DS90UR910QSQX/NOPB [TI]

10 - 75MHz、24 位彩色 FPD-Link II 至 CSI-2 转换器 | RTA | 40 | -40 to 105;
DS90UR910QSQX/NOPB
型号: DS90UR910QSQX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10 - 75MHz、24 位彩色 FPD-Link II 至 CSI-2 转换器 | RTA | 40 | -40 to 105

光电二极管 转换器
文件: 总35页 (文件大小:567K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
DS90UR910-Q1 10MHz 75MHz24 位彩色 FPD-Link II CSI-2 转换  
1 特性  
2 说明  
1
支持 10MHz 75MHz 像素时钟  
(PCLK)280Mbps 2.10Gbps FPD-Link II 线速  
率)  
DS90UR910-Q1 是一款接口桥接芯片,用于恢复  
FPD-Link II 串行位流中的数据,并将其转换为符合移  
动行业处理器接口 (MIPI) 规范的摄像机串行接口 (CSI-  
2) 格式。该器件可从兼容 FPD-Link II 串行器的串行位  
流中恢复 24 位或 18 RGB 数据以及 3 个视频同步  
信号。恢复的数据在由符合 MIPI DPHY/CSI-2 规范的  
半速率串行时钟所选通的两条数据通道中进行封包化和  
串行化,每条数据通道的传输速率最高可达  
兼容直流均衡以及交流耦合的 FPD-Link II 串行位  
可对长达 10 米的屏蔽双绞线 (STP) 电缆进行数据  
恢复  
符合 v1.00.00 规范的 MIPI D-PHY 模块  
MIPI CSI-2 版本 1.01 兼容  
900MbpsFPD-Link II 接收器支持频率最高可达  
75MHz 的像素时钟。CSI-2 输出串行总线可显著降低  
图形处理器 (GPU) 的互连和信号计数,同时面向多台  
汽车驾驶员辅助摄像机的视频流简化系统设计。  
支持双通道运行,每条数据通道支持的传输速率最  
高可达 900Mbps  
视频流数据包格式:RGB888  
连续和非连续时钟模式  
支持超低功耗、退出、高速和控制模式  
集成输入端接和可调节接收均衡  
快速随机锁定;无需基准时钟  
CCI/I2C 兼容控制总线  
DS90UR910-Q1 采用 40 引脚 WQFN 封装。电气性能  
符合汽车级 AEC-Q100 2 级标准温度范围(-40°C 至  
+105°C)。  
(1)  
器件信息  
全速内置自检 (@Speed BIST) 和报告引脚  
+1.8V 单电源  
部件号  
封装  
WQFN (40)  
封装尺寸  
DS90UR910-Q1  
6.00mm x 6.00mm  
1.8V 3.3V 兼容 LVCMOS I/O 接口  
汽车应用级产品:符合 AEC-Q100 2 级要求  
8kV ISO 10605 静电放电 (ESD) 额定值  
6mm x 6mm 超薄型四方扁平无引线 (WQFN)-40  
封装  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
应用图  
VDDIO  
(1.8V or 3.3V)  
VDD  
1.8V  
VDDIO  
(1.8V or 3.3V) 1.8V  
VDD  
CSI-2  
DATA1±  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
R[7:0]  
G[7:0]  
B[7:0]  
DOUT+  
RIN+  
RIN-  
DATA0±  
CLK±  
Video  
sources  
HS  
DOUT-  
VS  
DE  
Graphic  
Processor  
Application  
Processor  
FPD-Link II  
1 pair 100Ω STP  
Display  
DS90UR905Q-Q1  
Serializer  
DS90UR910-Q1  
Converter  
PCLK  
SCL  
SDA  
PDB  
LOCK  
CONFIG[1:0]  
BISTEN  
Control  
pins  
CONFIG[1:0]  
RFB  
EQ[3:1]  
ID[1:0]  
PDB  
SCL  
SDA  
ID[x]  
BISTEN  
PASS  
VODSEL  
DeEmph  
DAP GND  
DAP  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNLS414  
 
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
目录  
6.2 Functional Block Diagram ....................................... 17  
6.3 Feature Description................................................. 18  
6.4 Register Maps......................................................... 25  
Application and Implementation ........................ 28  
7.1 Typical Application Connection............................... 28  
7.2 Design Requirements.............................................. 28  
7.3 Application Performance Plots................................ 29  
Power Supply Recommendations...................... 30  
8.1 Power Up Requirements and PDB Pin................... 30  
Layout ................................................................... 30  
9.1 Layout Guidelines ................................................... 30  
1
2
3
4
5
特性.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
5.1 Absolute Maximum Ratings ..................................... 5  
5.2 ESD Ratings.............................................................. 5  
5.3 Recommended Operating Conditions....................... 5  
5.4 DC Electrical Characteristics .................................. 6  
5.5 AC Switching Characteristics.................................... 8  
7
8
9
5.6 Recommended Timing for the Serial Control Bus  
(CCI/I2C) ................................................................. 10  
10 器件和文档支持 ..................................................... 33  
10.1 ....................................................................... 33  
10.2 静电放电警告......................................................... 33  
10.3 Glossary................................................................ 33  
11 机械、封装和可订购信息....................................... 33  
5.7 DC and AC Serial Control Bus (CCI/I2C) ............... 11  
5.8 Typical Characteristics............................................ 15  
Detailed Description ............................................ 16  
6.1 Overview ................................................................. 16  
6
3 修订历史记录  
修订  
说明  
2012 9 17 DS90UR910-Q1 数据表 - 最初发布版本  
2012 10 23 日 更新了引脚图  
2013 5 2 日  
2013 5 17 日 明确了 VDDL VDDA 电源引脚的编号  
2015 4 16 日 将器件状态由产品预览更改为量产数据。添加了新的章节标题并更新至新的 TI 格式。  
已将国家数据表的版面布局更改为 TI 格式  
2
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
4 Pin Configuration and Functions  
40-Pin WQFN  
Top View  
29  
28  
27  
26  
25 24  
23  
22  
30  
21  
VDDCSI  
DATA1+  
20  
19  
18  
VDDA  
GND  
31  
32  
33  
34  
35  
DATA1-  
GND  
RIN+  
RIN-  
17  
16  
DS90UR910-Q1  
40-Pin WQFN  
(Top View)  
DATA0+  
DATA0-  
GND  
CMF  
15  
14  
13  
12  
11  
36  
37  
38  
39  
40  
GND  
CMLOUT+  
CLK+  
CMLOUT-  
CLK-  
VDDA  
VDDP  
DAP = GND  
CONFIG[0]  
2
3
4
5
6
7
8
9
1
10  
(1)  
Pin Descriptions  
Pin Name  
Pin #  
I/O, Type  
Description  
FPD-Link II Serial Interface  
RIN+  
RIN-  
33  
34  
Inverting and non-inverting differential inputs. The inputs must be AC Coupled with a 100 nF  
capacitor.  
I, CML  
Common mode filter pin for the differential inputs. CMP is the virtual ground of the differential  
input stage. A bypass capacitor is connected from CMP to ground to increase the receiver’s  
common mode noise immunity. A 4.7 µF ceramic capacitor is recommended.  
CMF  
35  
I, Analog  
Inverting and non-inverting differential outputs. Single 100(1%) termination resistor must  
be placed across the CMLOUT± pins. Optional loop-through output to monitor post equalizer  
and requires use of the Serial Control Bus to enable.  
CMLOUT+  
CMLOUT-  
37  
38  
O, CML  
MIPI Interface  
DATA1+  
DATA1-  
19  
18  
O, DPHY  
O, DPHY  
Inverting and non-inverting data output of DPHY Lane 1  
Inverting and non-inverting data output of DPHY Lane 0  
Inverting and non-inverting half-rate DPHY clock lane  
DATA0+  
DATA0-  
16  
15  
O, DPHY  
O, DPHY  
CLK+  
CLK-  
13  
12  
O, DPHY  
O, DPHY  
(1) 1 = HIGH, 0 = LOW  
Copyright © 2012–2015, Texas Instruments Incorporated  
3
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
(1)  
Pin Descriptions  
(continued)  
Pin Name  
Pin #  
I/O, Type  
Description  
Control and Configuration  
Power Down Mode Input  
PDB = 1, Device is enabled (normal operation)  
PDB = 0, Device is in power-down  
When the device is in the power-down, outputs are TRI-STATE, control registers are  
RESET.  
I, LVCMOS  
w/ pull-down  
PDB  
30  
I, LVCMOS Operating Mode Select  
w/ pull-down CONFIG[1:0] selects compatibility to FPD-Link II serializers. See Table 1.  
CONFIG[1:0]  
EQ[3:1]  
10, 11  
1, 2, 3  
Receive equalization control  
I, LVCMOS EQ[3:1] provides 8 combinations of the receive equalization gain settings. See Table 2.  
w/ pull-down EQ[3:1] optimizes the input equalizer’s ability to reduce inter-symbol interference from the  
loss characteristics of different cable lengths.  
BIST Enable Input  
I, LVCMOS  
BISTEN  
LOCK  
29  
24  
BISTEN = 1, BIST is enabled  
w/ pull-down  
BISTEN = 0, BIST is disabled  
LOCK Status Output  
O, LVCMOS LOCK = 1, PLL acquired lock to the reference clock input; DPHY outputs are active  
LOCK = 0, PLL is unlocked  
Normal mode status output pin (BISTEN = 0)  
PASS = 1: No fault detected on input display timing  
PASS = 0: Indicates an error condition or corruption in display timing. Fault condition occurs  
if:  
PASS  
25  
O, LVCMOS  
1) DE length value mismatch measured once in succession  
2) VSync length value mismatch measured twice in succession  
BIST mode status output pin (BISTEN = 1)  
PASS = 1: No error detected  
PASS = 0: Error detected  
CCI / I2C Serial Control Bus  
I, LVCMOS, Serial Control Bus Clock Input  
Open Drain SCL requires an external pull-up resistor to VDDIO  
SCL  
SDA  
6
5
.
I/O, LVCMOS Serial Control Bus Data Input / Output  
Open Drain SDA requires an external pull-up resistor to VDDIO  
.
I, LVCMOS Serial Control Bus Device ID Address Select  
w/ pull-down See Table 5.  
ID[1:0]  
8, 9  
Reserved Pins  
GPIO  
General Purpose I/O  
I/O  
21  
28  
Note: Pin must be left floating during initial power-up.  
I, LVCMOS  
w/ pull-down  
RES  
Reserved pin. Must tie Low.  
Power and Ground  
VDDL  
7, 26  
31, 39  
40  
Power  
Power  
Power  
Power  
Power  
Power to logic circuitry, 1.8V ±5%  
VDDA  
Power to analog circuitry, 1.8V ±5%  
VDDP  
Power to PLL, 1.8V ±5%  
VDDCSI  
VDDIO  
20  
Power to DPHY CSI-2 drivers, 1.8V ±5%  
Power to LVCMOS I/O circuitry, 1.8V ±5% OR 3.3V ±10% (VDDIO  
23  
)
4, 14, 17,  
22, 27, 32,  
36  
GND  
Ground  
Ground return.  
DAP is the metal contact at the bottom side, located at the center of the WQFN package. It  
should be connected to the GND plane with multiple via to lower the ground impedance and  
improve the thermal performance of the package. Connected to the ground plane (GND) with  
at least 9 vias.  
GND  
DAP  
Ground  
4
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
5 Specifications  
5.1 Absolute Maximum Ratings  
(1) (2)  
MIN  
0.3  
0.3  
-0.3  
MAX  
2.5  
UNIT  
Supply Voltage – VDDA, VDDP, VDDL, VDDCSI (1.8V)  
Supply Voltage – VDDIO (1.8V I/O)  
Supply Voltage – VDDIO (3.3V I/O)  
LVCMOS I/O Voltage  
V
V
V
2.5  
4.0  
(VDDIO  
0.3)  
+
0.3  
0.3  
0.3  
V
V
Receiver Input Voltage  
CSI-2 Output Voltage  
(VDDA  
0.3)  
+
(VDDCSI  
0.3V)  
+
V
Junction Temperature  
150  
°C  
4L WQFN Package Maximum Power Dissipation Capacity at 25°C  
Storage temperature, Tstg  
65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under . Exposure to  
absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) For soldering specifications, see product folder at www.ti.com and SNOA549.  
5.2 ESD Ratings  
VALUE  
±8000  
UNIT  
(1)  
Human body model (HBM), per AEC Q100-002, all pins  
Charged device model (CDM), per AEC Q100-011, all pins  
Machine model (MM)  
±1000  
±250  
Air Discharge (RIN+, RIN-  
Contact Discharge (RIN+, RIN-  
Air Discharge (RIN+, RIN-  
Contact Discharge (RIN+, RIN-  
Air Discharge (RIN+, RIN-  
Contact Discharge (RIN+, RIN-  
)
±30000  
±10000  
±30000  
±10000  
±30000  
(IEC, powered-up only)  
RD = 330 Ω, CS = 150 pF  
Electrostatic  
discharge  
)
)
V(ESD)  
V
)
(ISO10605)  
RD = 330 Ω, CS = 150 pF  
(ISO10605)  
RD = 2 kΩ, CS = 150 pF or  
330 pF  
)
)
±10000  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
5.3 Recommended Operating Conditions  
MIN  
1.71  
1.71  
3.0  
NOM  
1.8  
MAX  
1.89  
1.89  
3.6  
UNIT  
Supply Voltage, VDDA, VDDP, VDDL, VDDCSI  
LVCMOS Supply Voltage VDDIO (1.8V I/O)  
LVCMOS Supply Voltage VDDIO (3.3V I/O)  
Operating Free Air Temperature (TA)  
PCLK Clock Frequency  
1.8  
V
3.3  
-40  
+25  
+105  
75  
°C  
10  
MHz  
Supply Noise  
VDDn (1.8V)  
25  
25  
50  
VDDIO (1.8V I/O)  
mVP-P  
VDDIO (3.3V I/O)  
Copyright © 2012–2015, Texas Instruments Incorporated  
5
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
(1) (2) (3)  
5.4 DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
3.3V I/O LVCMOS DC SPECIFICATIONS – VDDIO = 3.0 to 3.6V (BISTEN, LOCK, PASS, PDB, EQ[3:1], ID[1:0], CONFIG[1:0], GPIO)  
VIH  
VIL  
IIN  
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
VIN = 3.0V to 3.6V  
VIN = 3.0V to 3.6V  
VIN = 0V or VDDIO  
IOH = 2 mA  
2.2  
GND  
15  
2.4  
VDDIO  
0.8  
V
V
+15  
μA  
V
VOH  
VOL  
IOZ  
High Level Output Voltage  
Low Level Output Voltage  
TRI-STATE Output Current  
VDDIO  
0.4  
IOL = +2 mA  
GND  
15  
V
PDB = 0V  
+15  
uA  
1.8V I/O LVCMOS DC SPECIFICATIONS – VDDIO = 1.71 to 1.89V (BISTEN, LOCK, PASS, PDB, EQ[3:1], ID[1:0], CONFIG[1:0], GPIO)  
0.65*  
VIH  
High Level Input Voltage  
VIN = 1.71V to 1.89V  
VDDIO  
V
VDDIO  
GND  
15  
0.35*  
VDDIO  
VIL  
IIN  
Low Level Input Voltage  
Input Current  
VIN = 1.71V to 1.89V  
VIN = 0V or VDDIO  
IOH = 2 mA  
V
μA  
V
+15  
VDDIO  
0.45  
VOH  
High Level Output Voltage  
VDDIO  
VOL  
IOZ  
Low Level Output Voltage  
TRI-STATE® Output Current  
IOL = +2 mA  
PDB = 0V  
GND  
0.45  
+15  
V
15  
µA  
SUPPLY CURRENT  
IDD1  
Supply current  
Supply current drawn from  
1.8V rail (VDDL, VDDP, VDDA  
Checker Board Pattern  
VDDL, VDDP, VDDA  
= 1.89V  
f = 75 MHz  
(900 Mbps)  
)
88  
38  
95  
65  
mA  
mA  
VDDL, VDDP, VDDA  
= 1.89V  
f = 10 MHz  
(120 Mbps)  
IDDTX1  
Supply current drawn at  
VDDCSI  
Checker Board Pattern  
VDDCSI = 1.89V  
f = 75 MHz  
(900 Mbps)  
50  
22  
mA  
mA  
mA  
mA  
VDDCSI = 1.89V  
f = 10 MHz  
(120 Mbps)  
IDDIO1  
Supply current drawn at VDDIO VDDIO = 1.89V  
Checker Board Pattern  
f = 75 MHz  
(900 Mbps)  
10  
15  
VDDIO = 3.6V  
f = 75 MHz  
(900 Mbps)  
(1) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD, ΔVOD, VTH and VTL which are differential voltages.  
(2) Typical values represent most likely parametric norms at VDD = 3.3V, Ta = +25 degC, and at the Recommended Operation Conditions at  
the time of product characterization and are not ensured.  
(3) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
6
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
DC Electrical Characteristics (1) (2) (3) (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
Symbol  
IDDZ  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Supply Current at Power down  
mode  
Supply current drawn from  
VDDL, VDDP, VDDA  
= 1.89V  
1.8V rail (VDDL, VDDP, VDDA  
)
PDB = 0V  
5
mA  
(All other LVCMOS Inputs  
Low)  
IDDTXZ  
Supply current drawn at  
VDDCSI  
VDDCSI = 1.89V  
PDB = 0V  
5
mA  
(All other LVCMOS Inputs  
Low)  
IDDIOZ  
Supply current drawn at VDDIO VDDIO = 1.89V  
PDB = 0V  
3
3
mA  
mA  
(All other LVCMOS Inputs  
VDDIO = 3.6V  
Low)  
IDDUPLS  
Ultra Low Power State Current  
Supply current drawn from  
VDD = 1.89V  
VDDIO = 3.6V  
1.8V at (VDDL, VDDP, VDDA  
VDDCSI) and VDDIO  
PLL off, no change in all input  
signals  
,
20  
mA  
Register:  
0x19h = 0x03h  
0x01h = 0x02h  
FPD-LINK II RECEIVER DC SPECIFICATIONS (RIN±)  
Differential Input Threshold High  
Voltage  
VTH  
+50  
mV  
mV  
V
VCM = +1.2V (Internal VBIAS  
)
Differential Input Threshold Low  
Voltage  
VTL  
50  
Common Mode Voltage, Internal  
VBIAS  
VCM  
1.2  
IIN  
Input Current  
VIN = 0V or VDD  
Differential across RIN+ and RIN-  
15  
+15  
120  
µA  
RT  
Internal Termination Resistor  
80  
100  
CMLOUT± DRIVER OUTPUT DC SPECIFICATIONS (CMLOUT±)  
(4)  
VOD  
VOS  
RT  
Differential Output Voltage  
Offset Voltage Single-ended  
Internal Termination Resistor  
RL = 100Ω  
500  
1.3  
mV  
V
RL = 100Ω  
Differential across CMLOUT+ and CMLOUT-  
80  
100  
120  
250  
HSTX DRIVER DC SPECIFICATIONS (DATA0±, DATA1±, CLK±) Section 8.1.1 of MIPI D-PHY Specification  
HS transmit static common-mode  
VCMTX  
150  
200  
200  
mV  
voltage  
VCMTX mismatch when output is  
1 or 0 state  
|ΔVCMTX(1,0)  
|
5
mV  
mV  
mV  
|VOD  
|
HS transmit differential voltage  
140  
40  
270  
10  
VOD mismatch when output is 1  
or 0 state  
|ΔVOD  
|
VOHHS  
ZOS  
HS output high voltage  
360  
mV  
Single ended output impedance  
50  
62.5  
Ω
Mismatch in single ended output  
impedance  
ΔZOS  
10  
%
LPTX DRIVER DC SPECIFICATIONS (DATA0±, DATA1±, CLK±) Section 8.1.2 of MIPI D-PHY Specification  
(5)  
VOH  
VOL  
Output high level  
Output low level  
Output impedance  
See  
1.1  
50  
110  
1.2  
1.3  
50  
V
mV  
Ω
ZOLP  
(4) Voltage difference compared to the DC average common-mode potential.  
(5) Specification is ensured by characterization.  
Copyright © 2012–2015, Texas Instruments Incorporated  
7
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
5.5 AC Switching Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
FPD-LINK II RECEIVER (RIN±)  
(1)  
tIJT  
Input Jitter Tolerance, Figure 1  
EQ = OFF,  
PCLK = 65MHz  
jitter freq < 2MHz  
jitter freq > 6MHz  
0.9  
0.5  
10  
UI  
UI  
tDDLT  
Deserializer Lock Time, Figure 2  
PCLK = 75 MHz  
ms  
HSTX DRIVER AC SPECIFICATIONS (DATA0±, DATA1±, CLK±) Section 8.1.1 of MIPI D-PHY Specification  
HSTXDBR  
Data bit rate  
DATA0±  
DATA1±  
PCLK = 10-75MHz  
120  
60  
PCLK*12  
PCLK*6  
900  
450  
15  
Mbps  
MHz  
(2)  
fCLK  
DDR Clock frequency  
CLK±  
ΔVCMTX(HF)  
Common mode voltage variations  
HF  
Common-level variations above 450  
mVRMS  
(2)  
MHz  
ΔVCMTX(LF)  
Common mode voltage variations LF Common-level variations between  
25  
mVPEAK  
(2)  
50–450 MHz  
(3)  
tRHS  
Rise Time HS  
20% to 80% rise time  
20% to 80% rise time  
0.3  
UIINST  
ps  
150  
150  
(3)  
tFHS  
Fall Time HS  
0.3  
UIINST  
ps  
SDDTX  
TX differential return loss  
See Figure 33 of fLPMAX  
MIPI D-PHY  
–18  
–12  
–6  
dB  
fH  
dB  
(2)  
Specification  
fMAX  
dB  
SCCTX  
TX common mode return loss  
Section 7.7.2 of fLPMAX to fMAX  
MIPI D-PHY  
Specification  
–6  
dB  
(2)  
(4)  
LPTX DRIVER AC SPECIFICATIONS (DATA0±, DATA1±, CLK±)  
Section 8.1.2 of MIPI D-PHY Specification  
tRLP  
Rise Time  
LP 15% to 85% rise time  
Cload = 70pF lumped capacitance  
25  
ns  
tFLP  
Fall Time  
LP 15% to 85% fall time  
Cload = 70pF lumped capacitance  
25  
35  
ns  
ns  
(2)  
tREOT  
Post-EoT Rise and Fall Time  
30%-85% rise time and fall time  
tLP-PULSE-TX  
Pulse width of the LP exclusive-OR First LP exclusive-OR clock pulse  
clock  
after Stop state or last pulse before  
Stop state  
40  
ns  
(2)  
(2)  
All other pulses  
20  
90  
ns  
ns  
(2)  
tLP-PER-TX  
Period of the LP exclusive-OR clock See  
(1) UI is equivalent to one serialized data bit width (1UI = 1 / 28*PCLK). The UI scales with PCLK frequency.  
(2) Specification is ensured by design and is not tested in production.  
(3) Specification is ensured by characterization.  
(4) CLOAD includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be  
<10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2ns delay.  
8
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
AC Switching Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
Symbol  
σV/σtSR  
Parameter  
Conditions  
Min  
Typ  
Max  
500  
300  
250  
150  
Units  
mV/ns  
mV/ns  
mV/ns  
mV/ns  
(3) (4) (5)  
Slew rate  
Cload = 0pF  
Cload = 5pF  
Cload = 20pF  
Cload = 70pF  
(3) (4) (5)  
(3) (4) (5)  
(3) (4) (5)  
Cload = 0 to 70pF (Falling Edge Only)  
30  
30  
mV/ns  
mV/ns  
(3) (4) (5) (6)  
Cload = 0 to 70pF (Rising Edge Only)  
(3) (4) (5)  
Cload = 0 to 70pF (Rising Edge Only) 30 – 0.075  
(3) (4) (7) (8)  
*
mV/ns  
pF  
(VO,INST  
700)  
(4)  
CLOAD  
Load capacitance  
See  
0
70  
Data-Clock Timing Specifications (DATA0±, DATA1±, CLK±) Section 9.2.1 of MIPI D-PHY Specification  
(9)  
UIINST  
Instantaneous Unit Interval  
Figure 3  
PCLK = 10 – 75 MHz  
1/  
ns  
(PCLK*12)  
tSKEW(TX)  
Data to Clock Skew  
Figure 3  
Skew between Clock and data from  
ideal center  
0.5-0.15  
0.5  
0.5+0.15 UIINST  
(2)  
CSI-2 Timing Specifications (DATA0±, DATA1±, CLK±) (2) ( Figure 4, Figure 5) Section 5.9 of MIPI D-PHY Specification  
tCLK-POST  
HS exit  
60 +  
52*UIINST  
ns  
tCLK-PRE  
Time HS clock shall be driver prior  
to any associated Data Lane  
beginning the transition from LP to  
HS mode  
8
UIINST  
tCLK-PREPARE Clock Lane HS Entry  
38  
95  
95  
ns  
ns  
tCLK-SETTLE  
Time interval during which the HS  
receiver shall ignore any Clock Lane  
HS transitions  
300  
tCLK-TERM-EN  
tCLK-TRAIL  
Time-out at Clock Lane Display  
Module to enable HS Termination  
38  
ns  
ns  
Time that the transmitter drives the  
HS-0 state after the last payload  
clock bit of a HS transmission burst  
30  
tCLK-PREPARE TCLK-PREPARE + time that the  
+ tCLK-ZERO  
tD-TERM-EN  
tLPX  
transmitter drives the HS-0 state  
prior to starting the Clock  
300  
ns  
(10)  
Time for the Data Lane receiver to  
enable the HS line termination  
35 ns +  
4*UIINST  
ns  
ns  
ns  
Transmitted length of LP state  
Data Lane HS Entry  
50  
tHS-PREPARE  
40 +  
4*UIINST  
85 +  
6*UIINST  
tHS-PREPARE  
tHS-ZERO  
+
tHS-PREPARE + time that the  
transmitter drives the HS-0 state  
prior to transmitting the Sync  
sequence  
145 +  
10*UIINST  
ns  
ns  
tHS-SETTLE  
Interval HS receiver shall ignore any  
Data Lane HS transitions  
85 +  
6*UIINST  
145 +  
10*UIINST  
(5) Measured as average across any 50 mV segment of the output signal transition.  
(6) When the output voltage is between 400 mV and 930 mV.  
(7) Where VO,INST is the instantaneous output voltage, VDP or VDN, in millivolts.  
(8) When the output voltage is between 700 mV and 930 mV.  
(9) UIINST is equal to 1/(12*PCLK), where PCLK is the fundamental frequency for data transmission.  
(10) This parameter value can be lower then TLPX due to differences in rise vs. fall signal slopes and trip levels and mismatches between  
Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior as  
described in D-PHY ver 1.00.00.  
Copyright © 2012–2015, Texas Instruments Incorporated  
9
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
AC Switching Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
Symbol  
tHS-TRAIL  
Parameter  
Data Lane HS Exit  
Conditions  
Min  
Typ  
Max  
Units  
60 +  
4*UIINST  
ns  
tEOT  
Transmitted time interval from the  
start of tHS-TRAIL to the start of the  
LP-11 state following a HS burst  
105 +  
12*UIINST  
ns  
tHS-EXIT  
tWAKEUP  
Time that the transmitter drives LP-  
11 following a HS burst.  
100  
1
ns  
Recovery Time from Ultra Low  
Power State (ULPS)  
ms  
5.6 Recommended Timing for the Serial Control Bus (CCI/I2C)  
(1)  
Over supply and temperature ranges unless otherwise specified. ( Figure 7)  
Symbol  
fSCL  
Parameter  
Conditions  
Standard Mode  
Min  
>0  
Typ  
Max  
100  
400  
Units  
kHz  
kHz  
us  
SCL Clock Frequency  
Fast Mode  
>0  
tLOW  
SCL Low Period  
SCL High Period  
Standard Mode  
Fast Mode  
4.7  
1.3  
4.0  
0.6  
4.0  
0.6  
4.7  
0.6  
0
us  
tHIGH  
tHD;STA  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Standard Mode  
Fast Mode  
us  
us  
Hold time for a start or a  
repeated start condition  
Standard Mode  
Fast Mode  
us  
us  
Set Up time for a start or a  
repeated start condition  
Standard Mode  
Fast Mode  
us  
us  
Data Hold Time  
Standard Mode  
Fast Mode  
3.45  
0.9  
us  
0
us  
Data Set Up Time  
Standard Mode  
Fast Mode  
250  
100  
4.0  
0.6  
4.7  
1.3  
ns  
ns  
Set Up Time for STOP  
Condition  
Standard Mode  
Fast Mode  
us  
us  
Bus Free Time  
Between STOP and START  
Standard Mode  
Fast Mode  
us  
us  
tr  
SCL & SDA Rise Time  
SCL & SDA Fall Time  
Standard Mode  
Fast Mode  
1000  
300  
300  
300  
ns  
ns  
tf  
Standard Mode  
Fast mode  
ns  
ns  
(1) Recommended Input Timing Requirements are input specifications and not tested in production.  
10  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
5.7 DC and AC Serial Control Bus (CCI/I2C)  
Over supply and temperature ranges unless otherwise specified. ( Figure 7)  
Symbol  
VIH  
Parameter  
Input High Level  
Conditions  
Min  
Typ  
Max  
Units  
SDA and SCL  
SDA and SCL  
0.65*  
VDDIO  
VDDIO  
V
VIL  
Input Low Level Voltage  
Input Hysteresis  
0.35*  
VDDIO  
GND  
V
(1)  
VHY  
Fast mode, 3.3V I/O  
Fast mode, 1.8V I/O  
SDA, IOL = +1.5 mA  
0.05*  
VDDIO  
mV  
0.1*  
VDDIO  
mV  
V
VOL  
tR  
Output Low Level Voltage  
SDA RiseTime – READ  
0
0.4  
Total capacitance of one bus line,  
300  
ns  
Cb 400pF  
tF  
SDA Fall Time – READ  
Set Up Time – READ  
Standard mode  
Fast mode  
1000  
300  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
tSU;DAT  
Standard mode  
Fast mode  
250  
100  
0
tHD;DAT  
tSP  
Hold Up Time – READ  
Input Filter  
Fast mode  
50  
5
Cin  
Input Capacitance  
SDA and SCL  
(1) Specification is ensured by characterization.  
Ideal Data  
Bit End  
Sampling  
Window  
Ideal Data Bit  
Beginning  
V
TH  
0V  
RxIN_TOL  
Left  
RxIN_TOL  
Right  
V
TL  
Ideal Center Position (t /2)  
BIT  
t
(1 UI)  
BIT  
tIJT = RxIN_TOL (Left + Right)  
Sampling Window = 1 UI - t  
IJT  
Figure 1. Receiver Input Jitter Tolerance  
Copyright © 2012–2015, Texas Instruments Incorporated  
11  
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
PDB  
(3.3V I/O)  
2.2V  
0.8V  
RIN  
(Diff.)  
t
DDLT  
LOCK  
TRI-STATE  
TRI-STATE  
DATA0+/-  
DATA1+/-  
CLK+/-  
OFF  
IN LOCK TIME  
ACTIVE  
OFF  
Figure 2. Deserializer PLL Lock Time  
DATA1+  
DATA1-  
DATA0+  
DATA0-  
0.5UI +  
tskew  
CLK+  
CLK-  
1 UI  
Figure 3. Clock and Data Timing in HS Transmission  
Clock Lane  
Data Lane  
Dp/Dn  
T
T
T
HS-SYNC  
LPX  
HS-ZERO  
Disconnect  
Terminator  
THS-PREPARE  
VIH(min)  
VIL(max)  
T
REOT  
Capture  
1st Data Bit  
T
D-TERM-EN  
LP-01  
T
LP-11  
HS-SKIP  
LP-11  
LP-00  
T
EOT  
HS-TRAIL  
T
HS-SETTLE  
T
T
HS-EXIT  
Figure 4. High Speed Data Transmission Burst  
12  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
Disconnect  
Terminator  
Clock Lane  
Dp/Dn  
T
CLK-SETTLE  
T
T
EOT  
CLK-POST  
TCLK-TERM-EN  
T
CLK-MISS  
VIH(min)  
VIL(max)  
T
T
T
LPX  
T
T
CLK-PRE  
CLK-TRAIL  
HS-EXIT  
CLK-ZERO  
T
CLK-PREPARE  
Data Lane  
Dp/Dn  
T
HS-PREPARE  
Disconnect  
Terminator  
T
LPX  
VIH(min)  
VIL(max)  
T
HS-SKIP  
T
D-TERM-EN  
T
HS-SETTLE  
Figure 5. Switching the Clock Lane between Clock Transmission and Low-Power Mode  
VS  
(internal Node)  
Vertical Blanking  
1st  
Line  
2nd  
Line  
Last  
Line  
DE  
(internal Node)  
DATA1±  
or  
DATA0±  
1 to 216  
t
LPX  
Line  
Packet  
Line  
Packet  
Line  
Packet  
Line  
Packet  
FS  
FE  
FS  
LPS  
LPS  
LPS  
LPS  
LPS  
LPS  
LPS  
LPS  
Frame  
Sync  
Packet  
Line  
Packet  
Figure 6. Long Line Packets and Short Frame Sync Packets  
Copyright © 2012–2015, Texas Instruments Incorporated  
13  
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
SDA  
t
BUF  
t
t
LOW  
t
f
t
HD;STA  
r
t
t
SP  
t
f
r
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 7. Serial Control Bus Timing Diagram  
14  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
5.8 Typical Characteristics  
Time (50 ns/DIV)  
Time (50 ns/DIV)  
Figure 8. CSI-2 D0± End of Transmission  
Figure 9. CSI-2 D0± Start of Transmission  
Copyright © 2012–2015, Texas Instruments Incorporated  
15  
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
6 Detailed Description  
6.1 Overview  
The DS90UR910-Q1 recovers RBG data and sync signals from a FPD-Link II AC coupled serial bit stream, and  
converts the recovered data into packetized CSI-2 data format. The CSI-2 output serial interface greatly reduces  
the interconnect and signal count to a graphic processing unit and eases system designs for video streams from  
multiple automotive driver assist cameras.  
The DS90UR910-Q1 is based on the DS90UR906Q de-serializer core. Please refer to the DS90UR906Q  
datasheet for the functionality and performance of the FPD-Link II interface can be found in the DS90UR906Q  
datasheet.  
The DS90UR910-Q1 conforms to the MIPI CSI-2 and DPHY standards for protocol and electrical specifications.  
Compliant with standards:  
Conforms with MIPI Alliance Specification for D-PHY, version 1.00.00, dated May 14, 2009  
Compatible with MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) Version 1.01, dated Nov 9,  
2010  
The DS90UR910-Q1 receives 24-bit (or 18-bit) RGB data and 3 low speed control signals (VS, HS, DE) over a  
serial FPD-Link II transmitted through a single twisted pair. It supports a pixel clock of 10 MHz to 75 MHz,  
corresponding to the serial line rate of 280 Mb/s to 2100 Mb/s. The serial bit stream contains the scrambled 24-  
bit data, an embedded clock, encoded control signals and DC balance information which enhances signal quality  
and supports AC coupling.  
The DS90UR910-Q1 is compatible with FPD-Link II serializers such as DS90UR905Q, DS90UR241Q,  
DS90C241Q, DS90UR907Q, DS99R421Q and DS90UH/UB/92x FPD-Link III serializers in backward  
compatibility mode. The serial bit stream is illustrated in Figure 10. In each pixel clock cycle, a 28-bit frame is  
transmitted over the FPD-Link. The frame contains C1 and C0 representing the embedded clock information. C1  
is always high and C0 is always low. Payload bits b[23:0] contain the scrambled 24-bit RGB data. DCB is the DC  
balance bit and is used to minimize the DC offset on the signal line. DCA is used to validate the data integrity in  
the embedded data stream and contain the encoded control signals VS, HS and DE (DS90UR905Q,  
DS90UR907Q and DS90UH/UB/92x in backward compatible mode).  
b
1
0
b
1
1
D
C
A
b
0
b
1
b
2
b
3
b
5
b
9
C
1
b
4
b
6
b
7
b
8
D
C
B
b
1
2
b
1
3
b
1
4
b
1
5
b
1
6
b
1
7
b
1
8
b
1
9
b
2
0
b
2
1
b
2
2
b
2
3
C
0
Figure 10. FPD-Link II Serial Stream  
The DS90UR910-Q1 supports compatibility to FPD-Link II serializers and FPD-Link III serializers in backward  
compatible mode as defined in Table 1.  
Table 1. DS90UR910-Q1 Configuration Modes  
CON  
FIG1  
CON  
FIG0  
Mode  
FPD-Link II Compatibility  
CSI-2 Data  
Format  
0
0
Normal Mode, Control Signal Filter disabled  
DS90UR905Q 24-bit  
RGB888  
DS90UR907Q 24-bit  
DS90UH/UB/92x Serializers 24-bit  
0
1
Normal Mode, Control Signal Filter enabled  
DS90UR905Q 24-bit  
RGB888  
DS90UR907Q 24-bit  
DS90UH/UB/92x Serializers 24-bit  
1
1
0
1
Backwards Compatible GEN2  
Backwards Compatible GEN1  
DS90UR241Q 18-bit  
DS99R421Q 18-bit  
RGB888  
RGB888  
DS90C241Q 18-bit  
16  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
 
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
6.2 Functional Block Diagram  
CMF  
DATA1+  
D-PHY  
Lane  
Module  
50W  
50W  
DATA1-  
RIN+  
RIN-  
DATA0+  
DATA0-  
D-PHY  
Lane  
Module  
EQ[3:1]  
CLK+  
CLK-  
D-PHY  
Lane  
Module  
Error  
Detector  
CONFIG[1:0]  
PDB  
PHY  
Timing and Control  
Timing  
and  
Control  
SCL  
SCA  
Clock/Data  
Recovery  
ID[1:0]  
Copyright © 2012–2015, Texas Instruments Incorporated  
17  
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
6.3 Feature Description  
6.3.1 Input Receive Equalization  
The input equalizer of the DS90UR910-Q1 is designed to compensate the attenuation distortion results from  
cable of different length or wire gauge. The equalizer gain setting is controlled by the control pins EQ[3:1] or  
through register programming. Users can optimize the equalizer’s gain setting along with the de-emphasis level  
of the DS90UR905Q/907Q to achieve the optimum jitter performance.  
Note this function cannot be seen at the RIN+/- input but can be observed at the serial test port (CMLOUT+/-)  
enabled via the Serial Bus control registers. The equalization feature may be controlled by the external pin or by  
register.  
Table 2. Receiver Equalization Configuration  
INPUTS EQ[3:1]  
EQ Boost  
EQ3  
0
EQ2  
0
EQ1  
1
~3 dB  
~4.5 dB  
~6 dB  
0
1
0
0
1
1
1
0
0
~7.5 dB  
~9 dB  
1
0
1
1
1
0
~10.5 dB  
~12 dB  
1
1
1
(1)  
0
0
0
See  
(1) Default Setting is EQ = Off  
6.3.2 CSI-2 Interface  
The DS90UR910-Q1 (in default mode) takes the RGB data bits R[7:0], G[7:0] and B[7:0] defined in the 24-bit  
serializer pinout and directly maps to the RGB888 color space in the data frame. The DS90UR910-Q1 follows the  
General Frame Format as described in Figure 49 of the CSI-2 standard (repeated here in Figure 11). Upon the  
end of the vertical sync pulse (VS), the DS90UR910-Q1 generates the Frame End and Frame Start  
synchronization packets within the vertical blanking period. The timing of the Frame Start will not reflect the  
timing of the VS signal.  
Upon the rising edge of the DE signal, each active line is output in a long data packet with the RGB888 data  
format. At the end of each packet, the data lanes DATA0± and DATA1± return to the LP-11 state, while the clock  
lane CLK± continue outputting the high speed clock.  
18  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
Frame Blanking  
FS  
Line Blanking  
Line Data  
FE  
Frame Blanking  
(1 to N) t  
LPX  
FS  
Line Blanking  
Line Data  
FE  
Frame Blanking  
Figure 11. General Frame Format  
6.3.3 High Speed Clock and Data  
The high speed clock and data outputs are source synchronous interface. The half rate clock at CLK± is derived  
from the pixel clock sourced by the clock/data recovery circuit of the DS90UR910-Q1. The clock frequency is 6  
times the Pixel clock frequency. The 24-bit recovered RGB data is serialized and output at the 2 high speed data  
lanes DATA0± and DATA1± in according to the CSI-2 protocol. The data rate of each lane is 12 times the Pixel  
clock. As an example, at a pixel clock of 75 MHz, the CLK± runs at 450 MHz, and the data lanes run at 900  
Mb/s.  
The half-rate clock maintains a quadrature phase relationship to the data signals and allows receiver to sample  
data at the rising and falling edges of the clock. Figure 3 shows the timing relationship of the clock and data  
lines. The DS90UR910-Q1 supports continuous high speed clock.  
High speed data are sent out at DATA0± and DATA1± in bursts. In between data bursts, the data lanes return to  
Low Power States in according to protocol defined in D-PHY standard. The rising edge of the differential clock  
(CLK+ – CLK-) is sent during the first payload bit of a transmission burst in the data lanes.  
The DS90UR910-Q1 recovers the data bits R[7:0], G[7:0], B[7:0], VS, HS and DE from the serial FPD-Link II bit  
stream at RIN±. During the vertical blanking period (VS goes low), it sends the short Frame End packet, followed  
by a short Frame Start packet. User can program the time between Frame End to Frame Start packets from 0 to  
(216-1) in units of 8*pclk_period/3.  
6.3.4 Non-continuous/Continuous Clock  
DS90UR910-Q1 D-PHY supports Continuous clock mode and Non-Continuous clock mode. Default mode is  
Non-Continuous Clock mode, where the Clock Lane enters in LP mode between the transmissions of data  
packets. Non-continuous clock mode will only be non-continuous during the vertical blanking period for lower  
PCLK rates. For higher PCLK rates, the clock will be non-continuous between line and frame packets. Operating  
modes are configurable through CCI.  
Copyright © 2012–2015, Texas Instruments Incorporated  
19  
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
Clock lane enters LP11 during horizontal blanking if the horizontal blanking period is longer than the overhead  
time to start/stop the clock lane. There is auto-detection of the length of the horizontal blank period. The  
threshold is 70 PCLK cycles. Register bit available to disable off the non-continuous clock mode  
6.3.5 Data Frame RGB Mapping  
Table 3 shows the pixel data R[7:0], G[7:0 and B[7:0] defined in DS90UR905Q/907Q and DS90UH/UB/92x  
Serializers pinout, which are recovered by the DS90UR910-Q1 and output in RGB888 format (data type 0x24) at  
the CSI-2 interface.  
Table 3. CSI-2 RGB888 Data Format with FPD-Link II Serializer (24-bit mode)  
FPD-Link II (24-bit)  
pin name  
RGB888 Data bits  
R[0]  
R[1]  
R[2]  
R[3]  
R[4]  
R[5]  
R[6]  
R[7]  
G[0]  
G[1]  
G[2]  
G[3]  
G[4]  
G[5]  
G[6]  
G[7]  
B[0]  
B[1]  
B[2]  
B[3]  
B[4]  
B[5]  
B[6]  
B[7]  
HS  
R[0]  
R[1]  
R[2]  
R[3]  
R[4]  
R[5]  
R[6]  
R[7]  
G[0]  
G[1]  
G[2]  
G[3]  
G[4]  
G[5]  
G[6]  
G[7]  
B[0]  
B[1]  
B[2]  
B[3]  
B[4]  
B[5]  
B[6]  
B[7]  
VS  
DE  
DE  
LANE1  
DATA0±  
CRC_byte0  
Gn  
. . .  
SoT  
SoT  
ID  
WC_byte1  
B1  
G1  
R1  
B2  
G2  
R2  
Rn-1  
EoT  
EoT  
LPS  
LPS  
LPS  
LPS  
LANE2  
DATA1±  
CRC_byte1  
WC_byte0  
ECC  
. . .  
Bn  
Rn  
Figure 12. DATA0± and DATA1± packet format in according to CSI-2 protocol for RGB888  
20  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
Table 4. CSI-2 Data Format with FPD-Link II Serializers (18-bit mode)  
FPD-Link II (18-bit)  
RGB Data bits  
CSI-2 RGB888  
Data bits  
pin name  
R[0]  
R[1]  
R[2]  
R[3]  
R[4]  
R[5]  
R[6]  
R[7]  
G[0]  
G[1]  
G[2]  
G[3]  
G[4]  
G[5]  
G[6]  
G[7]  
B[0]  
B[1]  
B[2]  
B[3]  
B[4]  
B[5]  
B[6]  
B[7]  
DIN[0]  
DIN[1]  
DIN[2]  
DIN[3]  
DIN[4]  
DIN[5]  
R[0]  
R[1]  
R[2]  
R[3]  
R[4]  
R[5]  
DIN[6]  
DIN[7]  
DIN[8]  
DIN[9]  
DIN[10]  
DIN[11]  
G[0]  
G[1]  
G[2]  
G[3]  
G[4]  
G[5]  
DIN[12]  
DIN[13]  
DIN[14]  
DIN[15]  
DIN[16]  
DIN[17]  
DIN[18]  
DIN[19]  
DIN[20]  
B[0]  
B[1]  
B[2]  
B[3]  
B[4]  
B[5]  
HS  
VS  
DE  
6.3.6 Serial Control Bus (CCI/I2C)  
The DS90UR910-Q1 can be configured by the use of the I2C or CCI (Camera Control Interface) as defined by  
MIPI, which is a bi-directional, half-duplex, serial control bus consists of SDA and SCL. The SDA is the bi-  
directional data line. The SCL is the serial clock line. Both SCL and SDA are driven by open drain drivers and  
required external pull-up resistors to VDDIO. The signals are either driven low or pulled high.  
The DS90UR910-Q1 is a CCI slave. ID[1:0] pins select one of the four CCI slave addresses (see Table 5).  
Table 5. CCI/I2C Slave Address  
ID[1]  
ID[0]  
7-bit slave address  
011 1100 (0x3C’h)  
011 1101 (0x3D’h)  
011 0110 (0x36’h)  
011 0111 (0x37’h)  
8-bit slave address (0 appended WRITE)  
0111 1000 (0x78’h)  
0
0
1
1
0
1
0
1
0111 1010 (0x7A’h)  
0110 1100 (0x6C’h)  
0110 1110 (0x6E’h)  
Copyright © 2012–2015, Texas Instruments Incorporated  
21  
 
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
The Serial Bus protocol is initiated by START or START-REPEATED, and terminated by STOP condition. A  
START occurs when SDA transitions low while SCL is high. A STOP occurs when SDA transitions high when  
SCL is high. See Figure 13.  
SDA  
SCL  
S
P
START condition, or  
STOP condition  
START repeat condition  
Figure 13. START and STOP Conditions  
To communicate with a remote device, the host controller (master) sends the 7-bit slave address followed by a  
write-bit (0), and listens for a response from the slave. This response is referred to as an acknowledge bit. If the  
slave on the bus is addressed correctly, it acknowledges the master by driving the SDA low (ACK). If the address  
does not match a device’s slave address, it negative acknowledges the master by letting SDA be pulled high  
(NACK). In a write operation from master to slave, the master sends the 8-bit index address of the register that it  
wants to access. After the slave ACKs, the master sends the 8-bit data byte. The slave ACKs after each data  
byte is successfully received and is ready to receive another byte into the next sequential index location. At the  
end of the data transfer, the master ends the transaction with a STOP condition.  
In a read operation, the master first sends the 8-bit index address of the register that it wants to access. After  
receiving an ACK from the slave, it initiates a START-REPEAT condition, sends the 7-bit slave address followed  
by the read-bit (1). The slave ACKs and sends out the 8-bit data byte. The master acknowledges an ACK when  
another data byte will be sent to the next sequential index address. The master acknowledges an NACK when  
no more data byte will be sent, and ends the transaction with a STOP condition.  
The CCI interface of the DS90UR910-Q1 supports Standard mode (<100KHz) or Fast mode (<400KHz) with 8-bit  
index addressing and 8-bit data transfer. It supports the following read/write operations between the  
DS90UR910-Q1 and the CCI master:  
Single read from random location  
Single read from current location  
Sequential read starting from a random location  
Sequential read starting from the current location  
Single write to a random location  
Sequential write starting from a random location  
22  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
Single Read from random location  
SLAVE  
ADDRESS  
SUB  
ADDRESS  
SLAVE  
ADDRESS  
S
r
S
0 A  
A
1 A  
DATA  
A P  
Single Read from the current location  
SLAVE  
ADDRESS  
S
1 A  
DATA  
A P  
Sequential Read from a random location  
SLAVE  
ADDRESS  
SUB  
ADDRESS  
SLAVE  
ADDRESS  
S
r
S
0 A  
A
1 A  
DATA  
A
DATA  
A P  
Sequential Read from current location  
SLAVE  
ADDRESS  
S
1 A  
DATA  
A
DATA  
DATA  
A
DATA  
A P  
Single Write from random location  
SLAVE  
ADDRESS  
SUB  
ADDRESS  
A/  
A
S
0 A  
A
A
P
Sequential Write  
SLAVE  
ADDRESS  
SUB  
ADDRESS  
A/  
P
S
0 A  
DATA  
A
DATA  
A
Figure 14. I2C/CCI Read/Write Operations  
6.3.7 Ultra Low Power State  
DS90UR910-Q1 D-PHY Lanes will enter ULPS mode upon software standby mode through CCI generated by  
Application Processor. When ULPS is entered, all lanes including the clock and data lanes are put in ULPS  
according to the MIPI D-PHY protocol. D-PHY can reduce power consumption by entering ULPS mode.  
Ultra-Low Power State Entry Command is sent after an Escape mode Entry command through CCI, and then  
Lane shall enter the Ultra-Low Power State (ULPS). When ULPS is entered, all lanes including the clock and  
data lanes are put in ULPS according to the MIPI DPHY protocol. Typically an ULPS entry command is used but  
other sequences can be used also. Ultra-Low Power State is exited by means of a Mark-1 state with a length  
TWAKEUP followed by a Stop state. Reference: [1] D-PHY Specification, Section 5.6.3, Line 895  
Frame  
End  
Stop  
(LP11)  
Escape  
Mode  
ULPS  
(LP00)  
Mark-1  
(LP10)  
Stop  
(LP11)  
Ultra-Low-Power-State Entry Command 00011110  
Clock Lane  
Dp/Dn  
Data Lane  
Dp/Dn  
t
t
INIT  
WAKEUP  
t
LPX  
Figure 15. Ultra-Low Power State  
Copyright © 2012–2015, Texas Instruments Incorporated  
23  
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
6.3.8 Display Timing Requirements  
Table 6 shows the supported display resolutions for the DS90UR910-Q1. The display timings assume an  
estimated overall blanking rate of 1.2. The DS90UR910-Q1 will automatically detect the incoming data rate by  
from the frame rate (by measuring VS). This timing is then mapped into a look up table. The lookup table is used  
for any pixel rate from PCLK of 10 MHz to 65 MHz. The limitation that it assumes the frame rate is 60fps and  
30fps. An override option will be available to set each of the parameter individually for a data rate that is not  
listed in the table. Option is programmed through CCI. Operation of frequencies above 65 MHz require additional  
I2C/CCI programming of CSI_TIMING registers.  
Table 6. DS90UR910-Q1 Supported Resolution and Refresh Rates with Expected Blanking Period  
Resolution  
Hactive  
(pixels)  
Hblank  
(pixels)  
Htotal  
(pixels)  
Vactive  
(lines)  
Vblank  
(lines)  
Vtotal  
(lines)  
Frame size  
(pixels)  
Refresh  
(Hz)  
PClk (MHz)  
400x240  
640x240  
800x480  
1280x480  
640x480  
800x600  
960x160  
640x160  
400  
640  
800  
1280  
640  
800  
960  
640  
40  
40  
440  
680  
240  
240  
480  
480  
480  
600  
160  
160  
5
5
245  
245  
485  
485  
509  
628  
165  
165  
107800  
166600  
407400  
640200  
399056  
663168  
165000  
112200  
60  
60  
60  
60  
60  
60  
60  
60  
6.468  
9.996  
40  
840  
5
24.444  
38.412  
23.94336  
39.79008  
9.9  
40  
1320  
784  
5
144  
256  
40  
29  
28  
5
1056  
1000  
680  
40  
5
6.732  
480x240  
800x480  
1280x480  
960x540  
1440x540  
1000x600  
480  
800  
96  
576  
960  
240  
480  
480  
540  
540  
600  
24  
48  
48  
54  
54  
60  
264  
528  
528  
594  
594  
660  
152064  
506880  
811008  
684288  
1026432  
792000  
60  
60  
60  
60  
60  
60  
9.12384  
30.4128  
48.66048  
41.05728  
61.58592  
47.52  
160  
256  
192  
288  
200  
1280  
960  
1536  
1152  
1728  
1200  
1440  
1000  
640x480  
800x600  
1024x768  
1440x550  
640  
800  
160  
256  
320  
144  
800  
480  
600  
768  
550  
45  
28  
38  
55  
525  
628  
806  
605  
420000  
663168  
1083264  
958320  
60  
60  
60  
60  
25.2  
1056  
1344  
1584  
39.79008  
64.99584  
57.4992  
1024  
1440  
800x480  
800x480  
800  
800  
256  
256  
52  
1056  
1056  
1076  
1076  
1124  
1124  
1594  
1594  
480  
480  
480  
480  
480  
480  
550  
550  
45  
45  
24  
24  
48  
48  
55  
55  
525  
525  
504  
504  
528  
528  
605  
605  
554400  
554400  
542304  
542304  
593472  
593472  
964370  
964370  
60  
30  
60  
30  
60  
30  
60  
30  
33.264  
16.632  
1024x480  
1024x480  
1024x480  
1024x480  
1440x550  
1440x550  
1024  
1024  
1024  
1024  
1440  
1440  
32.53824  
16.26912  
35.60832  
17.80416  
57.8622  
28.9311  
52  
100  
100  
154  
154  
24  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
6.4 Register Maps  
Table 7. Serial Bus Control Registers  
ADD  
Register Name  
Bit(s)  
R/W  
Default  
Field  
Description  
(hex)  
0x00  
I2C_SLAVE_ID  
7:1  
0
R/W  
R/W  
0x30  
0
DEVID  
I2C slave ID  
DEVID_EN  
0: Address from ID[X] Pin  
1: Address from Register  
0x01  
CONFIG1  
7
R/W  
0
LFMODE  
If pin over write bit is one,  
controls the LF Mode. Debug  
only  
6
5
R
0
0
Reserved  
SLEW  
Reserved  
R/W  
Control slew rate of LOCK,  
PASS and GPIO  
0: Normal slew  
1: Increased Slew  
4
R
0
0
Reserved  
MODE  
Reserved  
3:2  
R/W  
00: Normal Mode, Control  
Signal Filter Disabled  
01: Normal Mode, Control  
Signal Filter Enabled  
10: Backwards Compatible  
(GEN2)  
11: Backwards Compatible  
(GEN1)  
(See Table 1)  
1
0
R/W  
R/W  
0
0
SLEEP  
Note – not the same function  
as PowerDown (PDB pin)  
0: Normal mode  
1: Sleep Mode – Register  
settings retained.  
USEREG  
0: Configurations set from  
control pins / STRAP pins  
1: Override EQ and CONFIG  
strapped control inputs with  
register settings  
0x02  
CONFIG2  
7:6  
5:4  
R
0
Reserved  
OMAP  
Reserved  
R/W  
00  
6 bits to 8 bits color mapping  
00: bit 4, 5 repeated on LSB  
01: LSB zero if all data is zero  
10: LSB zero  
11: LSB zero  
3
R
0
Reserved  
Reserved  
EQ  
Reserved  
Reserved  
2:0  
7:4  
R/W  
R/W  
3'b100  
000  
0x03  
0x04  
EQ Control  
Override EQ pin input if  
USEREG bit set  
3:0  
7
R
0
0
Reserved  
CMLOUT  
Reserved  
CMLOUT Config  
R/W  
Loop through enable  
0: Output CMLOUT+/- =  
disabled  
1: Output CMLOUT+/- =  
enabled  
6:0  
R/W  
R/W  
0
0
VOD  
VOD control  
000000: min VOD  
000001:  
000011:  
000111:  
001111:  
011111:  
111111: max VOD  
0x05->  
0x10  
NA  
7:0  
Reserved  
Reserved  
Copyright © 2012–2015, Texas Instruments Incorporated  
25  
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 7. Serial Bus Control Registers (continued)  
ADD  
(hex)  
Register Name  
Bit(s)  
R/W  
R/W  
R/W  
Default  
Field  
Description  
0x11  
CSI config  
7
6
0
0
CCI_INV_VS  
CCI_CONT_CLOCK  
0: VS is active low pulse  
1: VS is active high pulse  
0: CSI-2 non-continuous clock  
1: CSI-2 continuous clock  
5:2  
1
R/W  
R/W  
0
0
Reserved  
Reserved  
CCI_EXTERNAL_TIMING  
0: Use computed DPHY timing  
based on frame length  
1: Use manual override values  
for DPHY timing  
0
R/W  
R/W  
0
0
CCI_INV_DE  
0: DE is active low pulse  
1: DE is active high pulse  
0x12  
0x13  
0x14  
CSI_FRM_GAP_0  
CSI_FRM_GAP_1  
CSI_TIMING0  
7:0  
CSI_FRM_GAP_0  
Defined the delay between the  
start frame and end frame  
packet (lower byte)  
7:0  
R/W  
0
CSI_FRM_GAP_1  
Defined the delay between the  
start frame and end frame  
packet (upper byte)  
7:5  
4:0  
0
0
Reserved  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
TCLK_PREPARE  
Defines the Tclk_prepare  
parameter if  
CCI_EXTERNAL_TIMING is  
set  
0x15  
0x16  
0x17  
CSI_TIMING1  
CSI_TIMING2  
CSI_TIMING3  
7:3  
2:0  
7:4  
3:0  
0
0
0
0
TCLK_ZERO  
TCLK_TRAIL  
TCLK_POST  
THS_ZERO  
Defines the Tclk_zero  
parameter if  
CCI_EXTERNAL_TIMING is  
set  
Defines the Tclk_trail  
parameter if  
CCI_EXTERNAL_TIMING is  
set  
Defines the Tclk_post  
parameter if  
CCI_EXTERNAL_TIMING is  
set  
Defines the Ths_zero  
parameter if  
CCI_EXTERNAL_TIMING is  
set  
7
R/W  
R/W  
0
0
Reserved  
Reserved  
6:4  
THS_TRAIL  
Defines the Ths_trail  
parameter if  
CCI_EXTERNAL_TIMING is  
set  
3:0  
7:3  
2:0  
R/W  
R/W  
R/W  
0
0
0
THS_EXIT  
THS_PREPARE  
TLPX  
Defines the Ths_exit  
parameter if  
CCI_EXTERNAL_TIMING is  
set  
0x18  
CSI_TIMING4  
Defines the Ths_prepare  
parameter if  
CCI_EXTERNAL_TIMING is  
set  
Defines the Ths_exit  
parameter if  
CCI_EXTERNAL_TIMING is  
set  
26  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
Register Maps (continued)  
Table 7. Serial Bus Control Registers (continued)  
ADD  
Register Name  
Bit(s)  
R/W  
Default  
Field  
Description  
(hex)  
0x19  
CSI_ULPS  
7:3  
1
R/W  
R/W  
0
0
Reserved  
Reserved  
ULPS_MODE  
0: In ULPS mode, data lane off  
1: In ULPS mode, data lane  
off, clock lane off, x6 PLL off  
0
R/W  
0
ULPS_EN  
0: Disable UPLS mode  
1: Enable ULPS mode  
0x1A  
0x1B  
NA  
7:0  
7
R/W  
R/W  
R/W  
0
0
Reserved  
Reserved  
Reserved  
CSI_UNH1  
Reserved  
6:5  
0x1  
ACT_VERT_MSB  
MSBs of active vertical UNH  
image  
4:3  
R/W  
0x2  
TOT_VERT_MSB  
MSBs of total vertical UNH  
image  
2:1  
0
R/W  
R/W  
0
0
Reserved  
PATGEN  
Reserved  
0: Normal mode  
1: Enable pattern generator  
mode  
0x1C  
0x1D  
0x1E  
CSI_UNH2  
CSI_UNH3  
CSI_UNH4  
7:0  
7:0  
R/W  
R/W  
0x0F  
0xDF  
TOT_VERT_LSB  
ACT_VERT_LSB  
LSBs of total vertical UNH  
image  
LSBs of active vertical UNH  
image  
7:6  
5:3  
R/W  
R/W  
0
Reserved  
Reserved  
0x4  
ACT_HORIZ_MSB  
MSBs of active horizontal UNH  
image  
2:0  
7:0  
7:0  
R/W  
R/W  
R/W  
0x5  
TOT_HORIZ_MSB  
ACT_HORIZ_LSB  
TOT_HORIZ_LSB  
MSBs of total horizontal UNH  
image  
0x1F  
0x20  
CSI_UNH5  
CSI_UNH6  
0xFF  
0xFF  
LSBs of active horizontal UNH  
image  
LSBs of total horizontal UNH  
image  
0x21  
0x22  
0x23  
CSI_UNH7  
CSI_UNH8  
CSI_UNH9  
7:0  
7:0  
7:0  
R/W  
R/W  
R/W  
0x09  
0x09  
0x09  
PORCH_VERT  
SYNC_VERT  
Vertical porch size UNH image  
Vertical sync size UNH image  
PORCH_HORIZ  
Horizontal porch size UNH  
image  
0x24->  
0x2F  
NA  
7:0  
R/W  
0
Reserved  
Reserved  
0x30  
0x31  
0x32  
0x33  
0x33  
0x35  
0x36  
CSI_ID0  
CSI_ID1  
CSI_ID2  
CSI_ID3  
CSI_ID4  
CSI_ID5  
CSI_REVID  
NA  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
R
R
R
R
R
R
R
R
0x5F  
0x55  
0x52  
0x39  
0x31  
0x30  
0x01  
0
CID0  
Chip ID, character "_"  
Chip ID, character "U"  
Chip ID, character "R"  
Chip ID, character "9"  
Chip ID, character "1"  
Chip ID, character "0"  
Revision ID of the design  
Reserved  
CID1  
CID2  
CID3  
CID4  
CID5  
CID5  
0x37->  
0x3A  
Reserved  
0x3B  
REVID  
NA  
7:0  
7:0  
R
R
0x01  
0
REVID  
Revision ID of the design  
Reserved  
0x3C->  
0x3F  
Reserved  
0x40->  
0xFF  
Address range 0x00 to 0x3F  
aliases into the full address  
space.  
Copyright © 2012–2015, Texas Instruments Incorporated  
27  
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
7 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
7.1 Typical Application Connection  
Figure 16 shows a typical application of the DS90UR910-Q1 in Pin control mode for a 24-bit Color Display  
Application. The LVDS signals require 100 nF AC coupling capacitors to the line. The line driver includes internal  
termination. Bypass capacitors are placed near the power supply pins. At a minimum, four 0.1 µF capacitors and  
a 4.7 µF capacitor should be used for local device bypassing. System GPO (General Purpose Output) signals  
control the PDB and BISTEN pins. The interface to the host is with 1.8 V LVCMOS levels, thus the VDDIO pin is  
connected also to the 1.8V rail. The Optional I2C/CCI is connected to the Host bus in this example, thus the SCL  
and SDA pins are using pull-up resistors R to VDDIO. A delay cap is placed on the PDB signal to delay the  
enabling of the device until power is stable.  
1.8V  
3.3V  
1.8V  
FB1  
2.2 µF  
ceramic  
0.1 µF  
0.1 µF  
0.1 µF  
FB1, FB2:  
1 kΩ @100 MHz  
DC R < 1Ω  
FB2  
VDDCSI VDDL  
0.1 µF  
VDDA  
VDDP  
VDDIO  
2.2 µF  
ceramic  
0.1 µF  
4.7 µF  
ceramic  
Data1+  
Data1-  
0.1 µF  
Data0+  
Data0-  
RIN+  
CMF  
RIN-  
GPU  
From FPD-Link II  
Serializer  
CLK+  
CLK-  
100Ω STP  
0.1 µF  
4.7 µF  
ceramic  
VDDIO  
DS90UR910-Q1  
R
R
SCL  
SDA  
CMLOUT+  
100W (1%)  
CMLOUT-  
CONFIG[1:0]  
EQ[3:1]  
Strap  
High or Low  
LOCK  
Optional  
Control pins  
BISTEN  
PASS  
ID[1:0]  
RES  
GND  
DAP  
VDDIO  
10 kW  
PDB  
10 µF  
Figure 16. DS90UR910-Q1 Typical Connection Diagram — Pin Control  
7.2 Design Requirements  
For the typical design application, use the following as input parameters.  
28  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
Design Requirements (continued)  
Table 8. Design Parameters  
Design Parameter  
VDDIO  
Example Value  
1.8V or 3.3V  
1.8V  
VDDL, VDDA, VDDP, VDDCSI  
AC Coupling Capacitor for RIN0± and RIN1±  
100nF  
The SER/DES supports only AC-coupled interconnects through an integrated DC-balanced decoding scheme.  
External AC coupling capacitors must be placed in series in the FPD-Link II signal path as illustrated in  
Figure 17.  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
Figure 17. AC-Coupled Connection  
For high-speed FPD–Link II transmissions, the smallest available package should be used for the AC coupling  
capacitor. This will help minimize degradation of signal quality due to package parasitics. The I/O’s require 100nF  
AC coupling capacitors to the line.  
7.3 Application Performance Plots  
The plot below corresponds to 49MHz PCLK UNH pattern.  
Time (250 ps/DIV)  
Figure 18. Loop-through CML Output at 1.372 Gbps Serial Line Rate  
Copyright © 2012–2015, Texas Instruments Incorporated  
29  
 
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
8 Power Supply Recommendations  
8.1 Power Up Requirements and PDB Pin  
The VDD (VDDn and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. If slower then 1.5 ms  
then a capacitor on the PDB pin is needed to ensure PDB arrives after all the VDD have settled to the  
recommended operating voltage. When PDB pin is pulled to VDDIO, it is recommended to use a 10 kΩ pull-up and  
a >10 uF cap to GND to delay the PDB input signal.  
9 Layout  
9.1 Layout Guidelines  
9.1.1 Transmission Media  
The Ser/Des chipset is intended to be used in a point-to-point configuration, through a PCB trace, or through  
twisted pair cable. The Ser and Des provide internal terminations providing a clean signaling environment. The  
interconnect for LVDS should present a differential impedance of 100 Ohms. Use cables and connectors that  
have matched differential impedance to minimize impedance discontinuities. Shielded or un-shielded cables may  
be used depending upon the noise environment and application requirements.  
9.1.2 PCB Layout and Power System Considerations  
Circuit board layout and stack-up for the LVDS Ser/Des devices should be designed to provide low-noise power  
feed to the device. Good layout practice will also separate high frequency or high-level inputs and outputs to  
minimize unwanted stray noise pickup, feedback and interference. Power system performance may be greatly  
improved by using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane  
capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at  
high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01 uF to 0.1 uF. Tantalum capacitors may be in the 2.2 uF to 10 uF range. Voltage rating of the  
tantalum capacitors should be at least 5X the power supply voltage being used.  
Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per  
supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 50uF to 100uF range and will smooth low frequency switching noise. It is  
recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external  
bypass capacitor will increase the inductance of the path.  
A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size  
reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of  
these external bypass capacitors, usually in the range of 20-30 MHz. To provide effective bypassing, multiple  
capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At  
high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing  
the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different circuit sections. Separate PCB planes are typically not required. Pin  
Description tables typically provide guidance on which circuit blocks are connected to which power pin pairs. In  
some cases, an external filter many be used to provide clean power to sensitive circuits such as PLLs.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the LVDS  
lines to prevent coupling from the LVCMOS lines to the LVDS lines. Closely-coupled differential lines of 100  
Ohms are typically recommended for LVDS interconnect. The closely coupled lines help to ensure that coupled  
noise will appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also  
radiate less.  
Information on the WQFN style package is provided in Application Note: AN-1187 / SNOA401.  
30  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
Layout Guidelines (continued)  
9.1.3 CSI-2 Guidelines  
1. CSI0_D*P/N and CSI1_D*P/N pairs should be routed with controlled 100-Ohm differential impedance (±  
20%) or 50-Ohm single-ended impedance (±15%)  
2. Keep away from other high speed signals  
3. Keep length difference between a differential pair to 5 mils max  
4. Length matching should be near the location of mismatch.  
5. Match trace lengths between pairs to be < 25 mils.  
6. Each pair should be separated at least by 3 times the signal trace width  
7. The use of bends in differential traces should be kept to a minimum. When bends are used, the number of  
left and right bends should be as equal as possible and the angle of the bend should be 135 degrees. This  
arrangement minimizes any length mismatch caused by the bends and therefore minimizes the impact that  
bends have on EMI.  
8. Route all differential pairs on the same layer  
9. The number of VIAS should be kept to a minimum. It is recommended to keep the VIA count to 2 or less  
10. Keep traces on layers adjacent to ground plane  
11. Do NOT route differential pairs over any plane split  
12. Adding Test points will cause impedance discontinuity and will therefore negatively impact signal  
performance. If test points are used, they should be placed in series and symmetrically. They must not be  
placed in a manner that causes a stub on the differential pair  
Copyright © 2012–2015, Texas Instruments Incorporated  
31  
DS90UR910-Q1  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
www.ti.com.cn  
Layout Guidelines (continued)  
9.1.4 Layout Example  
Figure 19 (PCB layout example) is derived from a layout design of the DS90UR910-Q1 EVM. This graphic and  
additional layout description are used to demonstrate both proper routing and proper solder techniques when  
designing in the Deserializer.  
Length-Matched  
CSI-2 Traces  
AC-Coupling  
Capacitors  
Figure 19. DS90UR910-Q1 Deserializer Example Layout  
32  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UR910-Q1  
www.ti.com.cn  
ZHCSDL5D JUNE 2012REVISED JULY 2015  
Layout Guidelines (continued)  
9.1.5 LVDS Interconnect Guidelines  
See AN-1108 and AN-905 for full details.  
Use 100Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
S = space between the pair  
2S = space between pairs  
3S = space to LVCMOS signal  
Minimize the number of Vias and skew within the pair  
Use differential connectors when operating above 500 Mbps line speed  
Maintain balance of the traces  
Terminate as close to the TX outputs and RX inputs as possible  
Additional general guidance can be found in the LVDS Owner’s Manual - available in PDF format from the Texas  
Instruments web site at: www.ti.com/lvds  
10 器件和文档支持  
10.1 商标  
TRI-STATE is a registered trademark of National Semiconductor Corporation.  
All other trademarks are the property of their respective owners.  
10.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
10.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
11 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。要获得这份数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2012–2015, Texas Instruments Incorporated  
33  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2016, Texas Instruments Incorporated  

相关型号:

DS90UR916Q

5 - 65 MHz 24-bit Color FPD-Link II Deserializer with Image Enhancement
TI

DS90UR916Q-Q1

具有图像增强功能的 5MHz 至 65MHz 24 位彩色 FPD-Link II 解串器
TI

DS90UR916QSQ

5 - 65 MHz 24-bit Color FPD-Link II Deserializer with Image Enhancement
TI

DS90UR916QSQ/NOPB

具有图像增强功能的 5MHz 至 65MHz 24 位彩色 FPD-Link II 解串器 | NKB | 60 | -40 to 105
TI

DS90UR916QSQE

5 - 65 MHz 24-bit Color FPD-Link II Deserializer with Image Enhancement
TI

DS90UR916QSQE/NOPB

具有图像增强功能的 5MHz 至 65MHz 24 位彩色 FPD-Link II 解串器 | NKB | 60 | -40 to 105
TI

DS90UR916QSQX

5 - 65 MHz 24-bit Color FPD-Link II Deserializer with Image Enhancement
TI

DS90UR916QSQX/NOPB

具有图像增强功能的 5MHz 至 65MHz 24 位彩色 FPD-Link II 解串器 | NKB | 60 | -40 to 105
TI

DS9100

Touch and Hold Probe Stampings
DALLAS

DS9100-A+

Touch and Hold Probe Stampings
MAXIM

DS9100-B+

Touch and Hold Probe Stampings
MAXIM

DS9100-C+

Touch and Hold Probe Stampings
MAXIM