DS92LV0412SQX/NOPB [TI]

具有 LVDS 并行接口的 5 - 50MHz Channel Link II 解串器 | RHS | 48 | -40 to 85;
DS92LV0412SQX/NOPB
型号: DS92LV0412SQX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 LVDS 并行接口的 5 - 50MHz Channel Link II 解串器 | RHS | 48 | -40 to 85

驱动 接口集成电路
文件: 总53页 (文件大小:707K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
DS92LV0411 / DS92LV0412 5 - 50 MHz Channel Link II Serializer/Deserializer with LVDS  
Parallel Interface  
Check for Samples: DS92LV0411, DS92LV0412  
1
FEATURES  
DESCRIPTION  
The DS92LV0411 (serializer) and DS92LV0412  
(deserializer) chipset translates a Channel Link LVDS  
video interface (4 LVDS Data + LVDS Clock) into a  
high-speed serialized interface over a single CML  
pair.  
2
5-Channel (4 data + 1 clock) Channel Link  
LVDS Parallel Interface Supports 24-bit Data  
3-bit Control at 5 – 50 MHz  
AC Coupled STP Interconnect up to 10 Meters  
in Length  
The DS92LV0411/DS92LV0412 enables applications  
that currently use the popular Channel Link or  
Channel Link style devices to seamlessly upgrade to  
an embedded clock interface to reduce interconnect  
cost or ease design challenges. The parallel LVDS  
interface also reduces FPGA I/O pins, board trace  
count and alleviates EMI issues, when compared to  
traditional single-ended wide bus interfaces.  
Integrated Serial CML Terminations  
AT–SPEED BIST Mode and Status Pin  
Optional I2C Compatible Serial Control Bus  
Power Down Mode Minimizes Power  
Dissipation  
1.8V or 3.3V Compatible Control Pin Interface  
>8 kV ESD (HBM) Protection  
Programmable  
transmit  
de-emphasis,  
receive  
-40° to +85°C Temperature Range  
SERIALIZER – DS92LV0411  
equalization, on-chip scrambling and DC balancing  
enables longer distance transmission over lossy  
cables  
and  
backplanes.  
The  
Deserializer  
Data Scrambler for Reduced EMI  
DC–Balance Encoder for AC Coupling  
automatically locks to incoming data without an  
external reference clock or special sync patterns,  
providing easy “plug-and-go” operation.  
Selectable Output VOD and Adjustable De-  
Emphasis  
The  
DS92LV0411  
and  
DS92LV0412  
are  
programmable though an I2C interface as well as by  
pins. A built-in AT-SPEED BIST feature validates link  
integrity and may be used for system diagnostics.  
DESERIALIZER – DS92LV0412  
Random Data Lock; No Reference Clock  
Required  
The DS92LV0411 and DS92LV0412 can be used  
Adjustable Input Receiver Equalization  
interchangeably  
with  
the  
DS92LV2411  
or  
EMI Minimization on Output Parallel Bus  
(Spread Spectrum Clock Generation and LVDS  
VOD Select)  
DS92LV2412. This allows designers the flexibility to  
connect to the host device and receiving devices with  
different interface types, LVDS or LVCMOS.  
APPLICATIONS  
Embedded Video and Display  
Machine Vision, Industrial Imaging, Medical  
Imaging  
Office Automation — Printers, Scanners,  
Copiers  
Security and Video Surveillance  
General purpose data communication  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2010–2013, Texas Instruments Incorporated  
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
Applications Diagram  
Channel Link  
Channel Link II  
Channel Link  
VDDIO  
(1.8V or 3.3V)  
VDDIO  
(1.8V or 3.3V)  
1.8V  
1.8V 3.3V  
RxIN3+/-  
TxOUT3+/-  
High-Speed Serial Link  
1 Pair/AC Coupled  
RxIN2+/-  
TxOUT2+/-  
Camera/AFE  
Frame Grabber  
Or  
RGB Display  
QVGA to XGA  
24-bit Color Depth  
DOUT+  
DOUT-  
RIN+  
RIN-  
Or  
HOST  
Graphics  
Processor  
RxIN1+/-  
TxOUT1+/-  
TxOUT0+/-  
RxIN0+/-  
100 ohm STP Cable  
RxCLKIN+/-  
TxCLKOUT+/-  
CMF  
DS92LV0411  
DS92LV0412  
LOCK  
PASS  
SSC[2:0]  
PDB  
BISTEN  
VODSEL  
De-Emph  
LFMODE  
CONFIG[1:0]  
MAPSEL  
MAPSEL  
CONFIG[1:0]  
PDB  
BISTEN  
OEN  
OSSEL  
VODSEL  
SCL  
SDA  
ID[x]  
SCL  
SDA  
ID[x]  
Optional  
Optional  
2
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
Block Diagrams  
VODSEL  
De-Emph  
RxIN3+/-  
RxIN2+/-  
DOUT+  
DOUT-  
RxIN1+/-  
RxIN0+/-  
RxCLKIN+/-  
Pattern  
Generator  
PLL  
CONFIG[1:0]  
MAPSEL  
PDB  
Timing and  
Control  
SCL  
SCA  
ID[x]  
BISTEN  
DS92LV0411  
SSC[2:0]  
OEN  
VODSEL  
SSCG  
CMF  
TxOUT[3]  
TxOUT[2]  
RIN+  
RIN-  
TxOUT[1]  
TxOUT[0]  
TxCLKOUT  
EQ  
Error  
Detector  
PASS  
LOCK  
PDB  
SCL  
SCA  
Timing and  
Control  
ID[x]  
PLL  
BISTEN  
OSS_SEL  
LFMODE  
DS92LV0412  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
DS92LV0411 Pin Diagram  
RxIN0-  
RxIN0+  
RxIN1-  
28  
29  
30  
31  
32  
33  
34  
35  
36  
18  
17  
16  
15  
14  
13  
12  
11  
10  
RES3  
DAP = GND  
VDDTX  
DOUT+  
DOUT-  
VDDHS  
RES2  
RxIN1+  
RxIN2-  
DS92LV0411  
(Top View)  
RxIN2+  
RxCLKIN-  
RxCLKIN+  
RES5  
RES1  
VDDP  
CONFIG[1]  
Figure 1. DS92LV0411 — Top View  
4
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
Pin Name  
SNLS331B MAY 2010REVISED APRIL 2013  
Table 1. DS92LV0411 PIN DESCRIPTIONS  
Pin #  
I/O, Type  
Description  
Channel Link Parallel Input Interface  
RxIN[3:0]+  
RxIN[3:0]-  
RxCLKIN+  
RxCLKIN-  
2, 33, 31,  
29  
I, LVDS  
I, LVDS  
I, LVDS  
I, LVDS  
True LVDS Data Input  
These inputs require an external 100 differential termination for standard LVDS levels.  
1, 34, 32,  
30, 28  
Inverting LVDS Data Input  
These inputs require an external 100 differential termination for standard LVDS levels.  
35  
True LVDS Clock Input  
These inputs require an external 100 differential termination for standard LVDS levels.  
34  
Inverting LVDS Clock Input  
These inputs require an external 100 differential termination for standard LVDS levels.  
Control and Configuration  
PDB  
23  
I, LVCMOS Power-down Mode Input  
w/ pull-down PDB = 1, Device is enabled (normal operation).  
Refer to POWER UP REQUIREMENTS AND PDB PIN in the Applications Information  
Section.  
PDB = 0, Device is powered down  
When the Device is in the power-down state, the driver outputs (DOUT+/-) are both logic high,  
the PLL is shutdown, IDD is minimized. Control Registers are RESET.  
VODSEL  
De-Emph  
20  
19  
I, LVCMOS Differential Driver Output Voltage Select — Pin or Register Control  
w/ pull-down VODSEL = 1, LVDS VOD is ±450 mV, 900 mVp-p (typ) — Long Cable / De-E Applications  
VODSEL = 0, LVDS VOD is ±300 mV, 600 mVp-p (typ)  
I, Analog  
w/ pull-up  
De-Emphasis Control — Pin or Register Control  
De-Emph = open (float) - disabled  
To enable De-emphasis, tie a resistor from this pin to GND or control via register.  
(See Table 5)  
MAPSEL  
26  
I, LVCMOS Channel Link Map Select — Pin or Register Control  
w/ pull-down MAPSEL = 1, MSB on RxIN3+/-. (SeeFigure 23)  
MAPSEL = 0, LSB on RxIN3+/-. (See Figure 22)  
CONFIG[1:0]  
10, 9  
I, LVCMOS Operating Modes  
w/ pull-down Determines the device operating mode and interfacing device. (See Table 2)  
CONFIG[1:0] = 00: Interfacing to DS92LV2412 or DS92LV0412, Control Signal Filter  
DISABLED  
CONFIG[1:0] = 01: Interfacing to DS92LV2412 or DS92LV0412, Control Signal Filter  
ENABLED  
CONFIG [1:0] = 10: Interfacing to DS90UR124, DS99R124  
CONFIG [1:0] = 11: Interfacing to DS90C124  
ID[x]  
4
6
I, Analog  
Serial Control Bus Device ID Address Select — Optional  
Resistor to Ground and 10 kpull-up to 1.8V rail. (See Table 11)  
SCL  
I, LVCMOS Serial Control Bus Clock Input - Optional  
SCL requires an external pull-up resistor to 3.3V  
SDA  
7
I/O, LVCMOS Serial Control Bus Data Input / Output - Optional  
Open Drain SDA requires an external pull-up resistor to 3.3V  
BISTEN  
21  
I, LVCMOS BIST Mode — Optional  
w/ pull-down BISTEN = 1, BIST is enabled  
BISTEN = 0, BIST is disabled  
RES[7:0]  
25, 3, 36,  
I, LVCMOS Reserved - tie LOW  
27, 18, 13, w/ pull-down  
12, 8  
Channel Link II Serial Interface  
DOUT+  
16  
O, CML  
True Output.  
The output must be AC Coupled with a 0.1 μF capacitor.  
DOUT-  
15  
O, CML  
Inverting Output.  
The output must be AC Coupled with a 0.1 μF capacitor.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: DS92LV0411 DS92LV0412  
 
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
Table 1. DS92LV0411 PIN DESCRIPTIONS (continued)  
Pin Name  
Pin #  
I/O, Type  
Description  
Power and Ground(1)  
VDDL  
5
11  
Power  
Power  
Power  
Power  
Power  
Power  
Ground  
Logic Power, 1.8 V ±5%  
VDDP  
VDDHS  
VDDTX  
VDDRX  
VDDIO  
GND  
PLL Power, 1.8 V ±5%  
14  
TX High Speed Logic Power, 1.8 V ±5%  
Output Driver Power, 1.8 V ±5%  
RX Power, 1.8 V ±5%  
17  
24  
22  
LVCMOS I/O Power and Channel Link I/O Power 1.8 V ±5% OR 3.3 V ±10%  
DAP  
DAP is the large metal contact at the bottom side, located at the center of the WQFN  
package. Connect to the ground plane (GND) with at least 9 vias.  
(1) 1= HIGH, 0 = LOW. The VDD (VDDn and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. If slower then 1.5 ms  
then a capacitor on the PDB pin is needed to ensure PDB arrives after all the VDD have settled to the recommended operating voltage.  
DS92LV0412 Pin Diagram  
RES  
VDDA  
GND  
TxOUT0-  
TxOUT0+  
TxOUT1-  
TxOUT1+  
TxOUT2-  
TxOUT2+  
TxCLKOUT-  
TxCLKOUT+  
TxOUT3-  
TxOUT3+  
GND  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
DAP = GND  
RIN+  
RIN-  
DS92LV0412  
CMF  
(Top View)  
VDDA  
GND  
GND  
VDDSC  
VDDSC  
GND  
VDDTX  
Figure 2. DS92LV0412 — Top View  
6
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
Pin Name  
SNLS331B MAY 2010REVISED APRIL 2013  
DS92LV0412 PIN DESCRIPTIONS  
Description  
Pin #  
I/O, Type  
Channel Link II Serial Interface  
RIN+  
RIN-  
CMF  
40  
41  
42  
I, CML  
I, CML  
True Input.  
The output must be AC Coupled with a 0.1 μF capacitor.  
Inverting Input.  
The output must be AC Coupled with a 0.1 μF capacitor.  
I, Analog  
Common Mode Filter  
VCM center tap is a virtual ground which can be AC-coupled to ground to increase receiver  
common mode noise immunity. Recommended value is 4.7μF or higher.  
Channel Link Parallel Output Interface  
RxIN[3:0]+ 15, 19, 21, 23  
RxIN[3:0]- 16, 20, 22, 24  
O, LVDS  
O, LVDS  
O, LVDS  
O, LVDS  
True LVDS Data Output  
Inverting LVDS Data Output  
True LVDS Clock Output  
Inverting LVDS Clock Output  
RxCLKIN+  
RxCLKIN-  
17  
18  
LVCMOS Outputs  
LOCK  
27  
O, LVCMOS LOCK Status Output  
LOCK = 1, PLL is locked, output stated determined by OEN.  
LOCK = 0, PLL is unlocked, output states determined by OSS_SEL and OEN.  
(See Table 6)  
Control and Configuration  
PDB  
1
I, LVCMOS Power-down Mode Input  
w/ pull-down PDB = 1, Device is enabled (normal operation).  
PDB = 0, Device is powered down and the outputs are Tri-State  
Control Registers are RESET.  
VODSEL  
33  
I, LVCMOS Parallel LVDS Driver Output Voltage Select — Pin or Register Control  
w/ pull-down VODSEL = 1, LVDS VOD is ±400 mV, 800 mVp-p (typ) — Long Cable / De-E Applications  
VODSEL = 0, LVDS VOD is ±250 mV, 500 mVp-p (typ)  
OEN  
30  
35  
36  
I, LVCMOS Output Enable.  
w/ pull-down (See Table 6)  
OSS_SEL  
LFMODE  
I, LVCMOS Output Sleep State Select Input.  
w/ pull-down (See Table 6)  
I, LVCMOS SSCG Low Frequency Mode — Pin or Register Control  
w/ pull-down LF_MODE = 1, low frequency mode (TxCLKOUT = 10–20 MHz)  
LF_MODE = 0, high frequency mode (TxCLKOUT = 20–65 MHz)  
SSCG not avaialble above 65 MHz.  
MAPSEL  
34  
I, LVCMOS Channel Link Map Select — Pin or Register Control  
w/ pull-down MAPSEL = 1, MSB on TxOUT3+/-. (See Figure 23)  
MAPSEL = 0, LSB on TxOUT3+/-. (See Figure 22)  
CONFIG[1  
:0]  
11, 10  
I, LVCMOS Operating Modes  
w/ pull-down Determine the device operating mode and interfacing device. (See Table 2)  
CONFIG[1:0] = 00: Interfacing to DS92LV2411 or DS92LV0411, Control Signal Filter  
DISABLED  
CONFIG[1:0] = 01: Interfacing to DS92LV2411 or DS92LV0411, Control Signal Filter  
ENABLED  
CONFIG [1:0] = 10: Interfacing to DS90UR241, DS99R421  
CONFIG [1:0] = 11: Interfacing to DS90C241  
SSC[2:0]  
RES  
7, 2, 3  
37  
I, LVCMOS Spread Spectrum Clock Generation (SSCG) Range Select  
w/ pull-down (See Table 9 and Table 10)  
I, LVCMOS Reserved  
w/ pull-down  
Control and Configuration — STRAP PIN  
EQ 28 [PASS] STRAP  
EQ Gain Control of Channel Link II Serial Input  
I, LVCMOS EQ = 1, EQ gain is enabled (~13 dB)  
w/ pull-down EQ = 0, EQ gain is disabled (~ 1.625 dB)  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
DS92LV0412 PIN DESCRIPTIONS (continued)  
Pin Name  
Pin #  
I/O, Type  
Description  
Optional BIST Mode  
BISTEN  
PASS  
29  
28  
I, LVCMOS BIST Mode — Optional  
w/ pull-down BISTEN = 1, BIST is enabled  
BISTEN = 0, BIST is disabled  
O, LVCMOS PASS Output (BIST Mode) — Optional  
PASS =1, no errors detected  
PASS = 0, errors detected  
Leave open if unused. Route to a test point (pad) recommended.  
Optional Serial Bus Control  
ID[x]  
SCL  
SDA  
12  
I, Analog  
Serial Control Bus Device ID Address Select — Optional  
Resistor to Ground and 10 kpull-up to 1.8V rail. (See Table 11)  
5
I, LVCMOS Serial Control Bus Clock Input - Optional  
Open Drain SCL requires an external pull-up resistor to 3.3V.  
4
I/O, LVCMOS Serial Control Bus Data Input / Output - Optional  
Open Drain SDA requires an external pull-up resistor 3.3V.  
Power and Ground(1)  
VDDL  
VDDA  
VDDP  
VDDSC  
6, 31  
38, 43  
8
Power  
Power  
Power  
Power  
Logic Power, 1.8 V ±5%  
Analog Power, 1.8 V ±5%  
PLL Power, 1.8 V ±5%  
46, 47  
SSC Generator Power, 1.8 V ±5%. Power must be connected to these pins regardless if the  
SSCG feature is used or not.  
VDDTX  
VDDIO  
GND  
13  
25  
Power  
Power  
Ground  
Channel Link LVDS Parallel Output Power, 3.3 V ±10%  
LVCMOS I/O Power and Channel Link I/O Power 1.8 V ±5% OR 3.3 V ±10%  
Ground  
9, 14, 26, 32,  
39, 44, 45, 48  
DAP  
DAP  
Ground  
DAP is the large metal contact at the bottom side, located at the center of the WQFN  
package. Connect to the ground plane (GND) with at least 9 vias.  
(1) 1= HIGH, 0 = LOW. The VDD (VDDn and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. If slower then 1.5 ms  
then a capacitor on the PDB pin is needed to ensure PDB arrives after all the VDD have settled to the recommended operating voltage.  
8
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Absolute Maximum Ratings(1)(2)  
Supply Voltage – VDDn (1.8V)  
0.3V to +2.5V  
0.3V to +4.0V  
Supply Voltage – VDDIO  
Supply Voltage – VDDTX  
(1.8V, Ser))  
0.3V to +2.5V  
Supply Voltage – VDDTX  
(3.3V, Des)  
0.3V to +4.0V  
0.3V to (VDDIO + 0.3V)  
0.3V to (VDDIO + 0.3V)  
0.3V to (VDDTX + 0.3V)  
0.3V to (VDDn + 0.3V)  
0.3V to (VDD + 0.3V)  
+150°C  
LVCMOS I/O Voltage  
LVDS Input Voltage  
LVDS Output Voltage  
CML Driver Output Voltage  
Receiver Input Voltage  
Junction Temperature  
Storage Temperature  
65°C to +150°C  
36L WQFN Package  
Maximum Power Dissipation Capacity at 25°C  
Derate above 25°C  
1/ θJA°C/W  
27.4 °C/W  
4.5 °C/W  
θJA(with 9 thermal via)  
θJC(with 9 thermal via)  
48L WQFN Package  
Maximum Power Dissipation Capacity at 25°C  
Derate above 25°C  
1/ θJA°C/W  
27.7 °C/W  
3.0 °C/W  
θJA(with 9 thermal via)  
θJC(with 9 thermal via)  
ESD Rating (IEC, powered-up only), RD = 330, CS = 150 pF  
Air Discharge  
(DOUT+, DOUT-, RIN+, RIN-)  
±30 kV  
Contact Discharge  
(DOUT+, DOUT-, RIN+, RIN-)  
±8 kV  
±8 kV  
ESD Rating (HBM)  
ESD Rating (CDM)  
±1.25 kV  
±250 V  
ESD Rating (MM)  
For soldering specifications: http://www.ti.com/lit/SNOA549  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or  
other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating  
Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
Recommended Operating Conditions  
Min  
1.71  
1.71  
3.0  
Nom  
1.8  
Max  
1.89  
1.89  
3.6  
Units  
Supply Voltage (VDDn  
Supply Voltage (VDDTX_Ser  
Supply Voltage (VDDTX_Des  
)
V
V
V
V
)
1.8  
)
3.3  
LVCMOS Supply Voltage (VDDIO  
OR  
)
)
1.71  
1.8  
1.89  
LVCMOS Supply Voltage (VDDIO  
3.0  
3.3  
3.6  
V
Operating Free Air  
Temperature (TA)  
40  
+25  
+85  
50  
°C  
RxCLKIN/TxCLKOUT Clock Frequency  
Supply Noise(1)  
5
MHz  
mVP-P  
100  
(1) Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal signal is AC coupled to the VDDn (1.8V) supply with  
amplitude = 100 mVp-p measured at the device VDDn pins. Bit error rate testing of input to the Ser and output of the Des with 10 meter  
cable shows no error when the noise frequency on the Ser is less than 750 kHz. The Des on the other hand shows no error when the  
noise frequency is less than 400 kHz.  
DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)(3)(4)(5)  
Uni  
ts  
Symbol  
Parameter  
Conditions  
Pin/Freq.  
Min  
Typ  
Max  
DS92LV0411 LVCMOS INPUT DC SPECIFICATIONS  
VDDIO = 3.0 to 3.6V  
2.2  
VDDIO  
VDDIO  
0.8  
V
V
V
V
VIH  
High Level Input Voltage  
0.65*  
VDDIO  
VDDIO = 1.71 to 1.89V  
VDDIO = 3.0 to 3.6V  
VDDIO = 1.71 to 1.89V  
PDB,  
GND  
VODSEL,  
MAPSEL,  
CONFIG[1:0],  
BISTEN  
VIL  
Low Level Input Voltage  
0.35*  
VDDIO  
GND  
VDDIO = 3.0  
to 3.6V  
15  
15  
±1  
±1  
+15  
+15  
μA  
μA  
IIN  
Input Current  
VIN = 0V or VDDIO  
VDDIO = 1.7  
to 1.89V  
DS92LV0412 LVCMOS I/O DC SPECIFICATIONS  
VDDIO = 3.0 to 3.6V  
VDDIO = 1.71 to 1.89V  
VDDIO = 3.0 to 3.6V  
VDDIO = 1.71 to 1.89V  
2.2  
VDDIO  
VDDIO  
0.8  
V
V
V
V
VIH  
High Level Input Voltage  
Low Level Input Voltage  
0.7*  
VDDIO  
PDB,  
VODSEL,  
OEN,  
MAPSEL,  
LFMODE,  
SSC[2:0],  
BISTEN  
GND  
VIL  
0.3*  
VDDIO  
GND  
VDDIO = 3.0  
to 3.6V  
15  
10  
±1  
±1  
+15  
+10  
μA  
μA  
IIN  
Input Current  
VIN = 0V or VDDIO  
VDDIO = 1.7  
to 1.89V  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 1.8V, VDDIO = 3.3V, Ta = +25 °C, and at the Recommended Operation  
Conditions at the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD, ΔVOD, VTH and VTL which are differential voltages.  
(4) Specification is ensured by characterization and is not tested in production.  
(5) Specification is ensured by design and is not tested in production.  
10  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)(3)(4)(5)  
Uni  
ts  
Symbol  
Parameter  
Conditions  
Pin/Freq.  
Min  
Typ  
Max  
VDDIO = 3.3V  
IOH = -2 mA  
VDDIO  
0.25  
VDDIO  
VDDIO  
VOH  
High Level Output Voltage  
Low Level Output Voltage  
Output Short Circuit Current  
V
V
VDDIO = 1.8V  
IOH = -2 mA  
VDDIO  
0.2  
VDDIO = 3.3 V or 1.8V  
IOL = +0.5 mA  
VOL  
GND  
0.2  
VDDIO = 3.0  
to 3.6 V  
LOCK,  
PASS  
-45  
-13  
IOS  
VOUT = 0V  
mA  
VDDIO = 1.71  
to 1.89V  
VDDIO = 3.0  
to 3.6 V  
-10  
-15  
+10  
+15  
PDB = 0V, OSS_SEL  
= 0V, VOUT = 0V or  
VDDIO  
IOZ  
Tri-State Output Current(6)  
μA  
VDDIO = 1.71  
to 1.89V  
DS92LV0411 CHANNEL LINK PARALLEL LVDS RECEIVER DC SPECIFICATIONS  
Differential Threshold High  
Voltage  
VTH  
+100  
mV  
Differential Threshold Low  
Voltage  
VCM = 1.2V, (See Figure 3)  
VTL  
|VID  
100  
RxIN[3:0]+/-,  
RxCLKIN+/-,  
|
Differential Input Voltage Swing  
Common Mode Voltage  
Input Current  
200  
0
600  
2.4  
mV  
V
VDDIO = 3.3V  
VDDIO = 1.8V  
1.2  
1.2  
±1  
VCM  
0
1.55  
+15  
IIN  
15  
μA  
DS92LV0412 CHANNEL LINK PARALLEL LVDS DRIVER DC SPECIFICATIONS  
VODSEL = L  
100  
200  
250  
400  
400  
600  
mV  
mV  
|VOD  
|
Differential Output Voltage  
VODSEL = H  
mV  
p-p  
VODSEL = L  
500  
800  
Differential Output Voltage A –  
B
VODp-p  
mV  
p-p  
VODSEL = H  
RL = 100Ω  
TxCLKOUT-,  
TxOUT[3:0]+,  
TxOUT[3:0]-  
ΔVOD  
Output Voltage Unbalance  
Offset Voltage  
4
1.2  
1.2  
1
50  
mV  
V
VODSEL = L  
VODSEL = H  
1.0  
-10  
1.5  
VOS  
V
ΔVOS  
Offset Voltage Unbalance  
Output Short Circuit Current  
50  
mV  
mA  
IOS  
VOUT = GND  
-5  
OEN = GND,  
VOUT = VDDTX, or GND  
IOZ  
Output Tri-State Current(6)  
+10  
μA  
(6) When the device output is at Tri-State the Deserializer will lose PLL lock. Resynchronization / Relock must occur before data transfer  
require tPLD  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)(3)(4)(5)  
Uni  
ts  
Symbol  
Parameter  
Conditions  
Pin/Freq.  
Min  
Typ  
Max  
DS92LV0411 Channel Link II CML DRIVER DC SPECIFICATIONS  
VODSEL = 0  
VODSEL = 1  
±225  
±350  
±300  
±450  
±375  
±550  
VOD  
Differential Output Voltage  
mV  
RL = 100,  
De-emph = disabled,  
(SeeFigure 5)  
mV  
p-p  
VODSEL = 0  
VODSEL = 1  
600  
900  
1
Differential Output Voltage  
(DOUT+) – (DOUT-)  
VODp-p  
mV  
p-p  
RL = 100, De-emph = disabled,  
ΔVOD  
Output Voltage Unbalance  
50  
mV  
VODSEL = L  
DOUT+,  
DOUT-  
VODSEL = 0  
VODSEL = 1  
1.65  
V
V
Offset Voltage – Single-ended  
At TP A & B, (SeeFigure 4)  
RL = 100,  
De-emph = disabled  
VOS  
1.575  
Offset Voltage Unbalance  
Single-ended  
ΔVOS  
RL = 100, De-emph = disabled  
1
mV  
At TP A & B, (SeeFigure 4)  
DOUT+/- = 0V,  
De-emph = disabled  
IOS  
RT  
Output Short Circuit Current  
VODSEL = 0  
35  
mA  
Internal Termination Resistor  
80  
120  
DS92LV0412 CHANNEL LINK II CML RECEIVER DC SPECIFICATIONS  
Differential Input Threshold  
High Voltage  
VTH  
VTL  
VCM = +1.2V (Internal VBIAS  
)
+50  
mV  
mV  
Differential Input Threshold Low  
Voltage  
-50  
RIN+,  
RIN-  
Common mode Voltage,  
Internal VBIAS  
VCM  
RT  
1.2  
V
Input Termination  
80  
100  
120  
DS92LV0411 SUPPLY CURRENT  
IDDT1  
Checker Board  
Pattern,  
De-emph = 3 k,  
VODSEL = H, (See  
Figure 18)  
VDD= 1.89V  
All VDD pins  
VDDIO  
80  
3
90  
5
mA  
mA  
VDDIO= 1.89V  
IDDIOT1  
VDDIO = 3.6V  
10  
13  
mA  
Supply Current  
(includes load current)  
RL = 100, f = 50 MHz  
IDDT2  
Checker Board  
Pattern,  
De-emph = 6 k,  
VODSEL = L, (See  
Figure 18)  
VDD= 1.89V  
All VDD pins  
VDDIO  
75  
3
85  
5
mA  
mA  
VDDIO= 1.89V  
IDDIOT2  
IDDZ  
VDDIO = 3.6V  
10  
13  
mA  
VDD= 1.89V  
VDDIO= 1.89V  
VDDIO = 3.6V  
All VDD pins  
VDDIO  
60  
0.5  
1
1000  
10  
µA  
µA  
µA  
PDB = 0V , (All other  
LVCMOS Inputs = 0V)  
Supply Current Power-down  
IDDIOZ  
30  
DS92LV0412 SUPPLY CURRENT  
IDD1  
Supply Current  
(Includes load current)  
50 MHz Clock  
Checker Board  
Pattern,  
VODSEL = H,  
SSCG [2:0] = 000  
VDDn = 1.89  
V
All VDD(1:8)  
pins  
85  
40  
95  
50  
mA  
mA  
mA  
mA  
IDDTX1  
IDDIO1  
VDDTX = 3.6  
V
VDDTX  
VDDIO = 1.89 VDDIO  
V
0.3  
0.8  
0.8  
1.5  
VDDIO = 3.6 V  
12  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)(3)(4)(5)  
Uni  
ts  
Symbol  
IDD2  
IDDTX2  
IDDIO2  
Parameter  
Conditions  
Pin/Freq.  
Min  
Typ  
Max  
Supply Current  
(Includes load current)  
50 MHz Clock  
Checker Board  
VDDn = 1.89  
V
All VDD(1:8)  
pins  
95  
mA  
mA  
mA  
Pattern,  
VODSEL = H,  
SSCG [2:0] = 111  
VDDTX = 3.6  
V
VDDTX  
40  
VDDIO = 1.89 VDDIO  
V
0.3  
VDDIO = 3.6 V  
0.8  
mA  
mA  
IDDZ  
Supply Current Power Down  
PDB = 0V,  
VDD = 1.89 V All VDD(1:8)  
pins  
0.15  
2
All other LVCMOS  
Inputs = 0V  
IDDTXZ  
IDDIOZ  
VDDTX = 3.6  
V
VDDTX  
0.01  
0.01  
0.01  
0.1  
mA  
mA  
mA  
VDDIO = 1.89 VDDIO  
V
0.08  
0.08  
VDDIO = 3.6V  
Switching Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DS92LV0411 CHANNEL LINK PARALLEL LVDS INPUT  
tRSP0  
tRSP1  
tRSP2  
tRSP3  
tRSP4  
tRSP5  
tRSP6  
Receiver Strobe Position-bit 0  
Receiver Strobe Position-bit 1  
Receiver Strobe Position-bit 2  
Receiver Strobe Position-bit 3  
Receiver Strobe Position-bit 4  
Receiver Strobe Position-bit 5  
Receiver Strobe Position-bit 6  
0.66  
2.86  
1.10  
3.30  
1.54  
3.74  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.05  
5.50  
5.93  
RxCLKIN = 50 MHz,  
RxIN[3:0]  
(See Figure 7)  
7.25  
7.70  
8.13  
9.45  
9.90  
10.33  
12.53  
14.73  
11.65  
13.85  
12.10  
14.30  
DS92LV0412 CHANNEL LINK PARALLEL LVDS OUTPUT  
tLHT  
Low to High Transition Time  
High to Low Transition Time  
Cycle-to-Cycle Output Jitter(1)  
RL = 100Ω  
0.3  
0.3  
900  
75  
1
0.6  
0.6  
ns  
ns  
ps  
ps  
UI(2)  
UI  
tTHLT  
tDCCJ  
TxCLKOUT± = 5 MHz  
TxCLKOUT± = 50 MHz  
5 – 50 MHz  
2100  
125  
tTTP1  
tTTP0  
tTTP6  
tTTP5  
tTTP4  
tTTP3  
tTTP2  
ΔtTTP  
Transmitter Pulse Position for bit 1  
Transmitter Pulse Position for bit 0  
Transmitter Pulse Position for bit 6  
Transmitter Pulse Position for bit 5  
Transmitter Pulse Position for bit 4  
Transmitter Pulse Position for bit 3  
Transmitter Pulse Position for bit 2  
2
3
UI  
4
UI  
5
UI  
6
UI  
7
UI  
Offset Transmitter Pulse Position (bit 50 MHz  
6— bit 0)  
<+0.1  
UI  
tDD  
Delay-Latency  
142*T  
7
143*T  
12  
ns  
ns  
tTPDD  
Power Down Delay  
Active to OFF  
50 MHz  
50 MHz  
tTXZR  
Enable Delay  
OFF to Active  
40  
55  
ns  
(1) tDCCJ is the maximum amount of jitter between adjacent clock cycles.  
(2) UI – Unit Interval is equivalent to one serialized data bit width (1UI = 1 / 28*PCLK). The UI scales with PCLK frequency.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: DS92LV0411 DS92LV0412  
 
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
Switching Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DS92LV0411 Channel Link II CML OUTPUT  
tHLT  
tHLT  
tXZD  
Output Low-to-High Transition Time  
(See Figure 5)  
RL = 100, De-emphasis = disabled,  
VODSEL = 0  
200  
200  
260  
200  
5
ps  
ps  
ps  
ps  
ns  
RL = 100, De-emphasis = disabled,  
VODSEL = 1  
Output High-to-Low Transition Time  
(See Figure 6)  
RL = 100, De-emphasis = disabled,  
VODSEL = 0  
RL = 100, De-emphasis = disabled,  
VODSEL = 1  
Ouput Active to OFF Delay (See  
Figure 11)  
15  
tPLD  
tSD  
PLL Lock Time(3), (See Figure 9)  
Delay - Latency, (See Figure 12)  
Output Total Jitter (See Figure 14)  
RL = 100Ω  
RL = 100Ω  
1.5  
10  
ms  
ns  
147*T  
148*T  
tDJIT  
RL = 100, De-Emph = disabled,  
RANDOM pattern,  
0.26  
UI  
RxCLKIN = 43 and 50 MHz  
λSTXBW Jitter Transfer  
Function -3 dB Bandwidth  
RxCLKIN = 43 MHz  
RxCLKIN = 50 MHz  
RxCLKIN = 43 MHz  
RxCLKIN = 50 MHz  
2.2  
2.6  
1
MHz  
dB  
δSTX  
Jitter Transfer  
Function Peaking  
1
DS92LV0412 CHANNEL LINK II CML INPUT  
tDDLT  
Lock Time  
SSCG[2:0] = 000,  
5 MHz  
7
14  
6
ms  
ms  
ms  
ms  
UI  
SSCG[2:0] = 111,  
5 MHz  
SSCG[2:0] = 000,  
50 MHz  
SSCG[2:0] = 111,  
50 MHz  
8
tIJIT  
Input Jitter Tolerance  
EQ = OFF  
>0.9  
SSCG[2:0] = 000  
TxCLKOUT± = 50 MHz  
Input Jitter Frequency < 2 MHz  
EQ = OFF  
>0.5  
UI  
SSCG[2:0] = 000  
TxCLKOUT± = 50 MHz  
Input Jitter Frequency >6 MHz  
DS92LV0412 LVCMOS OUTPUTS  
tCLH  
tCHL  
Low to High Transition Time  
High to Low Transition Time  
CL = 8 pF  
LOCK pin,  
PASS pin  
5
5
15  
15  
ns  
ns  
tPASS  
BIST PASS Valid Time,  
BISTEN = 1  
PASS pin  
5 MHz  
570  
50  
580  
65  
ns  
ns  
50 MHz  
DS92LV0412 SSCG MODE  
tDEV  
Spread Spectrum Clocking Deviation TxCLKOUT = 5 – 50 MHz,  
±0.5  
8
±2  
%
Frequency  
SSC[2:0] = ON  
tMOD  
Spread Spectrum Clocking  
Modulation Frequency  
TxCLKOUT = 5 – 50 MHz,  
SSC[2:0] = ON  
100  
kHz  
(3) tPLD is the time required by the device to obtain lock when exiting power-down state with an active RxCLKIN.  
14  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
Recommended Timing for the Serial Control Bus  
Over recommended operating supply and temperature ranges unless otherwise specified. (Figure 20)  
Symbol  
Parameter  
Conditions  
Min  
>0  
Typ  
Max  
100  
400  
Units  
kHz  
kHz  
μs  
fSCL  
SCL Clock Frequency  
Standard Mode  
Fast Mode  
>0  
tLOW  
SCL Low Period  
SCL High Period  
Standard Mode  
Fast Mode  
4.7  
1.3  
4.0  
0.6  
4.0  
0.6  
4.7  
0.6  
0
μs  
tHIGH  
Standard Mode  
Fast Mode  
μs  
μs  
tHD:STA Hold time for a start or a  
repeated start condition  
Standard Mode  
Fast Mode  
μs  
μs  
tSU:STA Set Up time for a start or a  
repeated start condition  
Standard Mode  
Fast Mode  
μs  
μs  
tHD:DAT Data Hold Time  
3.45  
0.9  
μs  
Fast Mode  
0
μs  
tSU:DAT Data Set Up Time  
Standard Mode  
Fast Mode  
250  
100  
4.0  
0.6  
4.7  
1.3  
μs  
μs  
tSU:STO Set Up Time for STOP  
Condition  
Standard Mode  
Fast Mode  
μs  
μs  
tBUF  
Bus Free Time Between STOP Standard Mode  
μs  
and START  
Fast Mode  
μs  
tr  
SCL & SDA Rise Time  
SCL & SDA Fall Time  
Standard Mode  
Fast Mode  
1000  
300  
300  
300  
ns  
ns  
tf  
Standard Mode  
Fast Mode  
ns  
ns  
DC and AC Serial Control Bus Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
Symbol  
Parameter  
Input High Level  
Conditions  
Min  
Typ  
Max  
Units  
VIH  
SDA and SCL  
VDDIO = 3.3V  
0.7*  
VDDIO  
VDDIO  
V
VIL  
Input Low Level Voltage  
Input Hysteresis  
SDA and SCL  
VDDIO = 3.3V  
0.3*  
VDDIO  
GND  
V
mV  
V
VHY  
VOL  
VDDIO = 3.3V  
>50  
SDA, IOL = 3mA  
VDDIO = 3.3V  
0
0.36  
+10  
Iin  
tR  
tF  
SDA or SCL, Vin = 3.3V or GND  
-10  
µA  
ns  
ns  
ns  
ns  
ns  
pF  
SDA RiseTime – READ  
SDA Fall Time – READ  
SDA, RPU = X, Cb 400pF, (See Figure 20)  
430  
20  
tSU;DAT Set Up Time – READ  
tHD;DAT Hold Up Time – READ  
See Figure 20  
See Figure 20  
560  
615  
50  
tSP  
Cin  
Input Filter  
Input Capacitance  
SDA or SCL  
<5  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
AC Timing Diagrams and Test Circuits  
RxIN[3:0]+  
RxCLKIN+  
VTL  
VCM=1.2V  
VTH  
RxIN[3:0]-  
RxClkIN-  
GND  
Figure 3. Channel Link DC VTH/VTL Definition  
A
B
A'  
C
Scope  
A
B
50W  
50W  
C
B'  
50W  
50W  
Figure 4. DS92LV0411 Output Test Circuit  
DOUT+  
VOD-  
VOD+  
DOUT-  
GND  
VOS  
VOD+  
(DOUT+) - (DOUT+  
)
0V  
VODp-p  
VOD-  
Figure 5. Channel Link II Single-ended and Differential Waveforms  
+VOD  
80%  
(DOUT+) - (DOUT-)  
0V  
20%  
-VOD  
t
t
LHLT  
LLHT  
Figure 6. DS92LV0411 Output Transition Times  
16  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
Figure 7. DS92LV0411 LVDS Receiver Strobe Positions  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
Cycle N  
TxCLKOUT±  
TxOUT[3:0]±  
bit 1 bit 0 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
t
t
t
TTP1  
TTP2  
TTP3  
1UI  
2UI  
3UI  
4UI  
5UI  
6UI  
7UI  
t
t
TTP4  
TTP5  
t
t
TTP6  
TTP7  
Figure 8. DS92LV0412 LVDS Transmitter Pulse Positions  
PDB  
VIH  
MIN  
RxCLKIN  
"X"  
active  
t
PLD  
DOUT  
(Diff.)  
Driver On  
Driver OFF, V  
= 0V  
OD  
Figure 9. DS92LV0411 Lock Time  
18  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
PDB  
VIH(min)  
R ±  
IN  
tDDLT  
LOCK  
VOH(min)  
TRI-STATE  
Figure 10. DS92LV0412 Lock Time  
VIL  
PDB  
X
MA  
RxCLKIN  
active  
"X"  
t
XZD  
DOUT  
(Diff.)  
active  
Driver OFF, V  
= 0V  
OD  
Figure 11. DS92LV0411 Disable Time  
RxIN[3:0]  
RxCLKIN  
N-1  
N
N+1  
N+2  
t
SD  
STOP START  
BIT BIT  
STOP START  
BIT BIT  
STOP START  
STOP START  
STOP  
BIT  
BIT BIT  
BIT BIT  
SYMBOL N-4  
SYMBOL N-3  
SYMBOL N-2  
SYMBOL N-1  
SYMBOL N  
D
0-23  
OUT  
DCA, DCB  
Figure 12. DS92LV0411 Latency Delay  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
START  
BIT  
STOP  
BIT  
START  
BIT  
STOP  
BIT  
START  
BIT  
STOP  
BIT  
START STOP  
BIT BIT  
SYMBOLN+3  
SYMBOLN  
SYMBOLN+1  
SYMBOLN+2  
R
IN  
+/-  
t
RD  
TxCLKOUT  
TxOUT[3:0]  
SYMBOL N-3  
SYMBOL N-2  
SYMBOL N-1  
SYMBOL N  
Figure 13. DS92LV0412 Latency Delay  
t
t
DJIT  
DJIT  
VOD (+)  
DOUT  
(Diff.)  
TxOUT_E_O  
0V  
VOD (-)  
t
(1 UI)  
BIT  
Figure 14. DS92LV0411 Output Jitter  
20  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
PDB  
RIN  
(Diff.)  
active serial stream  
X
H
H
LOCK  
TxOUT[3:0]  
TxCLKOUT  
L
L
L
Z
Z
Z
Z
Z
Z
f
f
Z
Z
PASS  
OFF  
Active  
OSC Output  
Active  
OFF  
OSC Output  
CONDITIONS: OEN = H, OSS_SEL = H, and OSC_SEL not equal to 000.  
Figure 15. DS92LV0412 Output State Diagram  
PDB  
RIN  
VILmax  
X
t
TPDD  
LOCK  
PASS  
Z
Z
TxCLKOUT  
TxOUT[3:0]  
Z
Z
Figure 16. DS92LV0412 Power Down Delay  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: DS92LV0411 DS92LV0412  
 
 
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
PDB  
LOCK  
t
TXZR  
OEN  
VIHmin  
Z
Z
TxCLKOUT  
TxOUT[3:0]  
Figure 17. DS92LV0412 Enable Delay  
+V  
OD  
RxCLKIN  
-V  
OD  
+V  
OD  
RxIN[odd]  
-V  
OD  
+V  
OD  
RxIN[even]  
-V  
OD  
Cycle N  
Cycle N+1  
Figure 18. Checkerboard Data Pattern  
VIL  
BISTEN  
MAX  
t
PASS  
VOL  
PASS  
(w/ errors)  
MAX  
Prior BIST Result  
Current BIST Test - Toggle on Error  
Result Held  
Figure 19. BIST PASS Waveform  
22  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
SDA  
t
BUF  
t
f
t
HD;STA  
t
t
r
LOW  
t
t
SP  
t
f
r
SCL  
t
t
SU;STA  
t
SU;STO  
HD;STA  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 20. Serial Control Bus Timing Diagram  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
FUNCTIONAL DESCRIPTION  
The DS92LV0411 / DS92LV0412 chipset transmits and receives 24-bits of data and 3 control signals, formatted  
as Channel Link LVDS data, over a single serial CML pair operating at 140 Mbps to 1.4 Gbps serial line rate.  
The serial stream contains an embedded clock, video control signals and is DC-balance to enhance signal  
quality and supports AC coupling.  
The Des can attain lock to a data stream without the use of a separate reference clock source, which simplifies  
system complexity and overall cost. The Des also synchronizes to the Ser regardless of the data pattern,  
delivering true automatic “plug and lock” performance. It can lock to the incoming serial stream without the need  
of special training patterns or sync characters. The Des recovers the clock and data by extracting the embedded  
clock information, validating and then deserializing the incoming data stream providing a parallel Channel Link  
LVDS bus to the display, ASIC, or FPGA.  
The DS92LV0411 / DS92LV0412 chipset can operate with up to 24 bits of raw data with three slower speed  
control bits encoded within the serial data stream. For applications that require less the maximum 24 pclk speed  
bit spaces, the user will need to ensure that all unused bit spaces or parallel LVDS channels are set to valid logic  
states, as all parallel lanes and 27 bit spaces will always be sampled.  
Block Diagrams for the chipset are shown at the beginning of this datasheet.  
PARALLEL LVDS DATA TRANSFER  
The DS92LV0411/DS92LV0412 can be configured to accept/transmit 24-bit data with 2 different mapping  
schemes: The normal Channel Link LVDS format (MSBs on LVDS channel 3) can be selected by configuring the  
MAPSEL pin to HIGH. See Figure 15 for the normal Channel Link LVDS mapping. An alternate mapping scheme  
is available (LSBs on LVDS channel 3) by configuring the MAPSEL pin to LOW. See Figure 16 for the alternate  
LVDS mapping. The mapping schemes can also be selected by register control.  
The alternate mapping scheme is useful in some applications where the receiving system, typically a display,  
requires that the LSBs for the 24-bit color data be sent on LVDS channel 3.  
SERIAL DATA TRANSFER  
The DS92LV0411 transmits a 24–bit word of data in the following format: C1 and C0 represent the embedded  
clock in the serial stream. C1 is always HIGH and C0 is always LOW. b[23:0] contain the scrambled RGB data,  
plus two additional bits for encoding overhead. The control signals (VS,HS,DE) are also encoded within these  
two additional bits. This coding scheme is generated by the DS92LV0411 and decoded by the paring  
deserializer, such as the DS92LV0412, automatically.  
The DS92LV0412 receives a 24 bit word of data in the format as described above. It also synchronizes to the  
serializer regardless of the data pattern, delivering true automatic “plug and lock” performance. it can lock to the  
incoming serial stream without the need for special training patterns or sync characters. The DS92LV0412  
recovers the clock and data by extracting the embedded clock information, validating and then deserializing the  
incoming data stream.  
Figure 21 illustrates the serial stream per PCLK cycle.  
C
1
C
0
Figure 21. Channel Link II Serial Stream  
24  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
 
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
OPERATING MODES AND BACKWARD COMPATIBILITY (CONFIG[1:0])  
The DS92LV0411 and DS92LV0412 are backward compatible with previous generations of Ser/Des.  
Configuration modes are provided for backwards compatibility with the DS90C241/DS90C124 and also the  
DS90UR241/DS90UR124 and DS99R241/DS99R124 by setting the respective mode with the CONFIG[1:0] pins  
as shown in Table 2 and Table 3. The selection also determine whether the Video Control Signal filter feature is  
enabled or disabled in Normal mode. Backward compatibility modes are selectable through the control pins only.  
The Control Signal Filter can be selected by pin or through register programming.  
Table 2. DS92LV0411 Configuration Modes  
CON  
FIG1  
CON  
FIG0  
Mode  
Des Device  
L
L
H
L
Normal Mode, Control Signal Filter disabled  
Normal Mode, Control Signal Filter enabled  
Backwards Compatible  
DS92LV0412,  
DS92LV2412  
L
DS92LV0412,  
DS92LV2412  
H
H
DS90UR124,  
DS99R124  
H
Backwards Compatible  
DS90C124  
Table 3. DS92LV0412 Configuration Modes  
CON  
FIG1  
CON  
FIG0  
Mode  
Des Device  
L
L
H
L
Normal Mode, Control Signal Filter disabled  
Normal Mode, Control Signal Filter enabled  
Backwards Compatible  
DS92LV0411,  
DS92LV2411  
L
DS92LV0411,  
DS92LV2411  
H
H
DS90UR241,  
DS99R421  
H
Backwards Compatible  
DS90C241  
BIT MAPPING SELECT  
The DS92LV0411 and DS92LV0412 can be configured to accept the LVDS parallel data with 2 different mapping  
schemes: LSBs on RxIN[3] shown in Figure 22 or MSBs on RxIN[3] shown in Figure 23. The user selects which  
mapping scheme is controlled by MAPSEL pin or by Register.  
NOTE  
While the LVDS interface has 28 bits defined, only 27 bits are recovered by the Ser and  
sent to the Des. This supports 24 bit RGB plus the three video control signals. The 28th  
bit is not sampled, sent or recovered.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: DS92LV0411 DS92LV0412  
 
 
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
RxCLKIN +/-  
Previous cycle  
Current cycle  
R[1]  
(bit 22)  
R[0]  
(bit 21)  
B[1]  
(bit 26)  
B[0]  
(bit 25)  
G[1]  
(bit 24)  
G[0]  
(bit 23)  
RxIN3 +/-  
DE  
VS  
HS  
B[7]  
B[6]  
B[5]  
B[4]  
RxIN2 +/-  
RxIN1 +/-  
(bit 20)  
(bit 19)  
(bit 18)  
(bit 17)  
(bit 16)  
(bit 15)  
(bit 14)  
B[3]  
(bit 13)  
B[2]  
(bit 12)  
G[7]  
(bit 11)  
G[6]  
(bit 10)  
G[5]  
(bit 9)  
G[4]  
(bit 8)  
G[3]  
(bit 7)  
G[2]  
(bit 6)  
R[7]  
(bit 5)  
R[6]  
(bit 4)  
R[5]  
(bit 3)  
R[4]  
(bit 2)  
R[3]  
(bit 1)  
R[2]  
(bit 0)  
RxIN0 +/-  
Figure 22. 8–bit Channel Link Mapping: LSB's on RxIN3  
RxCLKIN +/-  
Previous cycle  
Current cycle  
R[7]  
(bit 22)  
R[6]  
(bit 21)  
B[6]  
(bit 25)  
G[7]  
(bit 24)  
G[6]  
(bit 23)  
B[7]  
(bit 26)  
RxIN3 +/-  
RxIN2 +/-  
DE  
(bit 20)  
VS  
(bit 19)  
HS  
(bit 18)  
B[5]  
(bit 17)  
B[4]  
(bit 16)  
B[3]  
(bit 15)  
B[2]  
(bit 14)  
G[3]  
(bit 9)  
G[2]  
(bit 8)  
G[1]  
(bit 7)  
B[1]  
(bit 13)  
B[0]  
(bit 12)  
G[5]  
(bit 11)  
G[4]  
(bit 10)  
RxIN1 +/-  
RxIN0 +/-  
G[0]  
(bit 6)  
R[5]  
(bit 5)  
R[4]  
(bit 4)  
R[3]  
(bit 3)  
R[2]  
(bit 2)  
R[1]  
(bit 1)  
R[0]  
(bit 0)  
Figure 23. 8–bit Channel Link Mapping: MSB's on RxIN3  
26  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
VIDEO CONTROL SIGNAL FILTER  
The three control bits can be used to communicate any low speed signal. The most common use for these bits is  
in the display or machine vision applications. In a display application these bits are typically assigned as: Bit 26 –  
DE, Bit 24 – HS, Bit 25 – VS. In the machine vision standard, Camera Link, these bits are typically assigned: Bit  
26 – DVAL, Bit 24 – LVAL, Bit 25 – FVAL.  
When operating the devices in Normal Mode, the Video Control Signals (DE, HS, VS) have the following  
restrictions:  
Normal Mode with Control Signal Filter Enabled:  
DE and HS — Only 2 transitions per 130 clock cycles are transmitted, the transition pulse must be 3  
PCLK or longer.  
Normal Mode with Control Signal Filter Disabled:  
DE and HS — Only 2 transitions per 130 clock cycles are transmitted, no restriction on minimum transition  
pulse.  
VS — Only 1 transition per 130 clock cycles are transmitted, minimum pulse width is 130 clock cycles.  
Video Control Signals are defined as low frequency signals with limited transitions. Glitches of a control signal  
can cause a visual display error. This feature allows for the chipset to validate and filter out any high frequency  
noise on the control signals. See Figure 24.  
PCLK  
IN  
HS/VS/DE  
IN  
Latency  
PCLK  
OUT  
Pulses 1 or 2  
PCLKs wide  
Filetered OUT  
HS/VS/DE  
OUT  
Figure 24. Video Control Signal Filter Wavefrom  
SERIALIZER FUNCTIONAL DESCRIPTION  
The Ser converts a Channel Link LVDS clock and data bus (4 LVDS data channels + 1 LVDS clock) to a single  
serial output data stream, and also acts as a signal generator for the chipset Built In Self Test (BIST) mode. The  
device can be configured via external pins or through the optional serial control bus. The Ser features enhanced  
signal quality on the link by supporting: a selectable VOD level, a selectable de-emphasis signal conditioning and  
also the Channel Link II data coding that provides randomization, scrambling, and DC Balanacing of the data.  
The Ser includes multiple features to reduce EMI associated with display data transmission. This includes the  
randomization and scrambling of the serial data and also the system spread spectrum clock support. The Ser  
features power saving features with a sleep mode, auto stop clock feature, and optional 1.8 V or 3.3V I/O  
compatibility.  
See also the Functional Description of the chipset's serial control bus and BIST modes.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: DS92LV0411 DS92LV0412  
 
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
EMI REDUCTION FEATURES  
Data Randomization & Scrambling  
www.ti.com  
Channel Link II Ser / Des feature a 3 step encoding process which enables the use of AC coupled interconnects  
and also helps to manage EMI. The serializer first passes the parallel data through a scrambler which  
randomizes the data. The randomized data is then DC balanced. The DC balanced and randomized data then  
goes through a bit shuffling circuit and is transmitted out on the serial line. This encoding process helps to  
prevent static data patterns on the serial stream. The resulting frequency content of the serial stream ranges  
from the parallel clock frequency to the nyquist rate. For example, if the Ser / Des chip set is operating at a  
parallel clock frequency of 50 MHz, the resulting frequency content of serial stream ranges from 50 MHz to 700  
MHz ( 50 MHz *28 bits = 1.4 Gbps / 2 = 700 MHz ).  
Ser — Spread Spectrum Compatibility  
The RxCLKIN of the Channel Link input is capable of tracking spread spectrum clocking (SSC) from a host  
source. The RxCLKIN will accept spread spectrum tracking up to 35kHz modulation and ±0.5, ±1 or ±2%  
deviations (center spread). The maximum conditions for the RxCLKIN input are: a modulation frequency of  
35kHz and amplitude deviations of ±2% (4% total).  
SER — INTEGRATED SIGNAL CONDITIONING FEATURES  
Ser — VOD Select (VODSEL)  
The DS92LV0411 differential output voltage may be increased by setting the VODSEL pin High. When VODSEL  
is Low, the DC VOD is at the standard (default) level. When VODSEL is High, the DC VOD is increased in level.  
The increased VOD is useful in extremely high noise environments and also on extra long cable length  
applications. When using de-emphasis it is recommended to set VODSEL = H to avoid excessive signal  
attenuation especially with the larger de-emphasis settings. This feature may be controlled by the external pin or  
by register.  
Table 4. Ser — Differential Output Voltage  
Input  
Effect  
VOD  
mV  
VOD  
mVp-p  
VODSEL  
H
L
±450  
±300  
900  
600  
Ser — De-Emphasis (De-Emph)  
The De-Emph pin controls the amount of de-emphasis beginning one full bit time after a logic transition that the  
device drives. This is useful to counteract loading effects of long or lossy cables. This pin should be left open for  
standard switching currents (no de-emphasis) or if controlled by register. De-emphasis is selected by connecting  
a resistor on this pin to ground, with R value between 0.5 kto 1 M, or by register setting. When using De-  
Emphasis it is recommended to set VODSEL = H.  
Table 5. De-Emphasis Resistor Value  
Resistor Value (k)  
De-Emphasis Setting  
Disabled  
- 12 dB  
Open  
0.6  
1.0  
- 9 dB  
2.0  
- 6 dB  
5.0  
- 3 dB  
28  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
0.00  
VDD = 1.8V,  
= 25oC  
T
A
-2.00  
-4.00  
-6.00  
-8.00  
-10.00  
-12.00  
-14.00  
1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06  
R VALUE - LOG SCALE (W)  
Figure 25. De-Emph vs. R value  
POWER SAVING FEATURES  
Ser — Power Down Feature (PDB)  
The DS92LV0411 has a PDB input pin to ENABLE or POWER DOWN the device. This pin is controlled by the  
host and is used to save power, disabling the link when the display is not needed. In the POWER DOWN mode,  
the high-speed driver outputs are both pulled to VDD and present a 0V VOD state. Note – in POWER DOWN,  
the optional Serial Bus Control Registers are RESET.  
Ser — Stop Clock Feature  
The DS92LV0411 will enter a low power SLEEP state when the RxCLKIN is stopped. A STOP condition is  
detected when the input clock frequency is less than 3 MHz. The clock should be held at a static Low or high  
state. When the RxCLKIN starts again, the device will then lock to the valid input RxCLKIN and then transmits  
the RGB data to the desializer. Note – in STOP CLOCK SLEEP, the optional Serial Bus Control Registers values  
are RETAINED.  
1.8V or 3.3V VDDIO Operation  
The DS92LV0411 parallel control pin bus can operate with 1.8 V or 3.3 V levels (VDDIO) for host compatibility.  
The 1.8 V levels will offer a system power savings.  
OPTIONAL SERIAL BUS CONTROL  
Please see the following section on the Optional Serial Bus Control Interface.  
OPTIONAL BIST MODE  
Please see the following section on the chipset BIST Mode for details.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
Deserializer Functional Description  
The Des converts a single input serial data stream to a wide parallel output bus, and also provides a signal  
check for the chipset Built In Self Test (BIST) mode. The device can be configured via external pins and strap  
pins or through the optional serial control bus. The Des features enhance signal quality on the link with an  
integrated equalizer on the serial input and Channel Link II data encoding which provides randomization,  
scrambling, and DC balanacing of the data. The Des includes multiple features to reduce EMI associated with  
data transmission. This includes the randomization and scrambling of the data, the output spread spectrum clock  
generation (SSCG) support. The Des features power saving features with a power down mode, and optional  
LVCMOS (1.8 V) interface compatibility.  
OSCILLATOR OUTPUT — OPTIONAL  
The DS92LV0412 provides an optional TxCLKOUT when the input clock (serial stream) has been lost. This is  
based on an internal oscillator. The frequency of the oscillator may be selected. This feature may be controlled  
by the external pin or through the registers.  
Clock-DATA RECOVERY STATUS FLAG (LOCK), OUTPUT ENABLE (OEN) and OUTPUT STATE SELECT  
(OSS_SEL)  
When PDB is driven HIGH, the CDR PLL begins locking to the serial input, LOCK is LOW and the Channel Link  
interface state is determined by the state of the OSS_SEL pin.  
After the DS92LV0412 completes its lock sequence to the input serial data, the LOCK output is driven HIGH,  
indicating valid data and clock recovered from the serial input is available on the Channel Link outputs. The  
TxCLKOUT output is held at its current state at the change from OSC_CLK (if this is enabled via OSC_SEL) to  
the recovered clock (or vice versa). Note that the Channel Link outputs may be held in an inactive state (Tri-  
State®) through the use of the Output Enable pin (OEN).  
If there is a loss of clock from the input serial stream, LOCK is driven LOW and the state of the outputs are  
based on the OSS_SEL setting (configuration pin or register).  
Table 6. Des Output State Table  
INPUTS  
PDB  
L
OUTPUTS  
LOCK  
X
OEN  
OSS_SEL  
OTHER OUTPUTS  
X
X
TxCLKOUT is Tri-State  
TxOUT[3:0] are Tri-State  
PASS is Tri-State  
L
X
L
L
L
TxCLKOUT is Tri-State  
TxOUT[3:0] are Tri-State  
PASS is HIGH  
H
H
H
H
H
H
X
X
L
TxCLKOUT is Tri-State  
TxOUT[3:0] are Tri-State  
PASS is Tri-State  
H
L
L
TxCLKOUT is Tri-State or OSC Output through Register bit  
TxOUT[3:0] are Tri-State  
PASS is Tri-State  
H
H
TxCLKOUT is Tri-State  
TxOUT[3:0] are Tri-State  
PASS is HIGH  
H
TxCLKOUT is Active  
TxOUT[3:0] are Active  
PASS is Active  
(Normal operating mode)  
30  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
 
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
DES — INTEGRATED SIGNAL CONDITIONING FEATURES — DES  
Des — Common Mode Filter Pin (CMF) — Optional  
The Des provides access to the center tap of the internal termination. A capacitor may be placed on this pin for  
additional common-mode filtering of the differential pair. This can be useful in high noise environments for  
additional noise rejection capability. A 0.1μF capacitor may be connected to this pin to Ground.  
Des — Input Equalizer Gain (EQ)  
The Des can enable receiver input equalization of the serial stream to increase the eye opening to the Des input.  
Note this function cannot be seen at the RxIN+/- input. The equalization feature may be controlled by the  
external pin or by register.  
Table 7. Receiver Equalization Configuration Table  
EQ (Strap Option)  
Effect  
L
~1.5 dB  
~13 dB  
H
EMI REDUCTION FEATURES  
Des — VOD Select (VODSEL)  
The differential output voltage of the Channel Link interface is controlled by the VODSEL input.  
Table 8. Des — Differential Output Voltage Table  
VODSEL  
Result  
L
VOD is 250 mV TYP (500 mVp-p)  
VOD is 400 mV TYP (800 mVp-p)  
H
Des — SSCG Generation — Optional  
The Des provides an internally generated spread spectrum clock (SSCG) to modulate its outputs. Both clock and  
data outputs are modulated. This will aid to lower system EMI. Output SSCG deviations to ±2% (4% total) at up  
to 100 kHz modulations is available. See Switching Characteristics Table. This feature may be controlled by  
external STRAP pins or by register. The LFMODE setting should be set appropriately if the SSCG is being used.  
Set LFMODE HIGH if the clock frequency is between 5 MHz and 20 MHz. Set LFMODE LOW if teh clock  
frequency is between 20 MHz and 50 MHz.  
Table 9. SSCG Configuration (LF_MODE = L) — Des Output  
SSC[2:0] Inputs  
Result  
LF_MODE = L (20 — 55 MHz)  
SSC2  
SSC1  
SSC0  
fdev (%)  
OFF  
±0.9  
fmod (kHz)  
OFF  
L
L
L
L
L
H
L
CLK/2168  
L
H
H
L
±1.2  
L
H
L
±1.9  
H
H
H
H
±2.3  
L
H
L
±0.7  
CLK/1300  
H
H
±1.3  
H
±1.7  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
Table 10. SSCG Configuration (LF_MODE = H) — Des Output  
SSC[2:0] Inputs  
LF_MODE = H (5 — 20  
MHz)  
Result  
SSC2  
SSC1  
SSC0  
fdev (%)  
OFF  
±0.7  
fmod (kHz)  
OFF  
L
L
L
L
L
H
L
CLK/625  
L
H
H
L
±1.3  
L
H
L
±1.8  
H
H
H
H
±2.2  
L
H
L
±0.7  
CLK/385  
H
H
±1.2  
H
±1.7  
Frequency  
fdev(max)  
F
F
PCLK+  
F
PCLK  
fdev(min)  
Time  
PCLK-  
1/fmod  
Figure 26. SSCG Waveform  
Power Saving Features  
Des — Power Down Feature (PDB)  
The DS92LV0412 has a PDB input pin to ENABLE or POWER DOWN the device. This pin is controlled by the  
host and is used to save power, disabling the Des when the display is not needed. An auto detect mode is also  
available. In this mode, the PDB pin is tied HIGH and the Des will enter POWER DOWN when the serial stream  
stops. When the serial stream starts up again, the Des will lock to the input stream and assert the LOCK pin and  
output valid data. In the POWER DOWN mode, the LVDS data and clock output states are determined by the  
OSS_SEL status. Note – in POWER DOWN, the optional Serial Bus Control Registers are RESET.  
Des — Stop Stream SLEEPFeature  
The DS92LV0412 will enter a low power SLEEP state when the input serial stream is stopped. A STOP condition  
is detected when the embedded clock bits are not present. When the serial stream starts again, the Des will then  
lock to the incoming signal and recover the data. Note – in STOP CLOCK SLEEP, the optional Serial Bus  
Control Registers values are RETAINED.  
1.8V or 3.3V VDDIO Operation  
The DS92LV0412 parallel control bus can operate with 1.8 V or 3.3 V levels (VDDIO) for host compatibility. The  
1.8 V levels will offer a system power savings.  
32  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
Built In Self Test (BIST)  
An optional At-Speed Built In Self Test (BIST) feature supports the testing of the high-speed serial link. This is  
useful in the prototype stage, equipment production, in-system test and also for system diagnostics. In the BIST  
mode only a input clock is required along with control to the Ser and Des BISTEN input pins. The Ser outputs a  
test pattern (PRBS7) and drives the link at speed. The Des detects the PRBS7 pattern and monitors it for errors.  
A PASS output pin toggles to flag any payloads that are received with 1 to 24 errors. Upon completion of the  
test, the result of the test is held on the PASS output until reset (new BIST test or Power Down). A high on PASS  
indicates NO ERRORS were detected. A Low on PASS indicates one or more errors were detected. The duration  
of the test is controlled by the pulse width applied to the Des BISTEN pin.  
Inter-operability is supported between this Channel Link II device and all reverse compatible devices— see  
respective datasheets for details on entering BIST mode and control.  
Sample BIST Sequence  
See Figure 27 for the BIST mode flow diagram.  
Step 1: Place the serializer in BIST Mode by setting Ser BISTEN = H. The BIST Mode is enabled via the  
BISTEN pin. An RxCLKIN is required for all the Ser options. When the deserializer detects the BIST mode  
pattern and command the parallel data and control signal outputs are shut off.  
Step 2: Place the deserializer in BIST mode by setting the BISTEN = H. The Des is now in the BIST mode and  
checks the incoming serial payloads for errors. If an error in the payload (1 to 24) is detected, the PASS pin will  
switch low for one half of the clock period. During the BIST test, the PASS output can be monitored and counted  
to determine the payload error rate.  
Step 3: To Stop the BIST mode, the deserializer BISTEN pin is set Low. The deserializer stops checking the  
data and the final test result is held on the PASS pin. If the test ran error free, the PASS output will be High. If  
there was one or more errors detected, the PASS output will be Low. The PASS output state is held until a new  
BIST is run, the device is RESET, or Powered Down. The BIST duration is user controlled by the duration of the  
BISTEN signal.  
Step 4: To return the link to normal operation, the ser and des BISTEN input are set Low. The Link returns to  
normal operation.  
Figure 28 shows the waveform diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2  
shows one with multiple errors. In most cases it is difficult to generate errors due to the robustness of the link  
(differential data transmission etc.), thus they may be introduced by greatly extending the cable length, faulting  
the interconnect, reducing signal condition enhancements (De-Emphasis, VODSEL, or deserializer Equalization).  
Normal  
Step 1: SER in BIST  
BIST  
Wait  
Step 2: Wait, DES in BIST  
BIST  
Start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
Stop  
Step 4: SER in Normal  
Figure 27. BIST Mode Flow Diagram  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: DS92LV0411 DS92LV0412  
 
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
BER Calculations  
It is possible to calculate the approximate Bit Error Rate (BER). The following is required:  
Pixel Clock Frequency (MHz)  
BIST Duration (seconds)  
BIST test Result (PASS)  
The BER is less than or equal to one over the product of 24 times the RxCLKIN rate times the test duration. If we  
assume a 65MHz RxCLKIN, a 10 minute (600 second) test, and a PASS, the BERT is 1.07 X 10E-12  
The BIST mode runs a check on the data payload bits. The LOCK pin also provides a link status. It the recovery  
of the C0 and C1 bits does not reconstruct the expected clock signal, the LOCK pin will switch Low. The  
combination of the LOCK and At-Speed BIST PASS pin provides a powerful tool for system evaluation and  
performance monitoring.  
BISTEN  
(DS90UR907Q)  
BISTEN  
(Deserializer)  
TxCLKOUT  
(Diff.)  
TxOUT[3:0]  
(Diff.)  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
BIST  
Result  
Held  
Normal  
PRBS  
Normal  
BIST Test  
BIST Duration  
Figure 28. BIST Waveforms  
34  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
Optional Serial Bus Control  
The DS92LV0411 and DS92LV0412 may be configured by the use of a serial control bus that is I2C protocol  
compatible. By default, the I2C reg_0x00'h is set to 00'h and all configuration is set by control/strap pins. A write  
of 01'h to reg_0x00'h will enable/allow configuration by registers; this will override the control/strap pins. Multiple  
devices may share the serial control bus since multiple addresses are supported. See Figure 29.  
The serial bus is comprised of three pins. The SCL is a Serial Bus Clock Input. The SDA is the Serial Bus Data  
Input / Output signal. Both SCL and SDA signals require an external pull up resistor to VDDIO. For most  
applications a 4.7 kpull up resistor to 3.3V may be used. The resistor value may be adjusted for capacitive  
loading and data rate requirements. The signals are either pulled High, or driven Low.  
1.8V  
10k  
3.3V  
ID[X]  
4.7k  
4.7k  
R
ID  
DS92LV0411/  
DS92LV0412  
SCL  
HOST  
SCL  
SDA  
SDA  
To other  
Devices  
Figure 29. Serial Control Bus Connection  
The third pin is the ID[X] pin. This pin sets one of four possible device addresses. Three different connections are  
possible. The pin may be pulled to VDD (1.8V, NOT VDDIO)) with a 10 kresistor. Or a 10 kpull up resistor (to  
VDD1.8V, NOT VDDIO)) and a pull down resistor of the recommended value to set other three possible addresses  
may be used. See Table 11.  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SCL transitions Low while SDA is High. A STOP occurs when SDA transition High while SCL is also HIGH. See  
Figure 30.  
SDA  
SCL  
S
P
START condition, or  
STOP condition  
START repeat condition  
Figure 30. START and STOP Conditions  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: DS92LV0411 DS92LV0412  
 
 
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
To communicate with a remote device, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it Acknowledges (ACKs) the master by driving the SDA bus low. If the address doesn't  
match a device's slave address, it Not-acknowledges (NACKs) the master by letting SDA be pulled High. ACKs  
also occur on the bus when data is being transmitted. When the master is writing data, the slave ACKs after  
every data byte is successfully received. When the master is reading data, the master ACKs after every data  
byte is received to let the slave know it wants to receive another data byte. When the master wants to stop  
reading, it NACKs after the last data byte and creates a stop condition on the bus. All communication on the bus  
begins with either a Start condition or a Repeated Start condition. All communication on the bus ends with a Stop  
condition. A READ is shown in Figure 31 and a WRITE is shown in Figure 32.  
If the Serial Bus is not required, the three pins may be left open (NC).  
Table 11. ID[x] Resistor Value – DS92LV0411  
Resistor  
RID kΩ  
Address  
7'b  
Address  
8'b  
0 appended  
(WRITE)  
0.47  
2.7  
7b' 110 1001 (h'69)  
7b' 110 1010 (h'6A)  
7b' 110 1011 (h'6B)  
7b' 110 1110 (h'6E)  
8b' 1101 0010 (h'D2)  
8b' 1101 0100 (h'D4)  
8b' 1101 0110 (h'D6)  
8b' 1101 1100 (h'DC)  
8.2  
Open  
Table 12. ID[x] Resistor Value – DS92LV0412  
Resistor  
RID kΩ  
Address  
7'b  
Address  
8'b  
0 appended  
(WRITE)  
0.47  
2.7  
7b' 111 0001 (h'71)  
7b' 111 0010 (h'72)  
7b' 111 0011 (h'73)  
7b' 111 0110 (h'76)  
8b' 1110 0010 (h'E2)  
8b' 1110 0100 (h'E4)  
8b' 1110 0110 (h'E6)  
8b' 1110 1100 (h'EC)  
8.2  
Open  
Register Address  
Slave Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
A
2
A
1
A
0
0
S
S
1
P
Figure 31. Serial Control Bus — READ  
Register Address  
Slave Address  
Data  
a
c
a
c
k
a
c
k
A
2
A
1
A
0
0
S
P
k
Figure 32. Serial Control Bus — WRITE  
36  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
 
 
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
Table 13. DS92LV0411 SERIALIZER — Serial Bus Control Registers  
ADD ADD Register Name  
(dec) (hex)  
Bit(s)  
R/W Defau Function  
Description  
lt  
(bin)  
0
0
Ser Config 1  
7
6
R/W  
R/W  
0
0
Reserved  
Reserved  
MAPSEL  
0: LSB on RxIN3  
1: MSB on RxIN3  
5
R/W  
R/W  
0
VODSEL  
0: Low  
1: High  
4
0
Reserved  
Reserved  
3:2  
00  
CONFIG  
00: Control Signal Filter Disabled  
01: Control Signal Filter Enabled  
10: Reserved  
11: Reserved  
1
R/W  
0
SLEEP  
Note – not the same function as PowerDown (PDB)  
0: normal mode  
1: Sleep Mode – Register settings retained.  
0
7
R/W  
R/W  
0
0
REG  
0: Configurations set from control pins  
1: Configuration set from registers (except I2C_ID)  
1
2
1
2
Device ID  
REG ID  
0: Address from ID[X] Pin  
1: Address from Register  
6:0  
R/W 11010 ID[X]  
00  
Serial Bus Device ID, IDs are:  
7b '1101 001 (h'69)  
7b '1101 010 (h'6A)  
7b '1101 011 (h'6B)  
7b '1101 110 (h'6E)  
All other addresses are Reserved.  
De-Emphasis  
Control  
7:5  
R/W  
000 De-E Setting  
000: set by external Resistor  
001: -1 dB  
010: -2 dB  
011: -3.3 dB  
100: -5 dB  
101: -6.7 dB  
110: -9 dB  
111: -12 dB  
4
R/W  
R/W  
0
De-E EN  
0: De-Emphasis Enabled  
1: De-Emphasis Disabled  
3:0  
000 Reserved  
Reserved  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
Table 14. DS92LV0412 DESERIALIZER — Serial Bus Control Registers  
ADD ADD Register Name  
(dec) (hex)  
Bit(s)  
R/W Defau Function  
Description  
lt  
(bin)  
0
0
Des Config 1  
7
6
R/W  
R/W  
0
LFMODE  
MAPSEL  
SSCG Mode — low frequency support  
0: 20 to 65 MHz Operation  
1: 10 to 20 MHz Operation  
0
Channel Link Map Select  
0: LSB on TxOUT3+/-  
1: MSB on TxOUT3+/-  
5
4
R/W  
R/W  
R/W  
0
0
Reserved  
Reserved  
CONFIG  
Reserved  
Reserved  
3:2  
00  
00: Control Signal Filter Disabled  
01: Control Signal Filter Enabled  
10: Reserved  
11: Reserved  
1
R/W  
0
SLEEP  
Note – not the same function as PowerDown (PDB)  
0: normal mode  
1: Sleep Mode – Register settings retained.  
0
7
R/W  
R/W  
0
0
REG Control  
REG ID  
0: Configurations set from control pins  
1: Configuration set from registers (except I2C_ID)  
1
2
1
2
Device ID  
0: Address from ID[X] Pin  
1: Address from Register  
6:0  
R/W 11100 ID[X]  
00  
Serial Bus Device ID, IDs are:  
7b' 111 0001 (h'71)  
7b' 111 0010 (h'72)  
7b' 111 0011 (h'73)  
7b' 111 0110 (h'76)  
All other addresses are Reserved.  
Des Features 1  
7
6
R/W  
R/W  
0
0
OEN  
Output Enable Input  
(See Table 6)  
OSS_SEL  
Output Sleep State Select  
(See Table 6)  
5:4  
3
R/W  
R/W  
00  
0
Reserved  
Reserved  
VODSEL  
LVDS Driver Output Voltage Select  
0: LVDS VOD is ±250 mV, 500 mVp-p (typ)  
1: LVDS VOD is ±400 mV, 800 mVp-p (typ)  
2:0  
R/W  
000 OSC_SEL  
000: OFF  
001:RESERVED  
010: 25 MHz ±40%  
011: 16.7 MHz ±40%  
100: 12.5 MHz ±40%  
101: 10 MHz ±40%  
110: 8.3 MHz ±40%  
111: 6.3MHz ±40%  
38  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
Table 14. DS92LV0412 DESERIALIZER — Serial Bus Control Registers (continued)  
ADD ADD Register Name  
(dec) (hex)  
Bit(s)  
R/W Defau Function  
Description  
lt  
(bin)  
3
3
Des Features 2  
7:5  
R/W  
000 EQ Gain  
000: ~1.625 dB  
001: ~3.25 dB  
010: ~4.87 dB  
011: ~6.5 dB  
100: ~8.125 dB  
101: ~9.75 dB  
110: 11.375 dB  
111: 13 dB  
4
R/W  
0
0
EQ Enable  
0: EQ = disabled  
1: EQ = enabled  
3
R/W  
R/W  
Reserved  
Reserved  
2:0  
000 SSC  
IF LFMODE = 0 then:  
000: SSCG OFF  
001: fdev = ±0.9%, fmod = CLK/2168  
010: fdev = ±1.2%, fmod = CLK/2168  
011: fdev = ±1.9%, fmod = CLK/2168  
100: fdev = ±2.3%, fmod = CLK/2168  
101: fdev = ±0.7%, fmod = CLK/21300  
110: fdev = ±1.3%, fmod = CLK/1300  
111: fdev = ±1.57%, fmod = CLK/1300  
IF LFMODE = 1, then:  
001: fdev = ±0.7%, fmod = CLK/625  
010: fdev = ±1.3%, fmod = CLK/625  
011: fdev = ±1.8%, fmod = CLK/625  
100: fdev = ±2.2%, fmod = CLK/625  
101: fdev = ±0.7%, fmod = CLK/385  
110: fdev = ±1.2%, fmod = CLK/385  
111: fdev = ±1.7%, fmod = CLK/385  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
APPLICATIONS INFORMATION  
DISPLAY APPLICATION  
The DS92LV0411 and DS92LV0412 chipset is intended for interface between a host (graphics processor) and a  
Display. It supports an 24-bit color depth (RGB888) and up to 1024 X 768 display formats. In a RGB888  
application, 24 color bits (R[7:0], G[7:0], B[7:0]), Pixel Clock (PCLK) and three control bits (VS, HS and DE) are  
supported across the serial link with PCLK rates from 5 to 50 MHz. The chipset may also be used in 18-bit color  
applications. In this application three to six general purpose signals may also be sent from host to display.  
DS92LV0411 TYPICAL APPLICATION CONNECTION  
Figure 33 shows a typical application of the DS92LV0411 for a 50 MHz 24-bit Color Display Application. The  
LVDS inputs require external 100 ohm differential termination resistors. The CML outputs require 0.1 μF AC  
coupling capacitors to the line. The line driver includes internal termination. Bypass capacitors are placed near  
the power supply pins. At a minimum, four 0.1 µF capacitors and a 4.7 µF capacitor should be used for local  
device bypassing. System GPO (General Purpose Output) signals control the PDB and BISTEN pins. The  
application assumes the companion deserializer (DS92LV0412) therefore the configuration pins are also both  
tied Low. In this example the cable is long, therefore the VODSEL pin is tied High and a De-Emphasis value is  
selected by the resistor R1. The interface to the host is with 1.8 V LVCMOS levels, thus the VDDIO pin is  
connected also to the 1.8V rail. The Optional Serial Bus Control is not used in this example, thus the SCL, SDA  
and ID[x] pins are left open. A delay cap is placed on the PDB signal to delay the enabling of the device until  
power is stable. Bypass capacitors are placed near the power supply pins. Ferrite beads are placed on the power  
lines for effective noise suppression.  
DS92LV0411  
1.8V  
VDDIO  
VDDIO  
VDDTX  
VDDHS  
C10 C8  
C9  
C11  
FB1  
C3  
C4  
FB2  
VDDP  
VDDL  
C12  
C5  
C6  
FB3  
FB4  
RxCLKIN-  
RxCLKIN+  
RxIN3-  
RxIN3+  
VDDRX  
Channel Link  
Interface  
RxIN2-  
RxIN2+  
C7  
FB5  
LVDS  
100W Terminations  
DOUT+  
DOUT-  
RxIN1-  
RxIN1+  
RxIN0-  
RxIN0+  
C1  
C2  
Serial  
Channel Link II  
Interface  
1.8V  
10k  
RID  
ID[X]  
SCL  
SDA  
VDDIO  
VODSEL  
De-Emph  
R1  
Host  
Control  
BISTEN  
PDB  
NOTE:  
R
C1-C2 = 0.1 mF (50 WV)  
C3-C9 = 0.1 mF  
C10-C12 = 4.7 mF  
C13 = >10 mF  
RES7  
RES6  
RES5  
RES4  
RES3  
RES2  
C13  
CONFIG1  
CONFIG0  
MAPSEL  
R = 10 kW  
R1 (cable insertion loss specific)  
RID (see ID[x] Resistor Value Table)  
FB1-FB5: Impedance = 1 kW,  
low DC resistance (<1W)  
RES1  
RES0  
DAP (GND)  
Figure 33. DS92LV0411 Typical Connection Diagram  
40  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
 
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
DS92LV0412 TYPICAL APPLICATION CONNECTION  
Figure 34 shows a typical application of the DS92LV0412 for a 50 MHz 24-bit Color Display Application. The  
CML inputs require 0.1 μF AC coupling capacitors to the line. The line driver includes internal termination.  
Bypass capacitors are placed near the power supply pins. At a minimum, four 0.1 µF capacitors and a 4.7 µF  
capacitor should be used for local device bypassing. System GPO (General Purpose Output) signals control the  
PDB and BISTEN pins. The application assumes the companion deserializer (DS92LV0412) therefore the  
configuration pins are also both tied Low. The interface to the host is with 1.8 V LVCMOS levels, thus the VDDIO  
pin is connected also to the 1.8V rail. The Optional Serial Bus Control is not used in this example, thus the SCL,  
SDA and ID[x] pins are left open. A delay cap is placed on the PDB signal to delay the enabling of the device  
until power is stable. Bypass capacitors are placed near the power supply pins. Ferrite beads are placed on the  
power lines for effective noise suppression.  
DS92LV0412  
3.3V  
1.8V  
FB1  
FB4  
VDDL  
VDDTX  
C6  
C11  
C3  
C4  
C8  
C12  
C9  
VDDL  
FB2  
VDDIO  
FB5  
VDDA  
VDDA  
VDDIO  
C7  
C13  
C10  
FB3  
VDDP  
C5  
VDDSC  
VDDSC  
TxCLKOUT+  
TxCLKOUT-  
C1  
C2  
TxOUT3+  
TxOUT3-  
TxOUT2+  
TxOUT2-  
TxOUT1+  
TxOUT1-  
TxOUT0+  
TxOUT0-  
RIN+  
Serial  
Channel Link II  
Interface  
Channel  
Link  
Interface  
RIN-  
CMF  
C15  
BISTEN  
PDB  
Host  
Control  
LOCK  
PASS  
R
C14  
1.8V  
OEN  
OSS_SEL  
LFMODE  
VODSEL  
MAPSEL  
10k  
RID  
ID[X]  
SCL  
SDA  
C1 - C2 = 0.1 mF (50 WV)  
C3 œ C10, C15 = 0.1 mF  
C11 - C13 = 4.7 mF  
C14 = >10 mF  
CONFIG1  
CONFIG0  
RES  
GND  
8
SSC[2]  
SSC[1]  
SSC[0]  
DAP (GND)  
R = 10 kW  
RID (See ID[x] Resistor Value Table)  
FB1 - FB5: Impedance = 1 kW  
Low DC resistance ( <1W)  
Figure 34. DS92LV0412 Typical Connection Diagram  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: DS92LV0411 DS92LV0412  
 
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
POWER UP REQUIREMENTS AND PDB PIN  
The VDD (VDDn and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. If slower then 1.5 ms  
then a capacitor on the PDB pin is needed to ensure PDB arrives after all the VDD have settled to the  
recommended operating voltage. When PDB pin is pulled to VDDIO, it is recommended to use a 10 kΩ pull-up and  
a 22 uF cap to GND to delay the PDB input signal.  
TRANSMISSION MEDIA  
The DS92LV0411 / DS92LV0412 and their companion deserializer/serializer chipset is intended to be used in a  
point-to-point configuration, through a PCB trace, twisted pair or coaxial cables. The DS92LV0411 requires  
external parallel LVDS termination, but provides internal serial lane terminations to provide a clean signaling  
environment. The interconnect for LVDS should present a differential impedance of 100 Ohms. The interconnect  
for the Channel Link II interface should present a differential impedance of 100 Ohms or when configured for  
coaxial cables the interconnect should present an impedance of 50 Ohms. Use cables and connectors that have  
matched impedance to minimize impedance discontinuities. Shielded or un-shielded cables may be used  
depending upon the noise environment and application requirements.  
LIVE LINK INSERTION  
The serializer and deserializer devices support live link or cable hot plug applications. The automatic receiver  
lock to random data “plug & go” hot insertion capability allows the DS92LV0412 to attain lock to the active data  
stream during a live cable insertion event.  
ALTERNATE COLOR / DATA MAPPING  
Color Mapped data Pin names are provided to specify a recommended mapping for 24-bit and 18-bit  
Applications. When connecting to earlier generations of Channel Link II deserializer devices, a color mapping  
review is recommended to ensure the correct connectivity is obtained. Table 15 provides examples for interfacing  
between DS92LV0411 and different deserializers.  
42  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
Table 15. Serializer Alternate Color / Data Mapping  
Channel Link  
Bit Number  
RGB (LSB  
Example)  
DS92LV2412  
DS90UR124  
DS99R124Q  
DS90C124  
Bit 26  
Bit 25  
Bit 24  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18  
Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
B1  
B0  
G1  
G0  
R1  
R0  
DE  
VS  
HS  
B7  
B6  
B5  
B4  
B3  
B2  
G7  
G6  
G5  
G4  
G3  
G2  
R7  
R6  
R5  
R4  
R3  
R2  
B1  
B0  
G1  
RxIN3  
N/A  
G0  
R1  
R0  
DE  
VS  
ROUT20  
ROUT19  
ROUT18  
ROUT17  
ROUT16  
ROUT15  
ROUT14  
ROUT13  
ROUT12  
ROUT11  
ROUT10  
ROUT9  
ROUT8  
ROUT7  
ROUT6  
ROUT5  
ROUT4  
ROUT3  
ROUT2  
ROUT1  
ROUT0  
ROUT23  
ROUT22  
ROUT21  
ROUT20  
ROUT19  
ROUT18  
ROUT17  
ROUT16  
ROUT15  
ROUT14  
ROUT13  
ROUT12  
ROUT11  
ROUT10  
ROUT9  
ROUT8  
ROUT7  
ROUT6  
ROUT5  
ROUT4  
ROUT3  
ROUT2  
ROUT1  
ROUT0  
ROUT23  
ROUT22  
ROUT21  
HS  
B7  
RxIN2  
TxOUT2  
TxOUT1  
TxOUT0  
B6ROUT10  
B5  
B4  
B3  
B2  
G7  
RxIN1  
G6  
G5  
Bit 8  
G4  
Bit 7  
G3  
Bit 6  
G2  
Bit 5  
R7  
Bit 4  
R6  
RxIN0  
Bit 3  
R5  
Bit 2  
R4  
Bit 1  
R3  
Bit 0  
R2  
OS2  
OS1  
OS0  
N/A  
N/A  
DS92LV0411  
Settings  
CONFIG [1:0] =  
00  
CONFIG [1:0] =  
11  
MAPSEL = 0  
CONFIG [1:0] = 10  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
Table 16. Deserializer Alternate Color / Data Mapping  
Channel Link  
Bit Number  
RGB (LSB  
Example)  
DS92LV2411  
DS90UR241  
DS99R421Q  
DS90C241  
Bit 26  
Bit 25  
Bit 24  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18  
Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
B1  
B0  
G1  
G0  
R1  
R0  
DE  
VS  
HS  
B7  
B6  
B5  
B4  
B3  
B2  
G7  
G6  
G5  
G4  
G3  
G2  
R7  
R6  
R5  
R4  
R3  
R2  
B1  
B0  
G1  
TxOUT3  
N/A  
G0  
R1  
R0  
DE  
VS  
DIN20  
DIN19  
DIN18  
DIN17  
DIN16  
DIN15  
DIN14  
DIN13  
DIN12  
DIN11  
DIN10  
DIN9  
DIN20  
DIN19  
DIN18  
DIN17  
DIN16  
DIN15  
DIN14  
DIN13  
DIN12  
DIN11  
DIN10  
DIN9  
HS  
B7  
TxOUT2  
TxOUT1  
TxOUT0  
RxIN2  
RxIN1  
RxIN0  
B6ROUT10  
B5  
B4  
B3  
B2  
G7  
G6  
G5  
Bit 8  
G4  
DIN8  
DIN8  
Bit 7  
G3  
DIN7  
DIN7  
Bit 6  
G2  
DIN6  
DIN6  
Bit 5  
R7  
DIN5  
DIN5  
Bit 4  
R6  
DIN4  
DIN4  
Bit 3  
R5  
DIN3  
DIN3  
Bit 2  
R4  
DIN2  
DIN2  
Bit 1  
R3  
DIN1  
DIN1  
Bit 0  
R2  
DIN0  
DIN0  
DIN923  
DIN922  
DIN921  
OS2  
OS1  
OS0  
DIN923  
DIN922  
DIN921  
N/A  
N/A  
DS92LV0412  
Settings  
CONFIG [1:0] =  
00  
CONFIG [1:0] =  
11  
MAPSEL = 0  
CONFIG [1:0] = 10  
44  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
DS92LV0411, DS92LV0412  
www.ti.com  
SNLS331B MAY 2010REVISED APRIL 2013  
PCB LAYOUT AND POWER SYSTEM CONSIDERATIONS  
Circuit board layout and stack-up for the LVDS devices should be designed to provide low-noise power feed to  
the device. Good layout practice will also separate high frequency or high-level inputs and outputs to minimize  
unwanted stray noise pickup, feedback and interference. Power system performance may be greatly improved by  
using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane capacitance  
for the PCB power system with low-inductance parasitics, which has proven especially effective at high  
frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01 uF to 0.1 uF. Tantalum capacitors may be in the 2.2 uF to 10 uF range. Voltage rating of the  
tantalum capacitors should be at least 5X the power supply voltage being used.  
Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per  
supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 50uF to 100uF range and will smooth low frequency switching noise. It is  
recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external  
bypass capacitor will increase the inductance of the path.  
A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size  
reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of  
these external bypass capacitors, usually in the range of 20-30 MHz. To provide effective bypassing, multiple  
capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At  
high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing  
the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. PIN DESCRIPTIONS tables typically provide guidance on which circuit blocks are connected to which  
power pin pairs. In some cases, an external filter many be used to provide clean power to sensitive circuits such  
as PLLs.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the LVDS  
lines to prevent coupling from the LVCMOS lines to the LVDS lines. Closely-coupled differential lines of 100  
Ohms are typically recommended for LVDS interconnect. The closely coupled lines help to ensure that coupled  
noise will appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also  
radiate less.  
Information on the WQFN style package is provided in Application Note: AN-1187 (SNOA401).  
LVDS INTERCONNECT GUIDELINES  
See AN-1108 (SNLA008) and AN-905 (SNLA035) for full details.  
Use 100Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
S = space between the pair  
2S = space between pairs  
3S = space to LVCMOS signal  
Minimize the number of vias  
If vias are used, be sure to place vias to ground adjacent to the signal vias to ensure a constant return path  
for the signal  
Use differential connectors when operating above 500Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Terminate as close to the TX outputs and RX inputs as possible  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: DS92LV0411 DS92LV0412  
 
DS92LV0411, DS92LV0412  
SNLS331B MAY 2010REVISED APRIL 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision A (April 2013) to Revision B  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 45  
46  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV0411 DS92LV0412  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS92LV0411SQ/NOPB  
DS92LV0411SQE/NOPB  
DS92LV0411SQX/NOPB  
DS92LV0412SQ/NOPB  
DS92LV0412SQE/NOPB  
DS92LV0412SQX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
NJK  
NJK  
NJK  
RHS  
RHS  
RHS  
36  
36  
36  
48  
48  
48  
1000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
LV0411SQ  
SN  
SN  
SN  
SN  
SN  
LV0411SQ  
LV0411SQ  
LV0412SQ  
LV0412SQ  
LV0412SQ  
2500 RoHS & Green  
1000 RoHS & Green  
250  
RoHS & Green  
2500 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS92LV0411SQ/NOPB  
WQFN  
NJK  
NJK  
NJK  
RHS  
RHS  
RHS  
36  
36  
36  
48  
48  
48  
1000  
250  
330.0  
178.0  
330.0  
330.0  
178.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
6.3  
6.3  
6.3  
7.3  
7.3  
7.3  
6.3  
6.3  
6.3  
7.3  
7.3  
7.3  
1.5  
1.5  
1.5  
1.3  
1.3  
1.3  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
DS92LV0411SQE/NOPB WQFN  
DS92LV0411SQX/NOPB WQFN  
2500  
1000  
250  
DS92LV0412SQ/NOPB  
WQFN  
DS92LV0412SQE/NOPB WQFN  
DS92LV0412SQX/NOPB WQFN  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS92LV0411SQ/NOPB  
DS92LV0411SQE/NOPB  
DS92LV0411SQX/NOPB  
DS92LV0412SQ/NOPB  
DS92LV0412SQE/NOPB  
DS92LV0412SQX/NOPB  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
NJK  
NJK  
NJK  
RHS  
RHS  
RHS  
36  
36  
36  
48  
48  
48  
1000  
250  
356.0  
208.0  
356.0  
356.0  
208.0  
356.0  
356.0  
191.0  
356.0  
356.0  
191.0  
356.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
2500  
1000  
250  
2500  
Pack Materials-Page 2  
MECHANICAL DATA  
NJK0036A  
SQA36A (Rev A)  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

DS92LV0412SQXNOPB

暂无描述
NSC

DS92LV0421

10 - 75 MHz Channel Link II Serializer/Deserializer with LVDS Parallel Interface
NSC

DS92LV0421

具有 LVDS 并行接口的 10MHz 至 75MHz Channel-Link II 串行器
TI

DS92LV0421SQ

10 - 75 MHz Channel Link II Serializer/Deserializer with LVDS Parallel Interface
NSC

DS92LV0421SQ/NOPB

IC LINE DRIVER, QCC36, 6 X 6 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, LLP-36, Line Driver or Receiver
NSC

DS92LV0421SQ/NOPB

具有 LVDS 并行接口的 10MHz 至 75MHz Channel-Link II 串行器 | NJK | 36 | -40 to 85
TI

DS92LV0421SQE

10 - 75 MHz Channel Link II Serializer/Deserializer with LVDS Parallel Interface
NSC

DS92LV0421SQE/NOPB

IC LINE DRIVER, QCC36, 6 X 6 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, LLP-36, Line Driver or Receiver
NSC

DS92LV0421SQE/NOPB

具有 LVDS 并行接口的 10MHz 至 75MHz Channel-Link II 串行器 | NJK | 36 | -40 to 85
TI

DS92LV0421SQX

10 - 75 MHz Channel Link II Serializer/Deserializer with LVDS Parallel Interface
NSC

DS92LV0421SQX/NOPB

具有 LVDS 并行接口的 10MHz 至 75MHz Channel-Link II 串行器 | NJK | 36 | -40 to 85
TI

DS92LV0422

10 - 75 MHz Channel Link II Serializer/Deserializer with LVDS Parallel Interface
NSC