F280049PZQR [TI]

具有 100MHz 频率、FPU、TMU、256KB 闪存、CLA、PGA、SDFM 的汽车类 C2000™ 32 位 MCU | PZ | 100 | -40 to 125;
F280049PZQR
型号: F280049PZQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 100MHz 频率、FPU、TMU、256KB 闪存、CLA、PGA、SDFM 的汽车类 C2000™ 32 位 MCU | PZ | 100 | -40 to 125

闪存
文件: 总230页 (文件大小:6260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
TMS320F28004x Microcontrollers  
– Embedded Real-time Analysis and Diagnostic  
(ERAD)  
Communications peripherals  
– One Power-Management Bus (PMBus)  
interface  
1 Features  
TMS320C28x 32-bit CPU  
– 100 MHz  
– IEEE 754 single-precision Floating-Point Unit  
(FPU)  
– One Inter-integrated Circuit (I2C) interface  
(pin-bootable)  
– Trigonometric Math Unit (TMU)  
3×-cycle to 4×-cycle improvement for  
common trigonometric functions versus  
software libraries  
– Two Controller Area Network (CAN) bus ports  
(pin-bootable)  
– Two Serial Peripheral Interface (SPI) ports  
(pin-bootable)  
13-cycle Park transform  
– Viterbi/Complex Math Unit (VCU-I)  
Ten hardware breakpoints (with ERAD)  
Programmable Control Law Accelerator (CLA)  
– 100 MHz  
– IEEE 754 single-precision floating-point  
instructions  
– Two Serial Communication Interfaces (SCIs)  
(pin-bootable)  
– One Local Interconnect Network (LIN)  
– One Fast Serial Interface (FSI) with a  
transmitter and receiver  
Analog system  
– Three 3.45-MSPS, 12-bit Analog-to-Digital  
Converters (ADCs)  
– Executes code independently of main CPU  
On-chip memory  
Up to 21 external channels  
Four integrated post-processing blocks  
(PPBs) per ADC  
– 256KB (128KW) of flash (ECC-protected)  
across two independent banks  
– 100KB (50KW) of RAM (ECC-protected or  
parity-protected)  
– Dual-zone security supporting third-party  
development  
– Seven windowed comparators (CMPSS) with  
12-bit reference Digital-to-Analog Converters  
(DACs)  
Digital glitch filters  
– Unique Identification (UID) number  
Clock and system control  
– Two 12-bit buffered DAC outputs  
– Seven Programmable Gain Amplifiers (PGAs)  
– Two internal zero-pin 10-MHz oscillators  
– On-chip crystal oscillator and external clock  
input  
Programmable gain settings: 3, 6, 12, 24  
Programmable output filtering  
– Windowed watchdog timer module  
– Missing clock detection circuitry  
1.2-V core, 3.3-V I/O design  
– Internal VREG or DC-DC for 1.2-V generation  
allows for single-supply designs  
– Brownout reset (BOR) circuit  
System peripherals  
Enhanced control peripherals  
– 16 ePWM channels with high-resolution  
capability (150-ps resolution)  
Integrated dead-band support with high  
resolution  
Integrated hardware trip zones (TZs)  
– Seven Enhanced Capture (eCAP) modules  
High-resolution Capture (HRCAP) available  
on two modules  
– 6-channel Direct Memory Access (DMA)  
controller  
– Two Enhanced Quadrature Encoder Pulse  
(eQEP) modules with support for CW/CCW  
operation modes  
– Four Sigma-Delta Filter Module (SDFM) input  
channels (two parallel filters per channel)  
– 40 individually programmable multiplexed  
General-Purpose Input/Output (GPIO) pins  
– 21 digital inputs on analog pins  
– Enhanced Peripheral Interrupt Expansion  
(ePIE) module  
Standard SDFM data filtering  
Comparator filter for fast action for  
overvalue or undervalue condition  
– Multiple low-power mode (LPM) support with  
external wakeup  
Configurable Logic Block (CLB)  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
– Augments existing peripheral capability  
– Supports position manager solutions  
InstaSPIN-FOC™  
– Sensorless field-oriented control (FOC) with  
FASTsoftware encoder  
– Library in on-chip ROM memory  
Package options:  
– 100-pin Low-profile Quad Flatpack (LQFP)  
[PZ suffix]  
– 64-pin LQFP [PM suffix]  
– 56-pin Very Thin Quad Flatpack No-lead  
(VQFN) [RSH suffix]  
Temperature options:  
– S: –40°C to 125°C junction  
– Q: –40°C to 125°C free-air  
(AEC Q100 qualification for automotive  
applications)  
2 Applications  
Medium/short range radar  
Air conditioner outdoor unit  
Door operator drive control  
Automated sorting equipment  
CNC control  
Textile machine  
Welding machine  
AC charging (pile) station  
DC charging (pile) station  
EV charging station power module  
Wireless vehicle charging module  
Energy storage power conversion system (PCS)  
Central inverter  
Solar power optimizer  
String inverter  
DC/DC converter  
Inverter & motor control  
On-board (OBC) & wireless charger  
AC drive control module  
AC drive power stage module  
Linear motor power stage  
Servo drive control module  
AC-input BLDC motor drive  
DC-input BLDC motor drive  
Industrial AC-DC  
Three phase UPS  
Merchant network & server PSU  
Merchant telecom rectifiers  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
3 Description  
C2000™ 32-bit microcontrollers are optimized for processing, sensing, and actuation to improve closed-loop  
performance in real-time control applications such as industrial motor drives; solar inverters and digital power;  
electrical vehicles and transportation; motor control; and sensing and signal processing.  
The TMS320F28004x (F28004x) is a powerful 32-bit floating-point microcontroller unit (MCU) that lets designers  
incorporate crucial control peripherals, differentiated analog, and nonvolatile memory on a single device.  
The real-time control subsystem is based on TI’s 32-bit C28x CPU, which provides 100 MHz of signal processing  
performance. The C28x CPU is further boosted by the new TMU extended instruction set, which enables fast  
execution of algorithms with trigonometric operations commonly found in transforms and torque loop  
calculations; and the VCU-I extended instruction set, which reduces the latency for complex math operations  
commonly found in encoded applications.  
The CLA allows significant offloading of common tasks from the main C28x CPU. The CLA is an independent  
32-bit floating-point math accelerator that executes in parallel with the CPU. Additionally, the CLA has its own  
dedicated memory resources and it can directly access the key peripherals that are required in a typical control  
system. Support of a subset of ANSI C is standard, as are key features like hardware breakpoints and hardware  
task-switching.  
The F28004x supports up to 256KB (128KW) of flash memory divided into two 128KB (64KW) banks, which  
enables programming and execution in parallel. Up to 100KB (50KW) of on-chip SRAM is also available in  
blocks of 4KB (2KW) and 16KB (8KW) for efficient system partitioning. Flash ECC, SRAM ECC/parity, and dual-  
zone security are also supported.  
High-performance analog blocks are integrated on the F28004x MCU to further enable system consolidation.  
Three separate 12-bit ADCs provide precise and efficient management of multiple analog signals, which  
ultimately boosts system throughput. Seven PGAs on the analog front end enable on-chip voltage scaling before  
conversion. Seven analog comparator modules provide continuous monitoring of input voltage levels for trip  
conditions.  
The TMS320C2000microcontrollers contain industry-leading control peripherals with frequency-independent  
ePWM/HRPWM and eCAP allow for a best-in-class level of control to the system. The built-in 4-channel SDFM  
allows for seamless integration of an oversampling sigma-delta modulator across an isolation barrier.  
Connectivity is supported through various industry-standard communication ports (such as SPI, SCI, I2C, LIN,  
and CAN) and offers multiple muxing options for optimal signal placement in a variety of applications. New to the  
C2000 platform is the fully compliant PMBus. Additionally, in an industry first, the FSI enables high-speed, robust  
communication to complement the rich set of peripherals that are embedded in the device.  
A specially enabled device variant, TMS320F28004xC, allows access to the Configurable Logic Block (CLB) for  
additional interfacing features and allows access to the secure ROM, which includes a library to enable  
InstaSPIN-FOC. See Device Comparison for more information.  
The Embedded Real-Time Analysis and Diagnostic (ERAD) module enhances the debug and system analysis  
capabilities of the device by providing additional hardware breakpoints and counters for profiling.  
To learn more about the C2000 MCUs, visit the C2000 Overview at www.ti.com/c2000.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Device Information (1)  
PART NUMBER  
TMS320F280049PZ  
PACKAGE  
LQFP (100)  
LQFP (100)  
LQFP (100)  
LQFP (100)  
LQFP (100)  
LQFP (64)  
LQFP (64)  
LQFP (64)  
LQFP (64)  
LQFP (64)  
LQFP (64)  
LQFP (64)  
LQFP (64)  
LQFP (64)  
VQFN (56)  
VQFN (56)  
VQFN (56)  
VQFN (56)  
VQFN (56)  
BODY SIZE  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
7.0 mm × 7.0 mm  
TMS320F280049CPZ  
TMS320F280045PZ  
TMS320F280041PZ  
TMS320F280041CPZ  
TMS320F280049PM  
TMS320F280049CPM  
TMS320F280048PM  
TMS320F280048CPM  
TMS320F280045PM  
TMS320F280041PM  
TMS320F280041CPM  
TMS320F280040PM  
TMS320F280040CPM  
TMS320F280049RSH  
TMS320F280049CRSH  
TMS320F280045RSH  
TMS320F280041RSH  
TMS320F280041CRSH  
(1) For more information on these devices, see Mechanical, Packaging, and Orderable Information.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
3.1 Functional Block Diagram  
Functional Block Diagram shows the CPU system and associated peripherals.  
Boot ROM  
C28x CPU  
CLA  
(Type 2)  
Secure ROM  
FPU32  
TMU  
VCU-I  
Flash Bank0  
16 Sectors  
64KW (128KB)  
CLA to CPU MSG RAM  
CPU to CLA MSG RAM  
Flash Bank1  
CPU Timers  
16 Sectors  
64KW (128KB)  
DCSM  
CLA Data ROM  
ePIE  
ERAD  
CLA Program ROM  
M0–M1 RAM  
2KW (4KB)  
LS0–LS7 RAM  
16KW (32KB)  
Crystal Oscillator  
INTOSC1, INTOSC2  
PLL  
GS0–GS3 RAM  
32KW (64KB)  
DMA  
6 Channels  
PF1  
PF3  
PF4  
PF2  
PF7  
PF8  
PF9  
Result  
Data  
40x GPIO  
16x ePWM Chan.  
(16 Hi-Res Capable)  
1x LIN  
2x CAN  
2x SCI  
1x I2C  
1x PMBUS  
2x SPI  
7x CMPSS  
3x 12-Bit ADC  
7x eCAP  
(2 HRCAP Capable)  
2x Buffered DAC  
7x PGA  
Input XBAR  
Output XBAR  
ePWM XBAR  
NMI  
Watchdog  
1x FSI RX  
1x FSI TX  
2x eQEP  
(CW/CCW Support)  
Windowed  
Watchdog  
4x SD Filters  
Figure 3-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................2  
3 Description.......................................................................3  
3.1 Functional Block Diagram...........................................5  
4 Revision History.............................................................. 6  
5 Device Comparison.........................................................7  
5.1 Related Products........................................................ 9  
6 Terminal Configuration and Functions........................10  
6.1 Pin Diagrams............................................................ 10  
6.2 Pin Attributes.............................................................14  
6.3 Signal Descriptions................................................... 27  
6.4 Pin Multiplexing.........................................................39  
6.5 Pins With Internal Pullup and Pulldown.................... 49  
6.6 Connections for Unused Pins................................... 50  
7 Specifications................................................................ 51  
7.1 Absolute Maximum Ratings (1) (2) .............................51  
7.2 ESD Ratings – Commercial...................................... 51  
7.3 ESD Ratings – Automotive....................................... 51  
7.4 Recommended Operating Conditions.......................52  
7.5 Power Consumption Summary................................. 54  
7.6 Electrical Characteristics...........................................60  
7.7 Thermal Resistance Characteristics......................... 61  
7.8 Thermal Design Considerations................................63  
7.9 System......................................................................64  
7.10 Analog Peripherals..................................................92  
7.11 Control Peripherals............................................... 125  
7.12 Communications Peripherals................................147  
8 Detailed Description....................................................181  
8.1 Overview.................................................................181  
8.2 Functional Block Diagram.......................................182  
8.3 Memory...................................................................183  
8.4 Identification............................................................190  
8.5 Bus Architecture – Peripheral Connectivity.............191  
8.6 C28x Processor...................................................... 192  
8.7 Control Law Accelerator (CLA)............................... 195  
8.8 Direct Memory Access (DMA).................................197  
8.9 Boot ROM and Peripheral Booting..........................198  
8.10 Dual Code Security Module.................................. 203  
8.11 Watchdog.............................................................. 204  
8.12 Configurable Logic Block (CLB)............................205  
9 Applications, Implementation, and Layout............... 207  
9.1 TI Reference Design...............................................207  
10 Device and Documentation Support........................208  
10.1 Device and Development Support Tool  
Nomenclature............................................................208  
10.2 Markings............................................................... 209  
10.3 Tools and Software............................................... 210  
10.4 Documentation Support........................................ 212  
10.5 Support Resources............................................... 213  
10.6 Trademarks...........................................................213  
10.7 Electrostatic Discharge Caution............................213  
10.8 Glossary................................................................213  
11 Mechanical, Packaging, and Orderable  
Information.................................................................. 214  
11.1 Packaging Information.......................................... 214  
4 Revision History  
Changes from April 29, 2020 to February 1, 2021 (from Revision E (April 2020) to Revision F  
(February 2021))  
Page  
Added Q1 Part Numbers................................................................................................................................ 0  
Table 5-1: Added Q1 Part Numbers....................................................................................................................7  
Section 7.9.2.2.2 (Reset (XRSn) Switching Characteristics): Added tboot-flash..................................................68  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
5 Device Comparison  
Table 5-1 lists the features of the TMS320F28004x devices.  
Table 5-1. Device Comparison  
F280049  
F280049-Q1  
F280049C  
F280048  
F280048-Q1  
F280048C  
F280041  
F280041-Q1  
F280041C  
F280040  
F280040-Q1  
F280040C  
FEATURE(1)  
F280045  
F280049C-Q1 F280048C-Q1  
F280041C-Q1 F280040C-Q1  
PROCESSOR AND ACCELERATORS  
Frequency (MHz)  
FPU  
100  
Yes  
Yes  
Yes  
C28x  
VCU-I  
TMU – Type 0  
Available  
Yes  
100  
No  
CLA – Type 2  
Frequency (MHz)  
6-Channel DMA – Type 0  
Yes  
MEMORY  
Flash  
RAM  
256KB (128KW)  
128KB (64KW)  
Dedicated and Local Shared RAM  
Global Shared RAM  
36KB (18KW)  
64KB (32KW)  
100KB (50KW)  
Yes  
TOTAL RAM  
Code security for on-chip flash, RAM, and OTP blocks  
Boot ROM  
Yes  
User-configurable DCSM OTP  
4KB (2KW)  
SYSTEM (2)  
4 tiles  
(F280049C)  
4 tiles  
(F280048C)  
4 tiles  
(F280041C)  
4 tiles  
(F280040C)  
Configurable Logic Block (CLB)  
InstaSPIN-FOC™  
F280049C  
F280048C  
3
F280041C  
F280040C  
32-bit CPU timers  
Watchdog timers  
1
Nonmaskable Interrupt Watchdog (NMIWD) timers  
Crystal oscillator/External clock input  
0-pin internal oscillator  
100-pin PZ  
1
1
2
40  
26  
25  
24  
40  
26  
25  
21  
14  
12  
5
40  
26  
25  
24  
GPIO pins  
64-pin PM  
56-pin RSH  
100-pin PZ  
64-pin PM  
56-pin RSH  
AIO inputs  
External interrupts  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 5-1. Device Comparison (continued)  
F280049  
F280049-Q1  
F280049C  
F280048  
F280048-Q1  
F280048C  
F280041  
F280041-Q1  
F280041C  
F280040  
F280040-Q1  
F280040C  
FEATURE(1)  
F280045  
F280049C-Q1 F280048C-Q1  
F280041C-Q1 F280040C-Q1  
ANALOG PERIPHERALS  
Number of ADCs  
MSPS  
Conversion Time (ns)(3)  
3
3.45  
290  
21  
14  
12  
1
ADC 12-bit  
100-pin PZ  
ADC channels  
(single-ended)  
64-pin PM  
56-pin RSH  
Temperature sensor  
Buffered DAC  
2
CMPSS  
100-pin PZ  
64-pin PM  
56-pin RSH  
100-pin PZ  
64-pin PM  
56-pin RSH  
7
(each CMPSS has two  
comparators and two internal  
DACs)  
6
5
7
PGAs  
5
(Gain Settings: 3, 6, 12, 24)  
4
CONTROL PERIPHERALS (4)  
eCAP/HRCAP modules – Type 1  
7 (2 with HRCAP capability)  
ePWM/HRPWM channels – Type 4  
100-pin PZ  
16  
2
eQEP modules – Type 1  
SDFM channels – Type 1  
64-pin PM  
56-pin RSH  
100-pin PZ  
64-pin PM  
56-pin RSH  
1
1
4
3
3
COMMUNICATION PERIPHERALS (4)  
CAN – Type 0  
I2C – Type 1  
SCI – Type 0  
SPI – Type 2  
LIN – Type 1  
PMBus – Type 0  
FSI – Type 0  
2
1
2
2
1
1
1
PACKAGE OPTIONS, TEMPERATURE, AND QUALIFICATION  
100-pin PZ  
64-pin PM  
56-pin RSH  
100-pin PZ  
100-pin PZ  
64-pin PM  
56-pin RSH  
100-pin PZ  
64-pin PM  
56-pin RSH  
100-pin PZ  
Junction Temperature (TJ)  
Free-Air Temperature (TA)  
S: –40°C to 125°C  
Q: –40°C to 125°C(5)  
64-pin PM  
64-pin PM  
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor  
differences between devices that do not affect the basic functionality of the module. For more information, see the C2000 Real-Time  
Control Peripherals Reference Guide.  
(2) For more information about InstaSPIN-FOCdevices, see Section 10.4 for a list of InstaSPIN Technical Reference Manuals.  
(3) Time between start of sample-and-hold window to start of sample-and-hold window of the next conversion.  
(4) For devices that are available in more than one package, the peripheral count listed in the smaller package is reduced because the  
smaller package has less device pins available. The number of peripherals internally present on the device is not reduced compared to  
the largest package offered within a part number. See Section 6 to identify which peripheral instances are accessible on pins in the  
smaller package.  
(5) The letter Q refers to AEC Q100 qualification for automotive applications.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
5.1 Related Products  
Original devices:  
TMS320F2802x Microcontrollers  
The F2802x series offers the lowest pin-count and Flash memory size options. InstaSPIN-FOC™ versions are  
available.  
TMS320F2803x Microcontrollers  
The F2803x series increases the pin-count and memory size options. The F2803x series also introduces the  
parallel control law accelerator (CLA) option.  
TMS320F2805x Microcontrollers  
The F2805x series is similar to the F2803x series but adds on-chip programmable gain amplifiers (PGAs).  
InstaSPIN-FOC and InstaSPIN-MOTION™ versions are available.  
TMS320F2806x Microcontrollers  
The F2806x series is the first to include a floating-point unit (FPU). The F2806x series also increases the pin-  
count, memory size options, and the quantity of peripherals. InstaSPIN-FOC™ and InstaSPIN-MOTION™  
versions are available.  
Newest devices:  
TMS320F2807x Microcontrollers  
The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral options.  
The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog technology.  
TMS320F28004x Microcontrollers  
The F28004x series is a reduced version of the F2807x series with the latest generational enhancements. The  
F28004x series is the best roadmap option for those using the F2806x series. InstaSPIN-FOC and configurable  
logic block (CLB) versions are available.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
6 Terminal Configuration and Functions  
6.1 Pin Diagrams  
Figure 6-1 shows the pin assignments on the 100-pin PZ Low-Profile Quad Flatpack. Figure 6-2 shows the pin  
assignments on the 64-Pin PM Low-Profile Quad Flatpack. Figure 6-3 shows the pin assignments on the 64-Pin  
PM Low-Profile Quad Flatpack for the Q-temperature device. Figure 6-4 shows the pin assignments on the 56-  
Pin RSH Very Thin Quad Flatpack No-Lead.  
GPIO3  
GPIO2  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
GPIO13  
FLT1  
GPIO1  
FLT2  
GPIO0  
VDDIO  
VDDIO_SW  
GPIO23_VSW  
VSS_SW  
GPIO22_VFBSW  
GPIO7  
VDD  
VSS  
C14  
PGA7_IN  
PGA7_GND  
GPIO40  
VSS  
B0  
A10,B1,C10,PGA7_OF  
VDD  
B4,C8,PGA4_OF  
VDDIO  
A9  
GPIO5  
A8,PGA6_OF  
GPIO9  
A4,B8,PGA2_OF  
GPIO39  
GPIO59  
GPIO10  
GPIO34  
GPIO15  
GPIO14  
GPIO6  
A5  
VDDA  
VSSA  
PGA2_GND,PGA4_GND,PGA6_GND  
C3,PGA4_IN  
PGA2_IN  
C1  
GPIO30  
GPIO31  
GPIO29  
C5,PGA6_IN  
VREFLOA  
VREFLOB,VREFLOC  
Not to scale  
A. Only the GPIO function is shown on GPIO terminals. See Section 6.3 for the complete, muxed signal name.  
Figure 6-1. 100-Pin PZ Low-Profile Quad Flatpack (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
GPIO3  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
GPIO33  
GPIO2  
GPIO1  
GPIO11  
GPIO12  
GPIO0  
GPIO13  
VDDIO_SW  
GPIO23_VSW  
VSS_SW  
GPIO22_VFBSW  
GPIO7  
VDDIO  
VDD  
VSS  
A10,B1,C10,PGA7_OF  
B4,C8,PGA4_OF  
A4,B8,PGA2_OF  
VDDA  
VSS  
VDD  
VDDIO  
VSSA  
GPIO5  
PGA2_GND,PGA4_GND,PGA6_GND  
C3,PGA4_IN  
GPIO9  
GPIO10  
C1,PGA2_IN  
GPIO6  
VREFLOA,VREFLOB,VREFLOC  
Not to scale  
A. Only the GPIO function is shown on GPIO terminals. See Section 6.3 for the complete, muxed signal name.  
Figure 6-2. F280049/C/M, F280045, F280041/C 64-Pin PM Low-Profile Quad Flatpack (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
GPIO3  
GPIO2  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
GPIO33  
GPIO11  
FLT1  
GPIO1  
GPIO0  
FLT2  
VDDIO_SW  
GPIO23_VSW  
VSS_SW  
GPIO22_VFBSW  
GPIO7  
VDDIO  
VDD  
VSS  
A10,B1,C10,PGA7_OF  
B4,C8,PGA4_OF  
A4,B8,PGA2_OF  
VDDA  
VSS  
VDD  
VDDIO  
VSSA  
GPIO5  
PGA2_GND,PGA4_GND,PGA6_GND  
C3,PGA4_IN  
GPIO9  
GPIO10  
C1,PGA2_IN  
GPIO6  
VREFLOA,VREFLOB,VREFLOC  
Not to scale  
A. Only the GPIO function is shown on GPIO terminals. See Section 6.3 for the complete, muxed signal name.  
Figure 6-3. F280048/C, F280040/C 64-Pin PM Low-Profile Quad Flatpack — Q-Temperature (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
GPIO4  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
GPIO11  
GPIO3  
GPIO2  
GPIO12  
GPIO13  
GPIO1  
VDDIO  
GPIO0  
VDD  
VDDIO_SW  
GPIO23_VSW  
VSS_SW  
GPIO22_VFBSW  
GPIO7  
A10,B1,C10,PGA7_OF  
B4,C8,PGA4_OF  
A4,B8,PGA2_OF  
VDDA  
VSS  
VSSA  
VDD  
PGA2_GND,PGA4_GND,PGA6_GND  
C3,PGA4_IN  
VDDIO  
GPIO5  
C1,PGA2_IN  
GPIO9  
VREFLOA,VREFLOB,VREFLOC  
Not to scale  
A. Only the GPIO function is shown on GPIO terminals. See Section 6.3 for the complete, muxed signal name.  
B. This figure shows the top view of the 56-pin RSH package. The terminals are actually on the bottom side of the package. See Section 11  
for the 56-pin RSH mechanical drawing.  
Figure 6-4. 56-Pin RSH Very Thin Quad Flatpack No-Lead (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
6.2 Pin Attributes  
Table 6-1. Pin Attributes  
MUX  
POSITION  
64  
PMQ  
56  
RSH  
PIN  
TYPE  
SIGNAL NAME  
100 PZ  
64 PM  
DESCRIPTION  
ANALOG  
A0  
I
I
ADC-A Input 0  
ADC-B Input 15  
ADC-C Input 15  
B15  
C15  
23  
22  
15  
14  
15  
14  
13  
12  
I
DACA_OUT  
AIO231  
A1  
O
I
Buffered DAC-A Output  
Digital Input-231 on ADC Pin  
ADC-A Input 1  
I
DACB_OUT  
AIO232  
A10  
O
I
Buffered DAC-B Output  
Digital Input-232 on ADC Pin  
ADC-A Input 10  
I
B1  
I
ADC-B Input 1  
C10  
I
ADC-C Input 10  
PGA7_OF  
CMP7_HP0  
CMP7_LP0  
AIO230  
A2  
40  
25  
25  
23  
O
I
PGA-7 Output Filter (Optional)  
CMPSS-7 High Comparator Positive Input 0  
CMPSS-7 Low Comparator Positive Input 0  
Digital Input-230 on ADC Pin  
ADC-A Input 2  
I
I
I
B6  
I
ADC-B Input 6  
PGA1_OF  
CMP1_HP0  
CMP1_LP0  
AIO224  
A3  
O
I
PGA-1 Output Filter (Optional)  
CMPSS-1 High Comparator Positive Input 0  
CMPSS-1 Low Comparator Positive Input 0  
Digital Input-224 on ADC Pin  
ADC-A Input 3  
9
9
9
8
I
I
I
CMP1_HP3  
CMP1_HN0  
CMP1_LP3  
CMP1_LN0  
AIO233  
A4  
I
CMPSS-1 High Comparator Positive Input 3  
CMPSS-1 High Comparator Negative Input 0  
CMPSS-1 Low Comparator Positive Input 3  
CMPSS-1 Low Comparator Negative Input 0  
Digital Input-233 on ADC Pin  
ADC-A Input 4  
I
10  
36  
35  
I
I
I
I
B8  
I
ADC-B Input 8  
PGA2_OF  
CMP2_HP0  
CMP2_LP0  
AIO225  
A5  
O
I
PGA-2 Output Filter (Optional)  
CMPSS-2 High Comparator Positive Input 0  
CMPSS-2 Low Comparator Positive Input 0  
Digital Input-225 on ADC Pin  
ADC-A Input 5  
23  
23  
21  
I
I
I
CMP2_HP3  
CMP2_HN0  
CMP2_LP3  
CMP2_LN0  
AIO234  
I
CMPSS-2 High Comparator Positive Input 3  
CMPSS-2 High Comparator Negative Input 0  
CMPSS-2 Low Comparator Positive Input 3  
CMPSS-2 Low Comparator Negative Input 0  
Digital Input-234 on ADC Pin  
I
I
I
I
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
56  
RSH  
PIN  
TYPE  
SIGNAL NAME  
100 PZ  
64 PM  
DESCRIPTION  
A6  
I
O
I
ADC-A Input 6  
PGA5_OF  
CMP5_HP0  
CMP5_LP0  
AIO228  
PGA-5 Output Filter (Optional)  
6
6
6
CMPSS-5 High Comparator Positive Input 0  
CMPSS-5 Low Comparator Positive Input 0  
Digital Input-228 on ADC Pin  
I
I
A8  
I
ADC-A Input 8  
PGA6_OF  
CMP6_HP0  
CMP6_LP0  
AIO229  
O
I
PGA-6 Output Filter (Optional)  
37  
38  
CMPSS-6 High Comparator Positive Input 0  
CMPSS-6 Low Comparator Positive Input 0  
Digital Input-229 on ADC Pin  
I
I
A9  
I
ADC-A Input 9  
CMP6_HP3  
CMP6_HN0  
CMP6_LP3  
CMP6_LN0  
AIO236  
I
CMPSS-6 High Comparator Positive Input 3  
CMPSS-6 High Comparator Negative Input 0  
CMPSS-6 Low Comparator Positive Input 3  
CMPSS-6 Low Comparator Negative Input 0  
Digital Input-236 on ADC Pin  
I
I
I
I
B0  
I
ADC-B Input 0  
CMP7_HP3  
CMP7_HN0  
CMP7_LP3  
CMP7_LN0  
AIO241  
I
CMPSS-7 High Comparator Positive Input 3  
CMPSS-7 High Comparator Negative Input 0  
CMPSS-7 Low Comparator Positive Input 3  
CMPSS-7 Low Comparator Negative Input 0  
Digital Input-241 on ADC Pin  
I
41  
I
I
I
B2  
I
ADC-B Input 2  
C6  
I
ADC-C Input 6  
PGA3_OF  
CMP3_HP0  
CMP3_LP0  
AIO226  
O
I
PGA-3 Output Filter (Optional)  
7
7
7
6
CMPSS-3 High Comparator Positive Input 0  
CMPSS-3 Low Comparator Positive Input 0  
Digital Input-226 on ADC Pin  
I
I
B3  
I
ADC-B Input 3  
Optional external reference voltage for on-chip DACs. There  
is a 100-pF capacitor to VSSA on this pin whether used for  
ADC input or DAC reference which cannot be disabled. If  
this pin is being used as a reference for the on-chip DACs,  
place at least a 1-µF capacitor on this pin.  
VDAC  
I
8
8
8
7
CMP3_HP3  
CMP3_HN0  
CMP3_LP3  
CMP3_LN0  
AIO242  
I
I
CMPSS-3 High Comparator Positive Input 3  
CMPSS-3 High Comparator Negative Input 0  
CMPSS-3 Low Comparator Positive Input 3  
CMPSS-3 Low Comparator Negative Input 0  
Digital Input-242 on ADC Pin  
I
I
I
B4  
I
ADC-B Input 4  
C8  
I
ADC-C Input 8  
PGA4_OF  
CMP4_HP0  
CMP4_LP0  
AIO227  
O
I
PGA-4 Output Filter (Optional)  
39  
24  
24  
22  
CMPSS-4 High Comparator Positive Input 0  
CMPSS-4 Low Comparator Positive Input 0  
Digital Input-227 on ADC Pin  
I
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
56  
RSH  
PIN  
TYPE  
SIGNAL NAME  
C0  
100 PZ  
64 PM  
DESCRIPTION  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ADC-C Input 0  
CMP1_HP1  
CMP1_HN1  
CMP1_LP1  
CMP1_LN1  
AIO237  
CMPSS-1 High Comparator Positive Input 1  
CMPSS-1 High Comparator Negative Input 1  
CMPSS-1 Low Comparator Positive Input 1  
CMPSS-1 Low Comparator Negative Input 1  
Digital Input-237 on ADC Pin  
19  
12  
12  
10  
C1  
ADC-C Input 1  
CMP2_HP1  
CMP2_HN1  
CMP2_LP1  
CMP2_LN1  
AIO238  
CMPSS-2 High Comparator Positive Input 1  
CMPSS-2 High Comparator Negative Input 1  
CMPSS-2 Low Comparator Positive Input 1  
CMPSS-2 Low Comparator Negative Input 1  
Digital Input-238 on ADC Pin  
29  
44  
21  
31  
17  
28  
18  
18  
16  
C14  
ADC-C Input 14  
CMP7_HP1  
CMP7_HN1  
CMP7_LP1  
CMP7_LN1  
AIO246  
CMPSS-7 High Comparator Positive Input 1  
CMPSS-7 High Comparator Negative Input 1  
CMPSS-7 Low Comparator Positive Input 1  
CMPSS-7 Low Comparator Negative Input 1  
Digital Input-246 on ADC Pin  
C2  
ADC-C Input 2  
CMP3_HP1  
CMP3_HN1  
CMP3_LP1  
CMP3_LN1  
AIO244  
CMPSS-3 High Comparator Positive Input 1  
CMPSS-3 High Comparator Negative Input 1  
CMPSS-3 Low Comparator Positive Input 1  
CMPSS-3 Low Comparator Negative Input 1  
Digital Input-244 on ADC Pin  
13  
19  
11  
13  
19  
11  
11  
C3  
ADC-C Input 3  
CMP4_HP1  
CMP4_HN1  
CMP4_LP1  
CMP4_LN1  
AIO245  
CMPSS-4 High Comparator Positive Input 1  
CMPSS-4 High Comparator Negative Input 1  
CMPSS-4 Low Comparator Positive Input 1  
CMPSS-4 Low Comparator Negative Input 1  
Digital Input-245 on ADC Pin  
17  
C4  
ADC-C Input 4  
CMP5_HP1  
CMP5_HN1  
CMP5_LP1  
CMP5_LN1  
AIO239  
CMPSS-5 High Comparator Positive Input 1  
CMPSS-5 High Comparator Negative Input 1  
CMPSS-5 Low Comparator Positive Input 1  
CMPSS-5 Low Comparator Negative Input 1  
Digital Input-239 on ADC Pin  
C5  
ADC-C Input 5  
CMP6_HP1  
CMP6_HN1  
CMP6_LP1  
CMP6_LN1  
AIO240  
CMPSS-6 High Comparator Positive Input 1  
CMPSS-6 High Comparator Negative Input 1  
CMPSS-6 Low Comparator Positive Input 1  
CMPSS-6 Low Comparator Negative Input 1  
Digital Input-240 on ADC Pin  
PGA1_GND  
PGA1_IN  
CMP1_HP2  
CMP1_LP2  
14  
18  
10  
12  
10  
12  
9
PGA-1 Ground  
PGA-1 Input  
10  
CMPSS-1 High Comparator Positive Input 2  
CMPSS-1 Low Comparator Positive Input 2  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
56  
RSH  
PIN  
TYPE  
SIGNAL NAME  
100 PZ  
64 PM  
DESCRIPTION  
PGA2_GND  
PGA2_IN  
32  
20  
18  
10  
13  
20  
19  
10  
11  
20  
20  
18  
16  
9
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PGA-2 Ground  
PGA-2 Input  
CMP2_HP2  
CMP2_LP2  
PGA3_GND  
PGA3_IN  
30  
15  
20  
32  
31  
13  
16  
32  
28  
42  
43  
18  
10  
13  
20  
19  
10  
11  
20  
CMPSS-2 High Comparator Positive Input 2  
CMPSS-2 Low Comparator Positive Input 2  
PGA-3 Ground  
PGA-3 Input  
CMP3_HP2  
CMP3_LP2  
PGA4_GND  
PGA4_IN  
11  
18  
17  
9
CMPSS-3 High Comparator Positive Input 2  
CMPSS-3 Low Comparator Positive Input 2  
PGA-4 Ground  
PGA-4 Input  
CMP4_HP2  
CMP4_LP2  
PGA5_GND  
PGA5_IN  
CMPSS-4 High Comparator Positive Input 2  
CMPSS-4 Low Comparator Positive Input 2  
PGA-5 Ground  
PGA-5 Input  
CMP5_HP2  
CMP5_LP2  
PGA6_GND  
PGA6_IN  
CMPSS-5 High Comparator Positive Input 2  
CMPSS-5 Low Comparator Positive Input 2  
PGA-6 Ground  
18  
PGA-6 Input  
CMP6_HP2  
CMP6_LP2  
PGA7_GND  
PGA7_IN  
CMPSS-6 High Comparator Positive Input 2  
CMPSS-6 Low Comparator Positive Input 2  
PGA-7 Ground  
PGA-7 Input  
CMP7_HP2  
CMP7_LP2  
CMPSS-7 High Comparator Positive Input 2  
CMPSS-7 Low Comparator Positive Input 2  
ADC-A High Reference. In external reference mode,  
externally drive the high reference voltage onto this pin. In  
internal reference mode, a voltage is driven onto this pin by  
the device. In either mode, place at least a 2.2-µF capacitor  
on this pin. This capacitor should be placed as close to the  
device as possible between the VREFHIA and VREFLOA  
pins. Do not load this pin externally in either internal or  
external reference mode.  
VREFHIA  
VREFHIB  
VREFHIC  
25  
24  
24  
16  
16  
16  
16  
16  
16  
14  
14  
14  
I/O  
I/O  
I/O  
ADC-B High Reference. In external reference mode,  
externally drive the high reference voltage onto this pin. In  
internal reference mode, a voltage is driven onto this pin by  
the device. In either mode, place at least a 2.2-µF capacitor  
on this pin. This capacitor should be placed as close to the  
device as possible between the VREFHIB and VREFLOB  
pins. Do not load this pin externally in either internal or  
external reference mode.  
ADC-C High Reference. In external reference mode,  
externally drive the high reference voltage onto this pin. In  
internal reference mode, a voltage is driven onto this pin by  
the device. In either mode, place at least a 2.2-µF capacitor  
on this pin. This capacitor should be placed as close to the  
device as possible between the VREFHIC and VREFLOC  
pins. Do not load this pin externally in either internal or  
external reference mode.  
VREFLOA  
VREFLOB  
VREFLOC  
27  
26  
26  
17  
17  
17  
17  
17  
17  
15  
15  
15  
I
I
I
ADC-A Low Reference  
ADC-B Low Reference  
ADC-C Low Reference  
GPIO  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
56  
RSH  
PIN  
TYPE  
SIGNAL NAME  
GPIO0  
100 PZ  
64 PM  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 0  
ePWM-1 Output A  
EPWM1_A  
I2CA_SDA  
GPIO1  
1
79  
52  
51  
52  
47  
46  
6
I/OD I2C-A Open-Drain Bidirectional Data  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 1  
ePWM-1 Output B  
EPWM1_B  
I2CA_SCL  
GPIO2  
1
78  
77  
51  
50  
6
I/OD I2C-A Open-Drain Bidirectional Clock  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 2  
ePWM-2 Output A  
EPWM2_A  
OUTPUTXBAR1  
PMBUSA_SDA  
SCIA_TX  
1
5
O
Output X-BAR Output 1  
50  
45  
6
I/OD PMBus-A Open-Drain Bidirectional Data  
9
O
I
SCI-A Transmit Data  
FSIRXA_D1  
GPIO3  
10  
FSIRX-A Optional Additional Data Input  
General-Purpose Input Output 3  
ePWM-2 Output B  
0, 4, 8, 12  
I/O  
O
O
EPWM2_B  
OUTPUTXBAR2  
PMBUSA_SCL  
SPIA_CLK  
SCIA_RX  
1
2, 5  
Output X-BAR Output 2  
6
76  
49  
49  
44  
I/OD PMBus-A Open-Drain Bidirectional Clock  
7
I/O  
I
SPI-A Clock  
9
SCI-A Receive Data  
FSIRXA_D0  
GPIO4  
10  
I
FSIRX-A Primary Data Input  
General-Purpose Input Output 4  
ePWM-3 Output A  
0, 4, 8, 12  
I/O  
O
O
O
I
EPWM3_A  
OUTPUTXBAR3  
CANA_TX  
FSIRXA_CLK  
GPIO5  
1
5
75  
89  
48  
61  
48  
61  
43  
55  
Output X-BAR Output 3  
CAN-A Transmit  
6
10  
FSIRX-A Input Clock  
0, 4, 8, 12  
I/O  
O
O
I
General-Purpose Input Output 5  
ePWM-3 Output B  
EPWM3_B  
OUTPUTXBAR3  
CANA_RX  
SPIA_STE  
FSITXA_D1  
GPIO6  
1
3
Output X-BAR Output 3  
CAN-A Receive  
6
7
I/O  
O
I/O  
O
O
O
I
SPI-A Slave Transmit Enable (STE)  
FSITX-A Optional Additional Data Output  
General-Purpose Input Output 6  
ePWM-4 Output A  
9
0, 4, 8, 12  
EPWM4_A  
OUTPUTXBAR4  
SYNCOUT  
EQEP1_A  
1
2
Output X-BAR Output 4  
External ePWM Synchronization Pulse  
eQEP-1 Input A  
3
97  
64  
64  
1
5
CANB_TX  
SPIB_SOMI  
FSITXA_D0  
GPIO7  
6
O
I/O  
O
I/O  
O
O
I
CAN-B Transmit  
7
SPI-B Slave Out, Master In (SOMI)  
FSITX-A Primary Data Output  
General-Purpose Input Output 7  
ePWM-4 Output B  
9
0, 4, 8, 12  
EPWM4_B  
OUTPUTXBAR5  
EQEP1_B  
1
3
5
6
7
9
Output X-BAR Output 5  
eQEP-1 Input B  
84  
57  
57  
52  
CANB_RX  
SPIB_SIMO  
FSITXA_CLK  
I
CAN-B Receive  
I/O  
O
SPI-B Slave In, Master Out (SIMO)  
FSITX-A Output Clock  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
56  
RSH  
PIN  
TYPE  
SIGNAL NAME  
100 PZ  
64 PM  
DESCRIPTION  
GPIO8  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 8  
EPWM5_A  
CANB_TX  
1
2
ePWM-5 Output A  
CAN-B Transmit  
O
ADC Start of Conversion A Output for External ADC (from  
ePWM modules)  
ADCSOCAO  
3
O
74  
47  
47  
42  
EQEP1_STROBE  
SCIA_TX  
5
I/O  
O
eQEP-1 Strobe  
6
SCI-A Transmit Data  
SPIA_SIMO  
I2CA_SCL  
FSITXA_D1  
GPIO9  
7
I/O  
SPI-A Slave In, Master Out (SIMO)  
9
I/OD I2C-A Open-Drain Bidirectional Clock  
10  
O
I/O  
O
FSITX-A Optional Additional Data Output  
General-Purpose Input Output 9  
ePWM-5 Output B  
0, 4, 8, 12  
EPWM5_B  
SCIB_TX  
1
2
O
SCI-B Transmit Data  
OUTPUTXBAR6  
EQEP1_INDEX  
SCIA_RX  
3
O
Output X-BAR Output 6  
eQEP-1 Index  
90  
62  
62  
56  
5
I/O  
I
6
SCI-A Receive Data  
SPIA_CLK  
FSITXA_D0  
GPIO10  
7
I/O  
O
SPI-A Clock  
10  
FSITX-A Primary Data Output  
General-Purpose Input Output 10  
ePWM-6 Output A  
0, 4, 8, 12  
I/O  
O
EPWM6_A  
CANB_RX  
1
2
I
CAN-B Receive  
ADC Start of Conversion B Output for External ADC (from  
ePWM modules)  
ADCSOCBO  
3
O
93  
63  
63  
EQEP1_A  
5
I
eQEP-1 Input A  
SCIB_TX  
6
O
SCI-B Transmit Data  
SPIA_SOMI  
I2CA_SDA  
FSITXA_CLK  
GPIO11  
7
I/O  
SPI-A Slave Out, Master In (SOMI)  
9
I/OD I2C-A Open-Drain Bidirectional Data  
10  
O
I/O  
O
I
FSITX-A Output Clock  
General-Purpose Input Output 11  
ePWM-6 Output B  
0, 4, 8, 12  
EPWM6_B  
SCIB_RX  
1
2, 6  
SCI-B Receive Data  
OUTPUTXBAR7  
EQEP1_B  
3
52  
31  
31  
28  
O
I
Output X-BAR Output 7  
eQEP-1 Input B  
5
SPIA_STE  
FSIRXA_D1  
GPIO12  
7
I/O  
I
SPI-A Slave Transmit Enable (STE)  
FSIRX-A Optional Additional Data Input  
General-Purpose Input Output 12  
ePWM-7 Output A  
9
0, 4, 8, 12  
I/O  
O
O
I/O  
O
I
EPWM7_A  
CANB_TX  
1
2
5
6
7
9
CAN-B Transmit  
EQEP1_STROBE  
SCIB_TX  
51  
30  
27  
eQEP-1 Strobe  
SCI-B Transmit Data  
PMBUSA_CTL  
FSIRXA_D0  
PMBus-A Control Signal  
FSIRX-A Primary Data Input  
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
56  
RSH  
PIN  
TYPE  
SIGNAL NAME  
GPIO13  
100 PZ  
64 PM  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 13  
EPWM7_B  
CANB_RX  
1
ePWM-7 Output B  
CAN-B Receive  
eQEP-1 Index  
2
EQEP1_INDEX  
SCIB_RX  
5
50  
29  
26  
I/O  
I
6
SCI-B Receive Data  
PMBUSA_ALERT  
FSIRXA_CLK  
GPIO14  
7
I/OD PMBus-A Open-Drain Bidirectional Alert Signal  
9
I
FSIRX-A Input Clock  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 14  
ePWM-8 Output A  
EPWM8_A  
SCIB_TX  
1
2
O
SCI-B Transmit Data  
OUTPUTXBAR3  
PMBUSA_SDA  
SPIB_CLK  
6
96  
O
Output X-BAR Output 3  
7
I/OD PMBus-A Open-Drain Bidirectional Data  
9
I/O  
I
SPI-B Clock  
EQEP2_A  
10  
eQEP-2 Input A  
GPIO15  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 15  
ePWM-8 Output B  
EPWM8_B  
SCIB_RX  
1
2
SCI-B Receive Data  
Output X-BAR Output 4  
OUTPUTXBAR4  
PMBUSA_SCL  
SPIB_STE  
6
95  
O
7
I/OD PMBus-A Open-Drain Bidirectional Clock  
9
I/O  
I
SPI-B Slave Transmit Enable (STE)  
eQEP-2 Input B  
EQEP2_B  
10  
GPIO16  
0, 4, 8, 12  
I/O  
I/O  
O
General-Purpose Input Output 16  
SPI-A Slave In, Master Out (SIMO)  
CAN-B Transmit  
SPIA_SIMO  
CANB_TX  
1
2
OUTPUTXBAR7  
EPWM5_A  
SCIA_TX  
3
O
Output X-BAR Output 7  
ePWM-5 Output A  
5
O
54  
33  
33  
30  
6
O
SCI-A Transmit Data  
SD1_D1  
7
I
SDFM-1 Channel 1 Data Input  
eQEP-1 Strobe  
EQEP1_STROBE  
PMBUSA_SCL  
9
I/O  
10  
I/OD PMBus-A Open-Drain Bidirectional Clock  
External Clock Output. This pin outputs a divided-down  
version of a chosen clock signal from within the device.  
XCLKOUT  
11  
O
GPIO17  
0, 4, 8, 12  
I/O  
I/O  
I
General-Purpose Input Output 17  
SPI-A Slave Out, Master In (SOMI)  
CAN-B Receive  
SPIA_SOMI  
CANB_RX  
1
2
OUTPUTXBAR8  
EPWM5_B  
SCIA_RX  
3
O
O
I
Output X-BAR Output 8  
ePWM-5 Output B  
5
55  
34  
34  
31  
6
SCI-A Receive Data  
SD1_C1  
7
I
SDFM-1 Channel 1 Clock Input  
eQEP-1 Index  
EQEP1_INDEX  
PMBUSA_SDA  
9
I/O  
10  
I/OD PMBus-A Open-Drain Bidirectional Data  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
56  
RSH  
PIN  
TYPE  
SIGNAL NAME  
100 PZ  
64 PM  
DESCRIPTION  
General-Purpose Input Output 18. This pin and its digital  
mux options can only be used when the system is clocked  
by INTOSC and X1 has an external pulldown resistor  
(recommended 1 kΩ).  
GPIO18_X2  
0, 4, 8, 12  
I/O  
SPIA_CLK  
SCIB_TX  
1
2
I/O  
O
I
SPI-A Clock  
SCI-B Transmit Data  
CAN-A Receive  
ePWM-6 Output A  
CANA_RX  
EPWM6_A  
I2CA_SCL  
SD1_D2  
3
5
O
68  
41  
41  
38  
6
I/OD I2C-A Open-Drain Bidirectional Clock  
7
I
I
I
SDFM-1 Channel 2 Data Input  
eQEP-2 Input A  
EQEP2_A  
PMBUSA_CTL  
9
10  
PMBus-A Control Signal  
External Clock Output. This pin outputs a divided-down  
version of a chosen clock signal from within the device.  
XCLKOUT  
11  
O
X2  
ALT  
0
I/O  
I/O  
I/O  
Crystal oscillator output  
GPIO20  
GPIO21  
General-Purpose Input Output 20  
General-Purpose Input Output 21  
0
General-Purpose Input Output 22. This pin is configured for  
DC-DC mode by default. If the internal DC-DC regulator is  
not used, this can be configured as General-Purpose Input  
Output 22 by disabling DC-DC and clearing their bits in  
GPAAMSEL register.  
GPIO22_VFBSW  
0, 4, 8, 12  
I/O  
EQEP1_STROBE  
SCIB_TX  
1
3
6
7
9
I/O  
O
eQEP-1 Strobe  
SCI-B Transmit Data  
SPI-B Clock  
83  
56  
56  
51  
SPIB_CLK  
SD1_D4  
I/O  
I
SDFM-1 Channel 4 Data Input  
LIN-A Transmit  
LINA_TX  
O
Internal DC-DC regulator feedback signal. If the internal DC-  
DC regulator is used, tie this pin to the node where L(VSW)  
connects to the VDD rail (as close as possible to the  
device).  
VFBSW  
ALT  
-
General-Purpose Input Output 23. This pin is configured for  
DC-DC mode by default. If the internal DC-DC regulator is  
not used, this can be configured as General-Purpose Input  
Output 23 by disabling DC-DC and clearing their bits in  
GPAAMSEL register. This pin has an internal capacitance of  
approximately 100 pF. TI Recommends using an alternate  
GPIO, or using this pin only for applications which do not  
require a fast switching response.  
GPIO23_VSW  
0
I/O  
81  
54  
54  
49  
VSW  
ALT  
-
I/O  
O
I
Switching output of the internal DC-DC regulator  
General-Purpose Input Output 24  
Output X-BAR Output 1  
GPIO24  
0, 4, 8, 12  
OUTPUTXBAR1  
EQEP2_A  
EPWM8_A  
SPIB_SIMO  
SD1_D1  
1
2
eQEP-2 Input A  
5
O
I/O  
I
ePWM-8 Output A  
6
56  
35  
35  
32  
SPI-B Slave In, Master Out (SIMO)  
SDFM-1 Channel 1 Data Input  
7
PMBUSA_SCL  
SCIA_TX  
10  
11  
13  
I/OD PMBus-A Open-Drain Bidirectional Clock  
O
O
SCI-A Transmit Data  
ERRORSTS  
Error Status Output. This signal requires an external pullup.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
56  
RSH  
PIN  
TYPE  
SIGNAL NAME  
GPIO25  
100 PZ  
64 PM  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 25  
OUTPUTXBAR2  
EQEP2_B  
1
Output X-BAR Output 2  
2
eQEP-2 Input B  
SPIB_SOMI  
SD1_C1  
6
I/O  
I
SPI-B Slave Out, Master In (SOMI)  
SDFM-1 Channel 1 Clock Input  
FSITX-A Optional Additional Data Output  
57  
7
FSITXA_D1  
PMBUSA_SDA  
SCIA_RX  
9
O
10  
I/OD PMBus-A Open-Drain Bidirectional Data  
11  
I
I/O  
O
SCI-A Receive Data  
GPIO26  
0, 4, 8, 12  
General-Purpose Input Output 26  
Output X-BAR Output 3  
eQEP-2 Index  
OUTPUTXBAR3  
EQEP2_INDEX  
SPIB_CLK  
1, 5  
2
I/O  
I/O  
I
6
SPI-B Clock  
58  
SD1_D2  
7
SDFM-1 Channel 2 Data Input  
FSITX-A Primary Data Output  
PMBus-A Control Signal  
FSITXA_D0  
PMBUSA_CTL  
I2CA_SDA  
GPIO27  
9
O
10  
I
11  
I/OD I2C-A Open-Drain Bidirectional Data  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 27  
Output X-BAR Output 4  
OUTPUTXBAR4  
EQEP2_STROBE  
SPIB_STE  
1, 5  
2
I/O  
I/O  
I
eQEP-2 Strobe  
6
SPI-B Slave Transmit Enable (STE)  
SDFM-1 Channel 2 Clock Input  
FSITX-A Output Clock  
59  
SD1_C2  
7
FSITXA_CLK  
PMBUSA_ALERT  
I2CA_SCL  
9
O
10  
I/OD PMBus-A Open-Drain Bidirectional Alert Signal  
I/OD I2C-A Open-Drain Bidirectional Clock  
11  
GPIO28  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 28  
SCI-A Receive Data  
ePWM-7 Output A  
SCIA_RX  
1
EPWM7_A  
OUTPUTXBAR5  
EQEP1_A  
3
O
O
I
5
Output X-BAR Output 5  
eQEP-1 Input A  
6
1
2
2
3
SD1_D3  
7
I
SDFM-1 Channel 3 Data Input  
eQEP-2 Strobe  
EQEP2_STROBE  
LINA_TX  
9
I/O  
O
I/O  
O
I/O  
O
O
O
I
10  
LIN-A Transmit  
SPIB_CLK  
11  
SPI-B Clock  
ERRORSTS  
GPIO29  
13  
Error Status Output. This signal requires an external pullup.  
General-Purpose Input Output 29  
SCI-A Transmit Data  
0, 4, 8, 12  
SCIA_TX  
1
3
EPWM7_B  
OUTPUTXBAR6  
EQEP1_B  
ePWM-7 Output B  
5
Output X-BAR Output 6  
6
eQEP-1 Input B  
100  
1
1
2
SD1_C3  
7
I
SDFM-1 Channel 3 Clock Input  
eQEP-2 Index  
EQEP2_INDEX  
LINA_RX  
9
I/O  
I
10  
11  
13  
LIN-A Receive  
SPIB_STE  
I/O  
O
SPI-B Slave Transmit Enable (STE)  
Error Status Output. This signal requires an external pullup.  
ERRORSTS  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
56  
RSH  
PIN  
TYPE  
SIGNAL NAME  
100 PZ  
64 PM  
DESCRIPTION  
GPIO30  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 30  
CANA_RX  
SPIB_SIMO  
OUTPUTXBAR7  
EQEP1_STROBE  
SD1_D4  
1
CAN-A Receive  
3
I/O  
O
SPI-B Slave In, Master Out (SIMO)  
Output X-BAR Output 7  
98  
5
6
I/O  
I
eQEP-1 Strobe  
7
SDFM-1 Channel 4 Data Input  
General-Purpose Input Output 31  
CAN-A Transmit  
GPIO31  
0, 4, 8, 12  
I/O  
O
CANA_TX  
SPIB_SOMI  
OUTPUTXBAR8  
EQEP1_INDEX  
SD1_C4  
1
3
I/O  
O
SPI-B Slave Out, Master In (SOMI)  
Output X-BAR Output 8  
5
99  
6
I/O  
I
eQEP-1 Index  
7
SDFM-1 Channel 4 Clock Input  
FSIRX-A Optional Additional Data Input  
General-Purpose Input Output 32  
FSIRXA_D1  
GPIO32  
9
I
0, 4, 8, 12  
I/O  
I2CA_SDA  
SPIB_CLK  
EPWM8_B  
LINA_TX  
1
I/OD I2C-A Open-Drain Bidirectional Data  
3
I/O  
O
O
I
SPI-B Clock  
5
ePWM-8 Output B  
64  
40  
40  
37  
6
LIN-A Transmit  
SD1_D3  
7
SDFM-1 Channel 3 Data Input  
FSIRX-A Primary Data Input  
CAN-A Transmit  
FSIRXA_D0  
CANA_TX  
GPIO33  
9
I
10  
O
I/O  
0, 4, 8, 12  
General-Purpose Input Output 33  
I2CA_SCL  
SPIB_STE  
OUTPUTXBAR4  
LINA_RX  
1
I/OD I2C-A Open-Drain Bidirectional Clock  
3
I/O  
SPI-B Slave Transmit Enable (STE)  
Output X-BAR Output 4  
LIN-A Receive  
5
O
53  
94  
32  
32  
29  
6
I
I
SD1_C3  
7
SDFM-1 Channel 3 Clock Input  
FSIRX-A Input Clock  
FSIRXA_CLK  
CANA_RX  
GPIO34  
9
I
10  
I
CAN-A Receive  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 34  
Output X-BAR Output 1  
OUTPUTXBAR1  
PMBUSA_SDA  
GPIO35  
1
6
I/OD PMBus-A Open-Drain Bidirectional Data  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 35  
SCI-A Receive Data  
SCIA_RX  
1
3
I2CA_SDA  
CANA_RX  
PMBUSA_SCL  
LINA_RX  
I/OD I2C-A Open-Drain Bidirectional Data  
CAN-A Receive  
I/OD PMBus-A Open-Drain Bidirectional Clock  
5
I
6
7
I
I
I
LIN-A Receive  
63  
39  
39  
36  
EQEP1_A  
9
eQEP-1 Input A  
PMBUSA_CTL  
10  
PMBus-A Control Signal  
JTAG Test Data Input (TDI) - TDI is the default mux  
selection for the pin. The internal pullup is disabled by  
default. The internal pullup should be enabled or an external  
pullup added on the board if this pin is used as JTAG TDI to  
avoid a floating input.  
TDI  
15  
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
56  
RSH  
PIN  
TYPE  
SIGNAL NAME  
GPIO37  
100 PZ  
64 PM  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 37  
Output X-BAR Output 2  
OUTPUTXBAR2  
I2CA_SCL  
1
3
I/OD I2C-A Open-Drain Bidirectional Clock  
SCIA_TX  
5
O
O
O
I
SCI-A Transmit Data  
CAN-A Transmit  
LIN-A Transmit  
CANA_TX  
6
LINA_TX  
7
61  
37  
37  
34  
EQEP1_B  
9
eQEP-1 Input B  
PMBUSA_ALERT  
10  
I/OD PMBus-A Open-Drain Bidirectional Alert Signal  
JTAG Test Data Output (TDO) - TDO is the default mux  
selection for the pin. The internal pullup is disabled by  
default. The TDO function will be in a tri-state condition  
when there is no JTAG activity, leaving this pin floating; the  
internal pullup should be enabled or an external pullup  
added on the board to avoid a floating GPIO input.  
TDO  
15  
O
GPIO39  
0, 4, 8, 12  
I/O  
General-Purpose Input Output 39  
CAN-B Receive  
CANB_RX  
FSIRXA_CLK  
GPIO40  
6
91  
85  
I
I
7
FSIRX-A Input Clock  
0, 4, 8, 12  
I/O  
General-Purpose Input Output 40  
PMBUSA_SDA  
FSIRXA_D0  
SCIB_TX  
EQEP1_A  
GPIO41  
6
I/OD PMBus-A Open-Drain Bidirectional Data  
7
I
FSIRX-A Primary Data Input  
SCI-B Transmit Data  
9
O
10  
I
eQEP-1 Input A  
0
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
General-Purpose Input Output 41  
General-Purpose Input Output 42  
General-Purpose Input Output 43  
General-Purpose Input Output 44  
General-Purpose Input Output 45  
General-Purpose Input Output 46  
General-Purpose Input Output 47  
General-Purpose Input Output 48  
General-Purpose Input Output 49  
General-Purpose Input Output 50  
General-Purpose Input Output 51  
General-Purpose Input Output 52  
General-Purpose Input Output 53  
General-Purpose Input Output 54  
General-Purpose Input Output 55  
General-Purpose Input Output 56  
SPI-A Clock  
GPIO42  
0
GPIO43  
0
GPIO44  
0
GPIO45  
0
GPIO46  
0
GPIO47  
0
GPIO48  
0
GPIO49  
0
GPIO50  
0
GPIO51  
0
GPIO52  
0
GPIO53  
0
GPIO54  
0
GPIO55  
0
GPIO56  
0, 4, 8, 12  
SPIA_CLK  
EQEP2_STROBE  
SCIB_TX  
SD1_D3  
1
5
eQEP-2 Strobe  
6
65  
SCI-B Transmit Data  
7
I
SDFM-1 Channel 3 Data Input  
SPI-B Slave In, Master Out (SIMO)  
eQEP-1 Input A  
SPIB_SIMO  
EQEP1_A  
9
I/O  
I
11  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
56  
RSH  
PIN  
TYPE  
SIGNAL NAME  
100 PZ  
64 PM  
DESCRIPTION  
GPIO57  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I
General-Purpose Input Output 57  
SPIA_STE  
EQEP2_INDEX  
SCIB_RX  
1
SPI-A Slave Transmit Enable (STE)  
eQEP-2 Index  
5
6
66  
SCI-B Receive Data  
SD1_C3  
7
I
SDFM-1 Channel 3 Clock Input  
SPI-B Slave Out, Master In (SOMI)  
eQEP-1 Input B  
SPIB_SOMI  
EQEP1_B  
GPIO58  
9
I/O  
I
11  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 58  
Output X-BAR Output 1  
SPI-B Clock  
OUTPUTXBAR1  
SPIB_CLK  
SD1_D4  
5
6
I/O  
I
7
67  
SDFM-1 Channel 4 Data Input  
LIN-A Transmit  
LINA_TX  
9
O
CANB_TX  
EQEP1_STROBE  
GPIO59  
10  
O
CAN-B Transmit  
11  
I/O  
I/O  
O
eQEP-1 Strobe  
0, 4, 8, 12  
General-Purpose Input Output 59  
Output X-BAR Output 2  
SPI-B Slave Transmit Enable (STE)  
SDFM-1 Channel 4 Clock Input  
LIN-A Receive  
OUTPUTXBAR2  
SPIB_STE  
SD1_C4  
5
6
I/O  
I
7
92  
LINA_RX  
9
I
CANB_RX  
EQEP1_INDEX  
10  
11  
I
CAN-B Receive  
I/O  
eQEP-1 Index  
TEST, JTAG, AND RESET  
FLT1  
FLT2  
TCK  
49  
48  
60  
30  
29  
36  
I/O  
I/O  
I
Flash test pin 1. Reserved for TI. Must be left unconnected.  
Flash test pin 2. Reserved for TI. Must be left unconnected.  
JTAG test clock with internal pullup.  
36  
38  
33  
35  
JTAG test-mode select (TMS) with internal pullup. This  
serial control input is clocked into the TAP controller on the  
rising edge of TCK. This device does not have a TRSTn pin.  
An external pullup resistor (recommended 2.2 kΩ) on the  
TMS pin to VDDIO should be placed on the board to keep  
JTAG in reset during normal operation.  
TMS  
62  
73  
38  
46  
I/O  
Internal voltage regulator enable with internal pulldown. Tie  
directly to VSS (low) to enable the internal VREG. Tie  
directly to VDDIO (high) to use an external supply.  
VREGENZ  
46  
42  
I
Crystal oscillator input or single-ended clock input. The  
device initialization software must configure this pin before  
the crystal oscillator is enabled. To use this oscillator, a  
quartz crystal circuit must be connected to X1 and X2. This  
pin can also be used to feed a single-ended 3.3-V level  
clock. GPIO19 is not supported. Internally GPIO19 is  
connected to the X1 function, therefore the GPIO19 should  
be kept in Input Mode with the Pullup disabled to avoid  
interference with the X1 clock function.  
X1  
69  
42  
39  
I/O  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
64  
PMQ  
56  
RSH  
PIN  
TYPE  
SIGNAL NAME  
100 PZ  
64 PM  
DESCRIPTION  
Device Reset (in) and Watchdog Reset (out). During a  
power-on condition, this pin is driven low by the device. An  
external circuit may also drive this pin to assert a device  
reset. This pin is also driven low by the MCU when a  
watchdog reset occurs. During watchdog reset, the XRSn  
pin is driven low for the watchdog reset duration of 512  
OSCCLK cycles. A resistor with a value from 2.2 kΩ to 10  
kΩ should be placed between XRSn and VDDIO. If a  
XRSn  
2
3
3
4
I/OD capacitor is placed between XRSn and VSS for noise  
filtering, it should be 100 nF or smaller. These values allow  
the watchdog to properly drive the XRSn pin to VOL within  
512 OSCCLK cycles when the watchdog reset is asserted.  
The output buffer of this pin is an open-drain with an internal  
pullup. If this pin is driven by an external device, It should be  
done using an open-drain device. If this pin is driven by an  
external device, it should be done using an open-drain  
device.  
POWER AND GROUND  
1.2-V Digital Logic Power Pins. TI recommends placing a  
decoupling capacitor near each VDD pin with a minimum  
total capacitance of approximately 20 µF. When not using  
the internal voltage regulator, the exact value of the  
decoupling capacitance should be determined by your  
system voltage regulation solution.  
4, 46, 4, 27, 4, 27, 5, 24,  
71, 87 44, 59 44, 59 41, 53  
VDD  
3.3-V Analog Power Pins. Place a minimum 2.2-µF  
decoupling capacitor to VSSA on each pin.  
VDDA  
11, 34  
22  
22  
20  
3, 47, 28, 43, 28, 43, 25, 40,  
3.3-V Digital I/O Power Pins. Place a minimum 0.1-µF  
decoupling capacitor on each pin.  
VDDIO  
70, 88  
80  
60  
53  
60  
53  
54  
48  
3.3-V Supply pin for the internal DC-DC regulator. If the  
internal DC-DC regulator is used, a bulk input capacitance  
of 20-µF should be placed on this pin. Always tie this pin to  
the VDDIO pin. A ferrite bead may be used for isolation if  
desired but VDDIO_SW and VDDIO must be supplied from  
the same source.  
VDDIO_SW  
5, 45, 5, 26, 5, 26,  
72, 86 45, 58 45, 58  
VSS  
PAD  
19  
Digital Ground  
Analog Ground  
VSSA  
12, 33  
82  
21  
55  
21  
55  
Internal DC-DC regulator ground. Always tie this pin to the  
VSS pin.  
VSS_SW  
50  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
6.3 Signal Descriptions  
6.3.1 Analog Signals  
Table 6-2. Analog Signals  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO 100 PZ 64 PMQ 64 PM 56 RSH  
A0  
ADC-A Input 0  
ADC-A Input 1  
ADC-A Input 2  
ADC-A Input 3  
ADC-A Input 4  
ADC-A Input 5  
ADC-A Input 6  
ADC-A Input 8  
ADC-A Input 9  
ADC-A Input 10  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
23  
22  
9
15  
14  
9
15  
14  
9
13  
12  
8
A1  
A2  
A3  
10  
36  
35  
6
A4  
23  
6
23  
6
21  
A5  
A6  
A8  
37  
38  
40  
9
A9  
A10  
25  
9
25  
9
23  
8
AIO224  
AIO225  
AIO226  
AIO227  
AIO228  
AIO229  
AIO230  
AIO231  
AIO232  
AIO233  
AIO234  
AIO236  
AIO237  
AIO238  
AIO239  
AIO240  
AIO241  
AIO242  
AIO244  
AIO245  
AIO246  
B0  
Digital Input-224 on ADC Pin  
Digital Input-225 on ADC Pin  
Digital Input-226 on ADC Pin  
Digital Input-227 on ADC Pin  
Digital Input-228 on ADC Pin  
Digital Input-229 on ADC Pin  
Digital Input-230 on ADC Pin  
Digital Input-231 on ADC Pin  
Digital Input-232 on ADC Pin  
Digital Input-233 on ADC Pin  
Digital Input-234 on ADC Pin  
Digital Input-236 on ADC Pin  
Digital Input-237 on ADC Pin  
Digital Input-238 on ADC Pin  
Digital Input-239 on ADC Pin  
Digital Input-240 on ADC Pin  
Digital Input-241 on ADC Pin  
Digital Input-242 on ADC Pin  
Digital Input-244 on ADC Pin  
Digital Input-245 on ADC Pin  
Digital Input-246 on ADC Pin  
ADC-B Input 0  
36  
7
23  
7
23  
7
21  
6
39  
6
24  
6
24  
6
22  
37  
40  
23  
22  
10  
35  
38  
19  
29  
17  
28  
41  
8
25  
15  
14  
25  
15  
14  
23  
13  
12  
12  
18  
11  
12  
18  
11  
10  
16  
8
8
7
21  
31  
44  
41  
40  
7
13  
19  
13  
19  
11  
17  
B1  
ADC-B Input 1  
25  
7
25  
7
23  
6
B2  
ADC-B Input 2  
B3  
ADC-B Input 3  
8
8
8
7
B4  
ADC-B Input 4  
39  
9
24  
9
24  
9
22  
8
B6  
ADC-B Input 6  
B8  
ADC-B Input 8  
36  
23  
19  
29  
21  
23  
15  
12  
18  
13  
23  
15  
12  
18  
13  
21  
13  
10  
16  
11  
B15  
ADC-B Input 15  
C0  
ADC-C Input 0  
C1  
ADC-C Input 1  
C2  
ADC-C Input 2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-2. Analog Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO 100 PZ 64 PMQ 64 PM 56 RSH  
C3  
ADC-C Input 3  
ADC-C Input 4  
ADC-C Input 5  
ADC-C Input 6  
ADC-C Input 8  
ADC-C Input 10  
ADC-C Input 14  
ADC-C Input 15  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
31  
17  
28  
7
19  
11  
19  
11  
17  
C4  
C5  
C6  
7
7
6
C8  
39  
40  
44  
23  
10  
19  
9
24  
25  
24  
25  
22  
23  
C10  
C14  
C15  
15  
15  
13  
CMP1_HN0  
CMP1_HN1  
CMP1_HP0  
CMP1_HP1  
CMP1_HP2  
CMP1_HP3  
CMP1_LN0  
CMP1_LN1  
CMP1_LP0  
CMP1_LP1  
CMP1_LP2  
CMP1_LP3  
CMP2_HN0  
CMP2_HN1  
CMP2_HP0  
CMP2_HP1  
CMP2_HP2  
CMP2_HP3  
CMP2_LN0  
CMP2_LN1  
CMP2_LP0  
CMP2_LP1  
CMP2_LP2  
CMP2_LP3  
CMP3_HN0  
CMP3_HN1  
CMP3_HP0  
CMP3_HP1  
CMP3_HP2  
CMP3_HP3  
CMP3_LN0  
CMP3_LN1  
CMP3_LP0  
CMP3_LP1  
CMP3_LP2  
CMP3_LP3  
CMP4_HN1  
CMPSS-1 High Comparator Negative Input 0  
CMPSS-1 High Comparator Negative Input 1  
CMPSS-1 High Comparator Positive Input 0  
CMPSS-1 High Comparator Positive Input 1  
CMPSS-1 High Comparator Positive Input 2  
CMPSS-1 High Comparator Positive Input 3  
CMPSS-1 Low Comparator Negative Input 0  
CMPSS-1 Low Comparator Negative Input 1  
CMPSS-1 Low Comparator Positive Input 0  
CMPSS-1 Low Comparator Positive Input 1  
CMPSS-1 Low Comparator Positive Input 2  
CMPSS-1 Low Comparator Positive Input 3  
CMPSS-2 High Comparator Negative Input 0  
CMPSS-2 High Comparator Negative Input 1  
CMPSS-2 High Comparator Positive Input 0  
CMPSS-2 High Comparator Positive Input 1  
CMPSS-2 High Comparator Positive Input 2  
CMPSS-2 High Comparator Positive Input 3  
CMPSS-2 Low Comparator Negative Input 0  
CMPSS-2 Low Comparator Negative Input 1  
CMPSS-2 Low Comparator Positive Input 0  
CMPSS-2 Low Comparator Positive Input 1  
CMPSS-2 Low Comparator Positive Input 2  
CMPSS-2 Low Comparator Positive Input 3  
CMPSS-3 High Comparator Negative Input 0  
CMPSS-3 High Comparator Negative Input 1  
CMPSS-3 High Comparator Positive Input 0  
CMPSS-3 High Comparator Positive Input 1  
CMPSS-3 High Comparator Positive Input 2  
CMPSS-3 High Comparator Positive Input 3  
CMPSS-3 Low Comparator Negative Input 0  
CMPSS-3 Low Comparator Negative Input 1  
CMPSS-3 Low Comparator Positive Input 0  
CMPSS-3 Low Comparator Positive Input 1  
CMPSS-3 Low Comparator Positive Input 2  
CMPSS-3 Low Comparator Positive Input 3  
CMPSS-4 High Comparator Negative Input 1  
12  
9
12  
9
10  
8
19  
18  
10  
10  
19  
9
12  
12  
12  
12  
10  
10  
12  
9
12  
9
10  
8
19  
18  
10  
35  
29  
36  
29  
30  
35  
35  
29  
36  
29  
30  
35  
8
12  
12  
12  
12  
10  
10  
18  
23  
18  
18  
18  
23  
18  
18  
16  
21  
16  
16  
18  
23  
18  
18  
18  
23  
18  
18  
16  
21  
16  
16  
8
13  
7
8
13  
7
7
11  
6
21  
7
21  
20  
8
13  
13  
8
13  
13  
8
11  
11  
7
8
8
8
7
21  
7
13  
7
13  
7
11  
6
21  
20  
8
13  
13  
8
13  
13  
8
11  
11  
7
31  
19  
19  
17  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-2. Analog Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO 100 PZ 64 PMQ 64 PM 56 RSH  
CMP4_HP0  
CMP4_HP1  
CMP4_HP2  
CMP4_LN1  
CMP4_LP0  
CMP4_LP1  
CMP4_LP2  
CMP5_HN1  
CMP5_HP0  
CMP5_HP1  
CMP5_HP2  
CMP5_LN1  
CMP5_LP0  
CMP5_LP1  
CMP5_LP2  
CMP6_HN0  
CMP6_HN1  
CMP6_HP0  
CMP6_HP1  
CMP6_HP2  
CMP6_HP3  
CMP6_LN0  
CMP6_LN1  
CMP6_LP0  
CMP6_LP1  
CMP6_LP2  
CMP6_LP3  
CMP7_HN0  
CMP7_HN1  
CMP7_HP0  
CMP7_HP1  
CMP7_HP2  
CMP7_HP3  
CMP7_LN0  
CMP7_LN1  
CMP7_LP0  
CMP7_LP1  
CMP7_LP2  
CMP7_LP3  
DACA_OUT  
DACB_OUT  
PGA1_GND  
PGA1_IN  
CMPSS-4 High Comparator Positive Input 0  
CMPSS-4 High Comparator Positive Input 1  
CMPSS-4 High Comparator Positive Input 2  
CMPSS-4 Low Comparator Negative Input 1  
CMPSS-4 Low Comparator Positive Input 0  
CMPSS-4 Low Comparator Positive Input 1  
CMPSS-4 Low Comparator Positive Input 2  
CMPSS-5 High Comparator Negative Input 1  
CMPSS-5 High Comparator Positive Input 0  
CMPSS-5 High Comparator Positive Input 1  
CMPSS-5 High Comparator Positive Input 2  
CMPSS-5 Low Comparator Negative Input 1  
CMPSS-5 Low Comparator Positive Input 0  
CMPSS-5 Low Comparator Positive Input 1  
CMPSS-5 Low Comparator Positive Input 2  
CMPSS-6 High Comparator Negative Input 0  
CMPSS-6 High Comparator Negative Input 1  
CMPSS-6 High Comparator Positive Input 0  
CMPSS-6 High Comparator Positive Input 1  
CMPSS-6 High Comparator Positive Input 2  
CMPSS-6 High Comparator Positive Input 3  
CMPSS-6 Low Comparator Negative Input 0  
CMPSS-6 Low Comparator Negative Input 1  
CMPSS-6 Low Comparator Positive Input 0  
CMPSS-6 Low Comparator Positive Input 1  
CMPSS-6 Low Comparator Positive Input 2  
CMPSS-6 Low Comparator Positive Input 3  
CMPSS-7 High Comparator Negative Input 0  
CMPSS-7 High Comparator Negative Input 1  
CMPSS-7 High Comparator Positive Input 0  
CMPSS-7 High Comparator Positive Input 1  
CMPSS-7 High Comparator Positive Input 2  
CMPSS-7 High Comparator Positive Input 3  
CMPSS-7 Low Comparator Negative Input 0  
CMPSS-7 Low Comparator Negative Input 1  
CMPSS-7 Low Comparator Positive Input 0  
CMPSS-7 Low Comparator Positive Input 1  
CMPSS-7 Low Comparator Positive Input 2  
CMPSS-7 Low Comparator Positive Input 3  
Buffered DAC-A Output  
I
I
39  
31  
31  
31  
39  
31  
31  
17  
6
24  
19  
19  
19  
24  
19  
19  
11  
6
24  
19  
19  
19  
24  
19  
19  
11  
6
22  
17  
17  
17  
22  
17  
17  
I
I
I
I
I
I
I
I
17  
16  
17  
6
11  
11  
11  
6
11  
11  
11  
6
I
I
I
I
17  
16  
38  
28  
37  
28  
28  
38  
38  
28  
37  
28  
28  
38  
41  
44  
40  
44  
43  
41  
41  
44  
40  
44  
43  
41  
23  
22  
14  
18  
9
11  
11  
11  
11  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
25  
25  
23  
I
I
I
I
I
I
25  
25  
23  
I
I
I
O
O
I
15  
14  
10  
12  
9
15  
14  
10  
12  
9
13  
12  
9
Buffered DAC-B Output  
PGA-1 Ground  
PGA-1 Input  
I
10  
8
PGA1_OF  
PGA-1 Output Filter (Optional)  
O
I
PGA2_GND  
PGA-2 Ground  
32  
20  
20  
18  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-2. Analog Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
PGA2_IN  
DESCRIPTION  
GPIO 100 PZ 64 PMQ 64 PM 56 RSH  
PGA-2 Input  
I
O
I
30  
36  
15  
20  
7
18  
23  
10  
13  
7
18  
23  
10  
13  
7
16  
21  
9
PGA2_OF  
PGA3_GND  
PGA3_IN  
PGA-2 Output Filter (Optional)  
PGA-3 Ground  
PGA-3 Input  
I
11  
6
PGA3_OF  
PGA4_GND  
PGA4_IN  
PGA-3 Output Filter (Optional)  
PGA-4 Ground  
O
I
32  
31  
39  
13  
16  
6
20  
19  
24  
10  
11  
6
20  
19  
24  
10  
11  
6
18  
17  
22  
9
PGA-4 Input  
I
PGA4_OF  
PGA5_GND  
PGA5_IN  
PGA-4 Output Filter (Optional)  
PGA-5 Ground  
O
I
PGA-5 Input  
I
PGA5_OF  
PGA6_GND  
PGA6_IN  
PGA-5 Output Filter (Optional)  
PGA-6 Ground  
O
I
32  
28  
37  
42  
43  
40  
20  
20  
18  
PGA-6 Input  
I
PGA6_OF  
PGA7_GND  
PGA7_IN  
PGA-6 Output Filter (Optional)  
PGA-7 Ground  
O
I
PGA-7 Input  
I
PGA7_OF  
PGA-7 Output Filter (Optional)  
O
25  
8
25  
8
23  
7
Optional external reference voltage for on-chip  
DACs. There is a 100-pF capacitor to VSSA on  
this pin whether used for ADC input or DAC  
reference which cannot be disabled. If this pin  
is being used as a reference for the on-chip  
DACs, place at least a 1-µF capacitor on this  
pin.  
VDAC  
I
8
ADC-A High Reference. In external reference  
mode, externally drive the high reference  
voltage onto this pin. In internal reference  
mode, a voltage is driven onto this pin by the  
device. In either mode, place at least a 2.2-µF  
capacitor on this pin. This capacitor should be  
placed as close to the device as possible  
between the VREFHIA and VREFLOA pins. Do  
not load this pin externally in either internal or  
external reference mode.  
VREFHIA  
I/O  
25  
16  
16  
14  
ADC-B High Reference. In external reference  
mode, externally drive the high reference  
voltage onto this pin. In internal reference  
mode, a voltage is driven onto this pin by the  
device. In either mode, place at least a 2.2-µF  
capacitor on this pin. This capacitor should be  
placed as close to the device as possible  
between the VREFHIB and VREFLOB pins. Do  
not load this pin externally in either internal or  
external reference mode.  
VREFHIB  
I/O  
24  
16  
16  
14  
ADC-C High Reference. In external reference  
mode, externally drive the high reference  
voltage onto this pin. In internal reference  
mode, a voltage is driven onto this pin by the  
device. In either mode, place at least a 2.2-µF  
capacitor on this pin. This capacitor should be  
placed as close to the device as possible  
between the VREFHIC and VREFLOC pins.  
Do not load this pin externally in either internal  
or external reference mode.  
VREFHIC  
VREFLOA  
I/O  
24  
27  
16  
17  
16  
17  
14  
15  
ADC-A Low Reference  
I
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-2. Analog Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO 100 PZ 64 PMQ 64 PM 56 RSH  
VREFLOB  
VREFLOC  
ADC-B Low Reference  
ADC-C Low Reference  
I
I
26  
26  
17  
17  
17  
17  
15  
15  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
6.3.2 Digital Signals  
Table 6-3. Digital Signals  
PIN  
TYPE  
SIGNAL NAME  
ADCSOCAO  
DESCRIPTION  
GPIO 100 PZ 64 PMQ 64 PM 56 RSH  
ADC Start of Conversion A Output for External  
ADC (from ePWM modules)  
O
8
74  
93  
47  
63  
47  
63  
42  
ADC Start of Conversion B Output for External  
ADC (from ePWM modules)  
ADCSOCBO  
CANA_RX  
CANA_TX  
CANB_RX  
O
I
10  
18, 30, 53, 63,  
33, 35, 68, 89,  
32, 39, 32, 39, 29, 36,  
41, 61 41, 61 38, 55  
CAN-A Receive  
CAN-A Transmit  
CAN-B Receive  
5
98  
31, 32, 61, 64, 37, 40, 37, 40, 34, 37,  
37, 4 75, 99 48 48 43  
O
I
10, 13, 50, 55,  
17, 39, 84, 91,  
34, 57, 29, 34, 26, 31,  
63  
57, 63  
52  
59, 7  
92, 93  
51, 54,  
67, 74,  
97  
12, 16,  
58, 6, 8  
33, 47, 30, 33,  
1, 27,  
30, 42  
CANB_TX  
CAN-B Transmit  
O
64  
47, 64  
EPWM1_A  
EPWM1_B  
EPWM2_A  
EPWM2_B  
EPWM3_A  
EPWM3_B  
EPWM4_A  
EPWM4_B  
EPWM5_A  
EPWM5_B  
EPWM6_A  
EPWM6_B  
EPWM7_A  
EPWM7_B  
EPWM8_A  
EPWM8_B  
ePWM-1 Output A  
ePWM-1 Output B  
ePWM-2 Output A  
ePWM-2 Output B  
ePWM-3 Output A  
ePWM-3 Output B  
ePWM-4 Output A  
ePWM-4 Output B  
ePWM-5 Output A  
ePWM-5 Output B  
ePWM-6 Output A  
ePWM-6 Output B  
ePWM-7 Output A  
ePWM-7 Output B  
ePWM-8 Output A  
ePWM-8 Output B  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
0
79  
78  
52  
51  
52  
51  
47  
46  
1
2
3
77  
50  
50  
45  
76  
49  
49  
44  
4
75  
48  
48  
43  
5
89  
61  
61  
55  
6
97  
64  
64  
1
7
84  
57  
57  
52  
16, 8  
17, 9  
10, 18  
11  
54, 74  
55, 90  
68, 93  
52  
33, 47  
34, 62  
41, 63  
31  
33, 47  
34, 62  
41, 63  
31  
30, 42  
31, 56  
38  
28  
12, 28  
1, 51  
2
2, 30  
1, 29  
35  
27, 3  
2, 26  
32  
13, 29 100, 50  
1
14, 24  
15, 32  
10, 28,  
35, 40, 65, 85,  
56, 6 93, 97  
56, 96  
64, 95  
1, 63,  
35  
40  
40  
37  
2, 39,  
63, 64  
2, 39,  
63, 64  
EQEP1_A  
eQEP-1 Input A  
eQEP-1 Input B  
eQEP-1 Index  
eQEP-1 Strobe  
I
1, 3, 36  
11, 29, 100, 52,  
37, 57, 61, 66,  
1, 31,  
37, 57  
1, 31,  
37, 57  
2, 28,  
34, 52  
EQEP1_B  
I
7
84  
13, 17, 50, 55,  
31, 59, 90, 92, 34, 62  
99  
29, 34, 26, 31,  
62 56  
EQEP1_INDEX  
EQEP1_STROBE  
I/O  
I/O  
9
12, 16, 51, 54,  
22, 30, 67, 74,  
58, 8  
33, 47, 30, 33, 27, 30,  
56  
47, 56  
42, 51  
83, 98  
14, 18, 56, 68,  
EQEP2_A  
eQEP-2 Input A  
eQEP-2 Input B  
eQEP-2 Index  
I
I
35, 41  
35, 41  
32, 38  
24  
96  
EQEP2_B  
15, 25  
57, 95  
26, 29, 100, 58,  
57 66  
EQEP2_INDEX  
I/O  
1
1
2
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO 100 PZ 64 PMQ 64 PM 56 RSH  
27, 28,  
56  
1, 59,  
65  
EQEP2_STROBE  
ERRORSTS  
FSIRXA_CLK  
FSIRXA_D0  
FSIRXA_D1  
FSITXA_CLK  
FSITXA_D0  
eQEP-2 Strobe  
I/O  
2
2
3
Error Status Output. This signal requires an  
external pullup.  
24, 28, 1, 100,  
29 56  
O
I
1, 2, 35 1, 2, 35 2, 3, 32  
13, 33, 50, 53,  
39, 4  
29, 32, 26, 29,  
32, 48  
FSIRX-A Input Clock  
75, 91  
48  
43  
12, 3,  
32, 40  
51, 64,  
76, 85  
30, 40, 27, 37,  
49  
FSIRX-A Primary Data Input  
FSIRX-A Optional Additional Data Input  
FSITX-A Output Clock  
I
40, 49  
31, 50  
57, 63  
62, 64  
47, 61  
44  
11, 2,  
31  
52, 77,  
99  
I
31, 50  
28, 45  
10, 27, 59, 84,  
O
O
O
57, 63  
62, 64  
47, 61  
52  
7
93  
58, 90,  
97  
FSITX-A Primary Data Output  
FSITX-A Optional Additional Data Output  
26, 6, 9  
1, 56  
42, 55  
57, 74,  
89  
FSITXA_D1  
25, 5, 8  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
General-Purpose Input Output 0  
General-Purpose Input Output 1  
General-Purpose Input Output 2  
General-Purpose Input Output 3  
General-Purpose Input Output 4  
General-Purpose Input Output 5  
General-Purpose Input Output 6  
General-Purpose Input Output 7  
General-Purpose Input Output 8  
General-Purpose Input Output 9  
General-Purpose Input Output 10  
General-Purpose Input Output 11  
General-Purpose Input Output 12  
General-Purpose Input Output 13  
General-Purpose Input Output 14  
General-Purpose Input Output 15  
General-Purpose Input Output 16  
General-Purpose Input Output 17  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
0
1
79  
78  
77  
76  
75  
89  
97  
84  
74  
90  
93  
52  
51  
50  
96  
95  
54  
55  
52  
51  
50  
49  
48  
61  
64  
57  
47  
62  
63  
31  
52  
51  
50  
49  
48  
61  
64  
57  
47  
62  
63  
31  
30  
29  
47  
46  
45  
44  
43  
55  
1
2
3
4
5
6
7
52  
42  
56  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
28  
27  
26  
33  
34  
33  
34  
30  
31  
General-Purpose Input Output 18. This pin and  
its digital mux options can only be used when  
the system is clocked by INTOSC and X1 has  
an external pulldown resistor (recommended 1  
kΩ).  
GPIO18_X2  
I/O  
18  
68  
41  
41  
38  
GPIO20  
GPIO21  
General-Purpose Input Output 20  
General-Purpose Input Output 21  
I/O  
I/O  
20  
21  
General-Purpose Input Output 22. This pin is  
configured for DC-DC mode by default. If the  
internal DC-DC regulator is not used, this can  
be configured as General-Purpose Input  
Output 22 by disabling DC-DC and clearing  
their bits in GPAAMSEL register.  
GPIO22_VFBSW  
I/O  
22  
83  
56  
56  
51  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO 100 PZ 64 PMQ 64 PM 56 RSH  
General-Purpose Input Output 23. This pin is  
configured for DC-DC mode by default. If the  
internal DC-DC regulator is not used, this can  
be configured as General-Purpose Input  
Output 23 by disabling DC-DC and clearing  
their bits in GPAAMSEL register. This pin has  
an internal capacitance of approximately 100  
pF. TI Recommends using an alternate GPIO,  
or using this pin only for applications which do  
not require a fast switching response.  
GPIO23_VSW  
I/O  
23  
81  
54  
35  
54  
35  
49  
32  
GPIO24  
GPIO25  
GPIO26  
GPIO27  
GPIO28  
GPIO29  
GPIO30  
GPIO31  
GPIO32  
GPIO33  
GPIO34  
GPIO35  
GPIO37  
GPIO39  
GPIO40  
GPIO41  
GPIO42  
GPIO43  
GPIO44  
GPIO45  
GPIO46  
GPIO47  
GPIO48  
GPIO49  
GPIO50  
GPIO51  
GPIO52  
GPIO53  
GPIO54  
GPIO55  
GPIO56  
GPIO57  
GPIO58  
GPIO59  
General-Purpose Input Output 24  
General-Purpose Input Output 25  
General-Purpose Input Output 26  
General-Purpose Input Output 27  
General-Purpose Input Output 28  
General-Purpose Input Output 29  
General-Purpose Input Output 30  
General-Purpose Input Output 31  
General-Purpose Input Output 32  
General-Purpose Input Output 33  
General-Purpose Input Output 34  
General-Purpose Input Output 35  
General-Purpose Input Output 37  
General-Purpose Input Output 39  
General-Purpose Input Output 40  
General-Purpose Input Output 41  
General-Purpose Input Output 42  
General-Purpose Input Output 43  
General-Purpose Input Output 44  
General-Purpose Input Output 45  
General-Purpose Input Output 46  
General-Purpose Input Output 47  
General-Purpose Input Output 48  
General-Purpose Input Output 49  
General-Purpose Input Output 50  
General-Purpose Input Output 51  
General-Purpose Input Output 52  
General-Purpose Input Output 53  
General-Purpose Input Output 54  
General-Purpose Input Output 55  
General-Purpose Input Output 56  
General-Purpose Input Output 57  
General-Purpose Input Output 58  
General-Purpose Input Output 59  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
37  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
1, 18,  
56  
57  
58  
59  
1
2
1
2
1
3
2
100  
98  
99  
64  
53  
94  
63  
61  
91  
85  
40  
32  
40  
32  
37  
29  
39  
37  
39  
37  
36  
34  
65  
66  
67  
92  
53, 59, 32, 37, 32, 37, 29, 34,  
27, 33, 61, 68, 41, 47, 41, 47, 38, 42,  
37, 8 74, 78 51 51 46  
I2CA_SCL  
I2C-A Open-Drain Bidirectional Clock  
I/OD  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
I2C-A Open-Drain Bidirectional Data  
LIN-A Receive  
GPIO 100 PZ 64 PMQ 64 PM 56 RSH  
0, 10,  
26, 32, 64, 79,  
35 93  
58, 63,  
39, 40, 39, 40, 36, 37,  
I2CA_SDA  
LINA_RX  
LINA_TX  
I/OD  
52, 63  
52, 63  
47  
29, 33, 100, 53, 1, 32,  
1, 32,  
39  
2, 29,  
36  
I
35, 59  
63, 92  
39  
22, 28,  
32, 37, 64, 67,  
58  
1, 61,  
2, 37,  
40, 56  
2, 37,  
40, 56  
3, 34,  
37, 51  
LIN-A Transmit  
O
83  
2, 24,  
34, 58  
56, 67,  
77, 94  
OUTPUTXBAR1  
OUTPUTXBAR2  
OUTPUTXBAR3  
OUTPUTXBAR4  
Output X-BAR Output 1  
Output X-BAR Output 2  
Output X-BAR Output 3  
Output X-BAR Output 4  
O
O
O
O
35, 50  
37, 49  
48, 61  
32, 64  
35, 50  
37, 49  
48, 61  
32, 64  
32, 45  
34, 44  
43, 55  
1, 29  
25, 3,  
37, 59  
57, 61,  
76, 92  
14, 26, 58, 75,  
4, 5 89, 96  
15, 27, 53, 59,  
33, 6  
28, 7  
29, 9  
95, 97  
OUTPUTXBAR5  
OUTPUTXBAR6  
Output X-BAR Output 5  
Output X-BAR Output 6  
O
O
1, 84  
2, 57  
1, 62  
2, 57  
1, 62  
3, 52  
2, 56  
100, 90  
11, 16, 52, 54,  
OUTPUTXBAR7  
OUTPUTXBAR8  
PMBUSA_ALERT  
Output X-BAR Output 7  
O
O
31, 33  
34  
31, 33  
34  
28, 30  
31  
30  
98  
Output X-BAR Output 8  
17, 31  
55, 99  
13, 27, 50, 59,  
37 61  
PMBus-A Open-Drain Bidirectional Alert Signal  
I/OD  
37  
29, 37  
26, 34  
12, 18, 51, 58,  
26, 35 63, 68  
30, 39, 27, 36,  
41 38  
PMBUSA_CTL  
PMBUSA_SCL  
PMBus-A Control Signal  
I
39, 41  
15, 16, 54, 56,  
33, 35, 33, 35, 30, 32,  
PMBus-A Open-Drain Bidirectional Clock  
I/OD  
24, 3,  
35  
63, 76,  
95  
39, 49  
39, 49  
36, 44  
14, 17, 55, 57,  
PMBUSA_SDA  
SCIA_RX  
PMBus-A Open-Drain Bidirectional Data  
SCI-A Receive Data  
I/OD  
I
2, 25,  
34, 40  
77, 85, 34, 50  
94, 96  
34, 50  
2, 34,  
31, 45  
3, 31,  
17, 25,  
28, 3,  
35, 9  
1, 55,  
2, 34,  
57, 63, 39, 49, 39, 49, 36, 44,  
76, 90  
62  
62  
56  
16, 2, 100, 54, 1, 33,  
1, 33,  
2, 30,  
SCIA_TX  
SCIB_RX  
SCI-A Transmit Data  
SCI-B Receive Data  
O
I
24, 29, 56, 61, 35, 37, 35, 37, 32, 34,  
37, 8  
11, 13, 50, 52,  
15, 57 66, 95  
10, 12, 51, 65,  
74, 77  
47, 50  
47, 50  
42, 45  
31  
29, 31  
26, 28  
30, 41,  
56, 62,  
63  
14, 18, 68, 83, 41, 56,  
22, 40, 85, 90, 62, 63  
27, 38,  
51, 56  
SCIB_TX  
SCI-B Transmit Data  
O
56, 9  
17, 25  
27  
93, 96  
55, 57  
59  
SD1_C1  
SD1_C2  
SDFM-1 Channel 1 Clock Input  
SDFM-1 Channel 2 Clock Input  
I
I
34  
34  
31  
29, 33, 100, 53,  
SD1_C3  
SDFM-1 Channel 3 Clock Input  
I
1, 32  
1, 32  
2, 29  
57  
66  
SD1_C4  
SD1_D1  
SD1_D2  
SDFM-1 Channel 4 Clock Input  
SDFM-1 Channel 1 Data Input  
SDFM-1 Channel 2 Data Input  
I
I
I
31, 59  
16, 24  
18, 26  
92, 99  
54, 56  
58, 68  
33, 35  
41  
33, 35  
41  
30, 32  
38  
28, 32,  
56  
1, 64,  
65  
SD1_D3  
SDFM-1 Channel 3 Data Input  
I
2, 40  
2, 40  
3, 37  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
SD1_D4  
DESCRIPTION  
SDFM-1 Channel 4 Data Input  
SPI-A Clock  
GPIO 100 PZ 64 PMQ 64 PM 56 RSH  
22, 30, 67, 83,  
I
56  
56  
51  
58  
98  
18, 3,  
56, 9  
65, 68, 41, 49, 41, 49, 38, 44,  
SPIA_CLK  
I/O  
76, 90  
54, 74  
55, 93  
62  
62  
56  
30, 42  
31  
SPIA_SIMO  
SPIA_SOMI  
SPI-A Slave In, Master Out (SIMO)  
SPI-A Slave Out, Master In (SOMI)  
I/O  
I/O  
16, 8  
33, 47  
34, 63  
33, 47  
34, 63  
10, 17  
11, 5,  
57  
52, 66,  
89  
SPIA_STE  
SPIB_CLK  
SPI-A Slave Transmit Enable (STE)  
SPI-B Clock  
I/O  
I/O  
31, 61  
31, 61  
28, 55  
14, 22,  
26, 28, 64, 67,  
32, 58 83, 96  
1, 58,  
2, 40,  
56  
2, 40,  
56  
3, 37,  
51  
24, 30, 56, 65,  
56, 7 84, 98  
SPIB_SIMO  
SPIB_SOMI  
SPI-B Slave In, Master Out (SIMO)  
SPI-B Slave Out, Master In (SOMI)  
I/O  
I/O  
35, 57  
64  
35, 57  
64  
32, 52  
1
25, 31, 57, 66,  
57, 6 97, 99  
15, 27, 100, 53,  
29, 33, 59, 92,  
SPIB_STE  
SYNCOUT  
SPI-B Slave Transmit Enable (STE)  
External ePWM Synchronization Pulse  
I/O  
O
1, 32  
64  
1, 32  
64  
2, 29  
1
59  
95  
6
97  
JTAG Test Data Input (TDI) - TDI is the default  
mux selection for the pin. The internal pullup is  
disabled by default. The internal pullup should  
be enabled or an external pullup added on the  
board if this pin is used as JTAG TDI to avoid a  
floating input.  
TDI  
I
35  
63  
39  
39  
36  
JTAG Test Data Output (TDO) - TDO is the  
default mux selection for the pin. The internal  
pullup is disabled by default. The TDO function  
will be in a tri-state condition when there is no  
JTAG activity, leaving this pin floating; the  
internal pullup should be enabled or an  
external pullup added on the board to avoid a  
floating GPIO input.  
TDO  
O
37  
22  
61  
83  
37  
56  
37  
56  
34  
51  
Internal DC-DC regulator feedback signal. If  
the internal DC-DC regulator is used, tie this  
pin to the node where L(VSW) connects to the  
VDD rail (as close as possible to the device).  
VFBSW  
-
Switching output of the internal DC-DC  
regulator  
VSW  
X2  
-
23  
18  
81  
68  
54  
41  
54  
41  
49  
38  
Crystal oscillator output  
I/O  
External Clock Output. This pin outputs a  
divided-down version of a chosen clock signal  
from within the device.  
XCLKOUT  
O
16, 18  
54, 68  
33, 41  
33, 41  
30, 38  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
6.3.3 Power and Ground  
Table 6-4. Power and Ground  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO 100 PZ 64 PMQ 64 PM 56 RSH  
1.2-V Digital Logic Power Pins. TI  
recommends placing a decoupling capacitor  
near each VDD pin with a minimum total  
capacitance of approximately 20 µF. When not  
using the internal voltage regulator, the exact  
value of the decoupling capacitance should be  
determined by your system voltage regulation  
solution.  
4, 46,  
71, 87  
27, 4,  
44, 59  
27, 4,  
44, 59  
24, 41,  
5, 53  
VDD  
3.3-V Analog Power Pins. Place a minimum  
2.2-µF decoupling capacitor to VSSA on each  
pin.  
VDDA  
11, 34  
22  
22  
20  
3.3-V Digital I/O Power Pins. Place a minimum  
0.1-µF decoupling capacitor on each pin.  
3, 47,  
70, 88  
28, 43, 28, 43, 25, 40,  
VDDIO  
60  
60  
54  
3.3-V Supply pin for the internal DC-DC  
regulator. If the internal DC-DC regulator is  
used, a bulk input capacitance of 20-µF should  
be placed on this pin. Always tie this pin to the  
VDDIO pin. A ferrite bead may be used for  
isolation if desired but VDDIO_SW and VDDIO  
must be supplied from the same source.  
VDDIO_SW  
80  
53  
53  
48  
45, 5,  
72, 86  
26, 45, 26, 45,  
VSS  
Digital Ground  
Analog Ground  
PAD  
19  
5, 58  
5, 58  
VSSA  
12, 33  
82  
21  
21  
Internal DC-DC regulator ground. Always tie  
this pin to the VSS pin.  
VSS_SW  
55  
55  
50  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
6.3.4 Test, JTAG, and Reset  
Table 6-5. Test, JTAG, and Reset  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO 100 PZ 64 PMQ 64 PM 56 RSH  
Flash test pin 1. Reserved for TI. Must be left  
unconnected.  
FLT1  
I/O  
49  
30  
Flash test pin 2. Reserved for TI. Must be left  
unconnected.  
FLT2  
TCK  
I/O  
I
48  
60  
29  
36  
JTAG test clock with internal pullup.  
36  
38  
33  
35  
JTAG test-mode select (TMS) with internal  
pullup. This serial control input is clocked into  
the TAP controller on the rising edge of TCK.  
This device does not have a TRSTn pin. An  
external pullup resistor (recommended 2.2 kΩ)  
on the TMS pin to VDDIO should be placed on  
the board to keep JTAG in reset during normal  
operation.  
TMS  
I/O  
62  
73  
38  
46  
Internal voltage regulator enable with internal  
pulldown. Tie directly to VSS (low) to enable  
the internal VREG. Tie directly to VDDIO (high)  
to use an external supply.  
VREGENZ  
I
46  
42  
Crystal oscillator input or single-ended clock  
input. The device initialization software must  
configure this pin before the crystal oscillator is  
enabled. To use this oscillator, a quartz crystal  
circuit must be connected to X1 and X2. This  
pin can also be used to feed a single-ended  
3.3-V level clock. GPIO19 is not supported.  
Internally GPIO19 is connected to the X1  
function, therefore the GPIO19 should be kept  
in Input Mode with the Pullup disabled to avoid  
interference with the X1 clock function.  
X1  
I/O  
69  
42  
39  
Device Reset (in) and Watchdog Reset (out).  
During a power-on condition, this pin is driven  
low by the device. An external circuit may also  
drive this pin to assert a device reset. This pin  
is also driven low by the MCU when a  
watchdog reset occurs. During watchdog reset,  
the XRSn pin is driven low for the watchdog  
reset duration of 512 OSCCLK cycles. A  
resistor with a value from 2.2 kΩ to 10 kΩ  
should be placed between XRSn and VDDIO.  
If a capacitor is placed between XRSn and  
VSS for noise filtering, it should be 100 nF or  
smaller. These values allow the watchdog to  
properly drive the XRSn pin to VOL within 512  
OSCCLK cycles when the watchdog reset is  
asserted. The output buffer of this pin is an  
open-drain with an internal pullup. If this pin is  
driven by an external device, It should be done  
using an open-drain device. If this pin is driven  
by an external device, it should be done using  
an open-drain device.  
XRSn  
I/OD  
2
3
3
4
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
6.4 Pin Multiplexing  
6.4.1 GPIO Muxed Pins  
Table 1-1 lists the GPIO muxed pins. The default mode for each GPIO pin is the GPIO function, except GPIO35  
and GPIO37, which default to TDI and TDO, respectively. Secondary functions can be selected by setting both  
the GPyGMUXn.GPIOz and GPyMUXn.GPIOz register bits. The GPyGMUXn register should be configured  
before the GPyMUXn to avoid transient pulses on GPIOs from alternate mux selections. Columns that are not  
shown and blank cells are reserved GPIO Mux settings.  
Note  
GPIO20, GPIO21, and GPIO41 to GPIO55 are not available on any packages. Boot ROM enables  
pullups on these pins. For more details, see Section 6.5.  
Table 6-6. GPIO Muxed Pins  
0, 4, 8, 12  
GPIO0  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
EPWM1_A  
EPWM1_B  
I2CA_SDA  
I2CA_SCL  
GPIO1  
OUTPUTXB PMBUSA_S  
AR1 DA  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
EPWM2_A  
EPWM2_B  
EPWM3_A  
EPWM3_B  
EPWM4_A  
EPWM4_B  
EPWM5_A  
EPWM5_B  
EPWM6_A  
EPWM6_B  
EPWM7_A  
EPWM7_B  
EPWM8_A  
EPWM8_B  
SCIA_TX  
SCIA_RX  
FSIRXA_D1  
FSIRXA_D0  
OUTPUTXB  
AR2  
OUTPUTXB PMBUSA_S  
SPIA_CLK  
AR2  
CL  
OUTPUTXB  
AR3  
FSIRXA_CL  
K
CANA_TX  
OUTPUTXB  
AR3  
CANA_RX  
SPIA_STE FSITXA_D1  
OUTPUTXB  
AR4  
SYNCOUT  
EQEP1_A  
EQEP1_B  
CANB_TX SPIB_SOMI FSITXA_D0  
OUTPUTXB  
AR5  
FSITXA_CL  
CANB_RX SPIB_SIMO  
K
ADCSOCA EQEP1_ST  
ROBE  
CANB_TX  
SCIB_TX  
CANB_RX  
SCIB_RX  
CANB_TX  
CANB_RX  
SCIB_TX  
SCIB_RX  
SCIA_TX  
SCIA_RX  
SCIB_TX  
SCIB_RX  
SCIB_TX  
SCIB_RX  
SPIA_SIMO I2CA_SCL FSITXA_D1  
O
OUTPUTXB EQEP1_IND  
SPIA_CLK  
FSITXA_D0  
AR6  
EX  
ADCSOCB  
O
FSITXA_CL  
K
EQEP1_A  
SPIA_SOMI I2CA_SDA  
SPIA_STE FSIRXA_D1  
OUTPUTXB  
AR7  
EQEP1_B  
EQEP1_ST  
ROBE  
PMBUSA_C  
FSIRXA_D0  
TL  
EQEP1_IND  
EX  
PMBUSA_A FSIRXA_CL  
LERT  
K
OUTPUTXB PMBUSA_S  
SPIB_CLK  
EQEP2_A  
EQEP2_B  
AR3 DA  
OUTPUTXB PMBUSA_S  
SPIB_STE  
AR4  
CL  
OUTPUTXB  
AR7  
EQEP1_ST PMBUSA_S  
ROBE CL  
SPIA_SIMO CANB_TX  
SPIA_SOMI CANB_RX  
EPWM5_A  
EPWM5_B  
EPWM6_A  
SCIA_TX  
SD1_D1  
XCLKOUT  
XCLKOUT  
OUTPUTXB  
AR8  
EQEP1_IND PMBUSA_S  
SCIA_RX  
SD1_C1  
SD1_D2  
EX  
DA  
PMBUSA_C  
TL  
GPIO18_X2 SPIA_CLK  
SCIB_TX  
CANA_RX  
SCIB_TX  
I2CA_SCL  
EQEP2_A  
GPIO20  
GPIO21  
GPIO22_VF EQEP1_ST  
BSW  
SPIB_CLK  
SD1_D4  
LINA_TX  
ROBE  
GPIO23_VS  
W
OUTPUTXB  
AR1  
PMBUSA_S  
CL  
GPIO24  
GPIO25  
GPIO26  
GPIO27  
EQEP2_A  
EQEP2_B  
EPWM8_A SPIB_SIMO  
SPIB_SOMI  
SD1_D1  
SD1_C1  
SD1_D2  
SD1_C2  
SCIA_TX  
SCIA_RX  
I2CA_SDA  
I2CA_SCL  
ERRORSTS  
OUTPUTXB  
AR2  
PMBUSA_S  
DA  
FSITXA_D1  
FSITXA_D0  
OUTPUTXB EQEP2_IND  
AR3 EX  
OUTPUTXB  
SPIB_CLK  
AR3  
PMBUSA_C  
TL  
OUTPUTXB EQEP2_ST  
AR4 ROBE  
OUTPUTXB  
SPIB_STE  
AR4  
FSITXA_CL PMBUSA_A  
LERT  
K
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-6. GPIO Muxed Pins (continued)  
0, 4, 8, 12  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
OUTPUTXB  
AR5  
EQEP2_ST  
ROBE  
GPIO28  
SCIA_RX  
EPWM7_A  
EQEP1_A  
SD1_D3  
LINA_TX  
SPIB_CLK ERRORSTS  
SPIB_STE ERRORSTS  
OUTPUTXB  
AR6  
EQEP2_IND  
EX  
GPIO29  
GPIO30  
SCIA_TX  
EPWM7_B  
EQEP1_B  
SD1_C3  
SD1_D4  
LINA_RX  
OUTPUTXB EQEP1_ST  
CANA_RX  
SPIB_SIMO  
AR7  
ROBE  
OUTPUTXB EQEP1_IND  
GPIO31  
GPIO32  
GPIO33  
CANA_TX  
I2CA_SDA  
I2CA_SCL  
SPIB_SOMI  
SPIB_CLK  
SPIB_STE  
SD1_C4  
SD1_D3  
SD1_C3  
FSIRXA_D1  
AR8  
EX  
EPWM8_B  
LINA_TX  
FSIRXA_D0 CANA_TX  
OUTPUTXB  
AR4  
FSIRXA_CL  
CANA_RX  
K
LINA_RX  
OUTPUTXB  
AR1  
PMBUSA_S  
DA  
GPIO34  
GPIO35  
GPIO37  
GPIO39  
GPIO40  
PMBUSA_S  
CL  
PMBUSA_C  
SCIA_RX  
I2CA_SDA  
I2CA_SCL  
CANA_RX  
SCIA_TX  
LINA_RX  
LINA_TX  
EQEP1_A  
TL  
TDI  
OUTPUTXB  
AR2  
PMBUSA_A  
EQEP1_B  
CANA_TX  
CANB_RX  
TDO  
LERT  
FSIRXA_CL  
K
PMBUSA_S  
DA  
FSIRXA_D0  
SCIB_TX  
EQEP1_A  
GPIO41  
GPIO42  
GPIO43  
GPIO44  
GPIO45  
GPIO46  
GPIO47  
GPIO48  
GPIO49  
GPIO50  
GPIO51  
GPIO52  
GPIO53  
GPIO54  
GPIO55  
EQEP2_ST  
ROBE  
GPIO56  
GPIO57  
GPIO58  
GPIO59  
SPIA_CLK  
SPIA_STE  
SCIB_TX  
SCIB_RX  
SPIB_CLK  
SPIB_STE  
SD1_D3  
SD1_C3  
SD1_D4  
SD1_C4  
SPIB_SIMO  
SPIB_SOMI  
LINA_TX  
EQEP1_A  
EQEP1_B  
EQEP2_IND  
EX  
OUTPUTXB  
AR1  
EQEP1_ST  
ROBE  
CANB_TX  
CANB_RX  
OUTPUTXB  
AR2  
EQEP1_IND  
EX  
LINA_RX  
Table 1-1 lists all muxed signals available and the respective GPIO within each package.  
Table 6-7. Digital Signals by GPIO  
SIGNAL NAME  
ADCSOCAO  
PIN TYPE  
DESCRIPTION  
100 PZ  
64 PMQ  
64 PM  
56 RSH  
ADC Start of Conversion A Output for External  
ADC (from ePWM modules)  
O
GPIO8  
GPIO8  
GPIO8  
GPIO8  
ADC Start of Conversion B Output for External  
ADC (from ePWM modules)  
ADCSOCBO  
O
I
GPIO10  
GPIO10  
GPIO5  
GPIO10  
GPIO5  
GPIO18_X  
2
GPIO30  
GPIO33  
GPIO35/T  
DI  
GPIO5  
GPIO5  
GPIO18_X GPIO18_X GPIO18_X  
2
2
2
CANA_RX  
CAN-A Receive  
GPIO33  
GPIO33  
GPIO33  
GPIO35/T GPIO35/T GPIO35/T  
DI DI DI  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-7. Digital Signals by GPIO (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
100 PZ  
64 PMQ  
64 PM  
56 RSH  
GPIO4  
GPIO31  
GPIO32  
GPIO37/T  
DO  
GPIO4  
GPIO32  
GPIO4  
GPIO32  
GPIO4  
GPIO32  
CANA_TX  
CANB_RX  
CANB_TX  
O
CAN-A Transmit  
CAN-B Receive  
CAN-B Transmit  
GPIO37/T GPIO37/T GPIO37/T  
DO  
DO  
DO  
GPIO7  
GPIO10  
GPIO13  
GPIO17  
GPIO39  
GPIO59  
GPIO7  
GPIO10  
GPIO13  
GPIO17  
GPIO7  
GPIO10  
GPIO17  
GPIO7  
GPIO13  
GPIO17  
I
GPIO6  
GPIO8  
GPIO12  
GPIO16  
GPIO58  
GPIO6  
GPIO8  
GPIO12  
GPIO16  
GPIO6  
GPIO8  
GPIO12  
GPIO16  
GPIO6  
GPIO8  
GPIO16  
O
EPWM1_A  
EPWM1_B  
EPWM2_A  
EPWM2_B  
EPWM3_A  
EPWM3_B  
EPWM4_A  
EPWM4_B  
O
O
O
O
O
O
O
O
ePWM-1 Output A  
ePWM-1 Output B  
ePWM-2 Output A  
ePWM-2 Output B  
ePWM-3 Output A  
ePWM-3 Output B  
ePWM-4 Output A  
ePWM-4 Output B  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO16  
GPIO8  
GPIO16  
GPIO8  
GPIO16  
GPIO8  
GPIO16  
EPWM5_A  
EPWM5_B  
O
O
ePWM-5 Output A  
ePWM-5 Output B  
GPIO9  
GPIO17  
GPIO9  
GPIO17  
GPIO9  
GPIO17  
GPIO9  
GPIO17  
GPIO10  
GPIO10  
GPIO10  
GPIO18_X  
2
EPWM6_A  
O
ePWM-6 Output A  
GPIO18_X GPIO18_X GPIO18_X  
2
2
2
EPWM6_B  
EPWM7_A  
O
O
ePWM-6 Output B  
ePWM-7 Output A  
GPIO11  
GPIO11  
GPIO11  
GPIO11  
GPIO12  
GPIO28  
GPIO12  
GPIO28  
GPIO12  
GPIO28  
GPIO28  
GPIO29  
GPIO24  
GPIO32  
GPIO13  
GPIO29  
GPIO13  
GPIO29  
GPIO13  
GPIO29  
EPWM7_B  
EPWM8_A  
EPWM8_B  
O
O
O
ePWM-7 Output B  
ePWM-8 Output A  
ePWM-8 Output B  
GPIO14  
GPIO24  
GPIO24  
GPIO32  
GPIO24  
GPIO32  
GPIO15  
GPIO32  
GPIO6  
GPIO10  
GPIO28  
GPIO6  
GPIO10  
GPIO6  
GPIO10  
GPIO28  
GPIO6  
GPIO28  
GPIO35/T  
DI  
EQEP1_A  
EQEP1_B  
I
I
eQEP-1 Input A  
eQEP-1 Input B  
GPIO35/T GPIO28  
DI  
GPIO40  
GPIO56  
GPIO35/T GPIO35/T  
DI  
DI  
GPIO7  
GPIO11  
GPIO29  
GPIO37/T  
DO  
GPIO7  
GPIO11  
GPIO29  
GPIO7  
GPIO11  
GPIO29  
GPIO7  
GPIO11  
GPIO29  
GPIO37/T GPIO37/T GPIO37/T  
DO DO DO  
GPIO57  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
56 RSH  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-7. Digital Signals by GPIO (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
100 PZ  
64 PMQ  
64 PM  
GPIO9  
GPIO13  
GPIO17  
GPIO31  
GPIO59  
GPIO9  
GPIO13  
GPIO17  
GPIO9  
GPIO13  
GPIO17  
GPIO9  
GPIO17  
EQEP1_INDEX  
I/O  
eQEP-1 Index  
GPIO8  
GPIO12  
GPIO16  
GPIO22_V  
FBSW  
GPIO8  
GPIO12  
GPIO16  
GPIO22_V GPIO22_V  
FBSW FBSW  
GPIO8  
GPIO12  
GPIO16  
GPIO8  
GPIO16  
GPIO22_V  
FBSW  
EQEP1_STROBE  
EQEP2_A  
I/O  
eQEP-1 Strobe  
eQEP-2 Input A  
GPIO30  
GPIO58  
GPIO14  
GPIO18_X  
2
GPIO18_X GPIO18_X GPIO18_X  
I
2
2
2
GPIO24  
GPIO24  
GPIO24  
GPIO24  
GPIO15  
GPIO25  
EQEP2_B  
I
eQEP-2 Input B  
eQEP-2 Index  
GPIO26  
GPIO29  
GPIO57  
EQEP2_INDEX  
I/O  
GPIO29  
GPIO28  
GPIO29  
GPIO28  
GPIO29  
GPIO28  
GPIO27  
GPIO28  
GPIO56  
EQEP2_STROBE  
ERRORSTS  
I/O  
O
eQEP-2 Strobe  
GPIO24  
GPIO28  
GPIO29  
GPIO24  
GPIO28  
GPIO29  
GPIO24  
GPIO28  
GPIO29  
GPIO24  
GPIO28  
GPIO29  
Error Status Output. This signal requires an  
external pullup.  
GPIO4  
GPIO13  
GPIO33  
GPIO39  
GPIO4  
GPIO13  
GPIO33  
GPIO4  
GPIO13  
GPIO33  
GPIO4  
GPIO33  
FSIRXA_CLK  
FSIRXA_D0  
I
I
FSIRX-A Input Clock  
GPIO3  
GPIO12  
GPIO32  
GPIO40  
GPIO3  
GPIO12  
GPIO32  
GPIO3  
GPIO12  
GPIO32  
GPIO3  
GPIO32  
FSIRX-A Primary Data Input  
GPIO2  
GPIO11  
GPIO31  
GPIO2  
GPIO11  
GPIO2  
GPIO11  
GPIO2  
GPIO11  
FSIRXA_D1  
FSITXA_CLK  
FSITXA_D0  
FSITXA_D1  
I
FSIRX-A Optional Additional Data Input  
FSITX-A Output Clock  
GPIO7  
GPIO10  
GPIO27  
GPIO7  
GPIO10  
GPIO7  
GPIO10  
O
O
O
GPIO7  
GPIO6  
GPIO9  
GPIO26  
GPIO6  
GPIO9  
GPIO6  
GPIO9  
GPIO6  
GPIO9  
FSITX-A Primary Data Output  
GPIO5  
GPIO8  
GPIO25  
GPIO5  
GPIO8  
GPIO5  
GPIO8  
GPIO5  
GPIO8  
FSITX-A Optional Additional Data Output  
GPIO1  
GPIO8  
GPIO18_X  
2
GPIO27  
GPIO33  
GPIO37/T  
DO  
GPIO1  
GPIO8  
GPIO1  
GPIO8  
GPIO1  
GPIO8  
GPIO18_X GPIO18_X GPIO18_X  
I2CA_SCL  
I/OD  
I2C-A Open-Drain Bidirectional Clock  
2
2
2
GPIO33  
GPIO33  
GPIO33  
GPIO37/T GPIO37/T GPIO37/T  
DO DO DO  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-7. Digital Signals by GPIO (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
100 PZ  
64 PMQ  
64 PM  
56 RSH  
GPIO0  
GPIO10  
GPIO26  
GPIO32  
GPIO35/T  
DI  
GPIO0  
GPIO10  
GPIO32  
GPIO0  
GPIO10  
GPIO32  
GPIO0  
GPIO32  
GPIO35/T  
DI  
I2CA_SDA  
LINA_RX  
I/OD  
I2C-A Open-Drain Bidirectional Data  
GPIO35/T GPIO35/T  
DI  
DI  
GPIO29  
GPIO33  
GPIO35/T  
DI  
GPIO29  
GPIO33  
GPIO29  
GPIO33  
GPIO29  
GPIO33  
I
LIN-A Receive  
LIN-A Transmit  
GPIO35/T GPIO35/T GPIO35/T  
DI DI DI  
GPIO59  
GPIO22_V  
FBSW  
GPIO28  
GPIO32  
GPIO37/T  
DO  
GPIO22_V GPIO22_V GPIO22_V  
FBSW  
GPIO28  
GPIO32  
FBSW  
GPIO28  
GPIO32  
FBSW  
GPIO28  
GPIO32  
LINA_TX  
O
GPIO37/T GPIO37/T GPIO37/T  
DO  
DO  
DO  
GPIO58  
GPIO2  
GPIO24  
GPIO34  
GPIO58  
GPIO2  
GPIO24  
GPIO2  
GPIO24  
GPIO2  
GPIO24  
OUTPUTXBAR1  
OUTPUTXBAR2  
O
O
Output X-BAR Output 1  
Output X-BAR Output 2  
GPIO3  
GPIO25  
GPIO3  
GPIO3  
GPIO3  
GPIO37/T GPIO37/T GPIO37/T GPIO37/T  
DO  
DO  
DO  
DO  
GPIO59  
GPIO4  
GPIO5  
GPIO14  
GPIO26  
GPIO4  
GPIO5  
GPIO4  
GPIO5  
GPIO4  
GPIO5  
OUTPUTXBAR3  
OUTPUTXBAR4  
O
O
Output X-BAR Output 3  
Output X-BAR Output 4  
GPIO6  
GPIO15  
GPIO27  
GPIO33  
GPIO6  
GPIO33  
GPIO6  
GPIO33  
GPIO6  
GPIO33  
GPIO7  
GPIO28  
GPIO7  
GPIO28  
GPIO7  
GPIO28  
GPIO7  
GPIO28  
OUTPUTXBAR5  
OUTPUTXBAR6  
O
O
Output X-BAR Output 5  
Output X-BAR Output 6  
GPIO9  
GPIO29  
GPIO9  
GPIO29  
GPIO9  
GPIO29  
GPIO9  
GPIO29  
GPIO11  
GPIO16  
GPIO30  
GPIO11  
GPIO16  
GPIO11  
GPIO16  
GPIO11  
GPIO16  
OUTPUTXBAR7  
OUTPUTXBAR8  
O
O
Output X-BAR Output 7  
Output X-BAR Output 8  
GPIO17  
GPIO31  
GPIO17  
GPIO17  
GPIO13  
GPIO17  
GPIO13  
GPIO13  
GPIO27 GPIO37/T  
GPIO37/T  
DO  
PMBUSA_ALERT  
PMBUSA_CTL  
I/OD  
PMBus-A Open-Drain Bidirectional Alert Signal  
PMBus-A Control Signal  
GPIO37/T GPIO37/T  
DO  
DO  
DO  
GPIO12  
GPIO18_X GPIO18_X  
GPIO12  
GPIO18_X GPIO18_X  
GPIO12  
2
2
I
2
2
GPIO26 GPIO35/T  
GPIO35/T  
DI  
GPIO35/T GPIO35/T  
DI  
DI  
DI  
GPIO3  
GPIO15  
GPIO16  
GPIO24  
GPIO35/T  
DI  
GPIO3  
GPIO16  
GPIO24  
GPIO3  
GPIO16  
GPIO24  
GPIO3  
GPIO16  
GPIO24  
PMBUSA_SCL  
I/OD  
PMBus-A Open-Drain Bidirectional Clock  
GPIO35/T GPIO35/T GPIO35/T  
DI DI DI  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
56 RSH  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-7. Digital Signals by GPIO (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
100 PZ  
64 PMQ  
64 PM  
GPIO2  
GPIO14  
GPIO17  
GPIO25  
GPIO34  
GPIO40  
GPIO2  
GPIO17  
GPIO2  
GPIO17  
GPIO2  
GPIO17  
PMBUSA_SDA  
I/OD  
PMBus-A Open-Drain Bidirectional Data  
GPIO3  
GPIO9  
GPIO17  
GPIO25  
GPIO28  
GPIO35/T  
DI  
GPIO3  
GPIO9  
GPIO17  
GPIO28  
GPIO3  
GPIO9  
GPIO17  
GPIO28  
GPIO3  
GPIO9  
GPIO17  
GPIO28  
SCIA_RX  
I
SCI-A Receive Data  
GPIO35/T GPIO35/T GPIO35/T  
DI  
DI  
DI  
GPIO2  
GPIO8  
GPIO2  
GPIO8  
GPIO2  
GPIO8  
GPIO2  
GPIO8  
GPIO16  
GPIO24  
GPIO29  
GPIO16  
GPIO24  
GPIO29  
GPIO16  
GPIO24  
GPIO29  
GPIO16  
GPIO24  
GPIO29  
SCIA_TX  
SCIB_RX  
O
SCI-A Transmit Data  
SCI-B Receive Data  
GPIO37/T GPIO37/T GPIO37/T GPIO37/T  
DO  
DO  
DO  
DO  
GPIO11  
GPIO13  
GPIO15  
GPIO57  
GPIO11  
GPIO13  
GPIO11  
GPIO13  
I
GPIO11  
GPIO9  
GPIO10  
GPIO12  
GPIO14  
GPIO9  
GPIO10  
GPIO12  
GPIO18_X  
2
GPIO9  
GPIO10  
GPIO9  
GPIO12  
GPIO18_X  
2
GPIO22_V  
FBSW  
GPIO18_X GPIO18_X  
SCIB_TX  
O
SCI-B Transmit Data  
2
2
GPIO22_V GPIO22_V  
GPIO22_V  
FBSW  
FBSW  
GPIO40  
GPIO56  
FBSW  
GPIO17  
GPIO25  
SD1_C1  
SD1_C2  
I
I
SDFM-1 Channel 1 Clock Input  
SDFM-1 Channel 2 Clock Input  
GPIO17  
GPIO17  
GPIO17  
GPIO27  
GPIO29  
GPIO33  
GPIO57  
GPIO29  
GPIO33  
GPIO29  
GPIO33  
GPIO29  
GPIO33  
SD1_C3  
I
SDFM-1 Channel 3 Clock Input  
GPIO31  
GPIO59  
SD1_C4  
SD1_D1  
I
I
SDFM-1 Channel 4 Clock Input  
SDFM-1 Channel 1 Data Input  
GPIO16  
GPIO24  
GPIO16  
GPIO24  
GPIO16  
GPIO24  
GPIO16  
GPIO24  
GPIO18_X  
2
GPIO26  
GPIO18_X GPIO18_X GPIO18_X  
SD1_D2  
SD1_D3  
I
I
SDFM-1 Channel 2 Data Input  
SDFM-1 Channel 3 Data Input  
2
2
2
GPIO28  
GPIO32  
GPIO56  
GPIO28  
GPIO32  
GPIO28  
GPIO32  
GPIO28  
GPIO32  
GPIO22_V  
FBSW  
GPIO30  
GPIO58  
GPIO22_V GPIO22_V GPIO22_V  
SD1_D4  
I
SDFM-1 Channel 4 Data Input  
SPI-A Clock  
FBSW  
FBSW  
FBSW  
GPIO3  
GPIO9  
GPIO18_X  
2
GPIO3  
GPIO9  
GPIO3  
GPIO9  
GPIO3  
GPIO9  
SPIA_CLK  
I/O  
GPIO18_X GPIO18_X GPIO18_X  
2
2
2
GPIO56  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-7. Digital Signals by GPIO (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
100 PZ  
64 PMQ  
64 PM  
56 RSH  
GPIO8  
GPIO16  
GPIO8  
GPIO16  
GPIO8  
GPIO16  
GPIO8  
GPIO16  
SPIA_SIMO  
SPIA_SOMI  
I/O  
SPI-A Slave In, Master Out (SIMO)  
GPIO10  
GPIO17  
GPIO10  
GPIO17  
GPIO10  
GPIO17  
I/O  
I/O  
SPI-A Slave Out, Master In (SOMI)  
SPI-A Slave Transmit Enable (STE)  
GPIO17  
GPIO5  
GPIO11  
GPIO57  
GPIO5  
GPIO11  
GPIO5  
GPIO11  
GPIO5  
GPIO11  
SPIA_STE  
GPIO14  
GPIO22_V  
FBSW  
GPIO26  
GPIO28  
GPIO32  
GPIO58  
GPIO22_V GPIO22_V GPIO22_V  
FBSW  
GPIO28  
GPIO32  
FBSW  
GPIO28  
GPIO32  
FBSW  
GPIO28  
GPIO32  
SPIB_CLK  
I/O  
SPI-B Clock  
GPIO7  
GPIO24  
GPIO30  
GPIO56  
GPIO7  
GPIO24  
GPIO7  
GPIO24  
GPIO7  
GPIO24  
SPIB_SIMO  
SPIB_SOMI  
I/O  
I/O  
SPI-B Slave In, Master Out (SIMO)  
SPI-B Slave Out, Master In (SOMI)  
GPIO6  
GPIO25  
GPIO31  
GPIO57  
GPIO6  
GPIO6  
GPIO6  
GPIO15  
GPIO27  
GPIO29  
GPIO33  
GPIO59  
GPIO29  
GPIO33  
GPIO29  
GPIO33  
GPIO29  
GPIO33  
SPIB_STE  
SYNCOUT  
I/O  
O
SPI-B Slave Transmit Enable (STE)  
External ePWM Synchronization Pulse  
GPIO6  
GPIO6  
GPIO6  
GPIO6  
JTAG Test Data Input (TDI) - TDI is the default  
mux selection for the pin. The internal pullup is  
disabled by default. The internal pullup should  
be enabled or an external pullup added on the  
board if this pin is used as JTAG TDI to avoid a  
floating input.  
GPIO35/T GPIO35/T GPIO35/T GPIO35/T  
DI DI DI DI  
TDI  
I
JTAG Test Data Output (TDO) - TDO is the  
default mux selection for the pin. The internal  
pullup is disabled by default. The TDO function  
will be in a tri-state condition when there is no  
JTAG activity, leaving this pin floating; the  
internal pullup should be enabled or an external  
pullup added on the board to avoid a floating  
GPIO input.  
GPIO37/T GPIO37/T GPIO37/T GPIO37/T  
DO DO DO DO  
TDO  
O
Internal DC-DC regulator feedback signal. If the  
internal DC-DC regulator is used, tie this pin to GPIO22_V GPIO22_V GPIO22_V GPIO22_V  
VFBSW  
-
the node where L(VSW) connects to the VDD  
rail (as close as possible to the device).  
FBSW  
FBSW  
FBSW  
FBSW  
Switching output of the internal DC-DC  
regulator  
GPIO23_V GPIO23_V GPIO23_V GPIO23_V  
SW SW SW SW  
VSW  
X2  
-
GPIO18_X GPIO18_X GPIO18_X GPIO18_X  
I/O  
Crystal oscillator output  
2
2
2
2
External Clock Output. This pin outputs a  
GPIO16  
GPIO16  
GPIO16  
GPIO16  
XCLKOUT  
O
divided-down version of a chosen clock signal GPIO18_X GPIO18_X GPIO18_X GPIO18_X  
from within the device.  
2
2
2
2
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
6.4.2 Digital Inputs on ADC Pins (AIOs)  
GPIOs on port H (GPIO224–GPIO255) are multiplexed with analog pins. These are also referred to as AIOs.  
These pins can only function in input mode. By default, these pins will function as analog pins and the GPIOs  
are in a high-Z state. The GPHAMSEL register is used to configure these pins for digital or analog operation.  
Note  
If digital signals with sharp edges (high dv/dt) are connected to the AIOs, cross-talk can occur with  
adjacent analog signals. The user should therefore limit the edge rate of signals connected to AIOs if  
adjacent channels are being used for analog functions.  
6.4.3 GPIO Input X-BAR  
The Input X-BAR is used to route signals from a GPIO to many different IP blocks such as the ADCs, eCAPs,  
ePWMs, and external interrupts (see Figure 6-5). Table 6-8 lists the input X-BAR destinations. For details on  
configuring the Input X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F28004x Microcontrollers  
Technical Reference Manual.  
GPIO0  
Asynchronous  
Synchronous  
Sync. + Qual.  
eCAP1  
eCAP2  
eCAP3  
eCAP4  
eCAP5  
eCAP6  
eCAP7  
Input X-BAR  
GPIOx  
Other Sources  
INPUT[16:1]  
127:16  
15:0  
TZ1,TRIP1  
TZ2,TRIP2  
TZ3,TRIP3  
TRIP6  
XINT1  
TRIP4  
TRIP5  
XINT2  
XINT3  
XINT4  
XINT5  
ePWM  
Modules  
CPU PIE  
CLA  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
ePWM  
X-BAR  
Other  
Sources  
ADCEXTSOC  
ADC  
EXTSYNCIN1  
EXTSYNCIN2  
ePWM and eCAP  
Sync Chain  
Other Sources  
Output X-BAR  
Figure 6-5. Input X-BAR  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 6-8. Input X-BAR Destinations  
INPUT  
INPUT1  
INPUT2  
INPUT3  
INPUT4  
DESTINATIONS  
eCAPx, ePWM X-BAR, ePWM[TZ1,TRIP1], Output X-BAR  
eCAPx, ePWM X-BAR, ePWM[TZ2,TRIP2], Output X-BAR  
eCAPx, ePWM X-BAR, ePWM[TZ3,TRIP3], Output X-BAR  
eCAPx, ePWM X-BAR, XINT1, Output X-BAR  
eCAPx, ePWM X-BAR, XINT2, ADCEXTSOC, EXTSYNCIN1, Output  
X-BAR  
INPUT5  
INPUT6  
eCAPx, ePWM X-BAR, XINT3, ePWM[TRIP6], EXTSYNCIN2,  
Output X-BAR  
INPUT7  
INPUT8  
eCAPx, ePWM X-BAR  
eCAPx, ePWM X-BAR  
eCAPx, ePWM X-BAR  
eCAPx, ePWM X-BAR  
eCAPx, ePWM X-BAR  
eCAPx, ePWM X-BAR  
eCAPx, ePWM X-BAR, XINT4  
eCAPx, ePWM X-BAR, XINT5  
eCAPx  
INPUT9  
INPUT10  
INPUT11  
INPUT12  
INPUT13  
INPUT14  
INPUT15  
INPUT16  
eCAPx  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
6.4.4 GPIO Output X-BAR and ePWM X-BAR  
The Output X-BAR has eight outputs which are routed to the GPIO module. The ePWM X-BAR has eight outputs  
which are routed to each ePWM module. Figure 6-6 shows the sources for both the Output X-BAR and ePWM  
X-BAR. For details on the Output X-BAR and ePWM X-BAR, see the Crossbar (X-BAR) chapter of the  
TMS320F28004x Microcontrollers Technical Reference Manual.  
CTRIPOUTH  
CTRIPOUTL  
(Output X-BAR only)  
CMPSSx  
CTRIPH  
CTRIPL  
(ePWM X-BAR only)  
ePWM and eCAP  
EXTSYNCOUT  
Sync Chain  
OUTPUT1  
OUTPUT2  
OUTPUT3  
ADCSOCAO  
Select Ckt  
ADCSOCAO  
GPIO  
Mux  
OUTPUT4  
OUTPUT5  
OUTPUT6  
OUTPUT7  
OUTPUT8  
Output  
X-BAR  
ADCSOCBO  
Select Ckt  
ADCSOCBO  
ECAPxOUT  
eCAPx  
ADCx  
EVT1  
EVT2  
EVT3  
EVT4  
TRIP4  
TRIP5  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
All  
ePWM  
Modules  
ePWM  
X-BAR  
INPUT1-6  
Input X-BAR  
CLAHALT  
INPUT7-14  
(ePWM X-BAR only)  
CLAHALT  
FLT1.COMPH  
FLT1.COMPL  
X-BAR Flags  
(shared)  
SDFMx  
FLT4.COMPH  
FLT4.COMPL  
Figure 6-6. Output X-BAR and ePWM X-BAR Sources  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
6.5 Pins With Internal Pullup and Pulldown  
Some pins on the device have internal pullups or pulldowns. Table 6-9 lists the pull direction and when it is  
active. The pullups on GPIO pins are disabled by default and can be enabled through software. To avoid any  
floating unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are not bonded out in a  
particular package. Other pins noted in Table 6-9 with pullups and pulldowns are always on and cannot be  
disabled.  
Table 6-9. Pins With Internal Pullup and Pulldown  
RESET  
(XRSn = 0)  
PIN  
DEVICE BOOT  
APPLICATION  
GPIOx (including AIOs)  
GPIO35/TDI  
GPIO37/TDO  
TCK  
Pullup disabled  
Pullup disabled(1)  
Application defined  
Application defined  
Application defined  
Pullup disabled  
Pullup disabled  
Pullup active  
Pullup active  
Pulldown active  
Pullup active  
TMS  
VREGENZ  
XRSn  
Other pins  
No pullup or pulldown present  
(1) Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
6.6 Connections for Unused Pins  
For applications that do not need to use all functions of the device, Table 6-10 lists acceptable conditioning for  
any unused pins. When multiple options are listed in Table 6-10, any option is acceptable. Pins not listed in Table  
6-10 must be connected according to Section 6.  
Table 6-10. Connections for Unused Pins  
SIGNAL NAME  
ACCEPTABLE PRACTICE  
ANALOG  
No Connect  
Analog input pins with  
DACx_OUT  
Tie to VSSA through 4.7-kΩ or larger resistor  
No Connect  
Analog input pins with  
PGAx_OUTF  
Tie to VSSA through 4.7-kΩ or larger resistor  
No Connect  
Analog input pins (except for  
DACx_OUT and PGAx_OUTF)  
Tie to VSSA  
Tie to VSSA through resistor  
PGAx_GND  
VREFHIx  
Tie to VSSA  
Tie to VDDA (applies only if ADC or DAC are not used in the application)  
VREFLOx  
Tie to VSSA  
DIGITAL  
No Connect  
FLT1 (Flash Test pin 1)  
FLT2 (Flash Test pin 2)  
Tie to VSS through 4.7-kΩ or larger resistor  
No Connect  
Tie to VSS through 4.7-kΩ or larger resistor  
No connection (input mode with internal pullup enabled)  
No connection (output mode with internal pullup disabled)  
GPIOx  
Pullup or pulldown resistor (any value resistor, input mode, and with internal pullup disabled)  
When TDI mux option is selected (default), the GPIO is in Input mode.  
Internal pullup enabled  
External pullup resistor  
GPIO35/TDI  
When TDO mux option is selected (default), the GPIO is in Output mode only during JTAG activity;  
otherwise, it is in a tri-state condition. The pin must be biased to avoid extra current on the input buffer.  
GPIO37/TDO  
TCK  
Internal pullup enabled  
External pullup resistor  
No Connect  
Pullup resistor  
TMS  
Pullup resistor  
VREGENZ  
X1  
Tie to VDDIO if internal regulator is not used  
Tie to VSS  
X2  
No Connect  
POWER AND GROUND  
VDD  
All VDD pins must be connected per Section 6.3.  
If a dedicated analog supply is not used, tie to VDDIO.  
All VDDIO pins must be connected per Section 6.3.  
Always tie to VDDIO.  
VDDA  
VDDIO  
VDDIO_SW  
VSS  
All VSS pins must be connected to board ground.  
Always tie to VSS.  
VSS_SW  
VSSA  
If an analog ground is not used, tie to VSS.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7 Specifications  
7.1 Absolute Maximum Ratings (1) (2)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
4.6  
UNIT  
VDDIO with respect to VSS  
Supply voltage  
VDDA with respect to VSSA  
VDD with respect to VSS  
4.6  
V
1.5  
Voltage difference between VDDIO and  
VDDIO_SW pins  
±0.3  
V
Input voltage  
VIN (3.3 V)  
–0.3  
–0.3  
–20  
4.6  
4.6  
20  
V
V
Output voltage  
VO  
Digital/analog input (per pin), IIK (VIN < VSS or VIN > VDDIO)  
Analog input (per pin), IIKANALOG  
(VIN < VSSA or VIN > VDDA)  
–20  
–20  
20  
20  
Input clamp current(4)  
mA  
Total for all inputs, IIKTOTAL  
(VIN < VSS/VSSA or VIN > VDDIO/VDDA)  
Output current  
Digital output (per pin), IOUT  
–20  
–40  
–40  
–65  
20  
125  
150  
150  
mA  
°C  
°C  
°C  
Free-Air temperature  
Operating junction temperature  
Storage temperature(3)  
TA  
TJ  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 7.4 is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device  
life. For additional information, see the Semiconductor and IC Package Thermal Metrics Application Report.  
(4) Continuous clamp current per pin is ±2 mA. Do not operate in this condition continuously as VDDIO/VDDA voltage may internally rise and  
impact other electrical specifications.  
7.2 ESD Ratings – Commercial  
VALUE  
UNIT  
F28004x in 100-pin PZ package (S temperature range)  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
±2000  
±500  
Electrostatic discharge  
(ESD)  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification  
JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2)  
F28004x in 64-pin PM package (S temperature range)  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
±2000  
±500  
Electrostatic discharge  
(ESD)  
V(ESD)  
V
V
Charged-device model (CDM), per JEDEC specification  
JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2)  
F28004x in 56-pin RSH package (S temperature range)  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
±2000  
±500  
Electrostatic discharge  
(ESD)  
V(ESD)  
Charged-device model (CDM), per JEDEC specification  
JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 ESD Ratings – Automotive  
VALUE  
UNIT  
F28004x in 100-pin PZ package (Q temperature range)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
 
 
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
UNIT  
VALUE  
Human body model (HBM), per  
AEC Q100-002(1)  
All pins  
All pins  
±2000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
±500  
±750  
V
Corner pins on 100-pin PZ:  
1, 25, 26, 50, 51, 75, 76, 100  
F28004x in 64-pin PM package (Q temperature range)  
Human body model (HBM), per  
All pins  
All pins  
±2000  
AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
±500  
±750  
V
Corner pins on 64-pin PM:  
1, 16, 17, 32, 33, 48, 49, 64  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.4 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
VBOR-VDDIO(MAX) + VBOR-  
Internal BOR enabled(3)  
Internal BOR disabled  
3.3  
3.63  
(2)  
GB  
Device supply voltage, VDDIO and VDDA  
V
2.8  
3.3  
1.2  
0
3.63  
1.32  
Device supply voltage, VDD  
Device ground, VSS  
1.14  
V
V
V
Analog ground, VSSA  
0
Supply ramp rate of VDDIO, VDD,  
VDDA with respect to VSS.(4)  
SRSUPPLY  
105  
10  
V/s  
ms  
VDDIO supply ramp time from  
1 V to VBOR-VDDIO(MAX)  
tVDDIO-RAMP  
VBOR-GB  
VDDIO BOR guard band(5)  
S version(1)  
0.1  
V
Junction temperature, TJ  
–40  
–40  
125  
125  
°C  
Q version(1)  
(AEC Q100 qualification)  
Free-Air temperature, TA  
°C  
(1) Operation above TJ = 105°C for extended duration will reduce the lifetime of the device.  
See CalculatingUsefulLifetimesofEmbeddedProcessors for more information.  
(2) The VDDIO BOR voltage (VBOR-VDDIO[MAX]) in Electrical Characteristics determines the lower voltage bound for device operation. TI  
recommends that system designers budget an additional guard band (VBOR-GB) as shown in Figure 7-1.  
(3) Internal BOR is enabled by default.  
(4) Supply ramp rate faster than this can trigger the on-chip ESD protection.  
(5) TI recommends VBOR-GB to avoid BOR resets due to normal supply noise or load-transient events on the 3.3-V VDDIO system  
regulator. Good system regulator design and decoupling capacitance (following the system regulator specifications) are important to  
prevent activation of the BOR during normal device operation. The value of VBOR-GB is a system-level design consideration; the voltage  
listed here is typical for many applications.  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
3.63 V  
+10%  
Recommended  
System Voltage  
Regulator Range  
3.3 V  
0%  
F28004x  
VDDIO  
Operating  
Range  
3.1 V  
3.0 V  
–6.1%  
–9.1%  
VBOR-GB  
BOR Guard Band  
VBOR-VDDIO  
Internal BOR Threshold  
–14.8%  
–15.1%  
2.81 V  
2.80 V  
Copyright © 2017, Texas Instruments Incorporated  
Figure 7-1. Supply Voltages  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.5 Power Consumption Summary  
Current values listed in this section are representative for the test conditions given and not the absolute  
maximum possible. The actual device currents in an application will vary with application code and pin  
configurations. Section 7.5.1 lists the system current consumption values for an external supply. Section 7.5.2  
lists the system current consumption values for the internal VREG. Section 7.5.3 lists the system current  
consumption values for the DCDC. See Section 7.5.4 for a detailed description of the test case run while  
measuring the current consumption in operating mode.  
7.5.1 System Current Consumption (External Supply)  
over operating free-air temperature range (unless otherwise noted).  
TYP : Vnom, 30  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPERATING MODE  
VDD current consumption during  
operational usage(1)  
IDD  
61  
26  
12  
90  
45  
30  
mA  
mA  
mA  
VDDIO current consumption during  
operational usage  
IDDIO  
See Section 7.5.4.  
VDDA current consumption during  
operational usage  
IDDA  
IDLE MODE  
IDD  
VDD current consumption while device  
is in Idle mode(1)  
18  
1.2  
0.9  
40  
4
mA  
mA  
mA  
CPU is in IDLE mode  
Flash is powered down  
XCLKOUT is turned off  
VDDIO current consumption while  
device is in Idle mode  
IDDIO  
VDDA current consumption while  
device is in Idle mode  
IDDA  
1.2  
HALT MODE  
VDD current consumption while device  
is in Halt mode(1)  
IDD  
0.9  
0.8  
0.2  
20  
4
mA  
mA  
mA  
CPU is in HALT mode  
Flash is powered down  
XCLKOUT is turned off  
VDDIO current consumption while  
device is in Halt mode  
IDDIO  
IDDA  
VDDA current consumption while  
device is in Halt mode  
0.5  
FLASH ERASE/PROGRAM  
VDD Current consumption during  
CPU is running from Flash,  
performing Erase and  
Program on the unused  
sector.  
IDD  
40  
70  
mA  
Erase/Program cycle(1) (2)  
VDDIO Current consumption during  
Erase/Program cycle(2)  
IDDIO  
IDDA  
33  
75  
mA  
mA  
VREG is disabled.  
VDDA Current consumption during  
Erase/Program cycle  
0.1  
2.5  
SYSCLK is running at 100  
MHz.  
I/Os are inputs with pullups  
enabled.  
Peripheral clocks are turned  
OFF.  
(1) IDD MAX is reported with VDD at MAX Recommended Operating Conditions. For the Internal VREG and DCDC tables this VDD  
supply will be at the regulated VDD TYP voltage. For this reason, current values reported in this External Supply Table will appear  
elevated compared to the Internal VREG and DCDC tables.  
(2) Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using  
alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system  
components with sufficient margin to avoid supply brownout conditions.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.5.2 System Current Consumption (Internal VREG)  
over operating free-air temperature range (unless otherwise noted).  
TYP : Vnom, 30℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPERATING MODE  
VDDIO current consumption during  
operational usage  
IDDIO  
86  
12  
113  
30  
mA  
mA  
See Section 7.5.4.  
VDDA current consumption during  
operational usage  
IDDA  
IDLE MODE  
IDDIO  
VDDIO current consumption while  
device is in Idle mode  
CPU is in IDLE mode  
Flash is powered down  
XCLKOUT is turned off  
19.2  
0.9  
36  
mA  
mA  
VDDA current consumption while  
device is in Idle mode  
IDDA  
1.2  
HALT MODE  
IDDIO  
VDDIO current consumption while  
device is in Halt mode  
CPU is in HALT mode  
Flash is powered down  
XCLKOUT is turned off  
1.7  
0.2  
18  
mA  
mA  
VDDA current consumption while  
device is in Halt mode  
IDDA  
0.5  
FLASH ERASE/PROGRAM  
IDDIO  
VDDIO current consumption during  
CPU is running from Flash,  
performing Erase and  
Program on the unused  
sector.  
72  
106  
2.5  
mA  
mA  
Erase/Program cycle(1)  
IDDA  
VDDA current consumption during  
Erase/Program cycle  
0.1  
Internal VREG is enabled.  
SYSCLK is running at 100  
MHz.  
I/Os are inputs with pullups  
enabled.  
Peripheral clocks are turned  
OFF.  
(1) Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using  
alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system  
components with sufficient margin to avoid supply brownout conditions.  
7.5.3 System Current Consumption (DCDC)  
over operating free-air temperature range (unless otherwise noted).  
TYP : Vnom, 30℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPERATING MODE  
VDDIO current consumption during  
operational usage  
IDDIO  
52  
12  
70  
30  
mA  
mA  
See Section 7.5.4.  
VDDA current consumption during  
operational usage  
IDDA  
IDLE MODE  
IDDIO  
VDDIO current consumption while  
device is in Idle mode  
CPU is in IDLE mode  
Flash is powered down  
XCLKOUT is turned off  
9.2  
0.9  
28  
mA  
mA  
VDDA current consumption while  
device is in Idle mode  
IDDA  
1.5  
HALT MODE  
IDDIO  
VDDIO current consumption while  
device is in Halt mode  
CPU is in HALT mode  
Flash is powered down  
XCLKOUT is turned off  
1.7  
0.2  
17  
mA  
mA  
VDDA current consumption while  
device is in Halt mode  
IDDA  
1.5  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
UNIT  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
over operating free-air temperature range (unless otherwise noted).  
TYP : Vnom, 30℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
FLASH ERASE/PROGRAM  
VDDIO current consumption during  
Erase/Program cycle(1)  
CPU is running from Flash,  
performing Erase and  
Program on the unused  
sector.  
IDDIO  
IDDA  
60  
85  
mA  
mA  
VDDA current consumption during  
Erase/Program cycle  
0.25  
2.5  
DCDC is enabled.  
SYSCLK is running at 100  
MHz.  
I/Os are inputs with pullups  
enabled.  
Peripheral clocks are turned  
OFF.  
(1) Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using  
alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system  
components with sufficient margin to avoid supply brownout conditions.  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.5.4 Operating Mode Test Description  
Section 7.5.1, Section 7.5.2, and Section 7.5.3 list the current consumption values for the operational mode of  
the device. The operational mode provides an estimation of what an application might encounter. The test case  
run to achieve the values shown does the following in a loop. Peripherals that are not on the following list have  
had their clocks disabled.  
Code is executing from RAM.  
FLASH is read and kept in active state.  
No external components are driven by I/O pins.  
All of the communication peripherals are exercised: SPI-A to SPI-C; SCI-A to SCI-C; I2C-A; CAN-A to CAN-  
C; LIN-A; PMBUS-A; and FSI-A.  
ePWM-1 to ePWM-3 generate a 5-MHz output on 6 pins.  
ePWM-4 to ePWM-7 are in HRPWM mode and generating 25 MHz on 6 pins.  
CPU timers are active.  
CPU does FIR16 calculations.  
DMA does continuous 32-bit transfers.  
CLA-1 is executing a 1024-point DFT in a background task.  
All ADCs perform continuous conversions.  
All DACs vary voltage at the loop frequency ~11 kHz.  
All PGAs are enabled.  
All CMPSSs generate a square wave with a 100-kHz frequency.  
SDFM peripheral clock is enabled.  
eCAP-1 to eCAP-7 are in APWM mode, toggling at 250 kHz.  
All eQEP watchdogs are enabled and counting.  
System watchdog is enabled and counting.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.5.5 Current Consumption Graphs  
Figure 7-2, Figure 7-3, and Figure 7-4 show a typical representation of the relationship between frequency and  
current consumption on the device. The operational test from Section 7.5.1 was run across frequency at VNOM  
and room temperature. Actual results will vary based on the system implementation and conditions.  
Leakage current on the VDD core supply will increase with operating temperature in an exponential manner as  
seen in Figure 7-5. The current consumption in HALT mode is primarily leakage current as there is no active  
switching if the internal oscillator has been powered down.  
Figure 7-5 shows the typical leakage current across temperature. The device was placed into HALT mode under  
nominal voltage conditions.  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
80  
60  
40  
20  
0
IDDIO  
IDDA  
IDD  
IDDIO  
IDDA  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Frequency (MHz)  
Frequency (MHz)  
D002  
D001  
Figure 7-3. Current Versus Frequency — Internal  
VREG  
Figure 7-2. Current Versus Frequency — External  
Supply  
55  
22  
20  
18  
16  
14  
12  
10  
8
50  
IDDIO  
IDDA  
45  
40  
35  
30  
25  
20  
15  
10  
5
6
4
2
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
160  
Frequency (MHz)  
Temperature (èC)  
D003  
D004  
Figure 7-4. Current Versus Frequency — DCDC  
Figure 7-5. Halt Current Versus Temperature (°C)  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.5.6 Reducing Current Consumption  
All C2000microcontrollers provide some methods to reduce the device current consumption:  
Either of the two low-power modes—IDLE and HALT—could be entered to reduce the current consumption  
even further during idle periods in the application.  
The flash module may be powered down if the code is run from RAM.  
Disable the pullups on pins that assume an output function.  
Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be  
achieved by turning off the clock to any peripheral that is not used in a given application. Section 7.5.6.1 lists  
the typical current consumption value per peripheral at 100-MHz SYSCLK.  
To realize the lowest VDDA current consumption in an LPM, see the respective analog chapter of the  
TMS320F28004x Microcontrollers Technical Reference Manual to ensure each module is powered down as  
well.  
7.5.6.1 Typical IDD Current Reduction per Disabled Peripheral (at 100-MHz SYSCLK) (1)  
IDD CURRENT REDUCTION  
PERIPHERAL  
(mA)  
ADC(2)  
0.8  
1.1  
0.4  
1.1  
0.4  
0.1  
0.2  
0.5  
0.1  
0.4  
0.7  
0.1  
0.7  
0.8  
0.3  
0.4  
0.2  
0.3  
0.2  
0.9  
0.2  
0.1  
22.9  
CAN  
CLA  
CLB  
CMPSS(2)  
CPU TIMER  
DAC(2)  
DMA  
eCAP1 to eCAP5  
eCAP6 to eCAP7(3)  
ePWM  
eQEP  
FSI  
HRPWM  
I2C  
LIN  
PGA(2)  
PMBUS  
SCI  
SDFM  
SPI  
DCC  
PLL at 100 MHz  
(1) All peripherals are disabled upon reset. Use the PCLKCRx  
register to individually enable peripherals. For peripherals with  
multiple instances, the current quoted is for a single module.  
(2) This current represents the current drawn by the digital portion  
of the each module.  
(3) eCAP6 and eCAP7 can also be configured as HRCAP.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.6 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Digital and Analog IO  
IOH = IOH MIN  
IOH = –100 μA  
IOL = IOL MAX  
IOL = 100 µA  
VDDIO * 0.8  
VDDIO – 0.2  
VOH  
High-level output voltage  
Low-level output voltage  
V
0.4  
V
VOL  
0.2  
IOH  
High-level output source current for all output pins  
Low-level output sink current for all output pins  
High-level output impedance for all output pins  
Low-level output impedance for all output pins  
High-level input voltage (3.3 V)  
–4  
mA  
IOL  
4
mA  
ROH  
70  
70  
ROL  
VIH  
2.0  
VDDIO + 0.3  
0.8  
V
VIL  
Low-level input voltage (3.3 V)  
VSS – 0.3  
V
VHYSTERESIS  
Input hysteresis  
150  
100  
mV  
VDDIO = 3.3 V  
VIN = VDDIO  
IPULLDOWN  
Input current  
Input current  
Inputs with pulldown(1)  
µA  
µA  
Digital inputs with pullup VDDIO = 3.3 V  
160  
160  
enabled(1)  
VIN = 0 V  
IPULLUP  
Analog inputs with  
pullup enabled(1)  
VDDA = 3.3 V  
VIN = 0 V  
All GPIOs except  
GPIO23_VSW  
Pullups and outputs  
disabled  
2
0 V ≤ VIN ≤ VDDIO  
GPIO23_VSW  
45  
Analog pins (except  
ADCINB3/VDAC and  
PGAx_OF)  
ILEAK  
Pin leakage  
µA  
pF  
0.1  
Analog drivers  
disabled  
0 V ≤ VIN ≤ VDDA  
ADCINB3/VDAC  
PGAx_OF  
2
11  
0.25  
All digital GPIOs except  
GPIO23_VSW  
2
CI  
Input capacitance  
GPIO23_VSW  
Analog pins(2)  
100  
VREG, DC-DC, and BOR  
VPOR-VDDIO  
VBOR-VDDIO  
VVREG  
VDDIO power on reset voltage  
VDDIO brown out reset voltage  
2.3  
V
V
V
V
2.81  
80%  
3.0  
Internal voltage regulator output  
Internal switching regulator output  
Internal VREG On  
Internal DC-DC On  
1.2  
1.2  
VDC-DC  
Power efficiency of internal DC-DC switching  
regulator  
Efficiency  
(1) See Table 6-9 for a list of pins with a pullup or pulldown.  
(2) The analog pins are specified separately; see Table 7-15.  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.7 Thermal Resistance Characteristics  
7.7.1 PZ Package  
°C/W(1)  
7.6  
AIR FLOW (lfm)(2)  
JC  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
Junction-to-free air thermal resistance  
N/A  
N/A  
0
JB  
24.2  
46.1  
37.3  
34.8  
32.6  
0.2  
JA (High k PCB)  
150  
250  
500  
0
JMA  
Junction-to-moving air thermal resistance  
0.4  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
0.4  
0.6  
23.8  
22.8  
22.4  
21.9  
150  
250  
500  
PsiJB  
Junction-to-board  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
7.7.2 PM Package  
°C/W(1)  
12.4  
25.6  
51.8  
42.2  
39.4  
36.5  
0.5  
AIR FLOW (lfm)(2)  
JC  
Junction-to-case thermal resistance  
N/A  
N/A  
0
JB  
Junction-to-board thermal resistance  
Junction-to-free air thermal resistance  
JA (High k PCB)  
150  
250  
500  
0
JMA  
Junction-to-moving air thermal resistance  
0.9  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
1.1  
1.4  
25.1  
23.8  
23.4  
22.7  
150  
250  
500  
PsiJB  
Junction-to-board  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
(2) lfm = linear feet per minute  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.7.3 RSH Package  
°C/W(1)  
11.9  
3.3  
AIR FLOW (lfm)(2)  
JC  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
Junction-to-free air thermal resistance  
N/A  
N/A  
0
JB  
JA (High k PCB)  
25.8  
17.4  
15.1  
13.4  
0.2  
150  
250  
500  
0
JMA  
Junction-to-moving air thermal resistance  
0.3  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
0.4  
0.4  
3.3  
3.2  
150  
250  
500  
0
PsiJB  
Junction-to-board  
3.2  
3.2  
JC, bottom  
Junction-to-bottom case thermal resistance  
0.7  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
7.8 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems that  
exceed the recommended maximum power dissipation in the end product may require additional thermal  
enhancements. Ambient temperature (TA) varies with the end application and product design. The critical factor  
that affects reliability and functionality is TJ, the junction temperature, not the ambient temperature. Hence, care  
should be taken to keep TJ within the specified limits. Tcase should be measured to estimate the operating  
junction temperature TJ. Tcase is normally measured at the center of the package top-side surface. The thermal  
application report Semiconductor and IC Package Thermal Metrics helps to understand the thermal metrics and  
definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.9 System  
7.9.1 Power Management  
TMS320F28004x MCUs can be configured to operate with one of three options to supply the required 1.2 V to  
the core (VDD):  
An external supply (not available for 56-pin RSH package configurations)  
Internal 1.2-V LDO Voltage Regulator (VREG)  
Internal 1.2-V Switching Regulator (DC-DC)  
The system requirements will dictate which supply option best suits the application.  
Note  
The same system voltage regulator must be used to drive both VDDIO and VDDIO_SW.  
7.9.1.1 Internal 1.2-V LDO Voltage Regulator (VREG)  
The internal VREG is supplied by VDDIO and generates the 1.2 V required to power the VDD pins. Enable this  
functionality by pulling the VREGENZ pin low to VSS. The smaller pin-count packages may not include the  
VREGENZ pin; therefore, the internal VREG is always enabled and, as such, is the required supply source for  
the VDD pins. Review the description of VREGENZ in Table 6-5 to determine package configuration. Although  
the internal VREG eliminates the need to use an external power supply for VDD, decoupling capacitors are  
required on each VDD pin for VREG stability. There are two recommended capacitor configurations (described in  
the list that follows) for the VDD rail when using the internal VREG. The signal description for VDD can be found  
in Table 6-4.  
Configuration 1: Place a small decoupling capacitor to VSS on each pin as close to the device as possible. In  
addition, a bulk capacitance must be placed on the VDD node to VSS (one 20-µF capacitor or two parallel  
10-µF capacitors).  
Configuration 2: Distribute the total capacitance to VSS evenly across all VDD pins (total capacitance divided  
by four VDD pins).  
7.9.1.2 Internal 1.2-V Switching Regulator (DC-DC)  
The internal DC-DC regulator offers increased efficiency over the LDO for converting 3.3 V to 1.2 V. The internal  
DC-DC regulator is supplied by the VDDIO_SW pin and generates the 1.2 V required to power the VDD pins. To  
use the internal switching regulator, the core domain must power up initially using the internal LDO VREG supply  
(tie the VREGENZ pin low to VSS) and then transition to the DC-DC regulator through application software by  
setting the DCDCEN bit in the DCDCCTL register. VREGENZ must still be kept low after transition since it  
controls both the DC-DC and LDO. Tying VREGENZ high disables both the DC-DC and LDO. The DC-DC  
regulator also requires external components (inductor, input capacitance, and output capacitance). The output of  
internal DC-DC regulator is not internally fed to the VDD rail and requires an external connection. Figure 7-6  
shows the schematic implementation.  
L
F28004x  
VSW  
VDD  
V
IN  
VDDIO_SW  
VSW  
VFBSW  
VDD  
C
VDDIO_SW  
VSS_SW  
(A)  
C
VDD  
C
VDD_DECAP  
VSS_SW  
VSS  
VSS  
VSS_SW  
VSS  
Copyright © 2017, Texas Instruments Incorporated  
A. One decoupling capacitor per each of the four VDD pins  
Figure 7-6. DC-DC Circuit Schematic  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
The VDDIO_SW supply pin (VIN) requires a 3.3-V level voltage. A total input capacitance (CVDDIO_SW) of 20 µF is  
required on VDDIO_SW. Due to the capacitor specification requirements detailed in Table 7-2, two parallel 10-µF  
capacitors in parallel is the recommended configuration. Decoupling capacitors of 100 nF should also be placed  
on each VDD pin as close to the device as possible.  
Table 7-1. DC-DC Inductor (LVSW) Specifications Requirements  
VALUE AND  
VARIATION  
VALUE AT  
SATURATION  
SATURATION  
CURRENT  
DCR  
RATED CURRENT  
TEMPERATURE  
2.2 µH ± 20%  
1.54 µH ± 20%  
80 mΩ ± 25%  
>1000 mA  
>600 mA  
–40°C to 125°C  
Table 7-2. DC-DC Capacitor (CVDDIO_SW and CVDD) Specifications Requirements  
VALUE AND  
VARIATION AT 0 V  
VALUE AT 1.2 V  
VALUE AT 125°C  
ESR  
RATED VOLTAGE  
TEMPERATURE  
10 µF ± 20%  
10 µF ± 20%  
8 µF ± 20%  
<10 mΩ  
4 V or 6.3 V  
–40°C to 125°C  
Table 7-3. DC-DC Circuit Component Values  
COMPONENT  
MIN  
1.76  
8
NOM  
2.2  
10  
MAX  
2.64  
12  
UNIT  
NOTES  
Inductor  
µH  
20% variance  
Input capacitor  
Output capacitor  
µF  
20% varaince, two such capacitors in parallel  
20% varaince, two such capacitors in parallel  
8
10  
12  
µF  
7.9.1.2.1 PCB Layout and Component Guidelines  
For optimal performance the application board layout and component selection is important. The list that follows  
is a high-level guideline for laying out the DC-DC circuit.  
TI recommends star-connecting VDDIO_SW and VDDIO to the same 3.3-V supply.  
All external components should be placed as close to the pins as possible.  
The loop formed by the VDDIO_SW, input capacitor (CVDDIO_SW), and VSS_SW must be as short as  
possible.  
The feedback trace must be as short as possible and kept away from any noise source such as the switching  
output (VSW).  
It is necessary to have a separate island or surgical cut in the ground plane for the input cap (CVDDIO_SW) and  
VSS_SW.  
A VDD plane is recommended for connecting the VDD node to the LVSW-CVDD point to minimize parasitic  
resistance and inductance.  
7.9.1.2.1.1 Recommended External Components  
MIN  
TYP  
MAX  
UNIT  
Based on External Supply IC  
Requirements(1)  
CVDDIO  
Bulk capacitance on VDDIO  
0.1  
µF  
Decoupling capacitor on each VDDIO  
pin  
CVDDIO_DECAP  
CVDDA  
CVDDIO_SW  
0.1  
µF  
µF  
Capacitor on VDDA pins  
2.2  
20  
For DC-DC operation(2)  
For LDO-only operation  
For DC-DC operation(2)  
For LDO-only operation(3)  
For DC-DC operation(2)  
For LDO-only operation(3)  
Capacitor on VDDIO_SW pin  
µF  
µF  
µF  
0.1  
20  
CVDD  
Bulk capacitance on VDD  
12  
20  
27  
0.1  
CVDD_DECAP  
Decoupling capacitor on each VDD pin  
0.1  
6.75  
Inductor between VSW pin and VDD  
node for DC-DC  
LVSW  
2.2  
80  
µH  
RLVSW-DCR  
Allowed DCR for LVSW  
mΩ  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
MIN  
TYP  
MAX  
UNIT  
ISAT-LVSW  
LVSW saturation current  
600  
mA  
(1) Bulk capacitance on this supply should be based on supply IC requirements.  
(2) See Section 7.9.1.2 for details.  
(3) See Section 7.9.1.1 for details.  
7.9.1.3 Deciding Between the LDO and the DC-DC  
The DC-DC is significantly more efficient than the LDO. The DC-DC and LDO have typical efficiencies of 80%  
and 30%, respectively. However, using the DC-DC comes with the trade-offs outlined below:  
Potential analog performance degradation: This is heavily board layout-dependent and mostly affects the  
ADC. See Section 7.10.1.2.2for details.  
Increased component cost: The DC-DC requires an external inductor and capacitors to function.  
Loss of I/Os: Using the DC-DC will make GPIO22 and GPIO23 unavailable for GPIO usage since their  
functionality will change to VFBSW and VSW, respectively.  
Note  
An external DC-DC has the potential to be more efficient and less impactful in terms of noise since its  
switching is external to the MCU but comes at the expense of much increased component cost.  
7.9.1.4 Power Sequencing  
Signal Pin Requirements: Before powering the device, no voltage larger than 0.3 V above VDDIO can be  
applied to any digital pin, and no voltage larger than 0.3 V above VDDA can be applied to any analog pin  
(including VREFHI).  
VDDIO, VDDIO_SW, and VDDA Requirements: The 3.3-V supplies VDDIO, VDDIO_SW, and VDDA should be  
powered up together and kept within 0.3 V of each other during functional operation.  
VDD Requirements: When VREGENZ is tied to VSS, the VDD sequencing requirements are handled by the  
device.  
When using an external source for VDD (VREGENZ tied to VDDIO), VDDIO and VDD must be powered on and  
off at the same time. VDDIO should not be powered on when VDD is off. During the ramp, VDD should be kept  
no more than 0.3 V above VDDIO.  
For applications not tying VREGENZ to VSS and not powering VDDIO and VDD at the same time, see the  
"INTOSC: VDDIO Powered Without VDD Can Cause INTOSC Frequency Drift" advisory in the TMS320F28004x  
MCUs Silicon Errata.  
7.9.1.5 Power-On Reset (POR)  
An internal power-on reset (POR) circuit holds the device in reset and keeps the I/Os in a high-impedance state  
during power up. The POR is in control and forces XRSn low internally until the voltage on VDDIO crosses the  
POR threshold. When the voltage crosses the POR threshold, the internal brownout-reset (BOR) circuit takes  
control and holds the device in reset until the voltage crosses the BOR threshold (for internal BOR details, see  
Section 7.9.1.6).  
7.9.1.6 Brownout Reset (BOR)  
An internal BOR circuit monitors the VDDIO rail for dips in voltage which result in the supply voltage dropping out  
of operational range. When the VDDIO voltage drops below the BOR threshold, the device is forced into reset,  
and XRSn is pulled low. XRSn will remain in reset until the voltage returns to the operational range. The BOR is  
enabled by default. To disable the BOR, set the BORLVMONDIS bit in the VMONCTL register. The internal BOR  
circuit monitors only the VDDIO rail. See Section 7.6 for BOR characteristics. External supply voltage supervisor  
(SVS) devices can be used to monitor the voltage on the 3.3-V and 1.2-V rails and to drive XRSn low if supplies  
fall outside operational specifications.  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.9.2 Reset Timing  
XRSn is the device reset pin. It functions as an input and open-drain output. The device has a built-in power-on  
reset (POR). During power up, the POR circuit drives the XRSn pin low. A watchdog or NMI watchdog reset will  
also drive the pin low. An external circuit may drive the pin to assert a device reset.  
A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRSn and VDDIO. A capacitor should be  
placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values will allow the  
watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is  
asserted. Figure 7-7 shows the recommended reset circuit.  
VDDIO  
2.2 kW to 10 kW  
Optional open-drain  
Reset source  
XRSn  
£100 nF  
Figure 7-7. Reset Circuit  
7.9.2.1 Reset Sources  
Table 7-4 summarizes the various reset signals and their effect on the device.  
Table 7-4. Reset Signals  
CPU CORE  
RESET  
(C28x, FPU, VCU)  
JTAG/  
DEBUG LOGIC  
RESET  
PERIPHERALS  
RESET  
RESET SOURCE  
I/Os  
XRSn OUTPUT  
POR  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Yes  
XRSn Pin  
WDRS  
Yes  
Yes  
No  
No  
NMIWDRS  
SYSRS (Debugger Reset)  
SCCRESET  
The parameter th(boot-mode) must account for a reset initiated from any of these sources.  
See the Resets section of the System Control chapter in the TMS320F28004x Microcontrollers Technical  
Reference Manual.  
CAUTION  
Some reset sources are internally driven by the device. Some of these sources will drive XRSn low,  
use this to disable any other devices driving the boot pins. The SCCRESET and debugger reset  
sources do not drive XRSn; therefore, the pins used for boot mode should not be actively driven by  
other devices in the system. The boot configuration has a provision for changing the boot pins in  
OTP; for more details, see the TMS320F28004x Microcontrollers Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.2.2 Reset Electrical Data and Timing  
Section 7.9.2.2.1 lists the reset (XRSn) timing requirements. Section 7.9.2.2.2 lists the reset (XRSn) switching  
characteristics. Figure 7-8 shows the power-on reset. Figure 7-9 shows the warm reset.  
7.9.2.2.1 Reset (XRSn) Timing Requirements  
MIN  
1.5  
MAX  
UNIT  
th(boot-mode)  
Hold time for boot-mode pins  
ms  
All cases  
3.2  
Pulse duration, XRSn low on  
warm reset  
tw(RSL2)  
µs  
Low-power modes used in  
application and SYSCLKDIV > 16  
3.2 * (SYSCLKDIV/16)  
7.9.2.2.2 Reset (XRSn) Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
100  
MAX  
UNIT  
Pulse duration, XRSn driven low by device after supplies are  
tw(RSL1)  
µs  
stable  
tw(WDRS)  
tboot-flash  
Pulse duration, reset pulse generated by watchdog  
512tc(OSCCLK)  
cycles  
µs  
Boot-ROM execution time to first instruction fetch in flash  
900  
7.9.2.2.3 Reset Timing Diagram  
VDDIO, VDDA  
(3.3 V)  
VDD (1.2 V)  
t
w(RSL1)  
XRSn(A)  
Boot ROM  
CPU  
Execution  
Phase  
User-code  
User-code dependent  
(B)  
h(boot-mode)  
t
Boot-Mode  
Pins  
GPIO pins as input  
Boot-ROM execution starts  
Peripheral/GPIO function  
Based on boot code  
GPIO pins as input (pullups are disabled)  
User-code dependent  
I/O Pins  
Figure 7-8. Power-on Reset  
A. The XRSn pin can be driven externally by a supervisor or an external pullup resistor, see Table 6-1. On-chip POR logic will hold this pin  
low until the supplies are in a valid range.  
B. After reset from any source (see Section 7.11.2.1), the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode  
pin, the boot code branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in  
debugger environment), the boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user  
environment and could be with or without PLL enabled.  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
t
w(RSL2)  
XRSn  
User Code  
CPU  
Execution  
Phase  
User Code  
Boot ROM  
Boot-ROM execution starts  
(initiated by any reset source)  
(A)  
t
h(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO Function  
User-Code Dependent  
GPIO Pins as Input  
Peripheral/GPIO Function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (Pullups are Disabled)  
User-Code Dependent  
Figure 7-9. Warm Reset  
A. After reset from any source (see Section 7.11.2.1), the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot  
Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in  
debugger environment), the Boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user  
environment and could be with or without PLL enabled.  
7.9.3 Clock Specifications  
7.9.3.1 Clock Sources  
Table 7-5 lists three possible clock sources. Figure 7-10 shows the clocking system. Figure 7-11 shows the  
system PLL.  
Table 7-5. Possible Reference Clock Sources  
CLOCK SOURCE  
MODULES CLOCKED  
COMMENTS  
INTOSC1  
Can be used to provide clock for:  
Internal oscillator 1.  
Zero-pin overhead 10-MHz internal oscillator.  
Watchdog block  
Main PLL  
CPU-Timer 2  
INTOSC2(1)  
X1 (XTAL)  
Can be used to provide clock for:  
Internal oscillator 2.  
Zero-pin overhead 10-MHz internal oscillator.  
Main PLL  
CPU-Timer 2  
Can be used to provide clock for:  
External crystal or resonator connected between the X1 and X2 pins  
or single-ended clock connected to the X1 pin.  
Main PLL  
CPU-Timer 2  
(1) On reset, internal oscillator 2 (INTOSC2) is the default clock source for the system PLL (OSCCLK).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
To watchdog  
timer  
INTOSC1  
WDCLK  
CLKSRCCTL1  
SYSPLLCTL1  
SYSCLKDIVSEL  
INTOSC2  
X1 (XTAL)  
SYSCLK  
Divider  
OSCCLK  
PLLSYSCLK  
CPUCLK  
To NMIWD  
System PLL  
PLLRAWCLK  
SYSCLK  
CPU  
To local memories  
To ePIE, RAMs, GPIOs,  
and DCSM  
SYSCLK  
One per SYSCLK peripheral  
PCLKCRx  
PERx.SYSCLK  
To peripherals  
One per LSPCLK peripheral  
PCLKCRx  
LOSPCP  
PERx.LSPCLK  
To SCIs and SPIs  
LSP  
Divider  
LSPCLK  
One per CAN module  
CLKSRCCTL2  
CAN Bit Clock  
To CANs  
Figure 7-10. Clocking System  
OSCCLK  
VCO  
PLLRAWCLK  
/ODIV  
/1 to /8  
PLL  
NF  
fPLLRAWCLK = (fOSCCLK )ì  
ODIV  
/NF  
/1 to /127.75  
NF = IMULT + FMULT/4  
Figure 7-11. System PLL  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.9.3.2 Clock Frequencies, Requirements, and Characteristics  
This section provides the frequencies and timing requirements of the input clocks, PLL lock times, frequencies of  
the internal clocks, and the frequency and switching characteristics of the output clock.  
7.9.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times  
Section 7.9.3.2.1.1 lists the frequency requirements for the input clocks. Section 7.9.3.2.1.2 lists the XTAL  
oscillator characteristics. Section 7.9.3.2.1.3 lists the X1 timing requirements. Section 7.9.3.2.1.4 lists the PLL  
lock times for the Main PLL .  
7.9.3.2.1.1 Input Clock Frequency  
MIN  
10  
2
MAX UNIT  
20 MHz  
20 MHz  
f(XTAL)  
f(X1)  
Frequency, X1/X2, from external crystal or resonator  
Frequency, X1, from external oscillator  
7.9.3.2.1.2 XTAL Oscillator Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
–0.3  
TYP  
MAX  
UNIT  
V
X1 VIL  
X1 VIH  
Valid low-level input voltage  
Valid high-level input voltage  
0.3 * VDDIO  
VDDIO + 0.3  
0.7 * VDDIO  
V
7.9.3.2.1.3 X1 Timing Requirements  
MIN  
MAX UNIT  
tf(X1)  
Fall time, X1  
6
6
ns  
ns  
tr(X1)  
Rise time, X1  
tw(X1L)  
tw(X1H)  
Pulse duration, X1 low as a percentage of tc(X1)  
Pulse duration, X1 high as a percentage of tc(X1)  
45%  
45%  
55%  
55%  
7.9.3.2.1.4 PLL Lock Times  
MIN  
NOM  
25.5 µs + 1024 * tc(OSCCLK)  
MAX UNIT  
t(PLL)  
Lock time, Main PLL  
µs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.3.2.2 Internal Clock Frequencies  
Section 7.9.3.2.2.1 provides the clock frequencies for the internal clocks.  
7.9.3.2.2.1 Internal Clock Frequencies  
MIN  
NOM  
MAX  
100  
500  
400  
UNIT  
MHz  
ns  
f(SYSCLK)  
tc(SYSCLK)  
f(VCO)  
Frequency, device (system) clock  
Period, device (system) clock  
2
10  
Frequency, PLL VCO (before output divider)  
120  
MHz  
Frequency, system PLL output (before SYSCLK  
divider)  
f(PLLRAWCLK)  
15  
200  
MHz  
f(PLL)  
Frequency, PLLSYSCLK  
Frequency, LSPCLK  
Period, LSPCLK  
2
2
100  
100  
500  
MHz  
MHz  
ns  
f(LSP)  
tc(LSPCLK)  
10  
Frequency, OSCCLK (INTOSC1 or INTOSC2 or  
XTAL or X1)  
f(OSCCLK)  
f(HRPWM)  
See respective clock  
MHz  
MHz  
Frequency, HRPWMCLK  
60  
100  
7.9.3.2.3 Output Clock Frequency and Switching Characteristics  
Section 7.9.3.2.3.1 lists the switching characteristics of the output clock, XCLKOUT.  
7.9.3.2.3.1 XCLKOUT Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER(1)  
MIN  
MAX  
5
UNIT  
ns  
tf(XCO)  
Fall time, XCLKOUT  
tr(XCO)  
tw(XCOL)  
tw(XCOH)  
f(XCO)  
Rise time, XCLKOUT  
5
ns  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
Frequency, XCLKOUT  
H – 2(2)  
H – 2(2)  
H + 2(2)  
H + 2(2)  
50  
ns  
ns  
MHz  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.9.3.3 Input Clocks and PLLs  
Note  
GPIO18* and its mux options can be used only when the system is clocked by INTOSC and X1 has  
an external pulldown resistor.  
In addition to the internal 0-pin oscillators, three types of external clock sources are supported:  
A single-ended 3.3-V external clock. The clock signal should be connected to X1, as shown in Figure 7-12,  
with the XTALCR.SE bit set to 1.  
Microcontroller  
GPIO18*  
VSS  
X1  
X2  
Not available as a  
GPIO when X1 is  
used as a clock  
+3.3 V  
VDD  
Out  
3.3-V Oscillator  
Gnd  
Figure 7-12. Single-ended 3.3-V External Clock  
An external crystal. The crystal should be connected across X1 and X2 with its load capacitors connected to  
VSS as shown in Figure 7-13.  
Microcontroller  
GPIO18*  
VSS  
X1  
X2  
Figure 7-13. External Crystal  
An external resonator. The resonator should be connected across X1 and X2 with its ground connected to  
VSS as shown in Figure 7-14.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Microcontroller  
GPIO18*  
X2  
VSS  
X1  
Figure 7-14. External Resonator  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.9.3.4 Crystal Oscillator  
When using a quartz crystal, it may be necessary to include a damping resistor (RD) in the crystal circuit to  
prevent overdriving the crystal (drive level can be found in the crystal data sheet). In higher-frequency  
applications (10 MHz or greater), RD is generally not required. If a damping resistor is required, RD should be as  
small as possible because the size of the resistance affects start-up time (smaller RD = faster start-up time). TI  
recommends that the crystal manufacturer characterize the crystal with the application board. Section 7.9.3.4.1  
lists the crystal oscillator parameters. Table 7-6 lists the crystal equivalent series resistance (ESR) requirements.  
Section 7.9.3.4.2 lists the crystal oscillator electrical characteristics.  
7.9.3.4.1 Crystal Oscillator Parameters  
MIN  
MAX UNIT  
CL1, CL2  
C0  
Load capacitance  
12  
24  
7
pF  
pF  
Crystal shunt capacitance  
Table 7-6. Crystal Equivalent Series Resistance (ESR) Requirements (1) (2)  
MAXIMUM ESR (Ω)  
(CL1 = CL2 = 12 pF)  
MAXIMUM ESR (Ω)  
(CL1 = CL2 = 24 pF)  
CRYSTAL FREQUENCY (MHz)  
10  
12  
14  
16  
18  
20  
55  
50  
50  
45  
45  
45  
110  
95  
90  
75  
65  
50  
(1) Crystal shunt capacitance (C0) should be less than or equal to 7 pF.  
(2) ESR = Negative Resistance/3  
7.9.3.4.2 Crystal Oscillator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ms  
f = 20 MHz  
ESR MAX = 50 Ω  
CL1 = CL2 = 24 pF  
C0 = 7 pF  
Start-up time(1)  
2
Crystal drive level (DL)  
1
mW  
(1) Start-up time is dependent on the crystal and tank circuit components. TI recommends that the crystal vendor characterize the  
application with the chosen crystal.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.3.5 Internal Oscillators  
To reduce production board costs and application development time, all F28004x devices contain two  
independent internal oscillators, referred to as INTOSC1 and INTOSC2. By default, both oscillators are enabled  
at power up. INTOSC2 is set as the source for the system reference clock (OSCCLK) and INTOSC1 is set as the  
backup clock source. INTOSC1 can also be manually configured as the system reference clock (OSCCLK).  
Section 7.9.3.5.1 provides the electrical characteristics of the internal oscillators to determine if this module  
meets the clocking requirements of the application.  
7.9.3.5.1 INTOSC Characteristics  
over recommended operating conditions (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Frequency, INTOSC1 and  
INTOSC2  
fINTOSC  
9.7  
10  
10.3  
MHz  
Frequency stability at room  
temperature  
30°C, Nominal  
VDD  
±0.1%  
±0.2%  
fINTOSC-STABILITY  
Frequency stability over VDD  
Frequency stability  
30°C  
–3%  
3%  
20  
tINT0SC-ST  
Start-up and settling time  
µs  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.9.4 Flash Parameters  
Table 7-7 lists the minimum required Flash wait states with different clock sources and frequencies.  
Table 7-7. Minimum Required Flash Wait States with Different Clock Sources and Frequencies  
EXTERNAL OSCILLATOR OR CRYSTAL  
INTOSC1 OR INTOSC2  
CPUCLK (MHz) (1)  
PROGRAM, ERASE,  
PROGRAM, ERASE,  
FLASH READ OR  
BANK SLEEP, OR PUMP  
EXECUTE  
FLASH READ OR  
EXECUTE  
BANK SLEEP, OR PUMP  
SLEEP  
SLEEP (2)  
97 < CPUCLK ≤ 100  
80 < CPUCLK ≤ 97  
77 < CPUCLK ≤ 80  
60 < CPUCLK ≤ 77  
58 < CPUCLK ≤ 60  
40 < CPUCLK ≤ 58  
38 < CPUCLK ≤ 40  
20 < CPUCLK ≤ 38  
19 < CPUCLK ≤ 20  
CPUCLK ≤ 19  
5
4
4
3
3
2
2
1
1
0
4
3
2
1
0
4
3
2
1
0
The F28004x devices have an improved 128-bit prefetch buffer that provides high flash code execution efficiency  
across wait states. Figure 7-15 and Figure 7-16 illustrate typical efficiency across wait-state settings compared to  
previous-generation devices with a 64-bit prefetch buffer. Wait-state execution efficiency with a prefetch buffer  
will depend on how many branches are present in application software. Two examples of linear code and if-then-  
else code are provided.  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
Flash with 64-Bit Prefetch  
Flash with 128-Bit Prefetch  
Flash with 64-Bit Prefetch  
Flash with 128-Bit Prefetch  
0
1
2
3
4
5
0
1
2
3
4
5
Wait State  
Wait State  
D005  
D006  
Figure 7-15. Application Code With Heavy 32-Bit  
Floating-Point Math Instructions  
Figure 7-16. Application Code With 16-Bit If-Else  
Instructions  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-8 lists the Flash parameters.  
Table 7-8. Flash Parameters  
PARAMETER  
MIN  
TYP  
150  
50  
MAX  
300  
UNIT  
µs  
128 data bits + 16 ECC bits  
8KB sector  
Program Time (1)  
100  
ms  
EraseTime (2) at < 25 W/E cycles  
EraseTime (2) at 1000 W/E cycles  
EraseTime (2) at 2000 W/E cycles  
EraseTime (2) at 20K W/E cycles  
Nwec Write/Erase Cycles  
8KB sector  
15  
100  
ms  
8KB sector  
25  
350  
ms  
8KB sector  
30  
600  
ms  
8KB sector  
120  
4000  
20000  
ms  
cycles  
years  
tretention Data retention duration at TJ = 85oC  
20  
(1) Program time is at the maximum device frequency. Program time includes overhead of the flash state machine but does not include  
the time to transfer the following into RAM:  
• Code that uses flash API to program the flash  
• Flash API itself  
• Flash data to be programmed  
In other words, the time indicated in this table is applicable after all the required code/data is available in the device RAM, ready for  
programming. The transfer time will significantly vary depending on the speed of the JTAG debug probe used.  
Program time calculation is based on programming 144 bits at a time at the specified operating frequency. Program time includes  
Program verify by the CPU. The program time does not degrade with write/erase (W/E) cycling, but the erase time does and hence  
Erase time is provided for 25 W/E cycles, 1K W/E cycles, 2K W/E cycles and 20K W/E cycles.  
Erase time includes Erase verify by the CPU and does not involve any data transfer.  
(2) Erase time includes Erase verify by the CPU.  
Note  
The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit  
word may only be programmed once per write/erase cycle.  
The DCSM OTP programming must be aligned to 128-bit address boundaries and each 128-bit word  
may only be programmed once. The exceptions are:  
1. The DCSM Zx-LINKPOINTER1 and Zx-LINKPOINTER2 values in the DCSM OTP should be  
programmed together, and may be programmed 1 bit at a time as required by the DCSM operation.  
2. The DCSM Zx-LINKPOINTER3 values in the DCSM OTP may be programmed 1 bit at a time on a  
64-bit boundary to separate it from Zx-PSWDLOCK, which must only be programmed once.  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.9.5 Emulation/JTAG  
The JTAG (IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture) port has  
four dedicated pins: TMS, TDI, TDO, and TCK. The cJTAG (IEEE Standard 1149.7-2009 for Reduced-Pin and  
Enhanced-Functionality Test Access Port and Boundary-Scan Architecture) port is a compact JTAG interface  
requiring only two pins (TMS and TCK), which allows other device functionality to be muxed to the traditional  
GPIO35 (TDI) and GPIO37 (TDO) pins.  
Typically, no buffers are needed on the JTAG signals when the distance between the MCU target and the JTAG  
header is smaller than 6 inches (15.24 cm), and no other devices are present on the JTAG chain. Otherwise,  
each signal should be buffered. Additionally, for most JTAG debug probe operations at 10 MHz, no series  
resistors are needed on the JTAG signals. However, if high emulation speeds are expected (35 MHz or so), 22-Ω  
resistors should be placed in series on each JTAG signal.  
The PD (Power Detect) terminal of the JTAG debug probe header should be connected to the board's 3.3-V  
supply. Header GND terminals should be connected to board ground. TDIS (Cable Disconnect Sense) should  
also be connected to board ground. The JTAG clock should be looped from the header TCK output terminal back  
to the RTCK input terminal of the header (to sense clock continuity by the JTAG debug probe). This MCU does  
not support the EMU0 and EMU1 signals that are present on 14-pin and 20-pin emulation headers. These  
signals should always be pulled up at the emulation header through a pair of board pullup resistors ranging from  
2.2 kΩ to 4.7 kΩ (depending on the drive strength of the debugger ports). Typically, a 2.2-kΩ value is used.  
Header terminal RESET is an open-drain output from the JTAG debug probe header that enables board  
components to be reset through JTAG debug probe commands (available only through the 20-pin header).  
Figure 7-17 shows how the 14-pin JTAG header connects to the MCU’s JTAG port signals. Figure 7-18 shows  
how to connect to the 20-pin JTAG header. The 20-pin JTAG header terminals EMU2, EMU3, and EMU4 are not  
used and should be grounded.  
For more information about hardware breakpoints and watchpoints, see Hardware Breakpoints and Watchpoints  
for C28x in CCS.  
For more information about JTAG emulation, see the XDS Target Connection Guide.  
Note  
JTAG Test Data Input (TDI) is the default mux selection for the pin. The internal pullup is disabled by  
default. If this pin is used as JTAG TDI, the internal pullup should be enabled or an external pullup  
added on the board to avoid a floating input. In the cJTAG option, this pin can be used as GPIO.  
JTAG Test Data Output (TDO) is the default mux selection for the pin. The internal pullup is disabled  
by default. The TDO function will be in a tri-state condition when there is no JTAG activity, leaving this  
pin floating. The internal pullup should be enabled or an external pullup added on the board to avoid a  
floating GPIO input. In the cJTAG option, this pin can be used as GPIO.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Distance between the header and the target  
should be less than 6 inches (15.24 cm).  
3.3 V  
4.7 kΩ  
3.3 V  
10 kΩ  
3.3 V  
10 kΩ  
2
1
TMS  
TMS  
TRST  
TDI(A)  
TDI  
TDIS  
KEY  
3
5
4
GND  
MCU  
100 Ω  
6
3.3 V  
PD  
TDO(A)  
TCK  
TDO  
RTCK  
TCK  
EMU0  
GND  
GND  
GND  
EMU1  
7
8
9
10  
12  
14  
11  
13  
4.7 kΩ  
4.7 kΩ  
3.3 V  
3.3 V  
A. TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead.  
Figure 7-17. Connecting to the 14-Pin JTAG Header  
Distance between the header and the target  
should be less than 6 inches (15.24 cm).  
3.3 V  
4.7 kΩ  
3.3 V  
10 kΩ  
3.3 V  
10 kΩ  
2
1
TMS  
TMS  
TRST  
TDI(A)  
TDI  
TDIS  
KEY  
GND  
3
5
4
MCU  
100 Ω  
6
3.3V  
PD  
TDO(A)  
TDO  
GND  
GND  
GND  
EMU1  
GND  
EMU3  
GND  
7
8
9
10  
12  
14  
16  
18  
20  
RTCK  
TCK  
11  
13  
15  
17  
19  
TCK  
Ω
4.7 kΩ  
4.7 k  
3.3 V  
EMU0  
RESET  
EMU2  
EMU4  
3.3 V  
Open  
Drain  
A low pulse from the JTAG debug probe  
can be tied with other reset sources  
to reset the board.  
GND  
GND  
A. TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead.  
Figure 7-18. Connecting to the 20-Pin JTAG Header  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.9.5.1 JTAG Electrical Data and Timing  
Section 7.9.5.1.1 lists the JTAG timing requirements. Section 7.9.5.1.2 lists the JTAG switching characteristics.  
Figure 7-19 shows the JTAG timing.  
7.9.5.1.1 JTAG Timing Requirements  
NO.  
1
MIN  
66.66  
26.66  
26.66  
13  
MAX  
UNIT  
ns  
tc(TCK)  
Cycle time, TCK  
1a  
1b  
tw(TCKH)  
Pulse duration, TCK high (40% of tc)  
Pulse duration, TCK low (40% of tc)  
Input setup time, TDI valid to TCK high  
Input setup time, TMS valid to TCK high  
Input hold time, TDI valid from TCK high  
Input hold time, TMS valid from TCK high  
ns  
tw(TCKL)  
ns  
tsu(TDI-TCKH)  
tsu(TMS-TCKH)  
th(TCKH-TDI)  
th(TCKH-TMS)  
3
4
ns  
ns  
13  
7
7
7.9.5.1.2 JTAG Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
2
td(TCKL-TDO)  
Delay time, TCK low to TDO valid  
6
25  
ns  
7.9.5.1.3 JTAG Timing Diagram  
1
1a  
1b  
TCK  
2
TDO  
3
4
TDI/TMS  
Figure 7-19. JTAG Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.5.2 cJTAG Electrical Data and Timing  
Section 7.9.5.2.1 lists the cJTAG timing requirements. Section 7.9.5.2.2 lists the cJTAG switching characteristics.  
Figure 7-20 shows the cJTAG timing.  
7.9.5.2.1 cJTAG Timing Requirements  
NO.  
1
MIN  
100  
40  
40  
15  
15  
2
MAX  
UNIT  
ns  
tc(TCK)  
Cycle time, TCK  
1a  
1b  
tw(TCKH)  
Pulse duration, TCK high (40% of tc)  
Pulse duration, TCK low (40% of tc)  
Input setup time, TMS valid to TCK high  
Input setup time, TMS valid to TCK low  
Input hold time, TMS valid from TCK high  
Input hold time, TMS valid from TCK low  
ns  
tw(TCKL)  
ns  
tsu(TMS-TCKH)  
tsu(TMS-TCKL)  
th(TCKH-TMS)  
th(TCKL-TMS)  
ns  
3
4
ns  
ns  
2
ns  
7.9.5.2.2 cJTAG Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
MAX  
20  
UNIT  
ns  
2
td(TCKL-TMS)  
Delay time, TCK low to TMS valid  
Delay time, TCK high to TMS disable  
6
5
tdis(TCKH-TMS)  
20  
ns  
7.9.5.2.3 cJTAG Timing Diagram  
1
1a  
1b  
2
3
3
4
4
5
TCK  
TMS  
TMS Input  
TMS Output  
TMS Input  
Figure 7-20. cJTAG Timing  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.9.6 GPIO Electrical Data and Timing  
The peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. On reset, GPIO pins  
are configured as inputs. For specific inputs, the user can also select the number of input qualification cycles to  
filter unwanted noise glitches.  
The GPIO module contains an Output X-BAR which allows an assortment of internal signals to be routed to a  
GPIO in the GPIO mux positions denoted as OUTPUTXBARx. The GPIO module also contains an Input X-BAR  
which is used to route signals from any GPIO input to different IP blocks such as the ADCs, eCAPs, ePWMs,  
and external interrupts. For more details, see the X-BAR chapter in the TMS320F28004x Microcontrollers  
Technical Reference Manual.  
7.9.6.1 GPIO – Output Timing  
Section 7.9.6.1.1 lists the general-purpose output switching characteristics. Figure 7-21 shows the general-  
purpose output timing.  
7.9.6.1.1 General-Purpose Output Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
All GPIOs except  
GPIO23_VSW  
tr(GPIO)  
Rise time, GPIO switching low to high  
8(1)  
ns  
All GPIOs except  
GPIO23_VSW  
tf(GPIO)  
fGPIO  
Fall time, GPIO switching high to low  
8(1)  
25  
ns  
Toggling frequency, all GPIOs except GPIO23_VSW  
MHz  
(1) Rise time and fall time vary with load. These values assume a 40-pF load.  
GPIO  
tr(GPIO)  
tf(GPIO)  
Figure 7-21. General-Purpose Output Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.6.2 GPIO – Input Timing  
Section 7.9.6.2.1 lists the general-purpose input timing requirements. Figure 7-22 shows the sampling mode.  
7.9.6.2.1 General-Purpose Input Timing Requirements  
Table 7-9. General-Purpose Input Timing Requirements  
MIN  
MAX  
UNIT  
cycles  
cycles  
cycles  
QUALPRD = 0  
QUALPRD ≠ 0  
1tc(SYSCLK)  
tw(SP)  
Sampling period  
2tc(SYSCLK) * QUALPRD  
tw(SP) * (n(1) – 1)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
2tc(SYSCLK)  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
tw(SP)  
Sampling Period determined  
by GPxCTRL[QUALPRD](B)  
tw(IQSW)  
(SYSCLK cycle * 2 * QUALPRD) * 5(C)  
Sampling Window  
SYSCLK  
QUALPRD = 1  
(SYSCLK/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to  
0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLK cycle. For any other value "n", the qualification sampling period in 2n  
SYSCLK cycles (that is, at every 2n SYSCLK cycles, the GPIO pin will be sampled).  
B. The qualification period selected through the GPxCTRL register applies to groups of eight GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLK cycles or greater. In other words,  
the inputs should be stable for (5 × QUALPRD × 2) SYSCLK cycles. This would ensure 5 sampling periods for detection to occur.  
Because external signals are driven asynchronously, an 13-SYSCLK-wide pulse ensures reliable recognition.  
Figure 7-22. Sampling Mode  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.9.6.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLK.  
Sampling frequency = SYSCLK/(2 × QUALPRD), if QUALPRD ≠ 0  
Sampling frequency = SYSCLK, if QUALPRD = 0  
Sampling period = SYSCLK cycle × 2 × QUALPRD, if QUALPRD ≠ 0  
In the previous equations, SYSCLK cycle indicates the time period of SYSCLK.  
Sampling period = SYSCLK cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the  
signal. This is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using 3 samples  
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0  
Sampling window width = (SYSCLK cycle) × 2, if QUALPRD = 0  
Case 2:  
Qualification using 6 samples  
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0  
Sampling window width = (SYSCLK cycle) × 5, if QUALPRD = 0  
Figure 7-23 shows the general-purpose input timing.  
SYSCLK  
GPIOxn  
tw(GPI)  
Figure 7-23. General-Purpose Input Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.7 Interrupts  
The C28x CPU has fourteen peripheral interrupt lines. Two of them (INT13 and INT14) are connected directly to  
CPU timers 1 and 2, respectively. The remaining twelve are connected to peripheral interrupt signals through the  
enhanced Peripheral Interrupt Expansion (ePIE) module. The ePIE multiplexes up to sixteen peripheral  
interrupts into each CPU interrupt line. It also expands the vector table to allow each interrupt to have its own  
ISR. This allows the CPU to support a large number of peripherals.  
An interrupt path is divided into three stages—the peripheral, the ePIE, and the CPU. Each stage has its own  
enable and flag registers. This system allows the CPU to handle one interrupt while others are pending,  
implement and prioritize nested interrupts in software, and disable interrupts during certain critical tasks.  
Figure 7-24 shows the interrupt architecture for this device.  
TINT0  
TIMER0  
LPMINT  
LPM Logic  
WAKEINT  
NMI  
NMI module  
WD  
WDINT  
CPU  
INPUTXBAR4  
XINT1 Control  
XINT2 Control  
XINT3 Control  
XINT4 Control  
XINT5 Control  
GPIO0  
GPIO1  
...  
...  
GPIOx  
INT1  
to  
INT12  
INPUTXBAR5  
INPUTXBAR6  
INPUTXBAR13  
INPUTXBAR14  
ePIE  
Input  
X-BAR  
TINT1  
TINT2  
TIMER1  
TIMER2  
ERAD  
INT13  
INT14  
Peripherals  
See ePIE Table.  
RTOSINT  
Figure 7-24. Device Interrupt Architecture  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.9.7.1 External Interrupt (XINT) Electrical Data and Timing  
Section 7.9.7.1.1 lists the external interrupt timing requirements. Section 7.9.7.1.2 lists the external interrupt  
switching characteristics. Section 7.9.7.1.3 shows the external interrupt timing.  
7.9.7.1.1 External Interrupt Timing Requirements  
(1)  
MIN  
2tc(SYSCLK)  
MAX  
UNIT  
Synchronous  
With qualifier  
tw(INT)  
Pulse duration, INT input low/high  
cycles  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.  
7.9.7.1.2 External Interrupt Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER (1)  
MIN  
MAX  
UNIT  
td(INT) Delay time, INT low/high to interrupt-vector fetch (2)  
tw(IQSW) + 14tc(SYSCLK)  
tw(IQSW) + tw(SP) + 14tc(SYSCLK) cycles  
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.  
(2) This assumes that the ISR is in a single-cycle memory.  
7.9.7.1.3 Interrupt Timing Diagram  
tw(INT)  
XINT1, XINT2, XINT3,  
XINT4, XINT5  
td(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 7-25. External Interrupt Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.9.8 Low-Power Modes  
This device has HALT and IDLE as two clock-gating low-power modes. STANDBY mode is not supported on this  
device. See the TMS320F28004x MCUs Silicon Errata for more details.  
Further details, as well as the entry and exit procedure, for all of the low-power modes can be found in the Low  
Power Modes section of the TMS320F28004x Microcontrollers Technical Reference Manual.  
7.9.8.1 Clock-Gating Low-Power Modes  
IDLE and HALT modes on this device are similar to those on other C28x devices. Table 7-10 describes the effect  
on the system when any of the clock-gating low-power modes are entered.  
Table 7-10. Effect of Clock-Gating Low-Power Modes on the Device  
MODULES/  
CLOCK DOMAIN  
IDLE  
HALT  
SYSCLK  
CPUCLK  
Active  
Gated  
Active  
Gated  
Gated  
Gated  
Clock to modules connected to  
PERx.SYSCLK  
WDCLK  
PLL  
Active  
Gated if CLKSRCCTL1.WDHALTI = 0  
Software must power down PLL before entering HALT.  
Powered down if CLKSRCCTL1.WDHALTI = 0  
Powered down if CLKSRCCTL1.WDHALTI = 0  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
INTOSC1  
INTOSC2  
Flash(1)  
XTAL(2)  
Powered  
(1) The Flash module is not powered down by hardware in any LPM. It may be powered down using software if required by the  
application. For more information, see the Flash and OTP Memory section of the System Control chapter in the TMS320F28004x  
Microcontrollers Technical Reference Manual.  
(2) The XTAL is not powered down by hardware in any LPM. It may be powered down by software setting the XTALCR.OSCOFF bit to 1.  
This can be done at any time during the application if the XTAL is not required.  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.9.8.2 Low-Power Mode Wake-up Timing  
Section 7.9.8.2.1 lists the IDLE mode timing requirements, Section 7.9.8.2.2 lists the switching characteristics,  
and Figure 7-26 shows the timing diagram for IDLE mode.  
7.9.8.2.1 IDLE Mode Timing Requirements (1)  
MIN  
2tc(SYSCLK)  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
tw(WAKE)  
Pulse duration, external wake-up signal  
cycles  
2tc(SYSCLK) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.  
7.9.8.2.2 IDLE Mode Switching Characteristics (1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, external wake signal to program execution resume (2)  
Wake up from flash  
Flash module in active state  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
40tc(SYSCLK)  
40tc(SYSCLK) + tw(WAKE)  
(3)  
td(WAKE-IDLE)  
Wake up from flash  
Flash module in sleep state  
6700tc(SYSCLK)  
cycles  
6700tc(SYSCLK) (3) + tw(WAKE)  
25tc(SYSCLK)  
Wake up from RAM  
25tc(SYSCLK) + tw(WAKE)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.  
(2) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
(3) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. For more information, see the Flash/OTP and Pump Power Modes and Wakeup section of the TMS320F28004x  
Microcontrollers Technical Reference Manual.  
7.9.8.2.3 IDLE Mode Timing Diagram  
td(WAKE-IDLE)  
Address/Data  
(internal)  
XCLKOUT  
tw(WAKE)  
WAKE(A)  
A. WAKE can be any enabled interrupt, WDINT or XRSn. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum)  
is needed before the wake-up signal could be asserted.  
Figure 7-26. IDLE Entry and Exit Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Section 7.9.8.2.4 lists the HALT mode timing requirements, Section 7.9.8.2.5 lists the switching characteristics,  
and Figure 7-27 shows the timing diagram for HALT mode.  
7.9.8.2.4 HALT Mode Timing Requirements  
MIN  
toscst + 2tc(OSCCLK)  
toscst + 8tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal(1)  
Pulse duration, XRSn wake-up signal(1)  
(1) For applications using X1/X2 for OSCCLK, the user must characterize their specific oscillator start-up time as it is dependent on circuit/  
layout external to the device. See Section 7.9.3.4.2 for more information. For applications using INTOSC1 or INTOSC2 for OSCCLK,  
see Section 7.9.3.5 for toscst. Oscillator start-up time does not apply to applications using a single-ended crystal on the X1 pin, as it is  
powered externally to the device.  
7.9.8.2.5 HALT Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
td(IDLE-XCOS)  
Delay time, IDLE instruction executed to XCLKOUT stop  
16tc(INTOSC1)  
cycles  
Delay time, external wake signal end to CPU program  
execution resume  
Wake up from flash  
Flash module in active state  
75tc(OSCCLK)  
td(WAKE-HALT)  
cycles  
Wake up from flash  
Flash module in sleep state  
(1)  
17500tc(OSCCLK)  
Wake up from RAM  
75tc(OSCCLK)  
(1) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. For more information, see the Flash/OTP and Pump Power Modes and Wakeup section of the TMS320F28004x  
Microcontrollers Technical Reference Manual.  
7.9.8.2.6 HALT Mode Timing Diagram  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
HALT  
(G)  
Device  
Status  
HALT  
Flushing Pipeline  
Normal  
Execution  
GPIOn  
td(WAKE-HALT)  
tw(WAKE-GPIO)  
OSCCLK  
Oscillator Start-up Time  
XCLKOUT  
td(IDLE-XCOS)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The LPM block responds to the HALT signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off. This  
delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source,  
the internal oscillator is shut down as well. The device is now in HALT mode and consumes very little power. It is possible to keep the  
zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in HALT MODE. This is done by writing 1 to  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
CLKSRCCTL1.WDHALTI. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-  
up signal could be asserted.  
D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wake-up sequence  
is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean clock signal  
during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wake-up procedure, care should be  
taken to maintain a low noise environment before entering and during HALT mode.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal  
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the device  
may not exit low-power mode for subsequent wake-up pulses.  
F. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after some latency. The HALT mode is now  
exited.  
G. Normal operation resumes.  
H. The user must relock the PLL upon HALT wakeup to ensure a stable PLL lock.  
Figure 7-27. HALT Entry and Exit Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.10 Analog Peripherals  
The analog subsystem module is described in this section.  
The analog modules on this device include the ADC, PGA, temperature sensor, buffered DAC, and CMPSS.  
The analog subsystem has the following features:  
Flexible voltage references  
– The ADCs are referenced to VREFHIx and VREFLOx pins.  
VREFHIx pin voltage can be driven in externally or can be generated by an internal bandgap voltage  
reference.  
The internal voltage reference range can be selected to be 0 V to 3.3 V or 0 V to 2.5 V.  
The buffered DACs are referenced to VREFHIx and VREFLOx.  
– Alternately, these DACs can be referenced to the VDAC pin and VSSA.  
The comparator DACs are referenced to VDDA and VSSA.  
– Alternately, these DACs can be referenced to the VDAC pin and VSSA.  
Flexible pin usage  
– Buffered DAC outputs, comparator subsystem inputs, PGA functions, and digital inputs are multiplexed  
with ADC inputs  
– Internal connection to VREFLO on all ADCs for offset self-calibration  
Figure 7-28 shows the Analog Subsystem Block Diagram for the 100-pin PZ LQFP.  
Figure 7-29 shows the Analog Subsystem Block Diagram for the 64-pin PM LQFP.  
Figure 7-30 shows the Analog Subsystem Block Diagram for the 56-pin RSH VQFN.  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
VREFHIA  
VREFHIB, VREFHIC  
VREFLOA  
VREFLOB, VREFLOC  
Comparator Subsystem 1  
CMP1_HP  
CTRIP1H  
Digital  
Filter  
CMP1_HN  
VDDA or VDAC  
CTRIPOUT1H  
VREFHI VDAC  
DACREFSEL  
DAC12  
DAC12  
Misc. Analog  
CTRIP1L  
Digital  
Filter  
A0/B15/C15/DACA_OUT  
A1/DACB_OUT  
CMP1_LN  
CMP1_LP  
CTRIPOUT1L  
Temp  
Sensor  
AIO  
I
12-bit  
Buffered  
DAC-A  
DACA_OUT  
Comparator Subsystem 2  
CMP2_HP  
CMP2_HN  
CTRIP2H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT2H  
Analog Group 1  
Reference Circuit A  
ANAREFASEL  
DAC12  
DAC12  
A3  
A2/B6/PGA1_OF  
C0  
AIO  
CTRIP2L  
Digital  
Filter  
CMP2_LN  
CMP2_LP  
PGA1  
PGA3  
PGA5  
Vref  
CTRIPOUT2L  
PGA1_IN  
PGA1_GND  
CMPSS1  
Input MUX  
REFLO  
Comparator Subsystem 3  
CMP3_HP  
CMP3_HN  
CTRIP3H  
Analog Group 3  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT3H  
B3/VDAC  
B2/C6/PGA3_OF  
C2  
AIO  
REFHI  
DAC12  
DAC12  
ADC Inputs  
A0 to A15  
PGA3_IN  
PGA3_GND  
ADC-A  
12-bits  
CTRIP3L  
Digital  
Filter  
CMPSS3  
Input MUX  
CMP3_LN  
CMP3_LP  
CTRIPOUT3L  
REFLO  
Analog Group 5  
Comparator Subsystem 4  
CMP4_HP  
CMP4_HN  
CTRIP4H  
Digital  
Filter  
AIO  
A6/PGA5_OF  
C4  
PGA5_IN  
PGA5_GND  
VDDA or VDAC  
CTRIPOUT4H  
VREFHI VDAC  
DACREFSEL  
DAC12  
DAC12  
CMPSS5  
Input MUX  
CTRIP4L  
Digital  
Filter  
CMP4_LN  
CMP4_LP  
CTRIPOUT4L  
12-bit  
Buffered  
DAC-B  
DACB_OUT  
Comparator Subsystem 5  
Analog Group 2  
CMP5_HP  
CMP5_HN  
CTRIP5H  
Digital  
Filter  
A5  
A4/B8/PGA2_OF  
C1  
AIO  
VDDA or VDAC  
CTRIPOUT5H  
Reference Circuit B  
ANAREFBSEL  
PGA2  
PGA4  
PGA6  
DAC12  
DAC12  
PGA2_IN  
CMPSS2  
Input MUX  
PGA2_GND/  
PGA4_GND/  
PGA6_GND/  
CTRIP5L  
Digital  
Filter  
Vref  
CMP5_LN  
CMP5_LP  
CTRIPOUT5L  
REFLO  
Analog Group 4  
Comparator Subsystem 6  
CMP6_HP  
CMP6_HN  
AIO  
B4/C8/PGA4_OF  
C3/PGA4_IN  
CTRIP6H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT6H  
REFHI  
CMPSS4  
Input MUX  
ADC Inputs  
B0 to B15  
DAC12  
DAC12  
ADC-B  
12-bits  
CTRIP6L  
Digital  
Filter  
CMP6_LN  
CMP6_LP  
Analog Group 6  
CTRIPOUT6L  
A9  
A8/PGA6_OF  
REFLO  
AIO  
Comparator Subsystem 7  
CMP7_HP  
CMP7_HN  
C5/PGA6_IN  
CTRIP7H  
Digital  
Filter  
CMPSS6  
Input MUX  
VDDA or VDAC  
CTRIPOUT7H  
DAC12  
DAC12  
CTRIP7L  
Digital  
Filter  
CMP7_LN  
CMP7_LP  
CTRIPOUT7L  
Analog Group 7  
B0  
A10/B1/C10/PGA7_OF  
C14  
AIO  
PGA7  
PGA7_IN  
PGA7_GND  
REFHI  
CMPSS7  
Input MUX  
ADC Inputs  
C0 to C15  
ADC-C  
12-bits  
REFLO  
CMPSS  
Inputs  
Copyright © 2017, Texas Instruments Incorporated  
Figure 7-28. Analog Subsystem Block Diagram (100-Pin PZ LQFP)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
VREFHIA  
VREFLOA  
Comparator Subsystem 1  
Digital  
Filter  
CMP1_HP  
CMP1_HN  
CTRIP1H  
VDDA or VDAC  
CTRIPOUT1H  
VREFHI VDAC  
DACREFSEL  
DAC12  
DAC12  
Misc. Analog  
CTRIP1L  
Digital  
Filter  
A0/B15/C15/DACA_OUT  
A1/DACB_OUT  
CMP1_LN  
CMP1_LP  
CTRIPOUT1L  
Temp  
Sensor  
AIO  
12-bit  
Buffered  
DAC-A  
DACA_OUT  
Comparator Subsystem 2  
Digital  
Filter  
CMP2_HP  
CMP2_HN  
CTRIP2H  
VDDA or VDAC  
CTRIPOUT2H  
Analog Group 1  
Reference Circuit A  
ANAREFASEL  
DAC12  
DAC12  
AIO  
A2/B6/PGA1_OF  
CTRIP2L  
Digital  
Filter  
CMP2_LN  
CMP2_LP  
PGA1  
PGA3  
PGA5  
Vref  
CTRIPOUT2L  
C0/PGA1_IN  
PGA1_GND/  
PGA3_GND/  
PGA5_GND/  
CMPSS1  
Input MUX  
REFLO  
Comparator Subsystem 3  
CMP3_HP  
CMP3_HN  
CTRIP3H  
Analog Group 3  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT3H  
B3/VDAC  
B2/C6/PGA3_OF  
AIO  
REFHI  
DAC12  
DAC12  
ADC Inputs  
A0 to A15  
C2/PGA3_IN  
ADC-A  
12-bits  
CTRIP3L  
Digital  
Filter  
CMPSS3  
Input MUX  
CMP3_LN  
CMP3_LP  
CTRIPOUT3L  
REFLO  
Analog Group 5  
Comparator Subsystem 4  
CMP4_HP  
CMP4_HN  
CTRIP4H  
Digital  
Filter  
AIO  
A6/PGA5_OF  
C4/PGA5_IN  
VDDA or VDAC  
CTRIPOUT4H  
VREFHI VDAC  
DACREFSEL  
DAC12  
DAC12  
CMPSS5  
Input MUX  
CTRIP4L  
Digital  
Filter  
CMP4_LN  
CMP4_LP  
CTRIPOUT4L  
12-bit  
Buffered  
DAC-B  
DACB_OUT  
Comparator Subsystem 5  
Analog Group 2  
CMP5_HP  
CMP5_HN  
CTRIP5H  
Digital  
Filter  
AIO  
A4/B8/PGA2_OF  
VDDA or VDAC  
CTRIPOUT5H  
PGA2  
DAC12  
DAC12  
C1/PGA2_IN  
PGA2_GND/  
PGA4_GND/  
PGA6_GND/  
CMPSS2  
Input MUX  
CTRIP5L  
Digital  
Filter  
CMP5_LN  
CMP5_LP  
CTRIPOUT5L  
Analog Group 4  
AIO  
B4/C8/PGA4_OF  
C3/PGA4_IN  
PGA4  
REFHI  
CMPSS4  
Input MUX  
ADC Inputs  
B0 to B15  
ADC-B  
12-bits  
REFLO  
Comparator Subsystem 7  
CMP7_HP  
CMP7_LP  
PGA6(A)  
CTRIP7H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT7H  
DAC12  
DAC12  
CTRIP7L  
Digital  
Filter  
CTRIPOUT7L  
Analog Group 7  
AIO  
A10/B1/C10  
REFHI  
CMPSS7  
Input MUX  
ADC Inputs  
C0 to C15  
ADC-C  
12-bits  
REFLO  
CMPSS  
Inputs  
Copyright © 2017, Texas Instruments Incorporated  
A. This PGA has no input/output connections on this package, but should be enabled and disabled at the same time as other PGAs with a  
shared PGA ground.  
Figure 7-29. Analog Subsystem Block Diagram (64-Pin PM LQFP)  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
VREFHIA  
VREFLOA  
Comparator Subsystem 1  
CMP1_HP  
CTRIP1H  
Digital  
Filter  
CMP1_HN  
VDDA or VDAC  
CTRIPOUT1H  
VREFHI VDAC  
DACREFSEL  
DAC12  
DAC12  
Misc. Analog  
CTRIP1L  
Digital  
Filter  
A0/B15/C15/DACA_OUT  
A1/DACB_OUT  
CMP1_LN  
CMP1_LP  
CTRIPOUT1L  
Temp  
Sensor  
AIO  
12-bit  
Buffered  
DAC-A  
DACA_OUT  
Comparator Subsystem 2  
CMP2_HP  
CMP2_HN  
CTRIP2H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT2H  
Analog Group 1  
Reference Circuit A  
ANAREFASEL  
DAC12  
DAC12  
AIO  
A2/B6/PGA1_OF  
CTRIP2L  
Digital  
Filter  
CMP2_LN  
CMP2_LP  
PGA1  
Vref  
CTRIPOUT2L  
C0/PGA1_IN  
PGA1_GND/  
PGA3_GND/  
PGA5_GND/  
CMPSS1  
Input MUX  
REFLO  
Comparator Subsystem 3  
CMP3_HP  
CMP3_HN  
CTRIP3H  
Analog Group 3  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT3H  
B3/VDAC  
B2/C6/PGA3_OF  
AIO  
REFHI  
DAC12  
DAC12  
ADC Inputs  
A0 to A15  
PGA3  
C2/PGA3_IN  
ADC-A  
12-bits  
CTRIP3L  
Digital  
Filter  
CMPSS3  
Input MUX  
CMP3_LN  
CMP3_LP  
CTRIPOUT3L  
REFLO  
Comparator Subsystem 4  
CMP4_HP  
CMP4_HN  
CTRIP4H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT4H  
VREFHI VDAC  
DACREFSEL  
PGA5(A)  
DAC12  
DAC12  
CTRIP4L  
Digital  
Filter  
CMP4_LN  
CMP4_LP  
CTRIPOUT4L  
12-bit  
Buffered  
DAC-B  
DACB_OUT  
Analog Group 2  
AIO  
A4/B8/PGA2_OF  
PGA2  
C1/PGA2_IN  
PGA2_GND/  
PGA4_GND/  
PGA6_GND/  
CMPSS2  
Input MUX  
Analog Group 4  
AIO  
B4/C8/PGA4_OF  
C3/PGA4_IN  
PGA4  
REFHI  
CMPSS4  
Input MUX  
ADC Inputs  
B0 to B15  
ADC-B  
12-bits  
REFLO  
Comparator Subsystem 7  
CMP7_HP  
CMP7_LP  
PGA6(A)  
CTRIP7H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT7H  
DAC12  
DAC12  
CTRIP7L  
Digital  
Filter  
CTRIPOUT7L  
Analog Group 7  
AIO  
A10/B1/C10  
REFHI  
CMPSS7  
Input MUX  
ADC Inputs  
C0 to C15  
ADC-C  
12-bits  
REFLO  
CMPSS  
Inputs  
Copyright © 2017, Texas Instruments Incorporated  
A. This PGA has no input/output connections on this package, but should be enabled and disabled at the same time as other PGAs with a  
shared PGA ground.  
Figure 7-30. Analog Subsystem Block Diagram (56-Pin RSH VQFN)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 7-31 shows the analog group connections. See Table 1-1 for the specific connections for each group for  
each package. Table 1-1 provides descriptions of the analog signals.  
CMPSSx Input MUX  
CMPxHPMX  
PGAx_OF  
Gx_ADCC  
PGAx_IN  
CMPx_HP0  
CMPx_HP1  
CMPx_HP2  
CMPx_HP3  
CMPx_HP4  
0
1
2
3
4
CMPx_HP  
Gx_ADCAB  
CMPxHNMX  
CMPxLNMX  
Gx_ADCAB  
Gx_ADCC  
CMPx_HN0  
CMPx_HN1  
0
1
CMPx_HN  
CMPx_LN  
Gx_ADCAB  
Gx_ADCC  
CMPx_LN0  
CMPx_LN1  
0
1
CMPxLPMX  
PGAx_OF  
Gx_ADCC  
PGAx_IN  
CMPx_LP0  
CMPx_LP1  
CMPx_LP2  
CMPx_LP3  
CMPx_LP4  
0
1
2
3
4
CMPx_LP  
Gx_ADCAB  
Gx_ADCAB  
PGAx_OF  
Gx_ADCC  
Gx_ADCAB  
PGAx_OF  
Gx_ADCC  
AIO(B)  
AIO(B)  
AIO(B)  
PGACTL[FILTRESSEL]  
RFILTER  
(A)  
(C)  
VDDA  
PGAx_IN  
+
PGACTL[PGAEN]  
PGAx  
PGAx_OUT  
œ
VSSA  
RGND  
ROUT  
PGAx_GND  
PGACTL[GAIN]  
A. On lower pin-count packages, the input to Gx_ADCC will share a pin with the PGA input. If the PGA input is unused, then the ADCC  
input can allow the pin to be used as an ADC input, a negative comparator input, or a digital input.  
B. AIOs support digital input mode only.  
C. The PGA RFILTER path is not available on some device revisions. See the TMS320F28004x MCUs Silicon Errata for more information.  
Figure 7-31. Analog Group Connections  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 7-11. Analog Pins and Internal Connections  
PACKAGE  
ALWAYS CONNECTED (NO MUX)  
COMPARATOR SUBSYSTEM (MUX)  
GROUP  
NAME  
PIN NAME  
AIO INPUT  
100 64 56  
HIGH HIGH LOW LOW  
POSITIVE NEGATIVE POSITIVE NEGATIVE  
ADCA  
ADCB  
ADCC  
PGA  
DAC  
PZ  
PM RSH  
VREFHIA  
VREFHIB  
VREFHIC  
VREFLOA  
VREFLOB  
VREFLOC  
-
-
-
-
-
-
25  
16  
17  
14  
15  
24  
27  
26  
A13  
B13  
C13  
Analog Group 1  
A3  
CMP1  
HPMXSEL HNMXSEL LPMXSEL LNMXSEL  
A3  
G1_ADCAB  
PGA1_OF  
10  
9
AIO233  
AIO224  
AIO237  
= 3  
= 0  
= 3  
= 0  
HPMXSEL  
= 0  
LPMXSEL  
= 0  
A2/B6/PGA1_OF  
9
8
10  
9
A2  
B6  
PGA1_OF  
PGA1_IN  
HPMXSEL HNMXSEL LPMXSEL LNMXSEL  
C0  
G1_ADCC  
PGA1_IN  
19  
18  
14  
C0  
= 1  
= 1  
= 1  
= 1  
12  
10  
HPMXSEL  
= 2  
LPMXSEL  
= 2  
PGA1_IN  
PGA1_GN  
D
PGA1_GND  
-
PGA1_GND  
PGA1_OUT(1)  
PGA1_OU  
T
HPMXSEL  
= 4  
LPMXSEL  
= 4  
A11  
B7  
B8  
Analog Group 2  
A5  
CMP2  
HPMXSEL HNMXSEL LPMXSEL LNMXSEL  
A5  
G2_ADCAB  
PGA2_OF  
35  
36  
29  
30  
32  
AIO234  
AIO225  
AIO238  
= 3  
= 0  
= 3  
= 0  
HPMXSEL  
= 0  
LPMXSEL  
= 0  
A4/B8/PGA2_OF  
23  
18  
20  
21  
16  
18  
A4  
PGA2_OF  
PGA2_IN  
HPMXSEL HNMXSEL LPMXSEL LNMXSEL  
C1  
G2_ADCC  
PGA2_IN  
C1  
= 1  
= 1  
= 1  
= 1  
HPMXSEL  
= 2  
LPMXSEL  
= 2  
PGA2_IN  
PGA2_GN  
D
PGA2_GND  
-
PGA2_GND  
PGA2_OUT(1)  
PGA2_OU  
T
HPMXSEL  
= 4  
LPMXSEL  
= 4  
A12  
B9  
Analog Group 3  
CMP3  
HPMXSEL HNMXSEL LPMXSEL LNMXSEL  
B3/VDAC  
B2/C6/PGA3_OF  
C2  
G3_ADCAB  
PGA3_OF  
8
8
7
7
6
B3  
B2  
VDAC  
AIO242  
AIO226  
AIO244  
= 3  
= 0  
= 3  
= 0  
HPMXSEL  
= 0  
LPMXSEL  
= 0  
7
C6  
C2  
PGA3_OF  
PGA3_IN  
HPMXSEL HNMXSEL LPMXSEL LNMXSEL  
G3_ADCC  
PGA3_IN  
21  
20  
15  
= 1  
= 1  
= 1  
= 1  
13  
10  
11  
9
HPMXSEL  
= 2  
LPMXSEL  
= 2  
PGA3_IN  
PGA3_GND  
-
PGA3_GN  
D
PGA3_GND  
PGA3_OUT(1)  
PGA3_OU  
T
HPMXSEL  
= 4  
LPMXSEL  
= 4  
B10  
C7  
Analog Group 4  
CMP4  
HPMXSEL HNMXSEL LPMXSEL LNMXSEL  
B5  
G4_ADCAB  
PGA4_OF  
B5  
B4  
AIO243  
AIO227  
AIO245  
= 3  
= 0  
= 3  
= 0  
HPMXSEL  
= 0  
LPMXSEL  
= 0  
B4/C8/PGA4_OF  
39  
31  
32  
24  
19  
20  
22  
17  
18  
C8  
C3  
PGA4_OF  
PGA4_IN  
HPMXSEL HNMXSEL LPMXSEL LNMXSEL  
C3  
G4_ADCC  
PGA4_IN  
= 1  
= 1  
= 1  
= 1  
HPMXSEL  
= 2  
LPMXSEL  
= 2  
PGA4_IN  
PGA4_GN  
D
PGA4_GND  
-
PGA4_GND  
PGA4_OUT(1)  
PGA4_OU  
T
HPMXSEL  
= 4  
LPMXSEL  
= 4  
B11  
C9  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-11. Analog Pins and Internal Connections (continued)  
PACKAGE  
ALWAYS CONNECTED (NO MUX)  
COMPARATOR SUBSYSTEM (MUX)  
GROUP  
NAME  
PIN NAME  
AIO INPUT  
100 64 56  
HIGH HIGH LOW LOW  
ADCA  
ADCB  
ADCC  
PGA  
DAC  
PZ  
PM RSH  
Analog Group 5  
POSITIVE NEGATIVE POSITIVE NEGATIVE  
CMP5  
HPMXSEL HNMXSEL LPMXSEL LNMXSEL  
A7  
G5_ADCAB  
PGA5_OF  
A7  
AIO235  
AIO228  
AIO239  
= 3  
= 0  
= 3  
= 0  
HPMXSEL  
= 0  
LPMXSEL  
= 0  
A6/PGA5_OF  
6
6
A6  
PGA5_OF  
PGA5_IN  
HPMXSEL HNMXSEL LPMXSEL LNMXSEL  
C4  
G5_ADCC  
PGA5_IN  
17  
16  
13  
C4  
= 1  
= 1  
= 1  
= 1  
11  
10  
HPMXSEL  
= 2  
LPMXSEL  
= 2  
PGA5_IN  
PGA5_GN  
D
PGA5_GND  
-
PGA5_GND  
PGA5_OUT(1)  
9
PGA5_OU  
T
HPMXSEL  
= 4  
LPMXSEL  
= 4  
A14  
Analog Group 6  
A9  
CMP6  
HPMXSEL HNMXSEL LPMXSEL LNMXSEL  
A9  
G6_ADCAB  
PGA6_OF  
38  
37  
AIO236  
AIO229  
AIO240  
= 3  
= 0  
= 3  
= 0  
HPMXSEL  
= 0  
LPMXSEL  
= 0  
A8/PGA6_OF  
A8  
PGA6_OF  
PGA6_IN  
HPMXSEL HNMXSEL LPMXSEL LNMXSEL  
C5  
G6_ADCC  
PGA6_IN  
C5  
= 1  
= 1  
= 1  
= 1  
28  
32  
HPMXSEL  
= 2  
LPMXSEL  
= 2  
PGA6_IN  
PGA6_GN  
D
PGA6_GND  
-
PGA6_GND  
PGA6_OUT(1)  
20  
18  
PGA6_OU  
T
HPMXSEL  
= 4  
LPMXSEL  
= 4  
A15  
Analog Group 7  
CMP7  
HPMXSEL HNMXSEL LPMXSEL LNMXSEL  
B0  
G7_ADCAB  
PGA7_OF(2)  
G7_ADCC  
41  
40  
44  
43  
42  
B0  
B1  
AIO241  
AIO230  
AIO246  
= 3  
= 0  
= 3  
= 0  
HPMXSEL  
= 0  
LPMXSEL  
= 0  
A10/B1/C10/PGA7_OF  
25  
23  
A10  
C10  
C14  
PGA7_OF  
PGA7_IN  
HPMXSEL HNMXSEL LPMXSEL LNMXSEL  
C14  
= 1  
= 1  
= 1  
= 1  
HPMXSEL  
= 2  
LPMXSEL  
= 2  
PGA7_IN  
PGA7_IN  
PGA7_GN  
D
PGA7_GND  
-
PGA7_GND  
PGA7_OUT(1)  
PGA7_OU  
T
HPMXSEL  
= 4  
LPMXSEL  
= 4  
B12  
B15  
C11  
Other Analog  
DACA_OU  
T
A0/B15/C15/DACA_OUT  
A1/DACB_OUT  
23  
22  
15  
14  
13  
12  
A0  
A1  
C15  
AIO231  
DACB_OU  
T
AIO232  
AIO247  
C12  
-
C12  
TempSensor(1)  
B14  
(1) Internal connection only; does not come to a device pin.  
(2) PGA functionality not available on 64-pin and 56-pin packages.  
Table 7-12. Analog Signal Descriptions  
SIGNAL NAME  
DESCRIPTION  
AIOx  
Ax  
Digital input on ADC pin  
ADC A Input  
Bx  
ADC B Input  
Cx  
ADC C Input  
CMPx_DACH  
CMPx_DACL  
CMPx_HNy  
CMPx_HPy  
Comparator subsystem high DAC output  
Comparator subsystem low DAC output  
Comparator subsystem high comparator negative input  
Comparator subsystem high comparator positive input  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 7-12. Analog Signal Descriptions (continued)  
SIGNAL NAME  
DESCRIPTION  
CMPx_LNy  
CMPx_LPy  
DACx_OUT  
PGAx_GND  
PGAx_IN  
Comparator subsystem low comparator negative input  
Comparator subsystem low comparator positive input  
Buffered DAC Output  
PGA Ground  
PGA Input  
PGAx_OF  
PGA Output for filter  
PGAx_OUT  
TempSensor  
PGA Output to internal ADC  
Internal temperature sensor  
Optional external reference voltage for on-chip DACs. There is a 100-pF capacitor to VSSA on this pin whether  
used for ADC input or DAC reference which cannot be disabled. If this pin is used as a reference for the on-  
chip DACs, place at least a 1-µF capacitor on this pin.  
VDAC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.1 Analog-to-Digital Converter (ADC)  
The ADC module described here is a successive approximation (SAR) style ADC with resolution of 12 bits. This  
section refers to the analog circuits of the converter as the “core,” and includes the channel-select MUX, the  
sample-and-hold (S/H) circuit, the successive approximation circuits, voltage reference circuits, and other analog  
support circuits. The digital circuits of the converter are referred to as the “wrapper” and include logic for  
programmable conversions, result registers, interfaces to analog circuits, interfaces to the peripheral buses,  
post-processing circuits, and interfaces to other on-chip modules.  
Each ADC module consists of a single sample-and-hold (S/H) circuit. The ADC module is designed to be  
duplicated multiple times on the same chip, allowing simultaneous sampling or independent operation of multiple  
ADCs. The ADC wrapper is start-of-conversion (SOC)-based (see the SOC Principle of Operation section of the  
Analog-to-Digital Converter (ADC) chapter in the TMS320F28004x Microcontrollers Technical Reference  
Manual).  
Each ADC has the following features:  
Resolution of 12 bits  
Ratiometric external reference set by VREFHI/VREFLO  
Selectable internal reference of 2.5 V or 3.3 V  
Single-ended signaling  
Input multiplexer with up to 16 channels  
16 configurable SOCs  
16 individually addressable result registers  
Multiple trigger sources  
– S/W: software immediate start  
– All ePWMs: ADCSOC A or B  
– GPIO XINT2  
– CPU Timers 0/1/2  
– ADCINT1/2  
Four flexible PIE interrupts  
Burst-mode triggering option  
Four post-processing blocks, each with:  
– Saturating offset calibration  
– Error from setpoint calculation  
– High, low, and zero-crossing compare, with interrupt and ePWM trip capability  
– Trigger-to-sample delay capture  
Note  
Not every channel may be pinned out from all ADCs. See Section 6 to determine which channels are  
available.  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
The block diagram for the ADC core and ADC wrapper are shown in Figure 7-32.  
Analog-to-Digital Core  
Analog-to-Digital Wrapper Logic  
Input Circuit  
SOCx (0-15)  
CHSEL  
[15:0]  
[15:0]  
[15:0]  
SOC Arbitration  
& Control  
ACQPS  
CHSEL  
ADCIN0  
ADCIN1  
ADCIN2  
ADCIN3  
ADCIN4  
ADCIN5  
ADCIN6  
ADCIN7  
ADCIN8  
ADCIN9  
ADCIN10  
ADCIN11  
ADCIN12  
ADCIN13  
ADCIN14  
ADCIN15  
0
1
ADCSOC  
2
3
.
.
.
.
.
.
4
5
ADCCOUNTER  
TRIGGER[15:0]  
6
VIN  
+
DOUT  
7
8
VIN-  
9
10  
11  
12  
13  
14  
15  
SOC Delay  
Timestamp  
Trigger  
Timestamp  
Converter  
S/H Circuit  
RESULT  
-
+
ADCPPBxOFFCAL  
saturate  
+
ADCPPBxOFFREF  
-
ADCPPBxRESULT  
ADCEVT  
VREFHI  
Event  
Logic  
CONFIG  
ADCEVTINT  
Bandgap  
Reference Circuit  
1.65-V Output  
(3.3-V Range)  
or  
1
Post Processing Block (1-4)  
Interrupt Block (1-4)  
0
2.5-V Output  
(2.5-V Range)  
ADCINT1-4  
VREFLO  
Analog System Control  
ANAREFSEL  
ANAREFx2PSSEL  
Reference Voltage Levels  
Figure 7-32. ADC Module Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.1.1 ADC Configurability  
Some ADC configurations are individually controlled by the SOCs, while others are globally controlled per ADC  
module. Table 7-13 summarizes the basic ADC options and their level of configurability.  
Table 7-13. ADC Options and Configuration Levels  
OPTIONS  
CONFIGURABILITY  
Clock  
Per module(1)  
Resolution  
Signal mode  
Not configurable (12-bit resolution only)  
Not configurable (single-ended signal mode only)  
Reference voltage source  
Trigger source  
Per module  
Per SOC(1)  
Per SOC  
Converted channel  
Acquisition window duration  
EOC location  
Per SOC(1)  
Per module  
Per module(1)  
Burst mode  
(1) Writing these values differently to different ADC modules could cause the ADCs to operate  
asynchronously. For guidance on when the ADCs are operating synchronously or asynchronously,  
see the Ensuring Synchronous Operation section of the Analog-to-Digital Converter (ADC) chapter  
in the TMS320F28004x Microcontrollers Technical Reference Manual.  
7.10.1.1.1 Signal Mode  
The ADC supports single-ended signaling. In single-ended mode, the input voltage to the converter is sampled  
through a single pin (ADCINx), referenced to VREFLO. Figure 7-33 shows the single-ended signaling mode.  
Pin Voltage  
VREFHI  
VREFHI  
ADCINx  
ADCINx  
ADC  
VREFHI/2  
VREFLO  
VREFLO  
(VSSA)  
Digital Output  
2n - 1  
ADC Vin  
0
Figure 7-33. Single-ended Signaling Mode  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.10.1.2 ADC Electrical Data and Timing  
Table 5-41 lists the ADC operating conditions. Table 5-42 lists the ADC electrical characteristics.  
7.10.1.2.1 ADC Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
ADCCLK (derived from PERx.SYSCLK)  
Sample rate  
TEST CONDITIONS  
MIN  
TYP  
MAX  
50  
UNIT  
MHz  
5
100-MHz SYSCLK  
3.45  
MSPS  
Sample window duration (set by ACQPS and  
PERx.SYSCLK)(1)  
With 50 Ω or less Rs  
75  
ns  
VREFHI  
External Reference  
2.4  
2.5 or 3.0  
1.65  
VDDA  
V
V
V
V
V
V
V
V
Internal Reference = 3.3V Range  
Internal Reference = 2.5V Range  
VREFHI(2)  
2.5  
VREFLO  
VSSA  
VSSA  
VSSA  
VDDA  
3.3  
VREFHI - VREFLO  
External Reference  
2.4  
Internal Reference = 3.3 V Range  
Internal Reference = 2.5 V Range  
External Reference  
0
0
Conversion range  
2.5  
VREFLO  
VREFHI  
(1) The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation.  
(2) In internal reference mode, the reference voltage is driven out of the VREFHI pin by the device. The user should not drive a voltage  
into the pin in this mode.  
Note  
The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input exceeds this  
level, the VREF internal to the device may be disturbed, which can impact results for other ADC or  
DAC inputs using the same VREF  
.
Note  
The VREFHI pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the  
VREFHI pin exceeds this level, a blocking circuit may activate, and the internal value of VREFHI may  
float to 0 V internally, giving improper ADC conversion or DAC output.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
UNIT  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.10.1.2.2 ADC Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
General  
ADCCLK Conversion Cycles  
Power Up Time  
100-MHz SYSCLK  
10.1  
11 ADCCLKs  
External Reference mode  
Internal Reference mode  
500  
µs  
µs  
5000  
5000  
Internal Reference mode, when switching between  
2.5-V range and 3.3-V range.  
µs  
µA  
µF  
VREFHI input current(1)  
130  
Internal Reference Capacitor  
Value(2)  
2.2  
2.2  
External Reference Capacitor  
Value(2)  
µF  
DC Characteristics  
Internal reference  
External reference  
–45  
–5  
45  
5
Gain Error  
LSB  
±3  
±2  
Offset Error  
–5  
5
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Channel-to-Channel Gain Error  
Channel-to-Channel Offset Error  
ADC-to-ADC Gain Error  
ADC-to-ADC Offset Error  
DNL Error  
±2  
±2  
Identical VREFHI and VREFLO for all ADCs  
Identical VREFHI and VREFLO for all ADCs  
±4  
±2  
>–1  
–2  
±0.5  
±1.0  
1
2
1
INL Error  
VREFHI = 2.5 V, synchronous ADCs  
VREFHI = 2.5 V, asynchronous ADCs  
–1  
ADC-to-ADC Isolation  
LSBs  
Not Supported  
AC Characteristics  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1  
68.8  
60.1  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
INTOSC  
SNR(3)  
dB  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1,  
VDD supplied from internal DC-DC regulator(4)  
67.5  
THD(3)  
VREFHI = 2.5 V, fin = 100 kHz  
–80.6  
79.2  
68.5  
dB  
dB  
SFDR(3)  
VREFHI = 2.5 V, fin = 100 kHz  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1  
SINAD(3)  
dB  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
INTOSC  
60.0  
11.0  
11.0  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
X1, Single ADC  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
X1, synchronous ADCs  
ENOB(3)  
bits  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
X1, asynchronous ADCs  
Not  
Supported  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD = 1.2-V DC + 100mV  
60  
DC up to Sine at 1 kHz  
VDD = 1.2-V DC + 100 mV  
DC up to Sine at 300 kHz  
57  
PSRR  
dB  
VDDA = 3.3-V DC + 200 mV  
DC up to Sine at 1 kHz  
60  
57  
VDDA = 3.3-V DC + 200 mV  
Sine at 900 kHz  
(1) Load current on VREFHI increases when ADC input is greater than VDDA. This causes inaccurate conversions.  
(2) A ceramic capacitor with package size of 0805 or smaller is preferred. Up to ±20% tolerance is acceptable.  
(3) IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and  
crosstalk.  
(4) Noise impact from the DCDC regulator to the ADC will be strongly dependent on PCB layout.  
7.10.1.2.3 ADC Input Model  
The ADC input characteristics are given by Table 7-14 and Figure 7-34.  
Table 7-14. Input Model Parameters  
DESCRIPTION  
REFERENCE MODE  
VALUE  
Cp  
Parasitic input capacitance  
All  
See Table 7-15  
External Reference, 2.5-V Internal  
Reference  
500 Ω  
860 Ω  
Ron  
Sampling switch resistance  
3.3-V Internal Reference  
External Reference, 2.5-V Internal  
Reference  
12.5 pF  
Ch  
Rs  
Sampling capacitor  
3.3-V Internal Reference  
All  
7.5 pF  
50 Ω  
Nominal source impedance  
ADC  
ADCINx  
Rs  
Switch  
Ron  
AC  
Cp  
Ch  
VREFLO  
Figure 7-34. Input Model  
This input model should be used with actual signal source impedance to determine the acquisition window  
duration. For more information, see the Choosing an Acquisition Window Duration section of the Analog-to-  
Digital Converter (ADC) chapter in the TMS320F28004x Microcontrollers Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-15 lists the parasitic capacitance on each channel.  
Table 7-15. Per-Channel Parasitic Capacitance  
Cp (pF)  
ADC CHANNEL  
COMPARATOR DISABLED  
COMPARATOR ENABLED  
ADCINA0  
ADCINA1  
ADCINA2  
ADCINA3  
ADCINA4  
ADCINA5  
ADCINA6  
ADCINA7  
ADCINA8  
ADCINA9  
ADCINA10  
ADCINB0  
ADCINB1  
ADCINB2  
ADCINB3(1)  
ADCINB4  
ADCINB5  
ADCINB6  
ADCINB8  
ADCINB15  
ADCINC0  
ADCINC1  
ADCINC2  
ADCINC3  
ADCINC4  
ADCINC5  
ADCINC6  
ADCINC8  
ADCINC10  
ADCINC12  
ADCINC14  
ADCINC15  
12.7  
13.7  
9.2  
15.2  
16.2  
11.7  
9.4  
6.9  
9.2  
11.7  
10  
7.5  
8.0  
10.5  
9.5  
7.0  
10.0  
8.1  
12.5  
10.6  
11.8  
9.6  
9.3  
7.1  
9.3  
11.8  
12.1  
128.1  
11.3  
9.6  
9.6  
125.6  
8.8  
7.1  
9.2  
11.7  
11.7  
15.2  
8.9  
9.2  
12.7  
6.4  
6.1  
8.6  
5.24  
5.5  
7.74  
8
6.2  
8.7  
5.6  
8.1  
9.6  
12.1  
11.3  
11.8  
6.6  
8.8  
9.3  
4.1  
4.5  
7
12.7  
15.2  
(1) This pin is also used to supply reference voltage for COMPDAC and GPDAC, and includes an  
internal decoupling capacitor.  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.10.1.2.4 ADC Timing Diagrams  
Figure 7-35 shows the ADC conversion timings for two SOCs given the following assumptions:  
SOC0 and SOC1 are configured to use the same trigger.  
No other SOCs are converting or pending when the trigger occurs.  
The round-robin pointer is in a state that causes SOC0 to convert first.  
ADCINTSEL is configured to set an ADCINT flag upon end of conversion for SOC0 (whether this flag  
propagates through to the CPU to cause an interrupt is determined by the configurations in the PIE module).  
Table 7-16 lists the descriptions of the ADC timing parameters. Table 7-17 lists the ADC timings.  
Sample n  
Input on SOC0.CHSEL  
Input on SOC1.CHSEL  
Sample n+1  
ADC S+H  
SOC0  
SOC1  
SYSCLK  
ADCCLK  
ADCTRIG  
ADCSOCFLG.SOC0  
ADCSOCFLG.SOC1  
ADCRESULT0  
Sample n  
(old data)  
(old data)  
ADCRESULT1  
Sample n+1  
ADCINTFLG.ADCINTx  
tSH  
tLAT  
tEOC  
tINT  
Figure 7-35. ADC Timings  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-16. ADC Timing Parameters  
PARAMETER  
DESCRIPTION  
The duration of the S+H window.  
At the end of this window, the value on the S+H capacitor becomes the voltage to be converted into a digital  
value. The duration is given by (ACQPS + 1) SYSCLK cycles. ACQPS can be configured individually for each  
SOC, so tSH will not necessarily be the same for different SOCs.  
tSH  
Note: The value on the S+H capacitor will be captured approximately 5 ns before the end of the S+H window  
regardless of device clock settings.  
The time from the end of the S+H window until the ADC results latch in the ADCRESULTx register.  
tLAT  
If the ADCRESULTx register is read before this time, the previous conversion results will be returned.  
The time from the end of the S+H window until the S+H window for the next ADC conversion can begin. The  
subsequent sample can start before the conversion results are latched.  
tEOC  
The time from the end of the S+H window until an ADCINT flag is set (if configured).  
If the INTPULSEPOS bit in the ADCCTL1 register is set, tINT will coincide with the conversion results being  
latched into the result register.  
If the INTPULSEPOS bit is 0, tINT will coincide with the end of the S+H window. If tINT triggers a read of the  
ADC result register (directly through DMA or indirectly by triggering an ISR that reads the result), care must be  
taken to ensure the read occurs after the results latch (otherwise, the previous results will be read).  
tINT  
If the INTPULSEPOS bit is 0, and the OFFSET field in the ADCINTCYCLE register is not 0, then there will be a  
delay of OFFSET SYSCLK cycles before the ADCINT flag is set. This delay can be used to enter the ISR or  
trigger the DMA at exactly the time the sample is ready.  
Table 7-17. ADC Timings  
ADCCLK PRESCALE  
SYSCLK CYCLES  
ADCCLK CYCLES  
RATIO  
ADCCLK:SYSCLK  
(1)  
(2)  
ADCCTL2 [PRESCALE]  
tEOC  
tLAT  
tINT(EARLY)  
tINT(LATE)  
tEOC  
0
2
1
2
3
4
5
6
7
8
11  
21  
31  
41  
51  
61  
71  
81  
13  
1
1
1
1
1
1
1
1
11  
21  
31  
41  
51  
61  
71  
81  
11  
23  
34  
44  
55  
65  
76  
86  
10.5  
10.3  
10.3  
10.2  
10.2  
10.1  
10.1  
4
6
8
10  
12  
14  
(1) Refer to the "ADC: DMA Read of Stale Result" advisory in the TMS320F28004x MCUs Silicon Errata.  
(2) By default, tINT occurs one SYSCLK cycle after the S+H window if INTPULSEPOS is 0. This can be changed by writing to the OFFSET  
field in the ADCINTCYCLE register.  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.10.2 Programmable Gain Amplifier (PGA)  
The Programmable Gain Amplifier (PGA) is used to amplify an input voltage for the purpose of increasing the  
effective resolution of the downstream ADC and CMPSS modules.  
The integrated PGA helps to reduce cost and design effort for many control applications that traditionally require  
external, stand-alone amplifiers. On-chip integration ensures that the PGA is compatible with the downstream  
ADC and CMPSS modules. Software-selectable gain and filter settings make the PGA adaptable to various  
performance needs.  
The PGA has the following features:  
Four programmable gain modes: 3x, 6x, 12x, 24x  
Internally powered by VDDA and VSSA  
Support for Kelvin ground connections using PGA_GND pin  
Embedded series resistors for RC filtering  
The active component in the PGA is an embedded operational amplifier (op amp) that is configured as a  
noninverting amplifier with internal feedback resistors. These internal feedback resistor values are paired to  
produce software selectable voltage gains.  
Three PGA signals are available at the device pins:  
PGA_IN is the positive input to the PGA op amp. The signal applied to this pin will be amplified by the PGA.  
PGA_GND is the Kelvin ground reference for the PGA_IN signal. Ideally, the PGA_GND reference is equal to  
VSSA; however, the PGA can tolerate small voltage offsets from VSSA.  
PGA_OF supports op amp output filtering with RC components. The filtered signal is available for sampling  
and monitoring by internal ADC and CMPSS modules. The PGA RFILTER path is not available on some  
device revisions. See the TMS320F28004x MCUs Silicon Errata for more information.  
PGA_OUT is an internal signal at the op amp output. It is available for sampling and monitoring by the internal  
ADC and CMPSS modules. Figure 7-36 shows the PGA block diagram.  
VDDA  
PGA_IN  
+
PGACTL[PGAEN]  
PGA_OUT  
Op Amp  
VSSA  
To ADC and CMPSS  
To ADC and CMPSS  
RFILTER  
œ
PGACTL[FILTRESSEL]  
RGND  
ROUT  
PGA_GND  
PGACTL[GAIN]  
PGA_OF  
Figure 7-36. PGA Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.2.1 PGA Electrical Data and Timing  
Section 7.10.2.1.1 lists the PGA operating conditions. Section 7.10.2.1.2 lists the PGA characteristics.  
7.10.2.1.1 PGA Operating Conditions  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
PGA Output Range(1)  
PGA GND Range  
TEST CONDITIONS  
MIN  
VSSA + 0.35  
–50  
TYP  
MAX  
VDDA – 0.35  
200  
UNIT  
V
mV  
Min ADC S+H  
(No Filter; Gain = 3, 6, 12)  
Settling within ±1 ADC LSB  
Accuracy  
160  
200  
ns  
ns  
Min ADC S+H  
(No Filter; Gain = 24)  
Settling within ±2 ADC LSB  
Accuracy  
(1) This is the linear output range of the PGA. The PGA can output voltages outside this range, but the voltages will not be linear.  
7.10.2.1.2 PGA Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
General  
Gain Settings  
3, 6, 12, 24  
Input Bias Current  
Short Circuit Current  
2
nA  
35  
mA  
Full Scale Step Response  
(No Filter)  
Settling within ±2 ADC LSB  
Accuracy  
450  
10  
ns  
Settling Time  
Slew Rate  
RGND  
Gain Switching  
Gain = 3  
µs  
V/µs  
V/µs  
V/µs  
V/µs  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
15  
31  
61  
78  
20  
37  
Gain = 6  
Gain = 12  
Gain = 24  
Gain = 3  
73  
98  
9
Gain = 6  
4.5  
Gain = 12  
Gain = 24  
Gain = 3  
2.25  
1.125  
18  
ROUT  
Gain = 6  
22.5  
24.75  
25.875  
190  
153  
125  
96  
Gain = 12  
Gain = 24  
RFILT = 200 Ω  
RFILT = 160 Ω  
RFILT = 130 Ω  
RFILT = 100 Ω  
RFILT = 80 Ω  
RFILT = 50 Ω  
Filter Resistor Targets  
145  
117  
95  
234  
188  
154  
120  
98  
71  
55  
77  
31  
49  
66  
Power Up Time  
500  
µs  
DC Characteristics  
Gain = 3, 6, 12  
Gain = 24  
–0.5  
–0.8  
0.5  
0.8  
%
%
Gain Error(1)  
Gain Temp Coefficient  
Offset Error(2)  
±0.004  
±5.5  
%/C  
mV  
µV/C  
Input Referred  
Input Referred  
–1.5  
1.5  
Offset Temp Coefficient  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC Code Spread  
2.5  
12b LSB  
AC Characteristics  
Bandwidth(3)  
All Gain Modes  
7
–78  
–70  
–60  
–50  
–75  
–50  
200  
MHz  
DC  
dB  
THD(4)  
Up to 100 kHz  
DC  
dB  
dB  
dB  
CMRR  
Up to 100 kHz  
DC  
dB  
PSRR(4)  
Up to 100 kHz  
1 kHz  
dB  
Noise PSD(4)  
nV/sqrt(Hz)  
Integrated Noise  
(Input Referred)(4)  
3 Hz to 30 MHz  
100  
µV  
(1) Includes ADC gain error in external reference mode.  
(2) Includes ADC offset error in external reference mode.  
(3) 3dB bandwidth.  
(4) Performance of PGA alone.  
7.10.2.1.3 PGA Typical Characteristics Graphs  
Figure 7-37 shows the input bias current versus temperature.  
Note  
For Figure 7-37, the following conditions apply (unless otherwise noted):  
TA = 30°C  
VDDA = 3.3 V  
VDD = 1.2 V  
INPUT BIAS CURRENT vs TEMPERATURE  
300  
250  
200  
150  
100  
50  
0V INPUT  
1.65V INPUT  
3.3V INPUT  
0
-50  
-100  
-40 -20  
0
20  
40  
TEMPERATURE (C)  
60  
80 100 120 140 160  
DPLO  
Figure 7-37. Input Bias Current Versus Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.3 Temperature Sensor  
7.10.3.1 Temperature Sensor Electrical Data and Timing  
The temperature sensor can be used to measure the device junction temperature. The temperature sensor is  
sampled through an internal connection to the ADC and translated into a temperature through TI-provided  
software. When sampling the temperature sensor, the ADC must meet the acquisition time in Section 7.10.3.1.1.  
7.10.3.1.1 Temperature Sensor Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Tacc  
tstartup  
tSH  
Temperature Accuracy  
External reference  
±15  
°C  
Start-up time  
(TSNSCTL[ENABLE] to  
sampling temperature sensor)  
500  
µs  
ns  
ADC sample-and-hold time  
450  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.10.4 Buffered Digital-to-Analog Converter (DAC)  
The buffered DAC module consists of an internal 12-bit DAC and an analog output buffer that can drive an  
external load. For driving even higher loads than typical, a trade-off can be made between load size and output  
voltage swing. For the load conditions of the buffered DAC, see Section 7.10.4.1. The buffered DAC is a  
general-purpose DAC that can be used to generate a DC voltage or AC waveforms such as sine waves, square  
waves, triangle waves and so forth. Software writes to the DAC value register can take effect immediately or can  
be synchronized with EPWMSYNCO events.  
Each buffered DAC has the following features:  
12-bit resolution  
Selectable reference voltage source  
x1 and x2 gain modes when using internal VREFHI  
Ability to synchronize with EPWMSYNCO  
The block diagram for the buffered DAC is shown in Figure 7-38.  
DACCTL[DACREFSEL]  
ANAREFx2P5  
VDAC  
0
1
DACREF  
1.65v  
2.5v  
0
1
Internal  
Reference  
Circuit  
1
0
VREFHI  
ANAREFxSEL  
VDDA  
DACCTL[LOADMODE]  
0
SYSCLK  
DACVALS  
>
Q
Q
D
12-bit  
DAC  
DACOUT  
Amp  
(x1 or x2)  
DACVALA  
1
D
EPWM1SYNCPER  
EPWM2SYNCPER  
EPWM3SYNCPER  
0
1
2
EN  
VSSA  
VSSA  
...  
EPWMnSYNCPER  
Y
n-1  
DACCTL[MODE]  
(Select x1 or x2 Gain)  
DACCTL[SYNCSEL]  
Figure 7-38. DAC Module Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.4.1 Buffered DAC Electrical Data and Timing  
Section 7.10.4.1.1 lists the buffered DAC operating conditions. Section 7.10.4.1.2 lists the buffered DAC  
electrical characteristics.  
7.10.4.1.1 Buffered DAC Operating Conditions  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
kΩ  
pF  
V
RL  
CL  
Resistive Load(2)  
5
Capacitive Load  
100  
VDDA – 0.3  
VDDA – 0.6  
VDDA  
RL = 5 kΩ  
0.3  
0.6  
2.4  
VOUT  
Valid Output Voltage Range(3)  
RL = 1 kΩ  
V
Reference Voltage(4)  
VDAC or VREFHI  
2.5 or 3.0  
V
(1) Typical values are measured with VREFHI = 3.3 V and VREFLO = 0 V, unless otherwise noted. Minimum and maximum values are  
tested or characterized with VREFHI = 2.5 V and VREFLO = 0 V.  
(2) DAC can drive a minimum resistive load of 1 kΩ, but the output range will be limited.  
(3) This is the linear output range of the DAC. The DAC can generate voltages outside this range, but the output voltage will not be linear  
due to the buffer.  
(4) For best PSRR performance, VDAC or VREFHI should be less than VDDA.  
7.10.4.1.2 Buffered DAC Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
12  
MAX  
UNIT  
General  
Resolution  
bits  
mV/V  
V-ns  
Load Regulation  
Glitch Energy  
–1  
1
1.5  
Settling to 2 LSBs after 0.3V-  
to-3V transition  
Voltage Output Settling Time Full-Scale  
2
µs  
µs  
Voltage Output Settling Time 1/4th Full-Scale Settling to 2 LSBs after 0.3V-  
to-0.75V transition  
1.6  
Slew rate from 0.3V-to-3V  
Voltage Output Slew Rate  
transition  
2.8  
4.5  
V/µs  
5-kΩ Load  
Load Transient Settling Time(6)  
1-kΩ Load  
328  
557  
ns  
ns  
kΩ  
µs  
µs  
Reference Input Resistance(2)  
TPU Power Up Time  
DC Characteristics  
VDAC or VREFHI  
160  
200  
240  
External Reference mode  
Internal Reference mode  
500  
5000  
Offset  
Gain  
DNL  
INL  
Offset Error  
Midpoint  
–10  
–2.5  
–1  
10  
2.5  
1
mV  
% of FSR  
LSB  
Gain Error(3)  
Differential Non Linearity(4)  
Endpoint corrected  
Endpoint corrected  
±0.4  
±2  
Integral Non Linearity  
–5  
5
LSB  
AC Characteristics  
Integrated noise from 100 Hz  
to 100 kHz  
600  
µVrms  
Output Noise  
Noise density at 10 kHz  
1 kHz, 200 KSPS  
800  
64  
nVrms/√Hz  
SNR  
THD  
Signal to Noise Ratio  
dB  
dB  
Total Harmonic Distortion  
1 kHz, 200 KSPS  
–64.2  
Spurious Free Dynamic  
Range  
SFDR  
1 kHz, 200 KSPS  
66  
dB  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Signal to Noise and Distortion  
Ratio  
SINAD  
PSRR  
1 kHz, 200 KSPS  
61.7  
dB  
DC  
70  
30  
dB  
dB  
Power Supply Rejection  
Ratio(5)  
100 kHz  
(1) Typical values are measured with VREFHI = 3.3 V and VREFLO = 0 V, unless otherwise noted. Minimum and maximum values are  
tested or characterized with VREFHI = 2.5 V and VREFLO = 0 V.  
(2) Per active Buffered DAC module.  
(3) Gain error is calculated for linear output range.  
(4) The DAC output is monotonic.  
(5) VREFHI = 3.2 V, VDDA = 3.3 V DC + 100 mV Sine.  
(6) Settling to within 3LSBs.  
Note  
The VDAC pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the VDAC  
pin exceeds this level, a blocking circuit may activate, and the internal value of VDAC may float to 0 V  
internally, giving improper DAC output.  
Note  
The VREFHI pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the  
VREFHI pin exceeds this level, a blocking circuit may activate, and the internal value of VREFHI may  
float to 0 V internally, giving improper ADC conversion or DAC output.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.4.1.3 Buffered DAC Illustrative Graphs  
Figure 7-39 shows the buffered DAC offset. Figure 7-40 shows the buffered DAC gain. Figure 7-41 shows the  
buffered DAC linearity.  
Offset Error  
Code 2048  
Figure 7-39. Buffered DAC Offset  
Actual Gain  
Ideal Gain  
Code 3722  
Code 373  
Linear Range  
(3.3-V Reference)  
Figure 7-40. Buffered DAC Gain  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Linearity Error  
Code 3722  
Code 373  
Linear Range  
(3.3-V Reference)  
Figure 7-41. Buffered DAC Linearity  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.4.1.4 Buffered DAC Typical Characteristics Graphs  
Figure 7-42 to Figure 7-47 show the typical performance for some buffered DAC parameters. Figure 7-42 shows  
the DNL. Figure 7-43 shows the INL. Figure 7-44 shows the glitch response (511 to 512 DACVAL) and Figure  
7-45 shows the glitch response (512 to 511 DACVAL). Note that the glitch only happens at MSB transitions, with  
511-to-512 and 512-to-511 transitions being the worst case. Figure 7-46 shows the 1-kΩ load transient. Figure  
7-47 shows the 5-kΩ load transient.  
Note  
For Figure 7-42 to Figure 7-47, the following conditions apply (unless otherwise noted):  
TA = 30°C  
VDDA = 3.3 V  
VDD = 1.2 V  
DNL at VREFHI = 2.5V  
INL at VREFHI = 2.5V  
0.6  
0.4  
0.2  
0
1.8  
1.6  
1.4  
1.2  
1
DACA  
DACB  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
DACA  
DACB  
0
500 1000 1500 2000 2500 3000 3500 4000  
DACVAL  
0
500 1000 1500 2000 2500 3000 3500 4000  
DACVAL  
DPLO  
DPLO  
Figure 7-42. DNL  
Figure 7-43. INL  
GLITCH RESPONSE at VDAC = 2.5V  
511 to 512 DACVAL  
GLITCH RESPONSE at VDAC = 2.5V  
512 to 511 DACVAL  
0.33  
0.329  
0.328  
0.327  
0.326  
0.325  
0.324  
0.323  
0.322  
0.321  
0.32  
0.325  
0.323  
0.321  
0.319  
0.317  
0.315  
0.313  
0.311  
0.309  
0.307  
0.305  
0.319  
0.318  
0.317  
0.316  
0.315  
0
100  
200  
300  
TIME (ns)  
400  
500  
600  
0
100  
200  
300  
TIME (ns)  
400  
500  
600  
DPLO  
DPLO  
Figure 7-44. Glitch Response – 511 to 512 DACVAL Figure 7-45. Glitch Response – 512 to 511 DACVAL  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
1K LOAD TRANSIENT at VDAC = 2.5V  
5K LOAD TRANSIENT at VDAC = 2.5V  
2.4  
2.38  
2.36  
2.34  
2.32  
2.3  
2.4  
2.38  
2.36  
2.34  
2.32  
2.3  
LOAD CONNECTED  
LOAD CONNECTED  
2.28  
2.26  
2.24  
2.22  
2.2  
2.28  
2.26  
2.24  
2.22  
2.2  
0
100  
200  
300  
400  
TIME (ns)  
500  
600  
700  
800  
0
100  
200  
300  
400  
TIME (ns)  
500  
600  
700  
800  
DPLO  
DPLO  
Figure 7-46. 1-kΩ Load Transient  
Figure 7-47. 5-kΩ Load Transient  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.5 Comparator Subsystem (CMPSS)  
Each CMPSS contains two comparators, two reference 12-bit DACs, two digital filters, and one ramp generator.  
Comparators are denoted "H" or "L" within each module, where “H” and “L” represent high and low, respectively.  
Each comparator generates a digital output that indicates whether the voltage on the positive input is greater  
than the voltage on the negative input. The positive input of the comparator can be driven from an external pin or  
by the PGA . The negative input can be driven by an external pin or by the programmable reference 12-bit DAC.  
Each comparator output passes through a programmable digital filter that can remove spurious trip signals. An  
unfiltered output is also available if filtering is not required. A ramp generator circuit is optionally available to  
control the reference 12-bit DAC value for the high comparator in the subsystem. There are two outputs from  
each CMPSS module. These two outputs pass through the digital filters and crossbar before connecting to the  
ePWM modules or GPIO pin. Figure 7-48 shows the CMPSS connectivity.  
Comparator Subsystem 1  
CTRIP1H  
CTRIP1L  
CTRIP2H  
CTRIP2L  
CMP1_HP  
CMP1_HN  
CTRIP1H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT1H  
DAC12  
DAC12  
CTRIP1L  
Digital  
Filter  
CMP1_LN  
CMP1_LP  
CTRIPOUT1L  
ePWM X-BAR  
ePWMs  
Comparator Subsystem 2  
CMP2_HP  
CMP2_HN  
CTRIP2H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT2H  
DAC12  
DAC12  
CTRIP7H  
CTRIP7L  
CTRIP2L  
Digital  
Filter  
CMP2_LN  
CMP2_LP  
CTRIPOUT2L  
CTRIPOUT1H  
CTRIPOUT1L  
CTRIPOUT2H  
CTRIPOUT2L  
Comparator Subsystem 7  
CMP7_HP  
CMP7_HN  
CTRIP7H  
Digital  
Filter  
VDDA or VDAC  
CTRIPOUT7H  
Output X-BAR  
GPIO Mux  
DAC12  
DAC12  
CTRIP7L  
Digital  
Filter  
CMP7_LN  
CMP7_LP  
CTRIPOUT7L  
CTRIPOUT7H  
CTRIPOUT7L  
Figure 7-48. CMPSS Connectivity  
Note  
Not all packages have all CMPSS pins. See Table 1-1.  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.10.5.1 CMPSS Electrical Data and Timing  
Section 7.10.5.1.1 lists the comparator electrical characteristics. Figure 7-49 shows the CMPSS comparator  
input referred offset. Figure 7-50 shows the CMPSS comparator hysteresis.  
7.10.5.1.1 Comparator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
500  
UNIT  
µs  
TPU  
Power-up time  
Comparator input (CMPINxx) range  
Input referred offset error  
0
VDDA  
V
Low common mode, inverting  
input set to 50 mV  
–20  
20  
mV  
1x  
12  
24  
36  
48  
21  
26  
30  
46  
2x  
Hysteresis(1)  
LSB  
3x  
4x  
Step response  
60  
ns  
Response time (delay from CMPINx input change to  
output on ePWM X-BAR or Output X-BAR)  
Ramp response (1.65 V/µs)  
Ramp response (8.25 mV/µs)  
Up to 250 kHz  
ns  
dB  
dB  
PSRR  
CMRR  
Power Supply Rejection Ratio  
Common Mode Rejection Ratio  
40  
(1) The CMPSS DAC is used as the reference to determine how much hysteresis to apply. Therefore, hysteresis will scale with the  
CMPSS DAC reference voltage. Hysteresis is available for all comparator input source configurations.  
Note  
The CMPSS inputs must be kept below VDDA + 0.3 V to ensure proper functional operation. If a  
CMPSS input exceeds this level, an internal blocking circuit isolates the internal comparator from the  
external pin until the external pin voltage returns below VDDA + 0.3 V. During this time, the internal  
comparator input is floating and can decay below VDDA within approximately 0.5 µs. After this time,  
the comparator could begin to output an incorrect result depending on the value of the other  
comparator input.  
Input Referred Offset  
CTRIPx  
Logic Level  
CTRIPx = 1  
CTRIPx = 0  
COMPINxP  
Voltage  
0
CMPINxN or  
DACxVAL  
Figure 7-49. CMPSS Comparator Input Referred Offset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Hysteresis  
CTRIPx  
Logic Level  
CTRIPx = 1  
CTRIPx = 0  
COMPINxP  
Voltage  
0
CMPINxN or  
DACxVAL  
Figure 7-50. CMPSS Comparator Hysteresis  
Section 7.10.5.1.2 lists the CMPSS DAC static electrical characteristics.  
7.10.5.1.2 CMPSS DAC Static Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0
TYP  
MAX  
UNIT  
Internal reference  
VDDA  
CMPSS DAC output range  
V
External reference  
0
VDAC(4)  
Static offset error(1)  
Static gain error(1)  
Static DNL  
–25  
–2  
25  
2
mV  
% of FSR  
LSB  
Endpoint corrected  
Endpoint corrected  
>–1  
–16  
4
Static INL  
16  
LSB  
Settling to 1LSB after full-scale output  
change  
Settling time  
Resolution  
1
µs  
12  
bits  
Error induced by comparator trip or  
CMPSS DAC code change within the  
same CMPSS module  
CMPSS DAC output disturbance(2)  
–100  
100  
LSB  
CMPSS DAC disturbance time(2)  
VDAC reference voltage  
VDAC load(3)  
200  
VDDA  
10  
ns  
V
When VDAC is reference  
When VDAC is reference  
2.4  
6
2.5 or 3.0  
8
kΩ  
(1) Includes comparator input referred errors.  
(2) Disturbance error may be present on the CMPSS DAC output for a certain amount of time after a comparator trip.  
(3) Per active CMPSS module.  
(4) The maximum output voltage is VDDA when VDAC > VDDA.  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.10.5.1.3 CMPSS Illustrative Graphs  
Figure 7-51 shows the CMPSS DAC static offset. Figure 7-52 shows the CMPSS DAC static gain. Figure 7-53  
shows the CMPSS DAC static linearity.  
Offset Error  
Figure 7-51. CMPSS DAC Static Offset  
Ideal Gain  
Actual Gain  
Figure 7-52. CMPSS DAC Static Gain  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Linearity Error  
Figure 7-53. CMPSS DAC Static Linearity  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.11 Control Peripherals  
7.11.1 Enhanced Capture (eCAP)  
The Type 1 enhanced capture (eCAP) module is used in systems where accurate timing of external events is  
important.  
Applications for the eCAP module include:  
Speed measurements of rotating machinery (for example, toothed sprockets sensed through Hall sensors)  
Elapsed time measurements between position sensor pulses  
Period and duty cycle measurements of pulse train signals  
Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors  
The eCAP module includes the following features:  
4-event time-stamp registers (each 32 bits)  
Edge polarity selection for up to four sequenced time-stamp capture events  
CPU interrupt on any one of the four events  
Independent DMA trigger  
Single-shot capture of up to four event timestamps  
Continuous mode capture of timestamps in a 4-deep circular buffer  
Absolute time-stamp capture  
Difference (Delta) mode time-stamp capture  
128:1 input multiplexer  
Event Prescaler  
When not used in capture mode, the eCAP module can be configured as a single channel PWM output.  
The capture functionality of the Type-1 eCAP is enhanced from the Type-0 eCAP with the following added  
features:  
Event filter reset bit  
– Writing a 1 to ECCTL2[CTRFILTRESET] will clear the event filter, the modulo counter, and any pending  
interrupts flags. This is useful for initialization and debug.  
Modulo counter status bits  
– The modulo counter (ECCTL2[MODCTRSTS]) indicates which capture register will be loaded next. In the  
Type-0 eCAP, it was not possible to know the current state of modulo counter.  
DMA trigger source  
– eCAPxDMA was added as a DMA trigger. CEVT[1–4] can be configured as the source for eCAPxDMA.  
Input multiplexer  
– ECCTL0[INPUTSEL] selects one of 128 input signals.  
EALLOW protection  
– EALLOW protection was added to critical registers.  
The Input X-BAR must be used to connect the device input pins to the module. The Output X-BAR must be used  
to connect output signals to the OUTPUTXBARx output locations. See Section 6.4.3 and Section 6.4.4.  
Figure 7-54 shows the eCAP block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
ECCTL2 [ SYNCI_EN, SYNCOSEL, SWSYNC]  
ECCTL2[CAP/APWM]  
CTRPHS  
APWM Mode  
(phase register−32 bit)  
ECAPxSYNCIN  
OVF  
RST  
CTR_OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
ECAPxSYNCOUT  
PWM  
Compare  
Logic  
Output  
X-Bar  
(counter−32 bit)  
Delta−Mode  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
PRD [0−31]  
32  
ECCTL1 [ CAPLDEN, CTRRSTx]  
HRCTRL[HRE]  
32  
32  
LD1  
CAP1  
Polarity  
Select  
LD  
(APRD Active)  
APRD  
32  
shadow  
CMP [0−31]  
32  
HRCTRL[HRE]  
32  
HRCTRL[HRE]  
32  
CAP2  
Polarity  
Select  
LD2  
LD  
Other  
Sources  
(ACMP Active)  
[127:16]  
[15:0]  
Event  
Prescale  
Event  
32  
ACMP  
16  
qualifier  
Input  
shadow  
LD  
ECCTL1[PRESCALE]  
HRCTRL[HRE]  
32  
X-Bar  
32  
Polarity  
Select  
LD3  
LD4  
CAP3  
(APRD Shadow)  
HRCTRL[HRE]  
32  
32  
CAP4  
Polarity  
Select  
LD  
(ACMP Shadow)  
Edge Polarity Select  
ECCTL1[CAPxPOL]  
4
Capture Events  
4
CEVT[1:4]  
ECAPxDMA_INT  
ECCTL2[CTRFILTRESET]  
Interrupt  
Continuous /  
Oneshot  
Trigger  
and  
MODCNTRSTS  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Capture Control  
ECCTL2[DMAEVTSEL]  
Flag  
Control  
ECAPx  
(to ePIE)  
ECCTL2 [ REARM, CONT_ONESHT, STOP_WRAP]  
Registers: ECEINT, ECFLG, ECCLR, ECFRC  
Capture Pulse  
HR Input  
SYSCLK  
HRCLK  
(A)  
HR Submodule  
ECAPx_HRCAL  
(to ePIE)  
Copyright © 2018, Texas Instruments Incorporated  
A. The HRCAP submodule is not available on all eCAP modules; in this case, the high-resolution muxes and hardware are not  
implemented.  
Figure 7-54. eCAP Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.11.1.1 eCAP Electrical Data and Timing  
Section 7.11.1.1.1 lists the eCAP timing requirements. Section 7.11.1.1.2 lists the eCAP switching  
characteristics.  
7.11.1.1.1 eCAP Timing Requirements  
MIN  
2tc(SCO)  
NOM  
MAX  
UNIT  
Asynchronous  
Synchronous  
tw(CAP)  
Capture input pulse width  
2tc(SCO)  
ns  
With input qualifier  
1tc(SCO) + tw_(QSW)  
7.11.1.1.2 eCAP Switching Charcteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.2 High-Resolution Capture Submodule (HRCAP6–HRCAP7)  
The device contains up to two high-resolution capture (HRCAP) submodules. The HRCAP submodule measures  
the difference, in time, between pulses asynchronously to the system clock. This submodule is new to the eCAP  
Type 1 module, and features many enhancements over the Type 0 HRCAP module.  
Applications for the HRCAP include:  
Capacitive touch applications  
High-resolution period and duty-cycle measurements of pulse train cycles  
Instantaneous speed measurements  
Instantaneous frequency measurements  
Voltage measurements across an isolation boundary  
Distance/sonar measurement and scanning  
Flow measurements  
The HRCAP submodule includes the following features:  
Pulse-width capture in either non-high-resolution or high-resolution modes  
Absolute mode pulse-width capture  
Continuous or "one-shot" capture  
Capture on either falling or rising edge  
Continuous mode capture of pulse widths in 4-deep buffer  
Hardware calibration logic for precision high-resolution capture  
All of the resources in this list are available on any pin using the Input X-BAR.  
The HRCAP submodule includes one high-resolution capture channel in addition to a calibration block. The  
calibration block allows the HRCAP submodule to be continually recalibrated, at a set interval, with no “down  
time”. Because the HRCAP submodule now uses the same hardware as its respective eCAP, if the HRCAP is  
used, the corresponding eCAP will be unavailable.  
Each high-resolution-capable channel has the following independent key resources.  
All hardware of the respective eCAP  
High-resolution calibration logic  
Dedicated calibration interrupt  
Figure 7-55 shows the HRCAP block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
ECCTL2 [ SYNCI_EN, SYNCOSEL, SWSYNC]  
ECCTL2[CAP/APWM]  
CTRPHS  
APWM Mode  
(phase register−32 bit)  
ECAPxSYNCIN  
OVF  
RST  
CTR_OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
ECAPxSYNCOUT  
PWM  
Compare  
Logic  
Output  
X-Bar  
(counter−32 bit)  
Delta−Mode  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
PRD [0−31]  
32  
ECCTL1 [ CAPLDEN, CTRRSTx]  
HRCTRL[HRE]  
32  
32  
LD1  
CAP1  
Polarity  
Select  
LD  
(APRD Active)  
APRD  
32  
shadow  
CMP [0−31]  
32  
HRCTRL[HRE]  
32  
HRCTRL[HRE]  
32  
CAP2  
Polarity  
Select  
LD2  
LD  
Other  
Sources  
(ACMP Active)  
[127:16]  
[15:0]  
Event  
Prescale  
Event  
32  
ACMP  
16  
qualifier  
Input  
shadow  
LD  
ECCTL1[PRESCALE]  
HRCTRL[HRE]  
32  
X-Bar  
32  
Polarity  
Select  
LD3  
LD4  
CAP3  
(APRD Shadow)  
HRCTRL[HRE]  
32  
32  
CAP4  
Polarity  
Select  
LD  
(ACMP Shadow)  
Edge Polarity Select  
ECCTL1[CAPxPOL]  
4
Capture Events  
4
CEVT[1:4]  
ECAPxDMA_INT  
ECCTL2[CTRFILTRESET]  
Interrupt  
Continuous /  
Oneshot  
Trigger  
and  
MODCNTRSTS  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Capture Control  
ECCTL2[DMAEVTSEL]  
Flag  
Control  
ECAPx  
(to ePIE)  
ECCTL2 [ REARM, CONT_ONESHT, STOP_WRAP]  
Registers: ECEINT, ECFLG, ECCLR, ECFRC  
Capture Pulse  
HR Input  
SYSCLK  
HRCLK  
(A)  
HR Submodule  
ECAPx_HRCAL  
(to ePIE)  
Copyright © 2018, Texas Instruments Incorporated  
A. The HRCAP submodule is not available on all eCAP modules; in this case, the high-resolution muxes and hardware are not  
implemented.  
Figure 7-55. HRCAP Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.2.1 HRCAP Electrical Data and Timing  
Section 7.11.2.1.1 lists the HRCAP switching characteristics. Figure 7-56 shows the HRCAP accuracy precision  
and resolution. Figure 7-57 shows the HRCAP standard deviation characteristics.  
7.11.2.1.1 HRCAP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
Input pulse width  
110  
Measurement length ≤ 5 µs  
Measurement length > 5 µs  
±390  
±450  
540  
ps  
Accuracy(1) (2) (3) (4)  
1450  
ps  
Standard deviation  
Resolution  
See Figure 7-57  
300  
ps  
(1) Value obtained using an oscillator of 100 PPM, oscillator accuracy directly affects the HRCAP accuracy.  
(2) Measurement is completed using rising-rising or falling-falling edges  
(3) Opposite polarity edges will have an additional inaccuracy due to the difference between VIH and VIL. This effect is dependent on the  
signal’s slew rate.  
(4) Accuracy only applies to time-converted measurements.  
HRCAP’s Mean  
Accuracy  
Resolution  
(Step Size)  
Precision  
(Standard Deviation)  
Actual  
Input Signal  
A. The HRCAP has some variation in performance, this results in a probability distribution which is described using the following terms:  
Accuracy: The time difference between the input signal and the mean of the HRCAP’s distribution.  
Precision: The width of the HRCAP’s distribution, this is given as a standard deviation.  
Resolution: The minimum measurable increment.  
Figure 7-56. HRCAP Accuracy Precision and Resolution  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
2
1.8  
1.6  
1.4  
1.2  
1
7.4  
Typical Core Conditions  
Noisy Core Supply  
6.66  
5.92  
5.18  
4.44  
3.7  
0.8  
0.6  
0.4  
0.2  
2.96  
2.22  
1.48  
0.74  
0
1000  
2000  
3000  
4000  
5000  
Time Between Edges(nS)  
6000  
7000  
8000  
9000  
10000  
A. Typical core conditions: All peripheral clocks are enabled.  
B. Noisy core supply: All core clocks are enabled and disabled with a regular period during the measurement. This resulted in the 1.2-V rail  
experiencing a 18.5-mA swing during the measurement.  
C. Fluctuations in current and voltage on the 1.2-V rail cause the standard deviation of the HRCAP to rise. Care should be taken to ensure  
that the 1.2-V supply is clean, and that noisy internal events, such as enabling and disabling clock trees, have been minimized while  
using the HRCAP.  
Figure 7-57. HRCAP Standard Deviation Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.3 Enhanced Pulse Width Modulator (ePWM)  
The ePWM peripheral is a key element in controlling many of the power electronic systems found in both  
commercial and industrial equipment. The ePWM type-4 module generates complex pulse width waveforms with  
minimal CPU overhead. Some of the highlights of the ePWM type-4 module include complex waveform  
generation, dead-band generation, a flexible synchronization scheme, advanced trip-zone functionality, and  
global register reload capabilities.  
Figure 7-58 shows the signal interconnections with the ePWM. Figure 7-59 shows the ePWM trip input  
connectivity.  
Copyright © 2021 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
TBCTL2[SYNCOSELX]  
Time-Base (TB)  
Disable  
00  
01  
10  
11  
CTR=CPMC  
CTR=CPMD  
Rsvd  
TBPRD Shadow (24)  
TBPRD Active (24)  
CTR=ZERO  
CTR=CMPB  
TBPRDHR (8)  
Sync  
Out  
Select  
EPWMxSYNCO  
TBCTL[SWFSYNC]  
EPWMxSYNCI  
8
CTR=PRD  
TBCTL[PHSEN]  
TBCTL[SYNCOSEL]  
DCAEVT1.sync(A)  
DCBEVT1.sync(A)  
Counter  
Up/Down  
(16 Bit)  
CTR=ZERO  
CTR_Dir  
TBCTR  
Active (16)  
CTR=PRD  
CTR=ZERO  
EPWMx_INT  
TBPHSHR (8)  
16  
8
CTR=PRD or ZERO  
CTR=CMPA  
EPWMxSOCA  
EPWMxSOCB  
Phase  
Control  
On-chip  
ADC  
TBPHS Active (24)  
Event  
Trigger  
and  
CTR=CMPB  
CTR=CMPC  
Interrupt  
(ET)  
ADCSOCOUTSELECT  
CTR=CMPD  
Counter Compare (CC)  
CTR_Dir  
Action  
Qualifier  
(AQ)  
DCAEVT1.soc(A)  
DCBEVT1.soc(A)  
Select and pulse stretch  
for external ADC  
CTR=CMPA  
CMPAHR (8)  
ADCSOCAO  
ADCSOCBO  
16  
HiRes PWM (HRPWM)  
CMPAHR (8)  
EPWMA  
CMPA Active (24)  
CMPA Shadow (24)  
ePWMxA  
PWM  
Chopper  
(PC)  
Trip  
Zone  
(TZ)  
Dead  
Band  
(DB)  
CTR=CMPB  
CMPBHR (8)  
16  
EPWMB  
ePWMxB  
CMPB Active (24)  
CMPB Shadow (24)  
CMPBHR (8)  
CTR=CMPC  
EPWMx_TZ_INT  
TZ1 to TZ3  
TBCNT(16)  
EMUSTOP  
CTR=ZERO  
DCAEVT1.inter  
DCBEVT1.inter  
DCAEVT2.inter  
CLOCKFAIL  
CMPC[15-0] 16  
EQEPxERR  
CMPC Active (16)  
CMPC Shadow (16)  
DCAEVT1.force(A)  
DCAEVT2.force(A)  
DCBEVT1.force(A)  
DCBEVT2.force(A)  
DCBEVT2.inter  
TBCNT(16)  
CTR=CMPD  
CMPD[15-0] 16  
CMPD Active (16)  
CMPD Shadow (16)  
A. These events are generated by the ePWM digital compare (DC) submodule based on the levels of the TRIPIN inputs.  
Figure 7-58. ePWM Submodules and Critical Internal Signal Interconnects  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 7-59. ePWM Trip Input Connectivity  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.11.3.1 Control Peripherals Synchronization  
The ePWM and eCAP Synchronization Chain allows synchronization between multiple modules for the system.  
Figure 7-60 shows the Synchronization Chain Architecture.  
EXTSYNCIN2  
EXTSYNCIN1  
EPWM1  
EPWM1SYNCOUT  
EPWM2  
EPWM4  
EPWM3  
EPWM4SYNCOUT  
EPWM5  
SYNCSEL.EPWM4SYNCIN  
EPWM6  
EPWM7  
EPWM7SYNCOUT  
EPWM8  
EXTSYNCOUT  
SYNCSEL.EPWM7SYNCIN  
Pulse-Stretched  
(8 PLLSYSCLK  
Cycles)  
ECAP1  
ECAP1SYNCOUT  
ECAP2  
SYNCSEL.ECAP1SYNCIN  
ECAP3  
ECAP4  
ECAP4SYNCOUT  
SYNCSEL.ECAP4SYNCIN  
ECAP5  
ECAP6  
SYNCSEL.ECAP6SYNCIN  
SYNCSEL.SYNCOUT  
ECAP7  
Figure 7-60. Synchronization Chain Architecture  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.3.2 ePWM Electrical Data and Timing  
Section 7.11.3.2.1 lists the ePWM timing requirements and Section 7.11.3.2.2 lists the ePWM switching  
characteristics.  
7.11.3.2.1 ePWM Timing Requirements (1)  
MIN  
2tc(EPWMCLK)  
MAX  
UNIT  
Asynchronous  
Synchronous  
tw(SYNCIN)  
Sync input pulse width  
2tc(EPWMCLK)  
cycles  
With input qualifier  
1tc(EPWMCLK) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.  
7.11.3.2.2 ePWM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
20  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
8tc(SYSCLK)  
cycles  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
Delay time, trip input active to PWM Hi-Z  
td(TZ-PWM)  
25  
ns  
7.11.3.2.3 Trip-Zone Input Timing  
Section 7.11.3.2.3.1 lists the trip-zone input timing requirements. Figure 7-61 shows the PWM Hi-Z  
characteristics.  
7.11.3.2.3.1 Trip-Zone Input Timing Requirements (1)  
MIN  
1tc(EPWMCLK)  
MAX UNIT  
Asynchronous  
Synchronous  
tw(TZ)  
Pulse duration, TZx input low  
2tc(EPWMCLK)  
cycles  
With input qualifier  
1tc(EPWMCLK) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see .  
EPWMCLK  
tw(TZ)  
TZ(A)  
td(TZ-PWM)  
PWM(B)  
A. TZ: TZ1, TZ2, TZ3, TRIP1–TRIP12  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software.  
Figure 7-61. PWM Hi-Z Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.11.3.3 External ADC Start-of-Conversion Electrical Data and Timing  
Section 7.11.3.3.1 lists the external ADC start-of-conversion switching characteristics. Figure 7-62 shows the  
ADCSOCAO or ADCSOCBO timing.  
7.11.3.3.1 External ADC Start-of-Conversion Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCL)  
Pulse duration, ADCSOCxO low  
32tc(SYSCLK)  
cycles  
tw(ADCSOCL)  
ADCSOCAO  
or  
ADCSOCBO  
Figure 7-62. ADCSOCAO or ADCSOCBO Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.4 High-Resolution Pulse Width Modulator (HRPWM)  
The HRPWM combines multiple delay lines in a single module and a simplified calibration system by using a  
dedicated calibration delay line. For each ePWM module, there are two HR outputs:  
HR Duty and Deadband control on Channel A  
HR Duty and Deadband control on Channel B  
The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be  
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:  
Significantly extends the time resolution capabilities of conventionally derived digital PWM  
This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual-edge  
control for frequency/period modulation.  
Finer time granularity control or edge positioning is controlled through extensions to the Compare A, B,  
phase, period, and deadband registers of the ePWM module.  
Note  
The minimum HRPWMCLK frequency allowed for HRPWM is 60 MHz.  
7.11.4.1 HRPWM Electrical Data and Timing  
Section 7.11.4.1.1 lists the high-resolution PWM switching characteristics.  
7.11.4.1.1 High-Resolution PWM Characteristics  
PARAMETER  
MIN  
TYP  
MAX UNIT  
310 ps  
Micro Edge Positioning (MEP) step size(1)  
150  
(1) The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher  
temperature and lower voltage and decrease with lower temperature and higher voltage.  
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI  
software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per  
SYSCLK period dynamically while the HRPWM is in operation.  
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.11.5 Enhanced Quadrature Encoder Pulse (eQEP)  
The Type-1 eQEP peripheral contains the following major functional units (see Figure 7-63):  
Programmable input qualification for each pin (part of the GPIO MUX)  
Quadrature decoder unit (QDU)  
Position counter and control unit for position measurement (PCCU)  
Quadrature edge-capture unit for low-speed measurement (QCAP)  
Unit time base for speed/frequency measurement (UTIME)  
Watchdog timer for detecting stalls (QWDOG)  
Quadrature Mode Adapter (QMA)  
System  
control registers  
To CPU  
EQEPxENCLK  
SYSCLK  
QCPRD  
Enhanced QEP (eQEP) peripheral  
QCAPCTL  
16  
QCTMR  
16  
16  
Quadrature  
capture unit  
(QCAP)  
QCTMRLAT  
QCPRDLAT  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
used by  
multiple units  
32  
16  
QDECCTL  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
UTIME  
QWDOG  
EQEPx_A  
EQEPx_B  
EQEPxAIN  
WDTOUT  
QMA  
EQEPxBIN  
EQEPxINT  
QCLK  
PIE  
QDIR  
EQEPxIIN  
Quadrature  
32  
QI  
GPIO  
MUX  
EQEPx_INDEX  
EQEPxIOUT  
Position counter/  
control unit  
(PCCU)  
decoder  
(QDU)  
QS  
EQEPxIOE  
QPOSLAT  
PHE  
QPOSSLAT  
QPOSILAT  
PCSOUT  
EQEPxSIN  
EQEPx_STROBE  
EQEPxSOUT  
EQEPxSOE  
32  
32  
16  
QEINT  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QPOSCMP  
QFRC  
QCLR  
QPOSCTL  
Copyright © 2017, Texas Instruments Incorporated  
Figure 7-63. eQEP Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.5.1 eQEP Electrical Data and Timing  
Section 7.11.5.1.1 lists the eQEP timing requirements and \Section 7.11.5.1.2 lists the eQEP switching  
characteristics.  
7.11.5.1.1 eQEP Timing Requirements (1)  
MIN  
MAX  
UNIT  
Asynchronous(2)/Synchronous  
With input qualifier  
2tc(SYSCLK)  
tw(QEPP)  
QEP input period  
cycles  
2[1tc(SYSCLK) + tw(IQSW)  
]
Asynchronous(2)/Synchronous  
2tc(SYSCLK)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
cycles  
cycles  
cycles  
cycles  
With input qualifier  
Asynchronous(2)/Synchronous  
With input qualifier  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
Asynchronous(2)/Synchronous  
With input qualifier  
Asynchronous(2)/Synchronous  
With input qualifier  
2tc(SYSCLK) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.  
(2) See the TMS320F28004xMCUsSiliconErrata for limitations in the asynchronous mode.  
7.11.5.1.2 eQEP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
5tc(SYSCLK)  
7tc(SYSCLK)  
UNIT  
cycles  
cycles  
td(CNTR)xin  
Delay time, external clock to counter increment  
td(PCS-OUT)QEP  
Delay time, QEP input edge to position compare sync output  
Copyright © 2021 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.11.6 Sigma-Delta Filter Module (SDFM)  
The SDFM is a 4-channel digital filter designed specifically for current measurement and resolver position  
decoding in motor control applications. Each channel can receive an independent sigma-delta (ΣΔ) modulated  
bit stream. The bit streams are processed by four individually programmable digital decimation filters. The filter  
set includes a fast comparator for immediate digital threshold comparisons for overcurrent and undercurrent  
monitoring.  
The SDFM features include:  
8 external pins per SDFM module  
– 4 sigma-delta data input pins per SDFM module (SDx_D1-4)  
– 4 sigma-delta clock input pins per SDFM module (SDx_C1-4)  
4 different configurable modulator clock modes:  
– Mode 0: Modulator clock rate equals modulator data rate  
– Mode 1: Modulator clock rate running at half the modulator data rate  
– Mode 2: Modulator data is Manchester encoded. Modulator clock not required.  
– Mode 3: Modulator clock rate is double that of modulator data rate  
4 independent configurable secondary filter (comparator) units per SDFM module:  
– 4 different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available  
– Ability to detect over-value, under-value, and zero-crossing conditions  
– OSR value for comparator filter unit (COSR) programmable from 1 to 32  
4 independent configurable primary filter (data filter) units per SDFM module:  
– 4 different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available  
– OSR value for data filter unit (DOSR) programmable from 1 to 256  
– Ability to enable individual filter modules  
– Ability to synchronize all the 4 independent filters of an SDFM module using Master Filter Enable (MFE)  
bit or using PWM signals  
Data filter unit has programmable FIFO to reduce interrupt overhead. FIFO has the following features:  
– Primary filter (data filter) has 16 deep × 32-bit FIFO  
– FIFO can interrupt CPU after programmable number of data ready events  
– FIFO Wait-for-Sync feature: Ability to ignore data ready events until PWM synchronization signal  
(SDSYNC) is received. Once SDSYNC event is received, FIFO is populated on every data ready event  
– Data filter output can be represented in either 16 bits or 32 bits  
PWMx.SOCA/SOCB can be configured to serve as SDSYNC source on per data filter channel basis  
PWMs can be used to generate a modulator clock for sigma delta modulators  
Note  
Care should be taken to avoid noise on the SDx_Cy input. If the minimum pulse width requirements  
are not met (for example, through a noise glitch), then the SDFM results could become undefined.  
Figure 7-64 shows the SDFM block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
SDFM- Sigma Delta Filter Module  
SDyFLTx.DRINT  
DMA  
G4  
Streams  
Filter Module 1  
Secondary  
(Comparator)  
Filter  
Interrupt  
Unit  
SDx_D1  
SDx_C1  
Input  
Ctrl  
Primary (Data)
Filter  
SDy_ERR  
SDyFLTx.DRINT  
CLA  
SDSYNC  
SDSYNC  
FIFO  
PWMx.SOCA / SOCB  
PWMx.SOCA / SOCB  
PWMx.SOCA / SOCB  
PWMx.SOCA / SOCB  
SDx_D2  
SDx_C2  
Filter Module 2  
SDy_ERR  
SDyFLTx.DRINT  
ePIE  
GPIO  
MUX  
SDx_D3  
SDx_C3  
Filter Module 3  
Filter Module 4  
Output / PWM  
XBAR  
SDyFLTx.COMPL  
SDSYNC  
SDSYNC  
Register  
Map  
SDyFLTx.COMPHA  
SDx_D4  
SDx_C4  
SDyFLTx.COMPL  
SDyFLTx.COMPHA  
SDyFLTx.COMPHB  
ECAP  
LEGEND  
Interrupt / trigger sources from Primary Filter  
Internal secondary filter signals  
Figure 7-64. SDFM Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.11.6.1 SDFM Electrical Data and Timing  
SDFM operation with asynchronous GPIO is defined by setting GPyQSELn = 0b11. Section 7.11.6.1.1 lists the  
SDFM timing requirements when using the asynchronous GPIO (ASYNC) option. Figure 7-65, Figure 7-66,  
Figure 7-67, and Figure 7-68 show the SDFM timing diagrams.  
7.11.6.1.1 SDFM Timing Requirements When Using Asynchronous GPIO (ASYNC) Option  
MIN  
MAX  
UNIT  
Mode 0  
tc(SDC)M0  
Cycle time, SDx_Cy  
40  
10  
5
256 * SYSCLK period  
tc(SDC)M0 – 10  
ns  
ns  
ns  
ns  
tw(SDCH)M0  
Pulse duration, SDx_Cy high  
tsu(SDDV-SDCH)M0  
th(SDCH-SDD)M0  
Setup time, SDx_Dy valid before SDx_Cy goes high  
Hold time, SDx_Dy wait after SDx_Cy goes high  
Mode 1  
5
tc(SDC)M1  
Cycle time, SDx_Cy  
80  
10  
5
256 * SYSCLK period  
tc(SDC)M1 – 10  
ns  
ns  
ns  
ns  
ns  
ns  
tw(SDCH)M1  
Pulse duration, SDx_Cy high  
tsu(SDDV-SDCL)M1  
tsu(SDDV-SDCH)M1  
th(SDCL-SDD)M1  
th(SDCH-SDD)M1  
Setup time, SDx_Dy valid before SDx_Cy goes low  
Setup time, SDx_Dy valid before SDx_Cy goes high  
Hold time, SDx_Dy wait after SDx_Cy goes low  
Hold time, SDx_Dy wait after SDx_Cy goes high  
Mode 2  
5
5
5
tc(SDD)M2  
Cycle time, SDx_Dy  
8 * tc(SYSCLK)  
10  
20 * tc(SYSCLK)  
ns  
ns  
tw(SDDH)M2  
Pulse duration, SDx_Dy high  
SDx_Dy long pulse duration keepout, where the long  
pulse must not fall within the MIN or MAX values listed.  
Long pulse is defined as the high or low pulse which is the  
full width of the Manchester bit-clock period.  
This requirement must be satisfied for any integer  
between 8 and 20.  
tw(SDD_LONG_KEEPOUT)M2  
(N * tc(SYSCLK)) – 0.5  
(N * tc(SYSCLK)) + 0.5  
ns  
ns  
SDx_Dy Short pulse duration for a high or low pulse  
(SDD_SHORT_H or SDD_SHORT_L).  
Short pulse is defined as the high or low pulse which is  
half the width of the Manchester bit-clock period.  
tw(SDD_SHORT)M2  
tw(SDD_LONG) / 2 – tc(SYSCLK) tw(SDD_LONG) / 2 + tc(SYSCLK)  
SDx_Dy Long pulse variation (SDD_LONG_H –  
SDD_LONG_L)  
tw(SDD_LONG_DUTY)M2  
tw(SDD_SHORT_DUTY)M2  
– tc(SYSCLK)  
– tc(SYSCLK)  
tc(SYSCLK)  
tc(SYSCLK)  
ns  
ns  
SDx_Dy Short pulse variation (SDD_SHORT_H –  
SDD_SHORT_L)  
Mode 3  
tc(SDC)M3  
Cycle time, SDx_Cy  
40  
10  
5
256 * SYSCLK period  
tc(SDC)M3 – 5  
ns  
ns  
ns  
ns  
tw(SDCH)M3  
Pulse duration, SDx_Cy high  
tsu(SDDV-SDCH)M3  
th(SDCH-SDD)M3  
Setup time, SDx_Dy valid before SDx_Cy goes high  
Hold time, SDx_Dy wait after SDx_Cy goes high  
5
7.11.6.1.2 SDFM Timing Diagram  
WARNING  
The SDFM clock inputs (SDx_Cy pins) directly clock the SDFM module when there is no GPIO input  
synchronization. Any glitches or ringing noise on these inputs can corrupt the SDFM module  
operation. Special precautions should be taken on these signals to ensure a clean and noise-free  
signal that meets SDFM timing requirements. Precautions such as series termination for ringing due  
to any impedance mismatch of the clock driver and spacing of traces from other noisy signals are  
recommended.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
WARNING  
Mode 2 (Manchester Mode) is not recommended for new applications. See the "SDFM: Manchester  
Mode (Mode 2) Does Not Produce Correct Filter Results Under Several Conditions" advisory in the  
TMS320F28004x MCUs Silicon Errata.  
Mode 0  
tw(SDCH)M0  
tc(SDC)M0  
SDx_Cy  
SDx_Dy  
tsu(SDDV-SDCH)M0  
th(SDCH-SDD)M0  
Figure 7-65. SDFM Timing Diagram – Mode 0  
Mode 1  
SDx_Cy  
tw(SDCH)M1  
tc(SDC)M1  
tsu(SDDV-SDCL)M1  
tsu(SDDV-SDCH)M1  
SDx_Dy  
th(SDCL-SDD)M1  
th(SDCH-SDD)M1  
Figure 7-66. SDFM Timing Diagram – Mode 1  
Mode 2  
(Manchester-encoded-bit stream)  
tc(SDD)M2  
Modulator  
Internal clock  
tw(SDDH)M2  
Modulator  
Internal data  
1
1
0
1
1
0
0
1
1
tw(SDD_LONG_KEEPOUT)  
SDx-Dy  
tw(SDD_LONG_L)  
tw(SDD_LONG_H)  
tw(SDD_SHORT_L)  
tw(SDD_SHORT_H)  
N x tc(SYSCLK) + 0.5  
N x SYSCLK  
SYSCLK  
N x tc(SYSCLK) œ0.5  
œ
Figure 7-67. SDFM Timing Diagram – Mode 2  
Copyright © 2021 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
(CLKx is driven externally)  
Mode 3  
SDx_Cy  
tc(SDC)M3  
tw(SDCH)M3  
tsu(SDDV-SDCH)M3  
th(SDCH-SDD)M3  
SDx_Dy  
Figure 7-68. SDFM Timing Diagram – Mode 3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.6.2 SDFM Electrical Data and Timing (Synchronized GPIO)  
SDFM operation with synchronous GPIO is defined by setting GPyQSELn = 0b00. When using this synchronized  
GPIO mode, the timing requirement for tw(GPI) pulse duration of 2tc(SYSCLK) must be met. It is important for both  
SD-Cx and SD-Dx pairs be configured with SYNC option. Section 7.11.6.2 lists the SDFM timing requirements  
when using the synchronized GPIO (SYNC) option. Figure 7-65, Figure 7-66, Figure 7-67, and Figure 7-68 show  
the SDFM timing diagrams.  
7.11.6.2.1 SDFM Timing Requirements When Using Synchronized GPIO (SYNC) Option  
MIN  
MAX UNIT  
Mode 0  
tc(SDC)M0  
Cycle time, SDx_Cy  
5 * SYSCLK period  
2 * SYSCLK period  
256 * SYSCLK period  
ns  
ns  
tw(SDCHL)M0  
Pulse duration, SDx_Cy high/low  
3 * SYSCLK period  
Setup time, SDx_Dy valid before SDx_Cy goes  
high  
tsu(SDDV-SDCH)M0  
th(SDCH-SDD)M0  
2 * SYSCLK period  
2 * SYSCLK period  
ns  
ns  
Hold time, SDx_Dy wait after SDx_Cy goes high  
Mode 1  
tc(SDC)M1  
Cycle time, SDx_Cy  
10 * SYSCLK period  
2 * SYSCLK period  
256 * SYSCLK period  
8 * SYSCLK period  
ns  
ns  
tw(SDCHL)M1  
Pulse duration, SDx_Cy high/low  
Setup time, SDx_Dy valid before SDx_Cy goes  
low  
tsu(SDDV-SDCL)M1  
tsu(SDDV-SDCH)M1  
2 * SYSCLK period  
2 * SYSCLK period  
ns  
ns  
Setup time, SDx_Dy valid before SDx_Cy goes  
high  
th(SDCL-SDD)M1  
th(SDCH-SDD)M1  
Hold time, SDx_Dy wait after SDx_Cy goes low  
Hold time, SDx_Dy wait after SDx_Cy goes high  
Mode 2  
2 * SYSCLK period  
2 * SYSCLK period  
ns  
ns  
tc(SDD)M2  
Cycle time, SDx_Dy  
Option unavailable  
tw(SDDH)M2  
Pulse duration, SDx_Dy high  
Mode 3  
tc(SDC)M3  
Cycle time, SDx_Cy  
5 * SYSCLK period  
2 * SYSCLK period  
256 * SYSCLK period  
3 * SYSCLK period  
ns  
ns  
tw(SDCHL)M3  
Pulse duration, SDx_Cy high/low  
Setup time, SDx_Dy valid before SDx_Cy goes  
high  
tsu(SDDV-SDCH)M3  
th(SDCH-SDD)M3  
2 * SYSCLK period  
2 * SYSCLK period  
ns  
ns  
Hold time, SDx_Dy wait after SDx_Cy goes high  
Note  
The SDFM Synchronized GPIO (SYNC) option provides protection against SDFM module corruption  
due to occasional random noise glitches on the SDx_Cy pin that may result in a false comparator trip  
and filter output.  
The SDFM Synchronized GPIO (SYNC) mode does not provide protection against persistent  
violations of the above timing requirements. Timing violations will result in data corruption proportional  
to the number of bits which violate the requirements.  
Copyright © 2021 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.12 Communications Peripherals  
7.12.1 Controller Area Network (CAN)  
Note  
The CAN module uses the IP known as DCAN. This document uses the names CAN and DCAN  
interchangeably to reference this peripheral.  
The CAN module implements the following features:  
Complies with ISO11898-1 ( Bosch® CAN protocol specification 2.0 A and B)  
Bit rates up to 1 Mbps  
Multiple clock sources  
32 message objects (mailboxes), each with the following properties:  
– Configurable as receive or transmit  
– Configurable with standard (11-bit) or extended (29-bit) identifier  
– Supports programmable identifier receive mask  
– Supports data and remote frames  
– Holds 0 to 8 bytes of data  
– Parity-checked configuration and data RAM  
Individual identifier mask for each message object  
Programmable FIFO mode for message objects  
Programmable loopback modes for self-test operation  
Suspend mode for debug support  
Software module reset  
Automatic bus on after bus-off state by a programmable 32-bit timer  
Two interrupt lines  
DMA support  
Note  
For a CAN bit clock of 100 MHz, the smallest bit rate possible is 3.90625 kbps.  
Note  
The accuracy of the on-chip zero-pin oscillator is in Section 7.9.3.5.1. Depending on parameters such  
as the CAN bit timing settings, bit rate, bus length, and propagation delay, the accuracy of this  
oscillator may not meet the requirements of the CAN protocol. In this situation, an external clock  
source must be used.  
Figure 7-69 shows the CAN block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
CAN_RX  
CAN_TX  
CAN  
CAN Core  
Message RAM  
Message Handler  
Message  
RAM  
Interface  
Registers and Message  
Object Access (IFx)  
32  
Message  
Objects  
(Mailboxes)  
Test Modes  
Only  
Module Interface  
CPU Bus  
to ePIE  
DMA  
Figure 7-69. CAN Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.12.2 Inter-Integrated Circuit (I2C)  
The I2C module has the following features:  
Compliance with the NXP Semiconductors I2C-bus specification (version 2.1):  
– Support for 8-bit format transfers  
– 7-bit and 10-bit addressing modes  
– General call  
– START byte mode  
– Support for multiple master-transmitters and slave-receivers  
– Support for multiple slave-transmitters and master-receivers  
– Combined master transmit/receive and receive/transmit mode  
– Data transfer rate from 10 kbps up to 400 kbps (Fast-mode)  
One 16-byte receive FIFO and one 16-byte transmit FIFO  
Supports two ePIE interrupts  
– I2Cx interrupt – Any of the below conditions can be configured to generate an I2Cx interrupt:  
Transmit Ready  
Receive Ready  
Register-Access Ready  
No-Acknowledgment  
Arbitration-Lost  
Stop Condition Detected  
Addressed-as-Slave  
– I2Cx_FIFO interrupts:  
Transmit FIFO interrupt  
Receive FIFO interrupt  
Module enable and disable capability  
Free data format mode  
Figure 7-70 shows how the I2C peripheral module interfaces within the device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
I2C module  
I2CXSR  
I2CDXR  
TX FIFO  
RX FIFO  
FIFO Interrupt  
to CPU/PIE  
SDA  
Peripheral bus  
I2CRSR  
I2CDRR  
Control/status  
registers  
CPU  
Clock  
synchronizer  
SCL  
Prescaler  
Noise filters  
Arbitrator  
Interrupt to  
CPU/PIE  
I2C INT  
Figure 7-70. I2C Peripheral Module Interfaces  
Copyright © 2021 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.12.2.1 I2C Electrical Data and Timing  
Section 7.12.2.1.1 lists the I2C timing requirements. Section 7.12.2.1.2 lists the I2C switching characteristics.  
Figure 7-71 shows the I2C timing diagram.  
7.12.2.1.1 I2C Timing Requirements  
NO.  
MIN  
MAX  
UNIT  
Standard mode  
T0  
T1  
fmod  
I2C module frequency  
7
12  
MHz  
µs  
Hold time, START condition, SCL fall delay after  
SDA fall  
th(SDA-SCL)START  
4.0  
Setup time, Repeated START, SCL rise before SDA  
fall delay  
T2  
tsu(SCL-SDA)START  
4.0  
µs  
T3  
T4  
T5  
T6  
T7  
T8  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
µs  
ns  
ns  
ns  
ns  
ns  
250  
1000  
1000  
300  
tr(SCL)  
Rise time, SCL  
tf(SDA)  
Fall time, SDA  
tf(SCL)  
Fall time, SCL  
300  
Setup time, STOP condition, SCL rise before SDA  
rise delay  
T9  
tsu(SCL-SDA)STOP  
4.0  
µs  
Pulse duration of spikes that will be suppressed by  
filter  
T10  
tw(SP)  
Cb  
tc(CMCLK)  
31 * tc(CMCLK)  
400  
µs  
pF  
T11  
capacitance load on each bus line  
Fast mode  
T0  
fmod  
I2C module frequency  
7
12  
MHz  
µs  
Hold time, START condition, SCL fall delay after  
SDA fall  
T1  
T2  
th(SDA-SCL)START  
0.6  
Setup time, Repeated START, SCL rise before SDA  
fall delay  
tsu(SCL-SDA)START  
0.6  
µs  
T3  
T4  
T5  
T6  
T7  
T8  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
100  
20  
µs  
ns  
ns  
ns  
ns  
ns  
300  
300  
300  
300  
tr(SCL)  
Rise time, SCL  
20  
tf(SDA)  
Fall time, SDA  
11.4  
11.4  
tf(SCL)  
Fall time, SCL  
Setup time, STOP condition, SCL rise before SDA  
rise delay  
T9  
tsu(SCL-SDA)STOP  
0.6  
µs  
Pulse duration of spikes that will be suppressed by  
filter  
T10  
T11  
tw(SP)  
Cb  
tc(CMCLK)  
31 * tc(CMCLK)  
400  
µs  
pF  
capacitance load on each bus line  
7.12.2.1.2 I2C Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Standard mode  
S1  
S2  
S3  
S4  
fSCL  
SCL clock frequency  
0
10  
100  
kHz  
µs  
TSCL  
SCL clock period  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL clock low  
Pulse duration, SCL clock high  
4.7  
4.0  
µs  
µs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Bus free time between STOP and START  
conditions  
S5  
tBUF  
4.7  
µs  
S6  
S7  
S8  
tv(SCL-DAT)  
tv(SCL-ACK)  
II  
Valid time, data after SCL fall  
Valid time, Acknowledge after SCL fall  
Input current on pins  
3.45  
3.45  
10  
µs  
µs  
µA  
0.1 Vbus < Vi < 0.9 Vbus  
–10  
Fast mode  
S1  
S2  
S3  
S4  
fSCL  
SCL clock frequency  
0
2.5  
1.3  
0.6  
400  
kHz  
µs  
TSCL  
SCL clock period  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL clock low  
Pulse duration, SCL clock high  
µs  
µs  
Bus free time between STOP and START  
conditions  
S5  
tBUF  
1.3  
µs  
S6  
S7  
S8  
tv(SCL-DAT)  
tv(SCL-ACK)  
II  
Valid time, data after SCL fall  
Valid time, Acknowledge after SCL fall  
Input current on pins  
0.9  
0.9  
10  
µs  
µs  
µA  
0.1 Vbus < Vi < 0.9 Vbus  
–10  
7.12.2.1.3 I2C Timing Diagram  
Note  
To meet all of the I2C protocol timing specifications, the I2C module clock (Fmod) must be configured  
in the range from 7 MHz to 12 MHz.  
STOP  
START  
SDA  
SCL  
ACK  
Contd...  
Contd...  
S7  
S6  
T10  
T5  
T7  
S3  
S4  
9th  
clock  
T6  
T8  
S2  
Repeated  
START  
STOP  
S5  
SDA  
ACK  
T2  
T9  
T1  
SCL  
9th  
clock  
Figure 7-71. I2C Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.12.3 Power Management Bus (PMBus) Interface  
The PMBus module has the following features:  
Compliance with the SMI Forum PMBus Specification (Part I v1.0 and Part II v1.1)  
Support for master and slave modes  
Support for I2C mode  
Support for two speeds:  
– Standard Mode: Up to 100 kHz  
– Fast Mode: Up to 400 kHz  
Packet error checking  
CONTROL and ALERT signals  
Clock high and low time-outs  
Four-byte transmit and receive buffers  
One maskable interrupt, which can be generated by several conditions:  
– Receive data ready  
– Transmit buffer empty  
– Slave address received  
– End of message  
– ALERT input asserted  
– Clock low time-out  
– Clock high time-out  
– Bus free  
Figure 7-72 shows the PMBus block diagram.  
PCLKCR20  
SYSCLK  
PMBCTRL  
Div  
ALERT  
CTL  
DMA  
CPU  
PIE  
Bit clock  
Other registers  
GPIO Mux  
PMBTXBUF  
SCL  
Shift register  
PMBRXBUF  
SDA  
PMBUSA_INT  
PMBus Module  
Figure 7-72. PMBus Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.3.1 PMBus Electrical Data and Timing  
Section 7.12.3.1.1 lists the PMBus electrical characteristics. Section 7.12.3.1.2 lists the PMBUS fast mode  
switching characteristics. Section 7.12.3.1.3 lists the PMBUS standard mode switching characteristics.  
7.12.3.1.1 PMBus Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.8  
UNIT  
V
VIL  
VIH  
VOL  
IOL  
Valid low-level input voltage  
Valid high-level input voltage  
Low-level output voltage  
Low-level output current  
2.1  
VDDIO  
0.4  
V
At Ipullup = 4 mA  
V
VOL ≤ 0.4 V  
4
0
mA  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
50  
ns  
Ii  
Input leakage current on each pin  
Capacitance on each pin  
0.1 Vbus < Vi < 0.9 Vbus  
–10  
10  
10  
µA  
pF  
Ci  
7.12.3.1.2 PMBus Fast Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fSCL  
tBUF  
SCL clock frequency  
10  
400  
kHz  
Bus free time between STOP and  
START conditions  
1.3  
0.6  
0.6  
0.6  
µs  
µs  
µs  
µs  
START condition hold time -- SDA fall  
to SCL fall delay  
tHD;STA  
tSU;STA  
tSU;STO  
Repeated START setup time -- SCL  
rise to SDA fall delay  
STOP condition setup time -- SCL rise  
to SDA rise delay  
tHD;DAT  
tSU;DAT  
tTimeout  
tLOW  
Data hold time after SCL fall  
Data setup time before SCL rise  
Clock low time-out  
300  
100  
25  
ns  
ns  
ms  
µs  
µs  
35  
Low period of the SCL clock  
High period of the SCL clock  
1.3  
0.6  
tHIGH  
50  
25  
Cumulative clock low extend time  
(slave device)  
tLOW;SEXT  
tLOW;MEXT  
From START to STOP  
Within each byte  
ms  
ms  
Cumulative clock low extend time  
(master device)  
10  
tr  
tf  
Rise time of SDA and SCL  
Fall time of SDA and SCL  
5% to 95%  
95% to 5%  
20  
20  
300  
300  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.12.3.1.3 PMBus Standard Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fSCL  
tBUF  
SCL clock frequency  
10  
100  
kHz  
Bus free time between STOP and  
START conditions  
4.7  
4
µs  
µs  
µs  
µs  
START condition hold time -- SDA fall  
to SCL fall delay  
tHD;STA  
tSU;STA  
tSU;STO  
Repeated START setup time -- SCL  
rise to SDA fall delay  
4.7  
4
STOP condition setup time -- SCL rise  
to SDA rise delay  
tHD;DAT  
tSU;DAT  
tTimeout  
tLOW  
Data hold time after SCL fall  
Data setup time before SCL rise  
Clock low time-out  
300  
250  
25  
ns  
ns  
ms  
µs  
µs  
35  
Low period of the SCL clock  
High period of the SCL clock  
4.7  
4
tHIGH  
50  
25  
Cumulative clock low extend time  
(slave device)  
tLOW;SEXT  
tLOW;MEXT  
From START to STOP  
Within each byte  
ms  
ms  
Cumulative clock low extend time  
(master device)  
10  
tr  
tf  
Rise time of SDA and SCL  
Fall time of SDA and SCL  
1000  
300  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.4 Serial Communications Interface (SCI)  
The SCI is a 2-wire asynchronous serial port, commonly known as a UART. The SCI module supports digital  
communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero  
(NRZ) format  
The SCI receiver and transmitter each have a 16-level-deep FIFO for reducing servicing overhead, and each has  
its own separate enable and interrupt bits. Both can be operated independently for half-duplex communication,  
or simultaneously for full-duplex communication. To specify data integrity, the SCI checks received data for break  
detection, parity, overrun, and framing errors. The bit rate is programmable to different speeds through a 16-bit  
baud-select register.  
Features of the SCI module include:  
Two external pins:  
– SCITXD: SCI transmit-output pin  
– SCIRXD: SCI receive-input pin  
Note  
Both pins can be used as GPIO if not used for SCI.  
– Baud rate programmable to 64K different rates  
Data-word format  
– 1 start bit  
– Data-word length programmable from 1 to 8 bits  
– Optional even/odd/no parity bit  
– 1 or 2 stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with  
status flags.  
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY  
flag (transmitter-shift register is empty)  
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break  
condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
NRZ format  
Auto baud-detect hardware logic  
16-level transmit and receive FIFO  
Note  
All registers in this module are 8-bit registers. When a register is accessed, the register data is in the  
lower byte (bits 7–0), and the upper byte (bits 15–8) is read as zeros. Writing to the upper byte has no  
effect.  
Figure 7-73 shows the SCI block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
TXENA  
SCICTL1.1  
Frame Format and Mode  
Parity  
Even/Odd  
SCITXD  
SCITXD  
TXSHF  
Register  
TXEMPTY  
SCICTL2.6  
Enable  
TXINTENA  
SCICTL2.0  
8
SCICCR.6 SCICCR.5  
TXRDY  
Transmitter Data  
Buffer register  
SCICTL2.7  
SCITXBUF.7−0  
8
TXWAKE  
SCICTL1.3  
TX FIFO_0  
TX FIFO_1  
−−−−−  
TXINT  
TX Interrupt  
Logic  
1
TX FIFO Interrupt  
To CPU  
TX FIFO_15  
SCI TX Interrupt select logic  
Auto baud detect logic  
WUT  
SCITXBUF.7−0  
TX FIFO  
SCIFFENA  
SCIFFTX.14  
RXENA  
SCICTL1.0  
SCIHBAUD. 15 − 8  
SCIRXD  
RXSHF  
Register  
Baud Rate  
MSbyte  
SCIRXD  
Register  
RXWAKE  
LSPCLK  
SCIRXST.1  
SCILBAUD. 7 − 0  
RXENA  
SCICTL1.0  
8
Baud Rate  
LSbyte  
RXBKINTENA  
SCICTL2.1  
Register  
RXRDY  
Receive Data  
Buffer register  
SCIRXST.6  
SCIRXBUF.7−0  
8
BRKDT  
SCIRXST.5  
RX FIFO_0  
−−−−−  
RX FIFO_14  
RX FIFO_15  
SCIRXBUF.7−0  
RX Interrupt  
Logic  
RXINT  
RX FIFO Interrupt  
To CPU  
RX FIFO  
RXFFOVF  
SCIFFRX.15  
SCIRXST.7  
RX Error  
SCIRXST.5 – 2  
BRKDT FE OE PE  
RX Error  
RXERRINTENA  
SCICTL1.6  
SCI RX Interrupt select logic  
Figure 7-73. SCI Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.5 Serial Peripheral Interface (SPI)  
The serial peripheral interface (SPI) is a high-speed synchronous serial input and output (I/O) port that allows a  
serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a programmed bit-  
transfer rate. The SPI is normally used for communications between the MCU controller and external peripherals  
or another controller. Typical applications include external I/O or peripheral expansion through devices such as  
shift registers, display drivers, and analog-to-digital converters (ADCs). Multidevice communications are  
supported by the master or slave operation of the SPI. The port supports a 16-level, receive and transmit FIFO  
for reducing CPU servicing overhead.  
The SPI module features include:  
SPISOMI: SPI slave-output/master-input pin  
SPISIMO: SPI slave-input/master-output pin  
SPISTE: SPI slave transmit-enable pin  
SPICLK: SPI serial-clock pin  
Note  
All four pins can be used as GPIO, if the SPI module is not used.  
Two operational modes: Master and Slave  
Baud rate: 125 different programmable rates. The maximum baud rate that can be employed is limited by the  
maximum speed of the I/O buffers used on the SPI pins.  
Data word length: 1 to 16 data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling  
edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising  
edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithm  
16-level transmit/receive FIFO  
DMA support  
High-speed mode  
Delayed transmit control  
3-wire SPI mode  
SPISTE inversion for digital audio interface receive mode on devices with two SPI modules  
Figure 7-74 shows the SPI CPU interfaces.  
Copyright © 2021 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
PCLKCR8  
Low-Speed  
Prescaler  
CPU  
LSPCLK  
SYSCLK  
Bit Clock  
SYSRS  
SPISIMO  
SPISOMI  
SPICLK  
SPISTE  
SPI  
GPIO MUX  
SPIINT  
PIE  
SPITXINT  
SPIRXDMA  
SPITXDMA  
DMA  
Figure 7-74. SPI CPU Interface  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.5.1 SPI Electrical Data and Timing  
The following sections contain the SPI External Timings in Non-High-Speed Mode:  
Section 7.12.5.1.1  
Section 7.12.5.1.2  
Non-High-Speed Master Mode Timings  
Non-High-Speed Slave Mode Timings  
The following sections contain the SPI External Timings in High-Speed Mode:  
Section 7.12.5.1.3  
Section 7.12.5.1.4  
High-Speed Master Mode Timings  
High-Speed Slave Mode Timings  
Note  
All timing parameters for SPI High-Speed Mode assume a load capacitance of 5 pF on SPICLK,  
SPISIMO, and SPISOMI.  
For more information about the SPI in High-Speed mode, see the Serial Peripheral Interface (SPI) chapter of the  
TMS320F28004x Microcontrollers Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.12.5.1.1 Non-High-Speed Master Mode Timings  
Section 7.12.5.1.1.1 lists the SPI master mode switching characteristics where the clock phase = 0. Figure 7-75  
shows the SPI master mode external timing where the clock phase = 0.  
Section 7.12.5.1.1.2 lists the SPI master mode switching characteristics where the clock phase = 1. Figure 7-76  
shows the SPI master mode external timing where the clock phase = 1.  
Section 7.12.5.1.1.3 lists the SPI master mode timing requirements.  
7.12.5.1.1.1 SPI Master Mode Switching Characteristics (Clock Phase = 0)  
over recommended operating conditions (unless otherwise noted)  
(BRR + 1)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
128tc(LSPCLK)  
CONDITION(1)  
Even  
4tc(LSPCLK)  
5tc(LSPCLK)  
1
tc(SPC)M  
Cycle time, SPICLK  
ns  
Odd  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M – 3  
0.5tc(SPC)M + 3  
2
tw(SPC1)M  
Pulse duration, SPICLK, first pulse  
ns  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 3  
+
0.5tc(SPC)M +  
0.5tc(LSPCLK) + 3  
Odd  
Even  
Odd  
0.5tc(SPC)M – 3  
0.5tc(SPC)M + 3  
Pulse duration, SPICLK, second  
pulse  
3
4
5
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
ns  
ns  
ns  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 3  
0.5tc(SPC)M  
0.5tc(LSPCLK) + 3  
Delay time, SPICLK to SPISIMO valid Even, Odd  
5
Even  
0.5tc(SPC)M – 6  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 3  
1.5tc(SPC)M  
3tc(SYSCLK) – 3  
1.5tc(SPC)M  
Valid time, SPISIMO valid after  
SPICLK  
Odd  
Even  
23 td(SPC)M  
Delay time, SPISTE valid to SPICLK  
ns  
ns  
Odd  
Even  
Odd  
3tc(SYSCLK) – 3  
0.5tc(SPC)M – 6  
Delay time, SPICLK to SPISTE  
invalid  
24 td(STE)M  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 3  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
MAX UNIT  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.12.5.1.1.2 SPI Master Mode Switching Characteristics (Clock Phase = 1)  
over recommended operating conditions (unless otherwise noted)  
(BRR + 1)  
NO.  
PARAMETER  
MIN  
CONDITION(1)  
Even  
4tc(LSPCLK)  
5tc(LSPCLK)  
128tc(LSPCLK)  
1
tc(SPC)M  
Cycle time, SPICLK  
ns  
ns  
Odd  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M – 3  
0.5tc(SPC)M + 3  
2
3
4
5
tw(SPC1)M  
Pulse duration, SPICLK, first pulse  
0.5tc(SPC)M  
0.5tc(SPC)M –  
0.5tc(LSPCLK) + 3  
Odd  
Even  
Odd  
Even  
Odd  
Even  
Odd  
0.5tc(LSPCLK) – 3  
0.5tc(SPC)M – 3  
0.5tc(SPC)M + 3  
Pulse duration, SPICLK, second  
pulse  
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
ns  
ns  
0.5tc(SPC)M  
+
0.5tc(SPC)M  
+
0.5tc(LSPCLK) – 3  
0.5tc(LSPCLK) + 3  
0.5tc(SPC)M – 4  
Delay time, SPISIMO valid to SPICLK  
0.5tc(SPC)M  
+
0.5tc(LSPCLK) – 1  
0.5tc(SPC)M – 6  
Valid time, SPISIMO valid after  
SPICLK  
ns  
ns  
ns  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 1  
2tc(SPC)M – 3tc(SYSCLK) – 3  
0.5tc(SPC)M – 6  
23 td(SPC)M  
Delay time, SPISTE valid to SPICLK Even, Odd  
Even  
Delay time, SPICLK to  
SPISTE invalid  
24 td(STE)M  
0.5tc(SPC)M  
Odd  
0.5tc(LSPCLK) – 1  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
7.12.5.1.1.3 SPI Master Mode Timing Requirements  
(BRR + 1)  
NO.  
8
MIN  
20  
0
MAX UNIT  
CONDITION(1)  
Setup time, SPISOMI valid before  
SPICLK  
tsu(SOMI)M  
th(SOMI)M  
Even, Odd  
ns  
ns  
Hold time, SPISOMI valid after  
SPICLK  
9
Even, Odd  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
Copyright © 2021 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes.  
Figure 7-75. SPI Master Mode External Timing (Clock Phase = 0)  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes.  
Figure 7-76. SPI Master Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.5.1.2 Non-High-Speed Slave Mode Timings  
Section 7.12.5.1.2.1 lists the SPI slave mode switching characteristics. Section 7.12.5.1.2.2 lists the SPI slave  
mode timing requirements.  
Figure 7-77 shows the SPI slave mode external timing where the clock phase = 0. Figure 7-78 shows the SPI  
slave mode external timing where the clock phase = 1.  
7.12.5.1.2.1 SPI Slave Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
15 td(SOMI)S  
16 tv(SOMI)S  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI valid after SPICLK  
16  
ns  
ns  
0
7.12.5.1.2.2 SPI Slave Mode Timing Requirements  
NO.  
MIN  
4tc(SYSCLK)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
19 tsu(SIMO)S  
20 th(SIMO)S  
Cycle time, SPICLK  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPICLK, first pulse  
Pulse duration, SPICLK, second pulse  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO valid after SPICLK  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
Setup time, SPISTE valid before  
SPICLK (Clock Phase = 0)  
2tc(SYSCLK) + 2  
ns  
25 tsu(STE)S  
Setup time, SPISTE valid before  
SPICLK (Clock Phase = 1)  
2tc(SYSCLK) + 22  
1.5tc(SYSCLK)  
ns  
ns  
26 th(STE)S  
Hold time, SPISTE invalid after SPICLK  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
Figure 7-77. SPI Slave Mode External Timing (Clock Phase = 0)  
Copyright © 2021 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
16  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
Figure 7-78. SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.5.1.3 High-Speed Master Mode Timings  
Section 7.12.5.1.3.1 lists the SPI high-speed master mode switching characteristics where the clock phase = 0.  
Figure 7-79 shows the high-speed SPI master mode external timing where the clock phase = 0.  
Section 7.12.5.1.3.2 lists the SPI high-speed master mode switching characteristics where the clock phase = 1.  
Figure 7-80 shows the high-speed SPI master mode external timing where the clock phase = 1.  
Section 7.12.5.1.3.3 lists the SPI high-speed master mode timing requirements.  
7.12.5.1.3.1 SPI High-Speed Master Mode Switching Characteristics (Clock Phase = 0)  
over recommended operating conditions (unless otherwise noted)  
(BRR + 1)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
128tc(LSPCLK)  
CONDITION(1)  
Even  
4tc(LSPCLK)  
5tc(LSPCLK)  
1
tc(SPC)M  
Cycle time, SPICLK  
ns  
Odd  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M – 1  
0.5tc(SPC)M + 1  
2
tw(SPC1)M  
Pulse duration, SPICLK, first pulse  
ns  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 1  
+
0.5tc(SPC)M +  
0.5tc(LSPCLK) + 1  
Odd  
Even  
Odd  
0.5tc(SPC)M – 1  
0.5tc(SPC)M + 1  
Pulse duration, SPICLK, second  
pulse  
3
4
5
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
ns  
ns  
ns  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 1  
0.5tc(SPC)M  
0.5tc(LSPCLK) + 1  
Delay time, SPICLK to SPISIMO valid Even, Odd  
3
Even  
0.5tc(SPC)M – 4  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 1  
1.5tc(SPC)M  
3tc(SYSCLK) – 1  
1.5tc(SPC)M  
Valid time, SPISIMO valid after  
SPICLK  
Odd  
Even  
23 td(SPC)M  
Delay time, SPISTE valid to SPICLK  
ns  
ns  
Odd  
Even  
Odd  
3tc(SYSCLK) – 1  
0.5tc(SPC)M – 4  
Delay time, SPICLK to SPISTE  
invalid  
24 td(STE)M  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 1  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
7.12.5.1.3.2 SPI High-Speed Master Mode Switching Characteristics (Clock Phase = 1)  
over recommended operating conditions (unless otherwise noted)  
(BRR + 1)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
128tc(LSPCLK)  
CONDITION(1)  
Even  
4tc(LSPCLK)  
5tc(LSPCLK)  
1
tc(SPC)M  
Cycle time, SPICLK  
ns  
Odd  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M – 3  
0.5tc(SPC)M + 3  
2
3
4
5
tw(SPCH)M  
Pulse duration, SPICLK, first pulse  
ns  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 3  
0.5tc(SPC)M –  
0.5tc(LSPCLK) + 3  
Odd  
Even  
Odd  
Even  
Odd  
Even  
Odd  
0.5tc(SPC)M – 3  
0.5tc(SPC)M + 3  
Pulse duration, SPICLK, second  
pulse  
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
ns  
ns  
ns  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 3  
+
0.5tc(SPC)M  
+
0.5tc(LSPCLK) + 3  
0.5tc(SPC)M – 4  
Delay time, SPISIMO valid to SPICLK  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 1  
+
0.5tc(SPC)M – 6  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(SPC)M  
0.5tc(LSPCLK) – 1  
Copyright © 2021 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
over recommended operating conditions (unless otherwise noted)  
(BRR + 1)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
CONDITION(1)  
2tc(SPC)M  
3tc(SYSCLK) – 1  
23 td(SPC)M  
Delay time, SPISTE valid to SPICLK Even, Odd  
ns  
Even  
0.5tc(SPC)M – 6  
Delay time, SPICLK to SPISTE  
invalid  
24 td(STE)M  
ns  
0.5tc(SPC)M  
Odd  
0.5tc(LSPCLK) – 1  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
7.12.5.1.3.3 SPI High-Speed Master Mode Timing Requirements  
(BRR + 1)  
NO.  
8
MIN  
2
MAX UNIT  
CONDITION(1)  
Setup time, SPISOMI valid before  
SPICLK  
tsu(SOMI)M  
th(SOMI)M  
Even, Odd  
ns  
ns  
Hold time, SPISOMI valid after  
SPICLK  
9
Even, Odd  
11  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes.  
Figure 7-79. High-Speed SPI Master Mode External Timing (Clock Phase = 0)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes.  
Figure 7-80. High-Speed SPI Master Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.12.5.1.4 High-Speed Slave Mode Timings  
Section 7.12.5.1.4.1 lists the SPI high-speed slave mode switching characteristics. Section 7.12.5.1.4.2 lists the  
SPI high-speed slave mode timing requirements.  
Figure 7-81 shows the high-speed SPI slave mode external timing where the clock phase = 0. Figure 7-82  
shows the high-speed SPI slave mode external timing where the clock phase = 1.  
7.12.5.1.4.1 SPI High-Speed Slave Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
15 td(SOMI)S  
16 tv(SOMI)S  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI valid after SPICLK  
14  
ns  
ns  
0
7.12.5.1.4.2 SPI High-Speed Slave Mode Timing Requirements  
NO.  
MIN  
4tc(SYSCLK)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
19 tsu(SIMO)S  
20 th(SIMO)S  
25 tsu(STE)S  
26 th(STE)S  
Cycle time, SPICLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPICLK, first pulse  
Pulse duration, SPICLK, second pulse  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO valid after SPICLK  
Setup time, SPISTE valid before SPICLK  
Hold time, SPISTE invalid after SPICLK  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
Figure 7-81. High-Speed SPI Slave Mode External Timing (Clock Phase = 0)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
16  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
Figure 7-82. High-Speed SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.12.6 Local Interconnect Network (LIN)  
This device contains one Local Interconnect Network (LIN) module. The LIN module adheres to the LIN 2.1  
standard as defined by the LIN Specification Package Revision 2.1. The LIN is a low-cost serial interface  
designed for applications where the CAN protocol may be too expensive to implement, such as small  
subnetworks for cabin comfort functions like interior lighting or window control in an automotive application.  
The LIN standard is based on the SCI (UART) serial data link format. The communication concept is single-  
master and multiple-slave with a message identification for multicast transmission between any network nodes.  
The LIN module can be programmed to work either as an SCI or as a LIN as the core of the module is an SCI.  
The hardware features of the SCI are augmented to achieve LIN compatibility. The SCI module is a universal  
asynchronous receiver-transmitter (UART) that implements the standard non-return-to-zero format.  
Though the registers are common for LIN and SCI, the register descriptions have notes to identify the register/bit  
usage in different modes. Because of this, code written for this module cannot be directly ported to the stand-  
alone SCI module and vice versa.  
The LIN module has the following features:  
Compatibility with LIN 1.3, 2.0 and 2.1 protocols  
Configurable baud rate up to 20 kbps (as per LIN 2.1 protocol)  
Two external pins: LINRX and LINTX  
Multibuffered receive and transmit units  
Identification masks for message filtering  
Automatic master header generation  
– Programmable synchronization break field  
– Synchronization field  
– Identifier field  
Slave automatic synchronization  
– Synchronization break detection  
– Optional baud rate update  
– Synchronization validation  
231 programmable transmission rates with 7 fractional bits  
Wakeup on LINRX dominant level from transceiver  
Automatic wakeup support  
– Wakeup signal generation  
– Expiration times on wakeup signals  
Automatic bus idle detection  
Error detection  
– Bit error  
– Bus error  
– No-response error  
– Checksum error  
– Synchronization field error  
– Parity error  
Capability to use direct memory access (DMA) for transmit and receive data  
Two interrupt lines with priority encoding for:  
– Receive  
– Transmit  
– ID, error, and status  
Support for LIN 2.0 checksum  
Enhanced synchronizer finite state machine (FSM) support for frame processing  
Enhanced handling of extended frames  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Enhanced baud rate generator  
Update wakeup/go to sleep  
Figure 7-83 shows the LIN block diagram.  
READ DATA BUS  
WRITE DATA BUS  
ADDRESS BUS  
CHECKSUM  
CALCULATOR  
INTERFACE  
ID PARTY  
CHECKER  
BIT  
MONITOR  
TXRX ERROR  
DETECTOR (TED)  
TIME-OUT  
CONTROL  
COUNTER  
LINRX/  
SCIRX  
COMPARE  
LINTX/  
SCITX  
DMA  
CONTROL  
MASK  
FILTER  
8 RECEIVE  
BUFFERS  
FSM  
8 TRANSMIT  
BUFFERS  
SYNCHRONIZER  
Figure 7-83. LIN Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.12.7 Fast Serial Interface (FSI)  
The Fast Serial Interface (FSI) module is a serial communication peripheral capable of reliable and robust high-  
speed communications. The FSI is designed to ensure data robustness across many system conditions such as  
chip-to-chip as well as board-to-board across an isolation barrier. Payload integrity checks such as CRC, start-  
and end-of-frame patterns, and user-defined tags, are encoded before transmit and then verified after receipt  
without additional CPU interaction. Line breaks can be detected using periodic transmissions, all managed and  
monitored by hardware. The FSI is also tightly integrated with other control peripherals on the device. To ensure  
that the latest sensor data or control parameters are available, frames can be transmitted on every control loop  
period. An integrated skew-compensation block has been added on the receiver to handle skew that may occur  
between the clock and data signals due to a variety of factors, including trace-length mismatch and skews  
induced by an isolation chip. With embedded data robustness checks, data-link integrity checks, skew  
compensation, and integration with control peripherals, the FSI can enable high-speed, robust communication in  
any system. These and many other features of the FSI follow.  
The FSI module includes the following features:  
Independent transmitter and receiver cores  
Source-synchronous transmission  
Dual data rate (DDR)  
One or two data lines  
Programmable data length  
Skew adjustment block to compensate for board and system delay mismatches  
Frame error detection  
Programmable frame tagging for message filtering  
Hardware ping to detect line breaks during communication (ping watchdog)  
Two interrupts per FSI core  
Externally triggered frame generation  
Hardware- or software-calculated CRC  
Embedded ECC computation module  
Register write protection  
DMA support  
CLA task triggering  
SPI compatibility mode (limited features available)  
Operating the FSI at maximum speed (50 MHz) at dual data rate (100 Mbps) may require the integrated skew  
compensation block to be configured according to the specific operating conditions on a case-by-case basis.  
The Fast Serial Interface (FSI) Skew Compensation Application Report provides example software on how to  
configure and set up the integrated skew compensation block on the Fast Serial Interface.  
The FSI consists of independent transmitter (FSITX) and receiver (FSIRX) cores. The FSITX and FSIRX cores  
are configured and operated independently. The features available on the FSITX and FSIRX are described in  
Section 7.12.7.1 and Section 7.12.7.2, respectively.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.7.1 FSI Transmitter  
The FSI transmitter module handles the framing of data, CRC generation, signal generation of TXCLK, TXD0,  
and TXD1, as well as interrupt generation. The operation of the transmitter core is controlled and configured  
through programmable control registers. The transmitter control registers let the CPU (or the CLA) program,  
control, and monitor the operation of the FSI transmitter. The transmit data buffer is accessible by the CPU, CLA,  
and the DMA.  
The transmitter has the following features:  
Automated ping frame generation  
Externally triggered ping frames  
Externally triggered data frames  
Software-configurable frame lengths  
16-word data buffer  
Data buffer underrun and overrun detection  
Hardware-generated CRC on data bits  
Software ECC calculation on select data  
DMA support  
CLA task triggering  
Figure 7-84 shows the FSITX CPU interface. Figure 7-85 shows the high-level block diagram of the FSITX. Not  
all data paths and internal connections are shown. This diagram provides a high-level overview of the internal  
modules present in the FSITX.  
PLLRAWCLK  
PCLKCR18  
SYSCLK  
SYSRSN  
C28x  
ePIE  
FSITXyINT1  
FSITXyINT2  
CLA  
FSITXyCLK  
FSITXyD0  
FSITXyD1  
FSITX  
DMA  
FSITXyDMA  
32  
A. The signals connected to the trigger muxes are described in the External Frame Trigger Mux section of the Fast Serial Interface (FSI)  
chapter in the TMS320F28004x Microcontrollers Technical Reference Manual.  
Figure 7-84. FSITX CPU Interface  
Copyright © 2021 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
FSITX  
PLLRAWCLK  
SYSRSN  
SYSCLK  
FSI Mode:  
TXCLKIN  
Transmit Clock  
Generator  
TXCLK = TXCLKIN/2  
SPI Signaling Mode:  
TXCLK = TXCLKIN  
Register Interface  
Core Reset  
FSITXINT1  
FSITXINT2  
Control Registers,  
Interrupt Management  
TXCLK  
TXD0  
TXD1  
Ping Time-out Counter  
FSITX_DMA_EVT  
Transmitter Core  
External Frame Triggers  
Transmit Data  
Buffer  
ECC Logic  
Figure 7-85. FSITX Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.7.1.1 FSITX Electrical Data and Timing  
Section 7.12.7.1.1.1 lists the FSITX switching characteristics. Figure 7-86 shows the FSITX timings.  
7.12.7.1.1.1 FSITX Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
20  
MAX  
UNIT  
ns  
1
tc(TXCLK)  
tw(TXCLK)  
Cycle time, TXCLK  
2
Pulse width, TXCLK low or TXCLK high  
(0.5tc(TXCLK)) – 1  
(0.5tc(TXCLK)) + 1  
ns  
Delay time, Data valid after TXCLK rising or  
falling  
3
td(TXCLKL–TXD)  
(0.25tc(TXCLK)) – 3.2  
(0.25tc(TXCLK)) + 4.7  
ns  
1
2
FSITXCLK  
FSITXD0  
FSITXD1  
3
Figure 7-86. FSITX Timings  
Copyright © 2021 Texas Instruments Incorporated  
176 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.12.7.2 FSI Receiver  
The receiver module interfaces to the FSI clock (RXCLK), and data lines (RXD0 and RXD1) after they pass  
through an optional programmable delay line. The receiver core handles the data framing, CRC computation,  
and frame-related error checking. The receiver bit clock and state machine are run by the RXCLK input, which is  
asynchronous to the device system clock.  
The receiver control registers let the CPU (or the CLA) program, control, and monitor the operation of the FSIRX.  
The receive data buffer is accessible by the CPU, CLA, and the DMA.  
The receiver core has the following features:  
16-word data buffer  
Multiple supported frame types  
Ping frame watchdog  
Frame watchdog  
CRC calculation and comparison in hardware  
ECC detection  
Programmable delay line control on incoming signals  
DMA support  
CLA task triggering  
SPI compatibility mode  
Figure 7-87 shows the FSIRX CPU interface. Figure 7-88 provides a high-level overview of the internal modules  
present in the FSIRX. Not all data paths and internal connections are shown.  
PCLKCR18  
SYSCLK  
SYSRSN  
C28x  
ePIE  
FSIRXyINT1  
FSIRXyINT2  
CLA  
FSIRXyCLK  
FSIRXyD0  
FSIRXyD1  
FSIRX  
DMA  
FSIRXyDMA  
Figure 7-87. FSIRX CPU Interface  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
FSIRX  
SYSRSn  
SYSCLK  
Frame Watchdog  
Register Interface  
Core Reset  
FSIRXINT1  
Control Registers,  
Interrupt Management  
FSIRXINT2  
RXCLK  
RXD0  
Ping Watchdog  
FSIRX_DMA_EVT  
Receiver Core  
Skew  
Control  
RXD1  
Receive Data  
Buffer  
ECC Check  
Logic  
Figure 7-88. FSIRX Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
178 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
7.12.7.2.1 FSIRX Electrical Data and Timing  
Section 7.12.7.2.1.1 lists the FSIRX switching characteristics. Section 7.12.7.2.1.2 lists the FSIRX timing  
requirements. Figure 7-89 shows the FSIRX timings.  
7.12.7.2.1.1 FSIRX Switching Characteristics  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
RXCLK delay compensation at  
RX_DLYLINE_CTRL[RXCLK_DLY]=31  
1
td(RXCLK)  
6
21  
ns  
RXD0 delay compensation at  
RX_DLYLINE_CTRL[RXD0_DLY]=31  
2
3
4
td(RXD0)  
6
6
21  
21  
ns  
ns  
ns  
RXD1 delay compensation at  
RX_DLYLINE_CTRL[RXD1_DLY]=31  
td(RXD1)  
Incremental delay of each delay line element  
for RXCLK, RXD0, and RXD1  
td(DELAY_ELEMENT)  
0.17  
0.7  
7.12.7.2.1.2 FSIRX Timing Requirements  
NO.  
MIN  
20  
MAX  
UNIT  
ns  
1
2
tc(RXCLK)  
tw(RXCLK)  
Cycle time, RXCLK  
Pulse width, RXCLK low or RXCLK high  
(0.5tc(RXCLK)) – 1  
(0.5tc(RXCLK)) + 1  
ns  
Setup time with respect to RXCLK, applies to  
both edges of the clock  
3
4
tsu(RXCLK–RXD)  
th(RXCLK–RXD)  
1.7  
3.8  
ns  
ns  
Hold time with respect to RXCLK, applies to  
both edges of the clock  
1
2
FSIRXCLK  
FSIRXD0  
FSIRXD1  
3
4
Figure 7-89. FSIRX Timings  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.7.3 FSI SPI Compatibility Mode  
The FSI supports a SPI compatibility mode to enable communication with programmable SPI devices. In this  
mode, the FSI transmits its data in the same manner as a SPI in a single clock configuration mode. While the  
FSI is able to physically interface with a SPI in this mode, the external device must be able to encode and  
decode an FSI frame to communicate successfully. This is because the FSI transmits all SPI frame phases with  
the exception of the preamble and postamble. The FSI provides the same data validation and frame checking as  
if it was in standard FSI mode, allowing for more robust communication without consuming CPU cycles. The  
external SPI is required to send all relevant information and can access standard FSI features such as the ping  
frame watchdog on the FSIRX, frame tagging, or custom CRC values. The list of features of SPI compatibility  
mode follows:  
Data will transmit on rising edge and receive on falling edge of the clock.  
Only 16-bit word size is supported.  
TXD1 will be driven like an active-low chip-select signal. The signal will be low for the duration of the full  
frame transmission.  
No receiver chip-select input is required. RXD1 is not used. Data is shifted into the receiver on every active  
clock edge.  
No preamble or postamble clocks will be transmitted. All signals return to the idle state after the frame phase  
is finished.  
It is not possible to transmit in the SPI slave configuration because the FSI TXCLK cannot take an external  
clock source.  
7.12.7.3.1 FSITX SPI Signaling Mode Electrical Data and Timing  
Section 7.12.7.3.1.1 lists the FSITX SPI signaling mode switching characteristics. Figure 7-90 shows the FSITX  
SPI signaling mode timings. Special timings are not required for the FSIRX in SPI signaling mode. FSIRX  
timings listed in Section 7.12.7.2.1.2 are applicable in SPI compatibility mode. Setup and Hold times are only  
valid on the falling edge of FSIRXCLK because this is the active edge in SPI signaling mode.  
7.12.7.3.1.1 FSITX SPI Signaling Mode Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
20  
MAX  
UNIT  
ns  
1
tc(TXCLK)  
Cycle time, TXCLK  
2
tw(TXCLK)  
Pulse width, TXCLK low or TXCLK high  
Delay time, Data valid after TXCLK high  
Delay time, TXCLK high after TXD1 low  
Delay time, TXD1 high after TXCLK low  
(0.5tc(TXCLK)) – 1  
(0.5tc(TXCLK)) + 1  
3
ns  
3
td(TXCLKH–TXD0)  
td(TXD1-TXCLK)  
td(TXCLK-TXD1)  
ns  
4
tw(TXCLK) – 1  
tw(TXCLK) – 1  
ns  
5
ns  
1
2
FSITXCLK  
3
FSITXD0  
FSITXD1  
5
4
Figure 7-90. FSITX SPI Signaling Mode Timings  
Copyright © 2021 Texas Instruments Incorporated  
180 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
8 Detailed Description  
8.1 Overview  
The TMS320F28004x (F28004x) is a powerful 32-bit floating-point microcontroller unit (MCU) that lets designers  
incorporate crucial control peripherals, differentiated analog, and nonvolatile memory on a single device.  
The real-time control subsystem is based on TI’s 32-bit C28x CPU, which provides 100 MHz of signal processing  
performance. The C28x CPU is further boosted by the new TMU extended instruction set, which enables fast  
execution of algorithms with trigonometric operations commonly found in transforms and torque loop  
calculations; and the VCU-I extended instruction set, which reduces the latency for complex math operations  
commonly found in encoded applications.  
The CLA allows significant offloading of common tasks from the main C28x CPU. The CLA is an independent  
32-bit floating-point math accelerator that executes in parallel with the CPU. Additionally, the CLA has its own  
dedicated memory resources and it can directly access the key peripherals that are required in a typical control  
system. Support of a subset of ANSI C is standard, as are key features like hardware breakpoints and hardware  
task-switching.  
The F28004x supports up to 256KB (128KW) of flash memory divided into two 128KB (64KW) banks, which  
enables programming and execution in parallel. Up to 100KB (50KW) of on-chip SRAM is also available in  
blocks of 4KB (2KW) and 16KB (8KW) for efficient system partitioning. Flash ECC, SRAM ECC/parity, and dual-  
zone security are also supported.  
High-performance analog blocks are integrated on the F28004x MCU to further enable system consolidation.  
Three separate 12-bit ADCs provide precise and efficient management of multiple analog signals, which  
ultimately boosts system throughput. Seven PGAs on the analog front end enable on-chip voltage scaling before  
conversion. Seven analog comparator modules provide continuous monitoring of input voltage levels for trip  
conditions.  
The TMS320C2000microcontrollers contain industry-leading control peripherals with frequency-independent  
ePWM/HRPWM and eCAP allow for a best-in-class level of control to the system. The built-in 4-channel SDFM  
allows for seamless integration of an oversampling sigma-delta modulator across an isolation barrier.  
Connectivity is supported through various industry-standard communication ports (such as SPI, SCI, I2C, LIN,  
and CAN) and offers multiple muxing options for optimal signal placement in a variety of applications. New to the  
C2000 platform is the fully compliant PMBus. Additionally, in an industry first, the FSI enables high-speed, robust  
communication to complement the rich set of peripherals that are embedded in the device.  
A specially enabled device variant, TMS320F28004xC, allows access to the Configurable Logic Block (CLB) for  
additional interfacing features and allows access to the secure ROM, which includes a library to enable  
InstaSPIN-FOC. See Device Comparison for more information.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
8.2 Functional Block Diagram  
Figure 8-1 shows the CPU system and associated peripherals.  
Boot ROM  
C28x CPU  
CLA  
(Type 2)  
Secure ROM  
FPU32  
TMU  
VCU-I  
Flash Bank0  
16 Sectors  
64KW (128KB)  
CLA to CPU MSG RAM  
CPU to CLA MSG RAM  
Flash Bank1  
16 Sectors  
64KW (128KB)  
CPU Timers  
DCSM  
ePIE  
CLA Data ROM  
ERAD  
CLA Program ROM  
M0–M1 RAM  
2KW (4KB)  
LS0–LS7 RAM  
16KW (32KB)  
Crystal Oscillator  
INTOSC1, INTOSC2  
PLL  
GS0–GS3 RAM  
32KW (64KB)  
DMA  
6 Channels  
PF1  
PF3  
PF4  
PF2  
PF7  
PF8  
PF9  
Result  
Data  
40x GPIO  
16x ePWM Chan.  
(16 Hi-Res Capable)  
2x CAN  
1x LIN  
2x SCI  
1x I2C  
1x PMBUS  
2x SPI  
7x CMPSS  
3x 12-Bit ADC  
7x eCAP  
(2 HRCAP Capable)  
2x Buffered DAC  
7x PGA  
Input XBAR  
Output XBAR  
ePWM XBAR  
NMI  
Watchdog  
1x FSI RX  
1x FSI TX  
2x eQEP  
(CW/CCW Support)  
Windowed  
Watchdog  
4x SD Filters  
Figure 8-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
182 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
8.3 Memory  
8.3.1 C28x Memory Map  
Table 8-1 describes the C28x memory map. Memories accessible by the CLA or DMA (direct memory access)  
are also noted. See the Memory Controller Module section of the System Control chapter in the  
TMS320F28004x Microcontrollers Technical Reference Manual.  
Table 8-1. C28x Memory Map  
MEMORY  
ACCESS  
PROTECTION  
START  
ADDRESS  
END  
DMA  
ECC-  
CAPABLE  
MEMORY  
SIZE  
CLA ACCESS  
PARITY  
SECURE  
ADDRESS  
ACCESS  
M0 RAM  
1K × 16  
1K × 16  
512 × 16  
128 × 16  
128 × 16  
2K × 16  
2K × 16  
2K × 16  
2K × 16  
2K × 16  
2K × 16  
2K × 16  
2K × 16  
8K × 16  
8K × 16  
8K × 16  
8K × 16  
2K × 16  
2K × 16  
64K × 16  
64K × 16  
32K × 16  
64K × 16  
64 × 16  
4K × 16  
0x0000 0000  
0x0000 0400  
0x0000 0D00  
0x0000 1480  
0x0000 1500  
0x0000 8000  
0x0000 8800  
0x0000 9000  
0x0000 9800  
0x0000 A000  
0x0000 A800  
0x0000 B000  
0x0000 B800  
0x0000 C000  
0x0000 E000  
0x0001 0000  
0x0001 2000  
0x0004 9000  
0x0004 B000  
0x0008 0000  
0x0009 0000  
0x003E 8000  
0x003F 0000  
0x003F FFC0  
0x0100 1000  
0x0000 03FF  
0x0000 07FF  
0x0000 0EFF  
0x0000 14FF  
0x0000 157F  
0x0000 87FF  
0x0000 8FFF  
0x0000 97FF  
0x0000 9FFF  
0x0000 A7FF  
0x0000 AFFF  
0x0000 B7FF  
0x0000 BFFF  
0x0000 DFFF  
0x0000 FFFF  
0x0001 1FFF  
0x0001 3FFF  
0x0004 97FF  
0x0004 B7FF  
0x0008 FFFF  
0x0009 FFFF  
0x003E FFFF  
0x003F FFBF  
0x003F FFFF  
0x0100 1FFF  
Yes  
Yes  
M1 RAM  
PieVectTable  
CLA-to-CPU MSGRAM  
CPU-to-CLA MSGRAM  
LS0 RAM  
Read/Write  
Read  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Configurable  
Configurable  
Configurable  
Configurable  
Configurable  
Configurable  
Configurable  
Configurable  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
LS1 RAM  
LS2 RAM  
LS3 RAM  
LS4 RAM  
LS5 RAM  
LS6 RAM  
LS7 RAM  
GS0 RAM  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
GS1 RAM  
GS2 RAM  
GS3 RAM  
CAN A Message RAM  
CAN B Message RAM  
Flash Bank 0  
Flash Bank 1  
Secure ROM  
Boot ROM  
Yes  
Yes  
N/A  
N/A  
Yes  
Yes  
Yes  
Vectors  
CLA Data ROM  
Read  
8.3.2 Control Law Accelerator (CLA) ROM Memory Map  
Table 8-2 shows the CLA data ROM memory map. For information about the CLA program ROM, see the CLA  
Program ROM (CLAPROMCRC) chapter in the TMS320F28004x Microcontrollers Technical Reference Manual.  
Table 8-2. CLA Data ROM Memory Map  
MEMORY  
FFT Tables (Load)  
Data (Load)  
START ADDRESS  
0x0100 1070  
0x0100 1870  
0x0100 1FFA  
0x0000 F070  
0x0000 F870  
0x0000 FFFA  
END ADDRESS  
0x0100 186F  
0x0100 1FF9  
0x0100 1FFF  
0x0000 F86F  
0x0000 FFF9  
0x0000 FFFF  
LENGTH  
0x0800  
0x078A  
0x0006  
0x0800  
0x078A  
0x0006  
Version (Load)  
FFT Tables (Run)  
Data (Run)  
Version (Run)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
8.3.3 Flash Memory Map  
On the F28004x devices, up to two flash banks (each 128KB [64KW]) are available. The flash banks are  
controlled by a single FMC (flash module controller). On the devices in which there is only one flash bank  
(F280041 and F280040), the code to program the flash should be executed out of RAM. On the devices in which  
there are two flash banks (F280049, F280048, and F280045), only one bank at a time can be programmed or  
erased. In the dual-bank devices, the code to program the flash can be executed from one flash bank to erase or  
program the other flash bank, or the code can be executed from RAM. There should not be any kind of access to  
the flash bank on which an erase/program operation is in progress. Table 8-3 lists the addresses of flash sectors  
for F280049, F280048, and F280045. Table 8-4 lists the addresses of flash sectors for F280041 and F280040.  
Table 8-3. Addresses of Flash Sectors for F280049, F280048, and F280045  
SECTOR  
SIZE  
START ADDRESS  
END ADDRESS  
OTP SECTORS  
TI OTP Bank 0  
1K × 16  
1K × 16  
1K × 16  
1K × 16  
0x0007 0000  
0x0007 8000  
0x0007 0400  
0x0007 8400  
0x0007 03FF  
0x0007 83FF  
0x0007 07FF  
0x0007 87FF  
User-configurable DCSM OTP Bank 0  
TI OTP Bank 1  
User-configurable DCSM OTP Bank 1  
BANK 0 SECTORS  
Sector 0  
Sector 1  
Sector 2  
Sector 3  
Sector 4  
Sector 5  
Sector 6  
Sector 7  
Sector 8  
Sector 9  
Sector 10  
Sector 11  
Sector 12  
Sector 13  
Sector 14  
Sector 15  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
0x0008 0000  
0x0008 1000  
0x0008 2000  
0x0008 3000  
0x0008 4000  
0x0008 5000  
0x0008 6000  
0x0008 7000  
0x0008 8000  
0x0008 9000  
0x0008 A000  
0x0008 B000  
0x0008 C000  
0x0008 D000  
0x0008 E000  
0x0008 F000  
0x0008 0FFF  
0x0008 1FFF  
0x0008 2FFF  
0x0008 3FFF  
0x0008 4FFF  
0x0008 5FFF  
0x0008 6FFF  
0x0008 7FFF  
0x0008 8FFF  
0x0008 9FFF  
0x0008 AFFF  
0x0008 BFFF  
0x0008 CFFF  
0x0008 DFFF  
0x0008 EFFF  
0x0008 FFFF  
BANK 1 SECTORS  
Sector 0  
Sector 1  
Sector 2  
Sector 3  
Sector 4  
Sector 5  
Sector 6  
Sector 7  
Sector 8  
Sector 9  
Sector 10  
Sector 11  
Sector 12  
Sector 13  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
0x0009 0000  
0x0009 1000  
0x0009 2000  
0x0009 3000  
0x0009 4000  
0x0009 5000  
0x0009 6000  
0x0009 7000  
0x0009 8000  
0x0009 9000  
0x0009 A000  
0x0009 B000  
0x0009 C000  
0x0009 D000  
0x0009 0FFF  
0x0009 1FFF  
0x0009 2FFF  
0x0009 3FFF  
0x0009 4FFF  
0x0009 5FFF  
0x0009 6FFF  
0x0009 7FFF  
0x0009 8FFF  
0x0009 9FFF  
0x0009 AFFF  
0x0009 BFFF  
0x0009 CFFF  
0x0009 DFFF  
Copyright © 2021 Texas Instruments Incorporated  
184 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 8-3. Addresses of Flash Sectors for F280049, F280048, and F280045 (continued)  
SECTOR  
Sector 14  
Sector 15  
SIZE  
START ADDRESS  
END ADDRESS  
0x0009 EFFF  
0x0009 FFFF  
4K × 16  
4K × 16  
0x0009 E000  
0x0009 F000  
FLASH ECC LOCATIONS  
TI OTP ECC Bank 0  
TI OTP ECC Bank 1  
128 × 16  
128 × 16  
128 × 16  
128 × 16  
8K × 16  
8K × 16  
0x0107 0000  
0x0107 007F  
0x0107 00FF  
0x0107 107F  
0x0107 10FF  
0x0108 1FFF  
0x0108 3FFF  
0x0107 0080  
0x0107 1000  
0x0107 1080  
0x0108 0000  
0x0108 2000  
User-configurable DCSM OTP ECC Bank 0  
User-configurable DCSM OTP ECC Bank 1  
Flash ECC Bank 0  
Flash ECC Bank 1  
Table 8-4. Addresses of Flash Sectors for F280041 and F280040  
SECTOR  
SIZE  
START ADDRESS  
END ADDRESS  
OTP SECTORS  
TI OTP Bank 0  
1K × 16  
1K × 16  
0x0007 0000  
0x0007 8000  
0x0007 03FF  
0x0007 83FF  
User-configurable DCSM OTP Bank 0  
BANK 0 SECTORS  
Sector 0  
Sector 1  
Sector 2  
Sector 3  
Sector 4  
Sector 5  
Sector 6  
Sector 7  
Sector 8  
Sector 9  
Sector 10  
Sector 11  
Sector 12  
Sector 13  
Sector 14  
Sector 15  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
4K × 16  
0x0008 0000  
0x0008 1000  
0x0008 2000  
0x0008 3000  
0x0008 4000  
0x0008 5000  
0x0008 6000  
0x0008 7000  
0x0008 8000  
0x0008 9000  
0x0008 A000  
0x0008 B000  
0x0008 C000  
0x0008 D000  
0x0008 E000  
0x0008 F000  
0x0008 0FFF  
0x0008 1FFF  
0x0008 2FFF  
0x0008 3FFF  
0x0008 4FFF  
0x0008 5FFF  
0x0008 6FFF  
0x0008 7FFF  
0x0008 8FFF  
0x0008 9FFF  
0x0008 AFFF  
0x0008 BFFF  
0x0008 CFFF  
0x0008 DFFF  
0x0008 EFFF  
0x0008 FFFF  
FLASH ECC LOCATIONS  
TI OTP ECC Bank 0  
User-configurable DCSM OTP ECC Bank 0  
Flash ECC Bank 0  
128 × 16  
128 × 16  
8K × 16  
0x0107 0000  
0x0107 007F  
0x0107 107F  
0x0108 1FFF  
0x0107 1000  
0x0108 0000  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 185  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
8.3.4 Peripheral Registers Memory Map  
Table 8-5 lists the peripheral registers.  
Table 8-5. Peripheral Registers Memory Map  
PIPELINE  
CLA  
ACCESS  
DMA  
ACCESS  
REGISTER  
STRUCTURE NAME  
START ADDRESS  
END ADDRESS  
PROTECTION(1)  
Peripheral Frame 0  
0x0000 0B00  
AdcaResultRegs(2)  
AdcbResultRegs(2)  
AdccResultRegs(2)  
ADC_RESULT_REGS  
ADC_RESULT_REGS  
ADC_RESULT_REGS  
0x0000 0B1F  
0x0000 0B3F  
0x0000 0B5F  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
0x0000 0B20  
0x0000 0B40  
Yes - CLA  
only no CPU  
access  
Cla1OnlyRegs  
CLA_ONLY_REGS  
0x0000 0C00  
0x0000 0CFF  
CpuTimer0Regs  
CpuTimer1Regs  
CpuTimer2Regs  
PieCtrlRegs  
CPUTIMER_REGS  
CPUTIMER_REGS  
CPUTIMER_REGS  
PIE_CTRL_REGS  
0x0000 0C00  
0x0000 0C08  
0x0000 0C10  
0x0000 0CE0  
0x0000 0C07  
0x0000 0C0F  
0x0000 0C17  
0x0000 0CFF  
Yes - CLA  
only no CPU  
access  
Cla1SoftIntRegs  
CLA_SOFTINT_REGS  
0x0000 0CE0  
0x0000 0CFF  
DmaRegs  
Cla1Regs  
DMA_REGS  
CLA_REGS  
0x0000 1000  
0x0000 1400  
Peripheral Frame 1  
0x0000 4000  
0x0000 4100  
0x0000 4200  
0x0000 4300  
0x0000 4400  
0x0000 4500  
0x0000 4600  
0x0000 4700  
0x0000 5100  
0x0000 5140  
0x0000 5200  
0x0000 5240  
0x0000 5280  
0x0000 52C0  
0x0000 5300  
0x0000 5340  
0x0000 5360  
0x0000 5380  
0x0000 53A0  
0x0000 5B00  
0x0000 5B10  
0x0000 5B20  
0x0000 5B30  
0x0000 5B40  
0x0000 5B50  
0x0000 5B60  
0x0000 5C00  
0x0000 5C10  
0x0000 5C80  
0x0000 5CA0  
0x0000 5CC0  
0x0000 5CE0  
0x0000 5D00  
0x0000 5D20  
0x0000 5D40  
0x0000 5E00  
0x0000 11FF  
0x0000 147F  
Yes  
EPwm1Regs  
EPwm2Regs  
EPwm3Regs  
EPwm4Regs  
EPwm5Regs  
EPwm6Regs  
EPwm7Regs  
EPwm8Regs  
EQep1Regs  
EQep2Regs  
ECap1Regs  
ECap2Regs  
ECap3Regs  
ECap4Regs  
ECap5Regs  
ECap6Regs  
Hrcap6Regs  
ECap7Regs  
Hrcap7Regs  
Pga1Regs  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EPWM_REGS  
EQEP_REGS  
EQEP_REGS  
ECAP_REGS  
ECAP_REGS  
ECAP_REGS  
ECAP_REGS  
ECAP_REGS  
ECAP_REGS  
HRCAP_REGS  
ECAP_REGS  
HRCAP_REGS  
PGA_REGS  
0x0000 40FF  
0x0000 41FF  
0x0000 42FF  
0x0000 43FF  
0x0000 44FF  
0x0000 45FF  
0x0000 46FF  
0x0000 47FF  
0x0000 513F  
0x0000 517F  
0x0000 521F  
0x0000 525F  
0x0000 529F  
0x0000 52DF  
0x0000 531F  
0x0000 535F  
0x0000 537F  
0x0000 539F  
0x0000 53BF  
0x0000 5B0F  
0x0000 5B1F  
0x0000 5B2F  
0x0000 5B3F  
0x0000 5B4F  
0x0000 5B5F  
0x0000 5B6F  
0x0000 5C0F  
0x0000 5C1F  
0x0000 5C9F  
0x0000 5CBF  
0x0000 5CDF  
0x0000 5CFF  
0x0000 5D1F  
0x0000 5D3F  
0x0000 5D5F  
0x0000 5E7F  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Pga2Regs  
PGA_REGS  
Pga3Regs  
PGA_REGS  
Pga4Regs  
PGA_REGS  
Pga5Regs  
PGA_REGS  
Pga6Regs  
PGA_REGS  
Pga7Regs  
PGA_REGS  
DacaRegs  
DAC_REGS  
DacbRegs  
DAC_REGS  
Cmpss1Regs  
Cmpss2Regs  
Cmpss3Regs  
Cmpss4Regs  
Cmpss5Regs  
Cmpss6Regs  
Cmpss7Regs  
Sdfm1Regs  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
CMPSS_REGS  
SDFM_REGS  
Copyright © 2021 Texas Instruments Incorporated  
186 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 8-5. Peripheral Registers Memory Map (continued)  
PIPELINE  
CLA  
ACCESS  
DMA  
ACCESS  
REGISTER  
STRUCTURE NAME  
START ADDRESS  
END ADDRESS  
PROTECTION(1)  
Peripheral Frame 2  
0x0000 6100  
0x0000 6110  
0x0000 6400  
0x0000 6600  
0x0000 6680  
Peripheral Frame 3  
0x0000 7400  
0x0000 7480  
0x0000 7500  
Peripheral Frame 4  
0x0000 7900  
0x0000 7920  
0x0000 7940  
0x0000 7980  
0x0000 7A00  
0x0000 7A80  
0x0000 7C00  
0x0000 7F00  
Peripheral Frame 5  
0x0005 D000  
0x0005 D200  
0x0005 D300  
0x0005 D500  
0x0005 D700  
Peripheral Frame 6  
0x0005 E800  
0x0005 E900  
0x0005 E908  
0x0005 E910  
0x0005 E918  
0x0005 E920  
0x0005 E928  
0x0005 E930  
0x0005 E938  
0x0005 E980  
0x0005 E990  
0x0005 E9A0  
0x0005 E9B0  
0x0005 F000  
0x0005 F040  
0x0005 F100  
0x0005 F140  
0x0005 F070  
0x0005 F080  
0x0005 F400  
0x0005 F4C0  
0x0005 F500  
0x0005 F800  
0x0005 FB00  
Peripheral Frame 7  
0x0004 8000  
0x0004 A000  
0x0005 E608  
SpiaRegs(4)  
SpibRegs(4)  
PmbusaRegs  
FsiTxaRegs  
FsiRxaRegs  
SPI_REGS  
SPI_REGS  
0x0000 610F  
0x0000 611F  
0x0000 641F  
0x0000 667F  
0x0000 66FF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PMBUS_REGS  
FSI_TX_REGS  
FSI_RX_REGS  
AdcaRegs  
AdcbRegs  
AdccRegs  
ADC_REGS  
ADC_REGS  
ADC_REGS  
0x0000 747F  
0x0000 74FF  
0x0000 757F  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
InputXbarRegs  
XbarRegs  
INPUT_XBAR_REGS  
XBAR_REGS  
0x0000 791F  
0x0000 793F  
0x0000 794F  
0x0000 79BF  
0x0000 7A3F  
0x0000 7ABF  
0x0000 7EFF  
0x0000 7FFF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
SyncSocRegs  
SYNC_SOC_REGS  
DmaClaSrcSelRegs  
EPwmXbarRegs  
OutputXbarRegs  
GpioCtrlRegs  
DMA_CLA_SRC_SEL_REGS  
EPWM_XBAR_REGS  
OUTPUT_XBAR_REGS  
GPIO_CTRL_REGS  
GPIO_DATA_REGS  
GpioDataRegs(3)  
Yes  
DevCfgRegs  
ClkCfgRegs  
DEV_CFG_REGS  
CLK_CFG_REGS  
0x0005 D17F  
0x0005 D2FF  
0x0005 D3FF  
0x0005 D6FF  
0x0005 D7FF  
Yes  
Yes  
Yes  
Yes  
Yes  
CpuSysRegs  
CPU_SYS_REGS  
PeriphAcRegs  
AnalogSubsysRegs  
PERIPH_AC_REGS  
ANALOG_SUBSYS_REGS  
EnhancedDebugGlobalRegs  
EnhancedDebugHWBP1Regs  
EnhancedDebugHWBP2Regs  
EnhancedDebugHWBP3Regs  
EnhancedDebugHWBP4Regs  
EnhancedDebugHWBP5Regs  
EnhancedDebugHWBP6Regs  
EnhancedDebugHWBP7Regs  
EnhancedDebugHWBP8Regs  
EnhancedDebugCounter1Regs  
EnhancedDebugCounter2Regs  
EnhancedDebugCounter3Regs  
EnhancedDebugCounter4Regs  
DcsmBank0Z1Regs  
ERAD_GLOBAL_REGS  
ERAD_HWBP_REGS  
0x0005 E80A  
0x0005 E907  
0x0005 E90F  
0x0005 E917  
0x0005 E91F  
0x0005 E927  
0x0005 E92F  
0x0005 E937  
0x0005 E93F  
0x0005 E98F  
0x0005 E99F  
0x0005 E9AF  
0x0005 E9BF  
0x0005 F022  
0x0005 F062  
0x0005 F122  
0x0005 F162  
0x0005 F07F  
0x0005 F087  
0x0005 F47F  
0x0005 F4FF  
0x0005 F53F  
0x0005 FAFF  
0x0005 FB3F  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_HWBP_REGS  
ERAD_COUNTER_REGS  
ERAD_COUNTER_REGS  
ERAD_COUNTER_REGS  
ERAD_COUNTER_REGS  
DCSM_BANK0_Z1_REGS  
DCSM_BANK0_Z2_REGS  
DCSM_BANK1_Z1_REGS  
DCSM_BANK1_Z2_REGS  
DCSM_COMMON_REGS  
DCSM_COMMON_REGS  
MEM_CFG_REGS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
DcsmBank0Z2Regs  
DcsmBank1Z1Regs  
DcsmBank1Z2Regs  
DcsmCommonRegs  
DcsmCommon2Regs  
MemCfgRegs  
AccessProtectionRegs  
ACCESS_PROTECTION_REGS  
MEMORY_ERROR_REGS  
FLASH_CTRL_REGS  
MemoryErrorRegs  
Flash0CtrlRegs  
Flash0EccRegs  
FLASH_ECC_REGS  
CanaRegs  
CanbRegs  
CAN_REGS  
CAN_REGS  
0x0004 87FF  
0x0004 A7FF  
0x0005 E609  
Yes  
Yes  
Yes  
Yes  
Yes  
RomPrefetchRegs  
ROM_PREFETCH_REGS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 187  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-5. Peripheral Registers Memory Map (continued)  
PIPELINE  
CLA  
ACCESS  
DMA  
ACCESS  
REGISTER  
STRUCTURE NAME  
START ADDRESS  
END ADDRESS  
PROTECTION(1)  
DccRegs  
DCC_REGS  
0x0005 E700  
Peripheral Frame 8  
0x0000 6A00  
0x0005 E73F  
Yes  
Yes  
LinaRegs  
LIN_REGS  
0x0000 6AFF  
Yes  
Yes  
Peripheral Frame 9  
0x0000 7000  
WdRegs(4)  
NmiIntruptRegs(4)  
XintRegs(4)  
WD_REGS  
NMI_INTRUPT_REGS  
XINT_REGS  
0x0000 703F  
0x0000 706F  
0x0000 707F  
0x0000 720F  
0x0000 721F  
0x0000 733F  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
0x0000 7060  
0x0000 7070  
SciaRegs(4)  
SCI_REGS  
0x0000 7200  
ScibRegs(4)  
SCI_REGS  
0x0000 7210  
I2caRegs(4)  
I2C_REGS  
0x0000 7300  
(1) The CPU (not applicable for CLA or DMA) contains a write-followed-by-read protection mode to ensure that any read operation that  
follows a write operation within a protected address range is executed as written by delaying the read operation until the write is  
initiated.  
(2) ADC result register has no arbitration. Each master can access any ADC result register without any arbitration.  
(3) Both CPU and CLA have their own copy of GPIO_DATA_REGS, and hence, no arbitration is required between CPU and CLA. For  
more details, see the General-Purpose Input/Output (GPIO) chapter of the TMS320F28004x Microcontrollers Technical Reference  
Manual.  
(4) Registers with 16-bit access only.  
Copyright © 2021 Texas Instruments Incorporated  
188 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
8.3.5 Memory Types  
8.3.5.1 Dedicated RAM (Mx RAM)  
The CPU subsystem has two dedicated ECC-capable RAM blocks: M0 and M1. These memories are small  
nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has access to them).  
8.3.5.2 Local Shared RAM (LSx RAM)  
RAM blocks which are dedicated to each subsystem and are accessible only to its CPU and CLA, are called  
local shared RAMs (LSx RAMs).  
All LSx RAM blocks have parity. These memories are secure and have the access protection (CPU write/CPU  
fetch) feature.  
By default, these memories are dedicated only to the CPU, and the user could choose to share these memories  
with the CLA by configuring the MSEL_LSx bit field in the LSxMSEL registers appropriately (see Table 8-6).  
Table 8-6. Master Access for LSx RAM  
(With Assumption That all Other Access Protections are Disabled)  
CLA1 ALLOWED  
MSEL_LSx  
CLAPGM_LSx  
CPU ALLOWED ACCESS  
COMMENT  
ACCESS  
LSx memory is configured  
as CPU dedicated RAM.  
00  
X
All  
Data Read  
Data Write  
Emulation Data Read  
Emulation Data Write  
LSx memory is shared  
between CPU and CLA1.  
01  
01  
0
1
All  
Fetch Only  
Emulation Program Read  
Emulation Program Write  
Emulation Read  
Emulation Write  
LSx memory is CLA1  
program memory.  
8.3.5.3 Global Shared RAM (GSx RAM)  
RAM blocks which are accessible from both the CPU and DMA are called global shared RAMs (GSx RAMs).  
Both the CPU and DMA have full read and write access to these memories. Table 8-7 shows the features of the  
GSx RAM.  
Table 8-7. Global Shared RAM  
CPU (FETCH)  
CPU (READ)  
Yes  
CPU (WRITE)  
CPU.DMA (READ)  
CPU.DMA (WRITE)  
Yes  
Yes  
Yes  
Yes  
All GSx RAM blocks have parity.  
The GSx RAMs have access protection (CPU write/CPU fetch/DMA write).  
8.3.5.4 CLA Message RAM (CLA MSGRAM)  
These RAM blocks can be used to share data between the CPU and CLA. The CLA has read and write access  
to the "CLA to CPU MSGRAM." The CPU has read and write access to the "CPU to CLA MSGRAM." The CPU  
and CLA both have read access to both MSGRAMs.  
This RAM has parity.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 189  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
8.4 Identification  
Table 8-8 lists the Device Identification Registers. Additional information on device identification can be found in  
the TMS320F28004x Microcontrollers Technical Reference Manual. See the register descriptions of PARTIDH  
and PARTIDL for identification of production status (TMX or TMS); availability of InstaSPIN-FOC; and other  
device information.  
Table 8-8. Device Identification Registers  
NAME  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
Device part identification number  
TMS320F280049  
TMS320F280049C  
TMS320F280048  
TMS320F280048C  
TMS320F280045  
TMS320F280041  
TMS320F280041C  
TMS320F280040  
TMS320F280040C  
Silicon revision number  
Revision 0  
0x01FF 0500  
0x01FF 0500  
0x01FE 0500  
0x01FE 0500  
0x01FB 0500  
0x01F7 0500  
0x01F7 0500  
0x01F6 0500  
0x01F6 0500  
PARTIDH  
0x0005 D00A  
2
0x0000 0000  
0x0000 0001  
0x0000 0002  
REVID  
0x0005 D00C  
0x0007 03CC  
2
2
Revision A  
Revision B  
Unique identification number. This number is different on each  
individual device with the same PARTIDH. This unique number  
can be used as a serial number in the application. This number  
is present only on TMS Revision B devices.  
UID_UNIQUE  
Copyright © 2021 Texas Instruments Incorporated  
190 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
8.5 Bus Architecture – Peripheral Connectivity  
Table 8-9 lists a broad view of the peripheral and configuration register accessibility from each bus master.  
Table 8-9. Bus Master Peripheral Access  
PERIPHERALS  
DMA  
CLA  
CPU  
SYSTEM PERIPHERALS  
CPU Timers  
Y
Y
Y
Y
Y
Y
Y
Y
Y
System Configuration (WD, NMIWD, LPM, Peripheral Clock Gating)  
Device Capability, Peripheral Reset  
Clock and PLL Configuration  
Flash Configuration  
Reset Configuration  
GPIO Pin Mapping and Configuration  
GPIO Data(2)  
Y
DMA and CLA Trigger Source Select  
CONTROL PERIPHERALS  
ePWM/HRPWM  
eCAP/HRCAP  
eQEP(1)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
SDFM  
ANALOG PERIPHERALS  
Analog System Control  
ADC Configuration  
ADC Result(3)  
CMPSS(1)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
DAC(1)  
PGA(1)  
COMMUNICATION PERIPHERALS  
CAN  
SPI  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
I2C  
PMBus  
SCI  
Y
LIN  
Y
Y
Y
Y
FSI  
(1) These modules are accessible from DMA but cannot trigger a DMA transfer.  
(2) The GPIO Data Registers are unique for the CPU and CLA. When the GPIO Pin Mapping Register is configured to assign a GPIO to a  
particular master, the respective GPIO Data Register will control the GPIO. See the General-Purpose Input/Output (GPIO) chapter of  
the TMS320F28004x Microcontrollers Technical Reference Manual for more details.  
(3) ADC result registers are duplicated for each master. This allows them to be read with 0-wait states with no arbitration from any or all  
masters.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 191  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
8.6 C28x Processor  
The CPU is a 32-bit fixed-point processor which draws from the best features of digital signal processing;  
reduced instruction set computing (RISC); and microcontroller architectures, firmware, and tool sets.  
The features include:  
CPU – modified Harvard architecture and circular addressing. The modified Harvard architecture of the CPU  
enables instruction and data fetches to be performed in parallel. The CPU can read instructions and data  
while it writes data simultaneously to maintain the single-cycle instruction operation across the pipeline. The  
CPU does this over six separate address and data buses.  
RISC – single-cycle instruction execution, register-to-register operations, and modified Harvard architecture.  
Microcontroller – ease of use through an intuitive instruction set, byte packing and unpacking, and bit  
manipulation.  
For more information on CPU architecture and instruction set, see the TMS320C28x CPU and Instruction Set  
Reference Guide. For more information on the C28x Floating-Point Unit (FPU), see the TMS320C28x Extended  
Instruction Sets Technical Reference Manual. All of the features of the C28x documented in the TMS320C28x  
CPU and Instruction Set Reference Guide apply to the C28x+VCU. All features documented in the TMS320C28x  
Extended Instruction Sets Technical Reference Manual apply to the C28x+FPU+VCU. A brief overview of the  
FPU, TMU, and VCU-Type 0 is provided here.  
An overview of the VCU-I instructions can be found in the TMS320C28x Extended Instruction Sets Technical  
Reference Manual.  
8.6.1 Embedded Real-Time Analysis and Diagnostic (ERAD)  
The ERAD module enhances the debug and system-analysis capabilities of the device. The debug and system-  
analysis enhancements provided by the ERAD module is done outside of the CPU. The ERAD module consists  
of the Enhanced Bus Comparator units and the Benchmark System Event Counter units. The Enhanced Bus  
Comparator units are used to generate hardware breakpoints, hardware watch points, and other output events.  
The Benchmark System Event Counter units are used to analyze and profile the system. The ERAD module is  
accessible by the debugger and by the application software, which significantly increases the debug capabilities  
of many real-time systems, especially in situations where debuggers are not connected. In the TMS320F28004x  
devices, the ERAD module contains eight Enhanced Bus Comparator units and four Benchmark System Event  
Counter units.  
8.6.2 Floating-Point Unit (FPU)  
The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU by  
adding registers and instructions to support IEEE single-precision floating-point operations.  
Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point unit  
registers. The additional floating-point unit registers are the following:  
Eight floating-point result registers, RnH (where n = 0–7)  
Floating-point Status Register (STF)  
Repeat Block Register (RB)  
All of the floating-point registers, except the RB, are shadowed. This shadowing can be used in high-priority  
interrupts for fast context save and restore of the floating-point registers.  
Copyright © 2021 Texas Instruments Incorporated  
192 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
8.6.3 Trigonometric Math Unit (TMU)  
The TMU extends the capabilities of a C28x+FPU by adding instructions and leveraging existing FPU  
instructions to speed up the execution of common trigonometric and arithmetic operations listed in Table 8-10.  
Table 8-10. TMU Supported Instructions  
INSTRUCTIONS  
MPY2PIF32 RaH,RbH  
C EQUIVALENT OPERATION  
PIPELINE CYCLES  
a = b * 2pi  
a = b / 2pi  
a = b/c  
2/3  
2/3  
5
DIV2PIF32 RaH,RbH  
DIVF32 RaH,RbH,RcH  
SQRTF32 RaH,RbH  
a = sqrt(b)  
5
SINPUF32 RaH,RbH  
COSPUF32 RaH,RbH  
ATANPUF32 RaH,RbH  
QUADF32 RaH,RbH,RcH,RdH  
a = sin(b*2pi)  
4
a = cos(b*2pi)  
4
a = atan(b)/2pi  
4
Operation to assist in calculating ATANPU2  
5
No changes have been made to existing instructions, pipeline or memory bus architecture. All TMU instructions  
use the existing FPU register set (R0H to R7H) to carry out their operations.  
8.6.4 Viterbi, Complex Math and CRC Unit (VCU-I)  
The C28x with VCU (C28x+VCU) processor extends the capabilities of the C28x fixed-point or floating-point  
CPU by adding registers and instructions to support the following algorithm types:  
Viterbi decoding  
Viterbi decoding is commonly used in baseband communications applications. The viterbi decode algorithm  
consists of three main parts: branch metric calculations, compare-select (viterbi butterfly), and a traceback  
operation. Table 8-11 lists a summary of the VCU-I performance for each of these operations.  
Table 8-11. Viterbi Decode Performance  
VITERBI OPERATION  
VCU CYCLES  
Branch Metric Calculation (code rate = 1/2)  
Branch Metric Calculation (code rate = 1/3)  
Viterbi Butterfly (add-compare-select)  
Traceback per Stage  
1
2p  
2 (1)  
3 (2)  
(1) C28x CPU takes 15 cycles per butterfly.  
(2) C28x CPU takes 22 cycles per stage.  
Cyclic redundancy check (CRC)  
CRC algorithms provide a straightforward method for verifying data integrity over large data blocks,  
communication packets, or code sections. The C28x+VCU can perform 8-, 16-, and 32-bit CRCs. For  
example, the VCU can compute the CRC for a block length of 10 bytes in 10 cycles. A CRC result register  
contains the current CRC which is updated whenever a CRC instruction is executed.  
Complex math  
– Complex math is used in many applications; a few of which are:  
– Fast fourier transform (FFT)  
The complex FFT is used in spread spectrum communications, as well as many signal processing  
algorithms.  
– Complex filters  
Complex filters improve data reliability, transmission distance, and power efficiency. The C28x+VCU can  
perform a complex I and Q multiply with coefficients (four multiplies) in a single cycle. In addition, the C28x  
+VCU can read/write the real and imaginary parts of 16-bit complex data to memory in a single cycle.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 193  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-12 lists a summary of a few complex math operations enabled by the VCU.  
Table 8-12. Complex Math Performance  
COMPLEX MATH OPERATION  
Add or Subtract  
VCU CYCLES  
NOTES  
32 ± 32 = 32-bit (Useful for filters)  
16 ± 32 = 15-bit (Useful for FFT)  
16 × 16 = 32-bit  
1
1
Add or Subtract  
Multiply  
2p  
Multiply and Accumulate (MAC)  
RPT MAC  
2p  
32 + 32 = 32-bit, 16 × 16 = 32-bit  
2p+N  
Repeat MAC. Single cycle after the first operation.  
Copyright © 2021 Texas Instruments Incorporated  
194 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
8.7 Control Law Accelerator (CLA)  
The CLA Type-2 is an independent, fully programmable, 32-bit floating-point math processor that brings  
concurrent control-loop execution to the C28x family. The low interrupt-latency of the CLA allows it to read ADC  
samples "just-in-time." This significantly reduces the ADC sample to output delay to enable faster system  
response and higher MHz control loops. By using the CLA to service time-critical control loops, the main CPU is  
free to perform other system tasks such as communications and diagnostics.  
The control law accelerator extends the capabilities of the C28x CPU by adding parallel processing. Time-critical  
control loops serviced by the CLA can achieve low ADC sample to output delay. Thus, the CLA enables faster  
system response and higher frequency control loops. Using the CLA for time-critical tasks frees up the main  
CPU to perform other system and communication functions concurrently.  
The following is a list of major features of the CLA:  
Clocked at the same rate as the main CPU (SYSCLKOUT).  
An independent architecture allowing CLA algorithm execution independent of the main C28x CPU.  
– Complete bus architecture:  
Program Address Bus (PAB) and Program Data Bus (PDB)  
Data Read Address Bus (DRAB), Data Read Data Bus (DRDB), Data Write Address Bus (DWAB), and  
Data Write Data Bus (DWDB)  
– Independent 8-stage pipeline.  
– 16-bit program counter (MPC)  
– Four 32-bit result registers (MR0 to MR3)  
– Two 16-bit auxiliary registers (MAR0, MAR1)  
– Status register (MSTF)  
Instruction set includes:  
– IEEE single-precision (32-bit) floating-point math operations  
– Floating-point math with parallel load or store  
– Floating-point multiply with parallel add or subtract  
– 1/X and 1/sqrt(X) estimations  
– Data type conversions  
– Conditional branch and call  
– Data load/store operations  
The CLA program code can consist of up to eight tasks or interrupt service routines, or seven tasks and a  
main background task.  
– The start address of each task is specified by the MVECT registers.  
– No limit on task size as long as the tasks fit within the configurable CLA program memory space.  
– One task is serviced at a time until its completion. There is no nesting of tasks.  
– Upon task completion a task-specific interrupt is flagged within the PIE.  
– When a task finishes the next highest-priority pending task is automatically started.  
– The Type-2 CLA can have a main task that runs continuously in the background, while other high-priority  
events trigger a foreground task.  
Task trigger mechanisms:  
– C28x CPU through the IACK instruction  
Task1 to Task8: up to 256 possible trigger sources from peripherals connected to the shared bus on which  
the CLA assumes secondary ownership.  
Task8 can be set to be the background task, while Tasks 1 to 7 take peripheral triggers.  
Memory and Shared Peripherals:  
– Two dedicated message RAMs for communication between the CLA and the main CPU.  
– The C28x CPU can map CLA program and data memory to the main CPU space or CLA space.  
Figure 8-2 shows the CLA block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 195  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
CLA Control  
Register Set  
MIFR(16)  
MPERINT1  
to  
MPERINT8  
CLA_INT1  
to  
CLA_INT8  
MIOVF(16)  
MICLR(16)  
From Shared  
Peripherals  
MICLROVF(16)  
MIFRC(16)  
C28x  
CPU  
PIE  
INT11  
INT12  
MIER(16)  
MIRUN(16)  
LVF  
LUF  
MCTLBGRND(16)  
MSTSBGRND(16)  
CLA1SOFTINTEN(16)  
CLA1INTFRC(16)  
SYSCLK  
CLA Clock Enable  
SYSRS  
MVECT1(16)  
MVECT2(16)  
MVECT3(16)  
MVECT4(16)  
MVECT5(16)  
MVECT6(16)  
MVECT7(16)  
MVECT8(16)  
CPU Read/Write Data Bus  
CLA Program  
Memory (LSx)  
CLA Program Bus  
LSxMSEL[MSEL_LSx]  
LSxCLAPGM[CLAPGM_LSx]  
MVECTBGRND(16)  
MVECTBGRNDACTIVE(16)  
MPSACTL(16)  
MPSA1(32)  
CLA Data  
Memory (LSx)  
MPSA2(32)  
MCTL(16)  
CLA Message  
RAMs  
CLA Execution  
Register Set  
MPC(16)  
MSTF(32)  
MR0(32)  
MR1(32)  
MR2(32)  
MR3(32)  
Shared  
Peripherals  
MEALLOW  
MAR0(16)  
MAR1(16)  
CPU Read Data Bus  
Figure 8-2. CLA Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
196 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
8.8 Direct Memory Access (DMA)  
The DMA module provides a hardware method of transferring data between peripherals and/or memory without  
intervention from the CPU, thereby freeing up bandwidth for other system functions. Additionally, the DMA has  
the capability to orthogonally rearrange the data as it is transferred as well as “ping-pong” data between buffers.  
These features are useful for structuring data into blocks for optimal CPU processing.  
DMA features include:  
Six channels with independent PIE interrupts  
Peripheral interrupt trigger sources  
– ADC interrupts and EVT signals  
– External Interrupts  
– ePWM SOC signals  
– CPU timers  
– eCAP  
– Sigma-Delta Filter Module  
– SPI transmit and receive  
– CAN transmit and receive  
– LIN transmit and receive  
Data sources and destinations:  
– GSx RAM  
– ADC result registers  
– Control peripheral registers (ePWM, eQEP, eCAP, SDFM)  
– DAC and PGA registers  
– SPI, LIN, CAN, and PMBus registers  
Word Size: 16-bit or 32-bit (SPI limited to 16-bit)  
Throughput: Four cycles per word without arbitration  
Figure 8-3 shows a device-level block diagram of the DMA.  
Global Shared  
(GSx) RAMs  
ADC  
WRAPPER  
ADC  
RESULTS  
XINT  
TIMER  
CAN  
LIN  
C28x Bus  
DMA Bus  
TINT (0-2)  
XINT (1-5)  
DMA Trigger  
Source Selection  
ADCx.INT(1-4), ADCx.EVT  
LINATXDMA, LINARXDMA  
CANxIF(1-3)  
DMACHSRCSEL1.CHx  
DMACHSRCSEL2.CHx  
CHx.MODE.PERINTSEL  
(x = 1 to 6)  
DMA  
C28x  
ECAP(1-7)DMA  
SD1DRINT (1-4)  
EPWM(1-8).SOCA, EPWM(1-8).SOCB  
SPITXDMA(A-B), SPIRXDMA(A-B)  
PIE  
FSITXADMA, FSIRXADMA  
DMA Trigger Source  
CPU and DMA Data Path  
FSI  
eCAP  
SDFM  
EPWM  
SPI  
PMBUS  
Figure 8-3. DMA Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 197  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
8.9 Boot ROM and Peripheral Booting  
The device boot ROM contains bootloading software. The device ROM has an internal bootloader (programmed  
by TI) that is executed when the device is powered ON, and each time the device is reset. The bootloader is  
used as an initial program to load the application on to device RAM through any of the bootable peripherals, or it  
is configured to start the application in flash, if any.  
Table 8-13 lists the default boot mode options. Users have the option to customize the boot modes supported as  
well as the boot mode select pins.  
Table 8-13. Device Default Boot Modes  
GPIO24  
GPIO32  
BOOT MODE  
(DEFAULT BOOT MODE SELECT PIN 1)  
(DEFAULT BOOT MODE SELECT PIN 0)  
Parallel IO  
SCI/Wait boot  
CAN  
0
0
1
1
0
1
0
1
Flash  
Table 8-14 lists the possible boot modes supported on the device. The default boot mode pins are GPIO24 (boot  
mode pin 1) and GPIO32 (boot mode pin 0). Users may choose to have weak pullups for boot mode pins if they  
use a peripheral on these pins as well, so the pullups can be overdriven. On this device, customers can change  
the factory default boot mode pins by programming user-configurable Dual Code Security Module (DCSM) OTP  
locations.  
Table 8-14. All Available Boot Modes  
BOOT MODE NUMBER  
BOOT MODE  
Parallel IO  
SCI/Wait boot  
CAN  
0
1
2
3
4
5
6
7
8
Flash  
Wait  
RAM  
SPI Master  
I2C Master  
PLC  
Note  
All the peripheral boot modes supported use the first instance of the peripheral module (SCIA, SPIA,  
I2CA, CANA, and so forth). Whenever these boot modes are referred to in this section, such as SCI  
boot, it is actually referring to the first module instance, meaning SCI boot on the SCIA port. The same  
applies to the other peripheral boots.  
Copyright © 2021 Texas Instruments Incorporated  
198 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
8.9.1 Configuring Alternate Boot Mode Select Pins  
This section explains how the boot mode select pins can be customized by the user, by programming the  
BOOTPIN_CONFIG location in user-configurable DCSM OTP. The location in user DCSM OTP is Z1-OTP-  
BOOTPIN-CONFIG. When debugging, EMU-BOOTPIN-CONFIG is the emulation equivalent of Z1-OTP-  
BOOTPIN-CONFIG, and can be programmed to experiment with different boot modes without writing to OTP.  
The device can be programmed to use 0, 1, 2, or 3 boot mode select pins as needed.  
Table 8-15. BOOTPIN_CONFIG Bit Fields  
BIT  
NAME  
DESCRIPTION  
Write 0x5A to these 8 bits to tell the boot ROM code that the bits in this  
register are valid  
31–24  
Key  
23–16  
15–8  
Boot Mode Select Pin 2 (BMSP2)  
Boot Mode Select Pin 1 (BMSP1)  
See BMPS0 description  
See BMSP0 description  
Set to the GPIO pin to be used during boot (up to 255).  
0x0 = GPIO0; 0x01 = GPIO1 and so on  
0xFF is invalid and selects the factory default chosen BMSP0, if all  
other BMSPs are also set to 0xFF.  
7–0  
Boot Mode Select Pin 0 (BMSP0)  
If any other BMSPs are not set to 0xFF, then setting a BMSP to 0xFF  
will disable that particular BMSP.  
Note  
The following GPIOs cannot be used as a BMSP. If selected for a particular BMSP, the boot ROM  
automatically selects the factory default GPIO (the factory default for BMSP2 is 0xFF, which disables  
the BMSP).  
GPIO 20 to 23  
GPIO 36  
GPIO 38  
GPIO 60 to 223  
Table 8-16. Stand-alone Boot Mode Select Pin Decoding  
BOOTPIN_CONFIG  
KEY  
BMSP0  
Don’t Care  
0xFF  
BMSP1  
Don’t Care  
0xFF  
BMSP2  
Don’t Care  
0xFF  
REALIZED BOOT MODE  
Boot as defined by the factory default BMSPs (GPIO24,  
GPIO32)  
!= 0x5A  
Boot as defined in the boot table for boot mode 0  
(All BMSPs disabled)  
Boot as defined by the value of BMSP0  
(BMSP1 and BMSP2 disabled)  
Valid GPIO  
0xFF  
0xFF  
0xFF  
Boot as defined by the value of BMSP1  
(BMSP0 and BMSP2 disabled)  
Valid GPIO  
0xFF  
0xFF  
Boot as defined by the value of BMSP2  
(BMSP0 and BMSP1 disabled)  
0xFF  
Valid GPIO  
0xFF  
= 0x5A  
Boot as defined by the values of BMSP0 and BMSP1  
(BMSP2 disabled)  
Valid GPIO  
Valid GPIO  
Valid GPIO  
0xFF  
Boot as defined by the values of BMSP0 and BMSP2  
(BMSP1 disabled)  
Valid GPIO  
Boot as defined by the values of BMSP1 and BMSP2  
(BMSP0 disabled)  
0xFF  
Valid GPIO  
Valid GPIO  
Valid GPIO  
Valid GPIO  
Valid GPIO  
Boot as defined by the values of BMSP0, BMPS1, and BMSP2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 199  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.2 Configuring Alternate Boot Mode Options  
This section explains how to configure the boot definition table, BOOTDEF, for the device and the associated  
boot options. The 64-bit location is in user-configurable DCSM OTP in the Z1-OTP-BOOTDEF-LOW and Z1-  
OTP-BOOTDEF-HIGH locations. When debugging, EMU-BOOTDEF-LOW and EMU-BOOTDEF-HIGH are the  
emulation equivalents of Z1-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH, and can be programmed to  
experiment with different boot mode options without writing to OTP. The range of customization to the boot  
definition table depends on how many boot mode select pins are being used. For examples on how to use the  
BOOTPIN_CONFIG and BOOTDEF values, see the Boot Mode Example Use Cases section of the ROM Code  
and Peripheral Booting chapter in the TMS320F28004x Microcontrollers Technical Reference Manual.  
Table 8-17. BOOTDEF Bit Fields  
BOOTDEF NAME  
BYTE POSITION  
NAME  
DESCRIPTION  
Set the boot mode and boot mode options. This can  
include changing the GPIOs for a particular boot  
peripheral or specifying a different flash entry point.  
Any unsupported boot mode will cause the device to  
reset.  
BOOT_DEF0  
7–0  
BOOT_DEF0 Mode and Options  
See GPIO Assignments for valid BOOTDEF values.  
BOOT_DEF1  
BOOT_DEF2  
BOOT_DEF3  
BOOT_DEF4  
BOOT_DEF5  
BOOT_DEF6  
BOOT_DEF7  
15–8  
23–16  
31–24  
39–32  
47–40  
55–48  
63–56  
BOOT_DEF1 Mode and Options  
BOOT_DEF2 Mode and Options  
BOOT_DEF3 Mode and Options  
BOOT_DEF4 Mode and Options  
BOOT_DEF5 Mode and Options  
BOOT_DEF6 Mode and Options  
BOOT_DEF7 Mode and Options  
Refer to BOOT_DEF0 descriptions.  
8.9.3 GPIO Assignments  
This section details the GPIOs and boot options used for each boot mode set in BOOT_DEFx located at Z1-  
OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH. See Configuring Alternate Boot Mode Select Pins on how  
to manipulate BOOT_DEFx. When selecting a boot mode option, verify that the necessary pins are available in  
the pin mux options for the specific device package being used.  
Table 8-18. SCI Boot Options  
OPTION  
BOOTDEFx VALUE  
SCIATX GPIO  
SCIARX GPIO  
GPIO28  
0 (default)  
0x01  
0x21  
0x41  
0x61  
0x81  
GPIO29  
1
2
3
4
GPIO16  
GPIO17  
GPIO8  
GPIO9  
GPIO48  
GPIO49  
GPIO24  
GPIO25  
Note  
Pullups are enabled on the SCIATX and SCIARX pins.  
Copyright © 2021 Texas Instruments Incorporated  
200 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Table 8-19. CAN Boot Options  
OPTION  
BOOTDEFx VALUE  
CANTXA GPIO  
CANRXA GPIO  
GPIO33  
0 (default)  
0x02  
0x22  
0x42  
0x62  
GPIO32  
1
2
3
GPIO4  
GPIO5  
GPIO31  
GPIO30  
GPIO37  
GPIO35  
Note  
Pullups are enabled on the CANTXA and SCIARX pins.  
Table 8-20. Flash Boot Options  
FLASH ENTRY POINT  
(ADDRESS)  
OPTION  
BOOTDEFx VALUE  
FLASH BANK, SECTOR  
Bank 0, Sector 0  
Flash – Default Option 1  
(0x00080000)  
0 (default)  
0x03  
0x23  
0x43  
0x63  
Flash – Option 2  
(0x0008EFF0)  
1
2
3
Bank 0, Sector 14  
Bank 1, Sector 0  
Flash – Option 3  
(0x00090000)  
Flash – Option 4  
(0x0009EFF0)  
Bank 1, Sector 14  
Table 8-21. Wait Boot Options  
OPTION  
BOOTDEFx VALUE  
WATCHDOG STATUS  
Enabled  
0
1
0x04  
0x24  
Disabled  
Table 8-22. SPI Boot Options  
OPTION  
BOOTDEFx VALUE  
SPIA_SIMO  
SPIA_SOMI  
SPIA_CLK  
SPIA_STE  
GPIO11  
GPIO57  
GPIO57  
GPIO11  
1
2
3
4
0x26  
0x46  
0x66  
0x86  
GPIO8  
GPIO10  
GPIO9  
GPIO56  
GPIO56  
GPIO9  
GPIO54  
GPIO16  
GPIO8  
GPIO55  
GPIO17  
GPIO17  
Note  
Pullups are enabled on the SPIA_SIMO, SPIA_SOMI, SPIA_CLK, and SPIA_STE pins.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 201  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-23. I2C Boot Options  
OPTION  
BOOTDEFx VALUE  
SDAA GPIO  
SCLA GPIO  
GPIO33  
0
1
2
0x07  
0x47  
0x67  
GPIO32  
GPIO26  
GPIO27  
GPIO42  
GPIO43  
Note  
Pullups are enabled on the SDAA and SCLA pins.  
Table 8-24. Parallel Boot Options  
OPTION  
BOOTDEFx VALUE  
D0 to D7 GPIO  
DSP CONTROL GPIO  
HOST CONTROL GPIO  
0 (default)  
0x00  
GPIO0 to GPIO7  
GPIO16  
GPIO11  
Note  
Pullups are enabled on GPIO0 to GPIO7.  
Table 8-25. RAM Boot Options  
RAM ENTRY POINT  
OPTION  
BOOTDEFx VALUE  
ADDRESS  
0
0x05  
0x00000000  
Copyright © 2021 Texas Instruments Incorporated  
202 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
8.10 Dual Code Security Module  
The dual code security module (DCSM) prevents access to on-chip secure memories. The term “secure” means  
access to secure memories and resources is blocked. The term “unsecure” means access is allowed; for  
example, through a debugging tool such as Code Composer Studio(CSS).  
The code security mechanism offers protection for two zones, Zone 1 (Z1) and Zone 2 (Z2). The security  
implementation for both the zones is identical. Each zone has its own dedicated secure resource (OTP memory  
and secure ROM) and allocated secure resource (CLA, LSx RAM, and flash sectors).  
The security of each zone is ensured by its own 128-bit password (CSM password). The password for each zone  
is stored in an OTP memory location based on a zone-specific link pointer. The link pointer value can be  
changed to program a different set of security settings (including passwords) in OTP.  
Note  
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO  
PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY AND IS  
WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD TERMS  
AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR THE WARRANTY  
PERIOD APPLICABLE FOR THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY  
CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH  
ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR  
OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY  
OR FITNESS FOR A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,  
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF  
YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE  
POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED  
TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR  
OTHER ECONOMIC LOSS.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 203  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
8.11 Watchdog  
The watchdog module is the same as the one on previous TMS320C2000 devices, but with an optional lower  
limit on the time between software resets of the counter. This windowed countdown is disabled by default, so the  
watchdog is fully backward-compatible.  
The watchdog generates either a reset or an interrupt. It is clocked from the internal oscillator with a selectable  
frequency divider.  
Figure 8-4 shows the various functional blocks within the watchdog module.  
WDCR.WDPRECLKDIV  
WDCR.WDPS  
WDCR.WDDIS  
WDCNTR  
8-bit  
Watchdog  
Counter  
WDCLK  
(INTOSC1)  
WDCLK  
Divider  
Watchdog  
Prescaler  
Overflow  
1-count  
delay  
SYSRSn  
Clear  
Count  
WDWCR.MIN  
WDKEY (7:0)  
Watchdog  
Window  
Detector  
Out of Window  
Good Key  
Watchdog  
Key Detector  
55 + AA  
WDCR(WDCHK(2:0))  
Bad Key  
WDRSTn  
WDINTn  
Generate  
512-WDCLK  
Output Pulse  
1
0
1
Watchdog Time-out  
SCSR.WDENINT  
Figure 8-4. Windowed Watchdog  
Copyright © 2021 Texas Instruments Incorporated  
204 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
8.12 Configurable Logic Block (CLB)  
The C2000 configurable logic block (CLB) is a collection of blocks that can be interconnected using software to  
implement custom digital logic functions or enhance existing on-chip peripherals. The CLB is able to enhance  
existing peripherals through a set of crossbar interconnections, which provide a high level of connectivity to  
existing control peripherals such as enhanced pulse width modulators (ePWM), enhanced capture modules  
(eCAP), and enhanced quadrature encoder pulse modules (eQEP). The crossbars also allow the CLB to be  
connected to external GPIO pins. In this way, the CLB can be configured to interact with device peripherals to  
perform small logical functions such as comparators, or to implement custom serial data exchange protocols.  
Through the CLB, functions that would otherwise be accomplished using external logic devices can now be  
implemented inside the MCU.  
The CLB peripheral is configured through the CLB tool. For more information on the CLB tool, available  
examples, application reports and users guide, please refer to the following location in your C2000Ware package  
(C2000Ware_2_00_00_03 and higher):  
C2000WARE_INSTALL_LOCATION\utilities\clb_tool\clb_syscfg\doc  
CLB Tool User Guide  
How to Design with the C2000™ CLB Application Report  
How to Migrate Custom Logic From an FPGA/CPLD to C2000™ CLB Application Report  
The CLB module and its interconnects are shown in Figure 8-5.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 205  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 8-5. CLB Overview  
Absolute encoder protocol interfaces are now provided as Position Manager solutions in the C2000Ware  
MotorControl SDK. Configuration files, application programmer interface (API), and use examples for such  
solutions are provided with C2000Ware MotorControl SDK. In some solutions, the TI-configured CLB is used  
with other on-chip resources, such as the SPI port or the C28x CPU, to perform more complex functionality. See  
Table 5-1 for the devices that support the CLB feature.  
Copyright © 2021 Texas Instruments Incorporated  
206 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
9 Applications, Implementation, and Layout  
Note  
Information in the following Applications section is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI's customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 TI Reference Design  
The TI Reference Design Library is a robust reference design library spanning analog, embedded processor,  
and connectivity. Created by TI experts to help you jump start your system design, all reference designs include  
schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download  
designs at Select TI reference designs.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 207  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
10 Device and Documentation Support  
10.1 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320  
MCU devices and support tools. Each TMS320MCU commercial family member has one of two prefixes: TMX  
or TMS (for example, TMS320F280049). Texas Instruments recommends two of three possible prefix  
designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product  
development from engineering prototypes (with TMX for devices and TMDX for tools) through fully qualified  
production devices and tools (with TMS for devices and TMDS for tools).  
TMX  
TMS  
Experimental device that is not necessarily representative of the final device's electrical specifications  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX  
TMDS  
Development-support product that has not yet completed Texas Instruments internal qualification testing  
Fully qualified development-support product  
TMX devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX) have a greater failure rate than the standard production devices.  
Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, PZ) and temperature range (for example, S).  
For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI  
sales representative.  
For additional description of the device nomenclature markings on the die, see the TMS320F28004x MCUs  
Silicon Errata.  
Copyright © 2021 Texas Instruments Incorporated  
208 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
A. Prefix X is used in orderable part numbers.  
Figure 10-1. Device Nomenclature  
10.2 Markings  
Figure 10-2 and Figure 10-3 provide examples of the F28004x device markings and define each of the markings.  
The device revision can be determined by the symbols marked on the top of the package as shown in Figure  
10-2. Some prototype devices may have markings different from those illustrated.  
980  
F280049PZS  
980  
F280049PMS  
$$#−YMLLLLS  
G4  
$$#−YMLLLLS  
G4  
Package  
Pin 1  
Package  
Pin 1  
YMLLLLS  
Lot Trace Code  
=
YM  
LLLL  
S
980  
$$  
2-Digit Year/Month Code  
Assembly Lot  
Assembly Site Code  
TI E.I.A. Code  
Wafer Fab Code (one or two characters) as applicable  
Silicon Revision Code  
=
=
=
=
=
=
#
G4  
Green (Low Halogen and RoHS-compliant)  
=
Figure 10-2. Examples of Device Markings for PM and PZ Packages  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 209  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
YMLLLLS  
Lot Trace Code  
=
F280049  
YM  
LLLL  
S
2-Digit Year/Month Code  
Assembly Lot  
Assembly Site Code  
Wafer Fab Code (one or two characters) as applicable  
Silicon Revision Code  
=
=
=
=
=
RSHS  
$$#−YMLLLLS  
$$  
#
TI  
G4  
G4  
Green (Low Halogen and RoHS-compliant)  
=
Package  
Pin 1  
Figure 10-3. Example of Device Markings for RSH Package  
Table 10-1. Determining Silicon Revision From Lot Trace Code  
REVID(1)  
Address: 0x5D00C  
SILICON REVISION CODE  
SILICON REVISION  
COMMENTS  
Blank  
A
0
0x0000 0000  
This silicon revision is available as TMX.  
This silicon revision is available as TMX.  
A
0x0000 0001  
This silicon revision is available as TMX and  
TMS.  
B
B
0x0000 0002  
(1) Silicon Revision ID  
10.3 Tools and Software  
TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of  
the device, generate code, and develop solutions follow. To view all available tools and software for C2000 real-  
time control MCUs, visit the C2000 real-time control MCUs – Design & development page.  
Development Tools  
F280049C controlCARD Evaluation Module  
The F280049C controlCARD Evaluation Module is an HSEC180 controlCARD-based evaluation and  
development tool for the C2000 F28004x series of microcontroller products. controlCARDs are ideal to use for  
initial evaluation and system prototyping. controlCARDs are complete board-level modules that utilize one of two  
standard form factors (100-pin DIMM or 180-pin HSEC) to provide a low-profile single-board controller solution.  
For first evaluation, controlCARDs are typically purchased bundled with a baseboard or bundled in an  
application kit.  
Software Tools  
C2000Ware for C2000 MCUs  
C2000Ware for C2000™ microcontrollers is a cohesive set of development software and documentation  
designed to minimize software development time. From device-specific drivers and libraries to device peripheral  
examples, C2000Ware provides a solid foundation to begin development and evaluation of your product.  
Code Composer Studio (CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and  
Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug  
embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking the user  
through each step of the application development flow. Familiar tools and interfaces allow users to get started  
faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework  
with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development  
environment for embedded developers.  
Copyright © 2021 Texas Instruments Incorporated  
210 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
Pin Mux Tool  
The Pin Mux Utility is a software tool which provides a Graphical User Interface for configuring pin multiplexing  
settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs.  
F021 Flash Application Programming Interface (API)  
The F021 Flash Application Programming Interface (API) provides a software library of functions to program,  
erase, and verify F021 on-chip Flash memory.  
UniFlash Standalone Flash Tool  
UniFlash is a standalone tool used to program on-chip flash memory through a GUI, command line, or scripting  
interface.  
Models  
Various models are available for download from the product Tools & Software pages. These models include I/O  
Buffer Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models. To  
view all available models, visit the Models section of the Tools & Software page for each device.  
Training  
To help assist design engineers in taking full advantage of the C2000 microcontroller features and performance,  
TI has developed a variety of training resources. Utilizing the online training materials and downloadable hands-  
on workshops provides an easy means for gaining a complete working knowledge of the C2000 microcontroller  
family. These training resources have been designed to decrease the learning curve, while reducing  
development time, and accelerating product time to market. For more information on the various training  
resources, visit the C2000™ real-time control MCUs – Support & training site.  
Specific TMS320F28004x hands-on training resources can be found at C2000™ MCU Device Workshops.  
Technical Introduction to the New C2000 TMS320F28004x Device Family  
Discover the newest member to the C2000 MCU family. This presentation will cover the technical details of the  
TMS320F28004x architecture and highlight the new improvements to various key peripherals, such as an  
enhanced Type 2 CLA capable of running a background task, and the inclusion of a set of high-speed  
programmable gain amplifiers. Also, a completely new boot mode flow enables expanded booting options.  
Where applicable, a comparison to the TMS320F2807x MCU device series will be used, and some knowledge  
about the previous device architectures will be helpful in understanding the topics presented in this presentation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
211  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
10.4 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral  
follows.  
Errata  
TMS320F28004x MCUs Silicon Errata describes known advisories on silicon and provides workarounds.  
Technical Reference Manual  
TMS320F28004x Microcontrollers Technical Reference Manual details the integration, the environment, the  
functional description, and the programming models for each peripheral and subsystem in the F28004x  
microcontrollers.  
InstaSPIN Technical Reference Manuals  
InstaSPIN-FOC™ and InstaSPIN-MOTION™ User's Guide describes the InstaSPIN-FOC and InstaSPIN-  
MOTIONdevices.  
CPU User's Guides  
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the  
assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This Reference  
Guide also describes emulation features available on these DSPs.  
TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline, and  
instruction set of the TMU, VCU-II, and FPU accelerators.  
Peripheral Guides  
C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x  
DSPs.  
Tools Guides  
TMS320C28x Assembly Language Tools v20.2.0.LTS User's Guide describes the assembly language tools  
(assembler and other tools used to develop assembly language code), assembler directives, macros, common  
object file format, and symbolic debugging directives for the TMS320C28x device.  
TMS320C28x Optimizing C/C++ Compiler v20.2.0.LTS User's Guide describes the TMS320C28x C/C++  
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly  
language source code for the TMS320C28x device.  
Application Reports  
The SMT & packaging application notes website lists documentation on TI’s surface mount technology (SMT)  
and application notes on a variety of packaging-related topics.  
Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor  
devices for shipment to end users.  
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime  
of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general  
engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement.  
An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS  
including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/  
output structures, and future trends.  
Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders for  
serial programming a device.  
Copyright © 2021 Texas Instruments Incorporated  
212 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
www.ti.com  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
10.5 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
10.6 Trademarks  
InstaSPIN-FOC, FAST, TMS320C2000, C2000, Code Composer Studio, InstaSPIN-MOTION, and TI  
E2Eare trademarks of Texas Instruments.  
TMS320is a trademark of Texas Instruments.  
Bosch® is a registered trademark of Robert Bosch GmbH Corporation.  
All trademarks are the property of their respective owners.  
10.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.8 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 213  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
 
 
TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045,  
TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C  
SPRS945F – JANUARY 2017 – REVISED FEBRUARY 2021  
www.ti.com  
11 Mechanical, Packaging, and Orderable Information  
11.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
For packages with a thermal pad, the MECHANICAL DATA figure shows a generic thermal pad without  
dimensions. For the actual thermal pad dimensions that are applicable to this device, see the THERMAL PAD  
MECHANICAL DATA figure.  
To learn more about TI packaging, visit the Packaging information website.  
Copyright © 2021 Texas Instruments Incorporated  
214 Submit Document Feedback  
Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C  
TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
F280040CPMQR  
F280040PMQR  
F280041CPMS  
F280041CPZQR  
F280041CPZS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
VQFN  
PM  
PM  
PM  
PZ  
64  
64  
1000 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
F280040CPMQ  
NIPDAU  
NIPDAU  
F280040PMQ  
F280041CPMS  
F280041CPZQ  
F280041CPZS  
64  
160  
1000 RoHS & Green  
90 RoHS & Green  
2500 RoHS & Green  
160 RoHS & Green  
RoHS & Green  
100  
100  
56  
NIPDAU  
PZ  
NIPDAU  
F280041CRSHSR  
RSH  
Call TI | NIPDAU  
F280041C  
RSHS  
F280041PMS  
F280041PMSR  
F280041PZQR  
F280041PZS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
VQFN  
PM  
PM  
PZ  
64  
64  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
F280041PMS  
F280041PMS  
F280041PZQ  
F280041PZS  
F280041PZS  
1000 RoHS & Green  
1000 RoHS & Green  
100  
100  
100  
56  
NIPDAU  
PZ  
90  
RoHS & Green  
NIPDAU  
F280041PZSR  
F280041RSHSR  
PZ  
1000 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
RSH  
Call TI | NIPDAU  
F280041  
RSHS  
F280045PMS  
F280045PMSR  
F280045PZS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
VQFN  
PM  
PM  
PZ  
64  
64  
160  
1000 RoHS & Green  
90 RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
F280045PMS  
F280045PMS  
F280045PZS  
F280045PZS  
100  
100  
56  
NIPDAU  
F280045PZSR  
F280045RSHSR  
PZ  
1000 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
RSH  
Call TI | NIPDAU  
F280045  
RSHS  
F280048CPMQR  
F280048PMQR  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
PM  
PM  
64  
64  
1000 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
F280048CPMQ  
F280048PMQ  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Feb-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
F280049CPMS  
F280049CPMSR  
F280049CPZQR  
F280049CPZS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
VQFN  
PM  
PM  
PZ  
64  
64  
160  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
F280049CPMS  
1000 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
F280049CPMS  
F280049CPZQ  
F280049CPZS  
100  
100  
56  
PZ  
90  
2500 RoHS & Green  
160 RoHS & Green  
1000 RoHS & Green  
90 RoHS & Green  
1000 RoHS & Green  
90 RoHS & Green  
RoHS & Green  
NIPDAU  
F280049CRSHSR  
RSH  
Call TI | NIPDAU  
F280049C  
RSHS  
F280049PMS  
F280049PMSR  
F280049PZQ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
VQFN  
PM  
PM  
PZ  
64  
64  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
F280049PMS  
F280049PMS  
F280049PZQ  
F280049PZQ  
F280049PZS  
F280049PZS  
100  
100  
100  
100  
56  
NIPDAU  
F280049PZQR  
F280049PZS  
PZ  
NIPDAU  
PZ  
NIPDAU  
F280049PZSR  
F280049RSHSR  
PZ  
1000 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
RSH  
Call TI | NIPDAU  
F280049  
RSHS  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Feb-2021  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TMS320F280041, TMS320F280041-Q1, TMS320F280041C, TMS320F280041C-Q1, TMS320F280049, TMS320F280049-Q1,  
TMS320F280049C, TMS320F280049C-Q1 :  
Catalog: TMS320F280041, TMS320F280041C, TMS320F280049, TMS320F280049C  
Automotive: TMS320F280041-Q1, TMS320F280041C-Q1, TMS320F280049-Q1, TMS320F280049C-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Feb-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
F280040CPMQR  
F280040PMQR  
F280041CPZQR  
F280041CRSHSR  
F280041PMSR  
F280041PZQR  
F280041RSHSR  
F280045PMSR  
F280045PZSR  
F280045RSHSR  
F280048CPMQR  
F280048PMQR  
F280049CPMSR  
F280049CPZQR  
F280049CRSHSR  
F280049PMSR  
F280049PZQR  
F280049PZSR  
LQFP  
LQFP  
LQFP  
VQFN  
LQFP  
LQFP  
VQFN  
LQFP  
LQFP  
VQFN  
LQFP  
LQFP  
LQFP  
LQFP  
VQFN  
LQFP  
LQFP  
LQFP  
PM  
PM  
PZ  
64  
64  
1000  
1000  
1000  
2500  
1000  
1000  
2500  
1000  
1000  
2500  
1000  
1000  
1000  
1000  
2500  
1000  
1000  
1000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
32.4  
16.4  
24.4  
32.4  
16.4  
24.4  
32.4  
16.4  
24.4  
24.4  
24.4  
32.4  
16.4  
24.4  
32.4  
32.4  
13.0  
13.0  
16.9  
7.3  
13.0  
13.0  
16.9  
7.3  
2.1  
2.1  
2.0  
1.1  
2.1  
2.0  
1.1  
2.1  
2.0  
1.1  
2.1  
2.1  
2.1  
2.0  
1.1  
2.1  
2.0  
2.0  
16.0  
16.0  
24.0  
12.0  
16.0  
24.0  
12.0  
16.0  
24.0  
12.0  
16.0  
16.0  
16.0  
24.0  
12.0  
16.0  
24.0  
24.0  
24.0  
24.0  
32.0  
16.0  
24.0  
32.0  
16.0  
24.0  
32.0  
16.0  
24.0  
24.0  
24.0  
32.0  
16.0  
24.0  
32.0  
32.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
100  
56  
RSH  
PM  
PZ  
64  
13.0  
16.9  
7.3  
13.0  
16.9  
7.3  
100  
56  
RSH  
PM  
PZ  
64  
13.0  
16.9  
7.3  
13.0  
16.9  
7.3  
100  
56  
RSH  
PM  
PM  
PM  
PZ  
64  
13.0  
13.0  
13.0  
16.9  
7.3  
13.0  
13.0  
13.0  
16.9  
7.3  
64  
64  
100  
56  
RSH  
PM  
PZ  
64  
13.0  
16.9  
16.9  
13.0  
16.9  
16.9  
100  
100  
PZ  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Feb-2021  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
F280049RSHSR  
VQFN  
RSH  
56  
2500  
330.0  
16.4  
7.3  
7.3  
1.1  
12.0  
16.0  
Q2  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
F280040CPMQR  
F280040PMQR  
F280041CPZQR  
F280041CRSHSR  
F280041PMSR  
F280041PZQR  
F280041RSHSR  
F280045PMSR  
F280045PZSR  
LQFP  
LQFP  
LQFP  
VQFN  
LQFP  
LQFP  
VQFN  
LQFP  
LQFP  
VQFN  
LQFP  
LQFP  
LQFP  
LQFP  
VQFN  
LQFP  
PM  
PM  
PZ  
64  
64  
1000  
1000  
1000  
2500  
1000  
1000  
2500  
1000  
1000  
2500  
1000  
1000  
1000  
1000  
2500  
1000  
336.6  
336.6  
367.0  
336.6  
336.6  
367.0  
336.6  
336.6  
367.0  
336.6  
336.6  
336.6  
336.6  
367.0  
336.6  
336.6  
336.6  
336.6  
367.0  
336.6  
336.6  
367.0  
336.6  
336.6  
367.0  
336.6  
336.6  
336.6  
336.6  
367.0  
336.6  
336.6  
41.3  
41.3  
55.0  
31.8  
41.3  
55.0  
31.8  
41.3  
55.0  
31.8  
41.3  
41.3  
41.3  
55.0  
31.8  
41.3  
100  
56  
RSH  
PM  
PZ  
64  
100  
56  
RSH  
PM  
PZ  
64  
100  
56  
F280045RSHSR  
F280048CPMQR  
F280048PMQR  
F280049CPMSR  
F280049CPZQR  
F280049CRSHSR  
F280049PMSR  
RSH  
PM  
PM  
PM  
PZ  
64  
64  
64  
100  
56  
RSH  
PM  
64  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Feb-2021  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
F280049PZQR  
F280049PZSR  
F280049RSHSR  
LQFP  
LQFP  
VQFN  
PZ  
PZ  
100  
100  
56  
1000  
1000  
2500  
367.0  
367.0  
336.6  
367.0  
367.0  
336.6  
55.0  
55.0  
31.8  
RSH  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PM0064A  
LQFP - 1.6 mm max height  
SCALE 1.400  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
33  
16  
32  
17  
A
0.27  
0.17  
64X  
60X 0.5  
4X 7.5  
0.08  
C A B  
C
(0.13) TYP  
SEATING PLANE  
0.08  
SEE DETAIL A  
0.25  
GAGE PLANE  
(1.4)  
1.6 MAX  
0.05 MIN  
0.75  
0.45  
0 -7  
DETAIL  
SCALE: 14  
A
DETAIL A  
TYPICAL  
4215162/A 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
49  
64  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
33  
16  
17  
32  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
EXPOSED METAL  
METAL  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215162/A 03/2017  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
16  
33  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:8X  
4215162/A 03/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OUTLINE  
RSH0056D  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
0
0
0
VQFN  
7.15  
6.85  
A
B
PIN 1 INDEX AREA  
7.15  
6.85  
C
1 MAX  
SEATING PLANE  
0.05  
0.00  
5.3 0.1  
(0.2)  
15  
28  
14  
29  
52X 0.4  
4X  
5.2  
1
42  
0.25  
56X  
PIN 1 ID  
0.15  
43  
56  
(OPTIONAL)  
0.1  
C A  
C
B
0.6  
0.4  
56X  
0.05  
4218794/A 07/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSH0056D  
VQFN - 1 mm max height  
VQFN  
(5.3)  
43  
SYMM  
56  
SEE DETAILS  
56X (0.7)  
56X (0.2)  
1
42  
52X (0.4)  
6X  
(1.12)  
(1.28)  
TYP  
SYMM  
(6.7)  
14  
29  
(
0.2) TYP  
VIA  
15  
28  
(1.28) TYP  
6X (1.12)  
(6.7)  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
SOLDERMASK  
OPENING  
SOLDERMASK  
OPENING  
METAL  
NON SOLDERMASK  
DEFINED  
SOLDERMASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4218794/A 07/2013  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSH0056D  
VQFN - 1 mm max height  
VQFN  
SYMM  
METAL  
TYP  
(1.28) TYP  
43  
56  
56X (0.7)  
1
42  
56X (0.2)  
52X (0.4)  
(1.28)  
TYP  
SYMM  
(6.7)  
14  
29  
15  
28  
16X (1.08)  
(6.7)  
SOLDERPASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED SOLDER COVERAGE BY AREA  
SCALE:12X  
4218794/A 07/2013  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY