DSLVDS1047PWR [TI]

3.3V LVDS 四通道高速差动线路驱动器 | PW | 16 | -40 to 85;
DSLVDS1047PWR
型号: DSLVDS1047PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3V LVDS 四通道高速差动线路驱动器 | PW | 16 | -40 to 85

驱动 驱动器
文件: 总29页 (文件大小:1078K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DSLVDS1047  
ZHCSIV3 SEPTEMBER 2018  
DSLVDS1047 3.3V LVDS 四通道高速差动线路驱动器  
1 特性  
3 说明  
1
旨在用于信号传输速率高达 400Mbps 的应用  
DSLVDS1047 器件是一款四路 CMOS 直通差动线路  
驱动器,专为需要超低功耗和高数据速率的 应用 而设  
计。该器件旨在使用低电压差动信号 (LVDS) 技术支持  
超过 400Mbps (200MHz) 的数据速率。  
3.3V 电源设计  
300ps 典型差动偏斜  
400ps 最大差动偏斜  
1.7ns 最大传播延迟  
DSLVDS1047 接受低电压 TTL/CMOS 输入电平,并  
将其转换为低电压 (350mV) 差动输出信号。  
此外,该驱动器支持可用于禁用输出级的 TRI-STAT  
功能,可禁用负载电流,从而将器件降至功率为  
13mW(典型值)的超低空闲功耗状态。  
DSLVDS1047 采用了直通引脚排列,可简化 PCB 布  
局。  
±350mV 差动信号传输  
低功耗(3.3V 静态条件下为 13mW)  
能够与现有 5V LVDS 接收器交互操作  
在断电模式下,LVDS 输出端具有高阻抗  
直通引脚排列可简化 PCB 布局  
符合或超出 TIA/EIA-644 LVDS 标准  
工业工作温度范围  
EN EN* 输入将接受 AND 运算并控制 TRI-STATE  
输出。这些使能端由四个驱动器共用。 和配套的线路  
接收器 (DSLVDS1048) 为高速点对点接口应用提供了  
大功率伪 ECL 器件的替代 产品。  
40°C +85°C)  
可采用 TSSOP 封装  
2 应用  
多功能打印机  
器件信息(1)  
板对板通信  
测试和测量  
打印机  
器件型号  
封装  
封装尺寸(标称值)  
DSLVDS1047  
TSSOP (16)  
5.00mm × 4.40mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
数据中心互连  
实验室仪表  
超声波扫描仪  
1. 703A I2C  
DSLVDS1047  
DSLVDS1048  
Receiver  
RIN1+  
RIN1-  
DOUT1+  
DOUT1-  
DIN1  
DIN2  
DIN3  
Driver  
ROUT1  
DOUT2+  
DOUT2-  
RIN2+  
RIN2-  
Driver  
Receiver  
ROUT2  
DOUT3+  
DOUT3-  
RIN3+  
RIN3-  
Driver  
Receiver  
ROUT3  
DOUT4+  
DOUT4-  
RIN4+  
RIN4-  
DIN4  
ROUT4  
Driver  
Receiver  
EN  
EN  
EN*  
EN*  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNLS623  
 
 
 
DSLVDS1047  
ZHCSIV3 SEPTEMBER 2018  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 13  
8.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 15  
9.1 Application Information............................................ 15  
9.2 Typical Application ................................................. 15  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics .......................................... 5  
6.6 Switching Characteristics ......................................... 6  
6.7 Typical Characteristics.............................................. 7  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 13  
9
10 Power Supply Recommendations ..................... 18  
11 Layout................................................................... 18  
11.1 Layout Guidelines ................................................. 18  
11.2 Layout Example .................................................... 19  
12 器件和文档支持 ..................................................... 20  
12.1 接收文档更新通知 ................................................. 20  
12.2 社区资源................................................................ 20  
12.3 ....................................................................... 20  
12.4 静电放电警告......................................................... 20  
12.5 术语表 ................................................................... 20  
13 机械、封装和可订购信息....................................... 21  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2018 9 月  
*
最初发布版本。  
2
Copyright © 2018, Texas Instruments Incorporated  
 
DSLVDS1047  
www.ti.com.cn  
ZHCSIV3 SEPTEMBER 2018  
5 Pin Configuration and Functions  
PW Package  
16-Pin TSSOP  
Top View  
EN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
D
OUT1Þ  
D
OUT1+  
D
OUT2+  
D
OUT2Þ  
D
OUT3Þ  
D
OUT3+  
D
OUT4+  
D
OUT4Þ  
D
IN1  
IN2  
D
VCC  
GND  
D
D
IN3  
IN4  
EN*  
Not to scale  
Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
2
DIN1  
3
DIN2  
I
Driver input pin, TTL/CMOS compatible  
Non-inverting driver output pin, LVDS levels  
Inverting driver output pin, LVDS levels  
6
DIN3  
7
DIN4  
10  
11  
14  
15  
9
DOUT4+  
DOUT3+  
DOUT2+  
DOUT1+  
DOUT4  
DOUT3−  
DOUT2−  
DOUT1−  
O
O
12  
13  
16  
Driver enable pin: When EN is low, the driver is disabled. When EN is high and EN* is low  
or open, the driver is enabled. If both EN and EN* are open circuit, then the driver is  
disabled.  
1
8
EN  
I
I
Driver enable pin: When EN* is high, the driver is disabled. When EN* is low or open and  
EN is high, the driver is enabled. If both EN and EN* are open circuit, then the driver is  
disabled.  
EN*  
5
4
GND  
VCC  
Ground pin  
Power supply pin, +3.3 V ± 0.3 V  
Copyright © 2018, Texas Instruments Incorporated  
3
DSLVDS1047  
ZHCSIV3 SEPTEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)  
See  
MIN  
0.3  
0.3  
0.3  
0.3  
MAX  
4
UNIT  
Supply voltage (VCC  
Input voltage (DIN  
Enable input voltage (EN, EN*)  
Output voltage (DOUT+, DOUT–  
)
V
V
V
V
)
VCC + 0.3  
VCC + 0.3  
3.9  
)
Short-circuit duration  
(DOUT+, DOUT–  
)
Continuous  
PW0016A package  
Derate PW0016A package  
Soldering (4 s)  
866  
6.9  
mW  
mW/°C  
°C  
Maximum package power  
dissipation at +25°C  
above +25°C  
Lead temperature  
260  
150  
150  
Maximum junction temperature  
Storage temperature, Tstg  
°C  
65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(2)  
±1200  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(3)  
V(ESD)  
Electrostatic discharge(1)  
±200  
Machine Model  
±1200  
(1) ESD Ratings:  
HBM (1.5 kΩ, 100 pF)  
EIAJ (0 Ω, 200 pF)  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
3
NOM  
3.3  
MAX  
3.6  
UNIT  
V
Supply voltage, VCC  
Operating free air temperature, TA  
40  
25  
85  
°C  
6.4 Thermal Information  
DSLVDS1047  
THERMAL METRIC(1)  
PW (TSSOP)  
UNIT  
16 PINS  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
114  
51  
59  
8
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
58  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
DSLVDS1047  
www.ti.com.cn  
ZHCSIV3 SEPTEMBER 2018  
6.5 Electrical Characteristics  
Over supply voltage and operating temperature ranges, unless otherwise specified(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
PIN  
MIN  
TYP  
MAX  
UNIT  
VOD1  
ΔVOD1  
VOS  
Differential output voltage  
250  
310  
450  
mV  
Change in magnitude of VOD1 for  
complementary output states  
1
1.17  
1
35  
1.375  
25  
|mV|  
V
Offset voltage  
1.125  
DOUT−  
DOUT+  
RL = 100 Ω (Figure 18)  
Change in magnitude of VOS for  
complementary output states  
ΔVOS  
|mV|  
VOH  
VOL  
VIH  
VIL  
IIH  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Input clamp voltage  
1.33  
1.02  
1.6  
V
V
0.9  
2
VCC  
0.8  
15  
V
GND  
V
DIN  
EN,  
EN*  
,
VIN = VCC or 2.5 V  
VIN = GND or 0.4 V  
ICL = 18 mA  
2
2
µA  
µA  
V
IIL  
15  
VCL  
1.5  
0.8  
ENABLED,  
DIN = VCC, DOUT+ = 0 V or  
DIN = GND, DOUT= 0 V  
IOS  
Output short-circuit current(4)  
4  
8  
mA  
Differential output short-circuit  
current(4)  
IOSD  
IOFF  
ENABLED, VOD = 0 V  
4.2  
9  
mA  
µA  
DOUT−  
DOUT+  
VOUT = 0 V or 3.6 V, VCC = 0 V or  
Open  
Power-off leakage  
20  
10  
±1  
20  
EN = 0.8 V and EN* = 2.0 V  
VOUT = 0 V or VCC  
IOZ  
Output TRI-STATE current  
±1  
4
10  
8
µA  
mA  
mA  
ICC  
ICCL  
No load supply current drivers enabled DIN = VCC or GND  
RL = 100 Ω all channels, DIN = VCC  
or GND (all inputs)  
Loaded supply current drivers enabled  
20  
30  
VCC  
DIN = VCC or GND, EN = GND,  
EN* = VCC  
No load supply current drivers  
disabled  
ICCZ  
2.2  
6
mA  
(1) Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground  
except: VOD1 and ΔVOD1  
.
(2) All typicals are given for: VCC = 3.3 V, TA = +25°C.  
(3) The DSLVDS1047 is a current mode device and only functions within datasheet specifications when a resistive load is applied to the  
driver outputs typical range is (90 Ω to 110 Ω).  
(4) Output short circuit current (IOS) is specified as magnitude only, minus sign indicates direction only.  
Copyright © 2018, Texas Instruments Incorporated  
5
DSLVDS1047  
ZHCSIV3 SEPTEMBER 2018  
www.ti.com.cn  
6.6 Switching Characteristics  
VCC = +3.3V ± 10%, TA = 40°C to +85°C(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Differential propagation delay high to  
low  
tPHLD  
tPLHD  
0.5  
0.9  
1.7  
1.7  
ns  
Differential propagation delay low to  
high  
0.5  
1.2  
ns  
(4)  
tSKD1  
tSKD2  
tSKD3  
tSKD4  
tTLH  
Differential pulse skew |tPHLD tPLHD  
Channel-to-channel skew(5)  
Differential part-to-part skew(6)  
Differential part-to-part skew(7)  
Rise time  
|
0.3  
0.4  
0.4  
0.5  
1
ns  
ns  
RL = 100 Ω, CL = 15 pF  
(Figure 19 and Figure 20)  
0
0
ns  
1.2  
1.5  
1.5  
5
ns  
0.5  
0.5  
2
ns  
tTHL  
Fall time  
ns  
tPHZ  
tPLZ  
tPZH  
tPZL  
Disable time high to Z  
Disable time low to Z  
ns  
2
5
ns  
RL = 100 Ω, CL = 15 pF  
(Figure 21 and Figure 22)  
Enable time Z to high  
3
7
ns  
Enable time Z to low  
3
7
ns  
fMAX  
Maximum operating frequency(8)  
200  
250  
MHz  
(1) All typicals are given for: VCC = 3.3 V, TA = +25°C.  
(2) Generator waveform for all tests unless otherwise specified: f = 1 MHz, ZO = 50 Ω, tr 1 ns, and tf 1 ns.  
(3) CL includes probe and jig capacitance.  
(4) tSKD1 |tPHLD – tPLHD| is the magnitude difference in differential propagation delay time between the positive going edge and the negative  
going edge of the same channel.  
(5) tSKD2 is the differential channel-to-channel skew of any event on the same device.  
(6) tSKD3, differential part-to-part skew, is defined as the difference between the minimum and maximum specified differential propagation  
delays. This specification applies to devices at the same VCC and within 5°C of each other within the operating temperature range.  
(7) tSKD4, part to part skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices  
over recommended operating temperature and voltage ranges, and across process distribution. tSKD4 is defined as |Max Min|  
differential propagation delay.  
(8) fMAX generator input conditions: tr = tf < 1 ns (0% to 100%), 50% duty cycle, 0 V to 3 V. Output criteria: duty cycle = 45% / 55%,  
VOD > 250 mV, all channels switching.  
6
Copyright © 2018, Texas Instruments Incorporated  
DSLVDS1047  
www.ti.com.cn  
ZHCSIV3 SEPTEMBER 2018  
6.7 Typical Characteristics  
Figure 2. Output High Voltage vs Power Supply Voltage  
Figure 3. Output Low Voltage vs Power Supply Voltage  
Figure 5. Output TRI-STATE Current vs  
Power Supply Voltage  
Figure 4. Output Short Circuit Current vs  
Power Supply Voltage  
Figure 6. Differential Output Voltage vs  
Power Supply Voltage  
Figure 7. Differential Output Voltage vs Load Resistor  
Copyright © 2018, Texas Instruments Incorporated  
7
DSLVDS1047  
ZHCSIV3 SEPTEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
Figure 8. Offset Voltage vs Power Supply Voltage  
Figure 9. Power Supply Current vs Power Supply Voltage  
Figure 11. Differential Propagation Delay vs  
Power Supply Voltage  
Figure 10. Power Supply Current vs Ambient Temperature  
Figure 13. Differential Skew vs Power Supply Voltage  
Figure 12. Differential Propagation Delay vs  
Ambient Temperature  
8
Copyright © 2018, Texas Instruments Incorporated  
DSLVDS1047  
www.ti.com.cn  
ZHCSIV3 SEPTEMBER 2018  
Typical Characteristics (continued)  
Figure 14. Differential Skew vs Ambient Temperature  
Figure 15. Transition Time vs Power Supply Voltage  
Figure 16. Transition Time vs Ambient Temperature  
Figure 17. Data Rate vs Cable Length  
7 Parameter Measurement Information  
Figure 18. Driver VOD and VOS Test Circuit  
Copyright © 2018, Texas Instruments Incorporated  
9
 
DSLVDS1047  
ZHCSIV3 SEPTEMBER 2018  
www.ti.com.cn  
Parameter Measurement Information (continued)  
Figure 19. Driver Propagation Delay and Transition Time Test Circuit  
Figure 20. Driver Propagation Delay and Transition Time Waveforms  
Figure 21. Driver TRI-STATE Delay Test Circuit  
10  
Copyright © 2018, Texas Instruments Incorporated  
DSLVDS1047  
www.ti.com.cn  
ZHCSIV3 SEPTEMBER 2018  
Parameter Measurement Information (continued)  
Figure 22. Driver TRI-STATE Delay Waveform  
Copyright © 2018, Texas Instruments Incorporated  
11  
DSLVDS1047  
ZHCSIV3 SEPTEMBER 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
LVDS drivers and receivers are intended to be primarily used in an uncomplicated point-to-point configuration as  
is shown in Figure 24. This configuration provides a clean signaling environment for the fast edge rates of the  
drivers. The receiver is connected to the driver through a balanced media which may be a standard twisted pair  
cable, a parallel pair cable, or simply PCB traces. Typically, the characteristic differential impedance of the media  
is in the range of 100 Ω. A termination resistor of 100 Ω (selected to match the media), and is located as close to  
the receiver input pins as possible. The termination resistor converts the driver output current (current mode) into  
a voltage that is detected by the receiver. Other configurations are possible such as a multi-receiver  
configuration, but the effects of a mid-stream connector(s), cable stub(s), and other impedance discontinuities as  
well as ground shifting, noise margin limits, and total termination loading must be taken into account.  
The DSLVDS1047 differential line driver is a balanced current source design. A current mode driver, generally  
speaking has a high output impedance and supplies a constant current for a range of loads (a voltage mode  
driver on the other hand supplies a constant voltage for a range of loads). Current is switched through the load in  
one direction to produce a logic state and in the other direction to produce the other logic state. The output  
current is typically 3.1 mA, a minimum of 2.5 mA, and a maximum of 4.5 mA. The current mode driver requires  
that a resistive termination be employed to terminate the signal and to complete the loop as shown in Figure 24.  
AC or unterminated configurations are not allowed. The 3.1-mA loop current develops a differential voltage of  
310 mV across the 100-Ω termination resistor which the receiver detects with a 250-mV minimum differential  
noise margin, (driven signal minus receiver threshold (250 mV – 100 mV = 150 mV). The signal is centered  
around +1.2 V (Driver Offset, VOS) with respect to ground as shown in Figure 23.  
NOTE  
The steady-state voltage (VSS) peak-to-peak swing is twice the differential voltage (VOD  
)
and is typically 620 mV.  
The current mode driver provides substantial benefits over voltage mode drivers, such as an RS-422 driver. Its  
quiescent current remains relatively flat versus switching frequency. Whereas the RS-422 voltage mode driver  
increases exponentially in most case from 20 MHz to 50 MHz. This is due to the overlap current that flows  
between the rails of the device when the internal gates switch. Whereas the current mode driver switches a fixed  
current between its output without any substantial overlap current. This is similar to some ECL and PECL  
devices, but without the heavy static ICC requirements of the ECL/PECL designs. LVDS requires > 80% less  
current than similar PECL devices. AC specifications for the driver are a tenfold improvement over other existing  
RS-422 drivers.  
The TRI-STATE function allows the driver outputs to be disabled, thus obtaining an even lower power state when  
the transmission of data is not required.  
12  
Copyright © 2018, Texas Instruments Incorporated  
DSLVDS1047  
www.ti.com.cn  
ZHCSIV3 SEPTEMBER 2018  
8.2 Functional Block Diagram  
8.3 Feature Description  
8.3.1 LVDS Fail-Safe  
This section addresses the common concern of fail-safe biasing of LVDS interconnects, specifically looking at the  
DSLVDS1047 driver outputs and the DSLVDS1048 receiver inputs.  
The LVDS receiver is a high-gain, high-speed device that amplifies a small differential signal (20 mV) to CMOS  
logic levels. Due to the high gain and tight threshold of the receiver, take care to prevent noise from appearing as  
a valid signal.  
The internal fail-safe circuitry of the receiver is designed to source or sink a small amount of current, providing  
fail-safe protection (a stable known state of HIGH output voltage) for floating, terminated, or shorted receiver  
inputs.  
1. Open Input Pins. The DSLVDS1048 is a quad receiver device, and if an application requires only 1, 2, or 3  
receivers, the unused channel(s) inputs must be left OPEN. Do not tie unused receiver inputs to ground or  
any other voltages. The input is biased by internal high value pullup and pulldown resistors to set the output  
to a HIGH state. This internal circuitry ensures a HIGH, stable output state for open inputs.  
2. Terminated Input. If the DSLVDS1047 driver is disconnected (cable unplugged), or if the DSLVDS1047  
driver is in a TRI-STATE or power-off condition, the receiver output is again in a HIGH state, even with the  
end of cable 100-Ω termination resistor across the input pins. The unplugged cable can become a floating  
antenna which can pick up noise. If the cable picks up more than 10 mV of differential noise, the receiver  
may see the noise as a valid signal and switch. To insure that any noise is seen as common-mode and not  
differential, a balanced interconnect must be used. Twisted pair cable offers better balance than flat ribbon  
cable.  
3. Shorted Inputs. If a fault condition occurs that shorts the receiver inputs together, thus resulting in a 0-V  
differential input voltage, the receiver output remains in a HIGH state. Shorted input fail-safe is not supported  
across the common-mode range of the device (GND to 2.4 V). It is only supported with inputs shorted and no  
external common-mode voltage applied.  
Copyright © 2018, Texas Instruments Incorporated  
13  
DSLVDS1047  
ZHCSIV3 SEPTEMBER 2018  
www.ti.com.cn  
Feature Description (continued)  
External lower value pullup and pulldown resistors (for a stronger bias) may be used to boost fail-safe in the  
presence of higher noise levels. The pullup and pulldown resistors should be in the 5-kΩ to 15-kΩ range to  
minimize loading and waveform distortion to the driver. The common-mode bias point should be set to  
approximately 1.2 V (less than 1.75 V) to be compatible with the internal circuitry.  
Figure 23. Driver Output Levels  
8.4 Device Functional Modes  
Table 1 lists the functional modes DSLVDS1047.  
Table 1. Truth Table  
ENABLES  
INPUT  
OUTPUTS  
EN  
EN*  
DIN  
L
DOUT+  
DOUT  
L
H
Z
H
L
H
L or Open  
H
All other combinations of ENABLE inputs  
X
Z
14  
Copyright © 2018, Texas Instruments Incorporated  
 
DSLVDS1047  
www.ti.com.cn  
ZHCSIV3 SEPTEMBER 2018  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DSLVDS1047 has a flow-through pinout that allows for easy PCB layout. The LVDS signals on one side of  
the device easily allows for matching electrical lengths of the differential pair trace lines between the driver and  
the receiver as well as allowing the trace lines to be close together to couple noise as common-mode. Noise  
isolation is achieved with the LVDS signals on one side of the device and the TTL signals on the other side.  
9.2 Typical Application  
DSLVDS1047  
DSLVDS1048  
RIN1+  
RIN1-  
DOUT1+  
DOUT1-  
DIN1  
DIN2  
DIN3  
Driver  
Driver  
Driver  
Receiver  
Receiver  
Receiver  
ROUT1  
DOUT2+  
DOUT2-  
RIN2+  
RIN2-  
ROUT2  
DOUT3+  
DOUT3-  
RIN3+  
RIN3-  
ROUT3  
DOUT4+  
DOUT4-  
RIN4+  
RIN4-  
DIN4  
ROUT4  
Driver  
Receiver  
EN  
EN  
EN*  
EN*  
Figure 24. Point-to-Point Application  
Copyright © 2018, Texas Instruments Incorporated  
15  
DSLVDS1047  
ZHCSIV3 SEPTEMBER 2018  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
When using LVDS devices, it is important to remember to specify controlled impedance PCB traces, cable  
assemblies, and connectors. All components of the transmission media should have a matched differential  
impedance of about 100 Ω. They should not introduce major impedance discontinuities.  
Balanced cables (for example, twisted pair) are usually better than unbalanced cables (ribbon cable) for noise  
reduction and signal quality. Balanced cables tend to generate less EMI due to field canceling effects and also  
tend to pick up electromagnetic radiation as common-mode (not differential mode) noise which is rejected by the  
LVDS receiver.  
For cable distances < 0.5 M, most cables can be made to work effectively. For distances 0.5 M d 10 M,  
CAT5 (Category 5) twisted pair cable works well, is readily available and relatively inexpensive.  
Table 2. Design Requirements  
DESIGN PARAMETERS  
Driver Supply Voltage (VCC  
Driver Input Voltage  
EXAMPLE VALUE  
3.0 to 3.6 V  
0 to 3.6 V  
DC to 400 Mbps  
100 Ω  
)
Driver Signaling Rate  
Interconnect Characteristic Impedance  
Termination Resistance  
100 Ω  
Number of Receiver Nodes  
1
Ground shift between driver and receiver  
±1 V  
9.2.2 Detailed Design Procedure  
9.2.2.1 Probing LVDS Transmission Lines  
Always use high impedance (> 100 kΩ), low capacitance (< 2 pF) scope probes with a wide bandwidth (1 GHz)  
scope. Improper probing gives deceiving results.  
9.2.2.2 Data Rate vs Cable Length Graph Test Procedure  
A pseudo-random bit sequence (PRBS) of 291 bits was programmed into a function generator (Tektronix  
HFS9009) and connected to the driver inputs through 50-Ω cables and SMB connectors. An oscilloscope  
(Tektronix 11801B) was used to probe the resulting eye pattern, measured differentially at the input to the  
receiver. A 100-Ω resistor was used to terminate the pair at the far end of the cable. The measurements were  
taken at the far end of the cable, at the input of the receiver, and used for the jitter analysis for this graph  
(Figure 17). The frequency of the input signal was increased until the measured jitter (ttcs) equaled 20% with  
respect to the unit interval (ttui) for the particular cable length under test. Twenty percent jitter is a reasonable  
place to start with many system designs. The data used was NRZ. Jitter was measured at the 0-V differential  
voltage of the differential eye pattern. The DSLVDS1047 and DSLVDS1048 can be evaluated using the new  
DS90LV047-048AEVM.  
Figure 25 shows very good typical performance that can be used as a design guideline for data rate vs cable  
length. Increasing the jitter percentage increases the curve respectively, allowing the device to transmit faster  
over longer cable lengths. This relaxes the jitter tolerance of the system allowing more jitter into the system,  
which could reduce the reliability and efficiency of the system. Alternatively, decreasing the jitter percentage has  
the opposite effect on the system. The area under the curve is considered the safe operating area based on the  
above signal quality criteria. For more information on eye pattern testing, please see AN-808 Long Transmission  
Lines and Data Signal Quality (SNLA028).  
16  
Copyright © 2018, Texas Instruments Incorporated  
DSLVDS1047  
www.ti.com.cn  
ZHCSIV3 SEPTEMBER 2018  
9.2.3 Application Curve  
Figure 25. Power Supply Current vs Frequency  
Copyright © 2018, Texas Instruments Incorporated  
17  
DSLVDS1047  
ZHCSIV3 SEPTEMBER 2018  
www.ti.com.cn  
10 Power Supply Recommendations  
Although the DSLVDS1047 draws very little power while at rest. At higher switching frequencies there is a  
dynamic current component which increases the overall power consumption. The DSLVDS1047 power supply  
connection must take this additional current consumption into consideration for maximum power requirements.  
11 Layout  
11.1 Layout Guidelines  
Use at least 4 PCB layers (top to bottom); LVDS signals, ground, power, TTL signals.  
Isolate TTL signals from LVDS signals, otherwise the TTL may couple onto the LVDS lines. It is best to put  
TTL and LVDS signals on different layers which are isolated by a power/ground plane(s).  
Keep drivers and receivers as close to the (LVDS port side) connectors as possible.  
11.1.1 Power Decoupling Recommendations  
Bypass capacitors must be used on power pins. Use high frequency ceramic (surface mount is recommended)  
0.1-µF and 0.001-µF capacitors in parallel at the power supply pin with the smallest value capacitor closest to the  
device supply pin. Additional scattered capacitors over the printed-circuit board improves decoupling. Multiple  
vias must be used to connect the decoupling capacitors to the power planes. A 10-µF (35-V) or greater solid  
tantalum capacitor must be connected at the power entry point on the printed-circuit board between the supply  
and ground.  
11.1.2 Differential Traces  
Use controlled impedance traces which match the differential impedance of your transmission medium (that is,  
cable) and termination resistor. Run the differential pair trace lines as close together as possible as soon as they  
leave the IC (stubs must be < 10 mm long). This helps eliminate reflections and ensure noise is coupled as  
common-mode. In fact, we have seen that differential signals which are 1 mm apart radiate far less noise than  
traces 3 mm apart since magnetic field cancellation is much better with the closer traces. In addition, noise  
induced on the differential lines is much more likely to appear as common-mode which is rejected by the  
receiver.  
Match electrical lengths between traces to reduce skew. Skew between the signals of a pair means a phase  
difference between signals, which destroys the magnetic field cancellation benefits of differential signals and  
EMI, results.  
NOTE  
The velocity of propagation, v = c/Er where c (the speed of light) = 0.2997mm/ps or  
0.0118 in/ps  
Do not rely solely on the autoroute function for differential traces. Carefully review dimensions to match  
differential impedance and provide isolation for the differential lines. Minimize the number or vias and other  
discontinuities on the line.  
Avoid 90° turns (these cause impedance discontinuities). Use arcs or 45° bevels.  
Within a pair of traces, the distance between the two traces must be minimized to maintain common-mode  
rejection of the receivers. On the printed-circuit board, this distance must remain constant to avoid discontinuities  
in differential impedance. Minor violations at connection points are allowable.  
11.1.3 Termination  
Use a termination resistor which best matches the differential impedance or your transmission line. The resistor  
must be between 90 Ω and 130 Ω. Remember that the current mode outputs need the termination resistor to  
generate the differential voltage. LVDS does not work without resistor termination. Typically, connecting a single  
resistor across the pair at the receiver end will suffice.  
18  
Copyright © 2018, Texas Instruments Incorporated  
DSLVDS1047  
www.ti.com.cn  
ZHCSIV3 SEPTEMBER 2018  
Layout Guidelines (continued)  
Surface mount 1% to 2% resistors are best. PCB stubs, component lead, and the distance from the termination  
to the receiver inputs must be minimized. The distance between the termination resistor and the receiver should  
be < 10 mm (12 mm maximum).  
11.2 Layout Example  
DS90LV048A  
DS90LV047A  
1
2
3
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
16  
15  
14  
13  
12  
11  
10  
9
DOUT1-  
DOUT1+  
DOUT2+  
DOUT2-  
DOUT3-  
DOUT3+  
RIN1-  
RIN1+  
RIN2+  
RIN2-  
RIN3-  
RIN3+  
EN  
EN  
DIN1  
DIN2  
Series Termination (optional)  
ROUT1  
ROUT2  
LVCMOS  
Inputs  
LVCMOS  
Outputs  
Decoupling Cap  
4
5
4
5
VCC  
GND  
VCC  
GND  
Decoupling Cap  
6
7
6
7
ROUT3  
ROUT4  
EN*  
DIN3  
DIN4  
EN*  
DOUT4+  
DOUT4-  
RIN4+  
RIN4-  
Series Termination (optional)  
8
8
Input Termination  
(Required)  
Figure 26. Layout Recommendation  
版权 © 2018, Texas Instruments Incorporated  
19  
DSLVDS1047  
ZHCSIV3 SEPTEMBER 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
20  
版权 © 2018, Texas Instruments Incorporated  
DSLVDS1047  
www.ti.com.cn  
ZHCSIV3 SEPTEMBER 2018  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DSLVDS1047PWR  
DSLVDS1047PWT  
ACTIVE  
TSSOP  
TSSOP  
PW  
16  
16  
2500 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
DSLVDS  
1047  
ACTIVE  
PW  
SN  
DSLVDS  
1047  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DSLVDS1047PWR  
DSLVDS1047PWT  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
2500  
250  
330.0  
178.0  
12.4  
12.4  
6.95  
6.95  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DSLVDS1047PWR  
DSLVDS1047PWT  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
2500  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DSLVDS1047PWT

3.3V LVDS 四通道高速差动线路驱动器 | PW | 16 | -40 to 85
TI

DSLVDS1048

3.3V LVDS 四通道高速差动线路接收器
TI

DSLVDS1048PWR

3.3V LVDS 四通道高速差动线路接收器 | PW | 16 | -40 to 85
TI

DSLVDS1048PWT

3.3V LVDS 四通道高速差动线路接收器 | PW | 16 | -40 to 85
TI

DSM

High Precision Bulk Metal® Foil Surface Mount Voltage Divider
VISHAY

DSM-098-B-25-P-F-FB-FT

D Subminiature Connector, 25 Contact(s), Male, Solder Terminal
SAMTEC

DSM-098-B-25-P-F-FB-HJ

D Subminiature Connector, 25 Contact(s), Male, Solder Terminal
SAMTEC

DSM-098-B-25-P-F-FB-RJ

D Subminiature Connector, 25 Contact(s), Male, Solder Terminal
SAMTEC

DSM-098-B-25-P-L-FB-FT

D Subminiature Connector, 25 Contact(s), Male, Solder Terminal
SAMTEC

DSM-098-B-25-P-L-FB-HJ

D Subminiature Connector, 25 Contact(s), Male, Solder Terminal
SAMTEC

DSM-098-B-25-P-L-FB-RJ

D Subminiature Connector, 25 Contact(s), Male, Solder Terminal
SAMTEC
SAMTEC