 HDCP_RX_ID5 Register (Address = F5h) [reset = 30h]  
HDCP_RX_ID5 is described in Table 105.  
Return to Summary Table.  
Table 105. HDCP_RX_ID5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
30h  
Description  
HDCP_RX_ID5: 6th byte of ID code: '0 '  
7-0  
HDCP_RX_ID5  
R
Copyright © 2018, Texas Instruments Incorporated  
83  
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.6.2 CSI-2 Indirect Registers  
Table 106 summarizes the DS90UH940N-Q1 CSI-2 indirect registers. All register offset addresses not listed in  
Table 106 should be considered as reserved locations and the register contents should not be modified.  
In the register definitions under the TYPE heading, the following definitions apply:  
R = Read only access  
R/W = Read / Write access  
Table 106. CSI-2 Indirect Registers Summary  
Address  
2h  
Acronym  
Register Name  
Section  
Go  
CSI_TCK_TRAIL  
RAW_ALIGN  
CSI_EN_PORT0  
CSI_EN_PORT1  
CSIPASS  
9h  
Go  
13h  
Go  
14h  
Go  
16h  
Go  
2Eh  
CSI_VC_ID  
Go  
7.6.2.1 CSI_TCK_TRAIL Register (Address = 2h) [reset = 0h]  
CSI_TCK_TRAIL is described in Table 107.  
Return to Summary Table.  
Table 107. CSI_TCK_TRAIL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0h  
Description  
Override CSI Tsk Trail Parameter  
0: Tsk Trail is automatically determined.  
7
CSI_TCK_TRAIL_OV  
1: Override Tsk Trail parameter with a value in bits [3:0] in this  
register.  
6-5  
3-0  
RESERVED  
R/W  
R/W  
0h  
0h  
Reserved  
CSI_TCK_TRAIL  
Tsk Trail Value.  
7.6.2.2 RAW_ALIGN Register (Address = 9h) [reset = 0h]  
RAW_ALIGN is described in Table 108.  
Return to Summary Table.  
Table 108. RAW_ALIGN Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
RESERVED  
RESERVED  
RESERVED  
RAW_ALIGN  
6
0h  
5
0h  
4
0h  
Raw Align.  
0: RAW Output onto LSB's of RGB Bus  
1: RAW Output onto MSB's of RGB Bus  
3-0  
RESERVED  
R/W  
0h  
Reserved  
84  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
7.6.2.3 CSI_EN_PORT0 Register (Address = 13h) [reset = 3Fh]  
CSI_EN_PORT0 is described in Table 109.  
Return to Summary Table.  
Table 109. CSI_EN_PORT0 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0h  
Description  
7
RCTL_PORT0  
Register Control  
0 = Disable  
1 = Enable  
6
RESERVED  
EN_PORT0  
R/W  
R/W  
0h  
Reserved  
5-0  
3Fh  
0x00 = Disable CSI Port 0  
0x3F = Enable CSI Port 0  
7.6.2.4 CSI_EN_PORT1 Register (Address = 14h) [reset = 0h]  
CSI_EN_PORT1 is described in Table 110.  
Return to Summary Table.  
Table 110. CSI_EN_PORT1 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0h  
Description  
7
RCTL_PORT1  
Register Control  
0 = Disable  
1 = Enable  
6
RESERVED  
EN_PORT1  
R/W  
R/W  
0h  
0h  
Reserved  
5-0  
0x00 = Disable CSI Port 1  
0x3F = Enable CSI Port 1  
7.6.2.5 CSIPASS Register (Address = 16h) [reset = 2h]  
CSIPASS is described in Table 111.  
Return to Summary Table.  
Table 111. CSIPASS Register Field Descriptions  
Bit  
7-3  
2
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RESERVED  
CSI_PASS_toGP3  
Reserved  
0h  
CSI_PASS to GPIO3. Configures GPIO3 to output the PASS signal  
when this bit is set HIGH.  
1
0
CSI_PASS_toGP0  
CSI_PASS  
R/W  
R/W  
1h  
0h  
CSI_PASS to GPIO0. Configures GPIO0 to output the PASS signal  
when this bit is set HIGH. This is the default.  
CSI_PASS. This bit reflects the status of the PASS signal.  
7.6.2.6 CSI_VC_ID Register (Address = 2Eh) [reset = 0h]  
CSI_VC_ID is described in Table 112.  
Return to Summary Table.  
Table 112. CSI_VC_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
CSI_VC_ID  
R/W  
0h  
CSI Virtual Channel Identifier.  
00: CSI-2 outputs with ID as virtual channel 0.  
01: CSI-2 outputs with ID as virtual channel 1.  
10: CSI-2 outputs with ID as virtual channel 2.  
11: CSI-2 outputs with ID as virtual channel 3.  
5-0  
RESERVED  
R/W  
0h  
Reserved.  
Copyright © 2018, Texas Instruments Incorporated  
85  
 
 
 
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DS90UH940N-Q1 is a FPD-Link III deserializer which, in conjunction with the DS90UH949/947-Q1  
serializers, converts 1-lane or 2-lane FPD-Link III streams into a MIPI CSI-2 interface. The deserializer can  
operate over cost-effective 50-Ω single-ended coaxial or 100-Ω differential shielded twisted-pair (STP) cables.  
The deserializer recovers the data from two FPD-Link III serial streams and translates it into a camera serial  
interface (CSI-2) format compatible with MIPI DPHY/CSI-2 supporting video resolutions up to WUXGA and  
1080p60 with 24-bit color depth.  
8.2 Typical Applications  
Bypass capacitors must be placed near the power supply pins. At a minimum, use four (4) 10-µF capacitors for  
local device bypassing. Ferrite beads are placed on the two sets of supply pins (VDD33 and VDDIO ) for  
effective noise suppression. The interface to the graphics source is LVDS. The VDDIO pins may be connected to  
3.3 V or 1.8 V. A capacitor and resistor are placed on the PDB pin to delay the enabling of the device until power  
is stable. See 38 for a typical STP connection diagram and 39 for a typical coax connection diagram.  
86  
版权 © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
Typical Applications (接下页)  
VDD33  
1.2V  
VDDP12_CH0  
VDDR12_CH0  
VDDP12_CH1  
VDDR12_CH1  
VDD12_CSI0  
VDD12_CSI1  
VDDP12_LVDS  
VDDL12_0  
VDD33_A  
VDD33_B  
VDDIO  
3.3V  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
FB1  
FB5  
0.1µF 1µF 10µF  
10µF 1µF 0.1µF  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
VDDIO  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
FB6  
FB2  
0.1µF 1µF 10µF  
10µF 1µF  
10µF 1µF  
0.1µF  
0.1µF  
CMF  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
FB3  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
CAP_I2S  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
VDD33  
(Filtered 3.3V)  
FB4  
0.01µF  
t 0.1µF  
10µF 1µF 0.1µF  
R1  
R2  
VDDL12_0  
0.01µF  
t 0.1µF  
0.1µF  
R3  
BISTEN  
BISTC  
Control  
IDx  
MODE_SEL0  
MODE_SEL1  
R4  
0.1µF  
R5  
R6  
C1  
C2  
RIN0+  
RIN0-  
0.1µF  
FPD-Link III  
C3  
C4  
RIN1+  
RIN1-  
CSI0_CLK-  
CSI0_CLK+  
CSI0_D0-  
CSI0_D0+  
CSI0_D1-  
CSI0_D1+  
CSI0_D2-  
CSI0_D2+  
CSI0_D3-  
CSI0_D3+  
SWC  
Aux Audio  
SDOUT  
MOSI  
MISO  
SPLK  
SS  
SPI  
CSI Outputs  
CSI1_CLK-  
CSI1_CLK+  
CSI1_D0-  
CSI1_D0+  
CSI1_D1-  
CSI1_D1+  
CSI1_D2-  
CSI1_D2+  
CSI1_D3-  
CSI1_D3+  
C5  
C6  
CMLOUTP  
CMLOUTN  
V(I2C)  
Monitoring  
(Optional)  
RT  
RPU  
RPU  
I2C_SDA  
I2C_SCL  
I2C  
HW Control Option  
VDDIO  
10k  
SW Control  
(Recommended)  
RES0  
RES1  
PDB  
>10 µF  
I2S_WC  
I2S_CLK  
I2S_DA  
I2S_DB  
I2S_DC  
I2S_DD  
MCLK  
LOCK  
PASS  
Status  
I2S Audio  
NOTES:  
FB1 œ FB4: Z = 120 Q @ 100 MHz  
FB5, FB6: DCR ≤ 0.3 Q; Z = 1 KQ @ 100 MHz  
C1 œ C6 = 33 nF œ 100 nF (50 V / X7R / 0402)  
R1, R2 (see IDx Resistor Values Table)  
R3 œ R6 (see MODE_SEL Resistor Values Table)  
RTERM = 49.9 Ω  
DAP  
DS90UH940N-Q1  
RT = 100 Ω  
RPU = 2.2 kΩ for V(I2C) = 1.8 V  
= 4.7 kΩ for V(I2C) = 3.3 V  
Copyright © 2018, Texas Instruments Incorporated  
38. Typical Connection Diagram (STP)  
版权 © 2018, Texas Instruments Incorporated  
87  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Applications (接下页)  
VDD33  
1.2V  
VDDP12_CH0  
VDDR12_CH0  
VDDP12_CH1  
VDDR12_CH1  
VDD12_CSI0  
VDD12_CSI1  
VDDP12_LVDS  
VDDL12_0  
VDD33_A  
VDD33_B  
VDDIO  
3.3V  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
FB1  
FB5  
0.1µF 1µF 10µF  
10µF 1µF 0.1µF  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
VDDIO  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
FB6  
FB2  
FB3  
0.1µF 1µF 10µF  
10µF 1µF  
10µF 1µF  
0.1µF  
0.1µF  
CMF  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
CAP_I2S  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
VDD33  
(Filtered 3.3V)  
FB4  
0.01µF  
t 0.1µF  
10µF 1µF 0.1µF  
R1  
R2  
VDDL12_0  
0.01µF  
t 0.1µF  
0.1µF  
R3  
BISTEN  
BISTC  
Control  
IDx  
MODE_SEL0  
MODE_SEL1  
R4  
0.1µF  
R5  
R6  
C1  
C2  
RIN0+  
RIN0-  
0.1µF  
FPD-Link III  
RTERM  
C3  
RIN1+  
RIN1-  
CSI0_CLK-  
CSI0_CLK+  
CSI0_D0-  
CSI0_D0+  
CSI0_D1-  
CSI0_D1+  
CSI0_D2-  
CSI0_D2+  
CSI0_D3-  
CSI0_D3+  
C4  
RTERM  
SWC  
Aux Audio  
SDOUT  
MOSI  
MISO  
SPLK  
SS  
SPI  
CSI Outputs  
CSI1_CLK-  
CSI1_CLK+  
CSI1_D0-  
CSI1_D0+  
CSI1_D1-  
CSI1_D1+  
CSI1_D2-  
CSI1_D2+  
CSI1_D3-  
CSI1_D3+  
C5  
C6  
CMLOUTP  
CMLOUTN  
V(I2C)  
Monitoring  
(Optional)  
RT  
RPU  
RPU  
I2C_SDA  
I2C_SCL  
I2C  
HW Control Option  
VDDIO  
10k  
SW Control  
(Recommended)  
RES0  
RES1  
PDB  
>10 µF  
I2S_WC  
I2S_CLK  
I2S_DA  
I2S_DB  
I2S_DC  
I2S_DD  
MCLK  
LOCK  
PASS  
Status  
I2S Audio  
NOTES:  
FB1 œ FB4: Z = 120 Q @ 100 MHz  
FB5, FB6: DCR ≤ 0.3 Q; Z = 1 KQ @ 100 MHz  
C1, C3, C5, C6 = 33 nF œ 100 nF (50 V / X7R / 0402)  
C2, C4 = 15 nF œ 47 nF (50 V / X7R / 0402)  
R1, R2 (see IDx Resistor Values Table)  
R3 œ R6 (see MODE_SEL Resistor Values Table)  
RTERM = 49.9 Ω  
DAP  
DS90UH940N-Q1  
RT = 100 Ω  
RPU = 2.2 kΩ for V(I2C) = 1.8 V  
= 4.7 kΩ for V(I2C) = 3.3 V  
Copyright © 2018, Texas Instruments Incorporated  
39. Typical Connection Diagram (Coax)  
88  
版权 © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
FPD-Link III  
2 lanes  
HDMI  
or  
MIPI CSI-2  
DP++  
RIN0+  
RIN0-  
DOUT0+  
DOUT0-  
IN_CLK-/+  
IN_D0-/+  
IN_D1-/+  
D3+/-  
D2+/-  
Display  
or  
Graphics  
Processor  
DOUT1+  
DOUT1-  
RIN1+  
RIN1-  
Mobile  
Device  
or  
Graphics  
Processor  
D1+/-  
D0+/-  
IN_D2-/+  
CLK+/-  
DS90UH949-Q1  
Serializer  
DS90UH940N-Q1  
Deserializer  
CEC  
DDC  
HPD  
I2C  
IDx  
I2C  
IDx  
HS_GPIO  
(SPI)  
HS_GPIO  
(SPI)  
Copyright © 2018, Texas Instruments Incorporated  
40. Typical Display System Diagram  
8.2.1 Design Requirements  
For the typical design application, use the following as input parameters.  
113. Design Parameters  
DESIGN PARAMETER  
VDD33  
EXAMPLE VALUE  
3.3 V  
1.8 or 3.3 V  
1.2 V  
VDDIO  
VDD12  
AC-coupling capacitor for STP with 925/927: RIN[1:0]±  
AC-coupling capacitor for STP with 929/947/949: RIN[1:0]±  
AC-coupling capacitor for Coax with 921: RIN[1:0]+  
AC-coupling capacitor for Coax with 921: RIN[1:0]-  
AC-coupling capacitor for Coax with 929/947/949: RIN[1:0]+  
AC-coupling capacitor for Coax with 929/947/949: RIN[1:0]+  
100 nF  
33 nF - 100 nF  
100 nF  
47 nF  
33 nF - 100 nF  
15 nF - 47 nF  
The SER/DES supports only AC-coupled interconnects through an integrated DC-balanced decoding scheme.  
External AC-coupling capacitors must be placed in series in the FPD-Link III signal path as shown in 41. For  
applications using single-ended 50-Ω coaxial cable, the unused data pins (RIN0– and RIN1–) must use a 15-nF  
to 47-nF capacitor and must be terminated with a 50-Ω resistor.  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
41. AC-Coupled Connection (STP)  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
50Q  
50Q  
42. AC-Coupled Connection (Coaxial)  
For high-speed FPD–Link III transmissions, use the smallest available package for the AC-coupling capacitor.  
This minimizes degradation of signal quality due to package parasitics.  
版权 © 2018, Texas Instruments Incorporated  
89  
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 FPD-Link III Interconnect Guidelines  
See AN-1108 Channel-Link PCB and Interconnect Design-In Guidelines (SNLA008) and AN-905 Transmission  
Line RAPIDESIGNER Operation and Application Guide (SNLA035) for full details.  
Use 100-Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
S = space between the pair  
2S = space between pairs  
3S = space to LVCMOS signal  
Minimize the number of Vias  
Maintain balance of the traces  
Minimize skew within the pair  
Terminate as close to the TX outputs and RX inputs as possible  
Additional general guidance can be found in the LVDS Owner’s Manual (SNLA187) available in PDF format from  
the Texas Instruments web site.  
8.2.3 Application Curves  
The plots below correspond to 1080p60 video application with a 2-lane FPD-Link III input and MIPI 4-lane output.  
Time (240 ps/DIV)  
Time (100 ps/DIV)  
44. CSI-2 Data Output at 1040 Mbps  
43. Loop-Through CML Output at 2.6-Gbps Serial Line  
Rate  
90  
版权 © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
9 Power Supply Recommendations  
This device provides separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. provides guidance on which circuit blocks are connected to which power pin pairs. In some cases, an  
external filter many be used to provide clean power to sensitive circuits such as PLLs.  
9.1 Power-Up Requirements and PDB Pin  
When power is applied, power from the highest voltage rail to the lowest voltage rail on any of the supply pins.  
For 3.3-V IO operation, VDDIO and VDD33 can be powered by the same supply and ramped simultaneously.  
Use a large capacitor on the PDB pin to ensure PDB arrives after all the supply pins have settled to the  
recommended operating voltage. When PDB pin is pulled up to VDD33, a 10-kΩ pullup and a > 10–μF capacitor  
to GND are required to delay the PDB input signal rise. All inputs must not be driven until both VDD33 and  
VDDIO has reached steady state. Pins VDD33_A and VDD33_B must both be externally connected, bypassed,  
and driven to the same potential (they are not internally connected).  
9.2 Power Sequence  
The power-up sequence for the DS90UB940N-Q1 is as follows:  
tr0  
VDD33  
GND  
tr0  
t0  
VDDIO  
GND  
tr1  
t1  
VDD12  
GND  
VDDIO  
t2  
VPDB_HIGH  
VPDB_LOW  
PDB(*)  
GND  
t4  
t3  
t3  
t5  
RIN±  
t6  
GPIO  
(*) It is recommended to assert PDB (active High) with a microcontroller rather than an RC filter network to help ensure  
proper sequencing of PDB pin after settling of power supplies.  
45. Power-Up Sequencing  
版权 © 2018, Texas Instruments Incorporated  
91  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Power Sequence (接下页)  
114. Power-Up Sequence Timing Parameters  
PARAMETER  
MIN  
0.2  
0.05  
0
TYP  
MAX  
UNIT  
ms  
NOTES  
@10/90%  
@10/90%  
tr0  
tr1  
t0  
VDD33 / VDDIO rise time  
VDD12 rise time  
ms  
VDD33 to VDDIO delay  
VDD33 / VDDIO to VDD12 delay  
VDDx to PDB delay  
ms  
t1  
0
ms  
t2  
0
ms  
Release PDB after  
all supplies are up  
and stable.  
t3  
t4  
t5  
PDB to I2C ready delay  
PDB pulse width  
2
2
0
ms  
ms  
ms  
Hard reset  
Valid data on RIN± to VDDx delay  
Provide valid data  
from a compatible  
Serializer before  
power-up or apply  
reset as described  
(1)  
in  
.
t6  
PDB to GPIO delay  
2
ms  
Keep GPIOs low or  
high until PDB is  
high.  
(1) DS90UH940N-Q1 should be powered up after a compatible Serializer has started sending valid video data. If this condition is not  
satisfied, then a digital (software) reset or hard reset (toggling PDB pin) is required after receiving the input data. This requirement  
prevents the DS90UH940N-Q1 from locking to any random or noise signal, ensures DS90UH940N-Q1 has a deterministic startup  
behavior, specified lock time, and optimal adaptive equalizer setting.  
92  
版权 © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
10 Layout  
10.1 Layout Guidelines  
Circuit board layout and stack-up for the FPD-Link III devices must be designed to provide low-noise power feed  
to the device. Good layout practice also separates high frequency or high-level inputs and outputs to minimize  
unwanted stray noise pick-up, feedback, and interference. Power system performance may be greatly improved  
by using thin dielectrics (2 to 4 mils) for power/ground sandwiches. This arrangement provides plane capacitance  
for the PCB power system with low-inductance parasitics, which has proven especially effective at high  
frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01 µF to 0.1 µF. Ceramic capacitors may be in the 2.2-µF to 10-µF range. The voltage rating of the  
ceramic capacitors must be at least 5× the power supply voltage being used  
TI recommends surface-mount capacitors due to their smaller parasitics. When using multiple capacitors per  
supply pin, place the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 50-µF to 100-µF range, which smooths low frequency switching noise. TI  
recommends connecting power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external  
bypass capacitor increases the inductance of the path.  
A small body size X7R chip capacitor, such as 0603 or 0402, is recommended for external bypass. The small  
body size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance  
frequency of these external bypass capacitors, usually in the range of 20 to 30 MHz. To provide effective  
bypassing, multiple capacitors are often used to achieve low impedance between the supply rails over the  
frequency of interest. At high frequency, it is also common practice to use two vias from power and ground pins  
to the planes to reduce the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as  
PLLs.  
Locate LVCMOS signals away from the differential lines to prevent coupling from the LVCMOS lines to the  
differential lines. Differential impedance of 100 Ω are typically recommended for STP interconnect and single-  
ended impedance of 50 Ω for coaxial interconnect. The closely coupled lines help to ensure that coupled noise  
appears as common-mode and thus is rejected by the receivers. The tightly coupled lines also radiate less.  
Information on the WQFN package is provided AN-1187 Leadless Leadframe Package (LLP) (SNOA401).  
版权 © 2018, Texas Instruments Incorporated  
93  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
10.2 Ground  
TI recommends that a consistent ground plane reference for the high-speed signals in the PCB design to provide  
the best image plane for signal traces running parallel to the plane. Connect the thermal pad of the device to this  
plane with vias.  
At least 32 thermal vias are necessary from the device center DAP to the ground plane. They connect the  
device ground to the PCB ground plane, as well as conduct heat from the exposed pad of the package to the  
PCB ground plane. More information on the WQFN style package, including PCB design and manufacturing  
requirements, is provided in AN-1187 Leadless Leadframe Package (LLP) (SNOA401).  
10.3 Routing FPD-Link III Signal Traces  
Routing the FPD-Link III signal traces between the RIN pins and the connector is the most critical pieces of a  
successful PCB layout. 47 shows an example PCB layout. For additional PCB layout details of the example,  
refer to the DS90UH940-Q1EVM User's Guide (SNLU162).  
The following list provides essential recommendations for routing the FPD-Link III signal traces between the  
receiver input pins (RIN) and the connector.  
The routing of the FPD-Link III traces may be all on the top layer or partially embedded in middle layers if EMI  
is a concern.  
The AC-coupling capacitors should be on the top layer and very close to the receiver input pins.  
Route the RIN traces between the AC-coupling capacitor and the connector as a 100-Ω differential micro-strip  
with tight impedance control (±10%). Calculate the proper width of the traces for a 100-Ω differential  
impedance based on the PCB stack-up.  
When choosing to implement a common mode choke for common mode noise reduction, minimize the effects  
of any impedance mismatch.  
Consult with connector manufacturer for optimized connector footprint. If the connector is mounted on the  
same side as the IC, minimize the impact of the thru-hole connector stubs by routing the high-speed signal  
traces on the opposite side of the connector mounting side.  
94  
版权 © 2018, Texas Instruments Incorporated  
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
10.4 CSI-2 Guidelines  
1. Route CSI_D*P/N pairs with controlled 100-Ω differential impedance (±20%) or 50-Ω single-ended  
impedance (±15%).  
2. Keep away from other high-speed signals.  
3. Keep intra-pair length mismatch to < 5 mils.  
4. Keep inter-pair length mismatch to < 50 mils within a single CSI-2 TX port. CSI-2 TX Port 0 differential traces  
do not need to match CSI-2 Port 1 differential traces.  
5. Length matching should be near the location of mismatch.  
6. Each pair should be separated at least by 3 times the signal trace width.  
7. Keep the use of bends in differential traces to a minimum. When bends are used, the number of left and right  
bends must be as equal as possible, and the angle of the bend should be 135 degrees. This arrangement  
minimizes any length mismatch caused by the bends and therefore minimizes the impact that bends have on  
EMI.  
8. Route all differential pairs on the same layer.  
9. Keep the number of VIAS to a minimum — TI recommends keeping the VIA count to 2 or fewer.  
10. Keep traces on layers adjacent to ground plane.  
11. Do NOT route differential pairs over any plane split.  
12. Adding Test points causes impedance discontinuity and therefore negatively impacts signal performance. If  
test points are used, place them in series and symmetrically. Test points must not be placed in a manner that  
causes a stub on the differential pair.  
版权 © 2018, Texas Instruments Incorporated  
95  
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
10.5 Layout Example  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the WQFN package is highly recommended to improve  
board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP. Stencil parameters for aperture opening and via locations are shown in 46:  
115. No Pullback WQFN Stencil Aperture Summary  
GAP  
BETWEEN  
DAP  
APERTURE  
(Dim A mm)  
NUMBER OF  
STENCIL I/O  
APERTURE  
(mm)  
STENCIL DAP  
APERTURE  
(mm)  
PCB I/O Pad  
SIZE (mm)  
PCB PITCH  
(mm)  
PCB DAP  
SIZE(mm)  
DAP  
APERTURE  
OPENINGS  
DEVICE  
PIN COUNT  
MKT DWG  
DS90UH940N-Q1  
64  
NKD  
0.25 × 0.6  
0.5  
7.2 x 7.2  
0.25 x 0.6  
1.16 × 1.16  
25  
0.2  
SYMM  
(1.36) TYP  
49  
64X (0.6)  
64  
64X (0.25)  
1
48  
(1.36)  
TYP  
60X (0.5)  
SYMM  
(8.8)  
METAL  
TYP  
16  
33  
17  
32  
25X (1.16)  
(8.8)  
46. 64-Pin WQFN Stencil Example of Via and Opening Placement  
(Dimensions in mm)  
96  
版权 © 2018, Texas Instruments Incorporated  
 
DS90UH940N-Q1  
www.ti.com.cn  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
47 (PCB layout example) is derived from a layout design of the DS90UH940N-Q1. This graphic and additional  
layout description are used to demonstrate both proper routing and proper solder techniques when designing in  
the Deserializer.  
47. DS90UH940N-Q1 Deserializer Example Layout  
版权 © 2018, Texas Instruments Incorporated  
97  
 
DS90UH940N-Q1  
ZHCSIG6A JULY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
《焊接规格应用报告》 (SNOA549)  
《半导体和集成电路封装热指标应用报告》 (SPRA953)  
AN-1108 通道链路 PCB 和互连设计指南》(SNLA008)  
AN-905 传输线路 RAPIDESIGNER 操作和应用指南》 (SNLA035)  
AN-1187 无引线框架封装 (LLP)(SNOA401)  
LVDS 用户手册》(SNLA187)  
AN-2173《通过具有双向控制通道的 FPD-Link III 进行 I2C 通信》 (SNLA131)  
《使用 DS90Ux92x FPD-Link III 器件的 I2S 音频接口》 (SNLA221)  
AN-2198《探索 720p FPD-Link III 器件的内部测试图案生成特性》 (SNLA132)  
I2C 总线上拉电阻器计算》(SLVA689)  
FPD-Link 学习中心  
《一种适用于 FPD-Link III SerDes EMC/EMI 系统设计和测试方法》(SLYT719)  
《按照车用 EMC/EMI 要求进行成功设计的 10 个技巧》(SLYT636)  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
MIPI is a registered trademark of Mobil Industry Processor Interface Alliance.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
98  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UH940NTNKDRQ1  
DS90UH940NTNKDTQ1  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
NKD  
NKD  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
90UH940NQ1  
90UH940NQ1  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UH940NTNKDRQ1 WQFN  
DS90UH940NTNKDTQ1 WQFN  
NKD  
NKD  
64  
64  
2000  
250  
330.0  
178.0  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
1.3  
1.3  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UH940NTNKDRQ1  
DS90UH940NTNKDTQ1  
WQFN  
WQFN  
NKD  
NKD  
64  
64  
2000  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
NKD 64  
9 x 9, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4229637/A  
www.ti.com  
PACKAGE OUTLINE  
NKD0064A  
WQFN - 0.8 mm max height  
S
C
A
L
E
1
.
6
0
0
WQFN  
9.1  
8.9  
A
B
PIN 1 INDEX AREA  
0.5  
0.3  
9.1  
8.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
(0.1)  
TYP  
7.2 0.1  
SEE TERMINAL  
DETAIL  
17  
32  
60X 0.5  
33  
16  
4X  
7.5  
1
48  
0.3  
64X  
PIN 1 ID  
64  
49  
0.2  
(OPTIONAL)  
0.1  
C A  
C
B
0.5  
0.3  
64X  
0.05  
4214996/A 08/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NKD0064A  
WQFN - 0.8 mm max height  
WQFN  
(
7.2)  
SYMM  
64X (0.6)  
64X (0.25)  
SEE DETAILS  
49  
64  
1
48  
60X (0.5)  
SYMM  
(8.8)  
(1.36)  
TYP  
8X (1.31)  
33  
(
0.2) VIA  
TYP  
16  
17  
32  
(1.36) TYP  
8X (1.31)  
(8.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214996/A 08/2013  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NKD0064A  
WQFN - 0.8 mm max height  
WQFN  
SYMM  
(1.36) TYP  
49  
64X (0.6)  
64X (0.25)  
64  
1
48  
(1.36)  
TYP  
60X (0.5)  
SYMM  
(8.8)  
METAL  
TYP  
16  
33  
17  
32  
25X (1.16)  
(8.8)  
SOLDERPASTE EXAMPLE  
BASED ON 0.125mm THICK STENCIL  
EXPOSED PAD  
65% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
4214996/A 08/2013  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY