F280025PMQR [TI]

TMS320F28002x Microcontrollers;
F280025PMQR
型号: F280025PMQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMS320F28002x Microcontrollers

微控制器
文件: 总180页 (文件大小:3359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
TMS320F28002x Microcontrollers  
1 Device Overview  
1.1 Features  
1
• TMS320C28x 32-bit DSP core at 100 MHz  
– IEEE 754 Floating-Point Unit (FPU)  
– Support for Fast Integer Division (FINTDIV)  
– Trigonometric Math Unit (TMU)  
• Analog system  
– Two 3.45-MSPS, 12-bit Analog-to-Digital  
Converters (ADCs)  
– Up to 16 external channels  
– Four integrated Post-Processing Blocks  
(PPB) per ADC  
– Support for Nonlinear Proportional Integral  
Derivative (NLPID) control  
– Four windowed comparators (CMPSS) with  
12-bit reference Digital-to-Analog Converters  
(DACs)  
– CRC Engine and Instructions (VCRC)  
– Ten hardware breakpoints (with ERAD)  
• On-chip memory  
– Digital glitch filters  
• Enhanced control peripherals  
– 128KB (64KW) of flash (ECC-protected)  
– 24KB (12KW) of RAM (ECC or parity-protected)  
– Dual-zone security  
– 14 ePWM channels with eight channels that  
have high-resolution capability (150-ps  
resolution)  
• Clock and system control  
– Two internal zero-pin 10-MHz oscillators  
– On-chip crystal oscillator or external clock input  
– Windowed watchdog timer module  
– Missing clock detection circuitry  
– Dual-clock Comparator (DCC)  
• Single 3.3-V supply  
– Internal VREG generation  
– Brownout reset (BOR) circuit  
• System peripherals  
– Integrated dead-band support  
– Integrated hardware trip zones (TZs)  
– Three Enhanced Capture (eCAP) modules  
– High-resolution Capture (HRCAP) available  
on one of the three eCAP modules  
– Two Enhanced Quadrature Encoder Pulse  
(eQEP) modules with support for CW/CCW  
operation modes  
• Configurable Logic Block (CLB)  
– Augments existing peripheral capability  
– Supports position manager solutions  
• Host Interface Controller (HIC)  
– Access to internal memory from an external host  
• Background CRC (BGCRC)  
– 6-channel Direct Memory Access (DMA)  
controller  
– 39 individually programmable multiplexed  
General-Purpose Input/Output (GPIO) pins  
– 16 digital inputs on analog pins  
– Enhanced Peripheral Interrupt Expansion (ePIE)  
– Multiple low-power mode (LPM) support  
– One cycle CRC computation on 32 bits of data  
• Diagnostic features  
– Embedded Real-time Analysis and Diagnostic  
(ERAD)  
– Unique Identification (UID) number  
– Memory Power On Self Test (MPOST)  
– Hardware Built-in Self Test (HWBIST)  
• Package options:  
– 80-pin Low-profile Quad Flatpack (LQFP)  
[PN suffix]  
– 64-pin LQFP [PM suffix]  
– 48-pin LQFP [PT suffix]  
• Temperature options:  
• Communications peripherals  
– One Power-Management Bus (PMBus) interface  
– Two Inter-integrated Circuit (I2C) interfaces  
– One Controller Area Network (CAN) bus port  
– Two Serial Peripheral Interface (SPI) ports  
– One Serial Communication Interface (SCI)  
– Two Local Interconnect Network (LIN) interfaces  
– S: –40°C to 125°C junction  
– Q: –40ºC to 125ºC free-air  
(AEC Q100 qualification for automotive  
applications)  
– Fast Serial Interface (FSI) with one transmitter  
and one receiver (up to 200Mbps)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. ADVANCE INFORMATION for pre-production products; subject to  
change without notice.  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
1.2 Applications  
Air conditioner outdoor unit  
Door operator drive control  
Automated sorting equipment  
Textile machine  
On-board (OBC) & wireless charger  
AC drive control module  
AC drive position feedback  
AC drive power stage module  
Linear motor power stage  
Servo drive position feedback  
Servo drive power stage module  
AC-input BLDC motor drive  
DC-input BLDC motor drive  
Industrial AC-DC  
AC charging (pile) station  
DC charging (pile) station  
EV charging station power module  
Wireless vehicle charging module  
Energy storage power conversion system (PCS)  
Central inverter  
Micro inverter  
Three phase UPS  
Solar power optimizer  
Merchant DC/DC  
String inverter  
Merchant network & server PSU  
Merchant telecom rectifiers  
DC/DC converter  
Inverter & motor control  
1.3 Description  
C2000™ 32-bit microcontrollers are optimized for processing, sensing, and actuation to improve closed-  
loop performance in real-time control applications such as industrial motor drives; solar inverters and  
digital power; electrical vehicles and transportation; motor control; and sensing and signal processing.  
The TMS320F28002x (F28002x) is a powerful 32-bit floating-point microcontroller unit (MCU) that lets  
designers incorporate crucial control peripherals, differentiated analog, and nonvolatile memory on a  
single device.  
The real-time control subsystem is based on TI’s 32-bit C28x DSP core, which provides 100 MHz of signal  
processing performance. The C28x CPU is further boosted by the new TMU extended instruction set,  
which enables fast execution of algorithms with trigonometric operations commonly found in transforms  
and torque loop calculations; and the VCRC extended instruction set, which reduces the latency for  
complex math operations commonly found in encoded applications.  
The F28002x supports up to 128KB (64KW) of flash memory in one bank. Up to 24KB (12KW) of on-chip  
SRAM is also available in blocks of 4KB (2KW) for efficient system partitioning. Flash ECC, SRAM  
ECC/parity, and dual-zone security are also supported.  
High-performance analog blocks are integrated on the F28002x MCU to further enable system  
consolidation. Two separate 12-bit ADCs provide precise and efficient management of multiple analog  
signals, which ultimately boosts system throughput. Four analog comparator modules provide continuous  
monitoring of input voltage levels for trip conditions.  
The TMS320C2000™ devices contain industry-leading control peripherals with frequency-independent  
ePWM/HRPWM and eCAP allow for a best-in-class level of control to the system.  
Connectivity is supported through various industry-standard communication ports (such as SPI, SCI, I2C,  
PMBus, LIN, and CAN) and offers multiple muxing options for optimal signal placement in a variety of  
applications. New to the C2000™ platform is Host Interface Controller (HIC), a high throughput interface  
that allows an external host to access resources of the TMS320F28002x. Additionally, in an industry first,  
the FSI enables high-speed, robust communication to complement the rich set of peripherals that are  
embedded in the device.  
A specially enabled device variant, TMS320F28002xC, allows access to the Configurable Logic Block  
(CLB) for additional interfacing features and allows access to the secure ROM. See Device Comparison  
for more information.  
2
Device Overview  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
The Embedded Real-Time Analysis and Diagnostic (ERAD) module enhances the debug and system  
analysis capabilities of the device by providing additional hardware breakpoints and counters for profiling.  
To learn more about the C2000 MCUs, visit the C2000 Overview at www.ti.com/c2000.  
Device Information(1)  
PART NUMBER  
TMS320F280025PN  
PACKAGE  
LQFP (80)  
LQFP (80)  
LQFP (80)  
LQFP (80)  
LQFP (64)  
LQFP (64)  
LQFP (64)  
LQFP (64)  
LQFP (64)  
LQFP (64)  
LQFP (64)  
LQFP (48)  
LQFP (48)  
LQFP (48)  
LQFP (48)  
LQFP (48)  
BODY SIZE  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
12.0 mm × 12.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
TMS320F280025CPN  
TMS320F280023PN  
TMS320F280023CPN  
TMS320F280025PM  
TMS320F280025CPM  
TMS320F280024PM  
TMS320F280024CPM  
TMS320F280023PM  
TMS320F280023CPM  
TMS320F280022PM  
TMS320F280025PT  
TMS320F280025CPT  
TMS320F280023PT  
TMS320F280023CPT  
TMS320F280021PT  
(1) For more information on these devices, see Mechanical, Packaging, and Orderable Information.  
Copyright © 2020, Texas Instruments Incorporated  
Device Overview  
3
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
1.4 Functional Block Diagram  
Figure 1-1 shows the CPU system and associated peripherals.  
Boot ROM  
Secure ROM  
C28x CPU  
FPU32  
Flash Bank0  
16 Sectors  
64 KW (128 KB)  
FINTDIV  
TMU  
VCRC  
CPU Timers  
DCC  
DCSM  
ePIE  
ERAD  
M0-M1 RAM  
2 KW (4 KB)  
BGCRC  
HIC  
LS4-LS7 RAM  
8 KW (16 KB)  
Crystal Oscillator  
INTOSC1, INTOSC2  
PLL  
GS0 RAM  
2 KW (4 KB)  
DMA  
6 Channles  
PF1  
PF3  
PF4  
PF2  
PF7  
PF8  
PF9  
Result  
2x 12-Bit ADC  
Data  
14x ePWM Chan.  
(8 Hi-Res Capable)  
1x PMBUS  
2x SPI  
1x CAN  
2x LIN  
1x SCI  
2x I2C  
4x CMPSS  
39x GPIO  
Input XBAR  
Output XBAR  
ePWM XBAR  
3x eCAP  
(1 HRCAP Capable)  
1x FSI RX  
1x FSI TX  
NMI  
Watchdog  
2x eQEP  
(CW/CCW Support)  
Windowed  
Watchdog  
Figure 1-1. Functional Block Diagram  
4
Device Overview  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table of Contents  
1
Device Overview ......................................... 1  
1.1 Features .............................................. 1  
6.3 Memory ............................................ 141  
6.4 Identification........................................ 146  
1.2 Applications........................................... 2  
1.3 Description............................................ 2  
1.4 Functional Block Diagram ............................ 4  
Revision History ......................................... 5  
Device Comparison ..................................... 6  
3.1 Related Products ..................................... 7  
Terminal Configuration and Functions.............. 8  
4.1 Pin Diagrams ......................................... 8  
4.2 Pin Attributes ........................................ 12  
4.3 Signal Descriptions.................................. 26  
4.4 Pin Multiplexing...................................... 36  
4.5 Pins With Internal Pullup and Pulldown............. 41  
4.6 Connections for Unused Pins ....................... 42  
Specifications ........................................... 43  
5.1 Absolute Maximum Ratings......................... 43  
5.2 ESD Ratings – Commercial......................... 44  
5.3 ESD Ratings – Automotive.......................... 44  
5.4 Recommended Operating Conditions............... 45  
5.5 Power Consumption Summary...................... 46  
5.6 Electrical Characteristics............................ 48  
5.7 Thermal Design Considerations .................... 48  
5.8 System .............................................. 49  
5.9 Analog Peripherals .................................. 76  
5.10 Control Peripherals.................................. 94  
5.11 Communications Peripherals ...................... 109  
Detailed Description.................................. 139  
6.1 Overview ........................................... 139  
6.2 Functional Block Diagram ......................... 140  
6.5  
Bus Architecture – Peripheral Connectivity........ 147  
6.6 C28x Processor .................................... 148  
6.7  
Embedded Real-Time Analysis and Diagnostic  
(ERAD)............................................. 150  
2
3
6.8 Background CRC-32 (BGCRC).................... 150  
6.9 Direct Memory Access (DMA) ..................... 151  
6.10 Device Boot Modes ................................ 153  
6.11 Dual Code Security Module ....................... 159  
6.12 Watchdog .......................................... 160  
6.13 C28x Timers ....................................... 161  
6.14 Dual-Clock Comparator (DCC) .................... 161  
6.15 Configurable Logic Block (CLB) ................... 163  
Applications, Implementation, and Layout ...... 165  
7.1 TI Reference Design............................... 165  
Device and Documentation Support.............. 166  
4
7
8
5
8.1  
Device and Development Support Tool  
Nomenclature ...................................... 166  
8.2 Markings ........................................... 167  
8.3 Tools and Software ................................ 168  
8.4 Documentation Support............................ 169  
8.5 Related Links ...................................... 170  
8.6 Support Resources ................................ 170  
8.7 Trademarks ........................................ 171  
8.8 Electrostatic Discharge Caution ................... 171  
8.9 Glossary............................................ 171  
9
Mechanical, Packaging, and Orderable  
6
Information............................................. 172  
9.1 Packaging Information ............................. 172  
2 Revision History  
DATE  
REVISION  
NOTES  
March 2020  
*
Initial Release  
Copyright © 2020, Texas Instruments Incorporated  
Revision History  
5
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
3 Device Comparison  
Table 3-1 lists the features of the TMS320F28002x devices.  
Table 3-1. Device Comparison  
F280025  
F280025C  
F280024  
F280024C  
F280023  
F280023C  
FEATURE(1)  
F280022  
F280021  
PROCESSOR AND ACCELERATORS  
Frequency (MHz)  
100  
FPU32  
Yes (with new instructions for Fast Integer Division)  
C28x  
VCRC  
Yes  
TMU – Type 1  
Fast Integer Division  
Yes (with new instructions supporting NLPID)  
Yes  
Yes  
DMA – Type 0  
Flash  
MEMORY  
128KB (64KW)  
64KB (32KW)  
20KB (10KW)  
32KB (16KW)  
Dedicated and Local Shared  
RAM  
RAM  
Global Shared RAM  
TOTAL RAM  
4KB (2KW)  
24KB (12KW)  
Yes  
Code security for on-chip flash and RAM  
SYSTEM  
Configurable Logic Block (CLB)(2)  
32-bit CPU timers  
F280025C  
F280024C  
F280023C  
-
3
1
Watchdog timer  
Nonmaskable Interrupt Watchdog (NMIWD) timers  
Crystal oscillator/External clock input  
0-pin internal oscillator  
1
1
2
80-pin PN  
39  
26  
14  
24  
39  
26  
14  
24  
39  
26  
14  
GPIO pins  
64-pin PM  
48-pin PT  
4 (When cJTAG is used, TDI and TDO can be GPIO;  
When INTOSC is used as clock source, X1 and X2 can be GPIO)  
Additional GPIO  
80-pin PN  
64-pin PM  
48-pin PT  
16  
16  
14  
5
AIO inputs  
External interrupts  
ANALOG PERIPHERALS  
Number of ADCs  
MSPS  
Conversion Time (ns)(3)  
2
3.45  
290  
16  
16  
14  
1
ADC 12-bit  
80-pin PN  
ADC channels (single-ended) 64-pin PM  
48-pin PT  
Temperature sensor  
CMPSS (each has two comparators and two internal DACs)  
4
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor  
differences between devices that do not affect the basic functionality of the module.  
(2) C devices include additional Motor Control libraries in ROM. Contact TI for more information.  
(3) Time between start of sample-and-hold window to start of sample-and-hold window of the next conversion.  
6
Device Comparison  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 3-1. Device Comparison (continued)  
F280025  
F280025C  
F280024  
F280024C  
F280023  
F280023C  
FEATURE(1)  
F280022  
F280021  
CONTROL PERIPHERALS(4)  
eCAP/HRCAP modules – Type 2  
ePWM/HRPWM channels – Type 4  
eQEP modules – Type 2  
3 (1 with HRCAP capability)  
14 (8 with HRPWM capability)  
2
COMMUNICATION PERIPHERALS(4)  
CAN – Type 0  
I2C – Type 1  
SCI – Type 0  
SPI – Type 2  
LIN – Type 1  
PMBus – Type 0  
FSI – Type 1  
1
2
1
2
2
1
1 (1 RX and 1 TX)  
PACKAGE, TEMPERATURE, AND QUALIFICATION OPTIONS  
80-pin PN  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
S: –40°C to 125°C (TJ)  
64-pin PM  
48-pin PT  
Yes  
Yes  
(F280023)  
80-pin PN  
64-pin PM  
48-pin PT  
Yes  
Yes  
Yes  
Q: –40°C to 125°C (TA)(5)  
Yes  
(F280023)  
Yes  
Yes  
(4) For devices that are available in more than one package, the peripheral count listed in the smaller package is reduced because the  
smaller package has less device pins available. The number of peripherals internally present on the device is not reduced co  
(5) The letter Q refers to AEC Q100 qualification for automotive applications.  
3.1 Related Products  
TMS320F2803x Microcontrollers  
The F2803x series increases the pin-count and memory size options. The F2803x series also introduces  
the parallel control law accelerator (CLA) option.  
TMS320F2807x Microcontrollers  
The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral  
options. The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog  
technology.  
TMS320F28004x Microcontrollers  
The F28004x series is a reduced version of the F2807x series with the latest generational enhancements.  
TMS320F2838x Microcontrollers  
The F2838x series offers more performance, larger pin counts, flash memory sizes, peripheral and wide  
variety of connectivity options. The F2838x series includes the latest generation of accelerators, ePWM  
peripherals, and analog technology. Configurable logic block (CLB) versions are available.  
Copyright © 2020, Texas Instruments Incorporated  
Device Comparison  
7
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
4 Terminal Configuration and Functions  
4.1 Pin Diagrams  
Figure 4-1 shows the pin assignments on the 80-pin PN low-profile quad flatpack (Q temperature).  
Figure 4-2 shows the pin assignments on the 64-pin PM low-profile quad flatpack. Figure 4-3 shows the  
pin assignments on the 64-pin PM low-profile quad flatpack (Q temperature). Figure 4-4 shows the pin  
assignments on the 48-Pin PT low-profile quad flatpack.  
GPIO2  
GPIO1  
GPIO0  
GPIO40  
GPIO23  
GPIO41  
GPIO22  
GPIO7  
GPIO44  
VSS  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
GPIO17  
GPIO16  
GPIO33  
GPIO11  
GPIO12  
GPIO13  
FLT1  
FLT2  
VDDIO  
VDD  
VDD  
VSS  
VDDIO  
GPIO45  
GPIO5  
GPIO9  
GPIO10  
GPIO34  
GPIO15  
GPIO14  
GPIO6  
A10,C10  
A9,C8  
A4,C14  
VDDA  
VSSA  
A8,C11  
A7,C3  
A12,C1  
VREFLO  
Not to scale  
A. Only the GPIO function is shown on GPIO terminals. See Section 4.2 for the complete, muxed signal name.  
Figure 4-1. 80-Pin PN Low-Profile Quad Flatpack (Top View)  
8
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
GPIO3  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
GPIO33  
GPIO11  
GPIO12  
GPIO13  
VDDIO  
VDD  
GPIO2  
GPIO1  
GPIO0  
GPIO40  
GPIO23  
GPIO41  
GPIO22  
GPIO7  
VSS  
VSS  
A10,C10  
A9,C8  
A4,C14  
VDDA  
VDD  
VDDIO  
GPIO5  
GPIO9  
GPIO10  
GPIO6  
VSSA  
A8,C11  
A7,C3  
A12,C1  
VREFLO  
Not to scale  
A. Only the GPIO function is shown on GPIO terminals. See Section 4.2 for the complete, muxed signal name.  
Figure 4-2. 64-Pin PM Low-Profile Quad Flatpack (Top View)  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
GPIO40  
GPIO23  
GPIO41  
GPIO22  
GPIO7  
VSS  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
GPIO33  
GPIO11  
FLT1  
FLT2  
VDDIO  
VDD  
VSS  
A10,C10  
A9,C8  
A4,C14  
VDDA  
VSSA  
VDD  
VDDIO  
GPIO5  
GPIO9  
GPIO10  
GPIO6  
A8,C11  
A7,C3  
A12,C1  
VREFLO  
Not to scale  
A. Only the GPIO function is shown on GPIO terminals. See Section 4.2 for the complete, muxed signal name.  
Figure 4-3. 64-Pin PM Low-Profile Quad Flatpack – Q-Temperature (Top View)  
10  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
VSS  
GPIO4  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
GPIO7  
VSS  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
FLT1  
FLT2  
VSS  
A10,C10  
A9,C8  
A4,C14  
VDDA  
VSSA  
VDD  
A8,C11  
A7,C3  
A12,C1  
VREFLO  
VDDIO  
GPIO5  
GPIO6  
Not to scale  
A. Only the GPIO function is shown on GPIO terminals. See Section 4.2 for the complete, muxed signal name.  
Figure 4-4. 48-Pin PT Low-Profile Quad Flatpack (Top View)  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
4.2 Pin Attributes  
Table 4-1. Pin Attributes  
MUX  
64  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
ANALOG  
DESCRIPTION  
POSITION QFP-Q  
A0  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ADC-A Input 0  
ADC-C Input 15  
C15  
CMP3_HP2  
CMP3_LP2  
AIO231  
15  
19  
18  
15  
14  
11  
10  
CMPSS-3 High Comparator Positive Input 2  
CMPSS-3 Low Comparator Positive Input 2  
Analog Pin Used For Digital Input 231  
ADC-A Input 1  
A1  
CMP1_HP4  
CMP1_LP4  
AIO232  
CMPSS-1 High Comparator Positive Input 4  
CMPSS-1 Low Comparator Positive Input 4  
Analog Pin Used For Digital Input 232  
ADC-A Input 10  
14  
25  
A10  
C10  
ADC-C Input 10  
CMP2_HP3  
CMP2_HN0  
CMP2_LP3  
CMP2_LN0  
AIO230  
CMPSS-2 High Comparator Positive Input 3  
CMPSS-2 High Comparator Negative Input 0  
CMPSS-2 Low Comparator Positive Input 3  
CMPSS-2 Low Comparator Negative Input 0  
Analog Pin Used For Digital Input 230  
ADC-A Input 11  
29  
25  
21  
A11  
C0  
ADC-C Input 0  
CMP1_HP1  
CMP1_HN1  
CMP1_LP1  
CMP1_LN1  
AIO237  
CMPSS-1 High Comparator Positive Input 1  
CMPSS-1 High Comparator Negative Input 1  
CMPSS-1 Low Comparator Positive Input 1  
CMPSS-1 Low Comparator Negative Input 1  
Analog Pin Used For Digital Input 237  
ADC-A Input 12  
12  
16  
12  
8
A12  
C1  
ADC-C Input 1  
CMP2_HP1  
CMP4_HP2  
CMP2_HN1  
CMP2_LP1  
CMP4_LP2  
CMP2_LN1  
AIO238  
CMPSS-2 High Comparator Positive Input 1  
CMPSS-4 High Comparator Positive Input 2  
CMPSS-2 High Comparator Negative Input 1  
CMPSS-2 Low Comparator Positive Input 1  
CMPSS-4 Low Comparator Positive Input 2  
CMPSS-2 Low Comparator Negative Input 1  
Analog Pin Used For Digital Input 238  
ADC-A Input 14  
18  
22  
18  
14  
A14  
C4  
ADC-C Input 4  
CMP3_HP4  
CMP3_LP4  
AIO239  
11  
10  
15  
14  
11  
10  
CMPSS-3 High Comparator Positive Input 4  
CMPSS-3 Low Comparator Positive Input 4  
Analog Pin Used For Digital Input 239  
ADC-A Input 15  
A15  
C7  
ADC-C Input 7  
CMP1_HP3  
CMP1_HN0  
CMP1_LP3  
CMP1_LN0  
AIO233  
CMPSS-1 High Comparator Positive Input 3  
CMPSS-1 High Comparator Negative Input 0  
CMPSS-1 Low Comparator Positive Input 3  
CMPSS-1 Low Comparator Negative Input 0  
Analog Pin Used For Digital Input 233  
7
12  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-1. Pin Attributes (continued)  
MUX  
64  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
POSITION QFP-Q  
A2  
I
I
I
I
I
I
I
ADC-A Input 2  
ADC-C Input 9  
C9  
CMP1_HP0  
CMP1_LP0  
AIO224  
A3  
9
13  
9
6
CMPSS-1 High Comparator Positive Input 0  
CMPSS-1 Low Comparator Positive Input 0  
Analog Pin Used For Digital Input 224  
ADC-A Input 3  
C5  
ADC-C Input 5  
Optional external reference voltage for on-chip  
CMPSS DACs. There is an internal capacitor to  
VSSA on this pin whether used for ADC input or  
CMPSS DAC reference which cannot be  
disabled. If this pin is being used as a reference  
for the CMPSS DACs, place at least a 1-µF  
capacitor on this pin.  
VDAC  
I
8
12  
8
5
CMP3_HP3  
CMP3_HN0  
CMP3_LP3  
CMP3_LN0  
AIO242  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CMPSS-3 High Comparator Positive Input 3  
CMPSS-3 High Comparator Negative Input 0  
CMPSS-3 Low Comparator Positive Input 3  
CMPSS-3 Low Comparator Negative Input 0  
Analog Pin Used For Digital Input 242  
ADC-A Input 4  
A4  
C14  
ADC-C Input 14  
CMP2_HP0  
CMP4_HP3  
CMP4_HN0  
CMP2_LP0  
CMP4_LP3  
CMP4_LN0  
AIO225  
CMPSS-2 High Comparator Positive Input 0  
CMPSS-4 High Comparator Positive Input 3  
CMPSS-4 High Comparator Negative Input 0  
CMPSS-2 Low Comparator Positive Input 0  
CMPSS-4 Low Comparator Positive Input 3  
CMPSS-4 Low Comparator Negative Input 0  
Analog Pin Used For Digital Input 225  
ADC-A Input 5  
23  
27  
23  
19  
A5  
C2  
ADC-C Input 2  
CMP3_HP1  
CMP3_HN1  
CMP3_LP1  
CMP3_LN1  
AIO244  
CMPSS-3 High Comparator Positive Input 1  
CMPSS-3 High Comparator Negative Input 1  
CMPSS-3 Low Comparator Positive Input 1  
CMPSS-3 Low Comparator Negative Input 1  
Analog Pin Used For Digital Input 244  
ADC-A Input 6  
13  
17  
10  
23  
13  
9
4
A6  
CMP1_HP2  
CMP1_LP2  
AIO228  
CMPSS-1 High Comparator Positive Input 2  
CMPSS-1 Low Comparator Positive Input 2  
Analog Pin Used For Digital Input 228  
ADC-A Input 7  
6
6
A7  
C3  
ADC-C Input 3  
CMP4_HN1  
CMP4_LP1  
CMP4_LP1  
CMP4_LN1  
AIO245  
CMPSS-4 High Comparator Negative Input 1  
CMPSS-4 Low Comparator Positive Input 1  
CMPSS-4 Low Comparator Positive Input 1  
CMPSS-4 Low Comparator Negative Input 1  
Analog Pin Used For Digital Input 245  
19  
19  
15  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-1. Pin Attributes (continued)  
MUX  
64  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
POSITION QFP-Q  
A8  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ADC-A Input 8  
ADC-C Input 11  
C11  
CMP2_HP4  
CMP4_HP4  
CMP2_LP4  
CMP4_LP4  
AIO241  
CMPSS-2 High Comparator Positive Input 4  
CMPSS-4 High Comparator Positive Input 4  
CMPSS-2 Low Comparator Positive Input 4  
CMPSS-4 Low Comparator Positive Input 4  
Analog Pin Used For Digital Input 241  
ADC-A Input 9  
20  
24  
20  
16  
A9  
C8  
ADC-C Input 8  
CMP2_HP2  
CMP4_HP0  
CMP2_LP2  
CMP4_LP0  
AIO227  
CMPSS-2 High Comparator Positive Input 2  
CMPSS-4 High Comparator Positive Input 0  
CMPSS-2 Low Comparator Positive Input 2  
CMPSS-4 Low Comparator Positive Input 0  
Analog Pin Used For Digital Input 227  
ADC-C Input 6  
24  
28  
11  
24  
20  
C6  
CMP3_HP0  
CMP3_LP0  
AIO226  
CMPSS-3 High Comparator Positive Input 0  
CMPSS-3 Low Comparator Positive Input 0  
Analog Pin Used For Digital Input 226  
7
7
4
ADC- High Reference. In external reference  
mode, externally drive the high reference voltage  
onto this pin. In internal reference mode, a  
voltage is driven onto this pin by the device. In  
either mode, place at least a 2.2-µF capacitor on  
this pin. This capacitor should be placed as close  
to the device as possible between the VREFHI  
and VREFLO pins.  
VREFHI  
VREFLO  
16  
17  
20  
21  
16  
17  
12  
13  
I
I
ADC- Low Reference  
GPIO  
GPIO0  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 0  
ePWM-1 Output A  
EPWM1_A  
1
6
I2CA_SDA  
I/OD  
I/O  
I
I2C-A Open-Drain Bidirectional Data  
SPI-A Slave Transmit Enable (STE)  
FSIRX-A Input Clock  
SPIA_STE  
7
52  
63  
52  
42  
FSIRXA_CLK  
CLB_OUTPUTXBAR8  
HIC_BASESEL1  
GPIO1  
9
11  
O
CLB Output X-BAR Output 8  
HIC Base Address Range Select 1  
General-Purpose Input Output 1  
ePWM-1 Output B  
15  
I
0, 4, 8, 12  
I/O  
O
EPWM1_B  
1
6
I2CA_SCL  
I/OD  
I/O  
O
I2C-A Open-Drain Bidirectional Clock  
SPI-A Slave Out, Master In (SOMI)  
CLB Output X-BAR Output 7  
HIC Address 2  
SPIA_SOMI  
CLB_OUTPUTXBAR7  
HIC_A2  
7
51  
62  
51  
41  
11  
13  
14  
15  
I
FSITXA_TDM_D1  
HIC_D10  
O
FSITX-A_TDM Data Output 1  
HIC Data 10  
I/O  
14  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-1. Pin Attributes (continued)  
MUX  
64  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
POSITION QFP-Q  
GPIO2  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 2  
ePWM-2 Output A  
EPWM2_A  
OUTPUTXBAR1  
PMBUSA_SDA  
SPIA_SIMO  
SCIA_TX  
1
5
6
7
O
Output X-BAR Output 1  
PMBus-A Open-Drain Bidirectional Data  
SPI-A Slave In, Master Out (SIMO)  
SCI-A Transmit Data  
I/OD  
I/O  
O
9
50  
61  
50  
40  
FSIRXA_D1  
I2CB_SDA  
HIC_A1  
10  
I
FSIRX-A Data Input 1  
I2C-B Open-Drain Bidirectional Data  
HIC Address 1  
11  
I/OD  
I
13  
CANA_TX  
14  
O
CAN-A Transmit  
HIC_D9  
15  
I/O  
I/O  
O
HIC Data 9  
GPIO3  
0, 4, 8, 12  
General-Purpose Input Output 3  
ePWM-2 Output B  
EPWM2_B  
OUTPUTXBAR2  
PMBUSA_SCL  
SPIA_CLK  
SCIA_RX  
1
2, 5  
O
Output X-BAR Output 2  
PMBus-A Open-Drain Bidirectional Clock  
SPI-A Clock  
6
I/OD  
I/O  
I
7
9
49  
60  
49  
39  
SCI-A Receive Data  
FSIRXA_D0  
I2CB_SCL  
10  
I
FSIRX-A Data Input 0  
I2C-B Open-Drain Bidirectional Clock  
HIC Output Enable  
11  
I/OD  
O
HIC_NOE  
13  
CANA_RX  
14  
I
CAN-A Receive  
HIC_D4  
15  
I/O  
I/O  
O
HIC Data 4  
GPIO4  
0, 4, 8, 12  
General-Purpose Input Output 4  
ePWM-3 Output A  
EPWM3_A  
OUTPUTXBAR3  
CANA_TX  
1
5
O
Output X-BAR Output 3  
CAN-A Transmit  
6
O
SPIB_CLK  
EQEP2_STROBE  
FSIRXA_CLK  
CLB_OUTPUTXBAR6  
HIC_BASESEL2  
HIC_NWE  
7
I/O  
I/O  
I
SPI-B Clock  
48  
59  
48  
38  
9
eQEP-2 Strobe  
10  
FSIRX-A Input Clock  
11  
O
CLB Output X-BAR Output 6  
HIC Base Address Range Select 2  
HIC Data Write Enable  
General-Purpose Input Output 5  
ePWM-3 Output B  
13  
I
15  
I
GPIO5  
0, 4, 8, 12  
I/O  
O
EPWM3_B  
OUTPUTXBAR3  
CANA_RX  
1
3
O
Output X-BAR Output 3  
CAN-A Receive  
6
I
SPIA_STE  
FSITXA_D1  
CLB_OUTPUTXBAR5  
HIC_A7  
7
I/O  
O
SPI-A Slave Transmit Enable (STE)  
FSITX-A Data Output 1  
CLB Output X-BAR Output 5  
HIC Address 7  
61  
74  
61  
47  
9
10  
13  
14  
15  
O
I
HIC_D4  
I/O  
I/O  
HIC Data 4  
HIC_D15  
HIC Data 15  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-1. Pin Attributes (continued)  
MUX  
64  
PIN  
TYPE  
SIGNAL NAME  
GPIO6  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
POSITION QFP-Q  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 6  
ePWM-4 Output A  
EPWM4_A  
1
2
3
5
OUTPUTXBAR4  
SYNCOUT  
O
Output X-BAR Output 4  
External ePWM Synchronization Pulse  
eQEP-1 Input A  
O
EQEP1_A  
I
SPIB_SOMI  
FSITXA_D0  
FSITXA_D1  
HIC_NBE1  
7
64  
80  
64  
48  
I/O  
O
SPI-B Slave Out, Master In (SOMI)  
FSITX-A Data Output 0  
FSITX-A Data Output 1  
HIC Byte Enable 1  
9
11  
O
13  
I
CLB_OUTPUTXBAR8  
HIC_D14  
14  
O
CLB Output X-BAR Output 8  
HIC Data 14  
15  
I/O  
I/O  
O
GPIO7  
0, 4, 8, 12  
General-Purpose Input Output 7  
ePWM-4 Output B  
EPWM4_B  
1
OUTPUTXBAR5  
EQEP1_B  
3
O
Output X-BAR Output 5  
eQEP-1 Input B  
5
I
SPIB_SIMO  
FSITXA_CLK  
CLB_OUTPUTXBAR2  
HIC_A6  
7
57  
68  
57  
43  
I/O  
O
SPI-B Slave In, Master Out (SIMO)  
FSITX-A Output Clock  
CLB Output X-BAR Output 2  
HIC Address 6  
9
10  
O
13  
I
HIC_D14  
15  
I/O  
I/O  
O
HIC Data 14  
GPIO8  
0, 4, 8, 12  
General-Purpose Input Output 8  
ePWM-5 Output A  
EPWM5_A  
1
ADCSOCAO  
EQEP1_STROBE  
SCIA_TX  
3
O
ADC Start of Conversion A for External ADC  
eQEP-1 Strobe  
5
I/O  
O
6
SCI-A Transmit Data  
SPIA_SIMO  
I2CA_SCL  
7
I/O  
I/OD  
O
SPI-A Slave In, Master Out (SIMO)  
I2C-A Open-Drain Bidirectional Clock  
FSITX-A Data Output 1  
CLB Output X-BAR Output 5  
HIC Address 0  
47  
58  
47  
9
FSITXA_D1  
CLB_OUTPUTXBAR5  
HIC_A0  
10  
11  
O
13  
I
FSITXA_TDM_CLK  
HIC_D8  
14  
O
FSITX-A_TDM Output Clock  
HIC Data 8  
15  
I/O  
I/O  
O
GPIO9  
0, 4, 8, 12  
General-Purpose Input Output 9  
ePWM-5 Output B  
EPWM5_B  
1
3
OUTPUTXBAR6  
EQEP1_INDEX  
SCIA_RX  
O
Output X-BAR Output 6  
eQEP-1 Index  
5
I/O  
I
6
SCI-A Receive Data  
SPIA_CLK  
7
62  
75  
62  
I/O  
O
SPI-A Clock  
FSITXA_D0  
LINB_RX  
10  
11  
13  
14  
15  
FSITX-A Data Output 0  
LIN-B Receive  
I
HIC_BASESEL0  
I2CB_SCL  
I
HIC Base Address Range Select 0  
I2C-B Open-Drain Bidirectional Clock  
HIC Ready  
I/OD  
O
HIC_NRDY  
16  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-1. Pin Attributes (continued)  
MUX  
64  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
POSITION QFP-Q  
GPIO10  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 10  
ePWM-6 Output A  
EPWM6_A  
ADCSOCBO  
EQEP1_A  
1
3
5
O
ADC Start of Conversion B for External ADC  
eQEP-1 Input A  
I
SPIA_SOMI  
I2CA_SDA  
FSITXA_CLK  
LINB_TX  
7
I/O  
I/OD  
O
SPI-A Slave Out, Master In (SOMI)  
I2C-A Open-Drain Bidirectional Data  
FSITX-A Output Clock  
LIN-B Transmit  
63  
76  
63  
9
10  
11  
O
HIC_NWE  
FSITXA_TDM_D0  
GPIO11  
13  
I
HIC Data Write Enable  
FSITX-A_TDM Data Output 0  
General-Purpose Input Output 11  
ePWM-6 Output B  
14  
O
0, 4, 8, 12  
I/O  
O
EPWM6_B  
OUTPUTXBAR7  
EQEP1_B  
1
3
5
7
O
Output X-BAR Output 7  
eQEP-1 Input B  
I
SPIA_STE  
FSIRXA_D1  
LINB_RX  
I/O  
I
SPI-A Slave Transmit Enable (STE)  
FSIRX-A Data Input 1  
9
31  
37  
31  
10  
I
LIN-B Receive  
EQEP2_A  
11  
I
eQEP-2 Input A  
SPIA_SIMO  
HIC_D6  
13  
I/O  
I/O  
I
SPI-A Slave In, Master Out (SIMO)  
HIC Data 6  
14  
HIC_NBE0  
GPIO12  
15  
HIC Byte Enable 0  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 12  
ePWM-7 Output A  
EPWM7_A  
EQEP1_STROBE  
1
5
I/O  
eQEP-1 Strobe  
PMBus-A Control Signal - Slave Input/Master  
Output  
PMBUSA_CTL  
7
I/O  
FSIRXA_D0  
LINB_TX  
9
I
O
FSIRX-A Data Input 0  
LIN-B Transmit  
36  
30  
10  
SPIA_CLK  
CANA_RX  
HIC_D13  
11  
I/O  
I
SPI-A Clock  
13  
CAN-A Receive  
14  
I/O  
O
HIC Data 13  
HIC_INT  
15  
HIC Device Interrupt  
General-Purpose Input Output 13  
ePWM-7 Output B  
eQEP-1 Index  
GPIO13  
0, 4, 8, 12  
I/O  
O
EPWM7_B  
EQEP1_INDEX  
PMBUSA_ALERT  
FSIRXA_CLK  
LINB_RX  
1
5
I/O  
I/OD  
I
7
PMBus-A Open-Drain Bidirectional Alert  
FSIRX-A Input Clock  
LIN-B Receive  
9
35  
29  
10  
11  
13  
14  
15  
I
SPIA_SOMI  
CANA_TX  
HIC_D11  
I/O  
O
SPI-A Slave Out, Master In (SOMI)  
CAN-A Transmit  
I/O  
I/O  
HIC Data 11  
HIC_D5  
HIC Data 5  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-1. Pin Attributes (continued)  
MUX  
64  
PIN  
TYPE  
SIGNAL NAME  
GPIO14  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
POSITION QFP-Q  
0, 4, 8, 12  
I/O  
I/OD  
O
General-Purpose Input Output 14  
I2C-B Open-Drain Bidirectional Data  
Output X-BAR Output 3  
I2CB_SDA  
5
OUTPUTXBAR3  
PMBUSA_SDA  
SPIB_CLK  
6
7
I/OD  
I/O  
I
PMBus-A Open-Drain Bidirectional Data  
SPI-B Clock  
9
79  
EQEP2_A  
10  
eQEP-2 Input A  
LINB_TX  
11  
O
LIN-B Transmit  
EPWM3_A  
13  
O
ePWM-3 Output A  
CLB_OUTPUTXBAR7  
HIC_D15  
14  
O
CLB Output X-BAR Output 7  
HIC Data 15  
15  
I/O  
I/O  
I/OD  
O
GPIO15  
0, 4, 8, 12  
General-Purpose Input Output 15  
I2C-B Open-Drain Bidirectional Clock  
Output X-BAR Output 4  
PMBus-A Open-Drain Bidirectional Clock  
SPI-B Slave Transmit Enable (STE)  
eQEP-2 Input B  
I2CB_SCL  
5
OUTPUTXBAR4  
PMBUSA_SCL  
SPIB_STE  
6
7
I/OD  
I/O  
I
9
78  
EQEP2_B  
10  
LINB_RX  
11  
I
LIN-B Receive  
EPWM3_B  
13  
O
ePWM-3 Output B  
CLB_OUTPUTXBAR6  
HIC_D12  
14  
O
CLB Output X-BAR Output 6  
HIC Data 12  
15  
I/O  
I/O  
I/O  
O
GPIO16  
0, 4, 8, 12  
General-Purpose Input Output 16  
SPI-A Slave In, Master Out (SIMO)  
Output X-BAR Output 7  
ePWM-5 Output A  
SPIA_SIMO  
OUTPUTXBAR7  
EPWM5_A  
1
3
5
6
9
O
SCIA_TX  
O
SCI-A Transmit Data  
EQEP1_STROBE  
PMBUSA_SCL  
I/O  
I/OD  
eQEP-1 Strobe  
33  
39  
33  
26  
10  
PMBus-A Open-Drain Bidirectional Clock  
External Clock Output. This pin outputs a  
divided-down version of a chosen clock signal  
from within the device.  
XCLKOUT  
11  
O
EQEP2_B  
13  
I
I/O  
I/O  
I/O  
I/O  
O
eQEP-2 Input B  
SPIB_SOMI  
HIC_D1  
14  
SPI-B Slave Out, Master In (SOMI)  
HIC Data 1  
15  
GPIO17  
0, 4, 8, 12  
General-Purpose Input Output 17  
SPI-A Slave Out, Master In (SOMI)  
Output X-BAR Output 8  
ePWM-5 Output B  
SPIA_SOMI  
OUTPUTXBAR8  
EPWM5_B  
SCIA_RX  
1
3
5
O
6
34  
40  
34  
I
SCI-A Receive Data  
EQEP1_INDEX  
PMBUSA_SDA  
CANA_TX  
9
I/O  
I/OD  
O
eQEP-1 Index  
10  
11  
15  
PMBus-A Open-Drain Bidirectional Data  
CAN-A Transmit  
HIC_D2  
I/O  
HIC Data 2  
18  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-1. Pin Attributes (continued)  
MUX  
64  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
POSITION QFP-Q  
GPIO18_X2  
SPIA_CLK  
CANA_RX  
EPWM6_A  
I2CA_SCL  
EQEP2_A  
0, 4, 8, 12  
I/O  
I/O  
I
General-Purpose Input Output 18_X2  
SPI-A Clock  
1
3
5
6
9
CAN-A Receive  
O
ePWM-6 Output A  
I/OD  
I
I2C-A Open-Drain Bidirectional Clock  
eQEP-2 Input A  
PMBus-A Control Signal - Slave Input/Master  
Output  
PMBUSA_CTL  
10  
41  
I/O  
50  
41  
33  
External Clock Output. This pin outputs a  
divided-down version of a chosen clock signal  
from within the device.  
XCLKOUT  
11  
O
LINB_TX  
13  
O
O
LIN-B Transmit  
FSITXA_TDM_CLK  
HIC_INT  
14  
FSITX-A_TDM Output Clock  
HIC Device Interrupt  
15  
O
X2  
ALT  
O
Crystal oscillator output.  
General-Purpose Input Output 19_X1  
SPI-A Slave Transmit Enable (STE)  
CAN-A Transmit  
GPIO19_X1  
SPIA_STE  
0, 4, 8, 12  
I/O  
I/O  
O
1
3
CANA_TX  
EPWM6_B  
5
O
ePWM-6 Output B  
I2CA_SDA  
6
I/OD  
I
I2C-A Open-Drain Bidirectional Data  
eQEP-2 Input B  
EQEP2_B  
9
PMBUSA_ALERT  
CLB_OUTPUTXBAR1  
LINB_RX  
10  
I/OD  
O
PMBus-A Open-Drain Bidirectional Alert  
CLB Output X-BAR Output 1  
LIN-B Receive  
11  
42  
13  
51  
42  
34  
I
FSITXA_TDM_D0  
HIC_NBE0  
14  
15  
O
FSITX-A_TDM Data Output 0  
HIC Byte Enable 0  
I
Crystal oscillator input or single-ended clock  
input. The device initialization software must  
configure this pin before the crystal oscillator is  
enabled. To use this oscillator, a quartz crystal  
circuit must be connected to X1 and X2. This pin  
can also be used to feed a single-ended 3.3-V  
level clock.  
X1  
ALT  
I
GPIO22  
0, 4, 8, 12  
I/O  
I/O  
I/O  
O
General-Purpose Input Output 22  
eQEP-1 Strobe  
EQEP1_STROBE  
SPIB_CLK  
LINA_TX  
1
6
9
SPI-B Clock  
LIN-A Transmit  
CLB_OUTPUTXBAR1  
LINB_TX  
10  
11  
13  
14  
15  
56  
67  
56  
O
CLB Output X-BAR Output 1  
LIN-B Transmit  
O
HIC_A5  
I
HIC Address 5  
EPWM4_A  
HIC_D13  
O
ePWM-4 Output A  
HIC Data 13  
I/O  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-1. Pin Attributes (continued)  
MUX  
64  
PIN  
TYPE  
SIGNAL NAME  
GPIO23  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
POSITION QFP-Q  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I
General-Purpose Input Output 23  
eQEP-1 Index  
EQEP1_INDEX  
SPIB_STE  
LINA_RX  
1
6
SPI-B Slave Transmit Enable (STE)  
LIN-A Receive  
9
54  
11  
65  
54  
LINB_RX  
I
LIN-B Receive  
HIC_A3  
13  
I
HIC Address 3  
EPWM4_B  
HIC_D11  
14  
O
ePWM-4 Output B  
15  
I/O  
I/O  
O
HIC Data 11  
GPIO24  
0, 4, 8, 12  
General-Purpose Input Output 24  
Output X-BAR Output 1  
eQEP-2 Input A  
OUTPUTXBAR1  
EQEP2_A  
SPIB_SIMO  
LINB_TX  
1
2
6
I
I/O  
O
SPI-B Slave In, Master Out (SIMO)  
LIN-B Transmit  
9
35  
41  
35  
27  
PMBUSA_SCL  
SCIA_TX  
10  
11  
I/OD  
O
PMBus-A Open-Drain Bidirectional Clock  
SCI-A Transmit Data  
Error Status Output. When used, this signal  
requires an external pulldown.  
ERRORSTS  
13  
O
HIC_D3  
15  
I/O  
I/O  
O
HIC Data 3  
GPIO25  
0, 4, 8, 12  
General-Purpose Input Output 25  
Output X-BAR Output 2  
eQEP-2 Input B  
OUTPUTXBAR2  
EQEP2_B  
1
2
I
EQEP1_A  
5
I
eQEP-1 Input A  
SPIB_SOMI  
FSITXA_D1  
PMBUSA_SDA  
SCIA_RX  
6
42  
43  
44  
I/O  
O
SPI-B Slave Out, Master In (SOMI)  
FSITX-A Data Output 1  
PMBus-A Open-Drain Bidirectional Data  
SCI-A Receive Data  
9
10  
I/OD  
I
11  
HIC_BASESEL0  
GPIO26  
14  
I
HIC Base Address Range Select 0  
General-Purpose Input Output 26  
Output X-BAR Output 3  
eQEP-2 Index  
0, 4, 8, 12  
I/O  
O
OUTPUTXBAR3  
EQEP2_INDEX  
SPIB_CLK  
1, 5  
2
I/O  
I/O  
O
6
SPI-B Clock  
FSITXA_D0  
9
FSITX-A Data Output 0  
PMBus-A Control Signal - Slave Input/Master  
Output  
PMBUSA_CTL  
10  
I/O  
I2CA_SDA  
HIC_D0  
11  
I/OD  
I/O  
I
I2C-A Open-Drain Bidirectional Data  
HIC Data 0  
14  
HIC_A1  
15  
HIC Address 1  
GPIO27  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 27  
Output X-BAR Output 4  
eQEP-2 Strobe  
OUTPUTXBAR4  
EQEP2_STROBE  
SPIB_STE  
FSITXA_CLK  
PMBUSA_ALERT  
I2CA_SCL  
HIC_D1  
1, 5  
2
I/O  
I/O  
O
6
SPI-B Slave Transmit Enable (STE)  
FSITX-A Output Clock  
9
10  
11  
14  
15  
I/OD  
I/OD  
I/O  
I
PMBus-A Open-Drain Bidirectional Alert  
I2C-A Open-Drain Bidirectional Clock  
HIC Data 1  
HIC_A4  
HIC Address 4  
20  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-1. Pin Attributes (continued)  
MUX  
64  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
POSITION QFP-Q  
GPIO28  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 28  
SCI-A Receive Data  
ePWM-7 Output A  
Output X-BAR Output 5  
eQEP-1 Input A  
SCIA_RX  
1
3
5
6
EPWM7_A  
OUTPUTXBAR5  
EQEP1_A  
O
O
I
EQEP2_STROBE  
LINA_TX  
9
I/O  
O
eQEP-2 Strobe  
2
4
2
2
10  
11  
LIN-A Transmit  
SPIB_CLK  
I/O  
SPI-B Clock  
Error Status Output. When used, this signal  
requires an external pulldown.  
ERRORSTS  
13  
O
I2CB_SDA  
HIC_NOE  
14  
I/OD  
O
I2C-B Open-Drain Bidirectional Data  
HIC Output Enable  
15  
GPIO29  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 29  
SCI-A Transmit Data  
SCIA_TX  
1
3
5
6
EPWM7_B  
OUTPUTXBAR6  
EQEP1_B  
EQEP2_INDEX  
LINA_RX  
O
ePWM-7 Output B  
O
Output X-BAR Output 6  
eQEP-1 Input B  
I
9
I/O  
I
eQEP-2 Index  
1
3
1
1
10  
11  
LIN-A Receive  
SPIB_STE  
I/O  
SPI-B Slave Transmit Enable (STE)  
Error Status Output. When used, this signal  
requires an external pulldown.  
ERRORSTS  
13  
O
I2CB_SCL  
14  
I/OD  
I
I2C-B Open-Drain Bidirectional Clock  
HIC Chip Select  
HIC_NCS  
15  
GPIO30  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 30  
CAN-A Receive  
CANA_RX  
1
SPIB_SIMO  
OUTPUTXBAR7  
EQEP1_STROBE  
FSIRXA_CLK  
EPWM1_A  
HIC_D8  
3
I/O  
O
SPI-B Slave In, Master Out (SIMO)  
Output X-BAR Output 7  
eQEP-1 Strobe  
5
1
6
I/O  
I
9
FSIRX-A Input Clock  
ePWM-1 Output A  
11  
O
14  
I/O  
I/O  
O
HIC Data 8  
GPIO31  
0, 4, 8, 12  
General-Purpose Input Output 31  
CAN-A Transmit  
CANA_TX  
1
3
SPIB_SOMI  
OUTPUTXBAR8  
EQEP1_INDEX  
FSIRXA_D1  
EPWM1_B  
HIC_D10  
I/O  
O
SPI-B Slave Out, Master In (SOMI)  
Output X-BAR Output 8  
eQEP-1 Index  
5
2
6
I/O  
I
9
FSIRX-A Data Input 1  
ePWM-1 Output B  
11  
14  
O
I/O  
HIC Data 10  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
21  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-1. Pin Attributes (continued)  
MUX  
64  
PIN  
TYPE  
SIGNAL NAME  
GPIO32  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
POSITION QFP-Q  
0, 4, 8, 12  
I/O  
I/OD  
I/O  
O
General-Purpose Input Output 32  
I2C-A Open-Drain Bidirectional Data  
SPI-B Clock  
I2CA_SDA  
SPIB_CLK  
LINA_TX  
1
3
6
LIN-A Transmit  
40  
49  
40  
32  
FSIRXA_D0  
CANA_TX  
ADCSOCBO  
HIC_INT  
9
I
FSIRX-A Data Input 0  
CAN-A Transmit  
10  
O
13  
O
ADC Start of Conversion B for External ADC  
HIC Device Interrupt  
15  
O
GPIO33  
0, 4, 8, 12  
I/O  
I/OD  
I/O  
O
General-Purpose Input Output 33  
I2C-A Open-Drain Bidirectional Clock  
SPI-B Slave Transmit Enable (STE)  
Output X-BAR Output 4  
I2CA_SCL  
SPIB_STE  
OUTPUTXBAR4  
LINA_RX  
1
3
5
6
I
LIN-A Receive  
32  
38  
32  
25  
FSIRXA_CLK  
CANA_RX  
EQEP2_B  
ADCSOCAO  
HIC_D0  
9
I
FSIRX-A Input Clock  
10  
I
CAN-A Receive  
11  
I
eQEP-2 Input B  
13  
O
ADC Start of Conversion A for External ADC  
HIC Data 0  
15  
I/O  
I/O  
O
GPIO34  
0, 4, 8, 12  
General-Purpose Input Output 34  
Output X-BAR Output 1  
OUTPUTXBAR1  
PMBUSA_SDA  
HIC_NBE1  
I2CB_SDA  
HIC_D9  
1
6
I/OD  
I
PMBus-A Open-Drain Bidirectional Data  
HIC Byte Enable 1  
77  
13  
14  
I/OD  
I/O  
I/O  
I
I2C-B Open-Drain Bidirectional Data  
HIC Data 9  
15  
GPIO35  
0, 4, 8, 12  
General-Purpose Input Output 35  
SCI-A Receive Data  
SCIA_RX  
1
3
5
6
7
I2CA_SDA  
CANA_RX  
PMBUSA_SCL  
LINA_RX  
I/OD  
I
I2C-A Open-Drain Bidirectional Data  
CAN-A Receive  
I/OD  
I
PMBus-A Open-Drain Bidirectional Clock  
LIN-A Receive  
EQEP1_A  
9
I
eQEP-1 Input A  
39  
48  
39  
31  
PMBus-A Control Signal - Slave Input/Master  
Output  
PMBUSA_CTL  
HIC_NWE  
10  
14  
I/O  
I
HIC Data Write Enable  
JTAG Test Data Input (TDI) - TDI is the default  
mux selection for the pin. The internal pullup is  
disabled by default. The internal pullup should be  
enabled or an external pullup added on the board  
if this pin is used as JTAG TDI to avoid a floating  
input.  
TDI  
15  
I
22  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-1. Pin Attributes (continued)  
MUX  
64  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
POSITION QFP-Q  
GPIO37  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 37  
Output X-BAR Output 2  
I2C-A Open-Drain Bidirectional Clock  
SCI-A Transmit Data  
OUTPUTXBAR2  
I2CA_SCL  
SCIA_TX  
1
3
5
6
7
I/OD  
O
CANA_TX  
O
CAN-A Transmit  
LINA_TX  
O
LIN-A Transmit  
EQEP1_B  
9
I
eQEP-1 Input B  
37  
10  
46  
37  
29  
PMBUSA_ALERT  
HIC_NRDY  
I/OD  
O
PMBus-A Open-Drain Bidirectional Alert  
HIC Ready  
14  
15  
JTAG Test Data Output (TDO) - TDO is the  
default mux selection for the pin. The internal  
pullup is disabled by default. The TDO function  
will tristate when there is no JTAG activity,  
leaving this pin floating; the internal pullup should  
be enabled or an external pullup added on the  
board to avoid a floating GPIO input.  
TDO  
O
GPIO39  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 39  
FSIRX-A Input Clock  
FSIRXA_CLK  
EQEP2_INDEX  
CLB_OUTPUTXBAR2  
SYNCOUT  
EQEP1_INDEX  
HIC_D7  
7
9
I/O  
O
eQEP-2 Index  
11  
46  
56  
46  
CLB Output X-BAR Output 2  
External ePWM Synchronization Pulse  
eQEP-1 Index  
13  
O
14  
I/O  
I/O  
I/O  
I/O  
O
15  
HIC Data 7  
GPIO40  
0, 4, 8, 12  
General-Purpose Input Output 40  
SPI-B Slave In, Master Out (SIMO)  
ePWM-2 Output B  
SPIB_SIMO  
EPWM2_B  
PMBUSA_SDA  
FSIRXA_D0  
EQEP1_A  
1
5
6
I/OD  
I
PMBus-A Open-Drain Bidirectional Data  
FSIRX-A Data Input 0  
eQEP-1 Input A  
7
53  
64  
53  
10  
I
LINB_TX  
11  
O
LIN-B Transmit  
HIC_NBE1  
HIC_D5  
14  
I
HIC Byte Enable 1  
15  
I/O  
I/O  
O
HIC Data 5  
GPIO41  
0, 4, 8, 12  
General-Purpose Input Output 41  
ePWM-2 Output A  
EPWM2_A  
PMBUSA_SCL  
FSIRXA_D1  
EQEP1_B  
5
6
I/OD  
I
PMBus-A Open-Drain Bidirectional Clock  
FSIRX-A Data Input 1  
eQEP-1 Input B  
7
10  
11  
13  
14  
15  
55  
66  
55  
I
LINB_RX  
I
LIN-B Receive  
HIC_A4  
I
HIC Address 4  
SPIB_SOMI  
HIC_D12  
I/O  
I/O  
SPI-B Slave Out, Master In (SOMI)  
HIC Data 12  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
23  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-1. Pin Attributes (continued)  
MUX  
64  
PIN  
TYPE  
SIGNAL NAME  
GPIO42  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
POSITION QFP-Q  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 42  
LIN-A Receive  
LINA_RX  
2
3
OUTPUTXBAR5  
O
Output X-BAR Output 5  
PMBus-A Control Signal - Slave Input/Master  
Output  
PMBUSA_CTL  
5
I/O  
57  
I2CA_SDA  
6
I/OD  
I/O  
O
I2C-A Open-Drain Bidirectional Data  
eQEP-1 Strobe  
EQEP1_STROBE  
CLB_OUTPUTXBAR3  
HIC_D2  
10  
11  
CLB Output X-BAR Output 3  
HIC Data 2  
14  
I/O  
I
HIC_A6  
15  
HIC Address 6  
GPIO43  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 43  
Output X-BAR Output 6  
PMBus-A Open-Drain Bidirectional Alert  
I2C-A Open-Drain Bidirectional Clock  
eQEP-1 Index  
OUTPUTXBAR6  
PMBUSA_ALERT  
I2CA_SCL  
3
5
I/OD  
I/OD  
I/O  
O
6
54  
EQEP1_INDEX  
CLB_OUTPUTXBAR4  
HIC_D3  
10  
11  
CLB Output X-BAR Output 4  
HIC Data 3  
14  
I/O  
I
HIC_A7  
15  
HIC Address 7  
GPIO44  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 44  
Output X-BAR Output 7  
eQEP-1 Input A  
OUTPUTXBAR7  
EQEP1_A  
3
5
I
FSITXA_CLK  
CLB_OUTPUTXBAR3  
HIC_D7  
7
69  
O
FSITX-A Output Clock  
CLB Output X-BAR Output 3  
HIC Data 7  
10  
O
13  
I/O  
I/O  
I/O  
O
HIC_D5  
15  
HIC Data 5  
GPIO45  
0, 4, 8, 12  
General-Purpose Input Output 45  
Output X-BAR Output 8  
FSITX-A Data Output 0  
CLB Output X-BAR Output 4  
HIC Data 6  
OUTPUTXBAR8  
FSITXA_D0  
CLB_OUTPUTXBAR4  
HIC_D6  
3
7
73  
O
10  
15  
O
I/O  
I/O  
O
GPIO46  
0, 4, 8, 12  
3
General-Purpose Input Output 46  
LIN-A Transmit  
LINA_TX  
6
FSITXA_D1  
HIC_NWE  
7
O
FSITX-A Data Output 1  
HIC Data Write Enable  
General-Purpose Input Output 61  
General-Purpose Input Output 62  
General-Purpose Input Output 63  
15  
I
GPIO61  
0, 4, 8, 12  
0, 4, 8, 12  
0, 4, 8, 12  
I/O  
I/O  
I/O  
GPIO62  
GPIO63  
TEST, JTAG, AND RESET  
Flash test pin 1. Reserved for TI. Must be left  
unconnected.  
FLT1  
30  
34  
24  
I/O  
Flash test pin 2. Reserved for TI. Must be left  
unconnected.  
FLT2  
TCK  
29  
36  
33  
45  
23  
28  
I/O  
I
36  
JTAG test clock with internal pullup.  
24  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-1. Pin Attributes (continued)  
MUX  
64  
PIN  
TYPE  
SIGNAL NAME  
80 QFP 64 QFP 48 QFP  
DESCRIPTION  
POSITION QFP-Q  
JTAG test-mode select (TMS) with internal  
pullup. This serial control input is clocked into the  
TAP controller on the rising edge of TCK. This  
device does not have a TRSTn pin. An external  
pullup resistor (recommended 2.2 kΩ) on the  
TMS pin to VDDIO should be placed on the  
board to keep JTAG in reset during normal  
operation.  
TMS  
38  
47  
38  
30  
I/O  
Device Reset (in) and Watchdog Reset (out).  
During a power-on condition, this pin is driven  
low by the device. An external circuit may also  
drive this pin to assert a device reset. This pin is  
also driven low by the MCU when a watchdog  
reset occurs. During watchdog reset, the XRSn  
pin is driven low for the watchdog reset duration  
of 512 OSCCLK cycles. A resistor between 2.2  
kΩ and 10 kΩ should be placed between XRSn  
and VDDIO. If a capacitor is placed between  
XRSn and VSS for noise filtering, it should be  
100 nF or smaller. These values will allow the  
watchdog to properly drive the XRSn pin to VOL  
within 512 OSCCLK cycles when the watchdog  
reset is asserted. This pin is an open-drain output  
with an internal pullup. If this pin is driven by an  
external device, it should be done using an open-  
drain device.  
XRSn  
3
5
3
3
I/OD  
POWER AND GROUND  
1.2-V Digital Logic Power Pins. TI recommends  
placing a decoupling capacitor near each VDD  
pin with a total capacitance of approximately 22  
µF.  
4, 27,  
44, 59  
8, 31,  
53, 71  
4, 27,  
44, 59  
VDD  
36, 45  
3.3-V Analog Power Pins. Place a minimum 2.2-  
µF decoupling capacitor on each pin.  
VDDA  
22  
26  
22  
18  
28, 43,  
60  
7, 32,  
52, 72  
28, 43,  
60  
3.3-V Digital I/O Power Pins. Place a minimum  
0.1-µF decoupling capacitor on each pin.  
VDDIO  
35, 46  
5, 26,  
45, 58  
9, 30,  
55, 70  
5, 26,  
45, 58  
22, 37,  
44  
VSS  
Digital Ground  
Analog Ground  
VSSA  
21  
25  
21  
17  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
25  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
4.3 Signal Descriptions  
4.3.1 Analog Signals  
Table 4-2. Analog Signals  
PIN  
TYPE  
64  
QFP-Q  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP 64 QFP 48 QFP  
A0  
ADC-A Input 0  
ADC-A Input 1  
ADC-A Input 2  
ADC-A Input 3  
ADC-A Input 4  
ADC-A Input 5  
ADC-A Input 6  
ADC-A Input 7  
ADC-A Input 8  
ADC-A Input 9  
ADC-A Input 10  
ADC-A Input 11  
ADC-A Input 12  
ADC-A Input 14  
ADC-A Input 15  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
15  
14  
9
19  
18  
13  
12  
27  
17  
10  
23  
24  
28  
29  
16  
22  
15  
14  
13  
27  
11  
28  
10  
29  
19  
18  
14  
16  
22  
15  
24  
12  
17  
23  
16  
22  
17  
23  
15  
12  
11  
14  
28  
13  
29  
24  
15  
14  
9
11  
10  
6
A1  
A2  
A3  
8
8
5
A4  
23  
13  
6
23  
13  
6
19  
9
A5  
A6  
4
A7  
19  
20  
24  
25  
12  
18  
11  
10  
9
19  
20  
24  
25  
12  
18  
11  
10  
9
15  
16  
20  
21  
8
A8  
A9  
A10  
A11  
A12  
14  
A14  
A15  
7
6
AIO224  
AIO225  
AIO226  
AIO227  
AIO228  
AIO230  
AIO231  
AIO232  
AIO233  
AIO237  
AIO238  
AIO239  
AIO241  
AIO242  
AIO244  
AIO245  
C0  
Analog Pin Used For Digital Input 224  
Analog Pin Used For Digital Input 225  
Analog Pin Used For Digital Input 226  
Analog Pin Used For Digital Input 227  
Analog Pin Used For Digital Input 228  
Analog Pin Used For Digital Input 230  
Analog Pin Used For Digital Input 231  
Analog Pin Used For Digital Input 232  
Analog Pin Used For Digital Input 233  
Analog Pin Used For Digital Input 237  
Analog Pin Used For Digital Input 238  
Analog Pin Used For Digital Input 239  
Analog Pin Used For Digital Input 241  
Analog Pin Used For Digital Input 242  
Analog Pin Used For Digital Input 244  
Analog Pin Used For Digital Input 245  
ADC-C Input 0  
23  
7
23  
7
19  
4
24  
6
24  
6
20  
4
25  
15  
14  
10  
12  
18  
11  
20  
8
25  
15  
14  
10  
12  
18  
11  
20  
8
21  
11  
10  
7
8
14  
16  
5
13  
19  
12  
18  
13  
19  
11  
8
13  
19  
12  
18  
13  
19  
11  
8
9
15  
8
C1  
ADC-C Input 1  
14  
9
C2  
ADC-C Input 2  
C3  
ADC-C Input 3  
15  
C4  
ADC-C Input 4  
C5  
ADC-C Input 5  
5
4
C6  
ADC-C Input 6  
7
7
C7  
ADC-C Input 7  
10  
24  
9
10  
24  
9
7
C8  
ADC-C Input 8  
20  
6
C9  
ADC-C Input 9  
C10  
ADC-C Input 10  
25  
20  
25  
20  
21  
16  
C11  
ADC-C Input 11  
26  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-2. Analog Signals (continued)  
PIN  
TYPE  
64  
QFP-Q  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP 64 QFP 48 QFP  
C14  
ADC-C Input 14  
ADC-C Input 15  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
23  
15  
10  
12  
9
27  
19  
14  
16  
13  
16  
10  
14  
18  
14  
16  
13  
16  
10  
14  
18  
29  
22  
27  
22  
28  
29  
24  
29  
22  
27  
22  
28  
29  
24  
12  
17  
11  
17  
19  
12  
15  
12  
17  
11  
17  
19  
12  
15  
27  
23  
28  
23  
15  
10  
12  
9
19  
11  
7
C15  
CMP1_HN0  
CMP1_HN1  
CMP1_HP0  
CMP1_HP1  
CMP1_HP2  
CMP1_HP3  
CMP1_HP4  
CMP1_LN0  
CMP1_LN1  
CMP1_LP0  
CMP1_LP1  
CMP1_LP2  
CMP1_LP3  
CMP1_LP4  
CMP2_HN0  
CMP2_HN1  
CMP2_HP0  
CMP2_HP1  
CMP2_HP2  
CMP2_HP3  
CMP2_HP4  
CMP2_LN0  
CMP2_LN1  
CMP2_LP0  
CMP2_LP1  
CMP2_LP2  
CMP2_LP3  
CMP2_LP4  
CMP3_HN0  
CMP3_HN1  
CMP3_HP0  
CMP3_HP1  
CMP3_HP2  
CMP3_HP3  
CMP3_HP4  
CMP3_LN0  
CMP3_LN1  
CMP3_LP0  
CMP3_LP1  
CMP3_LP2  
CMP3_LP3  
CMP3_LP4  
CMP4_HN0  
CMP4_HN1  
CMP4_HP0  
CMPSS-1 High Comparator Negative Input 0  
CMPSS-1 High Comparator Negative Input 1  
CMPSS-1 High Comparator Positive Input 0  
CMPSS-1 High Comparator Positive Input 1  
CMPSS-1 High Comparator Positive Input 2  
CMPSS-1 High Comparator Positive Input 3  
CMPSS-1 High Comparator Positive Input 4  
CMPSS-1 Low Comparator Negative Input 0  
CMPSS-1 Low Comparator Negative Input 1  
CMPSS-1 Low Comparator Positive Input 0  
CMPSS-1 Low Comparator Positive Input 1  
CMPSS-1 Low Comparator Positive Input 2  
CMPSS-1 Low Comparator Positive Input 3  
CMPSS-1 Low Comparator Positive Input 4  
CMPSS-2 High Comparator Negative Input 0  
CMPSS-2 High Comparator Negative Input 1  
CMPSS-2 High Comparator Positive Input 0  
CMPSS-2 High Comparator Positive Input 1  
CMPSS-2 High Comparator Positive Input 2  
CMPSS-2 High Comparator Positive Input 3  
CMPSS-2 High Comparator Positive Input 4  
CMPSS-2 Low Comparator Negative Input 0  
CMPSS-2 Low Comparator Negative Input 1  
CMPSS-2 Low Comparator Positive Input 0  
CMPSS-2 Low Comparator Positive Input 1  
CMPSS-2 Low Comparator Positive Input 2  
CMPSS-2 Low Comparator Positive Input 3  
CMPSS-2 Low Comparator Positive Input 4  
CMPSS-3 High Comparator Negative Input 0  
CMPSS-3 High Comparator Negative Input 1  
CMPSS-3 High Comparator Positive Input 0  
CMPSS-3 High Comparator Positive Input 1  
CMPSS-3 High Comparator Positive Input 2  
CMPSS-3 High Comparator Positive Input 3  
CMPSS-3 High Comparator Positive Input 4  
CMPSS-3 Low Comparator Negative Input 0  
CMPSS-3 Low Comparator Negative Input 1  
CMPSS-3 Low Comparator Positive Input 0  
CMPSS-3 Low Comparator Positive Input 1  
CMPSS-3 Low Comparator Positive Input 2  
CMPSS-3 Low Comparator Positive Input 3  
CMPSS-3 Low Comparator Positive Input 4  
CMPSS-4 High Comparator Negative Input 0  
CMPSS-4 High Comparator Negative Input 1  
CMPSS-4 High Comparator Positive Input 0  
8
6
12  
6
12  
6
8
4
10  
14  
10  
12  
9
10  
14  
10  
12  
9
7
10  
7
8
6
12  
6
12  
6
8
4
10  
14  
25  
18  
23  
18  
24  
25  
20  
25  
18  
23  
18  
24  
25  
20  
8
10  
14  
25  
18  
23  
18  
24  
25  
20  
25  
18  
23  
18  
24  
25  
20  
8
7
10  
21  
14  
19  
14  
20  
21  
16  
21  
14  
19  
14  
20  
21  
16  
5
13  
7
13  
7
9
4
13  
15  
8
13  
15  
8
9
11  
5
11  
8
11  
8
5
9
13  
7
13  
7
4
13  
15  
8
13  
15  
8
9
11  
5
11  
23  
19  
24  
11  
23  
19  
24  
19  
15  
20  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
27  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-2. Analog Signals (continued)  
PIN  
TYPE  
64  
QFP-Q  
SIGNAL NAME  
CMP4_HP2  
DESCRIPTION  
GPIO  
80 QFP 64 QFP 48 QFP  
CMPSS-4 High Comparator Positive Input 2  
CMPSS-4 High Comparator Positive Input 3  
CMPSS-4 High Comparator Positive Input 4  
CMPSS-4 Low Comparator Negative Input 0  
CMPSS-4 Low Comparator Negative Input 1  
CMPSS-4 Low Comparator Positive Input 0  
CMPSS-4 Low Comparator Positive Input 1  
CMPSS-4 Low Comparator Positive Input 2  
CMPSS-4 Low Comparator Positive Input 3  
CMPSS-4 Low Comparator Positive Input 4  
I
I
I
I
I
I
I
I
I
I
18  
23  
20  
23  
19  
24  
19  
18  
23  
20  
22  
27  
24  
27  
23  
28  
23  
22  
27  
24  
18  
23  
20  
23  
19  
24  
19  
18  
23  
20  
14  
19  
16  
19  
15  
20  
15  
14  
19  
16  
CMP4_HP3  
CMP4_HP4  
CMP4_LN0  
CMP4_LN1  
CMP4_LP0  
CMP4_LP1  
CMP4_LP2  
CMP4_LP3  
CMP4_LP4  
Optional external reference voltage for on-  
chip CMPSS DACs. There is an internal  
capacitor to VSSA on this pin whether used  
for ADC input or CMPSS DAC reference  
which cannot be disabled. If this pin is being  
used as a reference for the CMPSS DACs,  
place at least a 1-μF capacitor on this pin.  
VDAC  
I
8
12  
8
5
ADC- High Reference. In external reference  
mode, externally drive the high reference  
voltage onto this pin. In internal reference  
mode, a voltage is driven onto this pin by the  
device. In either mode, place at least a 2.2-µF  
capacitor on this pin. This capacitor should be  
placed as close to the device as possible  
between the VREFHI and VREFLO pins.  
VREFHI  
VREFLO  
I
I
16  
17  
20  
21  
16  
17  
12  
13  
ADC- Low Reference  
28  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
4.3.2 Digital Signals  
Table 4-3. Digital Signals  
PIN  
TYPE  
64  
QFP-Q  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP 64 QFP 48 QFP  
ADCSOCAO  
ADCSOCBO  
ADC Start of Conversion A for External ADC  
ADC Start of Conversion B for External ADC  
O
O
33, 8  
32, 47  
40, 63  
38, 58  
49, 76  
32, 47  
40, 63  
25  
32  
10, 32  
12, 18,  
3, 30,  
33, 35,  
5
1, 36,  
38, 48,  
50, 60,  
74  
32, 39,  
41, 49,  
61  
30, 32, 25, 31,  
39, 41, 33, 39,  
CANA_RX  
CANA_TX  
CAN-A Receive  
CAN-A Transmit  
I
49, 61  
47  
13, 17,  
19, 2,  
31, 32,  
37, 4  
2, 35,  
40, 46, 37, 40,  
49, 51, 42, 48,  
29, 34,  
34, 37,  
40, 42,  
48, 50  
29, 32,  
34, 38,  
40  
O
59, 61  
51, 67  
56, 68  
57, 69  
54, 73  
58, 74  
59, 78  
62, 79  
63, 80  
1, 63  
50  
CLB_OUTPUTXBAR1  
CLB_OUTPUTXBAR2  
CLB_OUTPUTXBAR3  
CLB_OUTPUTXBAR4  
CLB_OUTPUTXBAR5  
CLB_OUTPUTXBAR6  
CLB_OUTPUTXBAR7  
CLB_OUTPUTXBAR8  
EPWM1_A  
CLB Output X-BAR Output 1  
CLB Output X-BAR Output 2  
CLB Output X-BAR Output 3  
CLB Output X-BAR Output 4  
CLB Output X-BAR Output 5  
CLB Output X-BAR Output 6  
CLB Output X-BAR Output 7  
CLB Output X-BAR Output 8  
ePWM-1 Output A  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
19, 22  
39, 7  
42, 44  
43, 45  
5, 8  
42, 56  
46, 57  
42, 56  
46, 57  
34  
43  
47, 61  
48  
47, 61  
48  
47  
38  
15, 4  
1, 14  
0, 6  
51  
51  
41  
52, 64  
52  
52, 64  
52  
42, 48  
42  
0, 30  
1, 31  
2, 41  
3, 40  
14, 4  
15, 5  
22, 6  
23, 7  
16, 8  
17, 9  
10, 18  
11, 19  
12, 28  
13, 29  
EPWM1_B  
ePWM-1 Output B  
51  
2, 62  
51  
41  
EPWM2_A  
ePWM-2 Output A  
50, 55  
49, 53  
48  
61, 66  
60, 64  
59, 79  
74, 78  
67, 80  
65, 68  
39, 58  
40, 75  
50, 76  
37, 51  
36, 4  
50, 55  
49, 53  
48  
40  
EPWM2_B  
ePWM-2 Output B  
39  
EPWM3_A  
ePWM-3 Output A  
38  
EPWM3_B  
ePWM-3 Output B  
61  
61  
47  
EPWM4_A  
ePWM-4 Output A  
56, 64  
54, 57  
33, 47  
34, 62  
41, 63  
31, 42  
2
56, 64  
54, 57  
33, 47  
34, 62  
41, 63  
31, 42  
2, 30  
1, 29  
48  
EPWM4_B  
ePWM-4 Output B  
43  
EPWM5_A  
ePWM-5 Output A  
26  
EPWM5_B  
ePWM-5 Output B  
EPWM6_A  
ePWM-6 Output A  
33  
34  
2
EPWM6_B  
ePWM-6 Output B  
EPWM7_A  
ePWM-7 Output A  
EPWM7_B  
ePWM-7 Output B  
1
3, 35  
1
10, 25,  
28, 35,  
40, 44,  
6
4, 42,  
48, 64,  
69, 76,  
80  
2, 39,  
53, 63,  
64  
2, 39,  
53, 63,  
64  
2, 31,  
48  
EQEP1_A  
eQEP-1 Input A  
eQEP-1 Input B  
eQEP-1 Index  
I
I
11, 29,  
1, 31,  
3, 37,  
1, 31,  
1, 29,  
43  
EQEP1_B  
37, 41, 37, 55, 46, 66, 37, 55,  
7
57  
68  
57  
13, 17,  
23, 31, 34, 46, 40, 54,  
39, 43, 54, 62 56, 65,  
2, 35,  
29, 34,  
46, 54,  
62  
EQEP1_INDEX  
I/O  
9
75  
12, 16,  
22, 30,  
42, 8  
1, 36,  
39, 57,  
58, 67  
33, 47,  
56  
30, 33,  
47, 56  
EQEP1_STROBE  
EQEP2_A  
eQEP-1 Strobe  
eQEP-2 Input A  
eQEP-2 Input B  
I/O  
26  
11, 14, 31, 35, 37, 41, 31, 35,  
18, 24  
I
I
27, 33  
41  
50, 79  
41  
15, 16,  
19, 25,  
33  
38, 39,  
42, 51,  
78  
32, 33,  
42  
32, 33, 25, 26,  
42 34  
EQEP2_B  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
29  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-3. Digital Signals (continued)  
PIN  
TYPE  
64  
QFP-Q  
SIGNAL NAME  
EQEP2_INDEX  
DESCRIPTION  
GPIO  
80 QFP 64 QFP 48 QFP  
26, 29,  
39  
3, 43,  
eQEP-2 Index  
eQEP-2 Strobe  
I/O  
1, 46  
2, 48  
1, 46  
2, 48  
1
56  
27, 28,  
4
4, 44,  
59  
EQEP2_STROBE  
ERRORSTS  
I/O  
O
2, 38  
Error Status Output. When used, this signal  
requires an external pulldown.  
24, 28,  
29  
1, 2, 35 3, 4, 41 1, 2, 35 1, 2, 27  
0, 13,  
30, 33,  
39, 4  
1, 35,  
38, 56, 46, 48,  
59, 63 52  
29, 32,  
32, 46,  
48, 52  
25, 38,  
42  
FSIRXA_CLK  
FSIRX-A Input Clock  
I
12, 3,  
32, 40  
40, 49, 36, 49, 30, 40,  
FSIRXA_D0  
FSIRXA_D1  
FSITXA_CLK  
FSITXA_D0  
FSIRX-A Data Input 0  
FSIRX-A Data Input 1  
FSITX-A Output Clock  
FSITX-A Data Output 0  
I
32, 39  
40  
53  
60, 64  
49, 53  
11, 2,  
31, 41  
31, 50,  
55  
2, 37,  
61, 66  
31, 50,  
55  
I
10, 27,  
44, 7  
44, 68,  
69, 76  
O
O
57, 63  
62, 64  
57, 63  
62, 64  
43  
26, 45,  
6, 9  
43, 73,  
75, 80  
48  
42, 58,  
6, 74,  
80  
25, 46, 47, 61,  
47, 61,  
64  
FSITXA_D1  
FSITX-A Data Output 1  
O
47, 48  
5, 6, 8  
64  
FSITXA_TDM_CLK  
FSITXA_TDM_D0  
FSITXA_TDM_D1  
GPIO0  
FSITX-A_TDM Output Clock  
O
18, 8  
10, 19  
1
41, 47  
42, 63  
51  
50, 58  
51, 76  
62  
63  
62  
61  
60  
59  
74  
80  
68  
58  
75  
76  
37  
36  
35  
79  
78  
39  
40  
50  
51  
67  
65  
41  
42  
43  
44  
4
41, 47  
42, 63  
51  
33  
34  
41  
42  
41  
40  
39  
38  
47  
48  
43  
FSITX-A_TDM Data Output 0  
O
FSITX-A_TDM Data Output 1  
O
General-Purpose Input Output 0  
General-Purpose Input Output 1  
General-Purpose Input Output 2  
General-Purpose Input Output 3  
General-Purpose Input Output 4  
General-Purpose Input Output 5  
General-Purpose Input Output 6  
General-Purpose Input Output 7  
General-Purpose Input Output 8  
General-Purpose Input Output 9  
General-Purpose Input Output 10  
General-Purpose Input Output 11  
General-Purpose Input Output 12  
General-Purpose Input Output 13  
General-Purpose Input Output 14  
General-Purpose Input Output 15  
General-Purpose Input Output 16  
General-Purpose Input Output 17  
General-Purpose Input Output 18_X2  
General-Purpose Input Output 19_X1  
General-Purpose Input Output 22  
General-Purpose Input Output 23  
General-Purpose Input Output 24  
General-Purpose Input Output 25  
General-Purpose Input Output 26  
General-Purpose Input Output 27  
General-Purpose Input Output 28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
0
52  
52  
GPIO1  
1
51  
51  
GPIO2  
2
50  
50  
GPIO3  
3
49  
49  
GPIO4  
4
48  
48  
GPIO5  
5
61  
61  
GPIO6  
6
64  
64  
GPIO7  
7
57  
57  
GPIO8  
8
47  
47  
GPIO9  
9
62  
62  
GPIO10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
22  
23  
24  
25  
26  
27  
28  
63  
63  
GPIO11  
31  
31  
GPIO12  
30  
GPIO13  
29  
GPIO14  
GPIO15  
GPIO16  
33  
34  
41  
42  
56  
54  
35  
33  
34  
41  
42  
56  
54  
35  
26  
GPIO17  
GPIO18_X2  
GPIO19_X1  
GPIO22  
33  
34  
GPIO23  
GPIO24  
27  
GPIO25  
GPIO26  
GPIO27  
GPIO28  
2
2
2
30  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-3. Digital Signals (continued)  
PIN  
TYPE  
64  
QFP-Q  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP 64 QFP 48 QFP  
GPIO29  
GPIO30  
GPIO31  
GPIO32  
GPIO33  
GPIO34  
GPIO35  
GPIO37  
GPIO39  
GPIO40  
GPIO41  
GPIO42  
GPIO43  
GPIO44  
GPIO45  
GPIO46  
GPIO61  
GPIO62  
GPIO63  
HIC_A0  
General-Purpose Input Output 29  
General-Purpose Input Output 30  
General-Purpose Input Output 31  
General-Purpose Input Output 32  
General-Purpose Input Output 33  
General-Purpose Input Output 34  
General-Purpose Input Output 35  
General-Purpose Input Output 37  
General-Purpose Input Output 39  
General-Purpose Input Output 40  
General-Purpose Input Output 41  
General-Purpose Input Output 42  
General-Purpose Input Output 43  
General-Purpose Input Output 44  
General-Purpose Input Output 45  
General-Purpose Input Output 46  
General-Purpose Input Output 61  
General-Purpose Input Output 62  
General-Purpose Input Output 63  
HIC Address 0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
29  
30  
1
3
1
1
1
31  
2
32  
40  
32  
49  
38  
77  
48  
46  
56  
64  
66  
57  
54  
69  
73  
6
40  
32  
32  
25  
33  
34  
35  
39  
37  
46  
53  
55  
39  
37  
46  
53  
55  
31  
29  
37  
39  
40  
41  
42  
43  
44  
45  
46  
61  
62  
63  
8
47  
50  
58  
47  
50  
HIC_A1  
HIC Address 1  
I
2, 26  
1
43, 61  
62  
40  
41  
HIC_A2  
HIC Address 2  
I
51  
51  
HIC_A3  
HIC Address 3  
I
23  
54  
65  
54  
HIC_A4  
HIC Address 4  
I
27, 41  
22  
55  
44, 66  
67  
55  
HIC_A5  
HIC Address 5  
I
56  
56  
HIC_A6  
HIC Address 6  
I
42, 7  
43, 5  
25, 9  
0
57  
57, 68  
54, 74  
42, 75  
63  
57  
43  
47  
HIC_A7  
HIC Address 7  
I
61  
61  
HIC_BASESEL0  
HIC_BASESEL1  
HIC_BASESEL2  
HIC_D0  
HIC_D1  
HIC_D2  
HIC_D3  
HIC_D4  
HIC Base Address Range Select 0  
HIC Base Address Range Select 1  
HIC Base Address Range Select 2  
HIC Data 0  
I
62  
62  
I
52  
52  
42  
38  
25  
26  
I
4
48  
59  
48  
I/O  
I/O  
I/O  
I/O  
I/O  
26, 33  
16, 27  
17, 42  
24, 43  
3, 5  
32  
38, 43  
39, 44  
40, 57  
41, 54  
60, 74  
32  
HIC Data 1  
33  
33  
HIC Data 2  
34  
34  
HIC Data 3  
35  
35  
27  
HIC Data 4  
49, 61  
49, 61  
39, 47  
13, 40,  
44  
35, 64,  
69  
HIC_D5  
HIC Data 5  
I/O  
53  
29, 53  
HIC_D6  
HIC_D7  
HIC_D8  
HIC_D9  
HIC_D10  
HIC_D11  
HIC_D12  
HIC_D13  
HIC_D14  
HIC_D15  
HIC Data 6  
HIC Data 7  
HIC Data 8  
HIC Data 9  
HIC Data 10  
HIC Data 11  
HIC Data 12  
HIC Data 13  
HIC Data 14  
HIC Data 15  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
11, 45  
39, 44  
30, 8  
2, 34  
1, 31  
13, 23  
15, 41  
12, 22  
6, 7  
31  
46  
37, 73  
56, 69  
1, 58  
31  
46  
47  
47  
50  
61, 77  
2, 62  
50  
40  
41  
51  
51  
54  
35, 65  
66, 78  
36, 67  
68, 80  
74, 79  
29, 54  
55  
55  
56  
30, 56  
57, 64  
61  
57, 64  
61  
43, 48  
47  
14, 5  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
31  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-3. Digital Signals (continued)  
PIN  
TYPE  
64  
QFP-Q  
SIGNAL NAME  
HIC_INT  
DESCRIPTION  
HIC Device Interrupt  
GPIO  
80 QFP 64 QFP 48 QFP  
12, 18,  
32  
36, 49, 30, 40,  
32, 33  
O
I
40, 41  
31, 42  
53, 64  
50  
41  
HIC_NBE0  
HIC_NBE1  
HIC Byte Enable 0  
HIC Byte Enable 1  
11, 19  
37, 51  
31, 42  
34  
48  
34, 40,  
6
64, 77,  
80  
I
53, 64  
HIC_NCS  
HIC_NOE  
HIC_NRDY  
HIC Chip Select  
HIC Output Enable  
HIC Ready  
I
29  
1
3
1
1
O
O
28, 3  
37, 9  
2, 49  
37, 62  
4, 60  
46, 75  
2, 49  
37, 62  
2, 39  
29  
10, 35, 39, 48, 48, 59, 39, 48,  
HIC_NWE  
HIC Data Write Enable  
I
31, 38  
4, 46  
63  
6, 76  
63  
1, 18,  
27, 33,  
37, 43,  
8
38, 44,  
46, 50,  
54, 58,  
62  
32, 37,  
41, 47,  
51  
32, 37,  
41, 47,  
51  
25, 29,  
33, 41  
I2CA_SCL  
I2C-A Open-Drain Bidirectional Clock  
I/OD  
0, 10,  
19, 26,  
32, 35,  
42  
43, 48,  
49, 51,  
57, 63,  
76  
39, 40,  
42, 52,  
63  
39, 40,  
42, 52,  
63  
31, 32,  
34, 42  
I2CA_SDA  
I2C-A Open-Drain Bidirectional Data  
I/OD  
15, 29,  
3, 9  
1, 49,  
62  
3, 60,  
75, 78  
1, 49,  
62  
I2CB_SCL  
I2CB_SDA  
I2C-B Open-Drain Bidirectional Clock  
I2C-B Open-Drain Bidirectional Data  
I/OD  
I/OD  
1, 39  
2, 40  
14, 2,  
28, 34  
4, 61,  
77, 79  
2, 50  
2, 50  
23, 29,  
33, 35,  
42  
3, 38,  
48, 57,  
65  
1, 32,  
39, 54  
1, 32,  
39, 54  
1, 25,  
31  
LINA_RX  
LINA_TX  
LIN-A Receive  
LIN-A Transmit  
I
22, 28,  
32, 37,  
46  
4, 46,  
49, 6,  
67  
2, 37,  
40, 56  
2, 37,  
40, 56  
2, 29,  
32  
O
11, 13,  
15, 19,  
23, 41,  
9
35, 37,  
51, 65,  
66, 75,  
78  
31, 42,  
54, 55,  
62  
29, 31,  
42, 54,  
55, 62  
LINB_RX  
LINB_TX  
LIN-B Receive  
LIN-B Transmit  
I
34  
10, 12,  
14, 18,  
22, 24,  
40  
36, 41,  
50, 64,  
67, 76,  
79  
35, 41,  
53, 56,  
63  
30, 35,  
41, 53, 27, 33  
56, 63  
O
2, 24,  
34  
41, 61,  
77  
OUTPUTXBAR1  
OUTPUTXBAR2  
OUTPUTXBAR3  
OUTPUTXBAR4  
OUTPUTXBAR5  
OUTPUTXBAR6  
OUTPUTXBAR7  
OUTPUTXBAR8  
Output X-BAR Output 1  
Output X-BAR Output 2  
Output X-BAR Output 3  
Output X-BAR Output 4  
Output X-BAR Output 5  
Output X-BAR Output 6  
Output X-BAR Output 7  
Output X-BAR Output 8  
O
O
O
O
O
O
O
O
35, 50  
37, 49  
48, 61  
32, 64  
2, 57  
1, 62  
31, 33  
34  
35, 50  
37, 49  
48, 61  
32, 64  
2, 57  
1, 62  
31, 33  
34  
27, 40  
29, 39  
38, 47  
25, 48  
2, 43  
1
25, 3,  
37  
42, 46,  
60  
14, 26,  
4, 5  
43, 59,  
74, 79  
15, 27,  
33, 6  
38, 44,  
78, 80  
28, 42,  
7
4, 57,  
68  
29, 43,  
9
3, 54,  
75  
11, 16,  
30, 44  
1, 37,  
39, 69  
26  
17, 31,  
45  
2, 40,  
73  
13, 19,  
27, 37, 37, 42 46, 51,  
43 54  
35, 44,  
29, 37,  
42  
PMBUSA_ALERT  
PMBus-A Open-Drain Bidirectional Alert  
I/OD  
29, 34  
32  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-3. Digital Signals (continued)  
PIN  
TYPE  
64  
QFP-Q  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP 64 QFP 48 QFP  
12, 18,  
26, 35, 39, 41 48, 50,  
42  
36, 43,  
30, 39,  
PMBus-A Control Signal - Slave Input/Master  
Output  
PMBUSA_CTL  
PMBUSA_SCL  
PMBUSA_SDA  
SCIA_RX  
I/O  
I/OD  
I/OD  
I
31, 33  
41  
57  
15, 16, 33, 35, 39, 41, 33, 35,  
24, 3,  
35, 41  
26, 27,  
31, 39  
PMBus-A Open-Drain Bidirectional Clock  
PMBus-A Open-Drain Bidirectional Data  
SCI-A Receive Data  
39, 49, 48, 60, 39, 49,  
55  
66, 78  
55  
14, 17,  
2, 25,  
34, 40  
40, 42,  
61, 64,  
77, 79  
34, 50,  
53  
34, 50,  
53  
40  
17, 25,  
28, 3,  
35, 9  
2, 34,  
4, 40,  
2, 34,  
2, 31,  
39  
39, 49, 42, 48, 39, 49,  
62  
60, 75  
62  
16, 2,  
1, 33,  
3, 39,  
1, 33,  
1, 26,  
SCIA_TX  
SCI-A Transmit Data  
O
24, 29, 35, 37, 41, 46, 35, 37, 27, 29,  
37, 8  
12, 18, 41, 49, 36, 50, 30, 41,  
3, 9 62 60, 75 49, 62  
11, 16, 31, 33, 37, 39, 31, 33,  
47, 50  
58, 61  
47, 50  
40  
SPIA_CLK  
SPIA_SIMO  
SPIA_SOMI  
SPIA_STE  
SPI-A Clock  
I/O  
I/O  
I/O  
I/O  
33, 39  
SPI-A Slave In, Master Out (SIMO)  
SPI-A Slave Out, Master In (SOMI)  
SPI-A Slave Transmit Enable (STE)  
26, 40  
41  
2, 8  
47, 50  
34, 51, 35, 40, 29, 34,  
63 62, 76 51, 63  
58, 61  
47, 50  
1, 10,  
13, 17  
0, 11,  
19, 5  
31, 42, 37, 51, 31, 42, 34, 42,  
52, 61  
63, 74  
52, 61  
47  
14, 22,  
26, 28,  
32, 4  
4, 43,  
49, 59,  
67, 79  
2, 40,  
48, 56  
2, 40,  
48, 56  
2, 32,  
38  
SPIB_CLK  
SPIB_SIMO  
SPIB_SOMI  
SPI-B Clock  
I/O  
I/O  
I/O  
24, 30, 35, 53,  
40, 7  
1, 41,  
64, 68  
35, 53,  
57  
SPI-B Slave In, Master Out (SIMO)  
SPI-B Slave Out, Master In (SOMI)  
27, 43  
26, 48  
57  
16, 25,  
31, 41,  
6
2, 39,  
42, 66,  
80  
33, 55,  
64  
33, 55,  
64  
15, 23,  
27, 29,  
33  
3, 38,  
44, 65,  
78  
1, 32,  
54  
1, 32,  
54  
SPIB_STE  
SYNCOUT  
SPI-B Slave Transmit Enable (STE)  
External ePWM Synchronization Pulse  
I/O  
O
1, 25  
48  
39, 6  
46, 64  
56, 80  
46, 64  
JTAG Test Data Input (TDI) - TDI is the  
default mux selection for the pin. The internal  
pullup is disabled by default. The internal  
pullup should be enabled or an external pullup  
added on the board if this pin is used as  
JTAG TDI to avoid a floating input.  
TDI  
I
35  
39  
48  
39  
31  
JTAG Test Data Output (TDO) - TDO is the  
default mux selection for the pin. The internal  
pullup is disabled by default. The TDO  
function will tristate when there is no JTAG  
activity, leaving this pin floating; the internal  
pullup should be enabled or an external pullup  
added on the board to avoid a floating GPIO  
input.  
TDO  
O
37  
19  
37  
42  
46  
51  
37  
42  
29  
Crystal oscillator input or single-ended clock  
input. The device initialization software must  
configure this pin before the crystal oscillator  
is enabled. To use this oscillator, a quartz  
crystal circuit must be connected to X1 and  
X2. This pin can also be used to feed a  
single-ended 3.3-V level clock.  
X1  
I
34  
X2  
Crystal oscillator output.  
O
O
18  
41  
50  
41  
33  
External Clock Output. This pin outputs a  
divided-down version of a chosen clock signal  
from within the device.  
XCLKOUT  
16, 18  
33, 41  
39, 50  
33, 41  
26, 33  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
33  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
4.3.3 Power and Ground  
Table 4-4. Power and Ground  
PIN  
TYPE  
64  
QFP-Q  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP 64 QFP 48 QFP  
1.2-V Digital Logic Power Pins. TI  
recommends placing a decoupling capacitor  
near each VDD pin with a total capacitance of  
approximately 22 µF.  
27, 4,  
44, 59  
31, 53,  
71, 8  
27, 4,  
44, 59  
VDD  
36, 45  
3.3-V Analog Power Pins. Place a minimum  
2.2-µF decoupling capacitor on each pin.  
VDDA  
22  
26  
22  
18  
3.3-V Digital I/O Power Pins. Place a  
minimum 0.1-µF decoupling capacitor on each  
pin.  
28, 43, 32, 52, 28, 43,  
60 7, 72 60  
VDDIO  
35, 46  
26, 45, 30, 55, 26, 45, 22, 37,  
VSS  
Digital Ground  
Analog Ground  
5, 58  
70, 9  
5, 58  
44  
VSSA  
21  
25  
21  
17  
34  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
4.3.4 Test, JTAG, and Reset  
Table 4-5. Test, JTAG, and Reset  
PIN  
TYPE  
64  
QFP-Q  
SIGNAL NAME  
DESCRIPTION  
GPIO  
80 QFP 64 QFP 48 QFP  
Flash test pin 1. Reserved for TI. Must be left  
unconnected.  
FLT1  
I/O  
30  
34  
24  
Flash test pin 2. Reserved for TI. Must be left  
unconnected.  
FLT2  
TCK  
I/O  
I
29  
36  
33  
45  
23  
28  
JTAG test clock with internal pullup.  
36  
38  
JTAG test-mode select (TMS) with internal  
pullup. This serial control input is clocked into  
the TAP controller on the rising edge of TCK.  
This device does not have a TRSTn pin. An  
external pullup resistor (recommended 2.2  
kΩ) on the TMS pin to VDDIO should be  
placed on the board to keep JTAG in reset  
during normal operation.  
TMS  
I/O  
38  
47  
30  
Device Reset (in) and Watchdog Reset (out).  
During a power-on condition, this pin is driven  
low by the device. An external circuit may also  
drive this pin to assert a device reset. This pin  
is also driven low by the MCU when a  
watchdog reset occurs. During watchdog  
reset, the XRSn pin is driven low for the  
watchdog reset duration of 512 OSCCLK  
cycles. A resistor between 2.2 kΩ and 10 kΩ  
should be placed between XRSn and VDDIO.  
If a capacitor is placed between XRSn and  
VSS for noise filtering, it should be 100 nF or  
smaller. These values will allow the watchdog  
to properly drive the XRSn pin to VOL within  
512 OSCCLK cycles when the watchdog reset  
is asserted. This pin is an open-drain output  
with an internal pullup. If this pin is driven by  
an external device, it should be done using an  
open-drain device.  
XRSn  
I/OD  
3
5
3
3
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
35  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
4.4 Pin Multiplexing  
4.4.1 GPIO Muxed Pins  
Table 4-6 lists the GPIO muxed pins. The default mode for each GPIO pin is the GPIO function, except  
GPIO35 and GPIO37, which default to TDI and TDO, respectively. Secondary functions can be selected  
by setting both the GPyGMUXn.GPIOz and GPyMUXn.GPIOz register bits. The GPyGMUXn register  
should be configured before the GPyMUXn to avoid transient pulses on GPIOs from alternate mux  
selections. Columns that are not shown and blank cells are reserved GPIO Mux settings. GPIO ALT  
functions cannot be configured with the GPyMUXn and GPyGMUXn registers. These are special functions  
that need to be configured from the module.  
NOTE  
GPIO20, GPIO21, GPIO36 and GPIO38 do not exist on this device. GPIO61 to GPIO63 exist  
but are not pinned out on any packages. Boot ROM enables pullups on GPIO61 to GPIO63.  
For more details, see Section 4.5.  
36  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-6. GPIO Muxed Pins  
0, 4, 8, 12  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
ALT  
CLB_OUTPUTXB  
AR8  
GPIO0  
EPWM1_A  
I2CA_SDA  
SPIA_STE  
FSIRXA_CLK  
HIC_BASESEL1  
CLB_OUTPUTXB  
AR7  
GPIO1  
EPWM1_B  
I2CA_SCL  
SPIA_SOMI  
HIC_A2  
FSITXA_TDM_D1  
HIC_D10  
GPIO2  
GPIO3  
EPWM2_A  
EPWM2_B  
OUTPUTXBAR1  
OUTPUTXBAR2  
PMBUSA_SDA  
PMBUSA_SCL  
SPIA_SIMO  
SPIA_CLK  
SCIA_TX  
SCIA_RX  
FSIRXA_D1  
FSIRXA_D0  
I2CB_SDA  
I2CB_SCL  
HIC_A1  
CANA_TX  
CANA_RX  
HIC_D9  
HIC_D4  
OUTPUTXBAR2  
OUTPUTXBAR4  
HIC_NOE  
CLB_OUTPUTXB  
AR6  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
EPWM3_A  
EPWM3_B  
EPWM4_A  
EPWM4_B  
EPWM5_A  
OUTPUTXBAR3  
CANA_TX  
CANA_RX  
SPIB_CLK  
SPIA_STE  
SPIB_SOMI  
SPIB_SIMO  
SPIA_SIMO  
EQEP2_STROBE  
FSITXA_D1  
FSIRXA_CLK  
HIC_BASESEL2  
HIC_A7  
HIC_NWE  
HIC_D15  
HIC_D14  
HIC_D14  
CLB_OUTPUTXB  
AR5  
OUTPUTXBAR3  
SYNCOUT  
HIC_D4  
CLB_OUTPUTXB  
AR8  
EQEP1_A  
EQEP1_B  
FSITXA_D0  
FSITXA_D1  
HIC_NBE1  
HIC_A6  
CLB_OUTPUTXB  
AR2  
OUTPUTXBAR5  
ADCSOCAO  
FSITXA_CLK  
I2CA_SCL  
CLB_OUTPUTXB  
AR5  
FSITXA_TDM_CL  
K
EQEP1_STROBE  
SCIA_TX  
SCIA_RX  
FSITXA_D1  
HIC_A0  
HIC_D8  
GPIO9  
EPWM5_B  
EPWM6_A  
EPWM6_B  
EPWM7_A  
EPWM7_B  
OUTPUTXBAR6  
ADCSOCBO  
EQEP1_INDEX  
EQEP1_A  
SPIA_CLK  
SPIA_SOMI  
FSITXA_D0  
FSITXA_CLK  
LINB_RX  
LINB_RX  
LINB_TX  
HIC_BASESEL0  
HIC_NWE  
I2CB_SCL  
FSITXA_TDM_D0  
HIC_D6  
HIC_NRDY  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
I2CA_SDA  
FSIRXA_D1  
FSIRXA_D0  
FSIRXA_CLK  
OUTPUTXBAR7  
EQEP1_B  
SPIA_STE  
EQEP2_A  
SPIA_CLK  
SPIA_SOMI  
SPIA_SIMO  
CANA_RX  
HIC_NBE0  
HIC_INT  
HIC_D5  
EQEP1_STROBE  
EQEP1_INDEX  
PMBUSA_CTL  
PMBUSA_ALERT  
LINB_TX  
HIC_D13  
LINB_RX  
CANA_TX  
HIC_D11  
CLB_OUTPUTXB  
AR7  
GPIO14  
GPIO15  
I2CB_SDA  
I2CB_SCL  
OUTPUTXBAR3  
OUTPUTXBAR4  
PMBUSA_SDA  
PMBUSA_SCL  
SPIB_CLK  
SPIB_STE  
EQEP2_A  
EQEP2_B  
LINB_TX  
LINB_RX  
EPWM3_A  
HIC_D15  
HIC_D12  
CLB_OUTPUTXB  
AR6  
EPWM3_B  
EQEP2_B  
GPIO16  
GPIO17  
SPIA_SIMO  
SPIA_SOMI  
OUTPUTXBAR7  
OUTPUTXBAR8  
EPWM5_A  
EPWM5_B  
SCIA_TX  
SCIA_RX  
EQEP1_STROBE PMBUSA_SCL  
XCLKOUT  
CANA_TX  
SPIB_SOMI  
HIC_D1  
HIC_D2  
EQEP1_INDEX  
EQEP2_A  
PMBUSA_SDA  
PMBUSA_CTL  
FSITXA_TDM_CL  
K
GPIO18_X2  
GPIO19_X1  
GPIO22  
SPIA_CLK  
SPIA_STE  
CANA_RX  
CANA_TX  
EPWM6_A  
EPWM6_B  
I2CA_SCL  
I2CA_SDA  
SPIB_CLK  
XCLKOUT  
LINB_TX  
LINB_RX  
HIC_A5  
HIC_INT  
HIC_NBE0  
HIC_D13  
X2  
X1  
CLB_OUTPUTXB  
AR1  
EQEP2_B  
LINA_TX  
PMBUSA_ALERT  
FSITXA_TDM_D0  
CLB_OUTPUTXB  
AR1  
EQEP1_STROBE  
LINB_TX  
EPWM4_A  
EPWM4_B  
GPIO23  
GPIO24  
GPIO25  
GPIO26  
GPIO27  
GPIO28  
GPIO29  
GPIO30  
GPIO31  
GPIO32  
EQEP1_INDEX  
OUTPUTXBAR1  
OUTPUTXBAR2  
OUTPUTXBAR3  
SPIB_STE  
SPIB_SIMO  
SPIB_SOMI  
SPIB_CLK  
SPIB_STE  
EQEP1_A  
EQEP1_B  
LINA_RX  
LINB_TX  
LINB_RX  
SCIA_TX  
HIC_A3  
HIC_D11  
HIC_D3  
EQEP2_A  
EQEP2_B  
PMBUSA_SCL  
PMBUSA_SDA  
PMBUSA_CTL  
PMBUSA_ALERT  
LINA_TX  
ERRORSTS  
EQEP1_A  
FSITXA_D1  
SCIA_RX  
I2CA_SDA  
I2CA_SCL  
SPIB_CLK  
SPIB_STE  
EPWM1_A  
EPWM1_B  
HIC_BASESEL0  
HIC_D0  
EQEP2_INDEX  
OUTPUTXBAR3  
OUTPUTXBAR4  
OUTPUTXBAR5  
OUTPUTXBAR6  
FSITXA_D0  
HIC_A1  
HIC_A4  
OUTPUTXBAR4 EQEP2_STROBE  
FSITXA_CLK  
EQEP2_STROBE  
EQEP2_INDEX  
FSIRXA_CLK  
FSIRXA_D1  
FSIRXA_D0  
HIC_D1  
SCIA_RX  
SCIA_TX  
CANA_RX  
CANA_TX  
I2CA_SDA  
EPWM7_A  
EPWM7_B  
SPIB_SIMO  
SPIB_SOMI  
SPIB_CLK  
ERRORSTS  
ERRORSTS  
I2CB_SDA  
I2CB_SCL  
HIC_D8  
HIC_NOE  
HIC_NCS  
LINA_RX  
OUTPUTXBAR7 EQEP1_STROBE  
OUTPUTXBAR8  
EQEP1_INDEX  
LINA_TX  
HIC_D10  
CANA_TX  
ADCSOCBO  
HIC_INT  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
37  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-6. GPIO Muxed Pins (continued)  
0, 4, 8, 12  
GPIO33  
GPIO34  
GPIO35  
GPIO37  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
ALT  
I2CA_SCL  
SPIB_STE  
OUTPUTXBAR4  
LINA_RX  
FSIRXA_CLK  
CANA_RX  
EQEP2_B  
ADCSOCAO  
HIC_NBE1  
HIC_D0  
HIC_D9  
TDI  
OUTPUTXBAR1  
SCIA_RX  
PMBUSA_SDA  
PMBUSA_SCL  
CANA_TX  
I2CB_SDA  
HIC_NWE  
HIC_NRDY  
I2CA_SDA  
I2CA_SCL  
CANA_RX  
SCIA_TX  
LINA_RX  
LINA_TX  
EQEP1_A  
EQEP1_B  
PMBUSA_CTL  
OUTPUTXBAR2  
PMBUSA_ALERT  
TDO  
CLB_OUTPUTXB  
AR2  
GPIO39  
FSIRXA_CLK  
EQEP2_INDEX  
SYNCOUT  
HIC_A4  
EQEP1_INDEX  
HIC_D7  
GPIO40  
GPIO41  
SPIB_SIMO  
EPWM2_B  
EPWM2_A  
PMBUSA_SDA  
PMBUSA_SCL  
FSIRXA_D0  
FSIRXA_D1  
EQEP1_A  
EQEP1_B  
LINB_TX  
LINB_RX  
HIC_NBE1  
HIC_D5  
SPIB_SOMI  
HIC_D12  
CLB_OUTPUTXB  
AR3  
GPIO42  
GPIO43  
GPIO44  
GPIO45  
LINA_RX  
OUTPUTXBAR5  
PMBUSA_CTL  
I2CA_SDA  
I2CA_SCL  
EQEP1_STROBE  
EQEP1_INDEX  
HIC_D2  
HIC_D3  
HIC_A6  
HIC_A7  
HIC_D5  
CLB_OUTPUTXB  
AR4  
OUTPUTXBAR6 PMBUSA_ALERT  
CLB_OUTPUTXB  
AR3  
OUTPUTXBAR7  
EQEP1_A  
FSITXA_CLK  
HIC_D7  
CLB_OUTPUTXB  
AR4  
OUTPUTXBAR8  
LINA_TX  
FSITXA_D0  
FSITXA_D1  
HIC_D6  
GPIO46  
GPIO61  
GPIO62  
GPIO63  
HIC_NWE  
38  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
4.4.2 Digital Inputs on ADC Pins (AIOs)  
GPIOs on port H (GPIO224–GPIO245) are multiplexed with analog pins. These are also referred to as  
AIOs. These pins can only function in input mode. By default, these pins will function as analog pins and  
the GPIOs are in a high-Z state. The GPHAMSEL register is used to configure these pins for digital or  
analog operation.  
NOTE  
If digital signals with sharp edges (high dv/dt) are connected to the AIOs, cross-talk can  
occur with adjacent analog signals. The user should therefore limit the edge rate of signals  
connected to AIOs if adjacent channels are being used for analog functions.  
4.4.3 GPIO Input X-BAR  
The Input X-BAR is used to route signals from a GPIO to many different IP blocks such as the ADCs,  
eCAPs, ePWMs, and external interrupts (see Figure 4-5). Table 4-7 lists the input X-BAR destinations. For  
details on configuring the Input X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F28002x  
Microcontrollers Technical Reference Manual.  
GPIO0  
Asynchronous  
Synchronous  
Sync. + Qual.  
Input X-BAR  
Other Sources  
127:16  
GPIOx  
eCAP  
Modules  
15:0  
INPUT[16:1]  
DCCx Clock Source-1  
DCCx Clock Source-0  
TZ1,TRIP1  
TZ2,TRIP2  
TZ3,TRIP3  
TRIP6  
XINT1  
TRIP4  
TRIP5  
XINT2  
XINT3  
XINT4  
XINT5  
ePWM  
Modules  
CPU PIE  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
ePWM  
X-BAR  
Other  
Sources  
ADCEXTSOC  
Other Sources  
ADC  
EXTSYNCIN1  
EXTSYNCIN2  
ePWM and eCAP  
Sync Scheme  
Output X-BAR  
Figure 4-5. Input X-BAR  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
39  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 4-7. Input X-BAR Destinations  
INPUT  
1
2
3
4
5
6
7
8
9
10 11 12  
13  
14  
15  
Yes  
16  
ECAP / HRCAP  
EPWM X-BAR  
CLB X-BAR  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes Yes Yes Yes Yes Yes Yes  
Yes Yes Yes Yes Yes Yes Yes  
Yes Yes Yes Yes Yes Yes Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
OUTPUT X-BAR  
CPU XINT  
Yes  
XINT1 XINT2  
XINT3  
XINT4 XINT5  
TZ1,  
TZ2,  
TZ3,  
EPWM TRIP  
TRIP6  
TRIP1 TRIP2 TRIP3  
ADC START OF  
CONVERSION  
ADCEX  
TSOC  
EPWM / ECAP  
SYNC  
EXTSY EXTSY  
NCIN1 NCIN2  
DCCx  
CLK1 CLK0  
4.4.4 GPIO Output X-BAR and ePWM X-BAR  
The Output X-BAR has eight outputs which are routed to the GPIO module. The ePWM X-BAR has eight  
outputs which are routed to each ePWM module. Figure 4-6 shows the sources for both the Output X-BAR  
and ePWM X-BAR. For details on the Output X-BAR and ePWM X-BAR, see the Crossbar (X-BAR)  
chapter of the TMS320F28002x Microcontrollers Technical Reference Manual.  
CTRIPOUTH  
CTRIPOUTL  
(Output X-BAR only)  
CMPSSx  
CTRIPH  
CTRIPL  
(ePWM X-BAR only)  
ePWM and eCAP  
EXTSYNCOUT  
Sync Chain  
OUTPUT1  
OUTPUT2  
OUTPUT3  
ADCSOCAO  
Select Ckt  
ADCSOCAO  
GPIO  
Mux  
OUTPUT4  
OUTPUT5  
OUTPUT6  
OUTPUT7  
OUTPUT8  
Output  
X-BAR  
ADCSOCBO  
Select Ckt  
ADCSOCBO  
ECAPxOUT  
eCAPx  
ADCx  
EVT1  
EVT2  
EVT3  
EVT4  
TRIP4  
TRIP5  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
All  
ePWM  
Modules  
ePWM  
X-BAR  
INPUT1-6  
Input X-BAR  
INPUT7-14  
(ePWM X-BAR only)  
X-BAR Flags  
(shared)  
Figure 4-6. Output X-BAR and ePWM X-BAR Sources  
40  
Terminal Configuration and Functions  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
4.5 Pins With Internal Pullup and Pulldown  
Some pins on the device have internal pullups or pulldowns. Table 4-8 lists the pull direction and when it  
is active. The pullups on GPIO pins are disabled by default and can be enabled through software. To  
avoid any floating unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are not  
bonded out in a particular package. Other pins noted in Table 4-8 with pullups and pulldowns are always  
on and cannot be disabled.  
Table 4-8. Pins With Internal Pullup and Pulldown  
RESET  
(XRSn = 0)  
PIN  
DEVICE BOOT  
APPLICATION  
GPIOx  
Pullup disabled  
Pullup disabled(1)  
Application defined  
Application defined  
Application defined  
GPIO35/TDI  
GPIO37/TDO  
TCK  
Pullup disabled  
Pullup disabled  
Pullup active  
Pullup active  
Pullup active  
TMS  
XRSn  
Other pins (including AIOs)  
No pullup or pulldown present  
(1) Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM.  
Copyright © 2020, Texas Instruments Incorporated  
Terminal Configuration and Functions  
41  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
4.6 Connections for Unused Pins  
For applications that do not need to use all functions of the device, Table 4-9 lists acceptable conditioning  
for any unused pins. When multiple options are listed in Table 4-9, any option is acceptable. Pins not  
listed in Table 4-9 must be connected according to Section 4.  
Table 4-9. Connections for Unused Pins  
SIGNAL NAME  
ACCEPTABLE PRACTICE  
ANALOG  
VREFHI  
VREFLO  
Tie to VDDA (applies only if ADC is not used in the application)  
Tie to VSSA  
DIGITAL  
No Connect  
FLT1 (Flash Test pin 1)  
FLT2 (Flash Test pin 2)  
Tie to VSS through 4.7-kΩ or larger resistor  
No Connect  
Tie to VSS through 4.7-kΩ or larger resistor  
No connection (input mode with internal pullup enabled)  
GPIOx  
No connection (output mode with internal pullup disabled)  
Pullup or pulldown resistor (any value resistor, input mode, and with internal pullup disabled)  
When TDI mux option is selected (default), the GPIO is in Input mode.  
GPIO35/TDI  
Internal pullup enabled  
External pullup resistor  
When TDO mux option is selected (default), the GPIO is in Output mode only during JTAG activity;  
otherwise, it is in a tri-state condition. The pin must be biased to avoid extra current on the input buffer.  
GPIO37/TDO  
Internal pullup enabled  
External pullup resistor  
No Connect  
TCK  
TMS  
Pullup resistor  
Pullup resistor  
Turn XTAL off and:  
Input mode with internal pullup enabled  
GPIO19/X1  
GPIO18/X2  
Input mode with external pullup or pulldown resistor  
Output mode with internal pullup disabled  
Turn XTAL off and:  
Input mode with internal pullup enabled  
Input mode with external pullup or pulldown resistor  
Output mode with internal pullup disabled  
POWER AND GROUND  
VDD  
All VDD pins must be connected per Section 4.3. Pins should not be used to bias any external circuits.  
If a dedicated analog supply is not used, tie to VDDIO.  
VDDA  
VDDIO  
VSS  
All VDDIO pins must be connected per Section 4.3.  
All VSS pins must be connected to board ground.  
VSSA  
If an analog ground is not used, tie to VSS.  
42  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5 Specifications  
5.1 Absolute Maximum Ratings(1)(2)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
4.6  
UNIT  
VDDIO with respect to VSS  
Supply voltage  
V
VDDA with respect to VSSA  
4.6  
Input voltage  
VIN (3.3 V)  
VO  
4.6  
V
V
Output voltage  
4.6  
Digital/analog input (per pin), IIK (VIN < VSS/VSSA or VIN  
VDDIO/VDDA)(3)  
>
–20  
–20  
20  
20  
Input clamp current  
mA  
Total for all inputs, IIKTOTAL  
(VIN < VSS/VSSA or VIN > VDDIO/VDDA)  
Output current  
Digital output (per pin), IOUT  
–20  
–40  
–40  
–65  
20  
125  
150  
150  
mA  
°C  
°C  
°C  
Free-Air temperature  
Operating junction temperature  
Storage temperature(4)  
TA  
TJ  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device beyond the Recommended Operating Conditions is not implied. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) Continuous clamp current per pin is ±2 mA. Do not operate in this condition continuously as VDDIO/VDDA voltage may internally rise and  
impact other electrical specifications.  
(4) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device life.  
For additional information, see the Semiconductor and IC Package Thermal Metrics Application Report.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
43  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.2 ESD Ratings – Commercial  
VALUE  
UNIT  
F280023C in 80-pin PN package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-  
±2000  
±500  
001(1)  
Electrostatic discharge  
(ESD)  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification  
JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2)  
F280025, F280025C, F280023, F280023C in 64-pin PM package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-  
±2000  
±500  
001(1)  
Electrostatic discharge  
(ESD)  
V(ESD)  
V
V
Charged-device model (CDM), per JEDEC specification  
JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2)  
F280023C in 48-pin PT package  
V(ESD)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-  
001(1)  
±2000  
±500  
Electrostatic discharge  
(ESD)  
Charged-device model (CDM), per JEDEC specification  
JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
5.3 ESD Ratings – Automotive  
VALUE  
UNIT  
F280025, F280025C, F280023 in 80-pin PN package  
Human body model (HBM), per  
All pins  
All pins  
±2000  
AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
±500  
±750  
V
Corner pins on 80-pin PN:  
1, 20, 21, 40, 41, 60, 61, 80  
F280024, F280024C, F280022 in 64-pin PM package  
Human body model (HBM), per  
All pins  
All pins  
±2000  
AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
±500  
±750  
V
V
Corner pins on 64-pin PM:  
1, 16, 17, 32, 33, 48, 49, 64  
F280025, F280025C, F280023, F280021 in 48-pin PT package  
Human body model (HBM), per  
All pins  
All pins  
±2000  
AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
±500  
±750  
Corner pins on 48-pin PT:  
1, 12, 13, 24, 25, 36, 37, 48  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
44  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.4 Recommended Operating Conditions  
NO  
M
UNI  
T
MIN  
MAX  
(2)  
Internal BOR enabled(1)  
Device supply voltage, VDDIO and VDDA  
Internal BOR disabled  
VBOR-VDDIO(MAX) + VBOR-GB  
3.3  
3.63  
3.63  
V
2.8 3.3  
Device ground, VSS  
Analog ground, VSSA  
0
0
V
V
Supply ramp rate of VDDIO, VDD, VDDA  
105  
SRSUPPLY  
V/s  
with respect to VSS.(3)  
VDDIO supply ramp time from  
1 V to VBOR-VDDIO(MAX)  
tVDDIO-RAMP  
10 ms  
Digital input voltage  
Analog input voltage  
VDDIO BOR guard band(4)  
S version(5)  
Q version(5)  
(AEC Q100 qualification)  
VSS – 0.3  
VDDIO + 0.3  
VDDA + 0.3  
V
V
V
VIN  
VSSA – 0.3  
VBOR-GB  
0.1  
Junction temperature, TJ  
–40  
–40  
125 °C  
125 °C  
Free-Air temperature, TA  
(1) Internal BOR is enabled by default.  
(2) The VDDIO BOR voltage (VBOR-VDDIO[MAX]) in Electrical Characteristics determines the lower voltage bound for device operation. TI  
recommends that system designers budget an additional guard band (VBOR-GB) as shown in Figure 5-1.  
(3) Supply ramp rate faster than this can trigger the on-chip ESD protection.  
(4) TI recommends VBOR-GB to avoid BOR resets due to normal supply noise or load-transient events on the 3.3-V VDDIO system regulator.  
Good system regulator design and decoupling capacitance (following the system regulator specifications) are important to prevent  
activation of the BOR during normal device operation. The value of VBOR-GB is a system-level design consideration; the voltage listed  
here is typical for many applications.  
(5) Operation above TJ = 105°C for extended duration will reduce the lifetime of the device. See Calculating Useful Lifetimes of Embedded  
Processors for more information.  
3.63 V  
+10%  
Recommended  
System Voltage  
Regulator Range  
3.3 V  
0%  
F28002x  
VDDIO  
Operating  
Range  
3.1 V  
3.0 V  
–6.1%  
–9.1%  
VBOR-GB  
BOR Guard Band  
VBOR-VDDIO  
Internal BOR Threshold  
–14.8%  
–15.1%  
2.81 V  
2.80 V  
Figure 5-1. Supply Voltages  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
45  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.5 Power Consumption Summary  
Current values listed in this section are representative for the test conditions given and not the absolute  
maximum possible. The actual device currents in an application will vary with application code and pin  
configurations. Table 5-1 lists the system current consumption values.  
Table 5-1. System Current Consumption  
over operating free-air temperature range (unless otherwise noted).  
TYP : Vnom, 30  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPERATING MODE  
VDDIO current consumption during  
operational usage  
This is an estimation of current  
for a typical heavily loaded  
application. Actual currents will  
vary depending on system  
activity, I/O electrical loading and  
switching frequency.  
IDDIO  
35  
3
65  
5
mA  
mA  
VDDA current consumption during  
operational usage  
IDDA  
IDLE MODE  
VDDIO current consumption while  
device is in Idle mode  
IDDIO  
16  
25  
mA  
mA  
- CPU is in IDLE mode  
- Flash is powered down  
- XCLKOUT is turned off  
VDDA current consumption while  
device is in Idle mode  
IDDA  
0.01  
0.1  
STANDBY MODE  
VDDIO current consumption while  
device is in Standby mode  
IDDIO  
8
15  
mA  
mA  
- CPU is in STANDBY mode  
- Flash is powered down  
- XCLKOUT is turned off  
VDDA current consumption while  
device is in Standby mode  
IDDA  
0.01  
0.1  
HALT MODE  
IDDIO  
VDDIO current consumption while  
device is in Halt mode  
1
10  
mA  
mA  
- CPU is in HALT mode  
- Flash is powered down  
- XCLKOUT is turned off  
VDDA current consumption while  
device is in Halt mode  
IDDA  
0.01  
0.1  
FLASH ERASE/PROGRAM  
VDDIO current consumption during  
- CPU is running from RAM.  
- SYSCLK at 100 MHz.  
- I/Os are inputs with pullups  
enabled.  
IDDIO  
72  
106  
2.5  
mA  
mA  
Erase/Program cycle(1)  
VDDA current consumption during  
Erase/Program cycle  
- Peripheral clocks are turned off.  
IDDA  
0.1  
RESET MODE  
VDDIO current consumption while  
reset is active(2)  
IDDIO  
8.6  
0.1  
mA  
mA  
VDDA current consumption while reset  
is active(2)  
IDDA  
(1) Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using  
alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system  
components with sufficient margin to avoid supply brownout conditions.  
(2) This is the current consumption while reset is active, i.e XRSn is low.  
46  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.5.1 Operating Mode Test Description  
Table 5-1 and Table 5-2 list the current consumption values for the operational mode of the device. The  
operational mode provides an estimation of what an application might encounter. The test condition for  
these measurements has the following properties:  
Code is executing from RAM.  
FLASH is read and kept in active state.  
No external components are driven by I/O pins.  
All peripherals have clocks enabled.  
All CPUs are actively executing code.  
All analog peripherals are powered up. ADCs and DACs are periodically converting.  
5.5.2 Reducing Current Consumption  
All C2000™ microcontrollers provide some methods to reduce the device current consumption:  
Any one of the three low-power modes—IDLE, STANDBY and HALT—could be entered to reduce the  
current consumption even further during idle periods in the application.  
The flash module may be powered down if the code is run from RAM.  
Disable the pullups on pins that assume an output function.  
Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be  
achieved by turning off the clock to any peripheral that is not used in a given application. Table 5-2 lists  
the typical current reduction value per disabled peripheral at 100-MHz SYSCLK.  
To realize the lowest VDDA current consumption in an LPM, see the respective analog chapter of the  
TMS320F28002x Microcontrollers Technical Reference Manual to ensure each module is powered  
down as well.  
Table 5-2. Typical Current Reduction per Disabled Peripheral  
PERIPHERAL  
IDDIO CURRENT REDUCTION (mA)  
ADC(1)  
CAN  
0.8  
1.1  
1.1  
0.4  
0.1  
0.5  
0.1  
0.4  
0.7  
0.1  
0.7  
0.8  
0.3  
0.4  
0.3  
0.2  
0.2  
0.1  
CLB  
CMPSS(1)  
CPU TIMER  
DMA  
eCAP1 and eCAP2  
eCAP3(2)  
ePWM  
eQEP  
FSI  
HRPWM  
I2C  
LIN  
PMBUS  
SCI  
SPI  
DCC  
(1) This current represents the current drawn by the digital portion of the each module.  
(2) eCAP3 can also be configured as HRCAP.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
47  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.6 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
TEST  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNIT  
Digital and Analog IO  
IOH = IOH MIN  
IOH = –100 μA  
IOL = IOL MAX  
IOL = 100 µA  
VDDIO * 0.8  
VDDIO – 0.2  
VOH  
High-level output voltage  
Low-level output voltage  
V
0.4  
V
VOL  
IOH  
0.2  
High-level output source current for all output  
pins  
–4  
mA  
IOL  
Low-level output sink current for all output pins  
High-level output impedance for all output pins  
Low-level output impedance for all output pins  
High-level input voltage  
4
mA  
ROH  
70  
70  
ROL  
VIH  
2.0  
V
VIL  
Low-level input voltage  
0.8  
V
VHYSTERESIS  
Input hysteresis  
125  
mV  
VDDIO = 3.3 V  
VIN = VDDIO  
IPULLDOWN  
IPULLUP  
Input current  
Input current  
Pins with pulldown  
120  
160  
µA  
µA  
Digital inputs with  
pullup enabled(1)  
VDDIO = 3.3 V  
VIN = 0 V  
Pullups and  
Digital inputs  
outputs disabled  
0 V VIN VDDIO  
0.1  
ILEAK  
Pin leakage  
µA  
Analog pins (except  
ADCINA3/VDAC)  
Analog drivers  
disabled  
0 V VIN VDDA  
0.1  
11  
ADCINA3/VDAC  
Digital inputs  
Analog pins(2)  
2
2
CI  
Input capacitance  
pF  
V
VREG and BOR  
VDDIO power on reset VDDIO power on reset  
voltage voltage  
VDDIO brown out reset voltage(3)  
VPOR-VDDIO  
2.3  
1.2  
VBOR-VDDIO  
VVREG  
2.81  
1.14  
3.0  
V
V
Internal voltage regulator output  
1.32  
(1) See Table 4-8 for a list of pins with a pullup or pulldown.  
(2) The analog pins are specified separately; see Table 5-40.  
(3) See the Supply Voltages figure in the Recommended Operating Conditions section.  
5.7 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary.  
Systems that exceed the recommended maximum power dissipation in the end product may require  
additional thermal enhancements. Ambient temperature (TA) varies with the end application and product  
design. The critical factor that affects reliability and functionality is TJ, the junction temperature, not the  
ambient temperature. Hence, care should be taken to keep TJ within the specified limits. Tcase should be  
measured to estimate the operating junction temperature TJ. Tcase is normally measured at the center of  
the package top-side surface. The thermal application report Semiconductor and IC Package Thermal  
Metrics helps to understand the thermal metrics and definitions.  
48  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8 System  
5.8.1 Power Management  
TMS320F28002x MCUs use an internal 1.2-V LDO Voltage Regulator (VREG) to supply the required  
1.2 V to the core (VDD).  
5.8.1.1 Internal 1.2-V LDO Voltage Regulator (VREG)  
The internal VREG is supplied by VDDIO and generates the 1.2 V required to power the VDD pins. The  
internal VREG is always enabled and, as such, is the required supply source for the VDD pins. Although  
the internal VREG eliminates the need to use an external power supply for VDD, decoupling capacitors  
are required on each VDD pin for VREG stability. There are two recommended capacitor configurations  
(described in the list that follows) for the VDD rail when using the internal VREG. The signal description  
for VDD can be found in Table 4-4.  
Configuration 1: Place a small decoupling capacitor to VSS on each pin as close to the device as  
possible. In addition, a bulk capacitance must be placed on the VDD node to VSS (one 20-µF  
capacitor or two parallel 10-µF capacitors).  
Configuration 2: Distribute the total capacitance to VSS evenly across all VDD pins (total capacitance  
divided by number of available VDD pins).  
5.8.1.2 Power Sequencing  
Signal Pin Requirements: Before powering the device, no voltage larger than 0.3 V above VDDIO can  
be applied to any digital pin, and no voltage larger than 0.3 V above VDDA can be applied to any analog  
pin (including VREFHI).  
VDDIO and VDDA Requirements: The 3.3-V supplies VDDIO and VDDA should be powered up together  
and kept within 0.3 V of each other during functional operation.  
VDD Requirements: The VDD sequencing requirements are handled by the device.  
5.8.1.3 Power-On Reset (POR)  
An internal power-on reset (POR) circuit holds the device in reset and keeps the I/Os in a high-impedance  
state during power up. The POR is in control and forces XRSn low internally until the voltage on VDDIO  
crosses the POR threshold. When the voltage crosses the POR threshold, the internal brownout-reset  
(BOR) circuit takes control and holds the device in reset until the voltage crosses the BOR threshold (for  
internal BOR details, see Section 5.8.1.4).  
5.8.1.4 Brownout Reset (BOR)  
An internal BOR circuit monitors the VDDIO rail for dips in voltage which result in the supply voltage  
dropping out of operational range. When the VDDIO voltage drops below the BOR threshold, the device is  
forced into reset, and XRSn is pulled low. XRSn will remain in reset until the voltage returns to the  
operational range. The BOR is enabled by default. To disable the BOR, set the BORLVMONDIS bit in the  
VMONCTL register. The internal BOR circuit monitors only the VDDIO rail. See Section 5.6 for BOR  
characteristics. External supply voltage supervisor (SVS) devices can be used to monitor the voltage on  
the 3.3-V rail and to drive XRSn low if supplies fall outside operational specifications.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
49  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.2 Reset Timing  
XRSn is the device reset pin. It functions as an input and open-drain output. The device has a built-in  
power-on reset (POR). During power up, the POR circuit drives the XRSn pin low. A watchdog or NMI  
watchdog reset will also drive the pin low. An external open-drain circuit may drive the pin to assert a  
device reset.  
A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRSn and VDDIO. A capacitor  
should be placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values  
will allow the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the  
watchdog reset is asserted. Figure 5-2 shows the recommended reset circuit.  
VDDIO  
2.2 kW to 10 kW  
Optional open-drain  
Reset source  
XRSn  
£100 nF  
Figure 5-2. Reset Circuit  
5.8.2.1 Reset Sources  
Table 5-3 summarizes the various reset signals and their effect on the device.  
Table 5-3. Reset Signals  
CPU CORE  
JTAG/  
RESET  
(C28x, FPU,  
VCU)  
PERIPHERALS  
RESET  
RESET SOURCE  
DEBUG LOGIC  
RESET  
I/Os  
XRSn OUTPUT  
POR  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Yes  
XRSn Pin  
WDRS  
Yes  
Yes  
No  
No  
NMIWDRS  
SYSRS (Debugger Reset)  
SCCRESET  
The parameter th(boot-mode) must account for a reset initiated from any of these sources.  
See the Resets section of the System Control chapter in the TMS320F28002x Microcontrollers Technical  
Reference Manual.  
CAUTION  
Some reset sources are internally driven by the device. Some of these sources  
will drive XRSn low, use this to disable any other devices driving the boot pins.  
The SCCRESET and debugger reset sources do not drive XRSn; therefore, the  
pins used for boot mode should not be actively driven by other devices in the  
system. The boot configuration has a provision for changing the boot pins in  
OTP; for more details, see the TMS320F28002x Microcontrollers Technical  
Reference Manual.  
50  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.2.2 Reset Electrical Data and Timing  
Table 5-4 lists the reset (XRSn) timing requirements. Table 5-5 lists the reset (XRSn) switching  
characteristics. Figure 5-3 shows the power-on reset. Figure 5-4 shows the warm reset.  
Table 5-4. Reset (XRSn) Timing Requirements  
MIN  
1.5  
MAX  
UNIT  
ms  
th(boot-mode)  
tw(RSL2)  
Hold time for boot-mode pins  
Pulse duration, XRSn low on warm reset  
3.2  
µs  
Table 5-5. Reset (XRSn) Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
100  
MAX  
UNIT  
Pulse duration, XRSn driven low by device after supplies are  
tw(RSL1)  
tw(WDRS)  
µs  
stable  
Pulse duration, reset pulse generated by watchdog  
512tc(OSCCLK)  
cycles  
VDDIO VDDA  
(3.3V)  
VDD (1.2V)  
tw(RSL1)  
XRSn(A)  
Boot ROM  
CPU  
Execution  
Phase  
User code  
(B)  
th(boot-mode)  
User code dependent  
Boot-Mode  
Pins  
GPIO pins as input  
Peripheral/GPIO function  
Based on boot code  
Boot-ROM execution starts  
GPIO pins as input (pullups are disabled)  
User code dependent  
I/O Pins  
A. The XRSn pin can be driven externally by a supervisor or an external pullup resistor, see Table 4-1. On-chip POR  
logic will hold this pin low until the supplies are in a valid range.  
B. After reset from any source (see Section 5.8.2.1), the boot ROM code samples Boot Mode pins. Based on the status  
of the Boot Mode pin, the boot code branches to destination memory or boot code function. If boot ROM code  
executes after power-on conditions (in debugger environment), the boot code execution time is based on the current  
SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled.  
Figure 5-3. Power-on Reset  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
51  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
tw(RSL2)  
XRSn  
User code  
CPU  
Execution  
Phase  
Boot ROM  
User code  
Boot ROM execution starts  
(initiated by any reset source)  
(A)  
th(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO function  
GPIO Pins as Input  
Peripheral/GPIO function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (Pullups are Disabled)  
User-Code Dependent  
User-Code Dependent  
A. After reset from any source (see Section 5.8.2.1), the Boot ROM code samples BOOT Mode pins. Based on the  
status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code  
executes after power-on conditions (in debugger environment), the Boot code execution time is based on the current  
SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled.  
Figure 5-4. Warm Reset  
52  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.3 Clock Specifications  
5.8.3.1 Clock Sources  
Table 5-6 lists clock sources. Figure 5-5 shows the clocking system. Figure 5-6 shows the PLL.  
Table 5-6. Possible Reference Clock Sources  
CLOCK SOURCE  
INTOSC1  
DESCRIPTION  
Internal oscillator 1.  
Zero-pin overhead 10-MHz internal oscillator.  
INTOSC2(1)  
X1 (XTAL)  
Internal oscillator 2.  
Zero-pin overhead 10-MHz internal oscillator.  
External crystal or resonator connected between the X1 and X2 pins or single-ended clock connected to the X1  
pin.  
(1) On reset, internal oscillator 2 (INTOSC2) is the default clock source for the PLL (OSCCLK).  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
53  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
SYSCLKDIVSEL  
PLLSYSCLK  
CPUCLK  
NMIWD  
Watchdog  
Timer  
SYS  
Divider  
PLLRAWCLK  
FPU  
TMU  
Flash  
SYSPLL  
INTOSC1  
INTOSC2  
X1 (XTAL)  
OSCCLK  
SYSPLLCLKEN  
OSCCLKSRCSEL  
CPU  
ePIE  
Boot ROM  
GPIO  
Mx RAMs  
Lx RAMs  
DCSM  
System Control  
WD  
SYSCLK  
SYSCLK  
GSx RAMs  
XINT  
CPUTIMERs  
CLB  
ECAP  
I2C  
ADC  
CMPSS  
CAN  
HIC  
DCC  
HWBIST  
BGCRC  
One per SYSCLK peripheral  
PCLKCRx  
EQEP  
PERx.SYSCLK  
EPWM  
HRCAL  
PMBUS  
LIN  
FSI  
ERAD  
One per LSPCLK peripheral  
PCLKCRx  
LOSPCP  
PERx.LSPCLK  
SCI  
SPI  
LSPCLK  
LSP  
Divider  
CLKSRCCTL2.CANxBCLKSEL  
CAN Bit Clock  
Figure 5-5. Clocking System  
54  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
SYSPLL  
OSCCLK  
INTCLK  
VCOCLK  
PLLRAWCLK  
÷
÷
VCO  
(REFDIV+1)  
(ODIV+1)  
÷
IMULT  
B15%%.-  
+/7.6  
fPLLRAWCLK =  
×
(4'(&+8+1)  
(1&+8+1)  
Figure 5-6. System PLL  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
55  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.3.2 Clock Frequencies, Requirements, and Characteristics  
This section provides the frequencies and timing requirements of the input clocks, PLL lock times,  
frequencies of the internal clocks, and the frequency and switching characteristics of the output clock.  
5.8.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times  
Table 5-7 lists the frequency requirements for the input clocks. Table 5-8 lists the XTAL oscillator  
characteristics. Table 5-9 lists the X1 timing requirements. Table 5-10 lists the APLL characteristics.  
Table 5-11 lists the switching characteristics of the output clock, XCLKOUT. Table 5-12 provides the clock  
frequencies for the internal clocks.  
Table 5-7. Input Clock Frequency  
MIN  
10  
MAX  
20  
UNIT  
MHz  
MHz  
f(XTAL)  
f(X1)  
Frequency, X1/X2, from external crystal or resonator  
Frequency, X1, from external oscillator  
10  
25  
Table 5-8. XTAL Oscillator Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
–0.3  
TYP  
MAX  
0.3 * VDDIO  
VDDIO + 0.3  
UNIT  
X1 VIL  
X1 VIH  
Valid low-level input voltage  
Valid high-level input voltage  
V
V
0.7 * VDDIO  
Table 5-9. X1 Timing Requirements  
MIN  
MAX UNIT  
tf(X1)  
Fall time, X1  
Rise time, X1  
6
6
ns  
ns  
tr(X1)  
tw(X1L)  
tw(X1H)  
Pulse duration, X1 low as a percentage of tc(X1)  
Pulse duration, X1 high as a percentage of tc(X1)  
45%  
45%  
55%  
55%  
Table 5-10. APLL Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
PLL Lock time  
SYS PLL Lock Time(1)  
(1) The PLL lock time here defines the typical time that takes for the PLL to lock once PLL is enabled (SYSPLLCTL1[PLLENA]=1).  
5µs + (1024 * (REFDIV + 1) * tc(OSCCLK)  
)
us  
Additional time to verify the PLL clock using Dual Clock Comparator (DCC) is not accounted here. TI recommends using the latest  
example software from C2000Ware for initializing the PLLs. For the system PLL, see InitSysPll() or SysCtl_setClock().  
Table 5-11. XCLKOUT Switching Characteristics(1)(2)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
5
UNIT  
ns  
tf(XCO)  
Fall time, XCLKOUT  
Rise time, XCLKOUT  
tr(XCO)  
tw(XCOL)  
tw(XCOH)  
f(XCO)  
5
ns  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
Frequency, XCLKOUT  
H – 2  
H – 2  
H + 2  
H + 2  
50  
ns  
ns  
MHz  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
56  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
 
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 5-12. Internal Clock Frequencies  
MIN  
2
NOM  
MAX  
100  
500  
20  
UNIT  
MHz  
ns  
f(SYSCLK)  
tc(SYSCLK)  
f(INTCLK)  
f(VCOCLK)  
f(PLLRAWCLK)  
f(PLL)  
Frequency, device (system) clock  
Period, device (system) clock  
10  
10  
220  
6
Frequency, system PLL going into VCO (after REFDIV)  
Frequency, system PLL VCO (before ODIV)  
Frequency, system PLL output (before SYSCLK divider)  
Frequency, PLLSYSCLK  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
500  
200  
100  
2
(1)  
f(PLL_LIMP)  
f(LSP)  
Frequency, PLL Limp Frequency  
45/(ODIV+1)  
Frequency, LSPCLK  
Period, LSPCLK  
2
100  
500  
tc(LSPCLK)  
10  
Frequency, OSCCLK (INTOSC1 or INTOSC2 or XTAL or  
X1)  
f(OSCCLK)  
See respective clock  
MHz  
f(EPWM)  
Frequency, EPWMCLK  
Frequency, HRPWMCLK  
100  
100  
MHz  
MHz  
f(HRPWM)  
60  
(1) PLL output frequency when OSCCLK is dead (Loss of OSCCLK causes PLL to Limp).  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
57  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.3.3 Input Clocks and PLLs  
In addition to the internal 0-pin oscillators, three types of external clock sources are supported:  
A single-ended 3.3-V external clock. The clock signal should be connected to X1, as shown in  
Figure 5-7, with the XTALCR.SE bit set to 1.  
An external crystal. The crystal should be connected across X1 and X2 with its load capacitors  
connected to VSS as shown in Figure 5-8.  
An external resonator. The resonator should be connected across X1 and X2 with its ground  
connected to VSS as shown in Figure 5-9.  
Microcontroller  
Microcontroller  
GPIO19  
X1  
GPIO18  
X2  
GPIO18*  
X2  
GPIO19  
X1  
VSS  
VSS  
* Available as a  
GPIO when X1 is  
used as a clock  
+3.3 V  
VDD  
Out  
3.3-V Oscillator  
Gnd  
Figure 5-8. External Crystal  
Figure 5-7. Single-ended 3.3-V External Clock  
Microcontroller  
GPIO18  
X2  
GPIO19  
X1  
VSS  
Figure 5-9. External Resonator  
58  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.3.4 Crystal Oscillator  
When using a quartz crystal, it may be necessary to include a damping resistor (RD) in the crystal circuit to  
prevent overdriving the crystal (drive level can be found in the crystal data sheet). In higher-frequency  
applications (10 MHz or greater), RD is generally not required. If a damping resistor is required, RD should  
be as small as possible because the size of the resistance affects start-up time (smaller RD = faster start-  
up time). TI recommends that the crystal manufacturer characterize the crystal with the application board.  
Table 5-13 lists the crystal oscillator parameters. Table 5-14 lists the crystal equivalent series resistance  
(ESR) requirements. Table 5-15 lists the crystal oscillator electrical characteristics.  
Table 5-13. Crystal Oscillator Parameters  
MIN  
MAX UNIT  
CL1, CL2  
C0  
Load capacitance  
12  
24  
7
pF  
pF  
Crystal shunt capacitance  
Table 5-14. Crystal Equivalent Series Resistance (ESR) Requirements(1)(2)  
MAXIMUM ESR (Ω)  
(CL1 = CL2 = 12 pF)  
MAXIMUM ESR (Ω)  
(CL1 = CL2 = 24 pF)  
CRYSTAL FREQUENCY (MHz)  
10  
12  
14  
16  
18  
20  
55  
50  
50  
45  
45  
45  
110  
95  
90  
75  
65  
50  
(1) Crystal shunt capacitance (C0) should be less than or equal to 7 pF.  
(2) ESR = Negative Resistance/3  
Table 5-15. Crystal Oscillator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ms  
f = 20 MHz  
ESR MAX = 50 Ω  
CL1 = CL2 = 24 pF  
C0 = 7 pF  
Start-up time(1)  
2
Crystal drive level (DL)  
1
mW  
(1) Start-up time is dependent on the crystal and tank circuit components. TI recommends that the crystal vendor characterize the  
application with the chosen crystal.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
59  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.3.5 Internal Oscillators  
To reduce production board costs and application development time, all F28002x devices contain two  
independent internal oscillators, referred to as INTOSC1 and INTOSC2. By default, both oscillators are  
enabled at power up. INTOSC2 is set as the source for the system reference clock (OSCCLK) and  
INTOSC1 is set as the backup clock source. INTOSC1 can also be manually configured as the system  
reference clock (OSCCLK). Table 5-16 provides the electrical characteristics of the internal oscillators to  
determine if this module meets the clocking requirements of the application.  
Table 5-16. INTOSC Characteristics  
over recommended operating conditions (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
10  
MAX  
UNIT  
MHz  
%
Frequency, INTOSC1 and  
INTOSC2  
fINTOSC  
9.7  
10.3  
Frequency stability at room  
temperature  
30°C, Nominal  
VDD  
±0.1  
fINTOSC-STABILITY  
Frequency stability  
–3  
3
%
tINT0SC-ST  
Start-up and settling time  
20  
µs  
60  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.4 Flash Parameters  
Table 5-17 lists the minimum required Flash wait states with different clock sources and frequencies.  
Table 5-17. Minimum Required Flash Wait States with Different Clock Sources and Frequencies(1)  
EXTERNAL OSCILLATOR OR CRYSTAL  
INTOSC1 OR INTOSC2  
PROGRAM, ERASE,  
PROGRAM, ERASE,  
CPUCLK (MHz)  
FLASH READ OR  
BANK SLEEP, OR PUMP  
EXECUTE  
FLASH READ OR  
EXECUTE  
BANK SLEEP, OR PUMP  
(2)  
SLEEP  
SLEEP  
97 < CPUCLK 100  
80 < CPUCLK 97  
77 < CPUCLK 80  
60 < CPUCLK 77  
58 < CPUCLK 60  
40 < CPUCLK 58  
38 < CPUCLK 40  
20 < CPUCLK 38  
19 < CPUCLK 20  
CPUCLK 19  
5
4
4
3
3
2
2
1
1
0
4
3
2
1
0
4
3
2
1
0
(1) Minimum required FRDCNTL[RWAIT].  
(2) PROGRAM, ERASE, or SLEEP operations require an extra wait state when using INTOSC as the clock source for the frequency ranges  
indicated. Any wait state FRDCNTL[RWAIT] change must be made before beginning a PROGRAM, ERASE, or SLEEP mode operation.  
This setting impacts both flash banks. Applications which perform simultaneous READ of one bank and PROGRAM or ERASE of the  
other bank must use the higher RWAIT setting during the PROGRAM or ERASE operation or use a clock source or frequency with a  
common wait state setting.  
The F28002x devices have an improved 128-bit prefetch buffer that provides high flash code execution  
efficiency across wait states. Figure 5-10 and Figure 5-11 illustrate typical efficiency across wait-state  
settings compared to previous-generation devices with a 64-bit prefetch buffer. Wait-state execution  
efficiency with a prefetch buffer will depend on how many branches are present in application software.  
Two examples of linear code and if-then-else code are provided.  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
Flash with 64-Bit Prefetch  
Flash with 128-Bit Prefetch  
Flash with 64-Bit Prefetch  
Flash with 128-Bit Prefetch  
0
1
2
3
4
5
0
1
2
3
4
5
Wait State  
Wait State  
D005  
D006  
Figure 5-10. Application Code With Heavy 32-Bit Floating-Point  
Math Instructions  
Figure 5-11. Application Code With 16-Bit If-Else Instructions  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
61  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 5-18 lists the Flash parameters.  
Table 5-18. Flash Parameters  
PARAMETER  
MIN  
TYP  
150  
50  
MAX  
300  
UNIT  
µs  
128 data bits + 16 ECC bits  
Program Time(1)  
8KB sector  
100  
ms  
EraseTime(2) at < 25 cycles  
EraseTime(2) at 1000 cycles  
EraseTime(2) at 2000 cycles  
EraseTime(2) at 20K cycles  
8KB sector  
8KB sector  
8KB sector  
8KB sector  
15  
100  
ms  
25  
350  
ms  
30  
600  
ms  
120  
4000  
20000  
ms  
Nwec Write/Erase Cycles  
tretention Data retention duration at TJ = 85oC  
cycles  
years  
20  
(1) Program time is at the maximum device frequency. Program time includes overhead of the flash state machine but does not include the  
time to transfer the following into RAM:  
• Code that uses flash API to program the flash  
• Flash API itself  
• Flash data to be programmed  
In other words, the time indicated in this table is applicable after all the required code/data is available in the device RAM, ready for  
programming. The transfer time will significantly vary depending on the speed of the JTAG debug probe used.  
Program time calculation is based on programming 144 bits at a time at the specified operating frequency. Program time includes  
Program verify by the CPU. The program time does not degrade with write/erase (W/E) cycling, but the erase time does.  
Erase time includes Erase verify by the CPU and does not involve any data transfer.  
(2) Erase time includes Erase verify by the CPU.  
NOTE  
The Main Array flash programming must be aligned to 64-bit address boundaries and each  
64-bit word may only be programmed once per write/erase cycle.  
The DCSM OTP programming must be aligned to 128-bit address boundaries and each 128-  
bit word may only be programmed once. The exceptions are:  
1. The DCSM Zx-LINKPOINTER1 and Zx-LINKPOINTER2 values in the DCSM OTP should  
be programmed together, and may be programmed 1 bit at a time as required by the  
DCSM operation.  
2. The DCSM Zx-LINKPOINTER3 values in the DCSM OTP may be programmed 1 bit at a  
time on a 64-bit boundary to separate it from Zx-PSWDLOCK, which must only be  
programmed once.  
62  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.5 Emulation/JTAG  
The JTAG (IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture) port  
has four dedicated pins: TMS, TDI, TDO, and TCK. The cJTAG (IEEE Standard 1149.7-2009 for  
Reduced-Pin and Enhanced-Functionality Test Access Port and Boundary-Scan Architecture) port is a  
compact JTAG interface requiring only two pins (TMS and TCK), which allows other device functionality to  
be muxed to the traditional GPIO35 (TDI) and GPIO37 (TDO) pins.  
Typically, no buffers are needed on the JTAG signals when the distance between the MCU target and the  
JTAG header is smaller than 6 inches (15.24 cm), and no other devices are present on the JTAG chain.  
Otherwise, each signal should be buffered. Additionally, for most JTAG debug probe operations at  
10 MHz, no series resistors are needed on the JTAG signals. However, if high emulation speeds are  
expected (35 MHz or so), 22-resistors should be placed in series on each JTAG signal.  
The PD (Power Detect) terminal of the JTAG debug probe header should be connected to the board's 3.3-  
V supply. Header GND terminals should be connected to board ground. TDIS (Cable Disconnect Sense)  
should also be connected to board ground. The JTAG clock should be looped from the header TCK output  
terminal back to the RTCK input terminal of the header (to sense clock continuity by the JTAG debug  
probe). This MCU does not support the EMU0 and EMU1 signals that are present on 14-pin and 20-pin  
emulation headers. These signals should always be pulled up at the emulation header through a pair of  
board pullup resistors ranging from 2.2 kto 4.7 k(depending on the drive strength of the debugger  
ports). Typically, a 2.2-kvalue is used.  
Header terminal RESET is an open-drain output from the JTAG debug probe header that enables board  
components to be reset through JTAG debug probe commands (available only through the 20-pin header).  
Figure 5-12 shows how the 14-pin JTAG header connects to the MCU’s JTAG port signals. Figure 5-13  
shows how to connect to the 20-pin JTAG header. The 20-pin JTAG header terminals EMU2, EMU3, and  
EMU4 are not used and should be grounded.  
For more information about hardware breakpoints and watchpoints, see Hardware Breakpoints and  
Watchpoints for C28x in CCS.  
For more information about JTAG emulation, see the XDS Target Connection Guide.  
NOTE  
JTAG Test Data Input (TDI) is the default mux selection for the pin. The internal pullup is  
disabled by default. If this pin is used as JTAG TDI, the internal pullup should be enabled or  
an external pullup added on the board to avoid a floating input. In the cJTAG option, this pin  
can be used as GPIO.  
JTAG Test Data Output (TDO) is the default mux selection for the pin. The internal pullup is  
disabled by default. The TDO function will be in a tri-state condition when there is no JTAG  
activity, leaving this pin floating. The internal pullup should be enabled or an external pullup  
added on the board to avoid a floating GPIO input. In the cJTAG option, this pin can be used  
as GPIO.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
63  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Distance between the header and the target  
should be less than 6 inches (15.24 cm).  
3.3 V  
4.7 kΩ  
3.3 V  
10 kΩ  
3.3 V  
10 kΩ  
2
1
TMS  
TMS  
TRST  
TDI(A)  
TDI  
TDIS  
KEY  
3
5
4
GND  
MCU  
100 Ω  
6
3.3 V  
PD  
TDO(A)  
TCK  
TDO  
RTCK  
TCK  
EMU0  
GND  
GND  
GND  
EMU1  
7
8
9
10  
12  
14  
11  
13  
4.7 kΩ  
4.7 kΩ  
3.3 V  
3.3 V  
A. TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead.  
Figure 5-12. Connecting to the 14-Pin JTAG Header  
Distance between the header and the target  
should be less than 6 inches (15.24 cm).  
3.3 V  
4.7 kΩ  
2
1
TMS  
TMS  
TRST  
3.3 V  
10 kΩ  
3.3 V  
10 kΩ  
TDI(A)  
TDI  
TDIS  
KEY  
GND  
3
5
4
MCU  
100 Ω  
6
3.3V  
PD  
TDO(A)  
TDO  
GND  
GND  
GND  
EMU1  
GND  
EMU3  
GND  
7
8
9
10  
12  
14  
16  
18  
20  
RTCK  
TCK  
11  
13  
15  
17  
19  
TCK  
Ω
4.7 kΩ  
4.7 k  
3.3 V  
EMU0  
RESET  
EMU2  
EMU4  
3.3 V  
Open  
Drain  
A low pulse from the JTAG debug probe  
can be tied with other reset sources  
to reset the board.  
GND  
GND  
A. TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead.  
Figure 5-13. Connecting to the 20-Pin JTAG Header  
64  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.5.1 JTAG Electrical Data and Timing  
Table 5-19 lists the JTAG timing requirements. Table 5-20 lists the JTAG switching characteristics.  
Figure 5-14 shows the JTAG timing.  
Table 5-19. JTAG Timing Requirements  
NO.  
MIN  
66.66  
26.66  
26.66  
13  
MAX  
UNIT  
ns  
1
tc(TCK)  
Cycle time, TCK  
1a  
1b  
tw(TCKH)  
Pulse duration, TCK high (40% of tc)  
Pulse duration, TCK low (40% of tc)  
Input setup time, TDI valid to TCK high  
Input setup time, TMS valid to TCK high  
Input hold time, TDI valid from TCK high  
Input hold time, TMS valid from TCK high  
ns  
tw(TCKL)  
ns  
tsu(TDI-TCKH)  
tsu(TMS-TCKH)  
th(TCKH-TDI)  
th(TCKH-TMS)  
3
4
ns  
ns  
13  
7
7
Table 5-20. JTAG Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
2
td(TCKL-TDO)  
Delay time, TCK low to TDO valid  
6
25  
ns  
1
1a  
1b  
TCK  
TDO  
2
3
4
TDI/TMS  
Figure 5-14. JTAG Timing  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
65  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.5.2 cJTAG Electrical Data and Timing  
Table 5-21 lists the cJTAG timing requirements. Table 5-22 lists the cJTAG switching characteristics.  
Figure 5-15 shows the cJTAG timing.  
Table 5-21. cJTAG Timing Requirements  
NO.  
MIN  
100  
40  
40  
15  
15  
2
MAX  
UNIT  
ns  
1
tc(TCK)  
Cycle time, TCK  
1a  
1b  
tw(TCKH)  
Pulse duration, TCK high (40% of tc)  
Pulse duration, TCK low (40% of tc)  
Input setup time, TMS valid to TCK high  
Input setup time, TMS valid to TCK low  
Input hold time, TMS valid from TCK high  
Input hold time, TMS valid from TCK low  
ns  
tw(TCKL)  
ns  
tsu(TMS-TCKH)  
tsu(TMS-TCKL)  
th(TCKH-TMS)  
th(TCKL-TMS)  
ns  
3
4
ns  
ns  
2
ns  
Table 5-22. cJTAG Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
MAX  
20  
UNIT  
ns  
2
5
td(TCKL-TMS)  
Delay time, TCK low to TMS valid  
Delay time, TCK high to TMS disable  
6
tdis(TCKH-TMS)  
20  
ns  
1
1a  
1b  
2
3
3
4
4
5
TCK  
TMS Input  
TMS Output  
TMS Input  
TMS  
Figure 5-15. cJTAG Timing  
66  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.6 GPIO Electrical Data and Timing  
The peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. On reset, GPIO  
pins are configured as inputs. For specific inputs, the user can also select the number of input qualification  
cycles to filter unwanted noise glitches.  
The GPIO module contains an Output X-BAR which allows an assortment of internal signals to be routed  
to a GPIO in the GPIO mux positions denoted as OUTPUTXBARx. The GPIO module also contains an  
Input X-BAR which is used to route signals from any GPIO input to different IP blocks such as the ADCs,  
eCAPs, ePWMs, and external interrupts. For more details, see the X-BAR chapter in the TMS320F28002x  
Microcontrollers Technical Reference Manual.  
5.8.6.1 GPIO – Output Timing  
Table 5-23 lists the general-purpose output switching characteristics. Figure 5-16 shows the general-  
purpose output timing.  
Table 5-23. General-Purpose Output Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Rise time, GPIO switching low to high  
MIN  
MAX  
8(1)  
8(1)  
25  
UNIT  
ns  
tr(GPIO)  
tf(GPIO)  
fGPIO  
All GPIOs  
All GPIOs  
Fall time, GPIO switching high to low  
Toggling frequency, all GPIOs  
ns  
MHz  
(1) Rise time and fall time vary with load. These values assume a 40-pF load.  
GPIO  
tr(GPIO)  
tf(GPIO)  
Figure 5-16. General-Purpose Output Timing  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
67  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.6.2 GPIO – Input Timing  
Table 5-24 lists the general-purpose input timing requirements. Figure 5-17 shows the sampling mode.  
Table 5-24. General-Purpose Input Timing Requirements  
MIN  
1tc(SYSCLK)  
MAX  
UNIT  
cycles  
cycles  
cycles  
QUALPRD = 0  
tw(SP)  
Sampling period  
QUALPRD 0  
2tc(SYSCLK) * QUALPRD  
tw(SP) * (n(1) – 1)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
2tc(SYSCLK)  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
tw(SP)  
Sampling Period determined  
by GPxCTRL[QUALPRD](B)  
tw(IQSW)  
(SYSCLK cycle * 2 * QUALPRD) * 5(C)  
Sampling Window  
SYSCLK  
QUALPRD = 1  
(SYSCLK/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It  
can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLK cycle. For any other value "n",  
the qualification sampling period in 2n SYSCLK cycles (that is, at every 2n SYSCLK cycles, the GPIO pin will be  
sampled).  
B. The qualification period selected through the GPxCTRL register applies to groups of eight GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is  
used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLK cycles or  
greater. In other words, the inputs should be stable for (5 × QUALPRD × 2) SYSCLK cycles. This would ensure  
5 sampling periods for detection to occur. Because external signals are driven asynchronously, an 13-SYSCLK-wide  
pulse ensures reliable recognition.  
Figure 5-17. Sampling Mode  
68  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.6.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLK.  
Sampling frequency = SYSCLK/(2 × QUALPRD), if QUALPRD 0  
Sampling frequency = SYSCLK, if QUALPRD = 0  
Sampling period = SYSCLK cycle × 2 × QUALPRD, if QUALPRD 0  
In the previous equations, SYSCLK cycle indicates the time period of SYSCLK.  
Sampling period = SYSCLK cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of  
the signal. This is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using 3 samples  
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 2, if QUALPRD 0  
Sampling window width = (SYSCLK cycle) × 2, if QUALPRD = 0  
Case 2:  
Qualification using 6 samples  
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 5, if QUALPRD 0  
Sampling window width = (SYSCLK cycle) × 5, if QUALPRD = 0  
Figure 5-18 shows the general-purpose input timing.  
SYSCLK  
GPIOxn  
tw(GPI)  
Figure 5-18. General-Purpose Input Timing  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
69  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.7 Interrupts  
The C28x CPU has fourteen peripheral interrupt lines. Two of them (INT13 and INT14) are connected  
directly to CPU timers 1 and 2, respectively. The remaining twelve are connected to peripheral interrupt  
signals through the enhanced Peripheral Interrupt Expansion (ePIE) module. The ePIE multiplexes up to  
sixteen peripheral interrupts into each CPU interrupt line. It also expands the vector table to allow each  
interrupt to have its own ISR. This allows the CPU to support a large number of peripherals.  
An interrupt path is divided into three stages—the peripheral, the ePIE, and the CPU. Each stage has its  
own enable and flag registers. This system allows the CPU to handle one interrupt while others are  
pending, implement and prioritize nested interrupts in software, and disable interrupts during certain  
critical tasks.  
Figure 5-19 shows the interrupt architecture for this device.  
TINT0  
TIMER0  
LPMINT  
WDINT  
LPM Logic  
WD  
WAKEINT  
NMI module  
ERAD  
NMI  
RTOSINT  
CPU  
INPUTXBAR4  
XINT1 Control  
INPUTXBAR5  
INPUTXBAR6  
INPUTXBAR13  
INPUTXBAR14  
XINT2 Control  
XINT3 Control  
XINT4 Control  
XINT5 Control  
GPIO0  
to  
GPIOx  
ePIE  
INT1  
to  
INT12  
Input  
X-BAR  
TIMER1  
TIMER2  
INT13  
INT14  
Peripherals  
See ePIE Table  
Figure 5-19. Device Interrupt Architecture  
70  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.7.1 External Interrupt (XINT) Electrical Data and Timing  
Table 5-25 lists the external interrupt timing requirements. Table 5-26 lists the external interrupt switching  
characteristics. Figure 5-20 shows the external interrupt timing.  
Table 5-25. External Interrupt Timing Requirements(1)  
MIN  
2tc(SYSCLK)  
MAX  
UNIT  
Synchronous  
With qualifier  
tw(INT)  
Pulse duration, INT input low/high  
cycles  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
(1) For an explanation of the input qualifier parameters, see Table 5-24.  
Table 5-26. External Interrupt Switching Characteristics(1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
td(INT) Delay time, INT low/high to interrupt-vector fetch(2)  
tw(IQSW) + 14tc(SYSCLK)  
tw(IQSW) + tw(SP) + 14tc(SYSCLK)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 5-24.  
(2) This assumes that the ISR is in a single-cycle memory.  
tw(INT)  
XINT1, XINT2, XINT3,  
XINT4, XINT5  
td(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 5-20. External Interrupt Timing  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
71  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.8 Low-Power Modes  
This device has HALT, IDLE and STANDBY as clock-gating low-power modes.  
Further details, as well as the entry and exit procedure, for all of the low-power modes can be found in the  
Low Power Modes section of the TMS320F28002x Microcontrollers Technical Reference Manual.  
5.8.8.1 Clock-Gating Low-Power Modes  
IDLE and HALT modes on this device are similar to those on other C28x devices. Table 5-27 describes  
the effect on the system when any of the clock-gating low-power modes are entered.  
Table 5-27. Effect of Clock-Gating Low-Power Modes on the Device  
MODULES/  
CLOCK DOMAIN  
IDLE  
STANDBY  
HALT  
SYSCLK  
Active  
Gated  
Active  
Gated  
Gated  
Gated  
Gated  
Gated  
Gated  
CPUCLK  
Clock to modules  
connected to  
PERx.SYSCLK  
WDCLK  
PLL  
Active  
Active  
Gated if CLKSRCCTL1.WDHALTI = 0  
Software must power down PLL before entering HALT.  
Powered down if CLKSRCCTL1.WDHALTI = 0  
Powered down if CLKSRCCTL1.WDHALTI = 0  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
INTOSC1  
INTOSC2  
Flash(1)  
XTAL(2)  
Powered  
(1) The Flash module is not powered down by hardware in any LPM. It may be powered down using software if required by the application.  
For more information, see the Flash and OTP Memory section of the System Control chapter in the TMS320F28002x Microcontrollers  
Technical Reference Manual.  
(2) The XTAL is not powered down by hardware in any LPM. It may be powered down by software setting the XTALCR.OSCOFF bit to 1.  
This can be done at any time during the application if the XTAL is not required.  
72  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.8.8.2 Low-Power Mode Wake-up Timing  
Table 5-28 lists the IDLE mode timing requirements, Table 5-29 lists the switching characteristics, and  
Figure 5-21 shows the timing diagram for IDLE mode.  
Table 5-28. IDLE Mode Timing Requirements(1)  
MIN  
2tc(SYSCLK)  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
tw(WAKE)  
Pulse duration, external wake-up signal  
cycles  
2tc(SYSCLK) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 5-24.  
Table 5-29. IDLE Mode Switching Characteristics(1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Without input qualifier  
With input qualifier  
MIN  
MAX UNIT  
40tc(SYSCLK) cycles  
From Flash (active state)  
40tc(SYSCLK) + tw(WAKE) cycles  
(3)  
Without input qualifier  
6700tc(SYSCLK)  
cycles  
cycles  
Delay time, external wake signal to  
(3)  
td(WAKE-IDLE)  
From Flash (sleep state)  
From RAM  
program execution resume(2)  
6700tc(SYSCLK)  
+
With input qualifier  
tw(WAKE)  
Without input qualifier  
With input qualifier  
25tc(SYSCLK) cycles  
25tc(SYSCLK) + tw(WAKE) cycles  
(1) For an explanation of the input qualifier parameters, see Table 5-24.  
(2) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
(3) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and FPAC1[PSLEEP] is 0x860.  
td(WAKE-IDLE)  
Address/Data  
(internal)  
XCLKOUT  
tw(WAKE)  
WAKE(A)  
A. WAKE can be any enabled interrupt, WDINT or XRSn. After the IDLE instruction is executed, a delay of five OSCCLK  
cycles (minimum) is needed before the wake-up signal could be asserted.  
Figure 5-21. IDLE Entry and Exit Timing Diagram  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
73  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 5-30 lists the STANDBY mode timing requirements, Table 5-31 lists the switching characteristics,  
and Figure 5-22 shows the timing diagram for STANDBY mode.  
Table 5-30. STANDBY Mode Timing Requirements  
MIN  
MAX  
UNIT  
QUALSTDBY = 0 | 2tc(OSCCLK)  
QUALSTDBY > 0 |  
(2 + QUALSTDBY)tc(OSCCLK)  
3tc(OSCCLK)  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
cycles  
(2 + QUALSTDBY) * tc(OSCCLK)  
(1)  
(1) QUALSTDBY is a 6-bit field in the LPMCR register.  
Table 5-31. STANDBY Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Delay time, IDLE instruction executed to  
XCLKOUT stop  
td(IDLE-XCOS)  
16tc(INTOSC1) cycles  
Wakeup from flash  
(Flash module in  
active state)  
td(WAKE-  
STBY)  
175tc(SYSCLK) + tw(WAKE-INT) cycles  
Delay time, external wake signal to program Wakeup from flash  
td(WAKE-  
STBY)  
execution resume(1)  
(Flash module in  
sleep state)  
6700tc(SYSCLK)(2) + tw(WAKE-INT) cycles  
td(WAKE-  
STBY)  
Wakeup from RAM  
3tc(OSC) + 15tc(SYSCLK) + tw(WAKE-INT) cycles  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
(2) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and FPAC1[PSLEEP] is 0x860.  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
(G)  
Device  
Status  
STANDBY  
STANDBY  
Normal Execution  
Flushing Pipeline  
Wake-up  
Signal  
tw(WAKE-INT)  
td(WAKE-STBY)  
OSCCLK  
XCLKOUT  
td(IDLE-XCOS)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The LPM block responds to the STANDBY signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before  
being turned off. This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in  
STANDBY mode. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before  
the wake-up signal could be asserted.  
D. The external wake-up signal is driven active.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement.  
Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wakeup behavior of the  
device will not be deterministic and the device may not exit low-power mode for subsequent wakeup pulses.  
F. After a latency period, the STANDBY mode is exited.  
G. Normal execution resumes. The device will respond to the interrupt (if enabled).  
Figure 5-22. STANDBY Entry and Exit Timing Diagram  
74  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 5-32 lists the HALT mode timing requirements, Table 5-33 lists the switching characteristics, and  
Figure 5-23 shows the timing diagram for HALT mode.  
Table 5-32. HALT Mode Timing Requirements  
MIN  
toscst + 2tc(OSCCLK)  
toscst + 8tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal(1)  
Pulse duration, XRS wake-up signal(1)  
(1) For applications using X1/X2 for OSCCLK, the user must characterize their specific oscillator start-up time as it is dependent on  
circuit/layout external to the device. See Table 5-15 for more information. For applications using INTOSC1 or INTOSC2 for OSCCLK,  
see Section 5.8.3.5 for toscst. Oscillator start-up time does not apply to applications using a single-ended crystal on the X1 pin, as it is  
powered externally to the device.  
Table 5-33. HALT Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
Delay time, IDLE instruction executed to XCLKOUT  
stop  
td(IDLE-XCOS)  
16tc(INTOSC1)  
cycles  
Delay time, external wake signal end to CPU1  
program execution resume  
Wakeup from Flash - Flash module in active state  
Wakeup from Flash - Flash module in sleep state  
Wakeup from RAM  
75tc(OSCCLK)  
td(WAKE-HALT)  
cycles  
(1)  
17500tc(OSCCLK)  
75tc(OSCCLK)  
(1) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and FPAC1[PSLEEP] is 0x860.  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
HALT  
(G)  
Device  
Status  
HALT  
Flushing Pipeline  
Normal  
Execution  
GPIOn  
td(WAKE-HALT)  
tw(WAKE-GPIO)  
OSCCLK  
Oscillator Start-up Time  
XCLKOUT  
td(IDLE-XCOS)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The LPM block responds to the HALT signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being  
turned off. This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as  
the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes very  
little power. It is possible to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in  
HALT MODE. This is done by writing 1 to CLKSRCCTL1.WDHALTI. After the IDLE instruction is executed, a delay of  
five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.  
D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator  
wake-up sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This  
enables the provision of a clean clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin  
asynchronously begins the wake-up procedure, care should be taken to maintain a low noise environment before  
entering and during HALT mode.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement.  
Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the  
device will not be deterministic and the device may not exit low-power mode for subsequent wake-up pulses.  
F. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after some latency. The  
HALT mode is now exited.  
G. Normal operation resumes.  
H. The user must relock the PLL upon HALT wakeup to ensure a stable PLL lock.  
Figure 5-23. HALT Entry and Exit Timing Diagram  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
75  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.9 Analog Peripherals  
The analog subsystem module is described in this section.  
The analog modules on this device include the ADC, temperature sensor, and CMPSS.  
The analog subsystem has the following features:  
Flexible voltage references  
The ADCs are referenced to VREFHI and VSSA pins  
VREFHI pin voltage can be driven in externally or can be generated by an internal bandgap  
voltage reference  
The internal voltage reference range can be selected to be 0V to 3.3V or 0V to 2.5V  
The comparator DACs are referenced to VDDA and VSSA  
Alternately, these DACs can be referenced to the VDAC pin and VSSA  
Flexible pin usage  
Comparator subsystem inputs and digital inputs are multiplexed with ADC inputs  
Internal connection to VREFLO on all ADCs for offset self-calibration  
Figure 5-24 shows the Analog Subsystem Block Diagram for the 80-pin PN and 64-pin PM LQFPs.  
Figure 5-25 shows the Analog Subsystem Block Diagram for the 48-pin PT LQFP.  
Table 5-34 lists the analog pins and internal connections. Table 5-35 lists descriptions of analog signals.  
Figure 5-24. Analog Subsystem Block Diagram (80-Pin PN and 64-Pin PM LQFPs)  
76  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Figure 5-25. Analog Subsystem Block Diagram (48-Pin PT LQFP)  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
77  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
AIO Input  
Table 5-34. Analog Pins and Internal Connections  
Package Pin  
ADC  
Comparator Subsystem (MUX)  
Pin Name  
VREFHI  
High  
Positive  
High  
Low  
Low  
Negative  
80 QFP 64 QFP 48 QFN  
A
C
Negative  
Positive  
20  
21  
16  
17  
12  
13  
VREFLO  
Analog Group 1  
A6  
A13  
C13  
CMP1  
10  
13  
14  
16  
18  
6
4(1)  
6
A6  
A2  
-
CMP1 (HPMXSEL=2)  
CMP1 (HPMXSEL=0)  
CMP1 (HPMXSEL=3)  
CMP1 (HPMXSEL=1)  
CMP1 (HPMXSEL=4)  
CMP1 (LPMXSEL=2)  
CMP1 (LPMXSEL=0)  
CMP1 (LPMXSEL=3)  
CMP1 (LPMXSEL=1)  
CMP1 (LPMXSEL=4)  
CMP2  
AIO228  
AIO224  
AIO233  
AIO237  
AIO232  
A2/C9  
9
C9  
C7  
C0  
-
A15/C7  
10  
12  
14  
7
A15  
A11  
A1  
CMP1 (HNMXSEL=0)  
CMP1 (HNMXSEL=1)  
CMP1 (LNMXSEL=0)  
CMP1 (LNMXSEL=1)  
A11/C0  
8
A1  
10  
Analog Group 2  
A10/C10  
Analog Group 3  
C6  
29  
25  
21  
A10  
C10  
CMP2 (HPMXSEL=3)  
CMP2 (HNMXSEL=0)  
CMP2 (LPMXSEL=3)  
CMP3  
CMP2 (LNMXSEL=0)  
AIO230  
11  
12  
15  
17  
19  
7
4(1)  
5
-
C6  
C5  
CMP3 (HPMXSEL=0)  
CMP3 (HPMXSEL=3)  
CMP3 (HPMXSEL=4)  
CMP3 (HPMXSEL=1)  
CMP3 (HPMXSEL=2)  
CMP3 (LPMXSEL=0)  
CMP3 (LPMXSEL=3)  
CMP3 (LPMXSEL=4)  
CMP3 (LPMXSEL=1)  
CMP3 (LPMXSEL=2)  
CMP4  
AIO226  
AIO242  
AIO239  
AIO244  
AIO231  
A3/C5/VDAC(2)  
8
A3  
A14  
A5  
A0  
CMP3 (HNMXSEL=0)  
CMP3 (HNMXSEL=1)  
CMP3 (LNMXSEL=0)  
CMP3 (LNMXSEL=1)  
A14/C4  
11  
13  
15  
-
C4  
A5/C2  
9
C2  
A0/C15  
11  
C15  
Analog Group 4  
A7/C3  
23  
19  
15  
A7  
C3  
CMP4 (HPMXSEL=1)  
CMP4 (HNMXSEL=1)  
CMP2 (HNMXSEL=1)  
CMP4 (LPMXSEL=1)  
CMP2/4  
CMP4 (LNMXSEL=1)  
CMP2 (LNMXSEL=1)  
AIO245  
Combined Analog Group 2/4  
CMP2 (HPMXSEL=1)  
CMP4 (HPMXSEL=2)  
CMP2 (LPMXSEL=1)  
CMP4 (LPMXSEL=2)  
A12/C1  
A8/C11  
A4/C14  
A9/C8  
22  
24  
27  
28  
18  
20  
23  
24  
14  
16  
19  
20  
A12  
A8  
C1  
C11  
C14  
C8  
AIO238  
AIO241  
AIO225  
AIO227  
CMP2 (HPMXSEL=4)  
CMP4 (HPMXSEL=4)  
CMP2 (LPMXSEL=4)  
CMP4 (LPMXSEL=4)  
CMP2 (HPMXSEL=0)  
CMP4 (HPMXSEL=3)  
CMP2 (LPMXSEL=0)  
CMP4 (LPMXSEL=3)  
A4  
CMP4 (HNMXSEL=0)  
CMP4 (LNMXSEL=0)  
CMP2 (HPMXSEL=2)  
CMP4 (HPMXSEL=0)  
CMP2 (LPMXSEL=2)  
CMP4 (LPMXSEL=0)  
A9  
Other Analog  
TempSensor(3)  
-
-
-
-
C12  
(1) A6 and C6 is double bonded as pin # 4.  
(2) Optional external reference voltage for on-chip COMPDACs. There is an internal capacitance to VSSA on this pin whether used for ADC input or COMPDAC reference. If used as a VDAC  
reference, place at least a 1-µF capacitor on this pin.  
(3) Internal connection only; does not come to a device pin.  
78  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 5-35. Analog Signal Descriptions  
SIGNAL NAME  
DESCRIPTION  
AIOx  
Digital input on ADC pin  
Ax  
ADC A Input  
Cx  
ADC C Input  
CMPx_HNy  
CMPx_HPy  
CMPx_LNy  
CMPx_LPy  
TempSensor  
Comparator subsystem high comparator negative input  
Comparator subsystem high comparator positive input  
Comparator subsystem low comparator negative input  
Comparator subsystem low comparator positive input  
Internal temperature sensor  
Optional external reference voltage for on-chip COMPDACs. There is an internal capacitance to VSSA on this  
pin whether used for ADC input or COMPDAC reference which cannot be disabled. If this pin is being used as  
a reference for the on-chip COMPDACs, place at least a 1-uF capacitor on this pin.  
VDAC  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
79  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.9.1 Analog-to-Digital Converter (ADC)  
The ADC module described here is a successive approximation (SAR) style ADC with resolution of  
12 bits. This section refers to the analog circuits of the converter as the “core,” and includes the channel-  
select MUX, the sample-and-hold (S/H) circuit, the successive approximation circuits, voltage reference  
circuits, and other analog support circuits. The digital circuits of the converter are referred to as the  
“wrapper” and include logic for programmable conversions, result registers, interfaces to analog circuits,  
interfaces to the peripheral buses, post-processing circuits, and interfaces to other on-chip modules.  
Each ADC module consists of a single sample-and-hold (S/H) circuit. The ADC module is designed to be  
duplicated multiple times on the same chip, allowing simultaneous sampling or independent operation of  
multiple ADCs. The ADC wrapper is start-of-conversion (SOC)-based (see the SOC Principle of Operation  
section of the Analog-to-Digital Converter (ADC) chapter in the TMS320F28002x Microcontrollers  
Technical Reference Manual).  
Each ADC has the following features:  
Resolution of 12 bits  
Ratiometric external reference set by VREFHI/VREFLO  
Selectable internal reference of 2.5 V or 3.3 V  
Single-ended signaling  
Input multiplexer with up to 16 channels  
16 configurable SOCs  
16 individually addressable result registers  
Multiple trigger sources  
S/W: software immediate start  
All ePWMs: ADCSOC A or B  
GPIO XINT2  
CPU Timers 0/1/2  
ADCINT1/2  
Four flexible PIE interrupts  
Burst-mode triggering option  
Four post-processing blocks, each with:  
Saturating offset calibration  
Error from setpoint calculation  
High, low, and zero-crossing compare, with interrupt and ePWM trip capability  
Trigger-to-sample delay capture  
NOTE  
Not every channel may be pinned out from all ADCs. See to determine which channels are  
available.  
80  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
The block diagram for the ADC core and ADC wrapper are shown in Figure 5-26.  
Analog-to-Digital Core  
Analog-to-Digital Wrapper Logic  
Input Circuit  
SOCx (0-15)  
CHSEL  
[15:0]  
[15:0]  
[15:0]  
SOC Arbitration  
& Control  
ACQPS  
CHSEL  
ADCIN0  
ADCIN1  
ADCIN2  
ADCIN3  
ADCIN4  
ADCIN5  
ADCIN6  
ADCIN7  
ADCIN8  
ADCIN9  
ADCIN10  
ADCIN11  
ADCIN12  
ADCIN13  
ADCIN14  
ADCIN15  
0
1
ADCSOC  
2
3
4
5
ADCCOUNTER  
TRIGGER[15:0]  
6
VIN  
+
DOUT  
7
8
VIN-  
9
10  
11  
12  
13  
14  
15  
SOC Delay  
Timestamp  
Trigger  
Timestamp  
Converter  
S/H Circuit  
RESULT  
-
+
ADCPPBxOFFCAL  
saturate  
+
ADCPPBxOFFREF  
-
ADCPPBxRESULT  
ADCEVT  
VREFHI  
Event  
Logic  
CONFIG  
ADCEVTINT  
Bandgap  
Reference Circuit  
1.65-V Output  
(3.3-V Range)  
or  
1
Post Processing Block (1-4)  
Interrupt Block (1-4)  
0
2.5-V Output  
(2.5-V Range)  
ADCINT1-4  
VREFLO  
Analog System Control  
ANAREFSEL  
ANAREFx2PSSEL  
Reference Voltage Levels  
Figure 5-26. ADC Module Block Diagram  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
81  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.9.1.1 ADC Configurability  
Some ADC configurations are individually controlled by the SOCs, while others are globally controlled per  
ADC module. Table 5-36 summarizes the basic ADC options and their level of configurability.  
Table 5-36. ADC Options and Configuration Levels  
OPTIONS  
CONFIGURABILITY  
Clock  
Per module(1)  
Resolution  
Signal mode  
Not configurable (12-bit resolution only)  
Not configurable (single-ended signal mode only)  
Reference voltage source  
Trigger source  
Common for both ADC modules  
Per SOC(1)  
Converted channel  
Acquisition window duration  
EOC location  
Per SOC  
Per SOC(1)  
Per module  
Burst mode  
Per module(1)  
(1) Writing these values differently to different ADC modules could cause the ADCs to operate  
asynchronously. For guidance on when the ADCs are operating synchronously or asynchronously, see  
the Ensuring Synchronous Operation section of the Analog-to-Digital Converter (ADC) chapter in the  
TMS320F28002x Microcontrollers Technical Reference Manual.  
5.9.1.1.1 Signal Mode  
The ADC supports single-ended signaling. The input voltage to the converter is sampled through a single  
pin (ADCINx), referenced to VREFLO. Figure 5-27 shows the single-ended signaling mode.  
Pin Voltage  
VREFHI  
VREFHI  
ADCINx  
ADCINx  
ADC  
VREFHI/2  
VREFLO  
VREFLO  
(VSSA)  
Digital Output  
2n - 1  
ADC Vin  
0
Figure 5-27. Single-ended Signaling Mode  
82  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.9.1.2 ADC Electrical Data and Timing  
Table 5-37 lists the ADC operating conditions. Table 5-38 lists the ADC electrical characteristics.  
Table 5-37. ADC Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
ADCCLK (derived from PERx.SYSCLK)  
Sample rate  
TEST CONDITIONS  
MIN  
TYP  
MAX  
50  
UNIT  
MHz  
5
100-MHz SYSCLK  
3.45  
MSPS  
Sample window duration (set by ACQPS and  
PERx.SYSCLK)(1)  
With 50 Ω or less Rs  
75  
ns  
VREFHI  
External Reference  
2.4 2.5 or 3.0  
VDDA  
V
V
V
V
V
V
V
V
Internal Reference = 3.3V Range  
Internal Reference = 2.5V Range  
1.65  
2.5  
VREFHI(2)  
VREFLO  
VSSA  
VSSA  
VDDA  
3.3  
VREFHI - VREFLO  
2.4  
Internal Reference = 3.3 V Range  
Internal Reference = 2.5 V Range  
External Reference  
0
0
Conversion range  
2.5  
VREFLO  
VREFHI  
(1) The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation.  
(2) In internal reference mode, the reference voltage is driven out of the VREFHI pin by the device. The user should not drive a voltage into  
the pin in this mode.  
NOTE  
The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input  
exceeds this level, the VREF internal to the device may be disturbed, which can impact results  
for other ADC inputs using the same VREF  
.
NOTE  
The VREFHI pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If  
the VREFHI pin exceeds this level, a blocking circuit may activate, and the internal value of  
VREFHI may float to 0 V internally, giving improper ADC conversion.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
83  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 5-38. ADC Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
General  
ADCCLK Conversion Cycles  
100-MHz SYSCLK  
10.1  
11 ADCCLKs  
External Reference mode  
Internal Reference mode  
500  
µs  
µs  
5000  
Power Up Time  
Internal Reference mode, when switching between  
2.5-V range and 3.3-V range.  
5000  
µs  
µA  
µF  
VREFHI input current(1)  
130  
Internal Reference Capacitor  
Value(2)  
2.2  
2.2  
External Reference Capacitor  
Value(2)  
µF  
DC Characteristics  
Internal reference  
External reference  
–45  
–5  
45  
5
Gain Error  
LSB  
±3  
±2  
2
Offset Error  
Channel-to-Channel Gain Error(3)  
–5  
5
LSB  
LSB  
Channel-to-Channel Offset  
Error(3)  
2
LSB  
ADC-to-ADC Gain Error(4)  
ADC-to-ADC Offset Error(4)  
DNL Error  
Identical VREFHI and VREFLO for all ADCs  
Identical VREFHI and VREFLO for all ADCs  
4
2
LSB  
LSB  
LSB  
LSB  
LSBs  
>–1  
–2  
±0.5  
±1.0  
1
2
1
INL Error  
ADC-to-ADC Isolation  
AC Characteristics  
VREFHI = 2.5 V, synchronous ADCs  
–1  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1  
68.8  
60.1  
SNR(5)  
dB  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
INTOSC  
THD(5)  
SFDR(5)  
VREFHI = 2.5 V, fin = 100 kHz  
–80.6  
79.2  
68.5  
dB  
dB  
VREFHI = 2.5 V, fin = 100 kHz  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1  
SINAD(5)  
dB  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
INTOSC  
60.0  
11.0  
11.0  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
X1, Single ADC  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
X1, synchronous ADCs  
ENOB(5)  
bits  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
X1, asynchronous ADCs  
Not  
Supported  
VDD = 1.2-V DC + 100mV  
DC up to Sine at 1 kHz  
60  
57  
60  
57  
VDD = 1.2-V DC + 100 mV  
DC up to Sine at 300 kHz  
PSRR  
dB  
VDDA = 3.3-V DC + 200 mV  
DC up to Sine at 1 kHz  
VDDA = 3.3-V DC + 200 mV  
Sine at 900 kHz  
(1) Load current on VREFHI increases when ADC input is greater than VDDA. This causes inaccurate conversions.  
(2) A ceramic capacitor with package size of 0805 or smaller is preferred. Up to ±20% tolerance is acceptable.  
(3) Variation across all channels belonging to the same ADC module.  
(4) Worst case variation compared to other ADC modules.  
(5) IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and  
crosstalk.  
84  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.9.1.2.1 ADC Input Model  
The ADC input characteristics are given by Table 5-39 and Figure 5-28.  
Table 5-39. Input Model Parameters  
DESCRIPTION  
REFERENCE MODE  
VALUE  
Cp  
Parasitic input capacitance  
All  
See Table 5-40  
External Reference, 2.5-V Internal  
Reference  
500 Ω  
860 Ω  
Ron  
Sampling switch resistance  
3.3-V Internal Reference  
External Reference, 2.5-V Internal  
Reference  
12.5 pF  
Ch  
Rs  
Sampling capacitor  
3.3-V Internal Reference  
All  
7.5 pF  
Nominal source impedance  
50 Ω  
ADC  
ADCINx  
Rs  
Switch  
Ron  
AC  
Cp  
Ch  
VREFLO  
Figure 5-28. Input Model  
This input model should be used with actual signal source impedance to determine the acquisition window  
duration. For more information, see the Choosing an Acquisition Window Duration section of the Analog-  
to-Digital Converter (ADC) chapter in the TMS320F28002x Microcontrollers Technical Reference Manual.  
Table 5-40 lists the parasitic capacitance on each channel.  
Table 5-40. Per-Channel Parasitic Capacitance  
Cp (pF)  
ADC CHANNEL  
COMPARATOR DISABLED  
COMPARATOR ENABLED  
ADCINA0/ADCINC15  
ADCINA1  
3.3  
2.4  
2.9  
71.4  
4.5  
2.7  
2.6  
4.2  
4.5  
3.4  
2.9  
2.9  
4.7  
2.5  
3.3  
2.9  
15.8  
4.9  
5.4  
73.9  
7
ADCINA2/ADCINC9  
ADCINA3/ADCINC5(1)  
ADCINA4/ADCINC14  
ADCINA5/ADCINC2  
ADCINA6  
5.2  
5.1  
6.7  
7
ADCINA7/ADCINC3  
ADCINA8/ADCINC11  
ADCINA9/ADCINC8  
ADCINA10/ADCINC10  
ADCINA11/ADCINC0  
ADCINA12/ADCINC1  
ADCINA14/ADCINC4  
ADCINA15/ADCINC7  
ADCINC6  
5.9  
5.4  
5.4  
7.2  
5
5.8  
5.4  
(1) Pin also used to supply reference voltage for COMPDAC and includes an internal decoupling  
capacitor.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
85  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.9.1.2.2 ADC Timing Diagrams  
Figure 5-29 shows the ADC conversion timings for two SOCs given the following assumptions:  
SOC0 and SOC1 are configured to use the same trigger.  
No other SOCs are converting or pending when the trigger occurs.  
The round-robin pointer is in a state that causes SOC0 to convert first.  
ADCINTSEL is configured to set an ADCINT flag upon end of conversion for SOC0 (whether this flag  
propagates through to the CPU to cause an interrupt is determined by the configurations in the PIE  
module).  
Table 5-41 lists the descriptions of the ADC timing parameters. Table 5-42 lists the ADC timings.  
Sample n  
Input on SOC0.CHSEL  
Input on SOC1.CHSEL  
Sample n+1  
ADC S+H  
SOC0  
SOC1  
SYSCLK  
ADCCLK  
ADCTRIG  
ADCSOCFLG.SOC0  
ADCSOCFLG.SOC1  
ADCRESULT0  
Sample n  
(old data)  
(old data)  
ADCRESULT1  
Sample n+1  
ADCINTFLG.ADCINTx  
tSH  
tLAT  
tEOC  
tINT  
Figure 5-29. ADC Timings  
86  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 5-41. ADC Timing Parameters  
PARAMETER  
DESCRIPTION  
The duration of the S+H window.  
At the end of this window, the value on the S+H capacitor becomes the voltage to be converted into a digital  
value. The duration is given by (ACQPS + 1) SYSCLK cycles. ACQPS can be configured individually for each  
SOC, so tSH will not necessarily be the same for different SOCs.  
tSH  
Note: The value on the S+H capacitor will be captured approximately 5 ns before the end of the S+H window  
regardless of device clock settings.  
The time from the end of the S+H window until the ADC results latch in the ADCRESULTx register.  
tLAT  
If the ADCRESULTx register is read before this time, the previous conversion results will be returned.  
The time from the end of the S+H window until the S+H window for the next ADC conversion can begin. The  
subsequent sample can start before the conversion results are latched.  
tEOC  
The time from the end of the S+H window until an ADCINT flag is set (if configured).  
If the INTPULSEPOS bit in the ADCCTL1 register is set, tINT will coincide with the conversion results being  
latched into the result register.  
If the INTPULSEPOS bit is 0, tINT will coincide with the end of the S+H window. If tINT triggers a read of the  
ADC result register (directly through DMA or indirectly by triggering an ISR that reads the result), care must be  
taken to ensure the read occurs after the results latch (otherwise, the previous results will be read).  
tINT  
If the INTPULSEPOS bit is 0, and the OFFSET field in the ADCINTCYCLE register is not 0, then there will be a  
delay of OFFSET SYSCLK cycles before the ADCINT flag is set. This delay can be used to enter the ISR or  
trigger the DMA at exactly the time the sample is ready.  
Table 5-42. ADC Timings  
ADCCLK PRESCALE  
SYSCLK CYCLES  
ADCCLK CYCLES  
RATIO  
ADCCLK:SYSCLK  
(1)  
(2)  
ADCCTL2 [PRESCALE]  
tEOC  
tLAT  
tINT(EARLY)  
tINT(LATE)  
tEOC  
0
2
1
2
3
4
5
6
7
8
11  
21  
31  
41  
51  
61  
71  
81  
13  
23  
34  
44  
55  
65  
76  
86  
1
1
1
1
1
1
1
1
11  
21  
31  
41  
51  
61  
71  
81  
11  
10.5  
10.3  
10.3  
10.2  
10.2  
10.1  
10.1  
4
6
8
10  
12  
14  
(1) Refer to the "ADC: DMA Read of Stale Result" advisory in the TMS320F28002x MCUs Silicon Errata.  
(2) By default, tINT occurs one SYSCLK cycle after the S+H window if INTPULSEPOS is 0. This can be changed by writing to the OFFSET  
field in the ADCINTCYCLE register.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
87  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.9.2 Temperature Sensor  
5.9.2.1 Temperature Sensor Electrical Data and Timing  
The temperature sensor can be used to measure the device junction temperature. The temperature  
sensor is sampled through an internal connection to the ADC and translated into a temperature through  
TI-provided software. When sampling the temperature sensor, the ADC must meet the acquisition time in  
Table 5-43.  
Table 5-43. Temperature Sensor Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
External reference  
MIN  
TYP  
MAX  
UNIT  
Tacc  
tstartup  
tacq  
Temperature Accuracy  
±15  
°C  
Start-up time  
(TSNSCTL[ENABLE] to  
sampling temperature  
sensor)  
500  
µs  
ns  
ADC acquisition time  
450  
88  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.9.3 Comparator Subsystem (CMPSS)  
Each CMPSS contains two comparators, two reference 12-bit DACs, two digital filters, and one ramp  
generator. Comparators are denoted "H" or "L" within each module, where “H” and “L” represent high and  
low, respectively. Each comparator generates a digital output that indicates whether the voltage on the  
positive input is greater than the voltage on the negative input. The positive input of the comparator can  
be driven from an external pin or by the PGA. The negative input can be driven by an external pin or by  
the programmable reference 12-bit DAC. Each comparator output passes through a programmable digital  
filter that can remove spurious trip signals. An unfiltered output is also available if filtering is not required.  
A ramp generator circuit is optionally available to control the reference 12-bit DAC value for the high  
comparator in the subsystem. There are two outputs from each CMPSS module. These two outputs pass  
through the digital filters and crossbar before connecting to the ePWM modules or GPIO pin. Figure 5-30  
shows the CMPSS connectivity.  
Comparator Subsystem1  
CTRIP1H  
CTRIP1L  
CTRIP2H  
CTRIP2L  
CMP1_HP  
CMP1_HN  
CTRIP1H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT1H  
DAC12  
DAC12  
Digital  
Filter  
CTRIP1L  
CMP1_LN  
CMP1_LP  
CTRIPOUT1L  
ePWM X- BAR  
ePWMs  
Comparator Subsystem2  
CMP2_HP  
CMP2_HN  
CTRIP2H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT2H  
DAC12  
DAC12  
CTRIP4H  
CTRIP4L  
Digital  
Filter  
CTRIP2L  
CMP2_LN  
CMP2_LP  
CTRIPOUT2L  
CTRIPOUT1H  
CTRIPOUT1L  
CTRIPOUT2H  
CTRIPOUT2L  
Comparator Subsystem4  
CMP4_HP  
CMP4_HN  
CTRIP4H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT4H  
Output X- BAR  
GPIO Mux  
DAC12  
DAC12  
Digital  
Filter  
CTRIP4L  
CMP4_LN  
CMP4_LP  
CTRIPOUT4L  
CTRIPOUT4H  
CTRIPOUT4L  
Figure 5-30. CMPSS Connectivity  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
89  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.9.3.1 CMPSS Electrical Data and Timing  
Table 5-44 lists the comparator electrical characteristics. Figure 5-31 shows the CMPSS comparator input  
referred offset. Figure 5-32 shows the CMPSS comparator hysteresis.  
Table 5-44. Comparator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
500  
UNIT  
µs  
TPU  
Power-up time  
Comparator input (CMPINxx) range  
Input referred offset error  
0
VDDA  
V
Low common mode, inverting  
input set to 50mV  
–20  
20  
mV  
1x  
12  
24  
36  
48  
21  
26  
30  
46  
2x  
Hysteresis(1)  
LSB  
3x  
4x  
Step response  
60  
ns  
Response time (delay from CMPINx input change  
to output on ePWM X-BAR or Output X-BAR)  
Ramp response (1.65V/µs)  
Ramp response (8.25mV/µs)  
Up to 250 kHz  
ns  
dB  
dB  
PSRR  
CMRR  
Power Supply Rejection Ratio  
Common Mode Rejection Ratio  
40  
(1) The CMPSS DAC is used as the reference to determine how much hysteresis to apply. Therefore, hysteresis will scale with the CMPSS  
DAC reference voltage. Hysteresis is available for all comparator input source configurations.  
NOTE  
The CMPSS inputs must be kept below VDDA + 0.3 V to ensure proper functional operation.  
If a CMPSS input exceeds this level, an internal blocking circuit isolates the internal  
comparator from the external pin until the external pin voltage returns below VDDA + 0.3 V.  
During this time, the internal comparator input is floating and can decay below VDDA within  
approximately 0.5 µs. After this time, the comparator could begin to output an incorrect result  
depending on the value of the other comparator input.  
Input Referred Offset  
CTRIPx  
Logic Level  
CTRIPx = 1  
CTRIPx = 0  
COMPINxP  
Voltage  
0
CMPINxN or  
DACxVAL  
Figure 5-31. CMPSS Comparator Input Referred Offset  
90  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Hysteresis  
CTRIPx  
Logic Level  
CTRIPx = 1  
CTRIPx = 0  
COMPINxP  
Voltage  
0
CMPINxN or  
DACxVAL  
Figure 5-32. CMPSS Comparator Hysteresis  
Table 5-45 lists the CMPSS DAC static electrical characteristics.  
Table 5-45. CMPSS DAC Static Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0
TYP  
MAX  
UNIT  
Internal reference  
VDDA  
VDAC(1)  
CMPSS DAC output range  
V
External reference  
0
Static offset error(2)  
Static gain error(2)  
Static DNL  
–25  
–2  
25  
2
mV  
% of FSR  
LSB  
Endpoint corrected  
>–1  
–16  
4
Static INL  
Endpoint corrected  
16  
1
LSB  
Settling time  
Resolution  
Settling to 1LSB after full-scale output change  
µs  
12  
bits  
Error induced by comparator trip or CMPSS  
DAC code change within the same CMPSS  
module  
CMPSS DAC output disturbance(3)  
–100  
100  
LSB  
CMPSS DAC disturbance time(3)  
VDAC reference voltage  
VDAC load(4)  
200  
VDDA  
10  
ns  
V
When VDAC is reference  
When VDAC is reference  
2.4  
6
2.5 or 3.0  
8
kΩ  
(1) The maximum output voltage is VDDA when VDAC > VDDA.  
(2) Includes comparator input referred errors.  
(3) Disturbance error may be present on the CMPSS DAC output for a certain amount of time after a comparator trip.  
(4) Per active CMPSS module.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
91  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.9.3.1.1 CMPSS Illustrative Graphs  
Figure 5-33 shows the CMPSS DAC static offset. Figure 5-34 shows the CMPSS DAC static gain.  
Figure 5-35 shows the CMPSS DAC static linearity.  
Offset Error  
Figure 5-33. CMPSS DAC Static Offset  
Ideal Gain  
Actual Gain  
Figure 5-34. CMPSS DAC Static Gain  
92  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Linearity Error  
Figure 5-35. CMPSS DAC Static Linearity  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
93  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.10 Control Peripherals  
5.10.1 Enhanced Pulse Width Modulator (ePWM)  
The ePWM peripheral is a key element in controlling many of the power electronic systems found in both  
commercial and industrial equipment. The ePWM type-4 module is able to generate complex pulse width  
waveforms with minimal CPU overhead by building the peripheral up from smaller modules with separate  
resources that can operate together to form a system. Some of the highlights of the ePWM type-4 module  
include complex waveform generation, dead-band generation, a flexible synchronization scheme,  
advanced trip-zone functionality, and global register reload capabilities.  
Figure 5-36 shows the ePWM module. Figure 5-37 shows the ePWM trip input connectivity.  
94  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Time-Base (TB)  
TBPRD Shadow (24)  
ePWM  
SYNC  
Scheme  
EXTSYNCIN  
EXTSYNCOUT  
TBPRDHR (8)  
TBPRD Active (24)  
CTR=PRD  
EPWMxSYNCI  
TBCTL[PHSEN]  
TBCTL[SWFSYNC]  
DCAEVT1/sync(A)  
DCBEVT1/sync(A)  
Counter  
Up/Down  
(16 bit)  
CTR=ZERO  
CTR_Dir  
TBCTR  
Active (16)  
CTR=PRD  
EPWMx_INT  
CTR=ZERO  
TBPHSHR (8)  
EPWMxSOCA  
EPWMxSOCB  
CTR=PRD or ZERO  
CTR=CMPA  
16  
8
On-chip  
ADC  
Event  
Trigger  
And  
Interrupt  
(ET)  
Phase  
Control  
TBPHS Active (24)  
CTR=CMPB  
CTR=CMPC  
CTR=CMPD  
CTR_Dir  
DCAEVT1.soc(A)  
DCBEVT1.soc(A)  
ADCSOCOUTSELECT  
Counter Compare (CC)  
Action  
Qualifier  
(AQ)  
CTR=CMPA  
CMPAHR (8)  
Select and pulse stretch  
for external ADC  
16  
HiRes PWM (HRPWM)  
CMPAHR (8)  
EPWMA  
ADCSOCAO  
ADCSOCBO  
CMPA Active (24)  
CMPA Shadow (24)  
ePWMxA  
Trip  
Zone  
(TZ)  
Dead  
Band  
(DB)  
PWM  
Chopper  
(DB)  
CTR=CMPA  
CMPAHR (8)  
16  
CMPC Active (16)  
EPWMB  
ePWMxB  
CMPC Shadow (16)  
CMPBHR (8)  
CTR=CMPC  
EPWMx_TZ_INT  
TZ1 to TZ3  
TBCNT (16)  
CMPC[15-0]  
CTR=ZERO  
DCAEVT1.inter  
DCBEVT1.inter  
DCAEVT2.inter  
EMUSTOP  
16  
CLOCKFAIL  
CMPC Active (16)  
EQEPxERR  
DCBEVT2.inter  
DCAEVT1.force(A)  
DCBEVT1.force(A)  
DCAEVT2.force(A)  
CMPC Shadow (16)  
TBCNT (16)  
CTR=CMPC  
DCBEVT2.force(A)  
CMPD[15-0]  
16  
CMPC Active (16)  
CMPC Shadow (16)  
A. These events are generated by the ePWM digital compare (DC) submodule based on the levels of the TRIPIN inputs.  
Figure 5-36. ePWM Submodules and Critical Internal Signal Interconnects  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
95  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
GPIO0  
Async/  
Sync/  
Input X-Bar  
Sync+Filter  
GPIOx  
Other Sources  
INPUT[1:16]  
16:127  
0:15  
eCAPx  
XINT1  
XINT2  
XINT3  
XINT4  
XINT5  
ADC  
Wrapper(s)  
PIE  
ePWM  
eCAP  
Sync Mux  
EXTSYNCIN1  
EXTSYNCIN2  
TZ1  
TZ2  
TZ3  
EPWMINT  
TZINT  
TRIP1  
TRIP2  
TRIP3  
TRIP6  
EPWMx.EPWMCLK  
PCLKCR2[EPWMx]  
TBCLKSYNC  
PCLKCR0[TBCLKSYNC]  
TRIP4  
TRIP5  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
INPUT[1:14]  
CMPSSx.TRIPH  
CMPSSx.TRIPHORL  
CMPSSx.TRIPL  
ADCx.EVT1-4  
ECAPx.OUT  
All  
ePWM  
Modules  
ePWM  
X-Bar  
ADCSOCAO Select  
ADCSOCBO Select  
EXTSYNCOUT  
ADCSOCx  
SOCA  
SOCB  
ADC  
Wrapper(s)  
Reserved  
ECCERR  
TRIP13  
TRIP14  
TRIP15  
TZ4  
TZ5  
TZ6  
PIEVECTERROR  
EQEPERR  
CLKFAIL  
EMUSTOP  
EPWMSYNCPER  
Blanking Window  
CMPSS  
Figure 5-37. ePWM Trip Input Connectivity  
96  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.10.1.1 Control Peripherals Synchronization  
The ePWM and eCAP synchronization scheme on the device provides flexibility in partitioning the ePWM  
and eCAP modules and allows localized synchronization within the modules. Like the other peripherals,  
the partitioning of the ePWM and eCAP modules needs to be done using the CPUSELx registers.  
Figure 5-38 shows the synchronization scheme.  
TBCTL  
SWFSYNC  
CTR=ZERO  
CTR=CMPB  
CTR=CMPC  
CTR=CMPD  
CLR  
DCAEVT1.sync  
One Shot  
Latch  
DCBEVT1.sync  
0
Set  
Q
EPWMSYNCOUTEN  
1
SWEN  
ZEROEN  
0
0
1
CMPBEN  
EPWMxSYNCOUT  
1
0
OR  
CMPCEN  
CMPDEN  
DCARVT1EN  
DCBEVT1EN  
TBCTL2[SELFCLRTRREM]  
Clear  
Register  
Disable  
0
EPWM1SYNCOUT  
|
|
|
EPWMxSYNCOUT  
ECAP1SYNCOUT  
HRPCTL[PWMSYNCSELX]  
CTR=CMPC UP  
EPWMxSYNCIN  
|
|
|
CTR=CMPC DOWN  
CTR=CMPD UP  
ECAPySYNCOUT  
Other Sources  
EPWMxSYNCPER  
CTR=CMPD DOWN  
HRPCTL[PWMSYNCSEL]  
CTR=PRD  
CMPSS  
DAC  
EPWMSYNCINSEL  
Note: SYNCO and SYNCOUT are used interchangeably  
CTR=ZERO  
Figure 5-38. Synchronization Chain Architecture  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
97  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.10.1.2 ePWM Electrical Data and Timing  
Table 5-46 lists the PWM timing requirements and Table 5-47 lists the PWM switching characteristics.  
Table 5-46. ePWM Timing Requirements(1)  
MIN  
2tc(EPWMCLK)  
MAX  
UNIT  
Asynchronous  
Synchronous  
tw(SYNCIN)  
Sync input pulse width  
2tc(EPWMCLK)  
cycles  
With input qualifier  
1tc(EPWMCLK) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 5-24.  
Table 5-47. ePWM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
20  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
8tc(SYSCLK)  
cycles  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
Delay time, trip input active to PWM Hi-Z  
td(TZ-PWM)  
25  
ns  
5.10.1.2.1 Trip-Zone Input Timing  
Table 5-48 lists the trip-zone input timing requirements. Figure 5-39 shows the PWM Hi-Z characteristics.  
Table 5-48. Trip-Zone Input Timing Requirements(1)  
MIN  
1tc(EPWMCLK)  
MAX UNIT  
cycles  
Asynchronous  
Synchronous  
tw(TZ)  
Pulse duration, TZx input low  
2tc(EPWMCLK)  
cycles  
With input qualifier  
1tc(EPWMCLK) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 5-24.  
EPWMCLK  
tw(TZ)  
TZ(A)  
td(TZ-PWM)  
PWM(B)  
A. TZ: TZ1, TZ2, TZ3, TRIP1–TRIP12  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM  
recovery software.  
Figure 5-39. PWM Hi-Z Characteristics  
98  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.10.1.3 External ADC Start-of-Conversion Electrical Data and Timing  
Table 5-49 lists the external ADC start-of-conversion switching characteristics. Figure 5-40 shows the  
ADCSOCAO or ADCSOCBO timing.  
Table 5-49. External ADC Start-of-Conversion Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCL)  
Pulse duration, ADCSOCxO low  
32tc(SYSCLK)  
cycles  
tw(ADCSOCL)  
ADCSOCAO  
or  
ADCSOCBO  
Figure 5-40. ADCSOCAO or ADCSOCBO Timing  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
99  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.10.2 High-Resolution Pulse Width Modulator (HRPWM)  
The HRPWM combines multiple delay lines in a single module and a simplified calibration system by using  
a dedicated calibration delay line. For each ePWM module, there are two HR outputs:  
HR Duty and Deadband control on Channel A  
HR Duty and Deadband control on Channel B  
The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be  
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:  
Significantly extends the time resolution capabilities of conventionally derived digital PWM  
This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual  
edge control for frequency/period modulation.  
Finer time granularity control or edge positioning is controlled through extensions to the Compare A, B,  
phase, period and deadband registers of the ePWM module.  
NOTE  
The minimum HRPWMCLK frequency allowed for HRPWM is 60 MHz.  
5.10.2.1 HRPWM Electrical Data and Timing  
Table 5-50 lists the high-resolution PWM switching characteristics.  
Table 5-50. High-Resolution PWM Characteristics  
PARAMETER  
MIN  
TYP  
MAX UNIT  
310 ps  
Micro Edge Positioning (MEP) step size(1)  
150  
(1) The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher  
temperature and lower voltage and decrease with lower temperature and higher voltage.  
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI  
software libraries for details of using SFO functions in end applications. SFO functions help to estimate the number of MEP steps per  
SYSCLK period dynamically while the HRPWM is in operation.  
5.10.3 Enhanced Capture and High-Resolution Capture (eCAP, HRCAP)  
The eCAP module can be used in systems where accurate timing of external events is important.  
eCAP/HRCAP on this device is Type-2.  
Applications for eCAP include:  
Speed measurements of rotating machinery (for example, toothed sprockets sensed through Hall  
sensors)  
Elapsed time measurements between position sensor pulses  
Period and duty cycle measurements of pulse train signals  
Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors  
The eCAP module includes the following features:  
4-event time-stamp registers (each 32 bits)  
Edge-polarity selection for up to four sequenced time-stamp capture events  
Interrupt on either of the four events  
Single shot capture of up to four event timestamps  
Continuous mode capture of timestamps in a four-deep circular buffer  
Absolute time-stamp capture  
Difference (Delta) mode time-stamp capture  
All of the above resources dedicated to a single input pin  
When not used in capture mode, the eCAP module can be configured as a single-channel PWM output  
(APWM).  
100  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
The capture functionality of the Type-1 eCAP is enhanced from the Type-0 eCAP with the following added  
features:  
Event filter reset bit  
Writing a 1 to ECCTL2[CTRFILTRESET] will clear the event filter, the modulo counter, and any  
pending interrupts flags. Resetting the bit is useful for initialization and debug.  
Modulo counter status bits  
The modulo counter (ECCTL2 [MODCTRSTS]) indicates which capture register will be loaded next.  
In the Type-0 eCAP, it was not possible to know current state of modulo counter.  
DMA trigger source  
eCAPxDMA is added as a DMA trigger. CEVT[1–4] can be configured as the source for  
eCAPxDMA.  
Input multiplexer  
ECCTL0 [INPUTSEL] selects one of 128 input signals.  
EALLOW protection  
EALLOW protection is added to critical registers. To maintain software compatibility with the Type-0  
eCAP, configure DEV_CFG_REGS.ECAPTYPE to make these registers unprotected.  
The capture functionality of the Type-2 eCAP is enhanced from the Type-1 eCAP with the following added  
features:  
ECAPxSYNCINSEL register  
The ECAPSxYNCINSEL register is added for each eCAP to select an external SYNCIN. Every  
eCAP can have a separate SYNCIN signal.  
The eCAP inputs connect to any GPIO input through the Input X-BAR. The APWM outputs connect to  
GPIO pins through the Output X-BAR to OUTPUTx positions in the GPIO mux. See and .  
The eCAP module is clocked by PERx.SYSCLK.  
The clock enable bits (ECAP1–ECAP3) in the PCLKCR3 register turn off the eCAP module individually  
(for low-power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock  
is off.  
5.10.3.1 High-Resolution Capture (HRCAP)  
eCAP3 module can be configured as high-resolution capture (HRCAP) submodules. The HRCAP  
submodule measures the difference, in time, between pulses asynchronously to the system clock. This  
submodule is new to the eCAP Type 1 module, and features many enhancements over the Type 0  
HRCAP module.  
Applications for the HRCAP include:  
Capacitive touch applications  
High-resolution period and duty-cycle measurements of pulse train cycles  
Instantaneous speed measurements  
Instantaneous frequency measurements  
Voltage measurements across an isolation boundary  
Distance/sonar measurement and scanning  
Flow measurements  
The HRCAP submodule includes the following features:  
Pulse-width capture in either non-high-resolution or high-resolution modes  
Absolute mode pulse-width capture  
Continuous or "one-shot" capture  
Capture on either falling or rising edge  
Continuous mode capture of pulse widths in 4-deep buffer  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
101  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Hardware calibration logic for precision high-resolution capture  
All of the resources in this list are available on any pin using the Input X-BAR.  
The HRCAP submodule includes one high-resolution capture channel in addition to a calibration block.  
The calibration block allows the HRCAP submodule to be continually recalibrated, at a set interval, with no  
“down time”. Because the HRCAP submodule now uses the same hardware as its respective eCAP, if the  
HRCAP is used, the corresponding eCAP will be unavailable.  
Each high-resolution-capable channel has the following independent key resources.  
All hardware of the respective eCAP  
High-resolution calibration logic  
Dedicated calibration interrupt  
Figure 5-41 shows the eCAP and HRCAP block diagram.  
102  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
ECCTL2 [ SYNCI_EN, SYNCOSEL, SWSYNC]  
ECCTL2[CAP/APWM]  
APWM Mode  
CTRPHS  
(phase register−32 bit)  
ECAPxSYNCIN  
OVF  
RST  
CTR_OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
ECAPxSYNCOUT  
PWM  
Compare  
Logic  
Output  
X-Bar  
(counter−32 bit)  
Delta−Mode  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
PRD [0−31]  
32  
ECCTL1 [ CAPLDEN, CTRRSTx]  
HRCTRL[HRE]  
32  
32  
LD1  
CAP1  
Polarity  
Select  
LD  
(APRD Active)  
APRD  
32  
shadow  
CMP [0−31]  
32  
HRCTRL[HRE]  
32  
HRCTRL[HRE]  
32  
CAP2  
Polarity  
Select  
LD2  
LD  
Other  
Sources  
(ACMP Active)  
[127:16]  
[15:0]  
Event  
Prescale  
Event  
32  
ACMP  
16  
qualifier  
Input  
shadow  
LD  
ECCTL1[PRESCALE]  
HRCTRL[HRE]  
32  
X-Bar  
32  
Polarity  
Select  
LD3  
LD4  
CAP3  
(APRD Shadow)  
HRCTRL[HRE]  
32  
32  
CAP4  
Polarity  
Select  
LD  
(ACMP Shadow)  
Edge Polarity Select  
ECCTL1[CAPxPOL]  
4
Capture Events  
4
CEVT[1:4]  
ECAPxDMA_INT  
ECCTL2[CTRFILTRESET]  
Interrupt  
Continuous /  
Oneshot  
Trigger  
and  
MODCNTRSTS  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Capture Control  
ECCTL2[DMAEVTSEL]  
Flag  
Control  
ECAPx  
(to ePIE)  
ECCTL2 [ REARM, CONT_ONESHT, STOP_WRAP]  
Registers: ECEINT, ECFLG, ECCLR, ECFRC  
Capture Pulse  
HR Input  
SYSCLK  
HRCLK  
(A)  
HR Submodule  
ECAPx_HRCAL  
(to ePIE)  
Copyright © 2018, Texas Instruments Incorporated  
A. The HRCAP submodule is not available on all eCAP modules; in this case, the high-resolution muxes and hardware  
are not implemented.  
Figure 5-41. eCAP and HRCAP Block Diagram  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
103  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.10.3.2 eCAP/HRCAP Synchronization  
The eCAP modules can be synchronized with each other by selecting a common SYNCIN source.  
SYNCIN source for eCAP can be either software sync-in or external sync-in. The external sync-in signal  
can come from EPWM, eCAP, or X-Bar. The SYNC signal is defined by the selection in the  
ECAPxSYNCINSEL[SEL] bit for ECAPx as shown in Figure 5-42.  
ECAPx  
Disable  
EPWM[1..7]SYNCOUT  
0x0  
0x1  
ECAPxSYNCIN  
ECAPxSYNCOUT  
EPWMxSYNCOUT  
ECCTL2[SWSYNC]  
CTR=PRD  
EXTSYNCOUT  
ECAP[1..3]SYNCOUT  
INPUT5 (Input X-Bar)  
Disable  
Disable  
INPUT6 (Input X-Bar)  
0x19  
SYNCSELECT[SYNCOUT]  
ECCTL2[SYNCOSEL]  
ECAPSYNCINSEL[SEL]  
Figure 5-42. eCAPSynchronization Scheme  
104  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.10.3.3 eCAP Electrical Data and Timing  
Table 5-51 lists the eCAP timing requirements and Table 5-52 lists the eCAP switching characteristics.  
Table 5-51. eCAP Timing Requirements  
MIN  
2tc(SYSCLK)  
NOM  
MAX  
UNIT  
Asynchronous  
Synchronous  
tw(CAP)  
Capture input pulse width  
2tc(SYSCLK)  
ns  
With input qualifier  
1tc(SYSCLK) + tw_(IQSW)  
Table 5-52. eCAP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
5.10.3.4 HRCAP Electrical Data and Timing  
Table 5-53 lists the HRCAP switching characteristics. Figure 5-43 shows the HRCAP accuracy precision  
and resolution. Figure 5-44 shows the HRCAP standard deviation characteristics.  
Table 5-53. HRCAP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Input pulse width  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
110  
Measurement length 5 µs  
±390  
±450  
540  
ps  
Accuracy(1)(2)(3)(4)  
Measurement length > 5 µs  
1450  
ps  
Standard deviation  
Resolution  
See Figure 5-44  
300  
ps  
(1) Value obtained using an oscillator of 100 PPM, oscillator accuracy directly affects the HRCAP accuracy.  
(2) Measurement is completed using rising-rising or falling-falling edges  
(3) Opposite polarity edges will have an additional inaccuracy due to the difference between VIH and VIL. This effect is dependent on the  
signal’s slew rate.  
(4) Accuracy only applies to time-converted measurements.  
HRCAP’s Mean  
Accuracy  
Resolution  
(Step Size)  
Precision  
(Standard Deviation)  
Actual  
Input Signal  
A. The HRCAP has some variation in performance, this results in a probability distribution which is described using the  
following terms:  
Accuracy: The time difference between the input signal and the mean of the HRCAP’s distribution.  
Precision: The width of the HRCAP’s distribution, this is given as a standard deviation.  
Resolution: The minimum measurable increment.  
Figure 5-43. HRCAP Accuracy Precision and Resolution  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
105  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
2
7.4  
Typical Core Conditions  
Noisy Core Supply  
1.8  
1.6  
1.4  
1.2  
1
6.66  
5.92  
5.18  
4.44  
3.7  
0.8  
0.6  
0.4  
0.2  
2.96  
2.22  
1.48  
0.74  
0
1000  
2000  
3000  
4000  
5000  
Time Between Edges(nS)  
6000  
7000  
8000  
9000  
10000  
A. Typical core conditions: All peripheral clocks are enabled.  
B. Noisy core supply: All core clocks are enabled and disabled with a regular period during the measurement.  
C. Fluctuations in current and voltage on the 1.2-V rail cause the standard deviation of the HRCAP to rise. Care should  
be taken to ensure that the 1.2-V supply is clean, and that noisy internal events, such as enabling and disabling clock  
trees, have been minimized while using the HRCAP.  
Figure 5-44. HRCAP Standard Deviation Characteristics  
106  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.10.4 Enhanced Quadrature Encoder Pulse (eQEP)  
The eQEP module on this device is Type-2. The eQEP interfaces directly with linear or rotary incremental  
encoders to obtain position, direction, and speed information from rotating machines used in high-  
performance motion and position control systems.  
The eQEP peripheral contains the following major functional units (see Figure 5-45):  
Programmable input qualification for each pin (part of the GPIO MUX)  
Quadrature decoder unit (QDU)  
Position counter and control unit for position measurement (PCCU)  
Quadrature edge-capture unit for low-speed measurement (QCAP)  
Unit time base for speed/frequency measurement (UTIME)  
Watchdog timer for detecting stalls (QWDOG)  
Quadrature Mode Adapter (QMA)  
System  
control registers  
To CPU  
EQEPxENCLK  
SYSCLK  
QCPRD  
Enhanced QEP (eQEP) peripheral  
QCAPCTL  
16  
QCTMR  
16  
16  
Quadrature  
capture unit  
(QCAP)  
QCTMRLAT  
QCPRDLAT  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
used by  
multiple units  
32  
16  
QDECCTL  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
UTIME  
QWDOG  
EQEPx_A  
EQEPx_B  
EQEPxAIN  
WDTOUT  
QMA  
EQEPxBIN  
EQEPxINT  
QCLK  
PIE  
QDIR  
EQEPxIIN  
Quadrature  
32  
QI  
GPIO  
MUX  
EQEPx_INDEX  
EQEPxIOUT  
Position counter/  
control unit  
(PCCU)  
decoder  
(QDU)  
QS  
EQEPxIOE  
QPOSLAT  
PHE  
QPOSSLAT  
QPOSILAT  
PCSOUT  
EQEPxSIN  
EQEPx_STROBE  
EQEPxSOUT  
EQEPxSOE  
32  
32  
16  
QEINT  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QPOSCMP  
QFRC  
QCLR  
QPOSCTL  
Copyright © 2017, Texas Instruments Incorporated  
Figure 5-45. eQEP Block Diagram  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
107  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.10.4.1 eQEP Electrical Data and Timing  
Table 5-54 lists the eQEP timing requirements and Table 5-55 lists the eQEP switching characteristics.  
Table 5-54. eQEP Timing Requirements(1)  
MIN  
MAX  
UNIT  
Synchronous(2)  
2tc(SYSCLK)  
tw(QEPP)  
QEP input period  
cycles  
Synchronous with input qualifier  
Synchronous(2)  
2[1tc(SYSCLK) + tw(IQSW)]  
2tc(SYSCLK)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
cycles  
cycles  
cycles  
cycles  
Synchronous with input qualifier  
Synchronous(2)  
Synchronous with input qualifier  
Synchronous(2)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
Synchronous with input qualifier  
Synchronous(2)  
Synchronous with input qualifier  
2tc(SYSCLK) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 5-24.  
(2) The GPIO GPxQSELn Asynchronous mode should not be used for eQEP module input pins.  
Table 5-55. eQEP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
5tc(SYSCLK)  
7tc(SYSCLK)  
UNIT  
cycles  
cycles  
td(CNTR)xin  
Delay time, external clock to counter increment  
td(PCS-OUT)QEP  
Delay time, QEP input edge to position compare sync output  
108  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11 Communications Peripherals  
5.11.1 Controller Area Network (CAN)  
NOTE  
The CAN module uses the IP known as DCAN. This document uses the names CAN and  
DCAN interchangeably to reference this peripheral.  
The CAN module implements the following features:  
Complies with ISO11898-1 ( Bosch® CAN protocol specification 2.0 A and B)  
Bit rates up to 1 Mbps  
Multiple clock sources  
32 message objects (mailboxes), each with the following properties:  
Configurable as receive or transmit  
Configurable with standard (11-bit) or extended (29-bit) identifier  
Supports programmable identifier receive mask  
Supports data and remote frames  
Holds 0 to 8 bytes of data  
Parity-checked configuration and data RAM  
Individual identifier mask for each message object  
Programmable FIFO mode for message objects  
Programmable loopback modes for self-test operation  
Suspend mode for debug support  
Software module reset  
Automatic bus on after bus-off state by a programmable 32-bit timer  
Two interrupt lines  
DMA support  
NOTE  
For a CAN bit clock of 100 MHz, the smallest bit rate possible is 3.90625 kbps.  
NOTE  
The accuracy of the on-chip zero-pin oscillator is in Table 5-16. Depending on parameters  
such as the CAN bit timing settings, bit rate, bus length, and propagation delay, the accuracy  
of this oscillator may not meet the requirements of the CAN protocol. In this situation, an  
external clock source must be used.  
Figure 5-46 shows the CAN block diagram.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
109  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
CAN_H  
CAN_L  
CAN Bus  
3.3V CAN Transceiver  
External connections  
Device  
CANx RX pin  
CANx TX pin  
CAN  
CAN Core  
Message RAM  
Message Handler  
Message  
RAM  
Interface  
Register and Message  
Object Access (IFx)  
32  
Message  
Objects  
(Mailboxes)  
Test Modes  
Only  
Module Interface  
CANINT0 CANINT1  
DMA  
CPU Bus  
Figure 5-46. CAN Block Diagram  
110  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11.2 Inter-Integrated Circuit (I2C)  
The I2C module has the following features:  
Compliance with the NXP Semiconductors I2C-bus specification (version 2.1):  
Support for 8-bit format transfers  
7-bit and 10-bit addressing modes  
General call  
START byte mode  
Support for multiple master-transmitters and slave-receivers  
Support for multiple slave-transmitters and master-receivers  
Combined master transmit/receive and receive/transmit mode  
Data transfer rate from 10 kbps up to 400 kbps (Fast-mode)  
One 16-byte receive FIFO and one 16-byte transmit FIFO  
Supports two ePIE interrupts  
I2Cx interrupt – Any of the below conditions can be configured to generate an I2Cx interrupt:  
Transmit Ready  
Receive Ready  
Register-Access Ready  
No-Acknowledgment  
Arbitration-Lost  
Stop Condition Detected  
Addressed-as-Slave  
I2Cx_FIFO interrupts:  
Transmit FIFO interrupt  
Receive FIFO interrupt  
Module enable and disable capability  
Free data format mode  
Figure 5-47 shows how the I2C peripheral module interfaces within the device.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
111  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
I2C module  
I2CXSR  
I2CDXR  
TX FIFO  
RX FIFO  
FIFO Interrupt  
to CPU/PIE  
SDA  
Peripheral bus  
I2CRSR  
I2CDRR  
Control/status  
registers  
CPU  
Clock  
synchronizer  
SCL  
Prescaler  
Noise filters  
Arbitrator  
Interrupt to  
CPU/PIE  
I2C INT  
Figure 5-47. I2C Peripheral Module Interfaces  
112  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11.2.1 I2C Electrical Data and Timing  
Table 5-56 lists the I2C timing requirements. Table 5-57 lists the I2C switching characteristics.  
Table 5-56. I2C Timing Requirements  
MIN  
MAX  
UNIT  
th(SDA-SCL)START  
tsu(SCL-SDA)START  
Hold time, START condition, SCL fall delay after SDA fall  
0.6  
µs  
Setup time, Repeated START, SCL rise before SDA fall  
delay  
0.6  
µs  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
100  
20  
µs  
ns  
ns  
ns  
ns  
ns  
300  
300  
300  
300  
tr(SCL)  
Rise time, SCL  
20  
tf(SDA)  
Fall time, SDA  
11.4  
11.4  
tf(SCL)  
Fall time, SCL  
Setup time, STOP condition, SCL rise before SDA rise  
delay  
tsu(SCL-SDA)STOP  
0.6  
µs  
Table 5-57. I2C Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0
MAX UNIT  
fSCL  
SCL clock frequency  
400  
kHz  
µs  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL clock low  
Pulse duration, SCL clock high  
1.3  
0.6  
µs  
Pulse duration of spikes that will be  
suppressed by the input filter  
tw(SP)  
tBUF  
0
50  
ns  
µs  
Bus free time between STOP and START  
conditions  
1.3  
tv(SCL-DAT)  
Valid time, data after SCL fall  
Valid time, Acknowledge after SCL fall  
Valid low-level input voltage  
Valid high-level input voltage  
Low-level output voltage  
0.9  
0.9  
µs  
µs  
V
tv(SCL-ACK)  
VIL  
VIH  
VOL  
II  
–0.3  
0.3 * VDDIO  
VDDIO + 0.3  
0.4  
0.7 * VDDIO  
V
Sinking 3 mA  
0
V
Input current on pins  
0.1 Vbus < Vi < 0.9 Vbus  
–10  
10  
µA  
NOTE  
To meet all of the I2C protocol timing specifications, the I2C module clock must be  
configured in the range from 7 MHz to 12 MHz.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
113  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11.3 Power Management Bus (PMBus) Interface  
The PMBus module has the following features:  
Compliance with the SMI Forum PMBus Specification (Part I v1.0 and Part II v1.1)  
Support for master and slave modes  
Support for I2C mode  
Support for two speeds:  
Standard Mode: Up to 100 kHz  
Fast Mode: 400 kHz  
Packet error checking  
CONTROL and ALERT signals  
Clock high and low time-outs  
Four-byte transmit and receive buffers  
One maskable interrupt, which can be generated by several conditions:  
Receive data ready  
Transmit buffer empty  
Slave address received  
End of message  
ALERT input asserted  
Clock low time-out  
Clock high time-out  
Bus free  
Figure 5-48 shows the PMBus block diagram.  
PCLKCR20  
SYSCLK  
PMBCTRL  
Div  
ALERT  
CTL  
DMA  
CPU  
PIE  
Bit clock  
Other registers  
GPIO Mux  
PMBTXBUF  
SCL  
Shift register  
PMBRXBUF  
SDA  
PMBUSA_INT  
PMBus Module  
Figure 5-48. PMBus Block Diagram  
114  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11.3.1 PMBus Electrical Data and Timing  
Table 5-58 lists the PMBus electrical characteristics. Table 5-59 lists the PMBUS fast mode switching  
characteristics. Table 5-60 lists the PMBUS standard mode switching characteristics.  
Table 5-58. PMBus Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.8  
UNIT  
V
VIL  
VIH  
VOL  
IOL  
Valid low-level input voltage  
Valid high-level input voltage  
Low-level output voltage  
Low-level output current  
2.1  
VDDIO  
0.4  
V
At Ipullup = 4 mA  
V
VOL 0.4 V  
4
0
mA  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
50  
ns  
Ii  
Input leakage current on each pin  
Capacitance on each pin  
0.1 Vbus < Vi < 0.9 Vbus  
–10  
10  
10  
µA  
pF  
Ci  
Table 5-59. PMBus Fast Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fSCL  
tBUF  
SCL clock frequency  
10  
400  
kHz  
Bus free time between STOP and  
START conditions  
1.3  
0.6  
0.6  
0.6  
µs  
µs  
µs  
µs  
START condition hold time -- SDA fall  
to SCL fall delay  
tHD;STA  
tSU;STA  
tSU;STO  
Repeated START setup time -- SCL  
rise to SDA fall delay  
STOP condition setup time -- SCL rise  
to SDA rise delay  
tHD;DAT  
tSU;DAT  
tTimeout  
tLOW  
Data hold time after SCL fall  
Data setup time before SCL rise  
Clock low time-out  
300  
100  
25  
ns  
ns  
ms  
µs  
µs  
35  
Low period of the SCL clock  
High period of the SCL clock  
1.3  
0.6  
tHIGH  
50  
25  
Cumulative clock low extend time  
(slave device)  
tLOW;SEXT  
tLOW;MEXT  
From START to STOP  
Within each byte  
ms  
ms  
Cumulative clock low extend time  
(master device)  
10  
tr  
tf  
Rise time of SDA and SCL  
Fall time of SDA and SCL  
5% to 95%  
95% to 5%  
20  
20  
300  
300  
ns  
ns  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
115  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 5-60. PMBus Standard Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fSCL  
tBUF  
SCL clock frequency  
10  
100  
kHz  
Bus free time between STOP and  
START conditions  
4.7  
4
µs  
µs  
µs  
µs  
START condition hold time -- SDA fall  
to SCL fall delay  
tHD;STA  
tSU;STA  
tSU;STO  
Repeated START setup time -- SCL  
rise to SDA fall delay  
4.7  
4
STOP condition setup time -- SCL rise  
to SDA rise delay  
tHD;DAT  
tSU;DAT  
tTimeout  
tLOW  
Data hold time after SCL fall  
Data setup time before SCL rise  
Clock low time-out  
300  
250  
25  
ns  
ns  
ms  
µs  
µs  
35  
Low period of the SCL clock  
High period of the SCL clock  
4.7  
4
tHIGH  
50  
25  
Cumulative clock low extend time  
(slave device)  
tLOW;SEXT  
tLOW;MEXT  
From START to STOP  
ms  
ms  
Cumulative clock low extend time  
(master device)  
Within each byte  
10  
tr  
tf  
Rise time of SDA and SCL  
Fall time of SDA and SCL  
1000  
300  
ns  
ns  
116  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11.4 Serial Communications Interface (SCI)  
The SCI is a 2-wire asynchronous serial port, commonly known as a UART. The SCI module supports  
digital communications between the CPU and other asynchronous peripherals that use the standard non-  
return-to-zero (NRZ) format  
The SCI receiver and transmitter each have a 16-level-deep FIFO for reducing servicing overhead, and  
each has its own separate enable and interrupt bits. Both can be operated independently for half-duplex  
communication, or simultaneously for full-duplex communication. To specify data integrity, the SCI checks  
received data for break detection, parity, overrun, and framing errors. The bit rate is programmable to  
different speeds through a 16-bit baud-select register.  
Features of the SCI module include:  
Two external pins:  
SCITXD: SCI transmit-output pin  
SCIRXD: SCI receive-input pin  
Baud rate programmable to 64K different rates  
Data-word format  
1 start bit  
Data-word length programmable from 1 to 8 bits  
Optional even/odd/no parity bit  
1 or 2 stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms  
with status flags.  
Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX  
EMPTY flag (transmitter-shift register is empty)  
Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag  
(break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
NRZ format  
Auto baud-detect hardware logic  
16-level transmit and receive FIFO  
NOTE  
All registers in this module are 8-bit registers. When a register is accessed, the register data  
is in the lower byte (bits 7–0), and the upper byte (bits 15–8) is read as zeros. Writing to the  
upper byte has no effect.  
Figure 5-49 shows the SCI block diagram.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
117  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
SCICTL1.1  
Frame Format and Mode  
Parity  
SCITXD  
SCITXD  
TXSHF  
Register  
TXENA  
TX EMPTY  
SCICTL2.6  
Even/Odd  
Enable  
8
SCICCR.6 SCICCR.5  
TXRDY  
TX INT ENA  
SCICTL2.0  
Transmitter-Data  
Buffer Register  
SCICTL2.7  
TXWAKE  
8
SCICTL1.3  
1
TX FIFO _0  
TX FIFO _1  
−−−−−  
TXINT  
To CPU  
TX Interrupt  
Logic  
TX FIFO Interrupt  
TX FIFO _15  
SCI TX Interrupt select logic  
Auto baud detect logic  
WUT  
SCITXBUF.7−0  
TX FIFO registers  
SCIFFENA  
SCIFFTX.14  
SCIHBAUD. 15 − 8  
SCIRXD  
RXSHF  
Register  
Baud Rate  
MSbyte  
SCIRXD  
Register  
RXWAKE  
LSPCLK  
SCIRXST.1  
SCILBAUD. 7 − 0  
RXENA  
SCICTL1.0  
Baud Rate  
LSbyte  
8
SCICTL2.1  
Register  
RXRDY  
RX/BK INT ENA  
Receive Data  
Buffer register  
SCIRXST.6  
SCIRXBUF.7−0  
8
BRKDT  
SCIRXST.5  
RX FIFO _15  
−−−−−  
RX FIFO_1  
RX Interrupt  
Logic  
RXINT  
RX FIFO _0  
RX FIFO Interrupt  
To CPU  
SCIRXBUF.7−0  
RX FIFO registers  
RXFFOVF  
SCIRXST.7  
RX Error  
SCIRXST.5 – 2  
FE OE PE  
SCIFFRX.15  
RX Error  
RX ERR INT ENA  
SCICTL1.6  
SCI RX Interrupt select logic  
Figure 5-49. SCI Block Diagram  
118  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11.5 Serial Peripheral Interface (SPI)  
The serial peripheral interface (SPI) is a high-speed synchronous serial input and output (I/O) port that  
allows a serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a  
programmed bit-transfer rate. The SPI is normally used for communications between the MCU controller  
and external peripherals or another controller. Typical applications include external I/O or peripheral  
expansion through devices such as shift registers, display drivers, and analog-to-digital converters  
(ADCs). Multidevice communications are supported by the master or slave operation of the SPI. The port  
supports a 16-level, receive and transmit FIFO for reducing CPU servicing overhead.  
The SPI module features include:  
SPISOMI: SPI slave-output/master-input pin  
SPISIMO: SPI slave-input/master-output pin  
SPISTE: SPI slave transmit-enable pin  
SPICLK: SPI serial-clock pin  
Two operational modes: Master and Slave  
Baud rate: 125 different programmable rates. The maximum baud rate that can be employed is limited  
by the maximum speed of the I/O buffers used on the SPI pins.  
Data word length: 1 to 16 data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the  
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the  
rising edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled  
algorithm  
16-level transmit/receive FIFO  
DMA support  
High-speed mode  
Delayed transmit control  
3-wire SPI mode  
SPISTE inversion for digital audio interface receive mode on devices with two SPI modules  
Figure 5-50 shows the SPI CPU interfaces.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
119  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
PCLKCR8  
Low-Speed  
LSPCLK  
CPU  
SYSCLK  
Prescaler  
Bit Clock  
SYSRS  
SPISIMO  
SPISOMI  
SPICLK  
SPISTE  
SPI  
GPIO MUX  
SPIINT  
PIE  
SPITXINT  
SPIRXDMA  
SPITXDMA  
DMA  
Figure 5-50. SPI CPU Interface  
120  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11.5.1 SPI Master Mode Timings  
The following section contains the SPI Master Mode Timings. For more information about the SPI in High-  
Speed mode, see the Serial Peripheral Interface (SPI) chapter of the TMS320F28002x Microcontrollers  
Technical Reference Manual.  
Table 5-61 lists the SPI master mode timing requirements.  
Table 5-62 lists the SPI master mode switching characteristics where the clock phase = 0. Figure 5-51  
shows the SPI master mode external timing where the clock phase = 0.  
Table 5-63 lists the SPI master mode switching characteristics where the clock phase = 1. Figure 5-52  
shows the SPI master mode external timing where the clock phase = 1.  
NOTE  
All timing parameters for SPI High-Speed Mode assume a load capacitance of 5 pF on  
SPICLK, SPISIMO, and SPISOMI.  
Table 5-61. SPI Master Mode Timing Requirements  
(1)  
NO.  
(BRR + 1)  
MIN  
MAX UNIT  
High-Speed Mode  
8
9
tsu(SOMI)M  
th(SOMI)M  
Setup time, SPISOMI valid before SPICLK  
Hold time, SPISOMI valid after SPICLK  
Even, Odd  
Even, Odd  
1
5
ns  
ns  
Normal Mode  
8
9
tsu(SOMI)M  
th(SOMI)M  
Setup time, SPISOMI valid before SPICLK  
Hold time, SPISOMI valid after SPICLK  
Even, Odd  
Even, Odd  
15  
0
ns  
ns  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
121  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 5-62. SPI Master Mode Switching Characteristics (Clock Phase = 0)  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
(BRR + 1)(1)  
MIN  
MAX UNIT  
General  
Even  
Odd  
4tc(LSPCLK)  
5tc(LSPCLK)  
0.5tc(SPC)M – 1 0.5tc(SPC)M + 1  
128tc(LSPCLK)  
1
2
tc(SPC)M  
Cycle time, SPICLK  
ns  
ns  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M  
+
+
1
tw(SPC1)M Pulse duration, SPICLK, first pulse  
tw(SPC2)M Pulse duration, SPICLK, second pulse  
Odd  
Even  
Odd  
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(LSPCLK)  
0.5tc(SPC)M – 1 0.5tc(SPC)M + 1  
0.5tc(SPC)M  
+
1
3
ns  
ns  
ns  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 0.5tc(LSPCLK)  
1.5tc(SPC)M  
Even  
1.5tc(SPC)M – 3tc(SYSCLK) – 3  
3tc(SYSCLK) + 3  
1.5tc(SPC)M  
4tc(SYSCLK) + 3  
0.5tc(SPC)M – 3 0.5tc(SPC)M + 3  
23  
24  
td(SPC)M  
Delay time, SPISTE active to SPICLK  
Valid time, SPICLK to SPISTE inactive  
Odd  
1.5tc(SPC)M – 4tc(SYSCLK) – 3  
Even  
0.5tc(SPC)M  
+
3
tv(STE)M  
Odd  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 0.5tc(LSPCLK)  
High-Speed Mode  
4
td(SIMO)M Delay time, SPICLK to SPISIMO valid  
Even, Odd  
Even  
1
ns  
ns  
0.5tc(SPC)M – 3  
5
tv(SIMO)M Valid time, SPISIMO valid after SPICLK  
Odd  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3  
Normal Mode  
4
td(SIMO)M Delay time, SPICLK to SPISIMO valid  
Even, Odd  
Even  
1
ns  
ns  
0.5tc(SPC)M – 3  
5
tv(SIMO)M Valid time, SPISIMO valid after SPICLK  
Odd  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
122  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 5-63. SPI Master Mode Switching Characteristics (Clock Phase = 1)  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
(BRR + 1)  
MIN  
MAX UNIT  
General  
Even  
Odd  
4tc(LSPCLK)  
5tc(LSPCLK)  
0.5tc(SPC)M – 1 0.5tc(SPC)M + 1  
128tc(LSPCLK)  
1
2
tc(SPC)M  
Cycle time, SPICLK  
ns  
ns  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M  
+
1
tw(SPCH)M Pulse duration, SPICLK, first pulse  
tw(SPC2)M Pulse duration, SPICLK, second pulse  
Odd  
Even  
Odd  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 0.5tc(LSPCLK)  
0.5tc(SPC)M – 1 0.5tc(SPC)M + 1  
0.5tc(SPC)M  
+
+
1
3
ns  
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(LSPCLK)  
2tc(SPC)M  
3tc(SYSCLK) + 2  
23  
24  
td(SPC)M  
td(STE)M  
Delay time, SPISTE valid to SPICLK  
Delay time, SPICLK to SPISTE invalid  
Even, Odd  
2tc(SPC)M – 3tc(SYSCLK) – 3  
ns  
ns  
Even  
Odd  
–3  
–3  
2
2
High-Speed Mode  
Even  
Odd  
0.5tc(SPC)M – 2  
0.5tc(SPC)M + 0.5tc(LSPCLK) – 2  
0.5tc(SPC)M – 3  
4
5
td(SIMO)M Delay time, SPISIMO valid to SPICLK  
tv(SIMO)M Valid time, SPISIMO valid after SPICLK  
ns  
ns  
Even  
Odd  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3  
Normal Mode  
Even  
Odd  
0.5tc(SPC)M – 2  
0.5tc(SPC)M + 0.5tc(LSPCLK) – 2  
0.5tc(SPC)M – 3  
4
5
td(SIMO)M Delay time, SPISIMO valid to SPICLK  
ns  
ns  
Even  
Odd  
tv(SIMO)M Valid time, SPISIMO valid after SPICLK  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
123  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and  
non-FIFO modes.  
Figure 5-51. SPI Master Mode External Timing (Clock Phase = 0)  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and  
non-FIFO modes.  
Figure 5-52. SPI Master Mode External Timing (Clock Phase = 1)  
124  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11.5.2 SPI Slave Mode Timings  
The following section contains the SPI Slave Mode Timings. For more information about the SPI in High-  
Speed mode, see the Serial Peripheral Interface (SPI) chapter of the TMS320F28002x Microcontrollers  
Technical Reference Manual.  
Table 5-65 lists the SPI slave mode switching characteristics. Table 5-64 lists the SPI slave mode timing  
requirements.  
Figure 5-53 shows the SPI slave mode external timing where the clock phase = 0. Figure 5-54 shows the  
SPI slave mode external timing where the clock phase = 1.  
Table 5-64. SPI Slave Mode Timing Requirements  
NO.  
12  
MIN  
4tc(SYSCLK)  
MAX UNIT  
tc(SPC)S  
Cycle time, SPICLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
13  
14  
19  
20  
25  
26  
tw(SPC1)S  
tw(SPC2)S  
tsu(SIMO)S  
th(SIMO)S  
tsu(STE)S  
th(STE)S  
Pulse duration, SPICLK, first pulse  
Pulse duration, SPICLK, second pulse  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO valid after SPICLK  
Setup time, SPISTE valid before SPICLK  
Hold time, SPISTE invalid after SPICLK  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK) + 25  
1.5tc(SYSCLK)  
Table 5-65. SPI Slave Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
15  
16  
PARAMETER  
MIN  
MAX UNIT  
td(SOMI)S  
tv(SOMI)S  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI valid after SPICLK  
12  
ns  
ns  
0
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
Figure 5-53. SPI Slave Mode External Timing (Clock Phase = 0)  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
125  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
16  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
Figure 5-54. SPI Slave Mode External Timing (Clock Phase = 1)  
126  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11.6 Local Interconnect Network (LIN)  
This device contains one Local Interconnect Network (LIN) module. The LIN module adheres to the LIN  
2.1 standard as defined by the LIN Specification Package Revision 2.1. The LIN is a low-cost serial  
interface designed for applications where the CAN protocol may be too expensive to implement, such as  
small subnetworks for cabin comfort functions like interior lighting or window control in an automotive  
application.  
The LIN standard is based on the SCI (UART) serial data link format. The communication concept is  
single-master and multiple-slave with a message identification for multicast transmission between any  
network nodes.  
The LIN module can be programmed to work either as an SCI or as a LIN as the core of the module is an  
SCI. The hardware features of the SCI are augmented to achieve LIN compatibility. The SCI module is a  
universal asynchronous receiver-transmitter (UART) that implements the standard non-return-to-zero  
format.  
Though the registers are common for LIN and SCI, the register descriptions have notes to identify the  
register/bit usage in different modes. Because of this, code written for this module cannot be directly  
ported to the stand-alone SCI module and vice versa.  
The LIN module has the following features:  
Compatibility with LIN 1.3, 2.0 and 2.1 protocols  
Configurable baud rate up to 20 kbps (as per LIN 2.1 protocol)  
Two external pins: LINRX and LINTX  
Multibuffered receive and transmit units  
Identification masks for message filtering  
Automatic master header generation  
Programmable synchronization break field  
Synchronization field  
Identifier field  
Slave automatic synchronization  
Synchronization break detection  
Optional baud rate update  
Synchronization validation  
231 programmable transmission rates with 7 fractional bits  
Wakeup on LINRX dominant level from transceiver  
Automatic wakeup support  
Wakeup signal generation  
Expiration times on wakeup signals  
Automatic bus idle detection  
Error detection  
Bit error  
Bus error  
No-response error  
Checksum error  
Synchronization field error  
Parity error  
Capability to use direct memory access (DMA) for transmit and receive data  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
127  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Two interrupt lines with priority encoding for:  
Receive  
Transmit  
ID, error, and status  
Support for LIN 2.0 checksum  
Enhanced synchronizer finite state machine (FSM) support for frame processing  
Enhanced handling of extended frames  
Enhanced baud rate generator  
Update wakeup/go to sleep  
Figure 5-55 shows the LIN block diagram.  
READ DATA BUS  
WRITE DATA BUS  
ADDRESS BUS  
CHECKSUM  
CALCULATOR  
INTERFACE  
ID PARTY  
CHECKER  
BIT  
MONITOR  
TXRX ERROR  
DETECTOR (TED)  
TIME-OUT  
CONTROL  
COUNTER  
LINRX/  
SCIRX  
COMPARE  
LINTX/  
SCITX  
DMA  
CONTROL  
MASK  
FILTER  
8 RECEIVE  
BUFFERS  
FSM  
8 TRANSMIT  
BUFFERS  
SYNCHRONIZER  
Figure 5-55. LIN Block Diagram  
128  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11.7 Fast Serial Interface (FSI)  
The Fast Serial Interface (FSI) module is a serial communication peripheral capable of reliable and robust  
high-speed communications. The FSI is designed to ensure data robustness across many system  
conditions such as chip-to-chip as well as board-to-board across an isolation barrier. Payload integrity  
checks such as CRC, start- and end-of-frame patterns, and user-defined tags, are encoded before  
transmit and then verified after receipt without additional CPU interaction. Line breaks can be detected  
using periodic transmissions, all managed and monitored by hardware. The FSI is also tightly integrated  
with other control peripherals on the device. To ensure that the latest sensor data or control parameters  
are available, frames can be transmitted on every control loop period. An integrated skew-compensation  
block has been added on the receiver to handle skew that may occur between the clock and data signals  
due to a variety of factors, including trace-length mismatch and skews induced by an isolation chip. With  
embedded data robustness checks, data-link integrity checks, skew compensation, and integration with  
control peripherals, the FSI can enable high-speed, robust communication in any system. These and  
many other features of the FSI follow.  
The FSI module includes the following features:  
Independent transmitter and receiver cores  
Source-synchronous transmission  
Dual data rate (DDR)  
One or two data lines  
Programmable data length  
Skew adjustment block to compensate for board and system delay mismatches  
Frame error detection  
Programmable frame tagging for message filtering  
Hardware ping to detect line breaks during communication (ping watchdog)  
Two interrupts per FSI core  
Externally triggered frame generation  
Hardware- or software-calculated CRC  
Embedded ECC computation module  
Register write protection  
DMA support  
SPI compatibility mode (limited features available)  
Operating the FSI at maximum speed (50 MHz) at dual data rate (100 Mbps) may require the integrated  
skew compensation block to be configured according to the specific operating conditions on a case-by-  
case basis. The Fast Serial Interface (FSI) Skew Compensation Application Report provides example  
software on how to configure and set up the integrated skew compensation block on the Fast Serial  
Interface.  
The FSI consists of independent transmitter (FSITX) and receiver (FSIRX) cores. The FSITX and FSIRX  
cores are configured and operated independently. The features available on the FSITX and FSIRX are  
described in Section 5.11.7.1 and Section 5.11.7.2, respectively.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
129  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11.7.1 FSI Transmitter  
The FSI transmitter module handles the framing of data, CRC generation, signal generation of TXCLK,  
TXD0, and TXD1, as well as interrupt generation. The operation of the transmitter core is controlled and  
configured through programmable control registers. The transmitter control registers let the CPU program,  
control, and monitor the operation of the FSI transmitter. The transmit data buffer is accessible by the  
CPU and the DMA.  
The transmitter has the following features:  
Automated ping frame generation  
Externally triggered ping frames  
Externally triggered data frames  
Software-configurable frame lengths  
16-word data buffer  
Data buffer underrun and overrun detection  
Hardware-generated CRC on data bits  
Software ECC calculation on select data  
DMA support  
Figure 5-56 shows the FSITX CPU interface. Figure 5-57 shows the high-level block diagram of the  
FSITX. Not all data paths and internal connections are shown. This diagram provides a high-level  
overview of the internal modules present in the FSITX.  
PLLRAWCLK  
PCLKCR18  
SYSCLK  
SYSRSN  
C28x  
ePIE  
FSITXyINT1  
FSITXyINT2  
FSITXyCLK  
FSITXyD0  
FSITXyD1  
FSITX  
DMA  
FSITXyDMA  
32  
A. The signals connected to the trigger muxes are described in the External Frame Trigger Mux section of the Fast  
Serial Interface (FSI) chapter in the TMS320F28002x Microcontrollers Technical Reference Manual.  
Figure 5-56. FSITX CPU Interface  
130  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
FSITX  
PLLRAWCLK  
SYSRSN  
SYSCLK  
FSI Mode:  
TXCLKIN  
Transmit Clock  
Generator  
TXCLK = TXCLKIN/2  
SPI Signaling Mode:  
TXCLK = TXCLKIN  
Register Interface  
Core Reset  
FSITXINT1  
FSITXINT2  
Control Registers,  
Interrupt Management  
TXCLK  
TXD0  
TXD1  
Ping Time-out Counter  
FSITX_DMA_EVT  
Transmitter Core  
External Frame Triggers  
Transmit Data  
Buffer  
ECC Logic  
Figure 5-57. FSITX Block Diagram  
5.11.7.1.1 FSITX Electrical Data and Timing  
Table 5-66 lists the FSITX switching characteristics. Figure 5-58 shows the FSITX timings.  
Table 5-66. FSITX Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
20  
MAX  
UNIT  
ns  
1
2
tc(TXCLK)  
tw(TXCLK)  
Cycle time, TXCLK  
Pulse width, TXCLK low or TXCLK high  
(0.5tc(TXCLK)) – 1  
(0.5tc(TXCLK)) + 1  
(0.25tc(TXCLK)) + 2  
ns  
Delay time, TXCLK rising or falling toTXD  
valid  
3
td(TXCLK–TXD)  
(0.25tc(TXCLK)) – 2  
-2  
ns  
ns  
Delay skew introduced between TXCLK-  
TDM_CLK delay and TXDx-TDM_Dx delays  
TDM1  
tskew(TDM_CLK-TDM_Dx)  
2
1
2
FSITXCLK  
FSITXD0  
FSITXD1  
3
Figure 5-58. FSITX Timings  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
131  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11.7.2 FSI Receiver  
The receiver module interfaces to the FSI clock (RXCLK), and data lines (RXD0 and RXD1) after they  
pass through an optional programmable delay line. The receiver core handles the data framing, CRC  
computation, and frame-related error checking. The receiver bit clock and state machine are run by the  
RXCLK input, which is asynchronous to the device system clock.  
The receiver control registers let the CPU program, control, and monitor the operation of the FSIRX. The  
receive data buffer is accessible by the CPU, HIC, and the DMA.  
The receiver core has the following features:  
16-word data buffer  
Multiple supported frame types  
Ping frame watchdog  
Frame watchdog  
CRC calculation and comparison in hardware  
ECC detection  
Programmable delay line control on incoming signals  
DMA support  
SPI compatibility mode  
Figure 5-59 shows the FSIRX CPU interface. Figure 5-60 provides a high-level overview of the internal  
modules present in the FSIRX. Not all data paths and internal connections are shown.  
PCLKCR18  
SYSCLK  
SYSRSN  
C28x  
ePIE  
FSIRXyINT1  
FSIRXyINT2  
FSIRXyCLK  
FSIRXyD0  
FSIRXyD1  
FSIRX  
DMA  
FSIRXyDMA  
Figure 5-59. FSIRX CPU Interface  
132  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
FSIRX  
SYSRSn  
SYSCLK  
Frame Watchdog  
Core Reset  
Register Interface  
FSIRXINT1  
Control Registers,  
Interrupt Management  
FSIRXINT2  
RXCLK  
RXD0  
Ping Watchdog  
FSIRX_DMA_EVT  
Receiver Core  
Skew  
Control  
RXD1  
Receive Data  
Buffer  
ECC Check  
Logic  
Figure 5-60. FSIRX Block Diagram  
5.11.7.2.1 FSIRX Electrical Data and Timing  
Table 5-68 lists the FSIRX timing requirements. Table 5-68 shows the FSIRX timings.  
Table 5-67. FSIRX Switching Characteristics  
NO.  
MIN  
MAX  
UNIT  
RXCLK delay compensation at  
RX_DLYLINE_CTRL[RXCLK_DLY]=31  
1
2
3
4
td(RXCLK)  
10  
10  
30  
30  
30  
1
ns  
RXD0 delay compensation at  
RX_DLYLINE_CTRL[RXD0_DLY]=31  
td(RXD0)  
ns  
ns  
ns  
RXD1 delay compensation  
at RX_DLYLINE_CTRL[RXD1_DLY]=31  
td(RXD1)  
10  
Incremental delay of each delay line element  
for RXCLK, RXD0, and RXD1  
td(DELAY_ELEMENT)  
0.3  
Table 5-68. FSIRX Timing Requirements  
NO.  
MIN  
MAX  
UNIT  
ns  
1
2
tc(RXCLK)  
tw(RXCLK)  
Cycle time, RXCLK  
20  
Pulse width, RXCLK low or RXCLK high.  
0.35tc(RXCLK)  
0.65tc(RXCLK)  
ns  
Setup time with respect to RXCLK, applies  
to both edges of the clock  
3
4
tsu(RXCLK–RXD)  
th(RXCLK–RXD)  
1.7  
ns  
ns  
Hold time with respect to RXCLK, applies to  
both edges of the clock  
2
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
133  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
1
2
FSIRXCLK  
FSIRXD0  
FSIRXD1  
3
4
Figure 5-61. FSIRX Timings  
134  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11.7.3 FSI SPI Compatibility Mode  
The FSI supports a SPI compatibility mode to enable communication with programmable SPI devices. In  
this mode, the FSI transmits its data in the same manner as a SPI in a single clock configuration mode.  
While the FSI is able to physically interface with a SPI in this mode, the external device must be able to  
encode and decode an FSI frame to communicate successfully. This is because the FSI transmits all SPI  
frame phases with the exception of the preamble and postamble. The FSI provides the same data  
validation and frame checking as if it was in standard FSI mode, allowing for more robust communication  
without consuming CPU cycles. The external SPI is required to send all relevant information and can  
access standard FSI features such as the ping frame watchdog on the FSIRX, frame tagging, or custom  
CRC values. The list of features of SPI compatibility mode follows:  
Data will transmit on rising edge and receive on falling edge of the clock.  
Only 16-bit word size is supported.  
TXD1 will be driven like an active-low chip-select signal. The signal will be low for the duration of the  
full frame transmission.  
No receiver chip-select input is required. RXD1 is not used. Data is shifted into the receiver on every  
active clock edge.  
No preamble or postamble clocks will be transmitted. All signals return to the idle state after the frame  
phase is finished.  
It is not possible to transmit in the SPI slave configuration because the FSI TXCLK cannot take an  
external clock source.  
5.11.7.3.1 FSITX SPI Signaling Mode Electrical Data and Timing  
Table 5-69 lists the FSITX SPI signaling mode switching characteristics. Figure 5-62 shows the FSITX SPI  
signaling mode timings. Special timings are not required for the FSIRX in SPI signaling mode. FSIRX  
timings listed in Table 5-68 are applicable in SPI compatibility mode. Setup and Hold times are only valid  
on the falling edge of FSIRXCLK because this is the active edge in SPI signaling mode.  
Table 5-69. FSITX SPI Signaling Mode Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
1
PARAMETER  
MIN  
20  
MAX  
UNIT  
ns  
tc(TXCLK)  
Cycle time, TXCLK  
2
tw(TXCLK)  
Pulse width, TXCLK low or TXCLK high  
Delay time, TXD0 valid after TXCLK high  
Delay time, TXCLK high after TXD1 low  
Delay time, TXD1 high after TXCLK low  
(0.5tc(TXCLK)) – 1  
(0.5tc(TXCLK)) + 1  
3
ns  
3
td(TXCLKH–TXD0)  
td(TXD1-TXCLK)  
td(TXCLK-TXD1)  
ns  
4
tw(TXCLK) – 3  
tw(TXCLK)  
ns  
5
ns  
1
2
FSITXCLK  
3
FSITXD0  
FSITXD1  
5
4
Figure 5-62. FSITX SPI Signaling Mode Timings  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
135  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11.8 Host Interface Controller (HIC)  
The HIC module allows an external host controller (master) to directly access resources of the device  
(slave) by emulating the ASRAM protocol. It has two modes of operation: direct access and mailbox  
access. In direct access mode, device resources is written to and read from directly by the external host.  
In mailbox access mode, external host and device write to and read from a buffer and notify each other  
when the buffer write/read is complete. For security reasons, the HIC has to be enabled by the device  
before the external host can access it. Figure 5-63 shows the block diagram of the HIC.  
Features of the HIC include:  
Configurable I/O data lines of 8, 16 and 32-bit  
Direct and mailbox access modes  
8 address lines and 8 configurable base addresses for a total of 2048 possible addressable regions  
Two 64 byte buffers for external host and device when using mailbox access mode  
Interrupt generation on buffer full/empty  
High throughput  
Trigger HIC activity from other peripherals  
Error indicators to the system or interface  
Legend  
HIC Pins  
HIC Registers  
HIC  
I/O Interface  
A[7:0]  
Bus Master Interface  
A[31:0]  
D[31:0]  
nBE[3:0]  
nCS  
H2DINT to PIE  
D2HINT to Pin  
WDATA[31:0]  
RDATA[31:0]  
Memory Mapped HIC  
Configuration Interface  
Host  
To  
Device  
Device  
To  
Host  
CTRL Regs  
STATUS Regs  
nWE  
BASE_ADDR0  
BASE_ADDR1  
nOE  
.
Mailbox  
Buffer  
Mailbox  
Buffer  
.
BASE_ADDRn  
BASESEL[2:0]  
nRDY  
EVT_TRIGGER[15:0]  
Figure 5-63. HIC Block Diagram  
136  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
5.11.8.1 HIC Electrical Data and Timing  
Table 5-70 lists the HIC timing requirements. Table 5-71 lists the HIC switching characteristics.  
Table 5-70. HIC Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
Read/Write Parameters with nOE and nWE pins - Dual Read/Write pins  
tsu(ABBV-OEV)  
tsu(ABBV-WEV)  
tsu(CSV-OEV)  
tsu(CSV-WEV)  
th(ABBV-OEIV)  
th(ABBV-WEIV)  
tw(OEV)  
Setup time, A/BASESEL/nBE before nOE active  
Setup time, A/BASESEL/nBE before nWE active  
Setup time, nCS active before nOE active  
Setup time, nCS active before nWE active  
Hold time, A/BASESEL/nBE/nCS after nOE inactive  
Hold time, A/BASESEL/nBE/nCS after nWE inactive  
Active pulse width of nOE (Read)(1)  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
0.5tc(SYSCLK)  
0.5tc(SYSCLK)  
0
0
4tc(SYSCLK)  
4tc(SYSCLK)  
3tc(SYSCLK)  
3tc(SYSCLK)  
3tc(SYSCLK)  
0
tw(WEV)  
Active pulse width of nWE (Write)  
Inactive pulse width of nCS(2)  
Inactive Read pulse width of nOE(2)  
Inactive Write pulse width of nWE(2)  
tw(CSIV)  
tw(OEIV)  
tw(WEIV)  
tsu(DV-WEV)  
th(DV-WEIV)  
Setup time, D before nWE active  
Hold time, D after nWE inactive  
0
Read/Write Parameters with RnW pin - Single Read/Write pin  
tsu(ABBV-CSV)  
tsu(RNWV-CSV)  
th(ABBV-CSIV)  
tw(CSV_RD)  
tw(CSV_WR)  
tw(CSIV)  
Setup time, A/BASESEL/nBE before nCS active  
Setup time, RnW before nCS active  
Hold time, A/BASESEL/nBE/RnW after nCS inactive  
Active pulse width of nCS for read operation(1)  
Active pulse width of nCS for write operation  
Inactive pulse width of nCS(2)  
0
0.5tc(SYSCLK)  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4tc(SYSCLK)  
4tc(SYSCLK)  
3tc(SYSCLK)  
3tc(SYSCLK)  
0
tw(RNWIV)  
Inactive pulse width of RnW(2)  
tsu(DV-CSV)  
th(DV-CSIV)  
Setup time, D before nCS active  
Hold time, D after nCS inactive  
0
(1) For accesses to the device region, additional 2 SYSCLK cycles are required.  
(2) For accesses to the device region with nRDY pin, additional SYSCLK cycle is required.  
Copyright © 2020, Texas Instruments Incorporated  
Specifications  
137  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
MAX UNIT  
Table 5-71. HIC Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
Read/Write Parameters with nOE and nWE pins  
(1)  
td(OEV-DV)  
Output data delay time : nOE to D output valid  
3tc(SYSCLK)  
4tc(SYSCLK) + 14 ns  
2tc(SYSCLK) + 14 ns  
11 ns  
td(OEIV-DIV)  
td(OEV-RDYV)  
td(WEV-RDYV)  
td(RDYV-DV)  
tw(RDYACT)  
Output data hold time : nOE invalid to D output invalid (tri-state)  
Read Ready delay time : nOE to nRDY output valid  
Write Ready delay time : nWE to nRDY output valid  
Ready to Data delay time : nRDY output valid to D output valid  
Active pulse width of nRDY output  
1tc(SYSCLK)  
0
0
-3  
11 ns  
3
ns  
ns  
2tc(SYSCLK)  
Read/Write Parameters with RnW pin  
(1)  
td(CSV-DV)  
Output delay time : nCS active to D output valid  
3tc(SYSCLK)  
1tc(SYSCLK)  
0
4tc(SYSCLK) + 14 ns  
2tc(SYSCLK) + 14 ns  
11 ns  
td(CSIV-DIV)  
td(CSV-RDYV)  
td(RDYV-DV)  
tw(RDYACT)  
Output hold time : nCS inactive to D output invalid (tri-state)  
Output delay time : nCS to nRDY output valid  
Ready to Data delay time : nRDY output valid to D output valid  
Active pulse width of nRDY output  
-3  
3
ns  
ns  
2tc(SYSCLK)  
(1) Applicable to mailbox accesses only. Direct memory map (Device) accesses are qualified with nRDY pin.  
138  
Specifications  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6 Detailed Description  
6.1 Overview  
C2000™ 32-bit microcontrollers are optimized for processing, sensing, and actuation to improve closed-  
loop performance in real-time control applications such as industrial motor drives; solar inverters and  
digital power; electrical vehicles and transportation; motor control; and sensing and signal processing.  
The TMS320F28002x (F28002x) is a powerful 32-bit floating-point microcontroller unit (MCU) that lets  
designers incorporate crucial control peripherals, differentiated analog, and nonvolatile memory on a  
single device.  
The real-time control subsystem is based on TI’s 32-bit C28x CPU, which provides 100 MHz of signal  
processing performance. The C28x CPU is further boosted by the new TMU extended instruction set,  
which enables fast execution of algorithms with trigonometric operations commonly found in transforms  
and torque loop calculations; and the VCRC extended instruction set, which reduces the latency for  
complex math operations commonly found in encoded applications.  
The F28002x supports up to 128KB (64KW) of flash memory in one bank. Up to 24KB (12KW) of on-chip  
SRAM is also available in blocks of 4KB (2KW) for efficient system partitioning. Flash ECC, SRAM  
ECC/parity, and dual-zone security are also supported.  
High-performance analog blocks are integrated on the F28002x MCU to further enable system  
consolidation. Two separate 12-bit ADCs provide precise and efficient management of multiple analog  
signals, which ultimately boosts system throughput. Four analog comparator modules provide continuous  
monitoring of input voltage levels for trip conditions.  
The TMS320C2000™ devices contain industry-leading control peripherals with frequency-independent  
ePWM/HRPWM and eCAP allow for a best-in-class level of control to the system.  
Connectivity is supported through various industry-standard communication ports (such as SPI, SCI, I2C,  
PMBus, LIN, and CAN) and offers multiple muxing options for optimal signal placement in a variety of  
applications. New to the C2000™ platform is Host Interface Controller (HIC), a high throughput interface  
that allows an external host to access resources of the TMS320F28002x. Additionally, in an industry first,  
the FSI enables high-speed, robust communication to complement the rich set of peripherals that are  
embedded in the device.  
A specially enabled device variant, TMS320F28002xC, allows access to the Configurable Logic Block  
(CLB) for additional interfacing features and allows access to the secure ROM, which includes a library to  
enable InstaSPIN-FOC™. See Device Comparison for more information.  
The Embedded Real-Time Analysis and Diagnostic (ERAD) module enhances the debug and system  
analysis capabilities of the device by providing additional hardware breakpoints and counters for profiling.  
To learn more about the C2000 MCUs, visit the C2000 Overview at www.ti.com/c2000.  
Copyright © 2020, Texas Instruments Incorporated  
Detailed Description  
139  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.2 Functional Block Diagram  
Figure 6-1 shows the CPU system and associated peripherals.  
Boot ROM  
Secure ROM  
C28x CPU  
FPU32  
Flash Bank0  
16 Sectors  
64 KW (128 KB)  
FINTDIV  
TMU  
VCRC  
CPU Timers  
DCC  
DCSM  
ePIE  
ERAD  
M0-M1 RAM  
2 KW (4 KB)  
BGCRC  
HIC  
LS4-LS7 RAM  
8 KW (16 KB)  
Crystal Oscillator  
INTOSC1, INTOSC2  
PLL  
GS0 RAM  
2 KW (4 KB)  
DMA  
6 Channles  
PF1  
PF3  
PF4  
PF2  
PF7  
PF8  
PF9  
Result  
2x 12-Bit ADC  
Data  
14x ePWM Chan.  
(8 Hi-Res Capable)  
1x PMBUS  
2x SPI  
1x CAN  
2x LIN  
1x SCI  
2x I2C  
4x CMPSS  
39x GPIO  
Input XBAR  
Output XBAR  
ePWM XBAR  
3x eCAP  
(1 HRCAP Capable)  
1x FSI RX  
1x FSI TX  
NMI  
Watchdog  
2x eQEP  
(CW/CCW Support)  
Windowed  
Watchdog  
Figure 6-1. Functional Block Diagram  
140  
Detailed Description  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.3 Memory  
6.3.1 Memory Map  
Table 6-1 describes the memory map. See the Memory Controller Module section of the System Control  
chapter in the TMS320F28002x Microcontrollers Technical Reference Manual.  
Table 6-1. Memory Map  
START  
ADDRESS  
END  
ADDRESS  
HIC  
ACCESS  
DMA  
ACCESS  
ECC/  
PARITY  
ACCESS  
PROTECTION  
MEMORY  
SIZE  
SECURITY  
M0 RAM  
M1 RAM  
1K x 16  
1K x 16  
512 x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
1K x 16  
1K x 16  
64K x 16  
32K x 16  
64K x 16  
0x0000 0000  
0x0000 0400  
0x0000 0D00  
0x0000 A000  
0x0000 A800  
0x0000 B000  
0x0000 B800  
0x0000 C000  
0x0004 9000  
0x0007 0000  
0x0007 8000  
0x0008 0000  
0x003E 8000  
0x003F 0000  
0x0000 03FF  
0x0000 07FF  
0x0000 0EFF  
0x0000 A7FF  
0x0000 AFFF  
0x0000 B7FF  
0x0000 BFFF  
0x0000 C7FF  
0x0004 97FF  
0x0007 03FF  
0x0007 83FF  
0x0008 FFFF  
0x003E FFFF  
0x003F FFFF  
-
-
ECC  
ECC  
-
Yes  
-
-
-
-
Yes  
PieVectTable  
LS4 RAM  
-
-
-
-
-
-
ECC  
ECC  
ECC  
ECC  
Parity  
Parity  
ECC  
ECC  
ECC  
Parity  
Parity  
Yes  
Yes  
Yes  
Yes  
Yes  
-
LS5 RAM  
-
-
Yes  
LS6 RAM  
-
-
Yes  
LS7 RAM  
-
-
Yes  
GS0 RAM  
CAN A Message RAM  
TI OTP(1)  
Yes  
Yes  
Yes  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
User OTP  
Yes  
Yes  
Yes  
-
Flash  
Secure ROM  
Boot ROM  
Pie Vector Fetch Error  
(part of Boot ROM)  
1 x 16  
0x003F FFBE  
0x003F FFC0  
0x003F FFBF  
0x003F FFFF  
-
-
-
-
Parity  
Parity  
-
-
-
-
Default Vectors  
(part of Boot ROM)  
64 x 16  
(1) TI OTP is for TI internal use only.  
6.3.1.1 Dedicated RAM (Mx RAM)  
The CPU subsystem has two dedicated ECC-capable RAM blocks: M0 and M1. These memories are  
small nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has access to them).  
6.3.1.2 Local Shared RAM (LSx RAM)  
Local shared RAMs (LSx RAMs) are accessible to the CPU, HIC, and BGCRC. All LSx RAM blocks have  
ECC. These memories are secure and have CPU access protection (CPU write/CPU fetch).  
6.3.1.3 Global Shared RAM (GSx RAM)  
Global shared RAMs (GSx RAMs) are accessible from the CPU, HIC, and DMA. The CPU, HIC, and DMA  
have full read and write access to these memories. All GSx RAM blocks have parity. The GSx RAMs have  
access protection (CPU write/CPU fetch/DMA write/HIC write).  
Copyright © 2020, Texas Instruments Incorporated  
Detailed Description  
141  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.3.2 Flash Memory Map  
On the F28002x devices one flash bank (128KB [64KW]) is available. Code to program the flash should  
be executed out of RAM, there should not be any kind of access to the flash bank when an erase or  
program operation is in progress. Table 6-2 lists the addresses of flash sectors available for each part  
number.  
Table 6-2. Addresses of Flash Sectors  
ADDRESS  
START  
ECC ADDRESS  
START  
PART NUMBER  
SECTOR  
SIZE  
END  
SIZE  
END  
OTP Sectors  
TI OTP  
1K x 16  
1K x 16  
0x0007 0000  
0x0007 8000  
0x0007 03FF  
0x0007 83FF  
128 x 16  
128 x 16  
0x0107 0000  
0x0107 1000  
0x0107 007F  
0x0107 107F  
All F28002x  
DCSM OTP  
Bank 0 Sectors  
Sector 0  
Sector 1  
Sector 2  
Sector 3  
Sector 4  
Sector 5  
Sector 6  
Sector 7  
Sector 8  
Sector 9  
Sector 10  
Sector 11  
Sector 12  
Sector 13  
Sector 14  
Sector 15  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
0x0008 0000  
0x0008 1000  
0x0008 2000  
0x0008 3000  
0x0008 4000  
0x0008 5000  
0x0008 6000  
0x0008 7000  
0x0008 8000  
0x0008 9000  
0x0008 A000  
0x0008 B000  
0x0008 C000  
0x0008 D000  
0x0008 E000  
0x0008 F000  
0x0008 0FFF  
0x0008 1FFF  
0x0008 2FFF  
0x0008 3FFF  
0x0008 4FFF  
0x0008 5FFF  
0x0008 6FFF  
0x0008 7FFF  
0x0008 8FFF  
0x0008 9FFF  
0x0008 AFFF  
0x0008 BFFF  
0x0008 CFFF  
0x0008 DFFF  
0x0008 EFFF  
0x0008 FFFF  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
512 x 16  
0x0108 0000  
0x0108 0200  
0x0108 0400  
0x0108 0600  
0x0108 0800  
0x0108 0A00  
0x0108 0C00  
0x0108 0E00  
0x0108 1000  
0x0108 1200  
0x0108 1400  
0x0108 1600  
0x0108 1800  
0x0108 1A00  
0x0108 1C00  
0x0108 1E00  
0x0108 01FF  
0x0108 03FF  
0x0108 05FF  
0x0108 07FF  
0x0108 09FF  
0x0108 0BFF  
0x0108 0DFF  
0x0108 0FFF  
0x0108 11FF  
0x0108 13FF  
0x0108 15FF  
0x0108 17FF  
0x0108 19FF  
0x0108 1BFF  
0x0108 1DFF  
0x0108 1FFF  
All F28002x  
F280025,  
F280024,  
F280023,  
F280022  
F280025,  
F280024  
142  
Detailed Description  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.3.3 Peripheral Registers Memory Map  
Table 6-3 lists the peripheral registers.  
Table 6-3. Peripheral Registers Memory Map (C28x)  
Bit Field Name  
Pipeline  
Protected  
DMA  
Access  
HIC  
Access  
DriverLib Name  
Base Address  
Instance  
Structure  
Peripheral Frame 0 (PF0)  
ADCARESULT_BASE  
ADCCRESULT_BASE  
CPUTIMER0_BASE  
CPUTIMER1_BASE  
CPUTIMER2_BASE  
PIECTRL_BASE  
AdcaResultRegs  
AdccResultRegs  
CpuTimer0Regs  
CpuTimer1Regs  
CpuTimer2Regs  
PieCtrlRegs  
ADC_RESULT_REGS  
ADC_RESULT_REGS  
CPUTIMER_REGS  
CPUTIMER_REGS  
CPUTIMER_REGS  
PIE_CTRL_REGS  
DMA_REGS  
0x0000_0B00  
0x0000_0B40  
0x0000_0C00  
0x0000_0C08  
0x0000_0C10  
0x0000_0CE0  
0x0000_1000  
0x0000_1020  
0x0000_1040  
0x0000_1060  
0x0000_1080  
0x0000_10A0  
0x0000_10C0  
-
-
-
-
-
-
-
-
-
-
-
-
-
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DmaRegs  
DMA_BASE  
Dmach1Regs  
Dmach2Regs  
Dmach3Regs  
Dmach4Regs  
Dmach5Regs  
Dmach6Regs  
DMA_CH_REGS  
DMA_CH_REGS  
DMA_CH_REGS  
DMA_CH_REGS  
DMA_CH_REGS  
DMA_CH_REGS  
DMA_CH1_BASE  
DMA_CH2_BASE  
DMA_CH3_BASE  
DMA_CH4_BASE  
DMA_CH5_BASE  
DMA_CH6_BASE  
Peripheral Frame 1 (PF1)  
CLB1_LOGICCFG_BASE  
CLB1_LOGICCTRL_BASE  
CLB1_DATAEXCH_BASE  
CLB2_LOGICCFG_BASE  
CLB1_DATAEXCH_BASE  
CLB2_LOGICCFG_BASE  
EPWM1_BASE  
Clb1LogicCfgRegs  
Clb1LogicCtrlRegs  
Clb1DataExchRegs  
Clb2LogicCfgRegs  
Clb1DataExchRegs  
Clb2LogicCfgRegs  
EPwm1Regs  
CLB_LOGIC_CONFIG_REGS  
CLB_LOGIC_CONTROL_REGS  
CLB_DATA_EXCHANGE_REGS  
CLB_LOGIC_CONFIG_REGS  
CLB_DATA_EXCHANGE_REGS  
CLB_LOGIC_CONFIG_REGS  
EPWM_REGS  
0x0000_3000  
0x0000_3100  
0x0000_3180  
0x0000_3200  
0x0000_3300  
0x0000_3380  
0x0000_4000  
0x0000_4100  
0x0000_4200  
0x0000_4300  
0x0000_4400  
0x0000_4500  
0x0000_4600  
0x0000_5100  
0x0000_5140  
0x0000_5200  
0x0000_5240  
0x0000_5280  
0x0000_52A0  
0x0000_5C80  
0x0000_5CA0  
0x0000_5CC0  
0x0000_5CE0  
-
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
-
-
-
-
-
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
EPwm2Regs  
EPWM_REGS  
EPWM2_BASE  
EPwm3Regs  
EPWM_REGS  
EPWM3_BASE  
EPwm4Regs  
EPWM_REGS  
EPWM4_BASE  
EPwm5Regs  
EPWM_REGS  
EPWM5_BASE  
EPwm6Regs  
EPWM_REGS  
EPWM6_BASE  
EPwm7Regs  
EPWM_REGS  
EPWM7_BASE  
EQep1Regs  
EQEP_REGS  
EQEP1_BASE  
EQep2Regs  
EQEP_REGS  
EQEP2_BASE  
ECap1Regs  
ECAP_REGS  
ECAP1_BASE  
ECap2Regs  
ECAP_REGS  
ECAP2_BASE  
ECap3Regs  
ECAP_REGS  
ECAP3_BASE  
Hrcap3Regs  
HRCAP_REGS  
HRCAP3_BASE  
Cmpss1Regs  
Cmpss2Regs  
Cmpss3Regs  
Cmpss4Regs  
CMPSS_REGS  
CMPSS1_BASE  
CMPSS_REGS  
CMPSS2_BASE  
CMPSS_REGS  
CMPSS3_BASE  
CMPSS_REGS  
CMPSS4_BASE  
Peripheral Frame 2 (PF2)  
SPIA_BASE  
SpiaRegs  
SPI_REGS  
SPI_REGS  
0x0000_6100  
0x0000_6110  
0x0000_6340  
0x0000_6400  
0x0000_6500  
0x0000_6600  
0x0000_6680  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
SpibRegs  
SPIB_BASE  
BgcrcCpuRegs  
PmbusaRegs  
HicRegs  
BGCRC_REGS  
PMBUS_REGS  
HIC_CFG_REGS  
FSI_TX_REGS  
FSI_RX_REGS  
BGCRC_CPU_BASE  
PMBUSA_BASE  
HIC_BASE  
FsiTxaRegs  
FsiRxaRegs  
FSITXA_BASE  
FSIRXA_BASE  
Copyright © 2020, Texas Instruments Incorporated  
Detailed Description  
143  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 6-3. Peripheral Registers Memory Map (C28x) (continued)  
Bit Field Name  
Pipeline  
Protected  
DMA  
Access  
HIC  
Access  
DriverLib Name  
Base Address  
Instance  
Structure  
Peripheral Frame 3 (PF3)  
ADCA_BASE  
AdcaRegs  
ADC_REGS  
ADC_REGS  
0x0000_7400  
0x0000_7500  
YES  
YES  
-
-
-
-
AdccRegs  
ADCC_BASE  
Peripheral Frame 4 (PF4)  
INPUTXBAR_BASE  
XBAR_BASE  
InputXbarRegs  
XbarRegs  
INPUT_XBAR_REGS  
XBAR_REGS  
0x0000_7900  
0x0000_7920  
0x0000_7940  
0x0000_7960  
0x0000_7980  
0x0000_7A00  
0x0000_7A40  
0x0000_7A80  
0x0000_7BC0  
0x0000_7C00  
0x0000_7F00  
0x0000_7F80  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SyncSocRegs  
SYNC_SOC_REGS  
SYNCSOC_BASE  
-
InputXbar2Regs  
DmaClaSrcSelRegs  
EPwmXbarRegs  
ClbXbarRegs  
INPUT_XBAR_REGS  
DMA_CLA_SRC_SEL_REGS  
EPWM_XBAR_REGS  
CLB_XBAR_REGS  
INPUTXBAR2_BASE  
DMACLASRCSEL_BASE  
EPWMXBAR_BASE  
CLBXBAR_BASE  
-
-
-
-
OutputXbarRegs  
OutputXbar2Regs  
GpioCtrlRegs  
OUTPUT_XBAR_REGS  
OUTPUT_XBAR_REGS  
GPIO_CTRL_REGS  
OUTPUTXBAR_BASE  
OUTPUTXBAR2_BASE  
GPIOCTRL_BASE  
-
-
-
-
GpioDataRegs  
GpioDataReadRegs  
GPIO_DATA_REGS  
GPIO_DATA_READ_REGS  
GPIODATA_BASE  
GPIODATAREAD_BASE  
Peripheral Frame 5 (PF5)  
DEVCFG_BASE  
YES  
DevCfgRegs  
DEV_CFG_REGS  
CLK_CFG_REGS  
0x0005_D000  
0x0005_D200  
0x0005_D300  
0x0005_D500  
0x0005_D700  
0x0005_F000  
0x0005_F040  
0x0005_F070  
0x0005_F080  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ClkCfgRegs  
CLKCFG_BASE  
CpuSysRegs  
CPU_SYS_REGS  
CPUSYS_BASE  
PeriphAcRegs  
PERIPH_AC_REGS  
PERIPHAC_BASE  
AnalogSubsysRegs  
DcsmBank0Z1Regs  
DcsmBank0Z2Regs  
DcsmCommonRegs  
DcsmCommon2Regs  
ANALOG_SUBSYS_REGS  
DCSM_BANK0_Z1_REGS  
DCSM_BANK0_Z2_REGS  
DCSM_COMMON_REGS  
DCSM_COMMON2_REGS  
ANALOGSUBSYS_BASE  
DCSM_BANK0_Z1_BASE  
DCSM_BANK0_Z2_BASE  
DCSMCOMMON_BASE  
DCSMCOMMON2_BASE  
Peripheral Frame 6 (PF6)  
MEMCFG_BASE  
MemCfgRegs  
MEM_CFG_REGS  
ACCESSPROTECTION_REGS  
MEMORY_ERROR_REGS  
ROM_WAIT_STATE_REGS  
ROM_PREFETCH_REGS  
FLASH_CTRL_REGS  
0x0005_F400  
0x0005_F500  
0x0005_F540  
0x0005_F580  
0x0005_F588  
0x0005_F800  
0x0005_FB00  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AccessProtectionRegs  
MemoryErrorRegs  
RomWaitStateRegs  
RomPrefetchRegs  
Flash0CtrlRegs  
ACCESSPROTECTION_BASE  
MEMORYERROR_BASE  
ROMWAITSTATE_BASE  
ROMPREFETCH_BASE  
FLASH0CTRL_BASE  
FLASH0ECCREGS_BASE  
Peripheral Frame 7 (PF7)  
CANA_BASE  
Flash0EccRegs  
FLASH_ECC_REGS  
CanaRegs  
CAN_REGS  
CAN_MBOX  
0x0004_8000  
0x0004_9000  
0x0005_E000  
0x0005_E200  
0x0005_E700  
0x0005_E740  
0x0005_E800  
0x0005_E900  
0x0005_E908  
0x0005_E910  
0x0005_E918  
0x0005_E920  
0x0005_E928  
0x0005_E930  
0x0005_E938  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
CanaMboxRegs  
HwbistRegs  
CANAMBOX_BASE  
HWBIST_BASE  
YES  
YES  
HWBIST_REGS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
MpostRegs  
MPOST_REGS  
MPOST_BASE  
Dcc0Regs  
DCC_REGS  
DCC0_BASE  
Dcc1Regs  
DCC_REGS  
DCC1_BASE  
EradGlobalRegs  
EradHWBP1Regs  
EradHWBP2Regs  
EradHWBP3Regs  
EradHWBP4Regs  
EradHWBP5Regs  
EradHWBP6Regs  
EradHWBP7Regs  
EradHWBP8Regs  
ERAD_GLOBAL_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERADGLOBAL_BASE  
ERADHWBP1_BASE  
ERADHWBP2_BASE  
ERADHWBP3_BASE  
ERADHWBP4_BASE  
ERADHWBP5_BASE  
ERADHWBP6_BASE  
ERADHWBP7_BASE  
ERADHWBP8_BASE  
144  
Detailed Description  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 6-3. Peripheral Registers Memory Map (C28x) (continued)  
Bit Field Name  
Pipeline  
Protected  
DMA  
Access  
HIC  
Access  
DriverLib Name  
Base Address  
Instance  
Structure  
EradCounter1Regs  
EradCounter2Regs  
EradCounter3Regs  
EradCounter4Regs  
EradCRCGlobalRegs  
EradCRC1Regs  
EradCRC2Regs  
EradCRC3Regs  
EradCRC4Regs  
EradCRC5Regs  
EradCRC6Regs  
EradCRC7Regs  
EradCRC8Regs  
ERAD_COUNTER_REGS  
ERAD_COUNTER_REGS  
ERAD_COUNTER_REGS  
ERAD_COUNTER_REGS  
ERAD_CRC_GLOBAL_REGS  
ERAD_CRC_REGS  
ERADCOUNTER1_BASE  
ERADCOUNTER2_BASE  
ERADCOUNTER3_BASE  
ERADCOUNTER4_BASE  
ERADCRCGLOBAL_BASE  
ERADCRC1_BASE  
ERADCRC2_BASE  
ERADCRC3_BASE  
ERADCRC4_BASE  
ERADCRC5_BASE  
ERADCRC6_BASE  
ERADCRC7_BASE  
ERADCRC8_BASE  
Peripheral Frame 8 (PF8)  
LINA_BASE  
0x0005_E980  
0x0005_E990  
0x0005_E9A0  
0x0005_E9B0  
0x0005_EA00  
0x0005_EA10  
0x0005_EA20  
0x0005_EA30  
0x0005_EA40  
0x0005_EA50  
0x0005_EA60  
0x0005_EA70  
0x0005_EA80  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
ERAD_CRC_REGS  
LinaRegs  
LinbRegs  
LIN_REGS  
LIN_REGS  
0x0000_6A00  
0x0000_6B00  
YES  
YES  
YES  
YES  
YES  
YES  
LINB_BASE  
Peripheral Frame 9 (PF9)  
WD_BASE  
WdRegs  
WD_REGS  
NMI_INTRUPT_REGS  
XINT_REGS  
0x0000_7000  
0x0000_7060  
0x0000_7070  
0x0000_7200  
0x0000_7300  
0x0000_7340  
YES  
YES  
YES  
YES  
YES  
YES  
-
-
-
-
-
-
YES  
YES  
YES  
YES  
YES  
YES  
NmiIntruptRegs  
XintRegs  
NMI_BASE  
XINT_BASE  
SciaRegs  
I2caRegs  
I2cbRegs  
SCI_REGS  
SCIA_BASE  
I2C_REGS  
I2CA_BASE  
I2C_REGS  
I2CB_BASE  
Copyright © 2020, Texas Instruments Incorporated  
Detailed Description  
145  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.4 Identification  
Table 6-4 lists the Device Identification Registers. Additional information on these device identification  
registers can be found in the TMS320F28002x Microcontrollers Technical Reference Manual.  
Table 6-4. Device Identification Registers  
NAME  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
Device part identification number  
TMS320F280025  
TMS320F280025C  
TMS320F280024  
TMS320F280024C  
TMS320F280023  
TMS320F280023C  
TMS320F280022  
TMS320F280021  
Silicon revision number  
Revision 0  
0x04FF 0500  
0x04FF 0500  
0x04FE 0500  
0x04FE 0500  
0x04FD 0500  
0x04FD 0500  
0x04FC 0500  
0x04FB 0500  
PARTIDH  
0x0005 D00A  
2
REVID  
0x0005 D00C  
0x0007 01E8  
2
2
0x0000 0000  
Unique identification number. This number is different on each  
individual device with the same PARTIDH. This unique number  
can be used as a serial number in the application. This number  
is present only on TMS devices.  
UID_UNIQUE  
146  
Detailed Description  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.5 Bus Architecture – Peripheral Connectivity  
Table 6-5 lists a broad view of the peripheral and configuration register accessibility from each bus  
master.  
Table 6-5. Peripheral Connectivity  
PERIPHERAL  
C28  
DMA  
HIC  
BGCRC  
SYSTEM PERIPHERALS  
CPU Timers  
ERAD  
Y
Y
GPIO Data  
Y
Y
GPIO Pin Mapping and Configuration  
XBAR Configuration  
System Configuration  
DCC  
Y
Y
Y
Y
MEMORY  
M0/M1  
LSx  
Y
Y
Y
Y
Y
Y
GS0  
Y
Y
Y
ROM  
FLASH  
Y
Y
CONTROL PERIPHERALS  
ePWM/HRPWM  
eCAP  
eQEP(1)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
ANALOG PERIPHERALS  
CMPSS(1)  
Y
Y
Y
Y
Y
ADC Configuration  
ADC Results(1)  
Y
Y
COMMUNICATION PERIPHERALS  
CAN  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
FSITX/FSIRX  
I2C  
LIN  
Y
Y
PMBus  
SCI  
SPI  
Y
(1) These modules are accessible from DMA but cannot trigger a DMA transfer.  
Copyright © 2020, Texas Instruments Incorporated  
Detailed Description  
147  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.6 C28x Processor  
The CPU is a 32-bit fixed-point processor. This device draws from the best features of digital signal  
processing; reduced instruction set computing (RISC); and microcontroller architectures, firmware, and  
tool sets.  
The CPU features include a modified Harvard architecture and circular addressing. The RISC features are  
single-cycle instruction execution, register-to-register operations, and modified Harvard architecture. The  
microcontroller features include ease of use through an intuitive instruction set, byte packing and  
unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables instruction and  
data fetches to be performed in parallel. The CPU can read instructions and data while it writes data  
simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU does this  
over six separate address/data buses.  
For more information on CPU architecture and instruction set, see the TMS320C28x CPU and Instruction  
Set Reference Guide. For more information on the C28x Floating Point Unit (FPU), Trigonometric Math  
Unit, and Cyclic Redundancy Check (VCRC) instruction sets, see the TMS320C28x Extended Instruction  
Sets Technical Reference Manual. A brief overview of the FPU, TMU, and VCRC are provided here.  
6.6.1 Floating-Point Unit (FPU)  
The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU  
by adding registers and instructions to support IEEE single-precision floating-point operations.  
Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point  
unit registers. The additional floating-point unit registers are the following:  
Eight floating-point result registers, RnH (where n = 0–7)  
Floating-point Status Register (STF)  
Repeat Block Register (RB)  
All of the floating-point registers, except the RB, are shadowed. This shadowing can be used in high-  
priority interrupts for fast context save and restore of the floating-point registers.  
6.6.2 Fast Integer Division Unit  
The Fast Integer Division (FINTDIV) unit of the C28x CPU uniquely supports three types of integer division  
(Truncated, Modulus, Euclidean) of varying data type sizes (16/16, 32/16, 32/32, 64/32, 64/64) in unsigned  
or signed formats.  
Truncated integer division is naturally supported by C language (/, % operators).  
Modulus and Euclidean divisions are variants that are more efficient for control algorithms and are  
supported by C intrinsics.  
All three types of integer division produce both a quotient and remainder component, are interruptible, and  
execute in a minimum number of deterministic cycles (10 cycles for a 32/32 division). In addition, the Fast  
Division capabilities of the C28x CPU uniquely support fast execution of floating-point 32-bit (in 5 cycles)  
and 64-bit (in 20 cycles) division.  
For more information about fast integer division, see the Fast Integer Division – A Differentiated Offering  
From C2000™ Product Family Application Report.  
148  
Detailed Description  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.6.3 Trigonometric Math Unit (TMU)  
The TMU extends the capabilities of a C28x+FPU by adding instructions and leveraging existing FPU  
instructions to speed up the execution of common trigonometric and arithmetic operations listed in  
Table 6-6.  
Table 6-6. TMU Supported Instructions  
INSTRUCTIONS  
MPY2PIF32 RaH,RbH  
C EQUIVALENT OPERATION  
PIPELINE CYCLES  
a = b * 2pi  
a = b / 2pi  
a = b/c  
2/3  
2/3  
5
DIV2PIF32 RaH,RbH  
DIVF32 RaH,RbH,RcH  
SQRTF32 RaH,RbH  
a = sqrt(b)  
5
SINPUF32 RaH,RbH  
COSPUF32 RaH,RbH  
ATANPUF32 RaH,RbH  
QUADF32 RaH,RbH,RcH,RdH  
a = sin(b*2pi)  
4
a = cos(b*2pi)  
4
a = atan(b)/2pi  
4
Operation to assist in calculating ATANPU2  
5
No changes have been made to existing instructions, pipeline or memory bus architecture. All TMU  
instructions use the existing FPU register set (R0H to R7H) to carry out their operations.  
Exponent instruction IEXP2F32 and logarithmic instruction LOG2F32 have been added to support  
computation of floating-point power function for the non-linear proportional integral derivative control  
(NLPID) component of the C2000 Digital Control Library. These two added instructions reduce the power  
function calculations from a typical of 300 cycles using library emulation to less than 10 cycles.  
6.6.4 VCRC Unit  
Cyclic redundancy check (CRC) algorithms provide a straightforward method for verifying data integrity  
over large data blocks, communication packets, or code sections. The C28x+VCRC can perform 8-bit, 16-  
bit, 24-bit, and 32-bit CRCs. For example, the VCRC can compute the CRC for a block length of 10 bytes  
in 10 cycles. A CRC result register contains the current CRC, which is updated whenever a CRC  
instruction is executed.  
The following are the CRC polynomials used by the CRC calculation logic of the VCRC:  
CRC8 polynomial = 0x07  
CRC16 polynomial 1 = 0x8005  
CRC16 polynomial 2 = 0x1021  
CRC24 polynomial = 0x5d6dcb  
CRC32 polynomial 1 = 0x04c11db7  
CRC32 polynomial 2 = 0x1edc6f41  
This module can calculate CRCs for a byte of data in a single cycle. The CRC calculation for CRC8,  
CRC16, CRC24, and CRC32 is done byte-wise (instead of computing on a complete 16-bit or 32-bit data  
read by the C28x core) to match the byte-wise computation requirement mandated by various standards.  
The VCRC Unit also allows the user to provide the size (1b-32b) and value of any polynomial to fit custom  
CRC requirements. The CRC execution time increases to three cycles when using a custom polynomial.  
Copyright © 2020, Texas Instruments Incorporated  
Detailed Description  
149  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.7 Embedded Real-Time Analysis and Diagnostic (ERAD)  
The ERAD module enhances the debug and system-analysis capabilities of the device. The debug and  
system-analysis enhancements provided by the ERAD module is done outside of the CPU. The ERAD  
module consists of the Enhanced Bus Comparator units and the System Event Counter units. The  
Enhanced Bus Comparator units are used to generate hardware breakpoints, hardware watch points, and  
other output events. The System Event Counter units are used to analyze and profile the system. The  
ERAD module is accessible by the debugger and by the application software, which significantly increases  
the debug capabilities of many real-time systems, especially in situations where debuggers are not  
connected. In the TMS320F28002x devices, the ERAD module contains eight Enhanced Bus Comparator  
units (which increases the number of Hardware breakpoints from two to ten) and four Benchmark System  
Event Counter units.  
6.8 Background CRC-32 (BGCRC)  
The Background CRC (BGCRC) module computes a CRC-32 on a configurable block of memory. It  
accomplishes this by fetching the specified block of memory during idle cycles (when the CPU, HIC, or  
DMA is not accessing the memory block). The calculated CRC-32 value is compared against a golden  
CRC-32 value to indicate a pass or fail. In essence, the BGCRC helps identify memory faults and  
corruption.  
The BGCRC module has the following features:  
One cycle CRC-32 computation on 32 bits of data  
No CPU bandwidth impact for zero wait state memory  
Minimal CPU bandwidth impact for non-zero wait state memory  
Dual operation modes (CRC-32 mode and scrub mode)  
Watchdog timer to time CRC-32 completion  
Ability to pause and resume CRC-32 computation  
150  
Detailed Description  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.9 Direct Memory Access (DMA)  
The DMA module provides a hardware method of transferring data between peripherals and/or memory  
without intervention from the CPU, thereby freeing up bandwidth for other system functions. Additionally,  
the DMA has the capability to orthogonally rearrange the data as it is transferred as well as “ping-pong”  
data between buffers. These features are useful for structuring data into blocks for optimal CPU  
processing. Figure 6-2 shows a device-level block diagram of the DMA.  
DMA features include:  
Six channels with independent PIE interrupts  
Peripheral interrupt trigger sources  
ADC interrupts and EVT signals  
External Interrupts  
ePWM SOC signals  
CPU timers  
eCAP  
SPI transmit and receive  
CAN transmit and receive  
LIN transmit and receive  
Data sources and destinations:  
GSx RAM  
ADC result registers  
Control peripheral registers (ePWM, eQEP, eCAP)  
SPI, LIN, CAN, and PMBus registers  
Word Size: 16-bit or 32-bit (SPI limited to 16-bit)  
Throughput: Four cycles per word without arbitration  
Copyright © 2020, Texas Instruments Incorporated  
Detailed Description  
151  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Global Shared  
(GS0) RAM  
ADC  
WRAPPER  
ADC  
RESULTS  
XINT  
TIMER  
CAN  
LIN  
C28x bus  
DMA bus  
DMA Trigger  
TINT(0-2)  
XINT(1-5)  
Source Selection  
ADCx.INT(1-5), ADCx.EVT  
CANxIF(1-3)  
C28x  
PIE  
DMACHSRCSEL1.CHx  
DMACHSRCSEL2.CHx  
CHx.MODE.PERINTSEL  
(x = 1 to 6)  
DMA  
ECAP(1-3)DMA  
EPWM(1-7).SOCA, EPWM(1-7.SOCB  
SPITXDMA(A-B), SPIRXDMA(A-B)  
FSITXADMA, FSIRXADMA  
eCAP EPWM  
SPI  
PMBUS  
FSI  
Figure 6-2. DMA Block Diagram  
152  
Detailed Description  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.10 Device Boot Modes  
This section explains the default boot modes, as well as all the available boot modes supported on this  
device. The boot ROM uses the boot mode select, general purpose input/output (GPIO) pins to determine  
the boot mode configuration.  
Table 6-7 shows the boot mode options available for selection by the default boot mode select pins. Users  
have the option to program the device to customize the boot modes selectable in the boot-up table as well  
as the boot mode select pin GPIOs used.  
All the peripheral boot modes that are supported use the first instance of the peripheral module (SCIA,  
SPIA, I2CA, CANA, and so forth). Whenever these boot modes are referred to in this chapter, such as SCI  
boot, it is actually referring to the first module instance, which means the SCI boot on the SCIA port. The  
same applies to the other peripheral boots.  
Table 6-7. Device Default Boot Modes  
GPIO24  
GPIO32  
BOOT MODE  
(DEFAULT BOOT MODE SELECT PIN 1)  
(DEFAULT BOOT MODE SELECT PIN 0)  
Parallel IO  
SCI / Wait Boot(1)  
CAN  
0
0
1
1
0
1
0
1
Flash  
(1) SCI boot mode can be used as a wait boot mode as long as SCI continues to wait for an 'A' or 'a' during the SCI autobaud lock process.  
6.10.1 Device Boot Configurations  
This section details what boot configurations are available and how to configure them. This device  
supports from 0 boot mode select pins up to 3 boot mode select pins as well as from 1 configured boot  
mode up to 8 configured boot modes.  
To change and configure the device from the default settings to custom settings for your application, use  
the following process:  
1. Determine all the various ways you want application to be able to boot. (For example: Primary boot  
option of Flash boot for your main application, secondary boot option of CAN boot for firmware  
updates, tertiary boot option of SCI boot for debugging, etc)  
2. Based on the number of boot modes needed, determine how many boot mode select pins (BMSPs)  
are required to select between your selected boot modes. (For example: 2 BMSPs are required to  
select between 3 boot mode options)  
3. Assign the required BMSPs to a physical GPIO pin. (For example, BMSP0 to GPIO10, BMSP1 to  
GPIO51, and BMSP2 left as default which is disabled). Refer to Section 6.10.1.1 for all the details on  
performing these configurations.  
4. Assign the determined boot mode definitions to indexes in your custom boot table that correlate to the  
decoded value of the BMSPs. For example, BOOTDEF0=Boot to Flash, BOOTDEF1=CAN Boot,  
BOOTDEF2=SCI Boot; all other BOOTDEFx are left as default/nothing). Refer to Section 6.10.1.2 for  
all the details on setting up and configuring the custom boot mode table.  
Additionally, provides some example use cases on how to configure the BMSPs and custom boot tables.  
Copyright © 2020, Texas Instruments Incorporated  
Detailed Description  
153  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.10.1.1 Configuring Boot Mode Pins  
This section explains how the boot mode select pins can be customized by the user, by programming the  
BOOTPIN-CONFIG location (refer to Table 6-8) in the user-configurable dual-zone security module  
(DCSM) OTP. The location in the DCSM OTP is Z1-OTP-BOOTPIN-CONFIG or Z2-OTP-BOOTPIN-  
CONFIG. When debugging, EMU-BOOTPIN-CONFIG is the emulation equivalent of Z1-OTP-BOOTPIN-  
CONFIG/Z2-OTP-BOOTPIN-CONFIG, and can be programmed to experiment with different boot modes  
without writing to OTP. The device can be programmed to use 0, 1, 2, or 3 boot mode select pins as  
needed.  
NOTE  
When using Z2-OTP-BOOTPIN-CONFIG, the configurations programmed in this location will  
take priority over the configurations in Z1-OTP-BOOTPIN-CONFIG. It is recommended to  
use Z1-OTP-BOOTPIN-CONFIG first and then if OTP configurations need to be altered,  
switch to using Z2-OTP-BOOTPIN-CONFIG.  
Table 6-8. BOOTPIN-CONFIG Bit Fields  
BIT  
31:24  
23:16  
15:8  
NAME  
DESCRIPTION  
Key  
Write 0x5A to these 8-bits to indicate the bits in this register are valid  
Refer to BMSP0 description except for BMSP2  
Refer to BMSP0 description except for BMSP1  
Boot Mode Select Pin 2 (BMSP2)  
Boot Mode Select Pin 1 (BMSP1)  
Set to the GPIO pin to be used during boot (up to 255):  
- 0x0 = GPIO0  
- 0x01 = GPIO1  
- and so on  
7:0  
Boot Mode Select Pin 0 (BMSP0)  
Writing 0xFF disables BMSP0 and this pin is no longer used to select  
the boot mode.  
The following GPIOs cannot be used as a BMSP. If selected for a particular BMSP, the boot ROM  
automatically selects the factory default GPIO (the factory default for BMSP2 is 0xFF, which disables the  
BMSP).  
GPIO 20 and GPIO 21  
GPIO 36 and GPIO 38  
GPIO 47 to GPIO 60  
GPIO 63 to GPIO 223  
154  
Detailed Description  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 6-9. Standalone Boot Mode Select Pin Decoding  
BOOTPIN_CONFIG  
BMSP0  
BMSP1  
BMSP2  
REALIZED BOOT MODE  
KEY  
!= 0x5A  
Don’t Care  
Don’t Care  
Don’t Care  
Boot as defined by the factory default BMSPs  
Boot as defined in the boot table for boot mode  
0xFF  
0xFF  
0xFF  
0
(All BMSPs disabled)  
Boot as defined by the value of BMSP0  
(BMSP1 and BMSP2 disabled)  
Valid GPIO  
0xFF  
0xFF  
Valid GPIO  
0xFF  
0xFF  
0xFF  
Boot as defined by the value of BMSP1  
(BMSP0 and BMSP2 disabled)  
Boot as defined by the value of BMSP2  
(BMSP0 and BMSP1 disabled)  
0xFF  
Valid GPIO  
Boot as defined by the values of BMSP0 and  
Valid GPIO  
Valid GPIO  
Valid GPIO  
0xFF  
0xFF  
BMSP1  
(BMSP2 disabled)  
Boot as defined by the values of BMSP0 and  
BMSP2  
Valid GPIO  
(BMSP1 disabled)  
Boot as defined by the values of BMSP1 and  
= 0x5A  
0xFF  
Valid GPIO  
Valid GPIO  
Valid GPIO  
Valid GPIO  
BMSP2  
(BMSP0 disabled)  
Boot as defined by the values of BMSP0,  
BMSP1, and BMSP2  
Valid GPIO  
BMSP0 is reset to the factory default BMSP0  
GPIO  
Boot as defined by the values of BMSP0,  
BMSP1, and BMSP2  
Invalid GPIO  
Valid GPIO  
Valid GPIO  
Valid GPIO  
Invalid GPIO  
Valid GPIO  
Valid GPIO  
Valid GPIO  
Invalid GPIO  
BMSP1 is reset to the factory default BMSP1  
GPIO  
Boot as defined by the values of BMSP0,  
BMSP1, and BMSP2  
BMSP2 is reset to the factory default state,  
which is disabled  
Boot as defined by the values of BMSP0 and  
BMSP1  
NOTE  
When decoding the boot mode, BMSP0 is the least-significant-bit and BMSP2 is the most-  
significant-bit of the boot table index value. It is recommended when disabling BMSPs to  
start with disabling BMSP2. For example, in an instance when only using BMSP2 (BMSP1  
and BMSP0 are disabled), then only the boot table indexes of 0 and 4 will be selectable. In  
the instance when using only BMSP0, then the selectable boot table indexes are 0 and 1.  
Copyright © 2020, Texas Instruments Incorporated  
Detailed Description  
155  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.10.1.2 Configuring Boot Mode Table Options  
This section explains how to configure the boot definition table, BOOTDEF, for the device and the  
associated boot options. The 64-bit location is located in user-configurable DCSM OTP in the Z1-OTP-  
BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH locations. When debugging, EMU-BOOTDEF-LOW and  
EMU-BOOTDEF-HIGH are the emulation equivalents of Z1-OTP-BOOTDEF-LOW and Z1-OTP-  
BOOTDEF-HIGH, and can be programmed to experiment with different boot mode options without writing  
to OTP. The range of customization to the boot definition table depends on how many boot mode select  
pins (BMSP) are being used. For example, 0 BMSPs equals to 1 table entry, 1 BMSP equals to 2 table  
entries, 2 BMSPs equals to 4 table entries, and 3 BMSPs equals to 8 table entries. Refer to the  
TMS320F28002x Microcontrollers Technical Reference Manual for examples on how to set up the  
BOOTPIN_CONFIG and BOOTDEF values.  
NOTE  
The locations Z2-OTP-BOOTDEF-LOW and Z2-OTP-BOOTDEF-HIGH will be used instead  
of Z1-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH locations when Z2-OTP-  
BOOTPIN-CONFIG is configured. Refer to Configuring Boot Mode Pins for more details on  
BOOTPIN_CONFIG usage.  
Table 6-10. BOOTDEF Bit Fields  
BYTE  
POSITION  
BOOTDEF NAME  
NAME  
DESCRIPTION  
Set the boot mode for index 0 of the boot table.  
Different boot modes and their options can  
include, for example, a boot mode that uses  
different GPIOs for a specific bootloader or a  
different flash entry point address. Any  
unsupported boot mode will cause the device to  
either go to wait boot or boot to flash.  
BOOT_DEF0  
7:0  
BOOT_DEF0 Mode/Options  
Refer to GPIO Assignments for valid BOOTDEF  
values to set in the table.  
BOOT_DEF1  
BOOT_DEF2  
BOOT_DEF3  
BOOT_DEF4  
BOOT_DEF5  
BOOT_DEF6  
BOOT_DEF7  
15:8  
BOOT_DEF1 Mode/Options  
BOOT_DEF2 Mode/Options  
BOOT_DEF3 Mode/Options  
BOOT_DEF4 Mode/Options  
BOOT_DEF5 Mode/Options  
BOOT_DEF6 Mode/Options  
BOOT_DEF7 Mode/Options  
23:16  
31:24  
39:32  
47:40  
55:48  
63:56  
Refer to BOOT_DEF0 description  
156  
Detailed Description  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.10.2 GPIO Assignments  
This section details the GPIOs and boot option values used for boot mode set in the BOOT_DEF memory  
location located at Z1-OTP-BOOTDEF-LOW/ Z2-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH/  
Z2-OTP-BOOTDEF-HIGH. Refer to Configuring Boot Mode Table Options on how to configure  
BOOT_DEF. When selecting a boot mode option, make sure to verify that the necessary pins are  
available in the pin mux options for the specific device package being used.  
Table 6-11. SCI Boot Options  
OPTION  
BOOTDEF VALUE  
SCITXDA GPIO  
GPIO29  
SCIRXDA GPIO  
GPIO28  
GPIO17  
GPIO9  
0 (default)  
0x01  
0x21  
0x41  
0x61  
0x81  
1
2
3
4
GPIO16  
GPIO8  
GPIO2  
GPIO3  
GPIO16  
GPIO3  
Table 6-12. CAN Boot Options  
OPTION  
BOOTDEF VALUE  
CANTXA GPIO  
GPIO4  
CANRXA GPIO  
GPIO5  
0 (default)  
0x02  
0x22  
0x42  
1
2
GPIO32  
GPIO33  
GPIO2  
GPIO3  
Table 6-13. I2C Boot Options  
OPTION  
BOOTDEF VALUE  
SDAA GPIO  
GPIO32  
SCLA GPIO  
GPIO33  
GPIO1  
0
1
2
0x07  
0x27  
0x47  
GPIO0  
GPIO10  
GPIO8  
Table 6-14. RAM Boot Options  
RAM ENTRY POINT  
(ADDRESS)  
OPTION  
BOOTDEF VALUE  
0
0x05  
0x0000 0000  
Table 6-15. Flash Boot Options  
FLASH ENTRY POINT  
OPTION  
BOOTDEF VALUE  
FLASH SECTOR  
(ADDRESS)  
0x0008 0000  
0x0008 4000  
0x0008 8000  
0x0008 EFF0  
0 (default)  
0x03  
0x23  
0x43  
0x63  
Bank0 Sector 0  
Bank 0 Sector 4  
1
2
3
Bank 0 Sector 8  
Bank 0, End of Sector 14  
Table 6-16. Wait Boot Options  
OPTION  
BOOTDEF VALUE  
WATCHDOG  
Enabled  
0
1
0x04  
0x24  
Disabled  
Copyright © 2020, Texas Instruments Incorporated  
Detailed Description  
157  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 6-17. SPI Boot Options  
OPTION  
BOOTDEF VALUE  
SPISIMOA  
GPIO2  
SPISOMIA  
GPIO1  
SPICLKA  
GPIO3  
GPIO3  
GPIO9  
GPIO9  
SPISTEA  
0
1
2
3
0x06  
0x26  
0x46  
0x66  
GPIO5  
GPIO0  
GPIO16  
GPIO8  
GPIO1  
GPIO10  
GPIO17  
GPIO11  
GPIO11  
GPIO8  
Table 6-18. Parallel Boot Options  
28x(DSP) CONTROL  
GPIO  
OPTION  
0 (default)  
BOOTDEF VALUE  
0x00  
D0-D7 GPIO  
HOST CONTROL GPIO  
D0 - GPIO28  
D1 - GPIO1  
D2 - GPIO2  
D3 - GPIO3  
D4 - GPIO4  
D5 - GPIO5  
D6 - GPIO6  
D7 - GPIO7  
D0 - GPIO0  
D1 - GPIO1  
D2 - GPIO2  
D3 - GPIO3  
D4 - GPIO4  
D5 - GPIO5  
D6 - GPIO6  
D7 - GPIO7  
GPIO16  
GPIO29  
1
0x20  
GPIO16  
GPIO11  
158  
Detailed Description  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.11 Dual Code Security Module  
The dual code security module (DCSM) prevents access to on-chip secure memories. The term “secure”  
means access to secure memories and resources is blocked. The term “unsecure” means access is  
allowed; for example, through a debugging tool such as Code Composer Studio™ (CCS).  
The code security mechanism offers protection for two zones, Zone 1 (Z1) and Zone 2 (Z2). The security  
implementation for both the zones is identical. Each zone has its own dedicated secure resource (OTP  
memory and secure ROM) and allocated secure resource (LSx RAM and flash sectors).  
The security of each zone is ensured by its own 128-bit password (CSM password). The password for  
each zone is stored in an OTP memory location based on a zone-specific link pointer. The link pointer  
value can be changed to program a different set of security settings (including passwords) in OTP.  
Code Security Module Disclaimer  
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED  
TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY AND IS  
WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD  
TERMS AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR  
THE WARRANTY PERIOD APPLICABLE FOR THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED  
MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT  
AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS  
CONCERNING THE CSM OR OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED  
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,  
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY  
OUT OF YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN  
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE,  
BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR  
INTERRUPTION OF BUSINESS OR OTHER ECONOMIC LOSS.  
Copyright © 2020, Texas Instruments Incorporated  
Detailed Description  
159  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.12 Watchdog  
The watchdog module is the same as the one on previous TMS320C2000 devices, but with an optional  
lower limit on the time between software resets of the counter. This windowed countdown is disabled by  
default, so the watchdog is fully backward-compatible.  
The watchdog generates either a reset or an interrupt. It is clocked from the internal oscillator with a  
selectable frequency divider.  
Figure 6-3 shows the various functional blocks within the watchdog module.  
WDCR.WDPRECLKDIV  
WDCR.WDPS  
WDCR.WDDIS  
WDCNTR  
WDCLK  
(INTOSC1)  
Overflow  
1-count  
delay  
8-bit  
Watchdog  
Counter  
WDCLK  
Divider  
Watchdog  
Prescaler  
SCSR.WDOVERRIDE  
SYSRSn  
Clear  
Count  
WDWCR.MIN  
WDKEY (7:0)  
Watchdog  
Window  
Detector  
Out of Window  
Good Key  
Watchdog  
Key Detector  
55 + AA  
WDCR(WDCHK(2:0))  
Bad Key  
WDRSTn  
WDINTn  
Generate  
512-WDCLK  
Output Pulse  
1
0
1
Watchdog Time-out  
SCSR.WDENINT  
Figure 6-3. Windowed Watchdog  
160  
Detailed Description  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.13 C28x Timers  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock  
prescaling. The timers have a 32-bit count-down register that generates an interrupt when the counter  
reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting.  
When the counter reaches zero, it is automatically reloaded with a 32-bit period value.  
CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use  
and is connected to INT13 of the CPU. CPU-Timer 2 is reserved for TI-RTOS. It is connected to INT14 of  
the CPU. If TI-RTOS is not being used, CPU-Timer 2 is available for general use.  
CPU-Timer 2 can be clocked by any one of the following:  
SYSCLK (default)  
Internal zero-pin oscillator 1 (INTOSC1)  
Internal zero-pin oscillator 2 (INTOSC2)  
X1 (XTAL)  
6.14 Dual-Clock Comparator (DCC)  
There are three Dual-Clock Comparators (DCC0 and DCC1) on the device. All three DCCs are only  
accessible through CPU1. The DCC module is used for evaluating and monitoring the clock input based  
on a second clock, which can be a more accurate and reliable version. This instrumentation is used to  
detect faults in clock source or clock structures, thereby enhancing the system's safety metrics.  
6.14.1 Features  
The DCC has the following features:  
Allows the application to ensure that a fixed ratio is maintained between frequencies of two clock  
signals.  
Supports the definition of a programmable tolerance window in terms of the number of reference clock  
cycles.  
Supports continuous monitoring without requiring application intervention.  
Supports a single-sequence mode for spot measurements.  
Allows the selection of a clock source for each of the counters, resulting in several specific use cases.  
6.14.2 Mapping of DCCx (DCC0 and DCC1) Clock Source Inputs  
Table 6-19 is the DCCx Clock Source0 table. Table 6-20 is the DCCx Clock Source1 table.  
Table 6-19. DCCx Clock Source0 Table  
DCCxCLKSRC0[3:0]  
CLOCK NAME  
XTAL/X1  
0x0  
0x1  
INTOSC1  
0x2  
INTOSC2  
0x5  
CPU1.SYSCLK  
INPUT XBAR (Output16 of input-xbar)  
Reserved  
0xC  
others  
Copyright © 2020, Texas Instruments Incorporated  
Detailed Description  
161  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Table 6-20. DCCx Clock Source1 Table  
DCCxCLKSRC1[4:0]  
CLOCK NAME  
PLLRAWCLK  
INTOSC1  
0x0  
0x2  
0x3  
0x6  
INTOSC2  
CPU1.SYSCLK  
0x9  
0xB  
Input XBAR (Output15 of the input-xbar)  
EPWMCLK  
LSPCLK  
0xC  
0xD  
0xE  
ADCCLK  
WDCLK  
0xF  
CAN0BITCLK  
Reserved  
others  
162  
Detailed Description  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
6.15 Configurable Logic Block (CLB)  
The C2000 configurable logic block (CLB) is a collection of blocks that can be interconnected using  
software to implement custom digital logic functions or enhance existing on-chip peripherals. The CLB is  
able to enhance existing peripherals through a set of crossbar interconnections, which provide a high level  
of connectivity to existing control peripherals such as enhanced pulse width modulators (ePWM),  
enhanced capture modules (eCAP), and enhanced quadrature encoder pulse modules (eQEP). The  
crossbars also allow the CLB to be connected to external GPIO pins. In this way, the CLB can be  
configured to interact with device peripherals to perform small logical functions such as comparators, or to  
implement custom serial data exchange protocols. Through the CLB, functions that would otherwise be  
accomplished using external logic devices can now be implemented inside the MCU.  
The CLB peripheral is configured through the CLB tool. For more information on the CLB tool, available  
examples, application reports and users guide, please refer to the following location in your C2000Ware  
package (C2000Ware_2_00_00_03 and higher):  
C2000WARE_INSTALL_LOCATION\utilities\clb_tool\clb_syscfg\doc  
CLB Tool User Guide  
How to Design with the C2000™ CLB Application Report  
How to Migrate Custom Logic From an FPGA/CPLD to C2000™ CLB Application Report  
The CLB module and its interconnections are shown in Figure 6-4.  
Copyright © 2020, Texas Instruments Incorporated  
Detailed Description  
163  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Figure 6-4. CLB Overview  
Absolute encoder protocol interfaces are now provided as Position Manager solutions in the C2000Ware  
MotorControl SDK. Configuration files, application programmer interface (API), and use examples for such  
solutions are provided with C2000Ware MotorControl SDK. In some solutions, the TI-configured CLB is  
used with other on-chip resources, such as the SPI port or the C28x CPU, to perform more complex  
functionality.  
164  
Detailed Description  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
7 Applications, Implementation, and Layout  
NOTE  
Information in the following Applications section is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI's customers are responsible for  
determining suitability of components for their purposes. Customers should validate and test  
their design implementation to confirm system functionality.  
7.1 TI Reference Design  
The TI Reference Design Library is a robust reference design library spanning analog, embedded  
processor, and connectivity. Created by TI experts to help you jump start your system design, all  
reference designs include schematic or block diagrams, BOMs, and design files to speed your time to  
market. Search and download designs at Select TI reference designs.  
Copyright © 2020, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
165  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
8 Device and Documentation Support  
8.1 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320 MCU devices and support tools. Each TMS320™ MCU commercial family member has one of  
two prefixes: TMX or TMS (for example, TMS320F280025C). Texas Instruments recommends two of three  
possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary  
stages of product development from engineering prototypes (with TMX for devices and TMDX for tools)  
through fully qualified production devices and tools (with TMS for devices and TMDS for tools).  
TMX  
TMS  
Experimental device that is not necessarily representative of the final device's electrical  
specifications  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal  
qualification testing  
TMDS Fully qualified development-support product  
TMX devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system  
because their expected end-use failure rate still is undefined. Only qualified production devices are to be  
used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, PN) and temperature range (for example, S).  
For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your  
TI sales representative.  
166  
Device and Documentation Support  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Generic Part Number: TMS 320  
Orderable Part Number: (blank)  
PREFIX(A)  
F
280025C  
R
X
F
280025C PN  
S
SHIPPING OPTIONS  
experimental device  
TMX (X)  
TMS (blank)  
=
=
Tray  
Tape and Reel  
(blank)  
R
=
=
qualified device  
TEMPERATURE RANGE  
−40°C to 125°C (TJ)  
S
=
=
DEVICE FAMILY  
Q
−40°C to 125°C (TA)  
(Q refers to AEC Q100 qualification for automotive applications.)  
320 = TMS320 MCU Family  
TECHNOLOGY  
PACKAGE TYPE  
F = Flash  
80-Pin PN Low-Profile Quad Flatpack (LQFP)  
64-Pin PM LQFP  
48-Pin PT LQFP  
DEVICE  
280025  
280024  
280023  
280022  
280021  
280025C  
280024C  
280023C  
A. Prefix X is used in orderable part numbers.  
Figure 8-1. Device Nomenclature  
8.2 Markings  
Figure 8-2 and Figure 8-3 show the package symbolization. Table 8-1 lists the silicon revision codes.  
X
X
F280025CPMS  
$$#−YMLLLLS  
G4  
F280025CPNS  
$$#−YMLLLLS  
G4  
Package  
Pin 1  
Package  
Pin 1  
YMLLLLS  
Lot Trace Code  
=
YM  
LLLL  
S
2-Digit Year/Month Code  
Assembly Lot  
Assembly Site Code  
Wafer Fab Code (one or two characters) as applicable  
Silicon Revision Code  
=
=
=
=
=
$$  
#
G4  
Green (Low Halogen and RoHS-compliant)  
=
Figure 8-2. Package Symbolization for PM and PN Packages  
Copyright © 2020, Texas Instruments Incorporated  
Device and Documentation Support  
167  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
 
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
YMLLLLS  
Lot Trace Code  
=
YM  
LLLL  
S
980  
$$  
2-Digit Year/Month Code  
Assembly Lot  
Assembly Site Code  
TI E.I.A. Code  
Wafer Fab Code (one or two characters) as applicable  
Silicon Revision Code  
=
=
=
=
=
=
980  
PTS  
X
F280025C  
YMLLLLS #  
#
$$  
G4  
G4  
Green (Low Halogen and RoHS-compliant)  
=
Package  
Pin 1  
Figure 8-3. Package Symbolization for PT Package  
Table 8-1. Revision Identification  
REVID(1)  
SILICON REVISION  
SILICON REVISION CODE  
COMMENTS  
This silicon revision is available as TMX.  
ADDRESS: 0x5D00C  
Blank  
0
0x0000 0000  
(1) Silicon Revision ID  
8.3 Tools and Software  
TI offers an extensive line of development tools. Some of the tools and software to evaluate the  
performance of the device, generate code, and develop solutions follow. To view all available tools and  
software for C2000™ real-time control MCUs, visit the C2000 real-time control MCUs – Design &  
development page.  
Development Tools  
F280025 controlCARD  
The F280025 controlCARD is an HSEC180 controlCARD based evaluation and development tool for the  
C2000™ F28002x series of microcontroller products. controlCARDs are ideal to use for initial evaluation  
and system prototyping. controlCARDs are complete board-level modules that utilize one of two standard  
form factors (100-pin DIMM or 180-pin HSEC ) to provide a low-profile single-board controller solution. For  
first evaluation controlCARDs are typically purchased bundled with a baseboard or bundled in an  
application kit.  
Software Tools  
C2000Ware for C2000 MCUs  
C2000Ware for C2000™ microcontrollers is a cohesive set of development software and documentation  
designed to minimize software development time. From device-specific drivers and libraries to device  
peripheral examples, C2000Ware provides a solid foundation to begin development and evaluation of your  
product.  
Code Composer Studio™ (CCS) Integrated Development Environment (IDE) for C2000 microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller  
and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop  
and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project  
build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user  
interface taking the user through each step of the application development flow. Familiar tools and  
interfaces allow users to get started faster than ever before. Code Composer Studio combines the  
advantages of the Eclipse software framework with advanced embedded debug capabilities from TI  
resulting in a compelling feature-rich development environment for embedded developers.  
168  
Device and Documentation Support  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
SysConfig Pin Mux Tool  
The SysConfig Pin Mux Utility is a software tool which provides a Graphical User Interface for configuring  
pin multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs. The  
SysConfig Pin Mux tool is integrated inside Code Composer Studio (version 9.3 or higher) and  
C2000Ware. Device and package specific examples are available in:  
[C2000Ware 3_01_00_00 or Higher]\driverlib\f28002x\examples\pinmux  
Models  
Various models are available for download from the product Tools & Software pages. These models  
include I/O Buffer Information Specification (IBIS) Models and Boundary-Scan Description Language  
(BSDL) Models. To view all available models, visit the Models section of the Tools & Software page for  
each device, which can be found in Table 8-2.  
Training  
To help assist design engineers in taking full advantage of the C2000 microcontroller features and  
performance, TI has developed a variety of training resources. Utilizing the online training materials and  
downloadable hands-on workshops provides an easy means for gaining a complete working knowledge of  
the C2000 microcontroller family. These training resources have been designed to decrease the learning  
curve, while reducing development time, and accelerating product time to market. For more information on  
the various training resources, visit the C2000™ real-time control MCUs – Support & training site.  
Specific TMS320F28004x hands-on training resources can be found at C2000™ MCU Device Workshops.  
Technical Introduction to the New C2000 TMS320F28004x Device Family  
Many of the peripherals and architecture of the F28002x are similar to the F28004x. This presentation will  
cover the technical details of the TMS320F28004x architecture and highlight the new improvements to  
various key peripherals which will be helpful to users of the F28002x device.  
8.4 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the  
upper right corner, click on Alert me to register and receive a weekly digest of any product information that  
has changed. For change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral  
follows.  
Errata  
TMS320F28002x MCUs Silicon Errata describes known advisories on silicon and provides workarounds.  
Technical Reference Manual  
TMS320F28002x Microcontrollers Technical Reference Manual details the integration, the environment,  
the functional description, and the programming models for each peripheral and subsystem in the  
F28002x microcontrollers.  
CPU User's Guides  
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and  
the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This  
Reference Guide also describes emulation features available on these DSPs.  
TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline,  
and instruction set of the TMU, VCU-II, and FPU accelerators.  
Peripheral Guides  
C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the  
28x DSPs.  
Copyright © 2020, Texas Instruments Incorporated  
Device and Documentation Support  
169  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
Tools Guides  
TMS320C28x Assembly Language Tools v19.6.0.STS User's Guide describes the assembly language  
tools (assembler and other tools used to develop assembly language code), assembler directives, macros,  
common object file format, and symbolic debugging directives for the TMS320C28x device.  
TMS320C28x Optimizing C/C++ Compiler v19.6.0.STS User's Guide describes the TMS320C28x C/C++  
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly  
language source code for the TMS320C28x device.  
Application Reports  
The SMT & packaging application notes website lists documentation on TI’s surface mount technology  
(SMT) and application notes on a variety of packaging-related topics.  
Semiconductor Packing Methodology describes the packing methodologies employed to prepare  
semiconductor devices for shipment to end users.  
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful  
lifetime of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at  
general engineers who wish to determine if the reliability of the TI EP meets the end system reliability  
requirement.  
An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS  
including its history, advantages, compatibility, model generation flow, data requirements in modeling the  
input/output structures, and future trends.  
Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders  
for serial programming a device.  
Fast Integer Division – A Differentiated Offering From C2000™ Product Family provides an overview of  
the different division and modulo (remainder) functions and its associated properties.  
8.5 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 8-2. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TMS320F280025  
TMS320F280025C  
TMS320F280024  
TMS320F280024C  
TMS320F280023  
TMS320F280023C  
TMS320F280022  
TMS320F280021  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
8.6 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help —  
straight from the experts. Search existing answers or ask your own question to get the quick design help  
you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications  
and do not necessarily reflect TI's views; see TI's Terms of Use.  
170  
Device and Documentation Support  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
8.7 Trademarks  
TMS320C2000, C2000, InstaSPIN-FOC, Code Composer Studio, TMS320, E2E are trademarks of Texas  
Instruments.  
Bosch is a registered trademark of Robert Bosch GmbH Corporation.  
8.8 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
8.9 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020, Texas Instruments Incorporated  
Device and Documentation Support  
171  
Submit Documentation Feedback  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
TMS320F280025, TMS320F280025C, TMS320F280024, TMS320F280024C  
TMS320F280023, TMS320F280023C, TMS320F280022, TMS320F280021  
SPRSP45 MARCH 2020  
www.ti.com  
9 Mechanical, Packaging, and Orderable Information  
9.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the  
most current data available for the designated devices. This data is subject to change without notice and  
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
To learn more about TI packaging, visit the Packaging information website.  
172  
Mechanical, Packaging, and Orderable Information  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TMS320F280025 TMS320F280025C TMS320F280024 TMS320F280024C TMS320F280023  
TMS320F280023C TMS320F280022 TMS320F280021  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
F280021PTQR  
F280021PTSR  
F280023CPMSR  
F280023CPNSR  
F280023CPTSR  
F280023PMQR  
F280023PMSR  
F280023PNQR  
F280023PNSR  
F280023PTQR  
F280023PTSR  
F280025CPMQR  
F280025CPMS  
F280025CPMSR  
F280025CPNQR  
F280025CPNSR  
F280025CPTQR  
F280025CPTSR  
F280025PMQR  
F280025PMS  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PT  
PT  
PM  
PN  
PT  
PM  
PM  
PN  
PN  
PT  
PT  
PM  
PM  
PM  
PN  
PN  
PT  
PT  
PM  
PM  
PM  
PN  
PN  
PN  
PT  
PT  
PT  
PM  
48  
48  
64  
80  
48  
64  
64  
80  
80  
48  
48  
64  
64  
64  
80  
80  
48  
48  
64  
64  
64  
80  
80  
80  
48  
48  
48  
64  
1000  
1000  
1000  
1000  
1000  
900  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1000  
1000  
1000  
1000  
1000  
1000  
900  
1000  
1000  
1000  
1000  
1000  
900  
1600  
1000  
1000  
1190  
1000  
1000  
2500  
1000  
160  
F280025PMSR  
F280025PNQR  
F280025PNS  
F280025PNSR  
F280025PTQR  
F280025PTS  
F280025PTSR  
XF280025CPMS  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
XF280025CPNS  
XF280025CPTS  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
PN  
PT  
80  
48  
119  
250  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
PM0064A  
LQFP - 1.6 mm max height  
SCALE 1.400  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
33  
16  
32  
17  
A
0.27  
0.17  
64X  
60X 0.5  
4X 7.5  
0.08  
C A B  
C
(0.13) TYP  
SEATING PLANE  
0.08  
SEE DETAIL A  
0.25  
GAGE PLANE  
(1.4)  
1.6 MAX  
0.05 MIN  
0.75  
0.45  
0 -7  
DETAIL  
SCALE: 14  
A
DETAIL A  
TYPICAL  
4215162/A 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
49  
64  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
33  
16  
17  
32  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
EXPOSED METAL  
METAL  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215162/A 03/2017  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
16  
33  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:8X  
4215162/A 03/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
MECHANICAL DATA  
MTQF003A – OCTOBER 1994 – REVISED DECEMBER 1996  
PT (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
M
0,08  
0,50  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
6,80  
Gage Plane  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,10  
1,60 MAX  
4040052/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
D. This may also be a thermally enhanced plastic package with leads conected to the die pads.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996  
PN (S-PQFP-G80)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
60  
M
0,08  
41  
61  
40  
0,13 NOM  
80  
21  
1
20  
Gage Plane  
9,50 TYP  
0,25  
12,20  
SQ  
11,80  
0,05 MIN  
0°7°  
14,20  
SQ  
13,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040135 /B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY