DSD1793DB [TI]

113dB SNR 立体声音频 DAC(软件控制) | DB | 28 | -25 to 85;
DSD1793DB
型号: DSD1793DB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

113dB SNR 立体声音频 DAC(软件控制) | DB | 28 | -25 to 85

光电二极管 转换器
文件: 总54页 (文件大小:1185K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
D
Dual Supply Operation:  
FEATURES  
− 5-V Analog, 3.3-V Digital  
5-V Tolerant Digital Inputs  
Small 28-Lead SSOP Package  
D
D
D
Supports Both DSD and PCM Formats  
24-Bit Resolution  
D
D
Analog Performance:  
− Dynamic Range: 113 dB  
− THD+N: 0.001%  
APPLICATIONS  
− Full-Scale Output: 2.1 V rms (at  
Postamplifier)  
D
D
D
D
D
D
D
A/V Receivers  
SACD Players  
D
D
Differential Voltage Output: 3.2 V p-p  
DVD Players  
8× Oversampling Digital Filter:  
− Stop-Band Attenuation: –82 dB  
− Pass-Band Ripple: 0.002 dB  
HDTV Receivers  
Car Audio Systems  
Digital Multitrack Recorders  
Other Applications Requiring 24-Bit Audio  
D
D
Sampling Frequency: 10 kHz to 200 kHz  
System Clock: 128, 192, 256, 384, 512, or  
768 f With Autodetect  
S
Accepts 16-, 20-, and 24-Bit Audio Data  
DESCRIPTION  
D
2
D
PCM Data Formats: Standard, I S, and  
Left-Justified  
The DSD1793 is a monolithic CMOS integrated circuit that  
includes stereo digital-to-analog converters and support  
circuitry in a small 28-lead SSOP package. The data  
converters use TI’s advanced-segment DAC architecture  
to achieve excellent dynamic performance and improved  
tolerance to clock jitter. The DSD1793 provides balanced  
voltage outputs, allowing the user to optimize analog  
performance externally. The DSD1793 accepts the PCM  
and DSD audio data formats, providing easy interfacing to  
audio DSP and decoder chips. The DSD1793 also accepts  
interfaces to external digital filter devices (DF1704,  
DF1706, PMD200). Sampling rates up to 200 kHz are  
supported. A full set of user-programmable functions is  
accessible through an I2C-compatible serial control port.  
D
D
DSD Format Interface Available  
Optional Interface to External Digital Filter or  
DSP Available  
2
D
I C-Compatible Serial Port  
D
User-Programmable Mode Controls:  
− Digital Attenuation: 0 dB to –120 dB,  
0.5 dB/Step  
− Digital De-Emphasis  
− Digital Filter Rolloff: Sharp or Slow  
− Soft Mute  
− Zero Flags for Each Output in PCM and  
DSD Formats  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate  
precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to  
damage because very small parametric changes could cause the device not to meet its published specifications.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢒꢛ ꢚ ꢀꢙ ꢗ ꢋꢊ ꢚꢔ ꢀ ꢐꢋꢐ ꢜꢝ ꢞꢟ ꢠ ꢡꢢ ꢣꢜꢟꢝ ꢜꢤ ꢥꢦ ꢠ ꢠ ꢧꢝꢣ ꢢꢤ ꢟꢞ ꢨꢦꢩ ꢪꢜꢥ ꢢꢣꢜ ꢟꢝ ꢫꢢ ꢣꢧꢬ ꢒꢠ ꢟꢫꢦ ꢥꢣꢤ  
ꢥ ꢟꢝ ꢞꢟꢠ ꢡ ꢣꢟ ꢤ ꢨꢧ ꢥ ꢜ ꢞꢜ ꢥ ꢢ ꢣꢜ ꢟꢝꢤ ꢨ ꢧꢠ ꢣꢭꢧ ꢣꢧ ꢠ ꢡꢤ ꢟꢞ ꢋꢧꢮ ꢢꢤ ꢊꢝꢤ ꢣꢠ ꢦꢡ ꢧꢝꢣ ꢤ ꢤꢣ ꢢꢝꢫ ꢢꢠ ꢫ ꢯ ꢢꢠ ꢠ ꢢ ꢝꢣꢰꢬ  
ꢒꢠ ꢟ ꢫꢦꢥ ꢣ ꢜꢟ ꢝ ꢨꢠ ꢟ ꢥ ꢧ ꢤ ꢤ ꢜꢝ ꢱ ꢫꢟ ꢧ ꢤ ꢝꢟꢣ ꢝꢧ ꢥꢧ ꢤꢤ ꢢꢠ ꢜꢪ ꢰ ꢜꢝꢥ ꢪꢦꢫ ꢧ ꢣꢧ ꢤꢣꢜ ꢝꢱ ꢟꢞ ꢢꢪ ꢪ ꢨꢢ ꢠ ꢢꢡ ꢧꢣꢧ ꢠ ꢤꢬ  
Copyright 2006, Texas Instruments Incorporated  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
ORDERING INFORMATION  
OPERATION  
TEMPERATURE RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA  
PRODUCT  
PACKAGE  
PACKAGE CODE  
DSD1793DB  
Tube  
DSD1793DB  
28-lead SSOP  
28DB  
–25°C to 85°C  
DSD1793  
DSD1793DBR  
Tape and reel  
ABSOLUTE MAXIMUM RATINGS  
(1)  
over operating free-air temperature range unless otherwise noted  
DSD1791  
V
V
F, V L, V C, V  
R
–0.3 V to 6.5 V  
–0.3 V to 4 V  
0.1 V  
CC  
DD  
CC CC CC  
Supply voltage  
Supply voltage differences: V F, V L, V C, V  
R
CC CC CC CC  
Ground voltage differences: AGNDF, AGNDL, AGNDC, AGNDR, DGND  
0.1 V  
PLRCK, PDATA, PBCK, DSDL, DSDR, DBCK, ADR0, ADR1, SCK, SCL, SDA  
ZEROL, ZEROR  
–0.3 V to 6.5 V  
Digital input voltage  
Analog input voltage  
–0.3 V to (V  
+ 0.3 V) < 4 V  
DD  
–0.3 V to (V  
+ 0.3 V) < 6.5 V  
CC  
Input current (any pins except supplies)  
Ambient temperature under bias  
Storage temperature  
10 mA  
–40°C to 125°C  
–55°C to 150°C  
150°C  
Junction temperature  
Lead temperature (soldering)  
Package temperature (IR reflow, peak)  
260°C, 5 s  
260°C  
(1)  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
all specifications at T = 25°C, V  
= 5 V, V = 3.3 V, f = 44.1 kHz, system clock = 256 f , and 24-bit data, unless otherwise noted  
DD S S  
A
CC  
DSD1793DB  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
RESOLUTION  
24  
Bits  
DATA FORMAT (PCM Mode)  
2
Audio data interface format  
Audio data bit length  
Audio data format  
Standard, I S, left justified  
16-, 20-, 24-bit selectable  
MSB first, 2s complement  
f
S
Sampling frequency  
System clock frequency  
10  
200  
kHz  
128, 192, 256, 384, 512, 768 f  
S
DATA FORMAT (DSD Mode)  
Audio data interface format  
Audio data bit length  
DSD (direct stream digital)  
1 Bit  
f
S
Sampling frequency  
2.8224  
MHz  
MHz  
System clock frequency  
2.8224  
11.2896  
2
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
ELECTRICAL CHARACTERISTICS (Continued)  
all specifications at T = 25°C, V  
= 5 V, V = 3.3 V, f = 44.1 kHz, system clock = 256 f , and 24-bit data, unless otherwise noted  
DD S S  
A
CC  
PARAMETER  
DIGITAL INPUT/OUTPUT  
DSD1793DB  
TYP  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
Logic family  
TTL compatible  
V
V
2
IH  
IL  
Input logic level  
VDC  
µA  
0.8  
I
I
V
V
= V  
DD  
= 0 V  
10  
IH  
IN  
IN  
Input logic current  
Output logic level  
–10  
IL  
V
OH  
V
OL  
I
I
= –2 mA  
= 2 mA  
2.4  
OH  
OL  
VDC  
0.4  
(1)  
DYNAMIC PERFORMANCE (PCM MODE)  
f
f
f
= 44.1 kHz  
= 96 kHz  
0.001%  
0.0015%  
0.003%  
113  
0.002%  
S
S
S
THD+N at V  
OUT  
= 0 dB  
= 192 kHz  
EIAJ, A-weighted, f = 44.1 kHz  
S
EIAJ, A-weighted, f = 96 kHz  
S
110  
110  
106  
113  
Dynamic range  
dB  
dB  
EIAJ, A-weighted, f = 192 kHz  
113  
S
EIAJ, A-weighted, f = 44.1 kHz  
S
EIAJ, A-weighted, f = 96 kHz  
S
113  
113  
Signal-to-noise ratio  
Channel separation  
EIAJ, A-weighted, f = 192 kHz  
113  
S
f
S
f
S
f
S
= 44.1 kHz  
= 96 kHz  
110  
110  
dB  
dB  
= 192 kHz  
109  
Level linearity error  
V
OUT  
= –120 dB  
1
(1) (2)  
DYNAMIC PERFORMANCE (DSD MODE)  
THD+N at V  
OUT  
= 0 dB  
2.1 V rms  
0.001%  
113  
Dynamic range  
Signal-to-noise ratio  
ANALOG OUTPUT  
–60 dB, EIAJ, A-weighted  
EIAJ, A-weighted  
dB  
dB  
113  
Gain error  
–8  
–3  
–2  
3
0.5  
0.5  
3.2  
1.4  
8
3
2
% of FSR  
% of FSR  
% of FSR  
V p-p  
Gain mismatch, channel-to-channel  
Bipolar zero error  
At BPZ  
(3)  
Differential output voltage  
Full scale (0 dB)  
At BPZ  
(3)  
Bipolar zero voltage  
V
(3)  
Load impedance  
R
1
= R  
1.7  
kΩ  
2
(1)  
Dynamic performance and dc accuracy are specified at the output of the postamplifier as shown in Figure 32. Analog performance specifications  
are measured using the System Twot Cascade audio measurement system by Audio Precisiont in the averaging mode. For all  
sampling-frequencyoperations, measurement bandwidth is limited with a 20-kHz AES17 filter.  
(2)  
(3)  
Analog performance in the DSD mode is specified as the DSD modulation index of 100%. This is equilvalent to PCM mode performance at  
44.1 kHz and 64 f .  
S
These parameters are defined at the DSD1793 output pins. Load impedances, R and R , are input resistors of the postamplifier. They are defined  
1
2
as dc-coupled loads.  
Audio Precision and System Two are trademarks of Audio Precision, Inc.  
Other trademarks are the property of their respective owners.  
3
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
ELECTRICAL CHARACTERISTICS (Continued)  
all specifications at T = 25°C, V  
= 5 V, V = 3.3 V, f = 44.1 kHz, system clock = 256 f , and 24-bit data, unless otherwise noted  
DD S S  
A
CC  
DSD1793DB  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
DIGITAL FILTER PERFORMANCE  
De-emphasis error  
0.1  
dB  
FILTER CHARACTERISTICS-1: SHARP ROLLOFF  
0.002 dB  
–3 dB  
0.454 f  
S
S
Pass band  
0.49 f  
Stop band  
0.546 f  
S
Pass-band ripple  
0.002  
dB  
dB  
s
Stop band = 0.546 f  
Stop band = 0.567 f  
–75  
–82  
S
S
Stop-band attenuation  
Delay time  
29/f  
S
FILTER CHARACTERISTICS-2: SLOW ROLLOFF  
0.04 dB  
–3 dB  
0.274 f  
S
S
Pass band  
0.454 f  
Stop band  
0.732 f  
S
Pass-band ripple  
0.002  
dB  
dB  
s
Stop-band attenuation  
Delay time  
Stop band = 0.732 f  
–82  
S
29/f  
S
POWER SUPPLY REQUIREMENTS  
V
V
3
3.3  
5
3.6  
5.5  
8
VDC  
VDC  
DD  
CC  
Voltage range  
4.5  
f
S
f
S
f
S
f
S
f
S
f
S
f
S
f
S
f
S
= 44.1 kHz  
= 96 kHz  
6.5  
13.5  
28  
I
mA  
mA  
mW  
DD  
= 192 kHz  
= 44.1 kHz  
= 96 kHz  
(1)  
Supply current  
14  
16  
15  
I
CC  
= 192 kHz  
= 44.1 kHz  
= 96 kHz  
16  
90  
110  
(1)  
120  
170  
Power dissipation  
= 192 kHz  
TEMPERATURE RANGE  
Operation temperature  
Thermal resistance  
–25  
85  
°C  
θ
JA  
28-pin SSOP  
100  
°C/W  
(1)  
Input is BPZ data.  
4
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
PIN ASSIGNMENTS  
DSD1793  
(TOP VIEW)  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
PLRCK  
PBCK  
PDATA  
DBCK  
SCK  
ADR0  
SCL  
SDA  
DSDL  
DSDR  
ZEROL  
ZEROR  
2
3
4
5
6
ADR1  
7
V
DD  
8
DGND  
AGNDF  
V
V
F
L
CC  
9
CC  
V
R
10  
11  
12  
13  
14  
AGNDL  
CC  
AGNDR  
V
V
L–  
L+  
OUT  
V
V
R–  
R+  
OUT  
OUT  
AGNDC  
OUT  
V
V
C
COM  
CC  
5
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTIONS  
NAME  
ADR0  
PIN  
28  
6
2 (1)  
I C address 0  
I
I
2 (1)  
I C address 1  
ADR1  
AGNDC  
AGNDF  
AGNDL  
AGNDR  
DBCK  
DGND  
DSDL  
DSDR  
PBCK  
PDATA  
PLRCK  
SCK  
16  
9
I
Analog ground (internal bias and current DAC)  
Analog ground (DACFF)  
19  
11  
4
Analog ground (L-channel I/V)  
Analog ground (R-channel I/V)  
(1)  
Bit clock input for DSD mode  
Digital ground  
8
I
(1)  
(1)  
25  
24  
2
L-channel audio data input for DSD mode  
R-channel audio data input for DSD mode  
I
(1)  
I
Bit clock input for PCM mode  
Serial audio data input for PCM mode  
Left and right clock (f ) input for PCM mode  
(1)  
3
I
(1)  
1
I
S
(1)  
5
I
System clock input  
(1)  
2
SCL  
27  
26  
15  
21  
20  
10  
14  
7
I
I C clock  
2 (2)  
I C data  
SDA  
I/O  
O
O
O
O
O
O
V
V
V
V
V
V
V
V
V
V
C
F
L
Analog power supply (internal bias and current DAC), 5 V  
Analog power supply (DACFF), 5 V  
Analog power supply (L-channel I/V), 5 V  
Analog power supply (R-channel I/V), 5 V  
Internal bias decoupling pin  
CC  
CC  
CC  
CC  
R
COM  
DD  
Digital power supply, 3.3 V  
L+  
17  
18  
13  
12  
23  
22  
L-channel analog voltage output +  
L-channel analog voltage output –  
R-channel analog voltage output +  
R-channel analog voltage output –  
Zero flag for L-channel  
OUT  
OUT  
OUT  
OUT  
L–  
R+  
R–  
ZEROL  
ZEROR  
Zero flag for R-channel  
(1)  
(2)  
Schmitt-trigger input, 5-V tolerant  
Schmitt-trigger input and output. 5-V tolerant input, and open-drain, 3-state output  
6
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
FUNCTIONAL BLOCK DIAGRAM  
PLRCK  
Current  
Segment  
DAC  
V
V
L–  
L+  
Audio  
PBCK  
OUT  
Data Input  
PDATA  
I/F  
OUT  
and  
I/V Buffer  
D/S and Filter  
 8  
Oversampling  
Digital  
Filter  
and  
Function  
Control  
DBCK  
DSDL  
DSDR  
Advanced  
Segment  
DAC  
Bias  
and  
Vref  
V
COM  
Modulator  
SDA  
Current  
Segment  
DAC  
and  
I/V Buffer  
V
V
R+  
R–  
SCL  
OUT  
Function  
Control  
I/F  
ADR0  
ADR1  
OUT  
D/S and Filter  
ZEROL  
ZEROR  
System  
Clock  
Manager  
Zero  
Detect  
Power Supply  
7
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
TYPICAL PERFORMANCE CURVES  
DIGITAL FILTER  
Digital Filter Response  
AMPLITUDE  
AMPLITUDE  
vs  
vs  
FREQUENCY  
FREQUENCY  
0
−20  
0.003  
0.002  
−40  
0.001  
−60  
−80  
0
−100  
−120  
−140  
−160  
–0.001  
–0.002  
–0.003  
0.0  
0
1
2
3
4
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency[× f ]  
Frequency[× f ]  
S
S
Figure 1. Frequency Response, Sharp Rolloff  
Figure 2. Pass-Band Ripple, Sharp Rolloff  
AMPLITUDE  
vs  
AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
0
−20  
0
−2  
−4  
−40  
−6  
−8  
−60  
−10  
−12  
−14  
−16  
−18  
−20  
−80  
−100  
−120  
−140  
0
1
2
3
4
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Frequency[× f ]  
Frequency[× f ]  
S
S
Figure 3. Frequency Response, Slow Rolloff  
Figure 4. Transition Characteristics, Slow Rolloff  
8
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
De-Emphasis Filter  
DE-EMPHASIS LEVEL  
DE-EMPHASIS ERROR  
vs  
vs  
FREQUENCY  
FREQUENCY  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.5  
0.4  
0.3  
0.2  
0.1  
f
= 32 kHz  
f
S
= 32 kHz  
S
0.0  
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
f – Frequency – kHz  
f – Frequency – kHz  
Figure 5  
Figure 6  
DE-EMPHASIS LEVEL  
vs  
DE-EMPHASIS ERROR  
vs  
FREQUENCY  
FREQUENCY  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.5  
0.4  
f
= 44.1 kHz  
f
S
= 44.1 kHz  
S
0.3  
0.2  
0.1  
−0.0  
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
f – Frequency – kHz  
f – Frequency – kHz  
Figure 7  
Figure 8  
9
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
De-Emphasis Filter (Continued)  
DE-EMPHASIS LEVEL  
vs  
DE-EMPHASIS ERROR  
vs  
FREQUENCY  
FREQUENCY  
0
0.5  
0.4  
f
S
= 48 kHz  
f = 48 kHz  
S
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.3  
0.2  
0.1  
0.0  
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
0
2
4
6
8
10 12 14 16 18 20 22  
0
2
4
6
8
10 12 14 16 18 20 22  
f – Frequency – kHz  
f – Frequency – kHz  
Figure 9  
Figure 10  
10  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
ANALOG DYNAMIC PERFORMANCE  
Supply Voltage Characteristics  
TOTAL HARMONIC DISTORTION + NOISE  
DYNAMIC RANGE  
vs  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
118  
116  
114  
112  
110  
108  
0.01  
f
= 192 kHz  
= 96 kHz  
S
f
f
= 96 kHz  
S
S
f
S
= 44.1 kHz  
0.001  
f
S
= 44.1 kHz  
f
S
= 192 kHz  
0.0001  
4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00  
4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00  
V
CC  
– Supply Voltage – V  
V
CC  
– Supply Voltage – V  
Figure 11  
Figure 12  
SIGNAL-to-NOISE RATIO  
vs  
CHANNEL SEPARATION  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
118  
116  
114  
112  
110  
108  
114  
112  
110  
108  
106  
104  
102  
f
= 44.1 kHz  
S
f
S
= 96 kHz  
f
= 96 kHz  
S
f
S
= 192 kHz  
f
S
= 192 kHz  
f
S
= 44.1 kHz  
4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00  
4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00  
V
CC  
– Supply Voltage – V  
V
CC  
– Supply Voltage – V  
Figure 13  
Figure 14  
:
NOTE PCM mode, T = 25°C, V  
DD  
= 3.3 V.  
A
11  
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
Temperature Characteristics  
TOTAL HARMONIC DISTORTION + NOISE  
DYNAMIC RANGE  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
118  
116  
114  
112  
110  
108  
0.01  
f
= 192 kHz  
S
f
= 96 kHz  
S
f
= 96 kHz  
S
f
= 44.1 kHz  
S
f
S
= 192 kHz  
0.001  
f
= 44.1 kHz  
S
0.0001  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 15  
Figure 16  
SIGNAL-to-NOISE RATIO  
vs  
CHANNEL SEPARATION  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
118  
116  
114  
112  
110  
108  
114  
112  
110  
108  
106  
104  
f
= 44.1 kHz  
S
f
= 44.1 kHz  
S
f
= 96 kHz  
S
f
S
= 96 kHz  
f = 192 kHz  
S
f
S
= 192 kHz  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 17  
Figure 18  
:
NOTE PCM mode, V  
= 3.3 V, V = 5 V.  
CC  
DD  
12  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
AMPLITUDE vs FREQUENCY  
AMPLITUDE vs FREQUENCY  
−50  
−60  
−50  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−160  
0
5
10  
15  
20  
0
10 20 30 40 50 60 70 80 90 100  
f – Frequency – kHz  
f – Frequency – kHz  
Figure 19. –60-dB Output Spectrum, BW = 20 kHz Figure 20. –60-dB Output Spectrum, BW = 100 kHz  
:
NOTE PCM mode, f = 44.1 kHz, 32768 points, 8 average, T = 25°C, V  
= 3.3 V, V = 5 V.  
CC  
S
A
DD  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
INPUT LEVEL  
100  
10  
1
0.1  
0.01  
0.001  
0.0001  
−100  
−80  
−60  
−40  
−20  
0
Input Level – dBFS  
Figure 21. THD+N vs Input Level, PCM Mode  
:
NOTE PCM mode, f = 44.1 kHz, T = 25°C, V  
DD  
= 3.3 V, V = 5 V.  
CC  
S
A
13  
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
AMPLITUDE  
vs  
FREQUENCY  
−50  
−60  
−70  
−80  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
0
5
10  
15  
20  
f – Frequency – kHz  
Figure 22. –60-dB Output Spectrum, DSD Mode  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
INPUT LEVEL  
100  
10  
1
0.1  
0.01  
0.001  
0.0001  
−90 −80 −70 −60 −50 −40 −30 −20 −10  
0
Input Level – dBFS  
Figure 23. THD+N vs Input Level, DSD Mode  
:
NOTE DSD mode (FIR-2), T = 25°C, V  
= 3.3 V, V = 5 V.  
CC  
A
DD  
14  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
SYSTEM CLOCK AND RESET FUNCTIONS  
System Clock Input  
The DSD1793 requires a system clock for operating the digital interpolation filters and advanced segment DAC  
modulators. The system clock is applied at the SCK input (pin 5). The DSD1793 has a system clock detection circuit  
that automatically senses which frequency the system clock is operating. Table 1 shows examples of system clock  
frequencies for common audio sampling rates. If the oversampling rate of the delta-sigma modulator is selected as  
128 f , the system clock frequency is over 256 f .  
S
S
Figure 24 shows the timing requirements for the system clock input. For optimal performance, it is important to use  
a clock source with low phase jitter and noise. One of the Texas Instruments PLL1700 family of multiclock generators  
is an excellent choice for providing the DSD1793 system clock.  
Table 1. System Clock Rates for Common Audio Sampling Frequencies  
SYSTEM CLOCK FREQUENCY (f  
) (MHz)  
512 f  
SCK  
SAMPLING FREQUENCY  
128 f  
4.096  
192 f  
256 f  
384 f  
768 f  
S
S
(1)  
S
S
S
S
(1)  
32 kHz  
44.1 kHz  
48 kHz  
6.144  
8.192  
11.2896  
12.288  
24.576  
12.288  
16.9344  
18.432  
36.864  
16.384  
24.576  
33.8688  
36.864  
(1)  
5.6488  
6.144  
8.4672  
9.216  
22.5792  
24.576  
(1)  
(1)  
(1)  
96 kHz  
12.288  
24.576  
18.432  
36.864  
49.152  
(2)  
73.728  
(2)  
(1)  
(1)  
73.728  
192 kHz  
49.152  
(1)  
(2)  
2
This system clock rate is not supported in I C fast mode.  
This system clock rate is not supported for the given sampling frequency.  
t
(SCKH)  
H
2 V  
0.8 V  
System Clock (SCK)  
L
t
t
(SCY)  
(SCKL)  
PARAMETERS  
MIN MAX UNITS  
t
System clock pulse cycle time  
13  
5
ns  
ns  
ns  
(SCY)  
t
System clock pulse duration, HIGH  
System clock pulse duration, LOW  
(SCKH)  
t
5
(SCKL)  
Figure 24. System Clock Input Timing  
Power-On Reset Function  
The DSD1793 includes a power-on reset function. Figure 25 shows the operation of this function. With V  
> 2 V,  
DD  
the power-on reset function is enabled. The initialization sequence requires 1024 system clocks from the time  
> 2 V. After the initialization period, the DSD1793 is set to its default reset state, as described in the MODE  
V
DD  
CONTROL REGISTERS section of this data sheet.  
15  
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
V
DD  
2.4 V (Max)  
2 V (Typ)  
1.6 V (Min)  
Reset  
Reset Removal  
Internal Reset  
System Clock  
1024 System Clocks  
Figure 25. Power-On Reset Timing  
16  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
AUDIO DATA INTERFACE  
Audio Serial Interface  
The audio interface port is a 3-wire serial port. It includes PLRCK (pin 1), PBCK (pin 2), and PDATA (pin 3). PBCK  
is the serial audio bit clock, and it is used to clock the serial data present on PDATA into the serial shift register of  
the audio interface. Serial data is clocked into the DSD1793 on the rising edge of PBCK. PLRCK is the serial audio  
left/right word clock.  
The DSD1793 requires the synchronization of PLRCK and the system clock, but does not need a specific phase  
relation between PLRCK and the system clock.  
If the relationship between PLRCK and the system clock changes more than 6 PBCK, internal operation is initialized  
within 1/f and analog outputs are forced to the bipolar zero level until resynchronization between PLRCK and the  
S
system clock is completed.  
PCM Audio Data Formats and Timing  
2
The DSD1793 supports industry-standard audio data formats, including standard right-justified, I S, and left-justified.  
The data formats are shown in Figure 27. Data formats are selected using the format bits, FMT[2:0], in control register  
2
18. The default data format is 24-bit I S. All formats require binary 2s complement, MSB-first audio data. Figure 26  
shows a detailed timing diagram for the serial audio interface.  
1.4 V  
1.4 V  
1.4 V  
PLRCK  
PBCK  
t
t
(BCL)  
t
(BCH)  
(LB)  
t
t
(BCY)  
(BL)  
PDATA  
t
t
(DS)  
(DH)  
PARAMETERS  
MIN MAX UNITS  
t
t
t
t
t
t
t
PBCK pulse cycle time  
PBCK pulse duration, LOW  
PBCK pulse duration, HIGH  
PBCK rising edge to PLRCK edge  
PLRCK edge to PBCK rising edge  
PDATA setup time  
70  
30  
30  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(BCY)  
(BCL)  
(BCH)  
(BL)  
(LB)  
(DS)  
PDATA hold time  
(DH)  
PLRCK clock data  
50% 2 bit clocks  
Figure 26. Timing of Audio Interface  
17  
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
(1) Standard Data Format (Right Justified) ; L-Channel = HIGH, R-Channel = LOW  
1/f  
S
PLRCK  
R-Channel  
L-Channel  
PBCK  
Audio Data Word = 16-Bit  
14 15 16  
1
2
15 16  
LSB  
1
2
15 16  
PDATA  
MSB  
Audio Data Word = 20-Bit  
18 19 20  
1
2
19 20  
LSB  
1
2
19 20  
23 24  
PDATA  
MSB  
Audio Data Word = 24-Bit  
22 23 24  
1
2
23 24  
LSB  
1
2
PDATA  
MSB  
(2) Left Justified Data Format; L-Channel = HIGH, R-Channel = LOW  
1/f  
S
PLRCK  
PBCK  
R-Channel  
L-Channel  
Audio Data Word = 24-Bit  
PDATA  
1
2
23 24  
LSB  
1
2
23 24  
1
2
MSB  
2
(3) I S Data Format; L-Channel = LOW, R-Channel = HIGH  
1/f  
S
PLRCK  
L-Channel  
R-Channel  
PBCK  
Audio Data Word = 16-Bit  
PDATA  
1
1
2
2
15 16  
LSB  
1
2
2
15 16  
1
1
2
2
MSB  
MSB  
Audio Data Word = 24-Bit  
PDATA  
23 24  
LSB  
1
23 24  
Figure 27. Audio Data Input Formats  
18  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
External Digital Filter Interface and Timing  
The DSD1793 supports an external digital filter interface with a 3- or 4-wire synchronous serial port, which allows  
the use of an external digital filter. External filters include the Texas Instruments DF1704 and DF1706, the Pacific  
Microsonics PMD200, or a programmable digital signal processor.  
In the external DF mode, PLRCK (pin 1), PBCK (pin 2) and PDATA (pin 3) are defined as WDCK, the word clock;  
BCK, the bit clock; and DATA, the monaural data, respectively. The external digital filter interface is selected by using  
the DFTH bit of control register 20, which functions to bypass the internal digital filter of the DSD1793.  
When the DFMS bit of control register 19 is set, the DSD1793 can process stereo data. In this case, DSDL (pin 25)  
and DSDR (pin 24) are defined as L-channel data and R-channel data input, respectively.  
Detailed information for the external digital filter interface mode is provided in the APPLICATION FOR EXTERNAL  
DIGITAL FILTER INTERFACE section of this data sheet.  
Direct Stream Digital (DSD) Format Interface and Timing  
The DSD1793 supports the DSD format interface operation, which includes out-of-band noise filtering using an  
internal analog FIR filter. The DSD format interface consists of a 3-wire synchronous serial port, which includes DBCK  
(pin 4), DSDL (pin 25), and DSDR (pin 24). DBCK is the serial bit clock. DSDL and DSDR are L-channel and  
R-channel DSD data input, respectively. They are clocked into the DSD1793 on the rising edge of DBCK. PLRCK  
(pin 1) and PBCK (pin 2) must be connected to GND in the DSD mode. The DSD format (DSD mode) interface is  
activated by setting the DSD bit of control register 20.  
Detailed information for the DSD mode is provided in the APPLICATION FOR DSD FORMAT (DSD MODE)  
INTERFACE section of this data sheet.  
19  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
FUNCTIONAL DESCRIPTIONS  
Zero Detect  
The DSD1793 has a zero-detect function. When the DSD1793 detects the zero conditions as shown in Table 2, the  
DSD1793 sets ZEROL (pin 23) and ZEROR (pin 22) to HIGH.  
Table 2. Zero Conditions  
MODE  
DETECTING CONDITION AND TIME  
DATA is continuously LOW for 1024 LRCKs.  
PCM  
External DF mode DATA is continuously LOW for 1024 WDCKs.  
DZ0  
DZ1  
There are an equal number of 1s and 0s in every 8 bits of DSD input data for 23 ms.  
The input data is 1001 0110 continuously for 23 ms.  
DSD  
2
Serial Control Interface (I C)  
2
The DSD1793 supports the I C serial bus and the data transmission protocol for standard and fast mode as a slave  
2
device. This protocol is explained in I C specification 2.0.  
Slave Address  
MSB  
1
LSB  
R/W  
0
0
1
1
ADR1  
ADR0  
The DSD1793 has 7 bits for its own slave address. The first five bits (MSBs) of the slave address are factory preset  
to 10011. The next two bits of the address byte are the device select bits, which can be user-defined by the ADR1  
and ADR0 terminals. A maximum of four DSD1793s can be connected on the same bus at one time. Each DSD1793  
responds when it receives its own slave address.  
Packet Protocol  
A master device must control packet protocol, which consists of start condition, slave address, read/write bit, data  
if write or acknowledge if read, and stop condition. The DSD1793 supports only slave receivers and slave  
transmitters.  
SDA  
SCL  
St  
1−7  
8
9
1−8  
9
1−8  
9
9
Sp  
ACK  
Slave Address R/W  
ACK  
DATA  
DATA  
ACK  
ACK  
R/W : Read Operation if 1, Otherwise Write Operation  
DATA: 8 Bits (Byte)  
ACK: Acknowledgement of a Byte if 0  
NACK: Not Acknowledgement if 1  
Start  
Condition  
Stop  
Condition  
Write operation  
Transmitter  
Data Type  
M
M
M
S
M
S
M
S
S
M
St  
Slave Address  
W
ACK  
DATA  
ACK  
DATA  
ACK  
ACK  
Sp  
Read operation  
Transmitter  
Data Type  
M
M
M
S
S
M
S
M
M
M
St  
Slave Address  
R
ACK  
DATA  
ACK  
DATA  
ACK  
NACK  
Sp  
:
NOTE M: Master Device  
Sp: Stop Condition  
S: Slave Device  
W: Write  
St: Start Condition  
R: Read  
2
Figure 28. Basic I C Framework  
20  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
Write Register  
A master can write to any DSD1793 registers using single or multiple accesses. The master sends a DSD1793 slave  
address with a write bit, a register address, and the data. If multiple access is required, the address is that of the  
starting register, followed by the data to be transferred. When the data are received properly, the index register is  
incremented automatically by 1. When the index register reaches 0x7F, the next value is 0x0. When undefined  
registers are accessed, the DSD1793 does not send an acknowledgement. Figure 29 is a diagram of the write  
operation.  
Transmitter  
M
M
M
S
M
S
M
S
M
S
S
M
Data Type St  
Slave  
Address  
W
ACK  
Register  
Address  
ACK  
Write Data 1  
ACK  
Write Data 2  
ACK  
ACK  
Sp  
M: Master Device  
S: Slave Device  
Sp: Stop Condition  
St: Start Condition  
W: Write  
ACK: Acknowledge  
Figure 29. Write Operation  
Read Register  
A master can read the DSD1793 register. The value of the register address is stored in an indirect index register in  
advance. The master sends a DSD1793 slave address with a read bit after storing the register address. Then the  
DSD1793 transfers the data which the index register points to. When the data are transferred during a multiple  
access, the index register is incremented by 1 automatically. (When first going into read mode immediately following  
a write, the index register is not incremented. The master can read the register that was previously written.) When  
the index register reaches 0x7F, the next value is 0x0. The DSD1793 outputs some data when the index register is  
0x10 to 0x1F, even if it is not defined in Table 4. Figure 30 is a diagram of the read operation.  
Transmitter  
M
M
M
S
M
S
M
M
M
S
S
M
M
M
Data Type St  
Slave  
Address  
W
ACK Register ACK  
Address  
Sr  
Slave  
Address  
R
ACK  
Data  
ACK  
NACK Sp  
M: Master Device  
S: Slave Device  
St: Start Condition  
Sr: Repeated Start Condition  
W: Write  
ACK: Acknowledge  
Sp: Stop Condition  
NACK: Not Acknowledge  
R: Read  
:
NOTE The slave address after the repeat start condition must be the same as the previous slave address.  
Figure 30. Read Operation  
Noise Suppression  
The DSD1793 incorporates noise suppression using the system clock (SCK). However, there must be no more than  
two noise spikes in 600 ns. The noise suppression works for SCK frequencies between 8 MHz and 40 MHz in fast  
mode. However, it works incorrectly in the particular following conditions.  
Case 1:  
1. t  
2. t  
> 120 ns (t  
: period of SCK)  
(SCK)  
(SCK)  
+ t  
< t  
(D-HD)  
× 5  
(HI)  
(SCK)  
3. Spike noise exists on the first half of the SCL HIGH pulse.  
4. Spike noise exists on the SDA HIGH pulse just before SDA goes LOW.  
SCL  
Noise  
SDA  
When these conditions occur at the same time, the data is recognized as LOW.  
21  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
Case 2:  
1. t  
2. t  
> 120 ns  
(SCK)  
or t  
< t  
× 5  
(SCK)  
(S-HD)  
(RS-HD)  
3. Spike noise exists on both SCL and SDA during the hold time.  
SCL  
Noise  
SDA  
When these conditions occur at the same time, the DSD1793 fails to detect a start condition.  
Case 3:  
1. t  
2. t  
< 50 ns  
(SCK)  
(SP)  
> t  
(SCK)  
3. Spike noise exists on SCL just after SCL goes LOW.  
4. Spike noise exists on SDA just before SCL goes LOW.  
SCL  
SDA  
Noise  
When these conditions occur at the same time, the DSD1793 erroneously detects a start or stop condition.  
22  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
TIMING DIAGRAM  
Repeated Start  
Start  
Stop  
t
t
(SDA-F)  
(D-HD)  
t
t
t
t
(P-SU)  
(BUF)  
(D-SU)  
(SDA-R)  
SDA  
t
t
t
(SP)  
(SCL-R)  
(RS-HD)  
t
(LOW)  
SCL  
t
t
(S-HD)  
t
(HI)  
(RS-SU)  
t
(SCL-F)  
TIMING CHARACTERISTICS  
PARAMETER  
CONDITIONS  
Standard  
Fast  
MIN MAX  
100  
400  
4.7  
UNIT  
f
t
t
t
t
SCL clock frequency  
kHz  
(SCL)  
(BUF)  
(LOW)  
(HI)  
Standard  
Fast  
Bus free time between stop and start conditions  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for (repeated) start condition  
Hold time for (repeated) start condition  
Data setup time  
µs  
µs  
1.3  
Standard  
Fast  
4.7  
1.3  
Standard  
Fast  
4
µs  
ns  
µs  
ns  
µs  
ns  
600  
4.7  
Standard  
Fast  
(RS-SU)  
600  
4
t
t
Standard  
Fast  
(S-HD)  
600  
250  
100  
(RS-HD)  
Standard  
Fast  
t(  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
D-SU)  
Standard  
Fast  
0
0
900  
900  
t
t
t
t
Data hold time  
(D-HD)  
Standard  
Fast  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
1000  
300  
B
B
B
B
B
B
B
B
B
Rise time of SCL signal  
(SCL-R)  
(SCL-R1)  
(SCL-F)  
Standard  
Fast  
1000  
300  
Rise time of SCL signal after a repeated start condition and after an  
acknowledge bit  
Standard  
Fast  
1000  
300  
Fall time of SCL signal  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for stop condition  
Standard  
Fast  
1000  
300  
t(  
SDA-R)  
(SDA-F)  
(P-SU)  
Standard  
Fast  
1000  
300  
t
t
B
4
Standard  
Fast  
µs  
ns  
pF  
ns  
V
600  
C
Capacitive load for SDA and SCL line  
Pulse duration of suppressed spike  
400  
50  
(B)  
t
Fast  
(SP)  
V
NH  
Noise margin at high level for each connected device (including hysteresis)  
0.2 V  
DD  
23  
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
MODE CONTROL REGISTERS  
User-Programmable Mode Controls  
The DSD1793 includes a number of user-programmable functions which are accessed via mode control registers.  
The registers are programmed using the serial control interface, which was previously discussed in this data sheet.  
Table 3 lists the available mode-control functions, along with their default reset conditions and associated register  
index.  
Table 3. User-Programmable Function Controls  
DF  
BYPASS  
FUNCTION  
Digital attenuation control  
DEFAULT  
REGISTER  
BIT  
PCM  
DSD  
0 dB  
Register 16 ATL[7:0] (for L-ch)  
Register 17 ATR[7:0] (for R-ch)  
yes  
0 dB to –120 dB and mute, 0.5 dB step  
Attenuation load control—Disabled, enabled  
Attenuation disabled  
Register 18 ATLD  
yes  
yes  
2
Input audio data format selection  
24-bit I S format  
Register 18 FMT[2:0]  
yes  
16-, 20-, 24-bit standard (right-justified) format  
24-bit MSB-first left-justified format  
2
16-/24-bit I S format  
(1)  
yes  
Sampling rate selection for de-emphasis  
Disabled, 44.1 kHz, 48 kHz, 32 kHz  
De-emphasis disabled  
Register 18 DMF[1:0]  
yes  
De-emphasis control—Disabled, enabled  
Soft mute control—Mute disabled, enabled  
Output phase reversal—Normal, reverse  
Attenuation speed selection  
De-emphasis disabled  
Mute disabled  
Normal  
Register 18 DME  
Register 18 MUTE  
Register 19 REV  
Register 19 ATS[1:0]  
yes  
yes  
yes  
yes  
yes  
yes  
×1 f  
S
×1 f , ×(1/2)f , ×(1/4)f , ×(1/8)f  
S
S
S
S
DAC operation control—Enabled, disabled  
DAC operation enabled Register 19 OPE  
yes  
yes  
yes  
yes  
Stereo DF bypass mode select  
Monaural, stereo  
Monaural  
Register 19 DFMS  
Digital filter rolloff selection  
Sharp rolloff, slow rolloff  
Sharp rolloff  
Disabled  
Register 19 FLT  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
Infinite zero mute control  
Disabled, enabled  
Register 19 INZD  
Register 20 SRST  
Register 20 DSD  
Register 20 DFTH  
Register 20 MONO  
Register 20 CHSL  
Register 20 OS[1:0]  
yes  
yes  
System reset control  
Reset operation , normal operation  
Normal operation  
Disabled  
yes  
yes  
DSD interface mode control  
DSD enabled, disabled  
Digital-filter bypass control  
DF enabled, DF bypass  
DF enabled  
Stereo  
yes  
yes  
yes  
yes  
yes  
Monaural mode selection  
Stereo, monaural  
yes  
yes  
Channel selection for monaural mode data  
L-channel, R-channel  
L-channel  
(2)  
yes  
Delta-sigma oversampling rate selection  
×64 f  
S
×64 f , ×128 f , ×32 f  
S
S
S
PCM zero output enable  
Enabled  
Disabled  
Register 21 PCMZ  
Register 21 DZ[1:0]  
DSD zero output enable  
yes  
yes  
Function Available Only For Read  
Zero detection flag  
Not zero, zero detected  
Not zero = 0  
Zero detected = 1  
Register 22 ZFGL (for L-ch)  
ZFGR (for R-ch)  
yes  
yes  
(1)  
(2)  
When in DSD mode, DMF[1:0] is defined as DSD filter (analog FIR) performance selection.  
When in DSD mode, OS[1:0] is defined as DSD filter (analog FIR) operation rate selection.  
24  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
Register Map  
The mode control register map is shown in Table 4. Registers 16–21 include an R/W bit, which determines whether  
a register read (R/W = 1) or write (R/W = 0) operation is performed. Register 22 is read-only.  
Table 4. Mode Control Register Map  
B15  
Register 16 R/W  
Register 17 R/W  
Register 18 R/W  
Register 19 R/W  
Register 20 R/W  
Register 21 R/W  
B14 B13  
B12  
1
B11  
0
B10 B9 B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
ATL7 ATL6 ATL5 ATL4  
ATL3  
ATL2  
ATL1  
ATL0  
1
0
ATR7 ATR6 ATR5 ATR4 ATR3  
ATLD FMT2 FMT1 FMT0 DMF1 DMF0 DME MUTE  
ATR2 ATR1 ATR0  
1
0
1
0
REV ATS1 ATS0 OPE  
RSV  
DFMS  
FLT  
OS1  
DZ0  
INZD  
OS0  
1
0
RSV SRST DSD DFTH MONO CHSL  
1
0
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
DZ1  
RSV  
PCMZ  
Register 22  
R
1
0
ZFGR ZFGL  
Register Definitions  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 16  
R/W  
0
0
1
0
0
0
0
ATL7 ATL6 ATL5 ATL4 ATL3 ATL2 ATL1 ATL0  
Register 17 R/W  
0
0
1
0
0
0
1
ATR7 ATR6 ATR5 ATR4 ATR3 ATR2 ATR1 ATR0  
R/W: Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default value: 0  
ATx[7:0]: Digital Attenuation Level Setting  
These bits are available for read and write.  
Default value: 1111 1111b  
Each DAC output has a digital attenuator associated with it. The attenuator can be set from 0 dB to –120 dB, in 0.5-dB  
steps. Alternatively, the attenuator can be set to infinite attenuation (or mute).  
The attenuation data for each channel can be set individually. However, the data load control (the ATLD bit of control  
register 18) is common to both attenuators. ATLD must be set to 1 in order to change an attenuator setting. The  
attenuation level can be set using the following formula:  
Attenuation level (dB) = 0.5 dB (ATx[7:0]  
– 255)  
DEC  
where ATx[7:0]  
= 0 through 255  
DEC  
For ATx[7:0]  
levels for various settings:  
= 0 through 14, the attenuator is set to infinite attenuation. The following table shows attenuation  
DEC  
ATx[7:0]  
1111 1111b  
1111 1110b  
1111 1101b  
L
Decimal Value  
Attenuation Level Setting  
255  
254  
253  
L
0 dB, no attenuation (default)  
–0.5 dB  
–1.0 dB  
L
0001 0000b  
0000 1111b  
0000 1110b  
L
16  
15  
14  
L
–119.5 dB  
–120.0 dB  
Mute  
L
0000 0000b  
0
Mute  
25  
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
B15 B14 B13 B12 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 18  
R/W  
0
0
1
0
0
1
0
ATLD FMT2 FMT1 FMT0 DMF1 DMF0 DME MUTE  
R/W: Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default value: 0  
ATLD: Attenuation Load Control  
This bit is available for read and write.  
Default value: 0  
ATLD = 0  
ATLD = 1  
Attenuation control disabled (default)  
Attenuation control enabled  
The ATLD bit enables loading of the attenuation data contained in registers 16 and 17. When ATLD = 0, the  
attenuation settings remain at the previously programmed levels, ignoring new data loaded from registers 16 and  
17. When ATLD = 1, attenuation data written to registers 16 and 17 is loaded normally.  
FMT[2:0]: Audio Interface Data Format  
These bits are available for read and write.  
Default value: 101  
FMT[2:0]  
000  
Audio Data Format Selection  
16-bit standard format, right-justified data  
20-bit standard format, right-justified data  
24-bit standard format, right-justified data  
24-bit MSB-first, left-justified format data  
001  
010  
011  
2
100  
16-bit I S-format data  
2
101  
24-bit I S-format data (default)  
110  
Reserved  
Reserved  
111  
The FMT[2:0] bits select the data format for the serial audio interface.  
For the external digital filter interface mode (DFTH mode), this register is operated as shown in the APPLICATION  
FOR EXTERNAL DIGITAL FILTER INTERFACE section of this data sheet.  
DMF[1:0]: Sampling Frequency Selection for the De-Emphasis Function  
These bits are available for read and write.  
Default value: 00  
DMF[1:0]  
De-Emphasis Sampling Frequency Selection  
00  
01  
10  
11  
Disabled (default)  
48 kHz  
44.1 kHz  
32 kHz  
The DMF[1:0] bits select the sampling frequency used by the digital de-emphasis function when it is enabled by  
setting the DME bit. The de-emphasis curves are shown in the TYPICAL PERFORMANCE CURVES section of this  
data sheet.  
For the DSD mode, analog FIR filter performance can be selected using this register. A register map and filter  
response plots are shown in the APPLICATION FOR DSD FORMAT (DSD MODE) INTERFACE section of this data  
sheet.  
26  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
DME: Digital De-Emphasis Control  
This bit is available for read and write.  
Default value: 0  
DME = 0  
DME = 1  
De-emphasis disabled (default)  
De-emphasis enabled  
The DME bit enables or disables the de-emphasis function for both channels.  
MUTE: Soft Mute Control  
This bit is available for read and write.  
Default value: 0  
MUTE = 0  
MUTE = 1  
MUTE disabled (default)  
MUTE enabled  
The MUTE bit enables or disables the soft mute function for both channels.  
Soft mute is operated as a 256-step attenuator. The speed for each step to –dB (mute) is determined by the  
attenuation rate selected in the ATS register.  
B15 B14 B13 B12 B11 B10  
Register 19 R/W  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
1
0
0
1
1
REV ATS1 ATS0 OPE  
RSV DFMS  
FLT  
INZD  
R/W: Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default value: 0  
REV: Output Phase Reversal  
This bit is available for read and write.  
Default value: 0  
REV = 0  
REV = 1  
Normal output (default)  
Inverted output  
The REV bit inverts the output phase for both channels.  
ATS[1:0]: Attenuation Rate Select  
These bits are available for read and write.  
Default value: 00  
ATS[1:0]  
Attenuation Rate Selection  
Every PLRCK (default)  
PLRCK/2  
00  
01  
10  
11  
PLRCK/4  
PLRCK/8  
The ATS[1:0] bits select the rate at which the attenuator is decremented/incremented during level transitions.  
27  
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
OPE: DAC Operation Control  
This bit is available for read and write.  
Default value: 0  
OPE = 0  
OPE = 1  
DAC operation enabled (default)  
DAC operation disabled  
The OPE bit enables or disables the analog output for both channels. Disabling the analog outputs forces them to  
the bipolar zero level (BPZ) even if digital audio data is present on the input.  
DFMS: Stereo DF Bypass Mode Select  
This bit is available for read and write.  
Default value: 0  
DFMS = 0  
DFMS = 1  
Monaural (default)  
Stereo input enabled  
The DFMS bit enables stereo operation in the DF bypass mode. In the DF bypass mode, when DFMS is set to 0,  
the pin for the input data is PDATA (pin 3) only, therefore the DSD1793 operates as a monaural DAC. When DFMS  
is set to 1, the DSD1793 can operate as a stereo DAC with inputs of L-channel and R-channel data on DSDL (pin  
25) and DSDR (pin 24), respectively.  
FLT: Digital Filter Rolloff Control  
This bit is available for read and write.  
Default value: 0  
FLT = 0  
FLT = 1  
Sharp rolloff (default)  
Slow rolloff  
The FLT bit selects the digital filter rolloff characteristic. The filter responses for these selections are shown in the  
TYPICAL PERFORMANCE CURVES section of this data sheet.  
INZD: Infinite Zero Detect Mute Control  
This bit is available for read and write.  
Default value: 0  
INZD = 0  
INZD = 1  
Infinite zero detect mute disabled (default)  
Infinite zero detect mute enabled  
The INZD bit enables or disables the zero detect mute function. Setting INZD to 1 forces muted analog outputs to  
hold a bipolar zero level when the DSD1793 detects zero condition in both channels. The infinite zero detect mute  
function is not available in the DSD mode.  
B15 B14 B13 B12 B11 B10  
Register 20 R/W  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
1
0
1
0
0
RSV SRST DSD DFTH MONO CHSL OS1  
OS0  
R/W: Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default value: 0  
28  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
SRST: System Reset Control  
This bit is available for write only.  
Default value: 0  
SRST = 0  
SRST = 1  
Normal operation (default)  
System reset operation (generate one reset pulse)  
The SRST bit resets the DSD1793 to the initial system condition.  
DSD: DSD Interface Mode Control  
This bit is available for read and write.  
Default value: 0  
DSD = 0  
DSD = 1  
DSD interface mode disabled (default)  
DSD interface mode enabled  
The DSD bit enables or disables the DSD interface mode.  
DFTH: Digital Filter Bypass (or Through Mode) Control  
This bit is available for read and write.  
Default value: 0  
DFTH = 0  
DFTH = 1  
Digital filter enabled (default)  
Digital filter bypassed for the external digital filter  
The DFTH bit enables or disables the external digital filter interface mode.  
MONO: Monaural Mode Selection  
This bit is available for read and write.  
Default value: 0  
MONO = 0  
MONO = 1  
Stereo mode (default)  
Monaural mode  
The MONO function changes the operation mode from the normal stereo mode to the monaural mode. When the  
monaural mode is selected, both DACs operate in a balanced mode for one channel of audio input data. Channel  
selection is available for L-channel or R-channel data, determined by the CHSL bit as described immediately  
following.  
CHSL: Channel Selection for Monaural Mode  
This bit is available for read and write.  
Default value: 0  
CHSL = 0  
CHSL = 1  
L-channel selected (default)  
R-channel selected  
This bit is available when MONO = 1.  
The CHSL bit selects L-channel or R-channel data to be used in monaural mode.  
29  
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
OS[1:0]: Delta-Sigma Oversampling Rate Selection  
These bits are available for read and write.  
Default value: 00  
OS[1:0]  
00  
Operation Speed Select  
64 times f (default)  
S
01  
32 times f  
S
10  
128 times f  
Reserved  
S
11  
The OS bits change the oversampling rate of delta-sigma modulation. Use of this function enables the designer to  
stabilize the conditions at the post low-pass filter for different sampling rates. As an application example,  
programming to set 128 times in 44.1-kHz operation, 64 times in 96-kHz operation, and 32 times in 192-kHz operation  
allows the use of only a single type (cutoff frequency) of post low-pass filter. The 128-f oversampling rate is not  
S
available at sampling rates above 100 kHz. If the 128-f oversampling rate is selected, a system clock of more than  
S
256 f is required.  
S
In DSD mode, these bits select the speed of the bit clock for DSD data coming into the analog FIR filter.  
B15 B14 B13 B12 B11 B10  
R/W  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 21  
0
0
1
0
1
0
1
RSV  
RSV  
RSV  
RSV  
RSV  
DZ1  
DZ0 PCMZ  
R/W: Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default value: 0  
DZ[1:0]: DSD Zero Output Enable  
These bits are available for read and write.  
Default value: 00  
DZ[1:0]  
00  
Zero Output Enable  
Disabled (default)  
01  
Even pattern detect  
1x  
96 pattern detect  
H
The DZ bits enable or disable the output zero flags, and select the zero pattern in the DSD mode.  
PCMZ: PCM Zero Output Enable  
This bit is available for read and write.  
Default value: 1  
PCMZ = 0  
PCMZ = 1  
PCM zero output disabled  
PCM zero output enabled (default)  
The PCMZ bit enables or disables the output zero flags in the PCM mode and the external DF mode.  
B15 B14 B13 B12 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 22  
R
0
0
1
0
1
1
0
RSV  
RSV  
RSV  
RSV  
RSV  
RSV ZFGR ZFGL  
R: Read Mode Select  
Value is always 1, specifying the readback mode.  
30  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
ZFGx: Zero-Detection Flag  
Where x = L or R, corresponding to the DAC output channel. These bits are available only for readback.  
Default value: 00  
ZFGx = 0  
ZFGx = 1  
Not zero  
Zero detected  
These bits show zero conditions. Their status is the same as that of the zero flags on ZEROL (pin 23) and ZEROR  
(pin 22). See Zero Detect in the FUNCTIONAL DESCRIPTIONS section of this data sheet.  
TYPICAL CONNECTION DIAGRAM  
PCM Decoder  
L/R Clock (f )  
S
PLRCK  
PBCK  
PDATA  
DBCK  
SCK  
ADR0  
SCL  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
Bit Clock  
Audio Data  
SDA  
3
Controller  
DSDL  
DSDR  
ZEROL  
ZEROR  
4
System Clock  
5
ADR1  
6
V
DD  
7
3.3 V  
+
DSD1793  
DSD Decoder  
DGND  
V
V
F
L
8
CC  
AGNDF  
9
CC  
Rch Data  
Lch Data  
Bit Clock  
V R  
CC  
AGNDL  
L–  
10  
11  
12  
13  
14  
Analog  
Output Stage  
(See Figure 32)  
Analog  
AGNDR  
V
OUT  
Output Stage  
(See Figure 32)  
V
V
V
R–  
V
L+  
OUT  
OUT  
AGNDC  
R+  
OUT  
V C  
CC  
COM  
Figure 31. Typical Application Circuit  
31  
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
APPLICATION INFORMATION  
ANALOG OUTPUTS  
PLRCK  
PBCK  
PDATA  
DBCK  
SCK  
ADR0  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
SCL  
SDA  
3
DSDL  
4
DSDR  
ZEROL  
ZEROR  
5
ADR1  
6
V
DD  
7
DSD1793  
DGND  
V
V
F
L
8
0.1 µF  
CC  
5 V  
+
AGNDF  
9
CC  
10 µF  
R L  
R L  
4
V R  
CC  
AGNDL  
10  
11  
12  
13  
14  
C L  
3
R L  
6
2
AGNDR  
V
L–  
L+  
OUT  
C L  
1
V
V
V
R–  
V
OUT  
OUT  
+
V
OUT  
L-Channel  
R L  
1
R L  
5
AGNDC  
R+  
OUT  
V C  
CC  
C L  
2
COM  
R L  
3
+
1 µF  
R R  
4
C R  
3
R R  
2
R R  
6
C R  
1
+
V
OUT  
R-Channel  
R R  
1
R R  
5
C R  
2
R R  
3
:
NOTE Example R and C values for f = 77 kHz – R , R : 1.8 k, R ,R : 3.3 k, R ,R : 680 , C : 1800 pF, C , C : 560 pF.  
C
1
2
3
4
5
6
1
2
3
Figure 32. Typical Application for Analog Output Stage  
Analog Output Level and LPF  
The signal level of the DAC differential-voltage output {(V  
L+)–(V  
L–), (V  
R+)–(V  
R–)} is 3.2 V p-p  
OUT  
OUT  
OUT  
OUT  
at 0 dB (full scale). The voltage output of the LPF is given by following equation:  
V
= 3.2 V p-p × (R /R )  
OUT  
f
i
Here, R is the feedback resistor in the LPF, and R = R in a typical application circuit. R is the input resistor  
f
3
4
i
in the LPF, and R = R in a typical application circuit.  
1
2
Operational Amplifier for LPF  
An OPA2134 or 5532 type operational amplifier is recommended for the LPF circuit to obtain the specified audio  
performance. Dynamic performance such as gain bandwidth, settling time, and slew rate of the operational  
amplifier largely determines the audio dynamic performance of the LPF section. The input noise specification  
of the operational amplifier should be considered to obtain a 113-dB S/N ratio.  
32  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
Analog Gain of Balanced Amplifier  
The DAC voltage outputs are followed by balanced amplifier stages, which sum the differential signals for each  
channel, creating a single-ended voltage output. In addition, the balanced amplifiers provide a third-order  
low-pass filter function, which band limits the audio output signal. The cutoff frequency and gain are determined  
by external R and C component values. In this case, the cutoff frequency is 77 kHz with a gain of 1.83. The  
output voltage for each channel is 5.9 V p-p, or 2.1 V rms.  
Application for Monaural-Mode Operation  
A single-channel signal from the stereo audio data input is output from both V  
L and V  
R as a differential  
OUT  
OUT  
output. The channel to be output is selected by setting the CHSL bit in register 20. The advantage of monaural  
operation is to provide over 115 dB of dynamic range for high-end audio applications.  
L/R Clock  
Bit Clock  
Analog  
V
OUT  
L-Channel  
Output  
Stage  
System Clock  
Audio Data  
DSD1793  
Controller  
Analog  
Output  
Stage  
V
OUT  
R-Channel  
DSD1793  
Analog Output Stage  
R
6
R
R
2
V
L–  
OUT  
18  
17  
C
3
R
R
4
8
V L+  
OUT  
DSD1793  
C
1
+
R
R
1
7
V
R+  
R–  
13  
12  
OUT  
3
R
5
C
2
V
OUT  
:
NOTE Example R and C values for f = 77 kHz, R1–R4: 3.6 k, R5, R6: 3.3 k, R7, R8: 680 , C1: 1800 pF, C2, C3: 560 pF.  
C
Figure 33. Connection Diagram for Monaural Mode Interface  
33  
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
APPLICATION FOR EXTERNAL DIGITAL FILTER INTERFACE  
DFMS = 0  
ADR0  
SDL  
WDCK (Word Clock)  
PLRCK  
PBCK  
PDATA  
DBCK  
SCK  
1
2
3
4
5
28  
27  
26  
25  
24  
BCK  
DATA  
SDA  
DSDL  
DSDR  
SCK  
External Filter Device  
DSD1793  
DFMS = 1  
WDCK (Word Clock)  
BCK  
PLRCK  
PBCK  
PDATA  
DBCK  
SCK  
ADR0  
SDL  
1
28  
2
3
4
5
27  
26  
25  
24  
SDA  
DSDL  
DSDR  
SCK  
DSD1793  
DATA_L  
DATA_R  
External Filter Device  
Figure 34. Connection Diagram for External DIgital Filter (Internal DF Bypass Mode) Application  
Application for Interfacing With an External Digital Filter  
For some applications, it may be desirable to use an external digital filter to perform the interpolation function, as it  
can provide improved stop-band attenuation when compared to the internal digital filter of the DSD1793.  
The DSD1793 supports several external digital filters, including:  
D Texas Instruments DF1704 and DF1706  
D Pacific Microsonics PMD200 HDCD filter/decoder IC  
D Programmable digital signal processors  
The external digital filter application mode is accessed by programming the following bit in the corresponding control  
register:  
D DFTH = 1 (register 20)  
The pins used to provide the serial interface for the external digital filter are shown in the connection diagram of  
Figure 34. The word clock (WDCK) signal must be operated at 8× or 4× the desired sampling frequency, f .  
S
34  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
Pin Assignments When Using the External Digital Filter Interface  
D PLRCK (pin 1): WDCK as word clock input  
D PBCK (pin 2): BCK as bit clock for audio data  
D PDATA (pin 3): DATA as monaural audio data input when the DFMS bit is not set to 1  
D DSDL (pin 25): DATAL as L-channel audio data input when the DFMS bit is set to 1  
D DSDR (pin 24): DATAR as R-channel audio data input when the DFMS bit is set to 1  
Audio Format  
The DSD1793 in the external digital filter interface mode supports right-justified audio formats including 16-bit, 20-bit,  
and 24-bit audio data, as shown in Figure 35. The audio format is selected by the FMT[2:0] bits of control register 18.  
1/4 f or 1/8 f  
S
S
WDCK  
BCK  
Audio Data Word = 16-Bit  
DATA  
15 16  
1
2
3
4
8
5
9
6
7
8
9
10 11 12 13 14 15 16  
LSB  
DATAL  
DATAR  
MSB  
Audio Data Word = 20-Bit  
DATA  
19 20  
1
5
2
6
3
4
8
5
9
6
7
10 11 12 13 14 15 16 17 18 19 20  
LSB  
DATAL  
DATAR  
MSB  
Audio Data Word = 24-Bit  
DATA  
23 24  
1
2
3
4
7
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
LSB  
DATAL  
DATAR  
MSB  
Figure 35. Audio Data Input Format for External Digital Filter (Internal DF Bypass Mode) Application  
35  
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
System Clock (SCK) and Interface Timing  
The DSD1793 in an application using an external digital filter requires the synchronization of WDCK and the system  
clock. The system clock is phase-free with respect to WDCK. Interface timing among WDCK, BCK, DATA, DATAL,  
and DATAR is shown in Figure 36.  
WDCK  
1.4 V  
1.4 V  
1.4 V  
t
t
t
(LB)  
(BCH)  
(BCL)  
BCK  
t
t
(BCY)  
(BL)  
DATA  
DATAL  
DATAR  
t
t
(DS)  
(DH)  
PARAMETER  
MIN  
20  
7
MAX UNITS  
t
t
t
t
t
t
t
BCK pulse cycle time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(BCY)  
(BCL)  
(BCH)  
(BL)  
BCK pulse duration, LOW  
BCK pulse duration, HIGH  
7
BCK rising edge to WDCK falling edge  
WDCK falling edge to BCK rising edge  
DATA, DATAL, DATAR setup time  
DATA, DATAL, DATAR hold time  
5
5
(LB)  
5
(DS)  
5
(DH)  
Figure 36. Audio Interface Timing for External Digital Filter (Internal DF Bypass Mode) Application  
36  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
Functions Available in the External Digital Filter Mode  
The external digital filter mode allows access to the majority of the DSD1793 mode control functions.  
The following table shows the register mapping available when the external digital filter mode is selected, along with  
descriptions of functions which are modified when using this mode selection.  
B15 B14 B13 B12 B11 B10  
B9  
0
B8  
0
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 16 R/W  
Register 17 R/W  
Register 18 R/W  
Register 19 R/W  
Register 20 R/W  
Register 21 R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
FMT2 FMT1 FMT0  
1
1
REV  
SRST  
0
OPE  
DFMS  
INZD  
OS0  
PCMZ  
0
0
1
MONO CHSL OS1  
0
1
Register 22  
R
1
0
ZFGR ZFGL  
:
NOTE –: Function is disabled. No operation even if data bit is set  
FMT[2:0]: Audio Data Format Selection  
Default value: 000  
FMT[2:0]  
000  
Audio Data Format Select  
16-bit right-justified format (default)  
20-bit right-justified format  
24-bit right-justified format  
N/A  
001  
010  
Other  
OS[1:0]: Delta-Sigma Modulator Oversampling Rate Selection  
Default value: 00  
OS[1:0]  
00  
Operation Speed Select  
8 times WDCK (default)  
4 times WDCK  
01  
10  
16 times WDCK  
11  
Reserved  
The effective oversampling rate is determined by the oversampling performed by both the external digital filter and  
the delta-sigma modulator. For example, if the external digital filter is 8× oversampling, and the user selects  
OS[1:0] = 00, then the delta-sigma modulator oversamples by 8×, resulting in an effective oversampling rate of 64×.  
The 16× WDCK oversampling rate is not available above a 100-kHz sampling rate. If the oversampling rate selected  
is 16× WDCK, the system clock frequency must be over 256 f .  
S
37  
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
APPLICATION FOR DSD FORMAT (DSD MODE) INTERFACE  
PLRCK  
PBCK  
PDATA  
DBCK  
SCK  
ADR0  
SCL  
1
2
3
4
5
28  
27  
26  
25  
24  
SDA  
Bit Clock  
DSDL  
DSDR  
1
System Clock  
DATA_L  
DATA_R  
DSD Decoder  
DSD1793  
(1)  
2
The system clock is necessary for the initialization sequence and the I C interface operation.  
Figure 37. Connection Diagram in DSD Mode  
Feature  
This mode is used for interfacing directly to a DSD decoder, which is found in Super Audio CDt (SACD) applications.  
The DSD mode is accessed by programming the following bit in the corresponding control register:  
D DSD = 1 (register 20)  
The DSD mode provides a low-pass filtering function. The filtering is provided using an analog FIR filter structure.  
Four FIR responses are available, and are selected via DMF[1:0] of control register 18.  
Pin Assignment When Using the DSD Format Interface  
D DSDL (pin 25): L-channel DSD data input  
D DSDR (pin 24): R-channel DSD data input  
D DBCK (pin 4): Bit clock (BCK) for DSD data  
Super Audio CD is a trademark of Sony Kabushiki Kaisha TA Sony Corporation, Japan.  
38  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
Requirements for Bit Clock and System Clock  
The bit clock (DBCK) for DSD mode is required at pin 4 of the DSD1793. The frequency of the bit clock can be N  
times the sampling frequency. Generally, N is 64 in DSD applications.  
The interface timing between the bit clock and DSDL, DSDR is required to meet the setup and hold time specifications  
shown in Figure 39.  
2
The system clock is necessary for the initialization sequence and the I C interface operation.  
t = 1/(64 × 44.1 kHz)  
DBCK  
DSDL  
DSDR  
D0  
D1  
D2  
D3  
D4  
Figure 38. Normal Data Output Form From DSD Decoder  
t
t
(BCL)  
(BCH)  
1.4 V  
1.4 V  
DBCK  
t
(BCY)  
DSDL  
DSDR  
t
t
(DH)  
(DS)  
PARAMETER  
MIN  
MAX UNITS  
(1)  
t
DBCK pulse cycle time  
DBCK high-level time  
DBCK low-level time  
85  
ns  
ns  
ns  
ns  
ns  
(BCY)  
t
30  
30  
10  
10  
(BCH)  
t
(BCL)  
(DS)  
(DH)  
t
t
DSDL, DSDR setup time  
DSDL, DSDR hold time  
(1)  
2.8224 MHz × 4. (2.8224 MHz = 64 × 44.1 kHz. This value is specified as a  
sampling rate of DSD.)  
Figure 39. Timing for DSD Audio Interface  
39  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
ANALOG FIR FILTER PERFORMANCE IN DSD MODE  
GAIN  
vs  
GAIN  
vs  
FREQUENCY  
FREQUENCY  
0
−1  
−2  
−3  
−4  
−5  
−6  
0
−10  
−20  
−30  
−40  
−50  
−60  
f
= 185 kHz  
c
(1)  
Gain = –6.6 dB  
0
50  
100  
150  
200  
0
500  
1000  
1500  
f – Frequency – kHz  
f – Frequency – kHz  
Figure 40. DSD Filter-1, Low BW  
Figure 41. DSD Filter-1, High BW  
GAIN  
vs  
GAIN  
vs  
FREQUENCY  
FREQUENCY  
0
−1  
−2  
−3  
−4  
−5  
−6  
0
−10  
−20  
−30  
−40  
−50  
−60  
f
= 77 kHz  
c
(1)  
Gain  
= –6 dB  
0
50  
100  
150  
200  
0
500  
1000  
1500  
f – Frequency – kHz  
f – Frequency – kHz  
Figure 42. DSD Filter-2, Low BW  
Figure 43. DSD Filter-2, High BW  
(1)  
This gain is in comparison to PCM 0 dB, when the DSD input signal efficiency is 50%.  
All specifications at DBCK = 2.8224 MHz (44.1 kHz × 64 f ), and 50% modulation DSD data input, unless otherwise noted.  
S
40  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
ANALOG FIR FILTER PERFORMANCE IN DSD MODE (CONTINUED)  
GAIN  
vs  
GAIN  
vs  
FREQUENCY  
FREQUENCY  
0
−10  
−20  
−30  
−40  
−50  
−60  
0
−1  
−2  
−3  
−4  
−5  
−6  
f
= 85 kHz  
c
(1)  
Gain = –1.5 dB  
0
500  
1000  
1500  
0
50  
100  
150  
200  
f – Frequency – kHz  
f – Frequency – kHz  
Figure 44. DSD Filter-3, Low BW  
Figure 45. DSD Filter-3, High BW  
GAIN  
vs  
GAIN  
vs  
FREQUENCY  
FREQUENCY  
0
−1  
−2  
−3  
−4  
−5  
−6  
0
−10  
−20  
−30  
−40  
−50  
−60  
f
= 94 kHz  
c
(1)  
Gain = –3.3 dB  
0
50  
100  
150  
200  
0
500  
1000  
1500  
f – Frequency – kHz  
f – Frequency – kHz  
Figure 46. DSD Filter-4, Low BW  
Figure 47. DSD Filter-4, High BW  
(1)  
This gain is in comparison to PCM 0 dB, when the DSD input signal efficiency is 50%.  
All specifications at DBCK = 2.8224 MHz (44.1 kHz × 64 f ), and 50% modulation DSD data input, unless otherwise noted.  
S
41  
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
DSD MODE CONFIGURATION AND FUNCTION CONTROLS  
Configuration for the DSD Interface Mode  
DSD = 1 (Register 20, B5)  
B15 B14 B13 B12 B11 B10  
B9  
0
B8  
0
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 16 R/W  
Register 17 R/W  
Register 18 R/W  
Register 19 R/W  
Register 20 R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
DMF1 DMF0  
1
1
REV  
SRST  
OPE  
0
0
1
MONO CHSL OS1  
OS0  
Register 21  
Register 22  
R
R
0
1
DZ1  
DZ0  
1
0
ZFGR ZFGL  
:
NOTE –: Function is disabled. No operation even if data bit is set  
DMF[1:0]: Analog FIR Performance Selection  
Default value: 00  
DMF[1:0]  
Analog FIR Performance Select  
00  
01  
10  
11  
FIR-1 (default)  
FIR-2  
FIR-3  
FIR-4  
Plots for the four analog FIR filter responses are shown in the ANALOG FIR FILTER PERFORMANCE IN DSD  
MODE section of this data sheet.  
OS[1:0]: Analog-FIR Operation Speed Selection  
Default value: 00  
OS[1:0]  
00  
Operation Speed Select  
f
f
(default)  
DBCK  
DBCK  
01  
/2  
10  
Reserved  
f /4  
DBCK  
11  
The OS bits in the DSD mode select the operating rate of the analog FIR. The OS bits must be set before setting  
the DSD bit to 1.  
42  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
THEORY OF OPERATION  
Upper  
6 Bits  
0–62  
Level  
ICOB  
Decoder  
0–66  
Current  
Segment  
DAC  
Analog  
Voltage  
Output  
Digital  
Input  
Advanced  
DWA  
I/V  
Converter  
24 Bits  
rd  
3 -Order  
8 f  
S
5-Level  
Sigma-Delta  
0–4  
Level  
MSB  
and  
Lower 18 Bits  
Figure 48. Advanced Segment DAC With I/V Converter  
The DSD1793 uses TI’s advanced segment DAC architecture to achieve excellent dynamic performance and  
improved tolerance to clock jitter. The DSD1793 provides balanced voltage outputs.  
Digital input data via the digital filter is separated into 6 upper bits and 18 lower bits. The 6 upper bits are converted  
to inverted complementary offset binary (ICOB) code. The lower 18 bits, in association with the MSB, are processed  
by a five-level third-order delta-sigma modulator operated at 64 f by default. The 1 level of the modulator is equivalent  
S
to the 1 LSB of the ICOB code converter. The data groups processed in the ICOB converter and third-order  
delta-sigma modulator are summed together to an up to 66-level digital code, and then processed by data-weighted  
averaging (DWA) to reduce the noise produced by element mismatch. The data of up to 66 levels from the DWA is  
converted to an analog output in the differential-current segment section.  
This architecture has overcome the various drawbacks of conventional multibit processing and also achieves  
excellent dynamic performance.  
43  
ꢀꢁ ꢀꢂ ꢃ ꢄ ꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
CONSIDERATIONS FOR APPLICATION CIRCUITS  
PCB Layout Guidelines  
A typical PCB floor plan for the DSD1793 is shown in Figure 49. A ground plane is recommended, with the analog  
and digital sections being isolated from one another using a split or cut in the circuit board. The DSD1793 must be  
oriented with the digital I/O pins facing the ground plane split/cut to allow for short, direct connections to the digital  
audio interface and control signals originating from the digital section of the board. Separate power supplies are  
recommended for the digital and analog sections of the board. This prevents the switching noise present on the digital  
supply from contaminating the analog power supply and degrading the dynamic performance of the D/A converters.  
In cases where a common 5-V supply would be used for the analog and digital sections, an inductance (RF choke,  
ferrite bead) must be placed between the analog and digital 5-V supply connections to avoid coupling of the digital  
switching noise into the analog circuitry. Figure 50 shows the recommended approach for single-supply applications.  
Digital Power  
+V DGND  
Analog Power  
AGND +5VA  
+V  
S
–V  
S
D
REG  
V
CC  
Digital Logic  
and  
Audio  
Processor  
V
DD  
DGND  
Output  
Circuits  
DSD1793  
AGND  
Digital  
Ground  
Analog  
Ground  
Digital Section  
Analog Section  
Return Path for Digital Signals  
Figure 49. Recommended PCB Layout  
44  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
www.ti.com  
SLES075B − MARCH 2003 − REVISED NOVEMBER 2006  
Power Supplies  
+5V AGND +V  
RF Choke or Ferrite Bead  
–V  
S
S
REG  
V
CC  
V
DD  
V
DD  
DGND  
Output  
Circuits  
DSD1793  
AGND  
Common  
Ground  
Digital Section  
Analog Section  
Figure 50. Single-Supply PCB Layout  
Bypass and Decoupling Capacitor Requirements  
Various sized decoupling capacitors can be used, with no special tolerances being required. All capacitors must be  
located as close as possible to the appropriate pins of the DSD1793 to reduce noise pickup from surrounding circuitry.  
Aluminum electrolytic capacitors that are designed for hi-fi audio applications are recommended for larger values,  
while metal film or monolithic ceramic capacitors are used for smaller values.  
Post-LPF Design  
By proper choice of the operational amplifier and resistors used in the post-LPF circuit, excellent performance of the  
DSD1793 should be achieved. To obtain 0.001% THD+N and 113 dB signal-to-noise-ratio audio performance, the  
THD+N and input noise performance of the operational amplifier should be considered. This is because the input  
noise of the operational amplifier contributes directly to the output noise level of the application. The V  
DSD1793 and the input resistor of the post-LPF circuit must be connected as closely as possible.  
pin of the  
OUT  
Out-of-band noise level and attenuated sampling spectrum level are much lower than for typical delta-sigma type  
DACs due to the combination of a high-performance digital filter and advanced segment DAC architecture. The use  
of a second-order or third-order post-LPF is recommended for the post-LPF of the DSD1793. The cutoff frequency  
of the post-LPF depends on the application. For example, there are many sampling-rate operations such as f = 44.1  
S
kHz on CDDA, f = 96 kHz on DVD-M, f = 192 kHz on DVD-A, f = 64 f on DSD (SACD).  
S
S
S
S
45  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DSD1793DB  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
DB  
DB  
28  
28  
47  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-25 to 85  
-25 to 85  
DSD1793  
DSD1793  
DSD1793DBR  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DSD1793DBR  
SSOP  
DB  
28  
2000  
330.0  
17.4  
8.5  
10.8  
2.4  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SSOP DB 28  
SPQ  
Length (mm) Width (mm) Height (mm)  
336.6 336.6 28.6  
DSD1793DBR  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DB SSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DSD1793DB  
28  
47  
500  
10.6  
500  
9.6  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DB0028A  
SSOP - 2 mm max height  
S
C
A
L
E
1
.
5
0
0
SMALL OUTLINE PACKAGE  
C
8.2  
7.4  
TYP  
A
0.1 C  
SEATING  
PIN 1 INDEX AREA  
PLANE  
26X 0.65  
28  
1
2X  
10.5  
9.9  
8.45  
NOTE 3  
14  
15  
0.38  
0.22  
28X  
0.15  
C A B  
5.6  
5.0  
B
NOTE 4  
2 MAX  
0.25  
GAGE PLANE  
(0.15) TYP  
SEE DETAIL A  
0.95  
0.55  
0.05 MIN  
0 -8  
A
15  
DETAIL A  
TYPICAL  
4214853/B 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-150.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DB0028A  
SSOP - 2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
28X (1.85)  
(R0.05) TYP  
28  
1
28X (0.45)  
26X (0.65)  
SYMM  
14  
15  
(7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4214853/B 03/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DB0028A  
SSOP - 2 mm max height  
SMALL OUTLINE PACKAGE  
28X (1.85)  
SYMM  
(R0.05) TYP  
28  
1
28X (0.45)  
26X (0.65)  
SYMM  
14  
15  
(7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4214853/B 03/2018  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY