F28384DZWTQR [TI]

TMS320F2838x Real-Time Microcontrollers With Connectivity Manager;
F28384DZWTQR
型号: F28384DZWTQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMS320F2838x Real-Time Microcontrollers With Connectivity Manager

微控制器
文件: 总306页 (文件大小:8283K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1,TMS320F28384S,TMS320F28384S-Q1
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
TMS320F2838x Real-Time Microcontrollers With Connectivity Manager  
– Inter-integrated Circuit (CM-I2C)  
1 Features  
– Synchronous Serial Interface (SSI)  
– 10/100 Ethernet 1588 MII/RMII  
– MCAN (CAN-FD)  
C28x communications peripherals  
– Fast Serial Interface (FSI) with two transmitters  
and eight receivers  
– Four high-speed (up to 50-MHz) SPI ports (pin-  
bootable)  
– Four Serial Communications Interfaces (SCI/  
UART) (pin-bootable)  
– Two I2C interfaces (pin-bootable)  
– Power-Management Bus (PMBus) interface  
– Two Multichannel Buffered Serial Ports  
(McBSPs)  
CM-C28x shared communications peripherals  
– EtherCAT® Slave Controller (ESC)  
– USB 2.0 (MAC + PHY)  
– Two Controller Area Network (CAN) modules  
(pin-bootable)  
Analog subsystem  
Dual-core C28x architecture  
– Two TMS320C28x 32-bit CPUs  
200 MHz  
IEEE 754 double-precision (64-bit) Floating-  
Point Unit (FPU)  
Trigonometric Math Unit (TMU)  
CRC engine and instructions (VCRC)  
Fast Integer Division (FINTDIV)  
– 512KB (256KW) of flash on each CPU  
(ECC-protected)  
– 44KB (22KW) of local RAM on each CPU  
– 128KB (64KW) of global RAM shared between  
the two CPUs (parity-protected)  
Two Control Law Accelerators (CLAs)  
– 200 MHz  
– IEEE 754 single-precision floating-point  
– Executes code independently of C28x CPU  
System peripherals  
– Two External Memory Interfaces (EMIFs) with  
ASRAM and SDRAM support  
– Four Analog-to-Digital Converters (ADCs)  
– Two 6-channel Direct Memory Access (DMA)  
controllers  
16-bit mode  
– 1.1 MSPS each  
– Up to 169 General-Purpose Input/Output  
(GPIO) pins with input filtering  
– Expanded Peripheral Interrupt controller (ePIE)  
– Low-power mode (LPM) support  
– Dual-zone security for third-party development  
– Unique Identification (UID) number  
– Embedded Real-time Analysis and Diagnostic  
(ERAD)  
– 12 differential or 24 single-ended inputs  
12-bit mode  
– 3.5 MSPS each  
– 24 single-ended inputs  
Single sample-and-hold (S/H) on each ADC  
Hardware post-processing of conversions  
– Eight windowed comparators with 12-bit Digital-  
to-Analog Converter (DAC) references  
– Three 12-bit buffered DAC outputs  
Control peripherals  
– Background CRC (BGCRC)  
Connectivity Manager (CM)  
– Arm® Cortex®-M4 processor  
– 32 Pulse Width Modulator (PWM) channels  
– 125 MHz  
High resolution on both A and B channels of  
8 PWM modules (16 channels)  
Dead-band support (on both standard and  
high resolution)  
– 512KB of flash (ECC-protected)  
– 96KB of RAM (ECC-protected or parity-  
protected)  
– Advanced Encryption Standard (AES)  
accelerator  
– Generic CRC (GCRC)  
– 32-channel Micro Direct Memory Access  
(µDMA) controller  
– Seven Enhanced Capture (eCAP) modules  
High-resolution Capture (HRCAP) available  
on two of the seven eCAP modules  
– Three Enhanced Quadrature Encoder Pulse  
(eQEP) modules  
– Eight Sigma-Delta Filter Module (SDFM) input  
channels, 2 independent filters per channel  
– Universal Asynchronous Receiver/Transmitter  
(CM-UART)  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Configurable Logic Block (CLB)  
– Augments existing peripheral capability  
– Supports position manager solutions  
Clock and system control  
– Two internal zero-pin 10-MHz oscillators  
– On-chip crystal oscillator  
– Windowed watchdog timer module  
– Missing clock detection circuitry  
– Dual-clock Comparator (DCC)  
1.2-V core, 3.3-V I/O design  
2 Applications  
Medium/short range radar  
HVAC large commercial motor control  
Automated sorting equipment  
CNC control  
Central inverter  
String inverter  
Inverter & motor control  
On-board (OBC) & wireless charger  
Linear motor segment controller  
Servo drive control module  
Industrial AC-DC  
Package options:  
– Lead-free, green packaging  
– 337-ball New Fine Pitch Ball Grid Array  
(nFBGA) [ZWT suffix]  
Three phase UPS  
– 176-pin PowerPADThermally Enhanced Low-  
profile Quad Flatpack (HLQFP) [PTP suffix]  
Temperature options:  
– S: –40°C to 125°C junction  
– Q: –40°C to 125°C ambient  
(AEC Q100 qualification for automotive  
applications)  
3 Description  
The TMS320F2838x (F2838x) is a member of the C2000real-time microcontroller family of scalable, ultra-low  
latency devices designed for efficiency in power electronics, including but not limited to: high power density, high  
switching frequencies, and supporting the use of GaN and SiC technologies.  
These include such applications as:  
Industrial motor drives  
Motor control  
Solar inverters  
Digital power  
Electrical vehicles and transportation  
Sensing and signal processing  
The real-time control subsystem is based on TI’s 32-bit C28x DSP core, which provides 200 MHz of signal-  
processing performance in each core for floating- or fixed-point code running from either on-chip flash or SRAM.  
The C28x CPU is further boosted by the Trigonometric Math Unit (TMU) and VCRC (Cyclical Redundancy  
Check) extended instruction sets, speeding up common algorithms key to real-time control systems. Extended  
instruction sets enable IEEE double-precision 64-bit floating-point math. Finally, the Control Law Accelerator  
(CLA) enables an additional 200 MHz per core of independent processing ability.  
This device also contains an independent Connectivity Manager (CM), based on the ARM Cortex-M4 processor,  
that runs at 125 MHz. With its own dedicated flash and SRAM, the CM allows fully independent control of the  
interfaces coming in and out of the F2838x, allowing maximum bandwidth for the C28x DSPs to focus on real-  
time control.  
High-performance analog blocks are tightly integrated with the processing and control units to provide optimal  
real-time signal chain performance. Thirty-two frequency-independent PWMs enable control of multiple power  
stages, from a 3-phase inverter to advanced multi-level power topologies.  
The inclusion of the Configurable Logic Block (CLB) allows the user to add custom logic and potentially integrate  
FPGA-like functions into the C2000 real-time MCU.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
For the first time on a C2000 real-time MCU, there is an EtherCAT Slave Controller, along with other industry-  
standard protocols like CAN-FD and USB 2.0. The Fast Serial Interface (FSI) enables up to 200 Mbps of robust  
communications across an isolation boundary.  
Want to learn more about features that make C2000 MCUs the right choice for your real-time control system?  
Check out The Essential Guide for Developing With C2000™ Real-Time Microcontrollers and visit the C2000™  
real-time control MCUs page.  
Ready to get started? Check out the TMDSCNCD28388D evaluation board and download C2000Ware.  
Device Information  
PART NUMBER(1)  
TMS320F28388DZWT  
TMS320F28388SZWT  
TMS320F28386DZWT  
TMS320F28386SZWT  
TMS320F28384DZWT  
TMS320F28384SZWT  
TMS320F28388DPTP  
TMS320F28388SPTP  
TMS320F28386DPTP  
TMS320F28386SPTP  
TMS320F28384DPTP  
TMS320F28384SPTP  
PACKAGE  
nFBGA (337)  
nFBGA (337)  
nFBGA (337)  
nFBGA (337)  
nFBGA (337)  
nFBGA (337)  
HLQFP (176)  
HLQFP (176)  
HLQFP (176)  
HLQFP (176)  
HLQFP (176)  
HLQFP (176)  
BODY SIZE  
16.0 mm × 16.0 mm  
16.0 mm × 16.0 mm  
16.0 mm × 16.0 mm  
16.0 mm × 16.0 mm  
16.0 mm × 16.0 mm  
16.0 mm × 16.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
24.0 mm × 24.0 mm  
(1) For more information on these devices, see Mechanical, Packaging, and Orderable Information.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
3.1 Functional Block Diagram  
The Functional Block Diagram shows the CPU system and associated peripherals.  
Connectivity  
Manager (CM)  
C28 CPU1  
C28 CPU2  
CPU1 - CM  
IPC  
CPU1  
CPU1.CLA  
CPU1.DMA  
FPU64  
FPU32  
TMU  
FPU64  
FPU32  
TMU  
MSGRAM0  
MSGRAM1  
CPU1.CLA1  
CPU2.CLA1  
Arm Cortex-M4  
VCRC  
VCRC  
CPU2  
CPU2.CLA  
CPU2.DMA  
AES  
CPU Timers  
GCRC  
NVIC  
NMI WD  
Windowed WD  
CPU2 - CM  
IPC  
BGCRC  
BGCRC  
CPU Timers  
DCC  
ePIE  
ERAD  
BGCRC  
BGCRC  
CPU Timers  
CM M4 CODE  
CM M4 SYS  
CM µDMA  
CM Bus Matrix  
Ethernet DMA  
MSGRAM0  
CPU - CLA  
MSGRAM  
CPU - CLA  
MSGRAM  
ePIE  
ERAD  
NMI WD  
MSGRAM1  
NMI WD  
Windowed WD  
Windowed WD  
CPU1 - CPU2  
IPC  
Boot ROM  
Secure  
Memories  
shown in Red  
Boot ROM  
Secure ROM  
Boot ROM  
CLA ROM  
CLA ROM  
MSGRAM0  
MSGRAM1  
Secure ROM  
Secure ROM  
Flash (512KB)  
Flash (512KB)  
Flash (512KB)  
C0-C1 RAM (16KB)  
E0 RAM (16KB)  
M0-M1 RAM (4KB)  
D0-D1 RAM (8KB)  
M0-M1 RAM (4KB)  
D0-D1 RAM (8KB)  
LS0-LS7 RAM  
(32KB)  
LS0-LS7 RAM  
(32KB)  
GS0-GS15 RAM  
(128KB)  
S0-S3 RAM (64KB)  
DMA - CLA  
MSGRAM  
DMA - CLA  
MSGRAM  
CPU1.DMA  
CPU2.DMA  
CM µDMA  
CM Bus  
Matrix  
PF3  
PF1  
PF9  
PF2  
PF5  
PF6  
PF10  
PF4  
MUX  
MUX  
MUX  
MUX  
Data  
169x GPIO  
2x CAN  
1x USB 1x CAN-FD  
8x FSIRX  
2x FSITX  
2x McBSP  
1x PMBUS  
4x SPI  
EMIF1  
EMIF2  
8x CLB  
8x CMPSS  
3x DAC  
2x I2C  
4x SCI  
Result  
DMA  
1x EtherCAT  
(2 Ports)  
1x Ethernet  
4x ADC  
(16-bit / 12-bit)  
INPUT XBAR  
OUTPUT XBAR  
ePWM XBAR  
1x CM-I2C  
1x CM-UART  
1x SSI  
7x eCAP  
(2 Hi-Res)  
32x ePWM  
Channels  
(16 Hi-Res)  
CLB XBAR  
CLB INPUT XBAR  
3x eQEP  
CLB OUTPUT XBAR  
8x SD Filters  
Figure 3-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................2  
3 Description.......................................................................2  
3.1 Functional Block Diagram...........................................4  
4 Revision History.............................................................. 6  
5 Device Comparison.........................................................8  
5.1 Related Products...................................................... 10  
6 Terminal Configuration and Functions........................11  
6.1 Pin Diagrams.............................................................11  
6.2 Pin Attributes.............................................................17  
6.3 Signal Descriptions................................................... 50  
6.4 Pins With Internal Pullup and Pulldown.................... 72  
6.5 Pin Multiplexing.........................................................72  
6.6 Connections for Unused Pins................................... 86  
7 Specifications................................................................ 87  
7.1 Absolute Maximum Ratings...................................... 87  
7.2 ESD Ratings – Commercial...................................... 88  
7.3 ESD Ratings – Automotive....................................... 88  
7.4 Recommended Operating Conditions.......................88  
7.5 Power Consumption Summary................................. 89  
7.6 Electrical Characteristics...........................................94  
7.7 Thermal Resistance Characteristics for ZWT  
7.12 C28x Control Peripherals......................................162  
7.13 C28x Communications Peripherals.......................180  
7.14 Connectivity Manager (CM) Peripherals...............223  
8 Detailed Description....................................................244  
8.1 Overview.................................................................244  
8.2 Functional Block Diagram.......................................245  
8.3 Memory...................................................................246  
8.4 Identification............................................................254  
8.5 Bus Architecture – Peripheral Connectivity.............255  
8.6 Boot ROM and Peripheral Booting..........................257  
8.7 Dual Code Security Module (DCSM)...................... 263  
8.8 C28x (CPU1/CPU2) Subsystem............................. 264  
8.9 Connectivity Manager (CM) Subsystem................. 280  
9 Applications, Implementation, and Layout............... 290  
9.1 TI Reference Design...............................................290  
10 Device and Documentation Support........................291  
10.1 Device and Development Support Tool  
Nomenclature............................................................291  
10.2 Markings............................................................... 292  
10.3 Tools and Software............................................... 293  
10.4 Documentation Support........................................ 294  
10.5 Support Resources............................................... 295  
10.6 Trademarks...........................................................295  
10.7 Electrostatic Discharge Caution............................295  
10.8 Glossary................................................................295  
11 Mechanical, Packaging, and Orderable  
Package...................................................................... 96  
7.8 Thermal Resistance Characteristics for PTP  
Package...................................................................... 96  
7.9 Thermal Design Considerations................................97  
7.10 System....................................................................98  
7.11 C28x Analog Peripherals...................................... 130  
Information.................................................................. 296  
11.1 Packaging Information.......................................... 296  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
4 Revision History  
Changes from November 8, 2020 to February 2, 2021 (from Revision C (November 2020) to  
Revision D (February 2021))  
Page  
Global: Added TMS320F28386D-Q1, TMS320F28384D-Q1, TMS320F28386S-Q1, and TMS320F28384S-  
Q1.......................................................................................................................................................................1  
Section 5 (Device Comparison): Added 28386D-Q1, 28384D-Q1, 28386S-Q1, and 28384S-Q1 to column  
header. Updated "Temperature and Qualification" section of table with device numbers...................................8  
Section 7.3 (ESD Ratings – Automotive): Updated device numbers. ..............................................................88  
Figure 10-1 (Device Nomenclature): Updated figure to add -Q1 nomenclature............................................. 291  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Changes from May 18, 2020 to November 7, 2020 (from Revision B (May 2020) to Revision C  
(November 2020))  
Page  
Global: Updated the numbering format for tables, figures, and cross-references throughout the document.... 1  
Global: Added 176-pin PowerPAD™ Thermally Enhanced Low-profile Quad Flatpack (HLQFP) [PTP suffix]. 1  
Section 1 (Features): Updated Package options. ..............................................................................................1  
Section 3 (Description): Updated section and Device Information table. ...........................................................2  
Figure 3-1 (Functional Block Diagram): Updated figure..................................................................................... 4  
Section 5 (Device Comparison): Updated Device Comparison table. Added 176-pin PTP to Temperature  
Options. Updated EMIF2 (16-bit). Updated GPIO I/O pins. Updated Input channels for ADC 16-bit mode.  
Updated Input channels for ADC 12-bit mode. Appended "(UART-compatible)" to "Serial Communications  
Interface (SCI) - Type 0"..................................................................................................................................... 8  
Figure 6-6 (176-Pin PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack (Top View)): Added  
figure.................................................................................................................................................................11  
Section 6.2 (Pin Attributes): Updated Pin Attributes table. Added data for 176-pin package. .........................17  
Table 6-2 (Analog Signals): Added data for 176-pin package. ........................................................................ 50  
Table 6-3 (Digital Signals): Added data for 176-pin package. ..........................................................................50  
Table 6-4 (Power and Ground): Added data for 176-pin package. .................................................................. 50  
Table 6-5 (Test, JTAG, and Reset): Added data for 176-pin package. ............................................................ 50  
Section 7.2 (ESD Ratings – Commercial): Added data for 176-pin PTP package. ......................................... 88  
Section 7.3 (ESD Ratings – Automotive): Added data for 176-pin PTP package. ...........................................88  
Section 7.8 (Thermal Resistance Characteristics for PTP Package): Added section. .....................................96  
Section 7.10.2.2.2 (Reset (XRSn) Switching Characteristics): Added tboot-flash................................................99  
Figure 7-5 (Power-on Reset): Added tboot-flash..................................................................................................99  
Section 7.10.4 (Flash Parameters): Updated Erase Times in Flash Parameters table.................................. 109  
Section 7.10.5 (Emulation/JTAG): Updated URL of "Hardware Breakpoints and Watchpoints for C28x in  
CCS"............................................................................................................................................................... 110  
Figure 7-27 (Analog Subsystem Block Diagram (176-Pin PTP)): Added figure............................................. 130  
Section 7.11.2.1 (Result Register Mapping): Added section.......................................................................... 134  
Section 7.11.2.3.2 (ADC Characteristics (16-bit Differential)): Added footnote about load current on VREFHI...  
138  
Section 7.11.2.3.6 (ADC Characteristics (12-bit Single-Ended)): Updated table............................................138  
Figure 7-33 (ADC Timings for 12-Bit Mode): Updated tINT............................................................................. 147  
Section 7.13.1 (Controller Area Network (CAN)): Updated Note about the accuracy of the on-chip zero-pin  
oscillator .........................................................................................................................................................180  
Figure 7-76 (SCI Block Diagram): Updated figure..........................................................................................207  
Section 7.14.2.1.1 (MAC Tx and Rx Features): Updated "Support Ethernet packet timestamping ..." feature....  
225  
Figure 8-1 (Functional Block Diagram): Updated figure................................................................................. 245  
Figure 10-2 (Package Symbolization): Updated figure...................................................................................292  
Section 10.3 (Tools and Software): Updated section......................................................................................293  
Section 10.4 (Documentation Support): Updated section...............................................................................294  
Section 11.1 (Packaging Information): Updated section. ...............................................................................296  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
5 Device Comparison  
The Device Comparison table lists the features of each 2838x device.  
Table 5-1. Device Comparison  
28386D  
28386D-Q1 28384D-Q1  
28384D  
28386S  
28386S-Q1 28384S-Q1  
28384S  
FEATURE(1)  
28388D  
28388S  
C28x Subsystem  
Number  
2
1
Frequency (MHz)  
200  
C28x  
32-bit and 64-bit Floating-Point Unit (FPU)  
Yes  
Yes  
Yes  
VCRC  
TMU – Type 0  
Number  
2 (1 per CPU)  
1
CLA – Type 2  
C28x Flash  
Frequency (MHz)  
200  
1MB (512KW)  
[512KB (256KW) per CPU]  
512KB (256KW)  
12KB (6KW)  
24KB (12KW)  
[12KB (6KW) per CPU]  
Dedicated RAM  
64KB (32KW)  
[32KB (16KW) per CPU]  
Local Shared RAM  
32KB (16KW)  
C28x RAM  
128KB (64KW)  
(Shared between CPUs)  
Global Shared RAM  
128KB (64KW)  
Total RAM  
216KB (108KW)  
172KB (86KW)  
Background Cyclic Redundancy Check (BGCRC) module  
Configurable Logic Block (CLB)  
1
8 tiles  
6 (3 per CPU)  
No  
8 tiles  
No  
32-bit CPU timers  
3
1
6-Channel DMA – Type 0  
2 (1 per CPU)  
Dual-zone Code Security Module (DCSM) for on-chip flash and RAM  
Embedded Real-time Analysis and Diagnostic (ERAD)  
Yes  
Yes  
1
337-ball ZWT  
EMIF1  
(16-bit or 32-bit)  
176-pin PTP  
1
EMIF  
337-ball ZWT  
EMIF2 (16-bit)  
176-pin PTP  
1
External interrupts  
5
I/O pins (shared  
among CPU1,  
CPU2, and CM)  
337-ball ZWT  
176-pin PTP  
169  
97  
GPIO  
Input XBAR  
Yes  
Yes  
Output XBAR  
24KB  
8KB  
C28x CPU1, C28x CPU2, and Cortex-M4  
C28x CPUs and CLAs  
(4KB each direction between  
each of the three pairs)  
(4KB each direction between  
CPU1 and Cortex-M4)  
1KB  
512 bytes  
(256 bytes each direction between CPU  
and CLA)  
Message RAM  
(256 bytes each direction between each  
CPU and CLA pair)  
1KB  
512 bytes  
(256 bytes each direction between DMA  
and CLA)  
DMAs and CLAs  
(256 bytes each direction between each  
DMA and CLA pair)  
Nonmaskable Interrupt Watchdog (NMIWD) timers  
Watchdog (WD) timers  
2 (1 per CPU)  
2 (1 per CPU)  
1
1
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 5-1. Device Comparison (continued)  
28386D  
28386D-Q1 28384D-Q1  
28384D  
28386S  
28386S-Q1 28384S-Q1  
28384S  
FEATURE(1)  
28388D  
28388S  
Connectivity Manager (CM) Subsystem  
Arm Cortex-M4  
125 MHz  
Flash on Cortex-M4  
RAM on Cortex-M4  
512KB  
96KB  
Advanced Encryption Standard (AES) Accelerator  
CPU timers  
1
3
1
Generic Cyclic Redundancy Check (GCRC) module  
Memory Protection Unit (MPU) for Cortex-M4, µDMA, and Ethernet  
DMA  
3
CM Nonmaskable Interrupt (CMNMI) Module  
Trace Port Interface Unit (TPIU)  
µDMA  
1
1
1
1
Watchdog (WD) timer  
C28x Analog Peripherals  
Analog-to-Digital Converter (ADC) (configurable to 12-bit or 16-bit)  
4
MSPS  
1.1  
915  
24  
Conversion Time (ns)(2)  
Input channels  
(single-ended  
mode)  
337-ball ZWT  
176-pin PTP  
ADC 16-bit mode  
20  
337-ball ZWT  
176-pin PTP  
12  
9
Input channels  
(differential mode)  
MSPS  
3.5  
280  
24  
20  
1
Conversion Time (ns)(2)  
ADC 12-bit mode  
337-ball ZWT  
176-pin PTP  
Input channels  
(single-ended)  
Temperature sensor  
Comparator subsystem (CMPSS)  
(each CMPSS has two comparators and two internal DACs)  
8
3
Buffered Digital-to-Analog Converter (DAC)  
C28x Control Peripherals  
Total inputs  
7
eCAP/HRCAP – Type 2  
Channels with high-resolution capability  
Total channels  
2 (eCAP6 and eCAP7)  
32  
ePWM/HRPWM – Type 4  
Channels with high-resolution capability  
16 (ePWM1–ePWM8)  
ePWM XBAR  
Yes  
3
eQEP modules – Type 2  
SDFM channels – Type 2  
8
C28x Communications Peripherals  
Fast Serial Interface (FSI) RX - Type 1  
Fast Serial Interface (FSI) TX - Type 1  
Inter-Integrated Circuit (I2C) – Type 0  
8
2
2
2
1
Multichannel Buffered Serial Port (McBSP) – Type 1  
Power Management Bus (PMBus) – Type 0  
Serial Communications Interface (SCI) – Type 0  
(UART-compatible)  
4
4
Serial Peripheral Interface (SPI) – Type 2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
28384S  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 5-1. Device Comparison (continued)  
28386D  
28386D-Q1 28384D-Q1  
28384D  
28386S  
FEATURE(1)  
28388D  
28388S  
28386S-Q1 28384S-Q1  
Connectivity Manager (CM) Communications Peripherals  
2
2
Controller Area Network (CAN) 2.0B – Type 0(3)  
CAN with Flexible Data-Rate (CAN-FD)  
(can be assigned to  
CPU1, CPU2, or CM)  
(can be assigned to CPU1 or CM)  
1
1
1
(can be  
(can be  
Ethernet for Control Automation Technology (EtherCAT)  
assigned to  
CPU1 or  
CM)  
assigned to  
CPU1 or  
CM)  
Ethernet Media Access Controller (EMAC)  
CM Inter-Integrated Circuit (CM-I2C)  
1
1
1
1
1
Synchronous Serial Interface (SSI)  
CM Universal Asynchronous Receiver-Transmitter (CM-UART)  
Universal Serial Bus (USB) – Type 0  
(shared between CPU1 and CM)  
Temperature and Qualification  
S: –40°C to 125°C  
Junction  
Temperature (TJ)  
337-ball ZWT  
28388D, 28386D, 28384D  
28388S, 28386S, 28384S  
176-pin PTP  
337-ball ZWT  
176-pin PTP  
Temperature Options  
Q: –40°C to  
28386D-Q1 28384D-Q1  
28386D-Q1 28384D-Q1  
125°C(4) Ambient  
Temperature (TA)  
28386S-Q1 28384S-Q1  
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor  
differences between devices that do not affect the basic functionality of the module. For more information, see the C2000 Real-Time  
Control Peripherals Reference Guide.  
(2) Time between start of sample-and-hold window to start of sample-and-hold window of the next conversion.  
(3) The CAN module uses the IP known as DCAN. This document uses the names CAN and DCAN interchangeably to reference this  
peripheral.  
(4) The letter Q refers to AEC Q100 qualification for automotive applications.  
5.1 Related Products  
TMS320F2837xD Real-Time Dual-Core Microcontrollers  
The F2837xD series sets a new standard for performance with dual subsystems. Each subsystem consists of a  
C28x CPU and a parallel control law accelerator (CLA), each running at 200 MHz. Enhancing performance are  
TMU and VCU accelerators. New capabilities include multiple 16-bit/12-bit mode ADCs, DAC, Sigma-Delta  
filters, USB, configurable logic block (CLB), on-chip oscillators, and enhanced versions of all peripherals. The  
F2837xD is available with up to 1MB of Flash. It is available in a 176-pin QFP or 337-pin BGA package.  
TMS320F2837xS Real-Time Microcontrollers  
The F2837xS series is a pin-to-pin compatible version of F2837xD but with only one C28x-CPU-and-CLA  
subsystem enabled. It is also available in a 100-pin QFP to enable compatibility with the TMS320F2807x series.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
6 Terminal Configuration and Functions  
6.1 Pin Diagrams  
Figure 6-1 shows the terminal assignments on the 337-ball ZWT New Fine Pitch Ball Grid Array (nFBGA). Figure  
6-2 to Figure 6-5 show the terminal assignments on the 337-ball ZWT nFBGA in quadrants.  
Figure 6-6 shows the pin assignments on the 176-pin PTP PowerPAD Thermally Enhanced Low-Profile Quad  
Flatpack.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
ADCINB1  
,DACOUTC  
ADCINB3  
,CMPIN3N  
W
V
U
T
VSSA  
ADCINB5  
VREFHIB  
VREFLOD  
VSS  
VDDIO  
GPIO128  
GPIO116  
GPIO29  
FLT1  
TDI  
TMS  
TDO  
GPIO121  
GPIO39  
GPIO132  
VSS  
ADCINB0  
,VDAC  
ADCINB2  
,CMPIN3P  
VREFHIA  
ADCINB4  
VREFHID  
VREFLOB  
VSSA  
ADCIND5  
ADCIND4  
VSS  
GPIO124  
GPIO123  
GPIO122  
VSS  
GPIO127  
GPIO126  
GPIO125  
VDDIO  
GPIO131  
GPIO130  
GPIO129  
VDD  
GPIO28  
GPIO31  
GPIO30  
VDD3VFL  
VSS  
GPIO115  
GPIO117  
GPIO118  
VDD3VFL  
VSS  
FLT2  
GPIO32  
GPIO33  
VDD  
TRSTn  
GPIO34  
GPIO35  
VSS  
TCK  
GPIO120  
GPIO119  
VSS  
GPIO36  
GPIO37  
GPIO38  
GPIO48  
GPIO52  
GPIO56  
GPIO59  
GPIO61  
GPIO65  
GPIO63  
VDDOSC  
VSS  
GPIO40  
GPIO41  
GPIO136  
GPIO49  
GPIO53  
GPIO58  
GPIO60  
GPIO64  
GPIO66  
GPIO62  
VDDOSC  
VSS  
GPIO134  
GPIO135  
GPIO137  
GPIO50  
GPIO54  
GPIO57  
GPIO141  
VSS  
VDDIO  
ERRORSTS  
GPIO138  
GPIO51  
GPIO55  
GPIO139  
GPIO140  
GPIO142  
GPIO45  
X2  
ADCINA0  
,DACOUTA  
ADCINA2  
,CMPIN1P  
ADCINA4  
,CMPIN2P  
ADCIN15  
,CMPIN4N  
ADCIND1  
,CMPIN7N  
ADCIND3  
,CMPIN8N  
ADCINA1  
,DACOUTB  
ADCINA3  
,CMPIN1N  
ADCINA5  
,CMPIN2N  
ADCIN14  
,CMPIN4P  
ADCIND0  
,CMPIN7P  
ADCIND2  
,CMPIN8P  
ADCINC2  
,CMPIN6P  
ADCINC4  
,CMPIN5P  
R
P
N
M
L
VREFHIC  
VSSA  
VREFLOA  
VREFLOC  
GPIO109  
GPIO110  
GPIO106  
GPIO25  
GPIO104  
GPIO101  
GPIO8  
VSSA  
VSSA  
VSS  
VDDA  
VDDA  
VSS  
ADCINC3  
,CMPIN6N  
ADCINC5  
,CMPIN5N  
VSS  
VSS  
VDDIO  
VDD  
VDD  
VSS  
VSS  
VSS  
GPIO114  
GPIO112  
GPIO107  
GPIO24  
GPIO105  
GPIO102  
GPIO9  
GPIO113  
GPIO111  
GPIO108  
GPIO23  
GPIO22  
NC  
VDDIO  
VSS  
VDDIO  
VSS  
VDDIO  
GPIO27  
GPIO26  
GPIO103  
GPIO100  
GPIO99  
GPIO98  
GPIO16  
GPIO13  
GPIO11  
VDDIO  
VSS  
VDDIO  
VSS  
VDDIO  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDIO  
VSS  
VDDIO  
VSS  
K
J
VDD  
VDD  
GPIO44  
VSS  
VSS  
VDD  
VDD  
NC  
H
G
F
VDDIO  
VDDIO  
VSS  
VDDIO  
VDDIO  
VSS  
VSS  
VSS  
VSSOSC  
GPIO133  
GPIO143  
GPIO47  
GPIO146  
GPIO68  
GPIO69  
VDDIO  
VSSOSC  
VDDIO  
VDD  
VDD  
X1  
GPIO20  
GPIO17  
GPIO14  
GPIO12  
GPIO10  
GPIO97  
GPIO21  
GPIO18  
GPIO15  
GPIO96  
GPIO95  
GPIO94  
VDDIO  
VDDIO  
VDDIO  
GPIO5  
GPIO4  
GPIO3  
GPIO2  
VSS  
VSS  
VDD  
VDDIO  
VDDIO  
VDD  
VSS  
VDDIO  
VDDIO  
VSS  
VSS  
VDDIO  
GPIO144  
GPIO145  
GPIO147  
GPIO74  
GPIO71  
GPIO70  
XRSn  
E
D
C
B
A
GPIO19  
GPIO168  
GPIO167  
GPIO93  
GPIO92  
VSS  
VSS  
VDD  
VDD  
VSS  
VSS  
VSS  
VDDIO  
GPIO46  
GPIO42  
GPIO43  
GPIO67  
GPIO166  
GPIO165  
GPIO91  
GPIO90  
GPIO89  
GPIO88  
GPIO7  
GPIO6  
GPIO1  
GPIO0  
GPIO164  
GPIO163  
GPIO162  
GPIO161  
GPIO160  
VDDIO  
GPIO159  
GPIO158  
GPIO157  
VSS  
GPIO87  
GPIO86  
GPIO85  
GPIO84  
GPIO156  
GPIO155  
GPIO154  
GPIO153  
GPIO152  
GPIO151  
GPIO150  
GPIO149  
GPIO148  
GPIO83  
GPIO82  
GPIO81  
GPIO80  
GPIO79  
GPIO78  
GPIO77  
GPIO75  
GPIO76  
GPIO72  
GPIO73  
VSS  
Not to scale  
A. Only the GPIO function is shown on GPIO terminals. See the Pin Attributes table for the complete, muxed signal name.  
Figure 6-1. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
1
2
3
4
5
6
7
8
9
10  
ADCINB1  
,DACOUTC  
ADCINB3  
,CMPIN3N  
W
V
U
T
VSSA  
ADCINB5  
VREFHIB  
VREFLOD  
VSS  
VDDIO  
GPIO128  
GPIO116  
ADCINB0  
,VDAC  
ADCINB2  
,CMPIN3P  
VREFHIA  
ADCINB4  
VREFHID  
VREFLOB  
VSSA  
ADCIND5  
ADCIND4  
VSS  
GPIO124  
GPIO123  
GPIO122  
VSS  
GPIO127  
GPIO126  
GPIO125  
VDDIO  
GPIO131  
GPIO130  
GPIO129  
VDD  
ADCINA0  
,DACOUTA  
ADCINA2  
,CMPIN1P  
ADCINA4  
,CMPIN2P  
ADCIN15  
,CMPIN4N  
ADCIND1  
,CMPIN7N  
ADCIND3  
,CMPIN8N  
ADCINA1  
,DACOUTB  
ADCINA3  
,CMPIN1N  
ADCINA5  
,CMPIN2N  
ADCIN14  
,CMPIN4P  
ADCIND0  
,CMPIN7P  
ADCIND2  
,CMPIN8P  
ADCINC2  
,CMPIN6P  
ADCINC4  
,CMPIN5P  
R
P
N
M
L
VREFHIC  
VSSA  
VREFLOA  
VREFLOC  
GPIO109  
GPIO110  
GPIO106  
GPIO25  
VSSA  
VSSA  
VSS  
VDDA  
VDDA  
VSS  
ADCINC3  
,CMPIN6N  
ADCINC5  
,CMPIN5N  
VSS  
VSS  
VDDIO  
VDD  
VSS  
GPIO114  
GPIO112  
GPIO107  
GPIO24  
GPIO113  
GPIO111  
GPIO108  
GPIO23  
VDDIO  
GPIO27  
GPIO26  
VDDIO  
VSS  
VDDIO  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
VDD  
VDD  
VSS  
Not to scale  
1
2
4
3
A. Only the GPIO function is shown on GPIO terminals. See the Pin Attributes table for the complete, muxed signal name.  
Figure 6-2. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant 1]  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
11  
12  
13  
14  
15  
16  
17  
18  
19  
W
V
U
T
GPIO29  
FLT1  
TDI  
TMS  
TDO  
GPIO121  
GPIO39  
GPIO132  
VSS  
GPIO28  
GPIO31  
GPIO30  
VDD3VFL  
VSS  
GPIO115  
GPIO117  
GPIO118  
VDD3VFL  
VSS  
FLT2  
GPIO32  
GPIO33  
VDD  
TRSTn  
GPIO34  
GPIO35  
VSS  
TCK  
GPIO120  
GPIO119  
VSS  
GPIO36  
GPIO37  
GPIO38  
GPIO48  
GPIO52  
GPIO56  
GPIO59  
GPIO61  
GPIO65  
GPIO40  
GPIO41  
GPIO136  
GPIO49  
GPIO53  
GPIO58  
GPIO60  
GPIO64  
GPIO66  
GPIO134  
GPIO135  
GPIO137  
GPIO50  
GPIO54  
GPIO57  
GPIO141  
VSS  
VDDIO  
ERRORSTS  
GPIO138  
GPIO51  
R
P
N
M
L
VDD  
VSS  
VSS  
GPIO55  
VDDIO  
VSS  
VDDIO  
VSS  
GPIO139  
GPIO140  
GPIO142  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDIO  
VSS  
VDDIO  
VSS  
K
GPIO44  
GPIO45  
Not to scale  
1
3
2
4
A. Only the GPIO function is shown on GPIO terminals. See the Pin Attributes table for the complete, muxed signal name.  
Figure 6-3. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant 2]  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
1
2
3
4
5
6
7
8
9
10  
J
GPIO103  
GPIO104  
GPIO105  
GPIO22  
VSS  
VSS  
VSS  
VSS  
VSS  
H
G
F
GPIO100  
GPIO99  
GPIO98  
GPIO16  
GPIO13  
GPIO11  
VDDIO  
VSS  
GPIO101  
GPIO8  
GPIO102  
GPIO9  
NC  
VDDIO  
VDDIO  
VSS  
VDDIO  
VDDIO  
VSS  
VSS  
VSS  
VSS  
VDDIO  
GPIO20  
GPIO17  
GPIO14  
GPIO12  
GPIO10  
GPIO97  
GPIO21  
GPIO18  
GPIO15  
GPIO96  
GPIO95  
GPIO94  
VDDIO  
VDDIO  
VDDIO  
GPIO5  
GPIO4  
GPIO3  
GPIO2  
VSS  
VSS  
VDD  
VDDIO  
VDDIO  
E
D
C
B
A
GPIO19  
GPIO168  
GPIO167  
GPIO93  
GPIO92  
VSS  
VSS  
VDD  
GPIO166  
GPIO165  
GPIO91  
GPIO90  
GPIO89  
GPIO88  
GPIO7  
GPIO6  
GPIO1  
GPIO0  
GPIO164  
GPIO163  
GPIO162  
GPIO161  
GPIO160  
VDDIO  
GPIO159  
GPIO158  
GPIO157  
VSS  
Not to scale  
1
3
2
4
A. Only the GPIO function is shown on GPIO terminals. See the Pin Attributes table for the complete, muxed signal name.  
Figure 6-4. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant 3]  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
11  
12  
13  
14  
15  
16  
17  
18  
19  
X2  
J
VSS  
VSS  
VDD  
VDD  
GPIO63  
GPIO62  
NC  
H
G
F
VSS  
VSS  
VSS  
VDD  
VSS  
VDD  
VDDOSC  
VDDOSC  
VSSOSC  
GPIO133  
GPIO143  
GPIO47  
GPIO146  
GPIO68  
GPIO69  
VDDIO  
VSSOSC  
VSS  
VSS  
X1  
VDD  
VSS  
VDDIO  
VDDIO  
VSS  
VSS  
VDDIO  
VDDIO  
GPIO75  
GPIO76  
GPIO72  
GPIO73  
GPIO144  
GPIO145  
GPIO147  
GPIO74  
GPIO71  
GPIO70  
XRSn  
E
D
C
B
A
VDD  
VSS  
VSS  
VSS  
GPIO46  
GPIO42  
GPIO43  
GPIO67  
GPIO87  
GPIO86  
GPIO85  
GPIO84  
GPIO156  
GPIO155  
GPIO154  
GPIO153  
GPIO152  
GPIO151  
GPIO150  
GPIO149  
GPIO148  
GPIO83  
GPIO82  
GPIO81  
GPIO80  
GPIO79  
GPIO78  
GPIO77  
VSS  
Not to scale  
1
3
2
4
A. Only the GPIO function is shown on GPIO terminals. See the Pin Attributes table for the complete, muxed signal name.  
Figure 6-5. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant 4]  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
GPIO68  
GPIO69  
GPIO70  
GPIO71  
VDD  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
VDDIO  
GPIO40  
GPIO39  
GPIO38  
GPIO37  
GPIO36  
VDDIO  
TCK  
VDDIO  
GPIO72  
GPIO73  
GPIO74  
GPIO75  
GPIO76  
GPIO77  
GPIO78  
GPIO79  
VDDIO  
GPIO80  
GPIO81  
GPIO82  
GPIO83  
VDDIO  
VDD  
GPIO84  
GPIO85  
GPIO86  
GPIO87  
VDD  
VDDIO  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
VDDIO  
VDD  
TMS  
TRSTn  
TDO  
TDI  
VDD  
VDDIO  
FLT2  
FLT1  
VDD3VFL  
GPIO35  
GPIO34  
GPIO33  
VDDIO  
GPIO32  
GPIO31  
GPIO29  
GPIO28  
GPIO30  
VDDIO  
VDD  
ADCIND4  
ADCIND3,CMPIN8N  
ADCIND2,CMPIN8P  
ADCIND1,CMPIN7N  
ADCIND0,CMPIN7P  
VREFHID  
VDDA  
VREFHIB  
VSSA  
VREFLOD  
VREFLOB  
ADCINB3,CMPIN3N  
ADCINB2,CMPIN3P  
ADCINB1,DACOUTC  
ADCINB0,VDAC  
ADCIN15,CMPIN4N  
GPIO88  
GPIO89  
GPIO90  
GPIO91  
GPIO92  
GPIO93  
GPIO94  
Not to scale  
A. Only the GPIO function is shown on GPIO terminals. See the Pin Attributes table for the complete, muxed signal name.  
Figure 6-6. 176-Pin PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
6.2 Pin Attributes  
Table 6-1. Pin Attributes  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
337  
176  
DESCRIPTION  
ANALOG  
Input 14 to all ADCs. This pin can be used as a general  
purpose ADCIN pin or it can be used to calibrate all ADCs  
together (either single-ended or differential) from an  
external reference  
ADCIN14  
CMPIN4P  
ADCIN15  
I
I
I
T4  
44  
Comparator 4 positive input  
Input 15 to all ADCs. This pin can be used as a general  
purpose ADCIN pin or it can be used to calibrate all ADCs  
together (either single-ended or differential) from an  
external reference  
U4  
45  
CMPIN4N  
ADCINA0  
DACOUTA  
ADCINA1  
I
I
Comparator 4 negative input  
ADC-A Input 0. There is a 50-kΩ internal pulldown on this  
pin in both an ADC input or DAC output mode which  
cannot be disabled.  
U1  
T1  
43  
42  
O
I
Buffered DAC-A Output.  
ADC-A Input 1. There is a 50-kΩ internal pulldown on this  
pin in both an ADC input or DAC output mode which  
cannot be disabled.  
DACOUTB  
ADCINA2  
CMPIN1P  
ADCINA3  
CMPIN1N  
ADCINA4  
CMPIN2P  
ADCINA5  
CMPIN2N  
O
I
Buffered DAC-B Output.  
ADC-A Input 2  
U2  
T2  
U3  
T3  
41  
40  
39  
38  
I
Comparator 1 positive input  
ADC-A Input 3  
I
I
Comparator 1 negative input  
ADC-A Input 4  
I
I
Comparator 2 positive input  
ADC-A Input 5  
I
I
Comparator 2 negative input  
ADC-B Input 0. There is a 100-pF capacitor to VSSA on  
this pin whether used for ADC input or DAC reference  
which cannot be disabled. If this pin is being used as a  
reference for the on-chip DACs, place at least a 1-µF  
capacitor on this pin.  
ADCINB0  
I
V2  
46  
47  
VDAC  
I
I
Optional external reference voltage for on-chip DACs.  
ADC-B Input 1. There is a 50-kΩ internal pulldown on this  
pin in both an ADC input or DAC output mode which  
cannot be disabled.  
ADCINB1  
W2  
DACOUTC  
ADCINB2  
CMPIN3P  
ADCINB3  
CMPIN3N  
ADCINB4  
ADCINB5  
ADCINC2  
CMPIN6P  
ADCINC3  
CMPIN6N  
O
I
Buffered DAC-C Output.  
ADC-B Input 2  
V3  
48  
49  
I
Comparator 3 positive input  
ADC-B Input 3  
I
W3  
I
Comparator 3 negative input  
ADC-B Input 4  
V4  
I
W4  
I
ADC-B Input 5  
I
ADC-C Input 2  
R3  
P3  
31  
30  
I
Comparator 6 positive input  
ADC-C Input 3  
I
I
Comparator 6 negative input  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
ADCINC4  
337  
176  
DESCRIPTION  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ADC-C Input 4  
R4  
29  
CMPIN5P  
ADCINC5  
CMPIN5N  
ADCIND0  
CMPIN7P  
ADCIND1  
CMPIN7N  
ADCIND2  
CMPIN8P  
ADCIND3  
CMPIN8N  
ADCIND4  
ADCIND5  
Comparator 5 positive input  
ADC-C Input 5  
P4  
T5  
U5  
T6  
U6  
Comparator 5 negative input  
ADC-D Input 0  
56  
57  
58  
Comparator 7 positive input  
ADC-D Input 1  
Comparator 7 negative input  
ADC-D Input 2  
Comparator 8 positive input  
ADC-D Input 3  
59  
60  
Comparator 8 negative input  
ADC-D Input 4  
T7  
U7  
ADC-D Input 5  
ADC-A high reference. This voltage must be driven into  
the pin from external circuitry. Place at least a 2.2-µF  
capacitor on this pin for the 12-bit mode, or at least a 22-  
µF capacitor for the 16-bit mode. This capacitor should be  
placed as close to the device as possible between the  
VREFHIA and VREFLOA pins. NOTE: Do not load this pin  
externally  
VREFHIA  
VREFHIB  
VREFHIC  
VREFHID  
V1  
W5  
R1  
V5  
37  
53  
35  
55  
I
I
I
I
ADC-B high reference. This voltage must be driven into  
the pin from external circuitry. Place at least a 2.2-µF  
capacitor on this pin for the 12-bit mode, or at least a 22-  
µF capacitor for the 16-bit mode. This capacitor should be  
placed as close to the device as possible between the  
VREFHIB and VREFLOB pins. NOTE: Do not load this pin  
externally  
ADC-C high reference. This voltage must be driven into  
the pin from external circuitry. Place at least a 2.2-µF  
capacitor on this pin for the 12-bit mode, or at least a 22-  
µF capacitor for the 16-bit mode. This capacitor should be  
placed as close to the device as possible between the  
VREFHIC and VREFLOC pins. NOTE: Do not load this  
pin externally  
ADC-D high reference. This voltage must be driven into  
the pin from external circuitry. Place at least a 2.2-µF  
capacitor on this pin for the 12-bit mode, or at least a 22-  
µF capacitor for the 16-bit mode. This capacitor should be  
placed as close to the device as possible between the  
VREFHID and VREFLOD pins. NOTE: Do not load this  
pin externally  
VREFLOA  
VREFLOB  
VREFLOC  
VREFLOD  
R2  
V6  
P2  
W6  
33  
50  
32  
51  
I
I
I
I
ADC-A Low Reference  
ADC-B Low Reference  
ADC-C Low Reference  
ADC-D Low Reference  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
337  
176  
DESCRIPTION  
GPIO  
GPIO0  
0, 4, 8, 12  
I/O  
General-Purpose Input Output 0  
EPWM1A  
1
O
ePWM-1 Output A (High-res available on ePWM1-8)  
I2C-A Open-Drain Bidirectional Data  
CM-I2C-A Open-Drain Bidirectional Data  
EtherCAT General-Purpose Input 0  
FSITX-A Data Output 0  
I2CA_SDA  
CM-I2CA_SDA  
ESC_GPI0  
FSITXA_D0  
GPIO1  
6
I/OD  
C8  
160  
9
I/OD  
10  
I
13  
O
0, 4, 8, 12  
I/O  
General-Purpose Input Output 1  
ePWM-1 Output B (High-res available on ePWM1-8)  
McBSP-B Receive Frame Sync  
I2C-A Open-Drain Bidirectional Clock  
CM-I2C-A Open-Drain Bidirectional Clock  
EtherCAT General-Purpose Input 1  
FSITX-A Data Output 1  
EPWM1B  
1
O
MFSRB  
3
I
I2CA_SCL  
CM-I2CA_SCL  
ESC_GPI1  
FSITXA_D1  
GPIO2  
6
D8  
A7  
B7  
161  
162  
163  
I/OD  
9
I/OD  
10  
I
O
I/O  
O
O
I/OD  
I
13  
0, 4, 8, 12  
General-Purpose Input Output 2  
ePWM-2 Output A (High-res available on ePWM1-8)  
Output X-BAR Output 1  
EPWM2A  
1
OUTPUTXBAR1  
I2CB_SDA  
ESC_GPI2  
FSITXA_CLK  
GPIO3  
5
6
I2C-B Open-Drain Bidirectional Data  
EtherCAT General-Purpose Input 2  
FSITX-A Output Clock  
10  
13  
O
I/O  
O
O
I
0, 4, 8, 12  
General-Purpose Input Output 3  
ePWM-2 Output B (High-res available on ePWM1-8)  
Output X-BAR Output 2  
EPWM2B  
1
OUTPUTXBAR2  
MCLKRB  
2, 5  
3
McBSP-B Receive Clock  
I2CB_SCL  
ESC_GPI3  
FSIRXA_D0  
GPIO4  
6
I/OD  
I
I2C-B Open-Drain Bidirectional Clock  
EtherCAT General-Purpose Input 3  
FSIRX-A Data Input 0  
10  
13  
I
0, 4, 8, 12  
I/O  
O
O
O
O
I
General-Purpose Input Output 4  
ePWM-3 Output A (High-res available on ePWM1-8)  
Output X-BAR Output 3  
EPWM3A  
1
OUTPUTXBAR3  
CANA_TX  
MCAN_TX  
ESC_GPI4  
FSIRXA_D1  
GPIO5  
5
6
C7  
164  
CAN-A Transmit  
9
CAN/CAN-FD Transmit  
10  
EtherCAT General-Purpose Input 4  
FSIRX-A Data Input 1  
13  
I
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 5  
ePWM-3 Output B (High-res available on ePWM1-8)  
McBSP-A Receive Frame Sync  
Output X-BAR Output 3  
EPWM3B  
1
2
MFSRA  
OUTPUTXBAR3  
CANA_RX  
MCAN_RX  
ESC_GPI5  
FSIRXA_CLK  
3
O
I
D7  
165  
6
CAN-A Receive  
9
I
CAN/CAN-FD Receive  
10  
13  
I
EtherCAT General-Purpose Input 5  
FSIRX-A Input Clock  
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
337  
176  
DESCRIPTION  
GPIO6  
0, 4, 8, 12  
I/O  
O
O
O
I
General-Purpose Input Output 6  
EPWM4A  
1
ePWM-4 Output A (High-res available on ePWM1-8)  
Output X-BAR Output 4  
OUTPUTXBAR4  
EXTSYNCOUT  
EQEP3_A  
CANB_TX  
ESC_GPI6  
FSITXB_D0  
GPIO7  
2
3
External ePWM Synchronization Pulse  
eQEP-3 Input A  
A6  
166  
5
6
O
I
CAN-B Transmit  
10  
EtherCAT General-Purpose Input 6  
FSITX-B Data Output 0  
13  
O
I/O  
O
I
0, 4, 8, 12  
General-Purpose Input Output 7  
ePWM-4 Output B (High-res available on ePWM1-8)  
McBSP-A Receive Clock  
EPWM4B  
1
MCLKRA  
2
OUTPUTXBAR5  
EQEP3_B  
CANB_RX  
ESC_GPI7  
FSITXB_D1  
GPIO8  
3
O
I
Output X-BAR Output 5  
B6  
167  
5
eQEP-3 Input B  
6
I
CAN-B Receive  
10  
I
EtherCAT General-Purpose Input 7  
FSITX-B Data Output 1  
13  
O
I/O  
O
O
0, 4, 8, 12  
General-Purpose Input Output 8  
ePWM-5 Output A (High-res available on ePWM1-8)  
CAN-B Transmit  
EPWM5A  
1
2
CANB_TX  
ADC Start of Conversion A Output for External ADC (from  
ePWM modules)  
ADCSOCAO  
3
O
EQEP3_STROBE  
SCIA_TX  
5
I/O  
O
O
O
O
O
I
eQEP-3 Strobe  
G2  
18  
6
SCI-A Transmit Data  
MCAN_TX  
9
CAN/CAN-FD Transmit  
EtherCAT General-Purpose Output 0  
FSITX-B Output Clock  
ESC_GPO0  
FSITXB_CLK  
FSITXA_D1  
FSIRXA_D0  
GPIO9  
10  
13  
14  
FSITX-A Data Output 1  
FSIRX-A Data Input 0  
15  
0, 4, 8, 12  
I/O  
O
O
O
I/O  
I
General-Purpose Input Output 9  
ePWM-5 Output B (High-res available on ePWM1-8)  
SCI-B Transmit Data  
EPWM5B  
1
2
SCIB_TX  
OUTPUTXBAR6  
EQEP3_INDEX  
SCIA_RX  
3
Output X-BAR Output 6  
eQEP-3 Index  
5
G3  
19  
6
SCI-A Receive Data  
ESC_GPO1  
FSIRXB_D0  
FSITXA_D0  
FSIRXA_CLK  
10  
13  
14  
15  
O
I
EtherCAT General-Purpose Output 1  
FSIRX-B Data Input 0  
O
I
FSITX-A Data Output 0  
FSIRX-A Input Clock  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
337  
176  
DESCRIPTION  
GPIO10  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 10  
ePWM-6 Output A (High-res available on ePWM1-8)  
CAN-B Receive  
EPWM6A  
CANB_RX  
1
2
ADC Start of Conversion B Output for External ADC (from  
ePWM modules)  
ADCSOCBO  
3
O
EQEP1_A  
SCIB_TX  
5
I
O
I
eQEP-1 Input A  
B2  
1
6
SCI-B Transmit Data  
MCAN_RX  
ESC_GPO2  
FSIRXB_D1  
FSITXA_CLK  
FSIRXA_D1  
GPIO11  
9
CAN/CAN-FD Receive  
10  
O
I
EtherCAT General-Purpose Output 2  
FSIRX-B Data Input 1  
13  
14  
O
I
FSITX-A Output Clock  
15  
FSIRX-A Data Input 1  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 11  
ePWM-6 Output B (High-res available on ePWM1-8)  
SCI-B Receive Data  
EPWM6B  
1
SCIB_RX  
2, 6  
OUTPUTXBAR7  
EQEP1_B  
ESC_GPO3  
FSIRXB_CLK  
FSIRXA_D1  
GPIO12  
3
O
I
Output X-BAR Output 7  
C1  
2
5
eQEP-1 Input B  
10  
O
I
EtherCAT General-Purpose Output 3  
FSIRX-B Input Clock  
13  
14  
I
FSIRX-A Data Input 1  
0, 4, 8, 12  
I/O  
O
O
O
I/O  
O
O
I
General-Purpose Input Output 12  
ePWM-7 Output A (High-res available on ePWM1-8)  
CAN-B Transmit  
EPWM7A  
1
CANB_TX  
MDXB  
2
3
McBSP-B Transmit Serial Data  
eQEP-1 Strobe  
EQEP1_STROBE  
SCIC_TX  
5
C2  
4
6
SCI-C Transmit Data  
ESC_GPO4  
FSIRXC_D0  
FSIRXA_D0  
GPIO13  
10  
EtherCAT General-Purpose Output 4  
FSIRX-C Data Input 0  
13  
14  
I
FSIRX-A Data Input 0  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 13  
ePWM-7 Output B (High-res available on ePWM1-8)  
CAN-B Receive  
EPWM7B  
1
CANB_RX  
MDRB  
2
3
I
McBSP-B Receive Serial Data  
eQEP-1 Index  
EQEP1_INDEX  
SCIC_RX  
5
D1  
5
I/O  
I
6
SCI-C Receive Data  
ESC_GPO5  
FSIRXC_D1  
FSIRXA_CLK  
GPIO14  
10  
O
I
EtherCAT General-Purpose Output 5  
FSIRX-C Data Input 1  
13  
14  
I
FSIRX-A Input Clock  
0, 4, 8, 12  
I/O  
O
O
O
O
O
I
General-Purpose Input Output 14  
ePWM-8 Output A (High-res available on ePWM1-8)  
SCI-B Transmit Data  
EPWM8A  
1
2
SCIB_TX  
MCLKXB  
3
D2  
6
McBSP-B Transmit Clock  
Output X-BAR Output 3  
OUTPUTXBAR3  
ESC_GPO6  
FSIRXC_CLK  
6
10  
13  
EtherCAT General-Purpose Output 6  
FSIRX-C Input Clock  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO15  
337  
176  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 15  
EPWM8B  
1
ePWM-8 Output B (High-res available on ePWM1-8)  
SCI-B Receive Data  
SCIB_RX  
2
MFSXB  
3
D3  
7
O
O
O
I
McBSP-B Transmit Frame Sync  
Output X-BAR Output 4  
OUTPUTXBAR4  
ESC_GPO7  
FSIRXD_D0  
GPIO16  
6
10  
EtherCAT General-Purpose Output 7  
FSIRX-D Data Input 0  
13  
0, 4, 8, 12  
I/O  
I/O  
O
O
O
I
General-Purpose Input Output 16  
SPI-A Slave In, Master Out (SIMO)  
CAN-B Transmit  
SPIA_SIMO  
CANB_TX  
OUTPUTXBAR7  
EPWM9A  
1
2
3
Output X-BAR Output 7  
E1  
8
5
ePWM-9 Output A (High-res available on ePWM1-8)  
SDFM-1 Channel 1 Data Input  
SSI-A Serial Data Transmit  
FSIRX-D Data Input 1  
SD1_D1  
7
SSIA_TX  
11  
I/O  
I
FSIRXD_D1  
GPIO17  
13  
0, 4, 8, 12  
I/O  
I/O  
I
General-Purpose Input Output 17  
SPI-A Slave Out, Master In (SOMI)  
CAN-B Receive  
SPIA_SOMI  
CANB_RX  
OUTPUTXBAR8  
EPWM9B  
1
2
3
O
O
I
Output X-BAR Output 8  
E2  
9
5
ePWM-9 Output B (High-res available on ePWM1-8)  
SDFM-1 Channel 1 Clock Input  
SSI-A Serial Data Receive  
SD1_C1  
7
SSIA_RX  
11  
I/O  
I
FSIRXD_CLK  
GPIO18  
13  
FSIRX-D Input Clock  
0, 4, 8, 12  
I/O  
I/O  
O
I
General-Purpose Input Output 18  
SPI-A Clock  
SPIA_CLK  
SCIB_TX  
1
2
SCI-B Transmit Data  
CANA_RX  
EPWM10A  
SD1_D2  
3
CAN-A Receive  
5
O
I
ePWM-10 Output A (High-res available on ePWM1-8)  
SDFM-1 Channel 2 Data Input  
CAN/CAN-FD Receive  
E3  
10  
7
MCAN_RX  
EMIF1_CS2n  
SSIA_CLK  
FSIRXE_D0  
GPIO19  
9
I
10  
O
I/O  
I
External memory interface 1 chip select 2  
SSI-A Clock  
11  
13  
FSIRX-E Data Input 0  
0, 4, 8, 12  
I/O  
I/O  
I
General-Purpose Input Output 19  
SPI-A Slave Transmit Enable (STE)  
SCI-B Receive Data  
SPIA_STEn  
SCIB_RX  
1
2
CANA_TX  
EPWM10B  
SD1_C2  
3
O
O
I
CAN-A Transmit  
5
ePWM-10 Output B (High-res available on ePWM1-8)  
SDFM-1 Channel 2 Clock Input  
CAN/CAN-FD Transmit  
E4  
12  
7
MCAN_TX  
EMIF1_CS3n  
SSIA_FSS  
FSIRXE_D1  
9
O
O
I/O  
I
10  
11  
13  
External memory interface 1 chip select 3  
SSI-A Frame Sync  
FSIRX-E Data Input 1  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
SIGNAL NAME  
337  
176  
DESCRIPTION  
TYPE  
I/O  
I
GPIO20  
0, 4, 8, 12  
General-Purpose Input Output 20  
eQEP-1 Input A  
EQEP1_A  
MDXA  
1
2
O
O
O
I
McBSP-A Transmit Serial Data  
CAN-B Transmit  
CANB_TX  
EPWM11A  
SD1_D3  
3
5
ePWM-11 Output A (High-res available on ePWM1-8)  
SDFM-1 Channel 3 Data Input  
External memory interface 1 bank address 0  
Trace Data 0  
F2  
13  
7
EMIF1_BA0  
TRACE_DATA0  
FSIRXE_CLK  
SPIC_SIMO  
GPIO21  
10  
O
O
I
11  
13  
FSIRX-E Input Clock  
14  
I/O  
I/O  
I
SPI-C Slave In, Master Out (SIMO)  
General-Purpose Input Output 21  
eQEP-1 Input B  
0, 4, 8, 12  
EQEP1_B  
MDRA  
1
2
I
McBSP-A Receive Serial Data  
CAN-B Receive  
CANB_RX  
EPWM11B  
SD1_C3  
3
I
5
O
I
ePWM-11 Output B (High-res available on ePWM1-8)  
SDFM-1 Channel 3 Clock Input  
External memory interface 1 bank address 1  
Trace Data 1  
F3  
14  
7
EMIF1_BA1  
TRACE_DATA1  
FSIRXF_D0  
SPIC_SOMI  
GPIO22  
10  
O
O
I
11  
13  
FSIRX-F Data Input 0  
14  
I/O  
I/O  
I/O  
O
O
O
I/O  
I
SPI-C Slave Out, Master In (SOMI)  
General-Purpose Input Output 22  
eQEP-1 Strobe  
0, 4, 8, 12  
EQEP1_STROBE  
MCLKXA  
1
2
McBSP-A Transmit Clock  
SCIB_TX  
3
SCI-B Transmit Data  
EPWM12A  
SPIB_CLK  
SD1_D4  
5
ePWM-12 Output A (High-res available on ePWM1-8)  
SPI-B Clock  
6
J4  
22  
7
SDFM-1 Channel 4 Data Input  
CAN/CAN-FD Transmit  
MCAN_TX  
EMIF1_RAS  
TRACE_DATA2  
FSIRXF_D1  
SPIC_CLK  
GPIO23  
9
O
O
O
I
10  
External memory interface 1 row address strobe  
Trace Data 2  
11  
13  
FSIRX-F Data Input 1  
14  
I/O  
I/O  
I/O  
O
I
SPI-C Clock  
0, 4, 8, 12  
General-Purpose Input Output 23  
eQEP-1 Index  
EQEP1_INDEX  
MFSXA  
1
2
McBSP-A Transmit Frame Sync  
SCI-B Receive Data  
SCIB_RX  
3
EPWM12B  
SPIB_STEn  
SD1_C4  
5
O
I/O  
I
ePWM-12 Output B (High-res available on ePWM1-8)  
SPI-B Slave Transmit Enable (STE)  
SDFM-1 Channel 4 Clock Input  
CAN/CAN-FD Receive  
6
K4  
23  
7
MCAN_RX  
EMIF1_CAS  
TRACE_DATA3  
FSIRXF_CLK  
SPIC_STEn  
9
I
10  
11  
13  
14  
O
O
I
External memory interface 1 column address strobe  
Trace Data 3  
FSIRX-F Input Clock  
I/O  
SPI-C Slave Transmit Enable (STE)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO24  
337  
176  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 24  
Output X-BAR Output 1  
OUTPUTXBAR1  
EQEP2_A  
1
2
I
eQEP-2 Input A  
MDXB  
3
O
McBSP-B Transmit Serial Data  
SPI-B Slave In, Master Out (SIMO)  
SDFM-2 Channel 1 Data Input  
PMBus-A Open-Drain Bidirectional Clock  
SPIB_SIMO  
SD2_D1  
6
I/O  
I
7
K3  
24  
PMBUSA_SCL  
EMIF1_DQM0  
TRACE_CLK  
EPWM13A  
9
I/OD  
O
10  
External memory interface 1 Input/output mask for byte 0  
Trace Clock  
11  
O
13  
O
ePWM-13 Output A (High-res available on ePWM1-8)  
FSIRX-G Data Input 0  
FSIRXG_D0  
GPIO25  
15  
I
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 25  
Output X-BAR Output 2  
OUTPUTXBAR2  
EQEP2_B  
1
2
I
eQEP-2 Input B  
MDRB  
3
I
McBSP-B Receive Serial Data  
SPI-B Slave Out, Master In (SOMI)  
SDFM-2 Channel 1 Clock Input  
PMBus-A Open-Drain Bidirectional Data  
External memory interface 1 Input/output mask for byte 1  
Trace Single Wire Out  
SPIB_SOMI  
SD2_C1  
6
I/O  
I
7
K2  
25  
PMBUSA_SDA  
EMIF1_DQM1  
TRACE_SWO  
EPWM13B  
9
I/OD  
O
10  
11  
O
13  
O
ePWM-13 Output B (High-res available on ePWM1-8)  
FSITX-A Data Output 1  
FSITXA_D1  
FSIRXG_D1  
GPIO26  
14  
O
15  
I
FSIRX-G Data Input 1  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 26  
Output X-BAR Output 3  
OUTPUTXBAR3  
EQEP2_INDEX  
MCLKXB  
1, 5  
2
I/O  
O
eQEP-2 Index  
3
McBSP-B Transmit Clock  
SPIB_CLK  
6
I/O  
I
SPI-B Clock  
SD2_D2  
7
SDFM-2 Channel 2 Data Input  
PMBus-A Open-Drain Bidirectional Alert Signal  
External memory interface 1 Input/output mask for byte 2  
EtherCAT MDIO Clock  
K1  
27  
PMBUSA_ALERT  
EMIF1_DQM2  
ESC_MDIO_CLK  
EPWM14A  
9
I/OD  
O
10  
11  
13  
14  
15  
O
O
ePWM-14 Output A (High-res available on ePWM1-8)  
FSITX-A Data Output 0  
FSITXA_D0  
FSIRXG_CLK  
O
I
FSIRX-G Input Clock  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
SIGNAL NAME  
337  
176  
DESCRIPTION  
TYPE  
I/O  
O
I/O  
O
I/O  
I
GPIO27  
0, 4, 8, 12  
General-Purpose Input Output 27  
Output X-BAR Output 4  
OUTPUTXBAR4  
EQEP2_STROBE  
MFSXB  
1, 5  
2
eQEP-2 Strobe  
3
McBSP-B Transmit Frame Sync  
SPI-B Slave Transmit Enable (STE)  
SDFM-2 Channel 2 Clock Input  
PMBus-A Control Signal  
SPIB_STEn  
SD2_C2  
6
7
L1  
28  
PMBUSA_CTL  
EMIF1_DQM3  
ESC_MDIO_DATA  
EPWM14B  
9
I
10  
O
I/O  
O
O
I
External memory interface 1 Input/output mask for byte 3  
EtherCAT MDIO Data  
11  
13  
ePWM-14 Output B (High-res available on ePWM1-8)  
FSITX-A Output Clock  
FSITXA_CLK  
FSIRXH_D0  
GPIO28  
14  
15  
FSIRX-H Data Input 0  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 28  
SCI-A Receive Data  
SCIA_RX  
1
EMIF1_CS4n  
OUTPUTXBAR5  
EQEP3_A  
2
O
O
I
External memory interface 1 chip select 4  
Output X-BAR Output 5  
5
6
V11  
64  
eQEP-3 Input A  
SD2_D3  
7
I
SDFM-2 Channel 3 Data Input  
External memory interface 1 chip select 2  
ePWM-15 Output A (High-res available on ePWM1-8)  
FSIRX-H Data Input 1  
EMIF1_CS2n  
EPWM15A  
9
O
O
I
13  
FSIRXH_D1  
GPIO29  
15  
0, 4, 8, 12  
I/O  
O
O
O
I
General-Purpose Input Output 29  
SCI-A Transmit Data  
SCIA_TX  
1
EMIF1_SDCKE  
OUTPUTXBAR6  
EQEP3_B  
2
External memory interface 1 SDRAM clock enable  
Output X-BAR Output 6  
5
6
eQEP-3 Input B  
SD2_C3  
7
I
SDFM-2 Channel 3 Clock Input  
External memory interface 1 chip select 3  
EtherCAT LatchSignal Input 0  
EtherCAT I2C Data  
W11  
65  
EMIF1_CS3n  
ESC_LATCH0  
ESC_I2C_SDA  
EPWM15B  
9
O
I
10  
11  
I/OC  
O
O
I
13  
ePWM-15 Output B (High-res available on ePWM1-8)  
EtherCAT SyncSignal Output 0  
FSIRX-H Input Clock  
ESC_SYNC0  
FSIRXH_CLK  
GPIO30  
14  
15  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 30  
CAN-A Receive  
CANA_RX  
1
2
EMIF1_CLK  
MCAN_RX  
O
I
External memory interface 1 clock  
CAN/CAN-FD Receive  
3
OUTPUTXBAR7  
EQEP3_STROBE  
SD2_D4  
5
O
I/O  
I
Output X-BAR Output 7  
6
eQEP-3 Strobe  
7
T11  
63  
SDFM-2 Channel 4 Data Input  
External memory interface 1 chip select 4  
EtherCAT LatchSignal Input 1  
EtherCAT I2C Clock  
EMIF1_CS4n  
ESC_LATCH1  
ESC_I2C_SCL  
EPWM16A  
9
O
I
10  
11  
13  
14  
15  
I/OC  
O
O
I/O  
ePWM-16 Output A (High-res available on ePWM1-8)  
EtherCAT SyncSignal Output 1  
SPI-D Slave In, Master Out (SIMO)  
ESC_SYNC1  
SPID_SIMO  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO31  
337  
176  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 31  
CAN-A Transmit  
CANA_TX  
1
EMIF1_WEn  
MCAN_TX  
2
O
External memory interface 1 write enable  
CAN/CAN-FD Transmit  
3
O
OUTPUTXBAR8  
EQEP3_INDEX  
SD2_C4  
5
O
Output X-BAR Output 8  
6
I/O  
I
eQEP-3 Index  
U11  
66  
7
SDFM-2 Channel 4 Clock Input  
External memory interface 1 read not write  
I2C-A Open-Drain Bidirectional Data  
CM-I2C-A Open-Drain Bidirectional Data  
EMIF1_RNW  
I2CA_SDA  
9
O
10  
I/OD  
I/OD  
O
CM-I2CA_SDA  
EPWM16B  
11  
13  
ePWM-16 Output B (High-res available on ePWM1-8)  
SPI-D Slave Out, Master In (SOMI)  
General-Purpose Input Output 32  
I2C-A Open-Drain Bidirectional Data  
External memory interface 1 chip select 0  
SPI-A Slave In, Master Out (SIMO)  
CLB Output X-BAR Output 1  
SPID_SOMI  
GPIO32  
15  
I/O  
I/O  
I/OD  
O
0, 4, 8, 12  
I2CA_SDA  
1
EMIF1_CS0n  
SPIA_SIMO  
CLB_OUTPUTXBAR1  
EMIF1_OEn  
I2CA_SCL  
2
3
I/O  
O
7
U13  
67  
9
O
External memory interface 1 output enable  
I2C-A Open-Drain Bidirectional Clock  
CM-I2C-A Open-Drain Bidirectional Clock  
SPI-D Clock  
10  
I/OD  
I/OD  
I/O  
I/O  
I/OD  
O
CM-I2CA_SCL  
SPID_CLK  
11  
15  
GPIO33  
0, 4, 8, 12  
General-Purpose Input Output 33  
I2C-A Open-Drain Bidirectional Clock  
External memory interface 1 read not write  
SPI-A Slave Out, Master In (SOMI)  
CLB Output X-BAR Output 2  
I2CA_SCL  
1
EMIF1_RNW  
SPIA_SOMI  
CLB_OUTPUTXBAR2  
EMIF1_BA0  
SPID_STEn  
GPIO34  
2
3
T13  
69  
I/O  
O
7
9
O
External memory interface 1 bank address 0  
SPI-D Slave Transmit Enable (STE)  
General-Purpose Input Output 34  
Output X-BAR Output 1  
15  
I/O  
I/O  
O
0, 4, 8, 12  
OUTPUTXBAR1  
EMIF1_CS2n  
SPIA_CLK  
1
2
O
External memory interface 1 chip select 2  
SPI-A Clock  
3
I/O  
I/OD  
O
I2CB_SDA  
6
I2C-B Open-Drain Bidirectional Data  
CLB Output X-BAR Output 3  
CLB_OUTPUTXBAR3  
EMIF1_BA1  
ESC_LATCH0  
ENET_MII_CRS  
SCIA_TX  
7
U14  
70  
9
O
External memory interface 1 bank address 1  
EtherCAT LatchSignal Input 0  
10  
11  
13  
14  
I
I
EMAC MII carrier sense  
O
SCI-A Transmit Data  
ESC_SYNC0  
O
EtherCAT SyncSignal Output 0  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
SIGNAL NAME  
337  
176  
DESCRIPTION  
TYPE  
I/O  
I
GPIO35  
0, 4, 8, 12  
General-Purpose Input Output 35  
SCI-A Receive Data  
SCIA_RX  
1
EMIF1_CS3n  
SPIA_STEn  
I2CB_SCL  
2
O
I/O  
I/OD  
O
O
I
External memory interface 1 chip select 3  
SPI-A Slave Transmit Enable (STE)  
I2C-B Open-Drain Bidirectional Clock  
CLB Output X-BAR Output 4  
External memory interface 1 address line 0  
EtherCAT LatchSignal Input 1  
EMAC MII collision detect  
3
6
T14  
71  
CLB_OUTPUTXBAR4  
EMIF1_A0  
7
9
ESC_LATCH1  
ENET_MII_COL  
ESC_SYNC1  
GPIO36  
10  
11  
I
14  
O
I/O  
O
I
EtherCAT SyncSignal Output 1  
General-Purpose Input Output 36  
SCI-A Transmit Data  
0, 4, 8, 12  
SCIA_TX  
1
EMIF1_WAIT  
CANA_RX  
2
External memory interface 1 Asynchronous SRAM WAIT  
CAN-A Receive  
6
I
V16  
83  
CLB_OUTPUTXBAR5  
EMIF1_A1  
7
O
O
I
CLB Output X-BAR Output 5  
External memory interface 1 address line 1  
CAN/CAN-FD Receive  
9
MCAN_RX  
10  
SD1_D1  
13  
I
SDFM-1 Channel 1 Data Input  
General-Purpose Input Output 37  
Output X-BAR Output 2  
GPIO37  
0, 4, 8, 12  
I/O  
O
O
O
O
O
O
I
OUTPUTXBAR2  
EMIF1_OEn  
CANA_TX  
1
2
External memory interface 1 output enable  
CAN-A Transmit  
6
U16  
84  
CLB_OUTPUTXBAR6  
EMIF1_A2  
7
CLB Output X-BAR Output 6  
External memory interface 1 address line 2  
CAN/CAN-FD Transmit  
9
MCAN_TX  
10  
SD1_D2  
13  
SDFM-1 Channel 2 Data Input  
General-Purpose Input Output 38  
External memory interface 1 address line 0  
SCI-C Transmit Data  
GPIO38  
0, 4, 8, 12  
I/O  
O
O
O
O
O
EMIF1_A0  
2
5
6
7
9
SCIC_TX  
CANB_TX  
CAN-B Transmit  
CLB_OUTPUTXBAR7  
EMIF1_A3  
CLB Output X-BAR Output 7  
External memory interface 1 address line 3  
T16  
85  
EMAC MII receive data valid (or) RMII carrier sense/  
receive data valid  
ENET_MII_RX_DV  
10  
I
ENET_MII_CRS  
SD1_D3  
11  
I
I
EMAC MII carrier sense  
13  
SDFM-1 Channel 3 Data Input  
General-Purpose Input Output 39  
External memory interface 1 address line 1  
SCI-C Receive Data  
GPIO39  
0, 4, 8, 12  
I/O  
O
I
EMIF1_A1  
2
5
SCIC_RX  
CANB_RX  
6
I
CAN-B Receive  
CLB_OUTPUTXBAR8  
EMIF1_A4  
7
W17  
86  
O
O
I
CLB Output X-BAR Output 8  
External memory interface 1 address line 4  
EMAC MII / RMII receive error  
EMAC MII collision detect  
9
ENET_MII_RX_ERR  
ENET_MII_COL  
SD1_D4  
10  
11  
13  
I
I
SDFM-1 Channel 4 Data Input  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO40  
337  
176  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 40  
External memory interface 1 address line 2  
I2C-B Open-Drain Bidirectional Data  
EMAC MII carrier sense  
EMIF1_A2  
2
I2CB_SDA  
6
V17  
87  
I/OD  
I
ENET_MII_CRS  
ESC_I2C_SDA  
GPIO41  
11  
14  
I/OC  
I/O  
O
EtherCAT I2C Data  
0, 4, 8, 12  
General-Purpose Input Output 41  
External memory interface 1 address line 3  
I2C-B Open-Drain Bidirectional Clock  
EMAC REVMII MDIO reset  
EMIF1_A3  
2
I2CB_SCL  
6
I/OD  
I
U17  
D19  
C19  
89  
ENET_REVMII_MDIO_RST  
ENET_MII_COL  
ESC_I2C_SCL  
GPIO42  
10  
11  
I
EMAC MII collision detect  
14  
0, 4, 8, 12  
6
I/OC  
I/O  
I/OD  
EtherCAT I2C Clock  
General-Purpose Input Output 42  
I2C-A Open-Drain Bidirectional Data  
I2CA_SDA  
EMAC management data clock, Output in MII/RMII  
modes, Input in RevMII mode  
ENET_MDIO_CLK  
10  
I/O  
130  
UARTA_TX  
SCIA_TX  
11  
I/O  
O
UART-A Serial Data Transmit  
SCI-A Transmit Data  
15  
USB0DM  
ALT  
O
USB-0 PHY differential data  
General-Purpose Input Output 43  
I2C-A Open-Drain Bidirectional Clock  
EMAC management data  
GPIO43  
0, 4, 8, 12  
I/O  
I/OD  
I/O  
I/O  
I
I2CA_SCL  
6
ENET_MDIO_DATA  
UARTA_RX  
SCIA_RX  
10  
131  
11  
UART-A Serial Data Receive  
SCI-A Receive Data  
15  
USB0DP  
ALT  
O
USB-0 PHY differential data  
General-Purpose Input Output 44  
External memory interface 1 address line 4  
EMAC MII transmit clock  
GPIO44  
0, 4, 8, 12  
I/O  
O
EMIF1_A4  
2
K18  
K19  
113  
115  
ENET_MII_TX_CLK  
ESC_TX1_CLK  
GPIO45  
11  
I
14  
I
EtherCAT MII Transmit-1 Clock  
General-Purpose Input Output 45  
External memory interface 1 address line 5  
EMAC MII / RMII transmit enable  
EtherCAT MII Transmit-1 Enable  
General-Purpose Input Output 46  
External memory interface 1 address line 6  
SCI-D Receive Data  
0, 4, 8, 12  
I/O  
O
EMIF1_A5  
2
ENET_MII_TX_EN  
ESC_TX1_ENA  
GPIO46  
11  
O
14  
I/O  
I/O  
O
0, 4, 8, 12  
EMIF1_A6  
2
SCID_RX  
6
E19  
E18  
128  
129  
I
ENET_MII_TX_ERR  
ESC_MDIO_CLK  
GPIO47  
11  
O
EMAC MII transmit error  
14  
O
EtherCAT MDIO Clock  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 47  
External memory interface 1 address line 7  
SCI-D Transmit Data  
EMIF1_A7  
2
6
SCID_TX  
O
ENET_PPS0  
ESC_MDIO_DATA  
11  
14  
O
EMAC Pulse Per Second Output 0  
EtherCAT MDIO Data  
I/O  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
337  
176  
DESCRIPTION  
GPIO48  
0, 4, 8, 12  
I/O  
O
O
O
I
General-Purpose Input Output 48  
Output X-BAR Output 3  
OUTPUTXBAR3  
EMIF1_A8  
SCIA_TX  
1
2
External memory interface 1 address line 8  
SCI-A Transmit Data  
6
R16  
90  
SD1_D1  
7
SDFM-1 Channel 1 Data Input  
EMAC Pulse Per Second Output 1  
EtherCAT PHY Clock  
ENET_PPS1  
ESC_PHY_CLK  
GPIO49  
11  
O
O
I/O  
O
O
I
14  
0, 4, 8, 12  
General-Purpose Input Output 49  
Output X-BAR Output 4  
OUTPUTXBAR4  
EMIF1_A9  
SCIA_RX  
1
2
External memory interface 1 address line 9  
SCI-A Receive Data  
6
SD1_C1  
7
R17  
93  
I
SDFM-1 Channel 1 Clock Input  
External memory interface 1 address line 5  
EMAC MII receive clock  
EMIF1_A5  
ENET_MII_RX_CLK  
SD2_D1  
9
O
I
11  
13  
I
SDFM-2 Channel 1 Data Input  
FSITX-A Data Output 0  
FSITXA_D0  
GPIO50  
14  
O
I/O  
I
0, 4, 8, 12  
General-Purpose Input Output 50  
eQEP-1 Input A  
EQEP1_A  
1
2
6
7
9
EMIF1_A10  
SPIC_SIMO  
SD1_D2  
O
I/O  
I
External memory interface 1 address line 10  
SPI-C Slave In, Master Out (SIMO)  
SDFM-1 Channel 2 Data Input  
External memory interface 1 address line 6  
R18  
94  
EMIF1_A6  
O
EMAC MII receive data valid (or) RMII carrier sense/  
receive data valid  
ENET_MII_RX_DV  
11  
I
SD2_D2  
13  
I
O
I/O  
I
SDFM-2 Channel 2 Data Input  
FSITX-A Data Output 1  
FSITXA_D1  
GPIO51  
14  
0, 4, 8, 12  
General-Purpose Input Output 51  
eQEP-1 Input B  
EQEP1_B  
1
EMIF1_A11  
SPIC_SOMI  
SD1_C2  
2
O
I/O  
I
External memory interface 1 address line 11  
SPI-C Slave Out, Master In (SOMI)  
SDFM-1 Channel 2 Clock Input  
External memory interface 1 address line 7  
EMAC MII / RMII receive error  
SDFM-2 Channel 3 Data Input  
FSITX-A Output Clock  
6
7
R19  
95  
EMIF1_A7  
9
O
I
ENET_MII_RX_ERR  
SD2_D3  
11  
13  
I
FSITXA_CLK  
GPIO52  
14  
O
I/O  
I/O  
O
I/O  
I
0, 4, 8, 12  
General-Purpose Input Output 52  
eQEP-1 Strobe  
EQEP1_STROBE  
EMIF1_A12  
SPIC_CLK  
SD1_D3  
1
2
External memory interface 1 address line 12  
SPI-C Clock  
6
7
P16  
96  
SDFM-1 Channel 3 Data Input  
External memory interface 1 address line 8  
EMAC MII / RMII receive data 0  
SDFM-2 Channel 4 Data Input  
FSIRX-A Data Input 0  
EMIF1_A8  
9
O
I
ENET_MII_RX_DATA0  
SD2_D4  
11  
13  
14  
I
FSIRXA_D0  
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO53  
337  
176  
DESCRIPTION  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
I/O  
I
General-Purpose Input Output 53  
eQEP-1 Index  
EQEP1_INDEX  
EMIF1_D31  
EMIF2_D15  
SPIC_STEn  
SD1_C3  
1
2
External memory interface 1 data line 31  
External memory interface 2 data line 15  
SPI-C Slave Transmit Enable (STE)  
SDFM-1 Channel 3 Clock Input  
External memory interface 1 address line 9  
EMAC MII / RMII receive data 1  
SDFM-1 Channel 1 Clock Input  
FSIRX-A Data Input 1  
3
6
P17  
97  
7
EMIF1_A9  
9
O
I
ENET_MII_RX_DATA1  
SD1_C1  
11  
13  
I
FSIRXA_D1  
GPIO54  
14  
I
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/O  
I
General-Purpose Input Output 54  
SPI-A Slave In, Master Out (SIMO)  
External memory interface 1 data line 30  
External memory interface 2 data line 14  
eQEP-2 Input A  
SPIA_SIMO  
EMIF1_D30  
EMIF2_D14  
EQEP2_A  
1
2
3
5
SCIB_TX  
6
O
I
SCI-B Transmit Data  
P18  
98  
SD1_D4  
7
SDFM-1 Channel 4 Data Input  
External memory interface 1 address line 10  
EMAC MII receive data 2  
EMIF1_A10  
ENET_MII_RX_DATA2  
SD1_C2  
9
O
I
11  
13  
I
SDFM-1 Channel 2 Clock Input  
FSIRX-A Input Clock  
FSIRXA_CLK  
SSIA_TX  
14  
I
15  
I/O  
I/O  
I/O  
I/O  
I/O  
I
SSI-A Serial Data Transmit  
GPIO55  
0, 4, 8, 12  
General-Purpose Input Output 55  
SPI-A Slave Out, Master In (SOMI)  
External memory interface 1 data line 29  
External memory interface 2 data line 13  
eQEP-2 Input B  
SPIA_SOMI  
EMIF1_D29  
EMIF2_D13  
EQEP2_B  
1
2
3
5
SCIB_RX  
6
I
SCI-B Receive Data  
P19  
100  
SD1_C4  
7
I
SDFM-1 Channel 4 Clock Input  
External memory interface 1 data line 0  
EMAC MII receive data 3  
EMIF1_D0  
ENET_MII_RX_DATA3  
SD1_C3  
9
I/O  
I
11  
13  
14  
15  
I
SDFM-1 Channel 3 Clock Input  
FSITX-B Data Output 0  
FSITXB_D0  
SSIA_RX  
O
I/O  
SSI-A Serial Data Receive  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
SIGNAL NAME  
337  
176  
DESCRIPTION  
TYPE  
I/O  
I/O  
I/O  
I/O  
I/O  
O
GPIO56  
0, 4, 8, 12  
General-Purpose Input Output 56  
SPI-A Clock  
SPIA_CLK  
1
EMIF1_D28  
EMIF2_D12  
EQEP2_STROBE  
SCIC_TX  
2
External memory interface 1 data line 28  
External memory interface 2 data line 12  
eQEP-2 Strobe  
3
5
6
SCI-C Transmit Data  
SD2_D1  
7
N16  
101  
I
SDFM-2 Channel 1 Data Input  
External memory interface 1 data line 1  
I2C-A Open-Drain Bidirectional Data  
EMAC MII / RMII transmit enable  
SDFM-1 Channel 4 Clock Input  
FSITX-B Output Clock  
EMIF1_D1  
9
I/O  
I/OD  
O
I2CA_SDA  
10  
ENET_MII_TX_EN  
SD1_C4  
11  
13  
I
FSITXB_CLK  
SSIA_CLK  
14  
O
15  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
SSI-A Clock  
GPIO57  
0, 4, 8, 12  
General-Purpose Input Output 57  
SPI-A Slave Transmit Enable (STE)  
External memory interface 1 data line 27  
External memory interface 2 data line 11  
eQEP-2 Index  
SPIA_STEn  
EMIF1_D27  
EMIF2_D11  
EQEP2_INDEX  
SCIC_RX  
1
2
3
5
6
SCI-C Receive Data  
N18  
102  
SD2_C1  
7
I
SDFM-2 Channel 1 Clock Input  
External memory interface 1 data line 2  
I2C-A Open-Drain Bidirectional Clock  
EMAC MII transmit error  
EMIF1_D2  
9
I/O  
I/OD  
O
I2CA_SCL  
10  
ENET_MII_TX_ERR  
FSITXB_D1  
SSIA_FSS  
11  
14  
O
FSITX-B Data Output 1  
15  
I/O  
I/O  
I
SSI-A Frame Sync  
GPIO58  
0, 4, 8, 12  
General-Purpose Input Output 58  
McBSP-A Receive Clock  
MCLKRA  
1
2
EMIF1_D26  
EMIF2_D10  
OUTPUTXBAR1  
SPIB_CLK  
I/O  
I/O  
O
External memory interface 1 data line 26  
External memory interface 2 data line 10  
Output X-BAR Output 1  
3
5
6
I/O  
I
SPI-B Clock  
SD2_D2  
7
N17  
103  
SDFM-2 Channel 2 Data Input  
External memory interface 1 data line 3  
EtherCAT Link-0 Active  
EMIF1_D3  
9
I/O  
O
ESC_LED_LINK0_ACTIVE  
ENET_MII_TX_CLK  
SD2_C2  
10  
11  
13  
14  
15  
I
EMAC MII transmit clock  
I
SDFM-2 Channel 2 Clock Input  
FSIRX-B Data Input 0  
FSIRXB_D0  
SPIA_SIMO  
I
I/O  
SPI-A Slave In, Master Out (SIMO)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO59  
337  
176  
DESCRIPTION  
0, 4, 8, 12  
I/O  
I
General-Purpose Input Output 59  
McBSP-A Receive Frame Sync  
External memory interface 1 data line 25  
External memory interface 2 data line 9  
Output X-BAR Output 2  
MFSRA  
1
EMIF1_D25  
EMIF2_D9  
2
I/O  
I/O  
O
3
OUTPUTXBAR2  
SPIB_STEn  
SD2_C2  
5
6
I/O  
I
SPI-B Slave Transmit Enable (STE)  
SDFM-2 Channel 2 Clock Input  
External memory interface 1 data line 4  
EtherCAT Link-1 Active  
7
M16  
104  
EMIF1_D4  
9
I/O  
O
ESC_LED_LINK1_ACTIVE  
ENET_MII_TX_DATA0  
SD2_C3  
10  
11  
O
EMAC MII / RMII transmit data 0  
SDFM-2 Channel 3 Clock Input  
FSIRX-B Data Input 1  
13  
I
FSIRXB_D1  
SPIA_SOMI  
GPIO60  
14  
I
15  
I/O  
I/O  
I
SPI-A Slave Out, Master In (SOMI)  
General-Purpose Input Output 60  
McBSP-B Receive Clock  
0, 4, 8, 12  
MCLKRB  
1
EMIF1_D24  
EMIF2_D8  
2
I/O  
I/O  
O
External memory interface 1 data line 24  
External memory interface 2 data line 8  
Output X-BAR Output 3  
3
OUTPUTXBAR3  
SPIB_SIMO  
SD2_D3  
5
6
I/O  
I
SPI-B Slave In, Master Out (SIMO)  
SDFM-2 Channel 3 Data Input  
External memory interface 1 data line 5  
EtherCAT Error LED  
7
M17  
105  
EMIF1_D5  
9
I/O  
O
ESC_LED_ERR  
ENET_MII_TX_DATA1  
SD2_C4  
10  
11  
O
EMAC MII / RMII transmit data 1  
SDFM-2 Channel 4 Clock Input  
FSIRX-B Input Clock  
13  
I
FSIRXB_CLK  
SPIA_CLK  
14  
I
15  
I/O  
I/O  
I
SPI-A Clock  
GPIO61  
0, 4, 8, 12  
General-Purpose Input Output 61  
McBSP-B Receive Frame Sync  
External memory interface 1 data line 23  
External memory interface 2 data line 7  
Output X-BAR Output 4  
MFSRB  
1
2
EMIF1_D23  
EMIF2_D7  
I/O  
I/O  
O
3
OUTPUTXBAR4  
SPIB_SOMI  
SD2_C3  
5
6
I/O  
I
SPI-B Slave Out, Master In (SOMI)  
SDFM-2 Channel 3 Clock Input  
External memory interface 1 data line 6  
EtherCAT Run LED  
L16  
107  
7
EMIF1_D6  
9
I/O  
O
ESC_LED_RUN  
ENET_MII_TX_DATA2  
CANA_RX  
10  
11  
14  
15  
O
EMAC MII transmit data 2  
I
CAN-A Receive  
SPIA_STEn  
I/O  
SPI-A Slave Transmit Enable (STE)  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
SIGNAL NAME  
337  
176  
DESCRIPTION  
TYPE  
I/O  
I
GPIO62  
0, 4, 8, 12  
General-Purpose Input Output 62  
SCI-C Receive Data  
SCIC_RX  
1
EMIF1_D22  
EMIF2_D6  
2
I/O  
I/O  
I
External memory interface 1 data line 22  
External memory interface 2 data line 6  
eQEP-3 Input A  
3
EQEP3_A  
5
CANA_RX  
6
J17  
108  
I
CAN-A Receive  
SD2_D4  
7
I
SDFM-2 Channel 4 Data Input  
External memory interface 1 data line 7  
EtherCAT State Run  
EMIF1_D7  
9
I/O  
O
ESC_LED_STATE_RUN  
ENET_MII_TX_DATA3  
CANA_TX  
10  
11  
O
EMAC MII transmit data 3  
14  
O
CAN-A Transmit  
GPIO63  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 63  
SCI-C Transmit Data  
SCIC_TX  
1
EMIF1_D21  
EMIF2_D5  
2
I/O  
I/O  
I
External memory interface 1 data line 21  
External memory interface 2 data line 5  
eQEP-3 Input B  
3
EQEP3_B  
5
CANA_TX  
6
O
CAN-A Transmit  
J16  
109  
SD2_C4  
7
I
SDFM-2 Channel 4 Clock Input  
SSI-A Serial Data Transmit  
EMAC MII / RMII receive data 0  
SDFM-1 Channel 1 Data Input  
EtherCAT MII Receive-1 Data-0  
SPI-B Slave In, Master Out (SIMO)  
General-Purpose Input Output 64  
External memory interface 1 data line 20  
External memory interface 2 data line 4  
eQEP-3 Strobe  
SSIA_TX  
9
I/O  
I
ENET_MII_RX_DATA0  
SD1_D1  
11  
13  
I
ESC_RX1_DATA0  
SPIB_SIMO  
GPIO64  
14  
I
15  
I/O  
I/O  
I/O  
I/O  
I/O  
I
0, 4, 8, 12  
EMIF1_D20  
EMIF2_D4  
2
3
5
6
9
EQEP3_STROBE  
SCIA_RX  
SCI-A Receive Data  
SSIA_RX  
I/O  
SSI-A Serial Data Receive  
L17  
110  
EMAC MII receive data valid (or) RMII carrier sense/  
receive data valid  
ENET_MII_RX_DV  
10  
I
ENET_MII_RX_DATA1  
SD1_C1  
11  
I
I
EMAC MII / RMII receive data 1  
SDFM-1 Channel 1 Clock Input  
EtherCAT MII Receive-1 Data-1  
SPI-B Slave Out, Master In (SOMI)  
General-Purpose Input Output 65  
External memory interface 1 data line 19  
External memory interface 2 data line 3  
eQEP-3 Index  
13  
ESC_RX1_DATA1  
SPIB_SOMI  
14  
I
15  
I/O  
I/O  
I/O  
I/O  
I/O  
O
I/O  
I
GPIO65  
0, 4, 8, 12  
EMIF1_D19  
2
3
EMIF2_D3  
EQEP3_INDEX  
SCIA_TX  
5
6
SCI-A Transmit Data  
SSIA_CLK  
9
K16  
111  
SSI-A Clock  
ENET_MII_RX_ERR  
ENET_MII_RX_DATA2  
SD1_D2  
10  
11  
13  
14  
15  
EMAC MII / RMII receive error  
EMAC MII receive data 2  
I
I
SDFM-1 Channel 2 Data Input  
EtherCAT MII Receive-1 Data-2  
SPI-B Clock  
ESC_RX1_DATA2  
SPIB_CLK  
I
I/O  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO66  
337  
176  
DESCRIPTION  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I/OD  
I/O  
I
General-Purpose Input Output 66  
External memory interface 1 data line 18  
External memory interface 2 data line 2  
I2C-B Open-Drain Bidirectional Data  
SSI-A Frame Sync  
EMIF1_D18  
2
EMIF2_D2  
3
I2CB_SDA  
6
SSIA_FSS  
9
K17  
112  
ENET_MII_RX_DATA0  
ENET_MII_RX_DATA3  
SD1_C2  
10  
EMAC MII / RMII receive data 0  
EMAC MII receive data 3  
11  
I
13  
I
SDFM-1 Channel 2 Clock Input  
EtherCAT MII Receive-1 Data-3  
SPI-B Slave Transmit Enable (STE)  
General-Purpose Input Output 67  
External memory interface 1 data line 17  
External memory interface 2 data line 1  
EMAC MII receive clock  
ESC_RX1_DATA3  
SPIB_STEn  
14  
I
15  
I/O  
I/O  
I/O  
I/O  
I
GPIO67  
0, 4, 8, 12  
EMIF1_D17  
2
EMIF2_D1  
3
B19  
132  
ENET_MII_RX_CLK  
ENET_REVMII_MDIO_RST  
SD1_D3  
10  
11  
I
EMAC REVMII MDIO reset  
13  
I
SDFM-1 Channel 3 Data Input  
General-Purpose Input Output 68  
External memory interface 1 data line 16  
External memory interface 2 data line 0  
GPIO68  
0, 4, 8, 12  
I/O  
I/O  
I/O  
EMIF1_D16  
2
3
EMIF2_D0  
C18  
133  
EMAC PHY interrupt, Input in MII/RMII mode, Output in  
RevMII mode  
ENET_MII_INTR  
11  
I/O  
SD1_C3  
13  
I
I
SDFM-1 Channel 3 Clock Input  
EtherCAT PHY-1 Link Status  
General-Purpose Input Output 69  
External memory interface 1 data line 15  
I2C-B Open-Drain Bidirectional Clock  
EMAC MII / RMII transmit enable  
EMAC MII receive clock  
ESC_PHY1_LINKSTATUS  
GPIO69  
14  
0, 4, 8, 12  
I/O  
I/O  
I/OD  
O
EMIF1_D15  
I2CB_SCL  
2
6
ENET_MII_TX_EN  
ENET_MII_RX_CLK  
SD1_D4  
10  
B18  
134  
11  
I
13  
I
SDFM-1 Channel 4 Data Input  
EtherCAT MII Receive-1 Clock  
SPI-C Slave In, Master Out (SIMO)  
General-Purpose Input Output 70  
External memory interface 1 data line 14  
CAN-A Receive  
ESC_RX1_CLK  
SPIC_SIMO  
GPIO70  
14  
I
15  
I/O  
I/O  
I/O  
I
0, 4, 8, 12  
EMIF1_D14  
CANA_RX  
2
5
6
9
SCIB_TX  
O
SCI-B Transmit Data  
MCAN_RX  
I
CAN/CAN-FD Receive  
A17  
135  
EMAC MII receive data valid (or) RMII carrier sense/  
receive data valid  
ENET_MII_RX_DV  
11  
I
SD1_C4  
13  
14  
15  
I
I
SDFM-1 Channel 4 Clock Input  
EtherCAT MII Receive-1 Data Valid  
SPI-C Slave Out, Master In (SOMI)  
ESC_RX1_DV  
SPIC_SOMI  
I/O  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
SIGNAL NAME  
337  
176  
DESCRIPTION  
TYPE  
I/O  
I/O  
O
GPIO71  
0, 4, 8, 12  
General-Purpose Input Output 71  
External memory interface 1 data line 13  
CAN-A Transmit  
EMIF1_D13  
2
CANA_TX  
5
SCIB_RX  
6
I
SCI-B Receive Data  
MCAN_TX  
9
B17  
136  
O
CAN/CAN-FD Transmit  
ENET_MII_RX_DATA0  
ENET_MII_RX_ERR  
ESC_RX1_ERR  
SPIC_CLK  
10  
I
EMAC MII / RMII receive data 0  
EMAC MII / RMII receive error  
EtherCAT MII Receive-1 Error  
SPI-C Clock  
11  
I
14  
I
15  
I/O  
I/O  
I/O  
O
GPIO72  
0, 4, 8, 12  
General-Purpose Input Output 72  
External memory interface 1 data line 12  
CAN-B Transmit  
EMIF1_D12  
2
CANB_TX  
5
SCIC_TX  
6
O
SCI-C Transmit Data  
B16  
139  
ENET_MII_RX_DATA1  
ENET_MII_TX_DATA3  
ESC_TX1_DATA3  
SPIC_STEn  
10  
I
EMAC MII / RMII receive data 1  
EMAC MII transmit data 3  
11  
O
14  
O
EtherCAT MII Transmit-1 Data-3  
SPI-C Slave Transmit Enable (STE)  
General-Purpose Input Output 73  
External memory interface 1 data line 11  
15  
0, 4, 8, 12  
2
I/O  
I/O  
I/O  
GPIO73  
EMIF1_D11  
External Clock Output. This pin outputs a divided-down  
version of a chosen clock signal from within the device.  
XCLKOUT  
3
O
CANB_RX  
5
I
I
CAN-B Receive  
A16  
140  
SCIC_RX  
6
SCI-C Receive Data  
ENET_RMII_CLK  
ENET_MII_TX_DATA2  
SD2_D2  
10  
I/O  
O
I
EMAC RMII clock  
11  
EMAC MII transmit data 2  
13  
SDFM-2 Channel 2 Data Input  
EtherCAT MII Transmit-1 Data-2  
General-Purpose Input Output 74  
External memory interface 1 data line 10  
CAN/CAN-FD Transmit  
ESC_TX1_DATA2  
GPIO74  
14  
O
I/O  
I/O  
O
O
I
0, 4, 8, 12  
EMIF1_D10  
2
MCAN_TX  
9
C17  
D16  
C16  
141  
142  
143  
ENET_MII_TX_DATA1  
SD2_C2  
11  
EMAC MII / RMII transmit data 1  
SDFM-2 Channel 2 Clock Input  
EtherCAT MII Transmit-1 Data-1  
General-Purpose Input Output 75  
External memory interface 1 data line 9  
CAN/CAN-FD Receive  
13  
ESC_TX1_DATA1  
GPIO75  
14  
O
I/O  
I/O  
I
0, 4, 8, 12  
EMIF1_D9  
2
MCAN_RX  
9
ENET_MII_TX_DATA0  
SD2_D3  
11  
O
I
EMAC MII / RMII transmit data 0  
SDFM-2 Channel 3 Data Input  
EtherCAT MII Transmit-1 Data-0  
General-Purpose Input Output 76  
External memory interface 1 data line 8  
SCI-D Transmit Data  
13  
ESC_TX1_DATA0  
GPIO76  
14  
O
I/O  
I/O  
O
I
0, 4, 8, 12  
EMIF1_D8  
2
SCID_TX  
6
ENET_MII_RX_ERR  
SD2_C3  
10  
13  
14  
EMAC MII / RMII receive error  
SDFM-2 Channel 3 Clock Input  
EtherCAT PHY Active Low Reset  
I
ESC_PHY_RESETn  
O
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO77  
337  
176  
DESCRIPTION  
0, 4, 8, 12  
I/O  
I/O  
I
General-Purpose Input Output 77  
External memory interface 1 data line 7  
SCI-D Receive Data  
EMIF1_D7  
SCID_RX  
2
6
A15  
144  
SD2_D4  
13  
I
SDFM-2 Channel 4 Data Input  
EtherCAT MII Receive-0 Clock  
General-Purpose Input Output 78  
External memory interface 1 data line 6  
eQEP-2 Input A  
ESC_RX0_CLK  
GPIO78  
14  
I
0, 4, 8, 12  
I/O  
I/O  
I
EMIF1_D6  
EQEP2_A  
SD2_C4  
2
6
B15  
C15  
145  
146  
13  
I
SDFM-2 Channel 4 Clock Input  
EtherCAT MII Receive-0 Data Valid  
General-Purpose Input Output 79  
External memory interface 1 data line 5  
eQEP-2 Input B  
ESC_RX0_DV  
GPIO79  
14  
I
0, 4, 8, 12  
I/O  
I/O  
I
EMIF1_D5  
EQEP2_B  
SD2_D1  
2
6
13  
I
SDFM-2 Channel 1 Data Input  
EtherCAT MII Receive-0 Error  
General-Purpose Input Output 80  
External memory interface 1 data line 4  
eQEP-2 Strobe  
ESC_RX0_ERR  
GPIO80  
14  
I
0, 4, 8, 12  
I/O  
I/O  
I/O  
I
EMIF1_D4  
EQEP2_STROBE  
SD2_C1  
2
6
D15  
A14  
148  
149  
13  
SDFM-2 Channel 1 Clock Input  
EtherCAT MII Receive-0 Data-0  
General-Purpose Input Output 81  
External memory interface 1 data line 3  
eQEP-2 Index  
ESC_RX0_DATA0  
GPIO81  
14  
I
0, 4, 8, 12  
I/O  
I/O  
I/O  
I
EMIF1_D3  
EQEP2_INDEX  
ESC_RX0_DATA1  
GPIO82  
2
6
14  
EtherCAT MII Receive-0 Data-1  
General-Purpose Input Output 82  
External memory interface 1 data line 2  
EtherCAT MII Receive-0 Data-2  
General-Purpose Input Output 83  
External memory interface 1 data line 1  
EtherCAT MII Receive-0 Data-3  
General-Purpose Input Output 84  
SCI-A Transmit Data  
0, 4, 8, 12  
I/O  
I/O  
I
EMIF1_D2  
ESC_RX0_DATA2  
GPIO83  
2
B14  
C14  
150  
151  
14  
0, 4, 8, 12  
I/O  
I/O  
I
EMIF1_D1  
ESC_RX0_DATA3  
GPIO84  
2
14  
0, 4, 8, 12  
I/O  
O
O
I/O  
I/O  
O
I/O  
I/O  
I
SCIA_TX  
5
MDXB  
6
McBSP-B Transmit Serial Data  
UART-A Serial Data Transmit  
EtherCAT MII Transmit-0 Enable  
McBSP-A Transmit Serial Data  
General-Purpose Input Output 85  
External memory interface 1 data line 0  
SCI-A Receive Data  
A11  
154  
UARTA_TX  
ESC_TX0_ENA  
MDXA  
11  
14  
15  
GPIO85  
0, 4, 8, 12  
EMIF1_D0  
SCIA_RX  
2
5
MDRB  
6
B11  
155  
I
McBSP-B Receive Serial Data  
UART-A Serial Data Receive  
EtherCAT MII Transmit-0 Clock  
McBSP-A Receive Serial Data  
UARTA_RX  
ESC_TX0_CLK  
MDRA  
11  
14  
15  
I/O  
I
I
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
SIGNAL NAME  
337  
176  
DESCRIPTION  
TYPE  
I/O  
O
GPIO86  
0, 4, 8, 12  
General-Purpose Input Output 86  
EMIF1_A13  
EMIF1_CAS  
SCIB_TX  
2
External memory interface 1 address line 13  
External memory interface 1 column address strobe  
SCI-B Transmit Data  
3
O
5
C11  
156  
O
MCLKXB  
6
O
McBSP-B Transmit Clock  
ESC_PHY0_LINKSTATUS  
MCLKXA  
14  
I
EtherCAT PHY-0 Link Status  
15  
O
McBSP-A Transmit Clock  
GPIO87  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 87  
EMIF1_A14  
EMIF1_RAS  
SCIB_RX  
2
External memory interface 1 address line 14  
External memory interface 1 row address strobe  
SCI-B Receive Data  
3
O
5
I
D11  
157  
MFSXB  
6
O
McBSP-B Transmit Frame Sync  
EMIF1_DQM3  
ESC_TX0_DATA0  
MFSXA  
9
O
External memory interface 1 Input/output mask for byte 3  
EtherCAT MII Transmit-0 Data-0  
14  
O
15  
O
McBSP-A Transmit Frame Sync  
GPIO88  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 88  
EMIF1_A15  
EMIF1_DQM0  
EMIF1_DQM1  
ESC_TX0_DATA1  
GPIO89  
2
External memory interface 1 address line 15  
External memory interface 1 Input/output mask for byte 0  
External memory interface 1 Input/output mask for byte 1  
EtherCAT MII Transmit-0 Data-1  
3
C6  
D6  
170  
171  
O
9
O
14  
O
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 89  
EMIF1_A16  
EMIF1_DQM1  
SCIC_TX  
2
External memory interface 1 address line 16  
External memory interface 1 Input/output mask for byte 1  
SCI-C Transmit Data  
3
O
6
O
EMIF1_CAS  
ESC_TX0_DATA2  
GPIO90  
9
O
External memory interface 1 column address strobe  
EtherCAT MII Transmit-0 Data-2  
14  
O
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 90  
EMIF1_A17  
EMIF1_DQM2  
SCIC_RX  
2
External memory interface 1 address line 17  
External memory interface 1 Input/output mask for byte 2  
SCI-C Receive Data  
3
O
A5  
172  
6
I
EMIF1_RAS  
ESC_TX0_DATA3  
GPIO91  
9
O
External memory interface 1 row address strobe  
EtherCAT MII Transmit-0 Data-3  
14  
O
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 91  
EMIF1_A18  
EMIF1_DQM3  
I2CA_SDA  
2
3
External memory interface 1 address line 18  
External memory interface 1 Input/output mask for byte 3  
I2C-A Open-Drain Bidirectional Data  
External memory interface 1 Input/output mask for byte 2  
PMBus-A Open-Drain Bidirectional Clock  
SSI-A Serial Data Transmit  
O
6
I/OD  
O
EMIF1_DQM2  
PMBUSA_SCL  
SSIA_TX  
9
B5  
173  
10  
11  
13  
14  
15  
I/OD  
I/O  
I
FSIRXF_D0  
CLB_OUTPUTXBAR1  
SPID_SIMO  
FSIRX-F Data Input 0  
O
CLB Output X-BAR Output 1  
I/O  
SPI-D Slave In, Master Out (SIMO)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO92  
337  
176  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 92  
EMIF1_A19  
2
External memory interface 1 address line 19  
External memory interface 1 bank address 1  
I2C-A Open-Drain Bidirectional Clock  
EMIF1_BA1  
3
O
I2CA_SCL  
6
I/OD  
O
EMIF1_DQM0  
PMBUSA_SDA  
SSIA_RX  
9
External memory interface 1 Input/output mask for byte 0  
PMBus-A Open-Drain Bidirectional Data  
SSI-A Serial Data Receive  
A4  
174  
10  
I/OD  
I/O  
I
11  
FSIRXF_D1  
13  
FSIRX-F Data Input 1  
CLB_OUTPUTXBAR2  
SPID_SOMI  
GPIO93  
14  
O
CLB Output X-BAR Output 2  
SPI-D Slave Out, Master In (SOMI)  
General-Purpose Input Output 93  
External memory interface 1 bank address 0  
SCI-D Transmit Data  
15  
I/O  
I/O  
O
0, 4, 8, 12  
EMIF1_BA0  
3
SCID_TX  
6
O
PMBUSA_ALERT  
SSIA_CLK  
10  
I/OD  
I/O  
I
PMBus-A Open-Drain Bidirectional Alert Signal  
SSI-A Clock  
B4  
175  
11  
FSIRXF_CLK  
CLB_OUTPUTXBAR3  
SPID_CLK  
13  
FSIRX-F Input Clock  
14  
O
CLB Output X-BAR Output 3  
SPI-D Clock  
15  
I/O  
I/O  
I
GPIO94  
0, 4, 8, 12  
General-Purpose Input Output 94  
SCI-D Receive Data  
SCID_RX  
6
EMIF1_BA1  
9
O
External memory interface 1 bank address 1  
PMBus-A Control Signal  
PMBUSA_CTL  
SSIA_FSS  
10  
I
A3  
176  
11  
I/O  
I
SSI-A Frame Sync  
FSIRXG_D0  
CLB_OUTPUTXBAR4  
SPID_STEn  
13  
FSIRX-G Data Input 0  
14  
O
CLB Output X-BAR Output 4  
SPI-D Slave Transmit Enable (STE)  
General-Purpose Input Output 95  
External memory interface 2 address line 12  
FSIRX-G Data Input 1  
15  
I/O  
I/O  
O
GPIO95  
0, 4, 8, 12  
EMIF2_A12  
3
B3  
C3  
FSIRXG_D1  
CLB_OUTPUTXBAR5  
GPIO96  
13  
I
14  
O
CLB Output X-BAR Output 5  
General-Purpose Input Output 96  
External memory interface 2 Input/output mask for byte 1  
eQEP-1 Input A  
0, 4, 8, 12  
I/O  
O
EMIF2_DQM1  
EQEP1_A  
3
5
I
FSIRXG_CLK  
CLB_OUTPUTXBAR6  
GPIO97  
13  
I
FSIRX-G Input Clock  
14  
O
CLB Output X-BAR Output 6  
General-Purpose Input Output 97  
External memory interface 2 Input/output mask for byte 0  
eQEP-1 Input B  
0, 4, 8, 12  
I/O  
O
EMIF2_DQM0  
EQEP1_B  
3
5
A2  
F1  
I
FSIRXH_D0  
CLB_OUTPUTXBAR7  
GPIO98  
13  
I
FSIRX-H Data Input 0  
14  
O
CLB Output X-BAR Output 7  
General-Purpose Input Output 98  
External memory interface 2 address line 0  
eQEP-1 Strobe  
0, 4, 8, 12  
I/O  
O
EMIF2_A0  
3
5
EQEP1_STROBE  
FSIRXH_D1  
CLB_OUTPUTXBAR8  
I/O  
I
13  
14  
FSIRX-H Data Input 1  
O
CLB Output X-BAR Output 8  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
337  
176  
DESCRIPTION  
GPIO99  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 99  
External memory interface 2 address line 1  
eQEP-1 Index  
EMIF2_A1  
EQEP1_INDEX  
FSIRXH_CLK  
GPIO100  
3
G1  
17  
5
I/O  
I
13  
FSIRX-H Input Clock  
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 100  
External memory interface 2 address line 2  
eQEP-2 Input A  
EMIF2_A2  
EQEP2_A  
3
5
I
H1  
H2  
H3  
J1  
SPIC_SIMO  
ESC_GPI0  
FSITXA_D0  
GPIO101  
6
I/O  
I
SPI-C Slave In, Master Out (SIMO)  
EtherCAT General-Purpose Input 0  
FSITX-A Data Output 0  
10  
13  
O
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 101  
External memory interface 2 address line 3  
eQEP-2 Input B  
EMIF2_A3  
EQEP2_B  
3
5
I
SPIC_SOMI  
ESC_GPI1  
FSITXA_D1  
GPIO102  
6
I/O  
I
SPI-C Slave Out, Master In (SOMI)  
EtherCAT General-Purpose Input 1  
FSITX-A Data Output 1  
10  
13  
O
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 102  
External memory interface 2 address line 4  
eQEP-2 Strobe  
EMIF2_A4  
EQEP2_STROBE  
SPIC_CLK  
ESC_GPI2  
FSITXA_CLK  
GPIO103  
3
5
I/O  
I/O  
I
6
SPI-C Clock  
10  
EtherCAT General-Purpose Input 2  
FSITX-A Output Clock  
13  
O
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 103  
External memory interface 2 address line 5  
eQEP-2 Index  
EMIF2_A5  
EQEP2_INDEX  
SPIC_STEn  
ESC_GPI3  
FSIRXA_D0  
GPIO104  
3
5
I/O  
I/O  
I
6
SPI-C Slave Transmit Enable (STE)  
EtherCAT General-Purpose Input 3  
FSIRX-A Data Input 0  
10  
13  
I
0, 4, 8, 12  
I/O  
I/OD  
O
General-Purpose Input Output 104  
I2C-A Open-Drain Bidirectional Data  
External memory interface 2 address line 6  
eQEP-3 Input A  
I2CA_SDA  
EMIF2_A6  
EQEP3_A  
1
3
5
I
J2  
SCID_TX  
6
O
SCI-D Transmit Data  
ESC_GPI4  
CM-I2CA_SDA  
FSIRXA_D1  
GPIO105  
10  
I
EtherCAT General-Purpose Input 4  
CM-I2C-A Open-Drain Bidirectional Data  
FSIRX-A Data Input 1  
11  
I/OD  
I
13  
0, 4, 8, 12  
I/O  
I/OD  
O
General-Purpose Input Output 105  
I2C-A Open-Drain Bidirectional Clock  
External memory interface 2 address line 7  
eQEP-3 Input B  
I2CA_SCL  
EMIF2_A7  
EQEP3_B  
1
3
5
I
SCID_RX  
6
I
SCI-D Receive Data  
J3  
ESC_GPI5  
CM-I2CA_SCL  
FSIRXA_CLK  
10  
11  
13  
I
EtherCAT General-Purpose Input 5  
CM-I2C-A Open-Drain Bidirectional Clock  
FSIRX-A Input Clock  
I/OD  
I
EMAC management data clock, Output in MII/RMII  
modes, Input in RevMII mode  
ENET_MDIO_CLK  
14  
I/O  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO106  
337  
176  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
I/O  
O
I
General-Purpose Input Output 106  
External memory interface 2 address line 8  
eQEP-3 Strobe  
EMIF2_A8  
3
EQEP3_STROBE  
SCIC_TX  
5
6
L2  
SCI-C Transmit Data  
ESC_GPI6  
10  
EtherCAT General-Purpose Input 6  
FSITX-B Data Output 0  
FSITXB_D0  
ENET_MDIO_DATA  
GPIO107  
13  
O
I/O  
I/O  
O
I/O  
I
14  
EMAC management data  
0, 4, 8, 12  
General-Purpose Input Output 107  
External memory interface 2 address line 9  
eQEP-3 Index  
EMIF2_A9  
3
EQEP3_INDEX  
SCIC_RX  
5
6
L3  
SCI-C Receive Data  
ESC_GPI7  
10  
I
EtherCAT General-Purpose Input 7  
FSITX-B Data Output 1  
FSITXB_D1  
ENET_REVMII_MDIO_RST  
GPIO108  
13  
O
I
14  
EMAC REVMII MDIO reset  
General-Purpose Input Output 108  
External memory interface 2 address line 10  
EtherCAT General-Purpose Input 8  
FSITX-B Output Clock  
0, 4, 8, 12  
I/O  
O
I
EMIF2_A10  
3
ESC_GPI8  
10  
13  
L4  
FSITXB_CLK  
O
EMAC PHY interrupt, Input in MII/RMII mode, Output in  
RevMII mode  
ENET_MII_INTR  
14  
I/O  
GPIO109  
0, 4, 8, 12  
I/O  
General-Purpose Input Output 109  
External memory interface 2 address line 11  
EtherCAT General-Purpose Input 9  
EMAC MII carrier sense  
EMIF2_A11  
ESC_GPI9  
3
O
N2  
M2  
10  
I
ENET_MII_CRS  
GPIO110  
14  
I
0, 4, 8, 12  
I/O  
General-Purpose Input Output 110  
External memory interface 2 Asynchronous SRAM WAIT  
EtherCAT General-Purpose Input 10  
FSIRX-B Data Input 0  
EMIF2_WAIT  
ESC_GPI10  
FSIRXB_D0  
ENET_MII_COL  
GPIO111  
3
I
10  
I
13  
I
14  
I
I/O  
O
I
EMAC MII collision detect  
0, 4, 8, 12  
General-Purpose Input Output 111  
External memory interface 2 bank address 0  
EtherCAT General-Purpose Input 11  
FSIRX-B Data Input 1  
EMIF2_BA0  
ESC_GPI11  
FSIRXB_D1  
ENET_MII_RX_CLK  
GPIO112  
3
10  
M4  
13  
I
14  
I
EMAC MII receive clock  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 112  
External memory interface 2 bank address 1  
EtherCAT General-Purpose Input 12  
FSIRX-B Input Clock  
EMIF2_BA1  
ESC_GPI12  
FSIRXB_CLK  
3
10  
13  
M3  
N4  
I
EMAC MII receive data valid (or) RMII carrier sense/  
receive data valid  
ENET_MII_RX_DV  
14  
I
GPIO113  
0, 4, 8, 12  
I/O  
General-Purpose Input Output 113  
EMIF2_CAS  
ESC_GPI13  
3
O
I
External memory interface 2 column address strobe  
EtherCAT General-Purpose Input 13  
EMAC MII / RMII receive error  
10  
14  
ENET_MII_RX_ERR  
I
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
337  
176  
DESCRIPTION  
GPIO114  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 114  
External memory interface 2 row address strobe  
EtherCAT General-Purpose Input 14  
EMAC MII / RMII receive data 0  
General-Purpose Input Output 115  
External memory interface 2 chip select 0  
Output X-BAR Output 5  
EMIF2_RAS  
3
N3  
ESC_GPI14  
10  
ENET_MII_RX_DATA0  
GPIO115  
14  
I
0, 4, 8, 12  
I/O  
O
O
I
EMIF2_CS0n  
OUTPUTXBAR5  
ESC_GPI15  
3
5
V12  
10  
EtherCAT General-Purpose Input 15  
FSIRX-C Data Input 0  
FSIRXC_D0  
13  
I
ENET_MII_RX_DATA1  
GPIO116  
14  
I
EMAC MII / RMII receive data 1  
General-Purpose Input Output 116  
External memory interface 2 chip select 2  
Output X-BAR Output 6  
0, 4, 8, 12  
I/O  
O
O
I
EMIF2_CS2n  
OUTPUTXBAR6  
ESC_GPI16  
3
5
W10  
10  
EtherCAT General-Purpose Input 16  
FSIRX-C Data Input 1  
FSIRXC_D1  
13  
I
ENET_MII_RX_DATA2  
GPIO117  
14  
I
EMAC MII receive data 2  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 117  
External memory interface 2 SDRAM clock enable  
EtherCAT General-Purpose Input 17  
FSIRX-C Input Clock  
EMIF2_SDCKE  
ESC_GPI17  
3
10  
U12  
T12  
T15  
U15  
W16  
FSIRXC_CLK  
ENET_MII_RX_DATA3  
GPIO118  
13  
I
14  
I
EMAC MII receive data 3  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 118  
External memory interface 2 clock  
EtherCAT General-Purpose Input 18  
FSIRX-D Data Input 0  
EMIF2_CLK  
3
ESC_GPI18  
10  
FSIRXD_D0  
13  
I
ENET_MII_TX_EN  
GPIO119  
14  
O
I/O  
O
I
EMAC MII / RMII transmit enable  
General-Purpose Input Output 119  
External memory interface 2 read not write  
EtherCAT General-Purpose Input 19  
FSIRX-D Data Input 1  
0, 4, 8, 12  
EMIF2_RNW  
ESC_GPI19  
3
10  
FSIRXD_D1  
13  
I
ENET_MII_TX_ERR  
GPIO120  
14  
O
I/O  
O
I
EMAC MII transmit error  
0, 4, 8, 12  
General-Purpose Input Output 120  
External memory interface 2 write enable  
EtherCAT General-Purpose Input 20  
FSIRX-D Input Clock  
EMIF2_WEn  
ESC_GPI20  
3
10  
FSIRXD_CLK  
ENET_MII_TX_CLK  
GPIO121  
13  
I
14  
I
EMAC MII transmit clock  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 121  
External memory interface 2 output enable  
EtherCAT General-Purpose Input 21  
FSIRX-E Data Input 0  
EMIF2_OEn  
3
ESC_GPI21  
10  
13  
14  
FSIRXE_D0  
I
ENET_MII_TX_DATA0  
O
EMAC MII / RMII transmit data 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO122  
337  
176  
DESCRIPTION  
0, 4, 8, 12  
I/O  
I/O  
I/O  
I
General-Purpose Input Output 122  
External memory interface 2 data line 15  
SPI-C Slave In, Master Out (SIMO)  
SDFM-1 Channel 1 Data Input  
EtherCAT General-Purpose Input 22  
EMAC MII / RMII transmit data 1  
General-Purpose Input Output 123  
External memory interface 2 data line 14  
SPI-C Slave Out, Master In (SOMI)  
SDFM-1 Channel 1 Clock Input  
EtherCAT General-Purpose Input 23  
EMAC MII transmit data 2  
EMIF2_D15  
SPIC_SIMO  
SD1_D1  
3
6
T8  
7
ESC_GPI22  
ENET_MII_TX_DATA1  
GPIO123  
10  
I
14  
O
I/O  
I/O  
I/O  
I
0, 4, 8, 12  
EMIF2_D14  
SPIC_SOMI  
SD1_C1  
3
6
U8  
7
ESC_GPI23  
ENET_MII_TX_DATA2  
GPIO124  
10  
I
14  
O
I/O  
I/O  
I/O  
I
0, 4, 8, 12  
General-Purpose Input Output 124  
External memory interface 2 data line 13  
SPI-C Clock  
EMIF2_D13  
SPIC_CLK  
SD1_D2  
3
6
V8  
7
SDFM-1 Channel 2 Data Input  
EtherCAT General-Purpose Input 24  
EMAC MII transmit data 3  
ESC_GPI24  
ENET_MII_TX_DATA3  
GPIO125  
10  
I
14  
O
I/O  
I/O  
I/O  
I
0, 4, 8, 12  
General-Purpose Input Output 125  
External memory interface 2 data line 12  
SPI-C Slave Transmit Enable (STE)  
SDFM-1 Channel 2 Clock Input  
EtherCAT General-Purpose Input 25  
FSIRX-E Data Input 1  
EMIF2_D12  
SPIC_STEn  
SD1_C2  
3
6
7
T9  
ESC_GPI25  
FSIRXE_D1  
ESC_LATCH0  
GPIO126  
10  
I
13  
I
14  
I
EtherCAT LatchSignal Input 0  
0, 4, 8, 12  
I/O  
I/O  
I
General-Purpose Input Output 126  
External memory interface 2 data line 11  
SDFM-1 Channel 3 Data Input  
EtherCAT General-Purpose Input 26  
FSIRX-E Input Clock  
EMIF2_D11  
SD1_D3  
3
7
U9  
ESC_GPI26  
FSIRXE_CLK  
ESC_LATCH1  
GPIO127  
10  
I
13  
I
14  
I
EtherCAT LatchSignal Input 1  
0, 4, 8, 12  
I/O  
I/O  
I
General-Purpose Input Output 127  
External memory interface 2 data line 10  
SDFM-1 Channel 3 Clock Input  
EtherCAT General-Purpose Input 27  
EtherCAT SyncSignal Output 0  
General-Purpose Input Output 128  
External memory interface 2 data line 9  
SDFM-1 Channel 4 Data Input  
EtherCAT General-Purpose Input 28  
EtherCAT SyncSignal Output 1  
General-Purpose Input Output 129  
External memory interface 2 data line 8  
SDFM-1 Channel 4 Clock Input  
EtherCAT General-Purpose Input 29  
EtherCAT MII Transmit-1 Enable  
EMIF2_D10  
SD1_C3  
3
7
V9  
W9  
T10  
ESC_GPI27  
ESC_SYNC0  
GPIO128  
10  
I
14  
O
I/O  
I/O  
I
0, 4, 8, 12  
EMIF2_D9  
3
SD1_D4  
7
ESC_GPI28  
ESC_SYNC1  
GPIO129  
10  
I
14  
O
I/O  
I/O  
I
0, 4, 8, 12  
EMIF2_D8  
3
7
SD1_C4  
ESC_GPI29  
ESC_TX1_ENA  
10  
14  
I
I/O  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
SIGNAL NAME  
337  
176  
DESCRIPTION  
TYPE  
I/O  
I/O  
I
GPIO130  
0, 4, 8, 12  
General-Purpose Input Output 130  
External memory interface 2 data line 7  
SDFM-2 Channel 1 Data Input  
EMIF2_D7  
SD2_D1  
3
7
U10  
ESC_GPI30  
ESC_TX1_CLK  
GPIO131  
10  
I
EtherCAT General-Purpose Input 30  
EtherCAT MII Transmit-1 Clock  
General-Purpose Input Output 131  
External memory interface 2 data line 6  
SDFM-2 Channel 1 Clock Input  
EtherCAT General-Purpose Input 31  
EtherCAT MII Transmit-1 Data-0  
General-Purpose Input Output 132  
External memory interface 2 data line 5  
SDFM-2 Channel 2 Data Input  
14  
I
0, 4, 8, 12  
I/O  
I/O  
I
EMIF2_D6  
SD2_C1  
3
7
V10  
ESC_GPI31  
ESC_TX1_DATA0  
GPIO132  
10  
I
14  
O
I/O  
I/O  
I
0, 4, 8, 12  
EMIF2_D5  
SD2_D2  
3
7
W18  
G18  
V18  
ESC_GPO0  
ESC_TX1_DATA1  
GPIO133  
10  
O
O
I/O  
I
EtherCAT General-Purpose Output 0  
EtherCAT MII Transmit-1 Data-1  
General-Purpose Input Output 133  
SDFM-2 Channel 2 Clock Input  
Auxilary Clock Input  
14  
0, 4, 8, 12  
SD2_C2  
7
118  
AUXCLKIN  
GPIO134  
ALT  
I
0, 4, 8, 12  
I/O  
I/O  
I
General-Purpose Input Output 134  
External memory interface 2 data line 4  
SDFM-2 Channel 3 Data Input  
EMIF2_D4  
SD2_D3  
3
7
ESC_GPO1  
ESC_TX1_DATA2  
GPIO135  
10  
O
O
I/O  
I/O  
O
I
EtherCAT General-Purpose Output 1  
EtherCAT MII Transmit-1 Data-2  
General-Purpose Input Output 135  
External memory interface 2 data line 3  
SCI-A Transmit Data  
14  
0, 4, 8, 12  
EMIF2_D3  
SCIA_TX  
3
6
U18  
SD2_C3  
7
SDFM-2 Channel 3 Clock Input  
EtherCAT General-Purpose Output 2  
EtherCAT MII Transmit-1 Data-3  
General-Purpose Input Output 136  
External memory interface 2 data line 2  
SCI-A Receive Data  
ESC_GPO2  
ESC_TX1_DATA3  
GPIO136  
10  
O
O
I/O  
I/O  
I
14  
0, 4, 8, 12  
EMIF2_D2  
SCIA_RX  
3
6
T17  
SD2_D4  
7
I
SDFM-2 Channel 4 Data Input  
ESC_GPO3  
ESC_RX1_DV  
GPIO137  
10  
O
I
EtherCAT General-Purpose Output 3  
EtherCAT MII Receive-1 Data Valid  
General-Purpose Input Output 137  
ePWM-13 Output A (High-res available on ePWM1-8)  
External memory interface 2 data line 1  
SCI-B Transmit Data  
14  
0, 4, 8, 12  
I/O  
O
I/O  
O
I
EPWM13A  
EMIF2_D1  
SCIB_TX  
1
3
6
T18  
SD2_C4  
7
SDFM-2 Channel 4 Clock Input  
EtherCAT General-Purpose Output 4  
EtherCAT MII Receive-1 Clock  
ESC_GPO4  
ESC_RX1_CLK  
10  
14  
O
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO138  
337  
176  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
I/O  
I
General-Purpose Input Output 138  
EPWM13B  
1
ePWM-13 Output B (High-res available on ePWM1-8)  
External memory interface 2 data line 0  
SCI-B Receive Data  
EMIF2_D0  
3
T19  
SCIB_RX  
6
ESC_GPO5  
ESC_RX1_ERR  
GPIO139  
10  
O
I
EtherCAT General-Purpose Output 5  
EtherCAT MII Receive-1 Error  
14  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 139  
ePWM-14 Output A (High-res available on ePWM1-8)  
SCI-C Receive Data  
EPWM14A  
1
SCIC_RX  
6
N19  
M19  
M18  
L19  
ESC_GPO6  
ESC_RX1_DATA0  
GPIO140  
10  
O
I
EtherCAT General-Purpose Output 6  
EtherCAT MII Receive-1 Data-0  
14  
0, 4, 8, 12  
I/O  
O
O
O
I
General-Purpose Input Output 140  
ePWM-14 Output B (High-res available on ePWM1-8)  
SCI-C Transmit Data  
EPWM14B  
1
SCIC_TX  
6
ESC_GPO7  
ESC_RX1_DATA1  
GPIO141  
10  
EtherCAT General-Purpose Output 7  
EtherCAT MII Receive-1 Data-1  
14  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 141  
ePWM-15 Output A (High-res available on ePWM1-8)  
SCI-D Receive Data  
EPWM15A  
1
SCID_RX  
6
ESC_GPO8  
ESC_RX1_DATA2  
GPIO142  
10  
O
I
EtherCAT General-Purpose Output 8  
EtherCAT MII Receive-1 Data-2  
14  
0, 4, 8, 12  
I/O  
O
O
O
I
General-Purpose Input Output 142  
ePWM-15 Output B (High-res available on ePWM1-8)  
SCI-D Transmit Data  
EPWM15B  
1
SCID_TX  
6
ESC_GPO9  
ESC_RX1_DATA3  
GPIO143  
10  
EtherCAT General-Purpose Output 9  
EtherCAT MII Receive-1 Data-3  
14  
0, 4, 8, 12  
I/O  
O
O
O
I/O  
O
O
O
I/O  
O
O
O
I/O  
O
O
O
I/O  
O
O
O
General-Purpose Input Output 143  
ePWM-16 Output A (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 10  
EtherCAT Link-0 Active  
EPWM16A  
1
F18  
F17  
E17  
D18  
D17  
ESC_GPO10  
ESC_LED_LINK0_ACTIVE  
GPIO144  
10  
14  
0, 4, 8, 12  
General-Purpose Input Output 144  
ePWM-16 Output B (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 11  
EtherCAT Link-1 Active  
EPWM16B  
1
ESC_GPO11  
ESC_LED_LINK1_ACTIVE  
GPIO145  
10  
14  
0, 4, 8, 12  
General-Purpose Input Output 145  
ePWM-1 Output A (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 12  
EtherCAT Error LED  
EPWM1A  
1
ESC_GPO12  
ESC_LED_ERR  
GPIO146  
10  
14  
0, 4, 8, 12  
General-Purpose Input Output 146  
ePWM-1 Output B (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 13  
EtherCAT Run LED  
EPWM1B  
1
ESC_GPO13  
ESC_LED_RUN  
GPIO147  
10  
14  
0, 4, 8, 12  
General-Purpose Input Output 147  
ePWM-2 Output A (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 14  
EtherCAT State Run  
EPWM2A  
1
ESC_GPO14  
ESC_LED_STATE_RUN  
10  
14  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
SIGNAL NAME  
337  
176  
DESCRIPTION  
TYPE  
I/O  
O
GPIO148  
0, 4, 8, 12  
General-Purpose Input Output 148  
ePWM-2 Output B (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 15  
EtherCAT PHY-0 Link Status  
EPWM2B  
1
D14  
ESC_GPO15  
ESC_PHY0_LINKSTATUS  
GPIO149  
10  
O
14  
I
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 149  
ePWM-3 Output A (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 16  
EtherCAT PHY-1 Link Status  
EPWM3A  
1
A13  
B13  
C13  
D13  
A12  
B12  
C12  
D12  
B10  
C10  
ESC_GPO16  
ESC_PHY1_LINKSTATUS  
GPIO150  
10  
O
14  
I
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 150  
ePWM-3 Output B (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 17  
EtherCAT I2C Data  
EPWM3B  
1
ESC_GPO17  
ESC_I2C_SDA  
GPIO151  
10  
O
14  
I/OC  
I/O  
O
0, 4, 8, 12  
General-Purpose Input Output 151  
ePWM-4 Output A (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 18  
EtherCAT I2C Clock  
EPWM4A  
1
ESC_GPO18  
ESC_I2C_SCL  
GPIO152  
10  
O
14  
I/OC  
I/O  
O
0, 4, 8, 12  
General-Purpose Input Output 152  
ePWM-4 Output B (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 19  
EtherCAT MDIO Clock  
EPWM4B  
1
ESC_GPO19  
ESC_MDIO_CLK  
GPIO153  
10  
O
14  
O
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 153  
ePWM-5 Output A (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 20  
EtherCAT MDIO Data  
EPWM5A  
1
ESC_GPO20  
ESC_MDIO_DATA  
GPIO154  
10  
O
14  
I/O  
I/O  
O
0, 4, 8, 12  
General-Purpose Input Output 154  
ePWM-5 Output B (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 21  
EtherCAT PHY Clock  
EPWM5B  
1
ESC_GPO21  
ESC_PHY_CLK  
GPIO155  
10  
O
14  
O
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 155  
ePWM-6 Output A (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 22  
EtherCAT PHY Active Low Reset  
EPWM6A  
1
ESC_GPO22  
ESC_PHY_RESETn  
GPIO156  
10  
O
14  
O
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 156  
ePWM-6 Output B (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 23  
EtherCAT MII Transmit-0 Enable  
EPWM6B  
1
ESC_GPO23  
ESC_TX0_ENA  
GPIO157  
10  
O
14  
I/O  
I/O  
O
0, 4, 8, 12  
General-Purpose Input Output 157  
ePWM-7 Output A (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 24  
EtherCAT MII Transmit-0 Clock  
EPWM7A  
1
ESC_GPO24  
ESC_TX0_CLK  
GPIO158  
10  
O
14  
I
0, 4, 8, 12  
I/O  
O
General-Purpose Input Output 158  
ePWM-7 Output B (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 25  
EtherCAT MII Transmit-0 Data-0  
EPWM7B  
1
ESC_GPO25  
ESC_TX0_DATA0  
10  
14  
O
O
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
GPIO159  
337  
176  
DESCRIPTION  
0, 4, 8, 12  
I/O  
O
O
O
I/O  
O
O
O
I/O  
O
O
O
I/O  
O
O
I
General-Purpose Input Output 159  
EPWM8A  
1
ePWM-8 Output A (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 26  
EtherCAT MII Transmit-0 Data-1  
D10  
ESC_GPO26  
ESC_TX0_DATA1  
GPIO160  
10  
14  
0, 4, 8, 12  
General-Purpose Input Output 160  
EPWM8B  
1
ePWM-8 Output B (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 27  
EtherCAT MII Transmit-0 Data-2  
B9  
C9  
D9  
A8  
B8  
C5  
D5  
C4  
D4  
ESC_GPO27  
ESC_TX0_DATA2  
GPIO161  
10  
14  
0, 4, 8, 12  
General-Purpose Input Output 161  
EPWM9A  
1
ePWM-9 Output A (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 28  
EtherCAT MII Transmit-0 Data-3  
ESC_GPO28  
ESC_TX0_DATA3  
GPIO162  
10  
14  
0, 4, 8, 12  
General-Purpose Input Output 162  
EPWM9B  
1
ePWM-9 Output B (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 29  
EtherCAT MII Receive-0 Data Valid  
General-Purpose Input Output 163  
ESC_GPO29  
ESC_RX0_DV  
GPIO163  
10  
14  
0, 4, 8, 12  
I/O  
O
O
I
EPWM10A  
1
ePWM-10 Output A (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 30  
EtherCAT MII Receive-0 Clock  
ESC_GPO30  
ESC_RX0_CLK  
GPIO164  
10  
14  
0, 4, 8, 12  
I/O  
O
O
I
General-Purpose Input Output 164  
EPWM10B  
1
ePWM-10 Output B (High-res available on ePWM1-8)  
EtherCAT General-Purpose Output 31  
EtherCAT MII Receive-0 Error  
ESC_GPO31  
ESC_RX0_ERR  
GPIO165  
10  
14  
0, 4, 8, 12  
I/O  
O
O
I
General-Purpose Input Output 165  
EPWM11A  
1
ePWM-11 Output A (High-res available on ePWM1-8)  
McBSP-A Transmit Serial Data  
MDXA  
10  
ESC_RX0_DATA0  
GPIO166  
14  
EtherCAT MII Receive-0 Data-0  
0, 4, 8, 12  
I/O  
O
I
General-Purpose Input Output 166  
EPWM11B  
1
ePWM-11 Output B (High-res available on ePWM1-8)  
McBSP-A Receive Serial Data  
MDRA  
10  
ESC_RX0_DATA1  
GPIO167  
14  
I
EtherCAT MII Receive-0 Data-1  
0, 4, 8, 12  
I/O  
O
O
I
General-Purpose Input Output 167  
EPWM12A  
1
ePWM-12 Output A (High-res available on ePWM1-8)  
McBSP-A Transmit Clock  
MCLKXA  
10  
ESC_RX0_DATA2  
GPIO168  
14  
EtherCAT MII Receive-0 Data-2  
0, 4, 8, 12  
I/O  
O
O
I
General-Purpose Input Output 168  
EPWM12B  
1
ePWM-12 Output B (High-res available on ePWM1-8)  
McBSP-A Transmit Frame Sync  
MFSXA  
10  
14  
ESC_RX0_DATA3  
EtherCAT MII Receive-0 Data-3  
TEST, JTAG, AND RESET  
Error Status Output. When used, this signal requires an  
external pulldown.  
ERRORSTS  
FLT1  
U19  
92  
73  
O
Flash test pin 1. Reserved for TI. Must be left  
unconnected.  
W12  
I/O  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
337  
176  
DESCRIPTION  
Flash test pin 2. Reserved for TI. Must be left  
unconnected.  
FLT2  
NC  
V13  
74  
I/O  
No Connection. This pin is not internally connected to the  
device. This pin may be left open or connected to any  
voltage within the maximum operating conditions.  
H4  
119  
81  
JTAG test-mode select (TMS) with internal pullup. This  
serial control input is clocked into the TAP controller on  
the rising edge of TCK.  
TCK  
TDI  
V15  
W13  
W15  
I
I
JTAG test data input (TDI) with internal pullup. TDI is  
clocked into the selected register (instruction or data) on a  
rising edge of TCK.  
77  
JTAG scan out, test data output (TDO). The contents of  
the selected register (instruction or data) are shifted out of  
TDO on the falling edge of TCK.  
TDO  
78  
O
JTAG test-mode select (TMS) with internal pullup. This  
serial control input is clocked into the TAP controller on  
the rising edge of TCK. An external pullup resistor  
(recommended 2.2 kΩ) on the TMS pin to VDDIO should  
be placed on the board to keep JTAG in reset during  
normal operation.  
TMS  
W14  
80  
I
JTAG test reset with internal pulldown. TRSTn, when  
driven high, gives the scan system control of the  
operations of the device. If this signal is driven low, the  
device operates in its functional mode, and the test reset  
signals are ignored. NOTE: TRST must be maintained low  
at all times during normal device operation. An external  
pulldown resistor is required on this pin. The value of this  
resistor should be based on drive strength of the  
debugger pods applicable to the design. A 2.2-kΩ or  
smaller resistor generally offers adequate protection. The  
value of the resistor is application-specific. TI  
TRSTn  
V14  
79  
I
recommends that each target board be validated for  
proper operation of the debugger and the application. This  
pin has an internal 50-ns (nominal) glitch filter.  
Crystal oscillator input or single-ended clock input. The  
device initialization software must configure this pin before  
the crystal oscillator is enabled. To use this oscillator, a  
quartz crystal circuit must be connected to X1 and X2.  
This pin can also be used to feed a single-ended 3.3-V  
level clock.  
X1  
X2  
G19  
J19  
123  
121  
I
O
Crystal oscillator output.  
Device Reset (in) and Watchdog Reset (out). During a  
power-on condition, this pin is driven low by the device.  
An external circuit may also drive this pin to assert a  
device reset. This pin is also driven low by the MCU when  
a watchdog reset occurs. During watchdog reset, the  
XRSn pin is driven low for the watchdog reset duration of  
512 OSCCLK cycles. A resistor between 2.2 kΩ and 10  
kΩ should be placed between XRSn and VDDIO. If a  
capacitor is placed between XRSn and VSS for noise  
filtering, it should be 100 nF or smaller. These values will  
allow the watchdog to properly drive the XRSn pin to VOL  
within 512 OSCCLK cycles when the watchdog reset is  
asserted. The output buffer of this pin is an open-drain  
with an internal pullup. If this pin is driven by an external  
device, it should be done using an open-drain device. If  
this pin is driven by an external device, it should be done  
using an open-drain device.  
XRSn  
F19  
124  
I/OD  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
337  
176  
DESCRIPTION  
POWER AND GROUND  
1.2-V Digital Logic Power Pins. TI recommends placing a  
decoupling capacitor near each VDD pin with a minimum  
total capacitance of approximately 20 µF. The exact value  
of the decoupling capacitance should be determined by  
your system voltage regulation solution. A single 56Ω  
resistor (10% tolerance) should be placed between  
between VDD and VSS. This resistor provides a load to  
consume an internal VDD3VFL to VDD current source  
and avoid VDD voltage rising during low power device  
conditions.  
E9, E11,  
F9, F11,  
G14,  
61, 76,  
117, 126,  
G15,  
VDD  
J14, J15, 137, 153,  
K5, K6, 158, 169,  
P10,  
P13,  
16, 21  
R10, R13  
3.3-V Flash power pin. Place a minimum 0.1-µF  
decoupling capacitor on each pin  
VDD3VFL  
VDDA  
R11, R12  
P6, R6  
72  
3.3-V Analog Power Pins. Place a minimum 2.2-µF  
decoupling capacitor to VSSA on each pin.  
54, 36  
A9, A18,  
B1, E7,  
E10,  
E13, F7, 62, 68,  
F10, 75, 82,  
F13, G5, 88, 91,  
G6, H5, 99, 106,  
H6, L14, 114, 116,  
L15, M1, 127, 138,  
M5, M6, 147, 152,  
3.3-V Digital I/O Power Pins. Place a minimum 0.1-µF  
decoupling capacitor on each pin.  
VDDIO  
N14,  
159, 168,  
N15, P9, 3, 11, 15,  
R9, V19, 20, 26  
W8, F4,  
G4, E16,  
F16  
Power pins for the 3.3-V on-chip crystal oscillator (X1 and  
X2) and the two zero-pin internal oscillators (INTOSC).  
Place a 0.1-µF (minimum) decoupling capacitor on each  
pin.  
VDDOSC  
H16, H17 120, 125  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-1. Pin Attributes (continued)  
MUX  
POSITION  
PIN  
TYPE  
SIGNAL NAME  
337  
176  
DESCRIPTION  
A1, A10,  
A19, E5,  
E6, E8,  
E12,  
E14,  
E15, F5,  
F6, F8,  
F12,  
F14,  
F15,  
G16,  
G17, H8,  
H9, H10,  
H11,  
H12,  
H14,  
H15, J5,  
J6, J8,  
J9, J10,  
J11, J12,  
K8, K9,  
K10,  
178, 179,  
180, 177  
VSS  
Digital Ground  
K11,  
K12,  
K14,  
K15, L5,  
L6, L8,  
L9, L10,  
L11, L12,  
L18, M8,  
M9, M10,  
M11,  
M12,  
M14,  
M15, N1,  
N5, N6,  
P7, P8,  
P11,  
P12,  
P14,  
P15, R7,  
R8, R14,  
R15, W7,  
W19  
P1, P5,  
R5, V7,  
W1  
VSSA  
52, 34  
122  
Analog Ground  
Crystal oscillator (X1 and X2) ground pin. When using an  
external crystal, do not connect this pin to the board  
ground. Instead, connect it to the ground reference of the  
external crystal oscillator circuit. If an external crystal is  
not used, this pin may be connected to the board ground.  
VSSOSC  
H18, H19  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
6.3 Signal Descriptions  
6.3.1 Analog Signals  
Table 6-2. Analog Signals  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
Input 14 to all ADCs. This pin can be used as a  
general purpose ADCIN pin or it can be used to  
calibrate all ADCs together (either single-ended or  
differential) from an external reference  
ADCIN14  
ADCIN15  
I
I
T4  
U4  
44  
45  
Input 15 to all ADCs. This pin can be used as a  
general purpose ADCIN pin or it can be used to  
calibrate all ADCs together (either single-ended or  
differential) from an external reference  
ADC-A Input 0. There is a 50-kΩ internal pulldown on  
this pin in both an ADC input or DAC output mode  
which cannot be disabled.  
ADCINA0  
ADCINA1  
I
I
U1  
T1  
43  
42  
ADC-A Input 1. There is a 50-kΩ internal pulldown on  
this pin in both an ADC input or DAC output mode  
which cannot be disabled.  
ADCINA2  
ADCINA3  
ADCINA4  
ADCINA5  
ADC-A Input 2  
ADC-A Input 3  
ADC-A Input 4  
ADC-A Input 5  
I
I
I
I
U2  
T2  
U3  
T3  
41  
40  
39  
38  
ADC-B Input 0. There is a 100-pF capacitor to VSSA  
on this pin whether used for ADC input or DAC  
reference which cannot be disabled. If this pin is being  
used as a reference for the on-chip DACs, place at  
least a 1-µF capacitor on this pin.  
ADCINB0  
I
V2  
46  
ADC-B Input 1. There is a 50-kΩ internal pulldown on  
this pin in both an ADC input or DAC output mode  
which cannot be disabled.  
ADCINB1  
I
W2  
47  
ADCINB2  
ADCINB3  
ADCINB4  
ADCINB5  
ADCINC2  
ADCINC3  
ADCINC4  
ADCINC5  
ADCIND0  
ADCIND1  
ADCIND2  
ADCIND3  
ADCIND4  
ADCIND5  
CMPIN1N  
CMPIN1P  
CMPIN2N  
CMPIN2P  
CMPIN3N  
CMPIN3P  
CMPIN4N  
ADC-B Input 2  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
V3  
W3  
V4  
W4  
R3  
P3  
R4  
P4  
T5  
U5  
T6  
U6  
T7  
U7  
T2  
U2  
T3  
U3  
W3  
V3  
U4  
48  
49  
ADC-B Input 3  
ADC-B Input 4  
ADC-B Input 5  
ADC-C Input 2  
31  
30  
29  
ADC-C Input 3  
ADC-C Input 4  
ADC-C Input 5  
ADC-D Input 0  
56  
57  
58  
59  
60  
ADC-D Input 1  
ADC-D Input 2  
ADC-D Input 3  
ADC-D Input 4  
ADC-D Input 5  
Comparator 1 negative input  
Comparator 1 positive input  
Comparator 2 negative input  
Comparator 2 positive input  
Comparator 3 negative input  
Comparator 3 positive input  
Comparator 4 negative input  
40  
41  
38  
39  
49  
48  
45  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-2. Analog Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
Comparator 4 positive input  
GPIO  
337 BGA 176 Pin  
CMPIN4P  
CMPIN5N  
CMPIN5P  
CMPIN6N  
CMPIN6P  
CMPIN7N  
CMPIN7P  
CMPIN8N  
CMPIN8P  
DACOUTA  
DACOUTB  
DACOUTC  
VDAC  
I
I
T4  
P4  
R4  
P3  
R3  
U5  
T5  
U6  
T6  
U1  
T1  
W2  
V2  
44  
Comparator 5 negative input  
Comparator 5 positive input  
Comparator 6 negative input  
Comparator 6 positive input  
Comparator 7 negative input  
Comparator 7 positive input  
Comparator 8 negative input  
Comparator 8 positive input  
Buffered DAC-A Output.  
I
29  
30  
31  
57  
56  
59  
58  
43  
42  
47  
46  
I
I
I
I
I
I
O
O
O
I
Buffered DAC-B Output.  
Buffered DAC-C Output.  
Optional external reference voltage for on-chip DACs.  
ADC-A high reference. This voltage must be driven  
into the pin from external circuitry. Place at least a 2.2-  
µF capacitor on this pin for the 12-bit mode, or at least  
a 22-µF capacitor for the 16-bit mode. This capacitor  
should be placed as close to the device as possible  
between the VREFHIA and VREFLOA pins. NOTE: Do  
not load this pin externally  
VREFHIA  
VREFHIB  
VREFHIC  
VREFHID  
I
I
I
I
V1  
W5  
R1  
V5  
37  
53  
35  
55  
ADC-B high reference. This voltage must be driven  
into the pin from external circuitry. Place at least a 2.2-  
µF capacitor on this pin for the 12-bit mode, or at least  
a 22-µF capacitor for the 16-bit mode. This capacitor  
should be placed as close to the device as possible  
between the VREFHIB and VREFLOB pins. NOTE: Do  
not load this pin externally  
ADC-C high reference. This voltage must be driven  
into the pin from external circuitry. Place at least a 2.2-  
µF capacitor on this pin for the 12-bit mode, or at least  
a 22-µF capacitor for the 16-bit mode. This capacitor  
should be placed as close to the device as possible  
between the VREFHIC and VREFLOC pins. NOTE: Do  
not load this pin externally  
ADC-D high reference. This voltage must be driven  
into the pin from external circuitry. Place at least a 2.2-  
µF capacitor on this pin for the 12-bit mode, or at least  
a 22-µF capacitor for the 16-bit mode. This capacitor  
should be placed as close to the device as possible  
between the VREFHID and VREFLOD pins. NOTE: Do  
not load this pin externally  
VREFLOA  
VREFLOB  
VREFLOC  
VREFLOD  
ADC-A Low Reference  
ADC-B Low Reference  
ADC-C Low Reference  
ADC-D Low Reference  
I
I
I
I
R2  
V6  
P2  
W6  
33  
50  
32  
51  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
6.3.2 Digital Signals  
Table 6-3. Digital Signals  
PIN  
TYPE  
SIGNAL NAME  
ADCSOCAO  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
ADC Start of Conversion A Output for External ADC  
(from ePWM modules)  
O
8
G2  
18  
ADC Start of Conversion B Output for External ADC  
(from ePWM modules)  
ADCSOCBO  
AUXCLKIN  
O
I
10  
B2  
1
Auxilary Clock Input  
133  
G18  
118  
A17, D7, 10, 107,  
E3, J17, 108, 135,  
L16, T11, 165, 63,  
18, 30,  
36, 5, 61,  
62, 70  
CANA_RX  
CANA_TX  
CANB_RX  
CANB_TX  
CAN-A Receive  
I
V16  
83  
B17, C7, 108, 109,  
E4, J16, 12, 136,  
J17, U11, 164, 66,  
19, 31,  
37, 4, 62,  
63, 71  
CAN-A Transmit  
CAN-B Receive  
CAN-B Transmit  
O
I
U16  
84  
A16, B2,  
B6, D1,  
E2, F3,  
W17  
10, 13,  
17, 21,  
39, 7, 73  
1, 14,  
140, 167,  
5, 86, 9  
A6, B16,  
C2, E1,  
F2, G2,  
T16  
12, 16,  
20, 38, 6,  
72, 8  
13, 139,  
166, 18,  
4, 8, 85  
O
CLB_OUTPUTXBAR1  
CLB_OUTPUTXBAR2  
CLB_OUTPUTXBAR3  
CLB_OUTPUTXBAR4  
CLB_OUTPUTXBAR5  
CLB_OUTPUTXBAR6  
CLB_OUTPUTXBAR7  
CLB_OUTPUTXBAR8  
CLB Output X-BAR Output 1  
CLB Output X-BAR Output 2  
CLB Output X-BAR Output 3  
CLB Output X-BAR Output 4  
CLB Output X-BAR Output 5  
CLB Output X-BAR Output 6  
CLB Output X-BAR Output 7  
CLB Output X-BAR Output 8  
O
O
O
O
O
O
O
O
32, 91  
33, 92  
34, 93  
35, 94  
36, 95  
37, 96  
38, 97  
39, 98  
B5, U13  
A4, T13  
B4, U14  
A3, T14  
B3, V16  
C3, U16  
A2, T16  
F1, W17  
173, 67  
174, 69  
175, 70  
176, 71  
83  
84  
85  
86  
1, 105,  
32  
D8, J3,  
U13  
CM-I2CA_SCL  
CM-I2CA_SDA  
EMIF1_CAS  
CM-I2C-A Open-Drain Bidirectional Clock  
CM-I2C-A Open-Drain Bidirectional Data  
External memory interface 1 column address strobe  
I/OD  
I/OD  
O
161, 67  
160, 66  
0, 104,  
31  
C8, J2,  
U11  
23, 86,  
89  
C11, D6, 156, 171,  
K4  
23  
EMIF1_CLK  
EMIF1_OEn  
External memory interface 1 clock  
O
O
30  
T11  
63  
External memory interface 1 output enable  
32, 37 U13, U16 67, 84  
22, 87,  
90  
A5, D11, 157, 172,  
EMIF1_RAS  
External memory interface 1 row address strobe  
O
J4  
22  
66, 69  
65  
EMIF1_RNW  
External memory interface 1 read not write  
O
O
31, 33  
29  
T13, U11  
W11  
EMIF1_SDCKE  
External memory interface 1 SDRAM clock enable  
External memory interface 1 Asynchronous SRAM  
WAIT  
EMIF1_WAIT  
I
36  
V16  
83  
66  
EMIF1_WEn  
EMIF2_CAS  
EMIF2_CLK  
EMIF2_OEn  
EMIF2_RAS  
EMIF2_RNW  
External memory interface 1 write enable  
External memory interface 2 column address strobe  
External memory interface 2 clock  
O
O
O
O
O
O
31  
U11  
N4  
113  
118  
121  
114  
119  
T12  
W16  
N3  
External memory interface 2 output enable  
External memory interface 2 row address strobe  
External memory interface 2 read not write  
T15  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO  
117  
337 BGA 176 Pin  
EMIF2_SDCKE  
EMIF2_WAIT  
External memory interface 2 SDRAM clock enable  
O
U12  
M2  
External memory interface 2 Asynchronous SRAM  
WAIT  
I
110  
EMIF2_WEn  
EMIF1_A0  
EMIF1_A1  
EMIF1_A2  
EMIF1_A3  
EMIF1_A4  
EMIF1_A5  
EMIF1_A6  
EMIF1_A7  
EMIF1_A8  
EMIF1_A9  
EMIF1_A10  
EMIF1_A11  
EMIF1_A12  
EMIF1_A13  
EMIF1_A14  
EMIF1_A15  
EMIF1_A16  
EMIF1_A17  
EMIF1_A18  
EMIF1_A19  
External memory interface 2 write enable  
External memory interface 1 address line 0  
External memory interface 1 address line 1  
External memory interface 1 address line 2  
External memory interface 1 address line 3  
External memory interface 1 address line 4  
External memory interface 1 address line 5  
External memory interface 1 address line 6  
External memory interface 1 address line 7  
External memory interface 1 address line 8  
External memory interface 1 address line 9  
External memory interface 1 address line 10  
External memory interface 1 address line 11  
External memory interface 1 address line 12  
External memory interface 1 address line 13  
External memory interface 1 address line 14  
External memory interface 1 address line 15  
External memory interface 1 address line 16  
External memory interface 1 address line 17  
External memory interface 1 address line 18  
External memory interface 1 address line 19  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
120  
U15  
35, 38  
T14, T16  
71, 85  
36, 39 V16, W17 83, 86  
37, 40  
38, 41  
U16, V17  
T16, U17  
84, 87  
85, 89  
39, 44 K18, W17 113, 86  
45, 49  
46, 50  
47, 51  
48, 52  
49, 53  
50, 54  
51  
K19, R17 115, 93  
E19, R18 128, 94  
E18, R19 129, 95  
P16, R16  
P17, R17  
P18, R18  
R19  
90, 96  
93, 97  
94, 98  
95  
52  
P16  
96  
86  
C11  
156  
87  
D11  
157  
88  
C6  
170  
89  
D6  
171  
90  
A5  
172  
91  
B5  
173  
92  
A4  
174  
20, 33,  
93  
B4, F2,  
T13  
13, 175,  
69  
EMIF1_BA0  
External memory interface 1 bank address 0  
O
21, 34,  
92, 94  
A3, A4,  
F3, U14  
14, 174,  
176, 70  
EMIF1_BA1  
EMIF1_CS0n  
EMIF1_CS2n  
External memory interface 1 bank address 1  
External memory interface 1 chip select 0  
External memory interface 1 chip select 2  
O
O
O
32  
U13  
67  
18, 28,  
34  
E3, U14,  
V11  
10, 64,  
70  
19, 29,  
35  
E4, T14,  
W11  
12, 65,  
71  
EMIF1_CS3n  
External memory interface 1 chip select 3  
O
EMIF1_CS4n  
EMIF1_D0  
EMIF1_D1  
EMIF1_D2  
EMIF1_D3  
EMIF1_D4  
EMIF1_D5  
EMIF1_D6  
EMIF1_D7  
EMIF1_D8  
EMIF1_D9  
EMIF1_D10  
EMIF1_D11  
External memory interface 1 chip select 4  
External memory interface 1 data line 0  
External memory interface 1 data line 1  
External memory interface 1 data line 2  
External memory interface 1 data line 3  
External memory interface 1 data line 4  
External memory interface 1 data line 5  
External memory interface 1 data line 6  
External memory interface 1 data line 7  
External memory interface 1 data line 8  
External memory interface 1 data line 9  
External memory interface 1 data line 10  
External memory interface 1 data line 11  
O
28, 30  
55, 85  
T11, V11  
63, 64  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
B11, P19 100, 155  
56, 83 C14, N16 101, 151  
57, 82  
58, 81  
B14, N18 102, 150  
A14, N17 103, 149  
59, 80 D15, M16 104, 148  
60, 79 C15, M17 105, 146  
61, 78  
62, 77  
76  
B15, L16 107, 145  
A15, J17 108, 144  
C16  
D16  
C17  
A16  
143  
142  
141  
140  
75  
74  
73  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
EMIF1_D12  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
External memory interface 1 data line 12  
External memory interface 1 data line 13  
External memory interface 1 data line 14  
External memory interface 1 data line 15  
External memory interface 1 data line 16  
External memory interface 1 data line 17  
External memory interface 1 data line 18  
External memory interface 1 data line 19  
External memory interface 1 data line 20  
External memory interface 1 data line 21  
External memory interface 1 data line 22  
External memory interface 1 data line 23  
External memory interface 1 data line 24  
External memory interface 1 data line 25  
External memory interface 1 data line 26  
External memory interface 1 data line 27  
External memory interface 1 data line 28  
External memory interface 1 data line 29  
External memory interface 1 data line 30  
External memory interface 1 data line 31  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
B16  
B17  
A17  
B18  
C18  
B19  
K17  
K16  
L17  
J16  
139  
136  
135  
134  
133  
132  
112  
111  
110  
109  
108  
107  
105  
104  
103  
102  
101  
100  
98  
EMIF1_D13  
EMIF1_D14  
EMIF1_D15  
EMIF1_D16  
EMIF1_D17  
EMIF1_D18  
EMIF1_D19  
EMIF1_D20  
EMIF1_D21  
EMIF1_D22  
EMIF1_D23  
EMIF1_D24  
EMIF1_D25  
EMIF1_D26  
EMIF1_D27  
EMIF1_D28  
EMIF1_D29  
EMIF1_D30  
EMIF1_D31  
J17  
L16  
M17  
M16  
N17  
N18  
N16  
P19  
P18  
P17  
97  
External memory interface 1 Input/output mask for byte  
0
24, 88,  
92  
A4, C6, 170, 174,  
K3 24  
EMIF1_DQM0  
EMIF1_DQM1  
EMIF1_DQM2  
EMIF1_DQM3  
O
O
O
O
External memory interface 1 Input/output mask for byte  
1
25, 88,  
89  
C6, D6, 170, 171,  
K2 25  
External memory interface 1 Input/output mask for byte  
2
26, 90,  
91  
A5, B5, 172, 173,  
K1 27  
External memory interface 1 Input/output mask for byte  
3
27, 87,  
91  
B5, D11, 157, 173,  
L1  
28  
EMIF2_A0  
EMIF2_A1  
EMIF2_A2  
EMIF2_A3  
EMIF2_A4  
EMIF2_A5  
EMIF2_A6  
EMIF2_A7  
EMIF2_A8  
EMIF2_A9  
EMIF2_A10  
EMIF2_A11  
EMIF2_A12  
EMIF2_BA0  
EMIF2_BA1  
EMIF2_CS0n  
EMIF2_CS2n  
EMIF2_D0  
External memory interface 2 address line 0  
External memory interface 2 address line 1  
External memory interface 2 address line 2  
External memory interface 2 address line 3  
External memory interface 2 address line 4  
External memory interface 2 address line 5  
External memory interface 2 address line 6  
External memory interface 2 address line 7  
External memory interface 2 address line 8  
External memory interface 2 address line 9  
External memory interface 2 address line 10  
External memory interface 2 address line 11  
External memory interface 2 address line 12  
External memory interface 2 bank address 0  
External memory interface 2 bank address 1  
External memory interface 2 chip select 0  
External memory interface 2 chip select 2  
External memory interface 2 data line 0  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I/O  
98  
F1  
99  
G1  
H1  
H2  
H3  
J1  
17  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
95  
J2  
J3  
L2  
L3  
L4  
N2  
B3  
M4  
M3  
V12  
W10  
111  
112  
115  
116  
138, 68 C18, T19  
133  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-3. Digital Signals (continued)  
PIN  
SIGNAL NAME  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
TYPE  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
EMIF2_D1  
EMIF2_D2  
EMIF2_D3  
EMIF2_D4  
EMIF2_D5  
EMIF2_D6  
EMIF2_D7  
EMIF2_D8  
EMIF2_D9  
External memory interface 2 data line 1  
External memory interface 2 data line 2  
External memory interface 2 data line 3  
External memory interface 2 data line 4  
External memory interface 2 data line 5  
External memory interface 2 data line 6  
External memory interface 2 data line 7  
External memory interface 2 data line 8  
External memory interface 2 data line 9  
External memory interface 2 data line 10  
External memory interface 2 data line 11  
External memory interface 2 data line 12  
External memory interface 2 data line 13  
External memory interface 2 data line 14  
External memory interface 2 data line 15  
137, 67 B19, T18  
136, 66 K17, T17  
135, 65 K16, U18  
134, 64 L17, V18  
132, 63 J16, W18  
131, 62 J17, V10  
130, 61 L16, U10  
129, 60 M17, T10  
128, 59 M16, W9  
132  
112  
111  
110  
109  
108  
107  
105  
104  
103  
102  
101  
100  
98  
EMIF2_D10  
EMIF2_D11  
EMIF2_D12  
EMIF2_D13  
EMIF2_D14  
EMIF2_D15  
127, 58  
126, 57 N18, U9  
N17, V9  
125, 56  
124, 55  
123, 54  
122, 53  
N16, T9  
P19, V8  
P18, U8  
P17, T8  
97  
External memory interface 2 Input/output mask for byte  
0
EMIF2_DQM0  
EMIF2_DQM1  
O
O
97  
96  
A2  
C3  
External memory interface 2 Input/output mask for byte  
1
EMAC management data clock, Output in MII/RMII  
modes, Input in RevMII mode  
ENET_MDIO_CLK  
ENET_MDIO_DATA  
I/O  
I/O  
105, 42  
106, 43  
D19, J3  
C19, L2  
130  
131  
EMAC management data  
M2, T14,  
U17,  
W17  
110, 35,  
39, 41  
71, 86,  
89  
ENET_MII_COL  
EMAC MII collision detect  
I
109, 34, N2, T16,  
70, 85,  
87  
ENET_MII_CRS  
ENET_MII_INTR  
ENET_MII_RX_CLK  
EMAC MII carrier sense  
I
I/O  
I
38, 40  
U14, V17  
EMAC PHY interrupt, Input in MII/RMII mode, Output  
in RevMII mode  
108, 68  
C18, L4  
133  
111, 49, B18, B19, 132, 134,  
EMAC MII receive clock  
67, 69  
M4, R17  
93  
114, 52, B17, J16,  
109, 112,  
136, 96  
ENET_MII_RX_DATA0  
EMAC MII / RMII receive data 0  
I
63, 66,  
71  
K17, N3,  
P16  
115, 53, B16, L17, 110, 139,  
ENET_MII_RX_DATA1  
ENET_MII_RX_DATA2  
ENET_MII_RX_DATA3  
EMAC MII / RMII receive data 1  
EMAC MII receive data 2  
EMAC MII receive data 3  
I
I
I
64, 72  
116, 54, K16, P18,  
65 W10  
117, 55, K17, P19,  
P17, V12  
97  
111, 98  
100, 112  
66  
U12  
112, 38, A17, L17,  
50, 64, M3, R18,  
EMAC MII receive data valid (or) RMII carrier sense/  
receive data valid  
110, 135,  
85, 94  
ENET_MII_RX_DV  
I
70  
T16  
B17,  
C16,  
113, 39,  
51, 65,  
71, 76  
111, 136,  
ENET_MII_RX_ERR  
ENET_MII_TX_CLK  
EMAC MII / RMII receive error  
EMAC MII transmit clock  
I
I
K16, N4, 143, 86,  
R19,  
W17  
95  
120, 44,  
58  
K18,  
N17, U15  
103, 113  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
D16,  
M16,  
W16  
121, 59,  
75  
ENET_MII_TX_DATA0  
EMAC MII / RMII transmit data 0  
O
104, 142  
122, 60,  
74  
C17,  
M17, T8  
ENET_MII_TX_DATA1  
ENET_MII_TX_DATA2  
ENET_MII_TX_DATA3  
ENET_MII_TX_EN  
EMAC MII / RMII transmit data 1  
EMAC MII transmit data 2  
EMAC MII transmit data 3  
EMAC MII / RMII transmit enable  
EMAC MII transmit error  
O
O
O
O
O
105, 141  
107, 140  
108, 139  
123, 61, A16, L16,  
73 U8  
124, 62, B16, J17,  
72 V8  
118, 45, B18, K19, 101, 115,  
56, 69  
N16, T12  
134  
119, 46,  
57  
E19,  
N18, T15  
ENET_MII_TX_ERR  
102, 128  
ENET_PPS0  
ENET_PPS1  
EMAC Pulse Per Second Output 0  
EMAC Pulse Per Second Output 1  
O
O
47  
48  
E18  
R16  
129  
90  
107, 41, B19, L3,  
ENET_REVMII_MDIO_RST  
EMAC REVMII MDIO reset  
I
132, 89  
67  
U17  
ENET_RMII_CLK  
EPWM10A  
EPWM10B  
EPWM11A  
EPWM11B  
EPWM12A  
EPWM12B  
EPWM13A  
EPWM13B  
EPWM14A  
EPWM14B  
EPWM15A  
EPWM15B  
EPWM16A  
EPWM16B  
EPWM1A  
EPWM1B  
EPWM2A  
EPWM2B  
EPWM3A  
EPWM3B  
EPWM4A  
EPWM4B  
EPWM5A  
EPWM5B  
EPWM6A  
EPWM6B  
EPWM7A  
EPWM7B  
EPWM8A  
EMAC RMII clock  
I/O  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
73  
A16  
140  
10  
12  
13  
14  
22  
23  
24  
25  
27  
28  
64  
65  
63  
66  
160  
161  
162  
163  
164  
165  
166  
167  
18  
19  
1
ePWM-10 Output A (High-res available on ePWM1-8)  
ePWM-10 Output B (High-res available on ePWM1-8)  
ePWM-11 Output A (High-res available on ePWM1-8)  
ePWM-11 Output B (High-res available on ePWM1-8)  
ePWM-12 Output A (High-res available on ePWM1-8)  
ePWM-12 Output B (High-res available on ePWM1-8)  
ePWM-13 Output A (High-res available on ePWM1-8)  
ePWM-13 Output B (High-res available on ePWM1-8)  
ePWM-14 Output A (High-res available on ePWM1-8)  
ePWM-14 Output B (High-res available on ePWM1-8)  
ePWM-15 Output A (High-res available on ePWM1-8)  
ePWM-15 Output B (High-res available on ePWM1-8)  
ePWM-16 Output A (High-res available on ePWM1-8)  
ePWM-16 Output B (High-res available on ePWM1-8)  
ePWM-1 Output A (High-res available on ePWM1-8)  
ePWM-1 Output B (High-res available on ePWM1-8)  
ePWM-2 Output A (High-res available on ePWM1-8)  
ePWM-2 Output B (High-res available on ePWM1-8)  
ePWM-3 Output A (High-res available on ePWM1-8)  
ePWM-3 Output B (High-res available on ePWM1-8)  
ePWM-4 Output A (High-res available on ePWM1-8)  
ePWM-4 Output B (High-res available on ePWM1-8)  
ePWM-5 Output A (High-res available on ePWM1-8)  
ePWM-5 Output B (High-res available on ePWM1-8)  
ePWM-6 Output A (High-res available on ePWM1-8)  
ePWM-6 Output B (High-res available on ePWM1-8)  
ePWM-7 Output A (High-res available on ePWM1-8)  
ePWM-7 Output B (High-res available on ePWM1-8)  
ePWM-8 Output A (High-res available on ePWM1-8)  
163, 18  
164, 19  
165, 20  
166, 21  
167, 22  
168, 23  
137, 24  
138, 25  
139, 26  
140, 27  
A8, E3  
B8, E4  
C5, F2  
D5, F3  
C4, J4  
D4, K4  
K3, T18  
K2, T19  
K1, N19  
L1, M19  
141, 28 M18, V11  
142, 29 L19, W11  
143, 30 F18, T11  
144, 31 F17, U11  
0, 145  
1, 146  
147, 2  
148, 3  
149, 4  
150, 5  
151, 6  
152, 7  
153, 8  
154, 9  
10, 155  
11, 156  
12, 157  
C8, E17  
D18, D8  
A7, D17  
B7, D14  
A13, C7  
B13, D7  
A6, C13  
B6, D13  
A12, G2  
B12, G3  
B2, C12  
C1, D12  
B10, C2  
2
4
13, 158 C10, D1  
14, 159 D10, D2  
5
6
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
EPWM8B  
EPWM9A  
EPWM9B  
ePWM-8 Output B (High-res available on ePWM1-8)  
ePWM-9 Output A (High-res available on ePWM1-8)  
ePWM-9 Output B (High-res available on ePWM1-8)  
O
15, 160  
16, 161  
162, 17  
B9, D3  
C9, E1  
D9, E2  
7
8
9
O
O
10, 20,  
50, 96  
B2, C3,  
F2, R18  
EQEP1_A  
EQEP1_B  
eQEP-1 Input A  
eQEP-1 Input B  
eQEP-1 Index  
eQEP-1 Strobe  
eQEP-2 Input A  
eQEP-2 Input B  
eQEP-2 Index  
eQEP-2 Strobe  
eQEP-3 Input A  
eQEP-3 Input B  
eQEP-3 Index  
eQEP-3 Strobe  
I
I
1, 13, 94  
14, 2, 95  
11, 21,  
51, 97  
A2, C1,  
F3, R19  
13, 23,  
53, 99  
D1, G1, 17, 23, 5,  
K4, P17  
EQEP1_INDEX  
EQEP1_STROBE  
EQEP2_A  
I/O  
I/O  
I
97  
12, 22,  
52, 98  
C2, F1,  
J4, P16  
22, 4, 96  
100, 24, B15, H1, 145, 24,  
54, 78 K3, P18 98  
101, 25, C15, H2, 100, 146,  
55, 79 K2, P19 25  
EQEP2_B  
I
103, 26, A14, J1, 102, 149,  
57, 81 K1, N18 27  
EQEP2_INDEX  
EQEP2_STROBE  
EQEP3_A  
I/O  
I/O  
I
102, 27, D15, H3, 101, 148,  
56, 80 L1, N16 28  
104, 28, A6, J17, 108, 166,  
6, 62 J2, V11 64  
105, 29, B6, J16, 109, 167,  
63, 7 J3, W11 65  
EQEP3_B  
I
107, 31, G3, K16, 111, 19,  
65, 9 L3, U11 66  
EQEP3_INDEX  
EQEP3_STROBE  
I/O  
I/O  
106, 30, G2, L17, 110, 18,  
64, 8  
0, 100  
1, 101  
102, 2  
103, 3  
104, 4  
105, 5  
106, 6  
107, 7  
108  
L2, T11  
C8, H1  
D8, H2  
A7, H3  
B7, J1  
C7, J2  
D7, J3  
A6, L2  
B6, L3  
L4  
63  
ESC_GPI0  
ESC_GPI1  
ESC_GPI2  
ESC_GPI3  
ESC_GPI4  
ESC_GPI5  
ESC_GPI6  
ESC_GPI7  
ESC_GPI8  
ESC_GPI9  
ESC_GPI10  
ESC_GPI11  
ESC_GPI12  
ESC_GPI13  
ESC_GPI14  
ESC_GPI15  
ESC_GPI16  
ESC_GPI17  
ESC_GPI18  
ESC_GPI19  
ESC_GPI20  
EtherCAT General-Purpose Input 0  
EtherCAT General-Purpose Input 1  
EtherCAT General-Purpose Input 2  
EtherCAT General-Purpose Input 3  
EtherCAT General-Purpose Input 4  
EtherCAT General-Purpose Input 5  
EtherCAT General-Purpose Input 6  
EtherCAT General-Purpose Input 7  
EtherCAT General-Purpose Input 8  
EtherCAT General-Purpose Input 9  
EtherCAT General-Purpose Input 10  
EtherCAT General-Purpose Input 11  
EtherCAT General-Purpose Input 12  
EtherCAT General-Purpose Input 13  
EtherCAT General-Purpose Input 14  
EtherCAT General-Purpose Input 15  
EtherCAT General-Purpose Input 16  
EtherCAT General-Purpose Input 17  
EtherCAT General-Purpose Input 18  
EtherCAT General-Purpose Input 19  
EtherCAT General-Purpose Input 20  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
160  
161  
162  
163  
164  
165  
166  
167  
109  
N2  
110  
M2  
111  
M4  
112  
M3  
113  
N4  
114  
N3  
115  
V12  
116  
W10  
U12  
117  
118  
T12  
119  
T15  
120  
U15  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
ESC_GPI21  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
EtherCAT General-Purpose Input 21  
EtherCAT General-Purpose Input 22  
EtherCAT General-Purpose Input 23  
EtherCAT General-Purpose Input 24  
EtherCAT General-Purpose Input 25  
EtherCAT General-Purpose Input 26  
EtherCAT General-Purpose Input 27  
EtherCAT General-Purpose Input 28  
EtherCAT General-Purpose Input 29  
EtherCAT General-Purpose Input 30  
EtherCAT General-Purpose Input 31  
EtherCAT General-Purpose Output 0  
EtherCAT General-Purpose Output 1  
EtherCAT General-Purpose Output 2  
EtherCAT General-Purpose Output 3  
EtherCAT General-Purpose Output 4  
EtherCAT General-Purpose Output 5  
EtherCAT General-Purpose Output 6  
EtherCAT General-Purpose Output 7  
EtherCAT General-Purpose Output 8  
EtherCAT General-Purpose Output 9  
EtherCAT General-Purpose Output 10  
EtherCAT General-Purpose Output 11  
EtherCAT General-Purpose Output 12  
EtherCAT General-Purpose Output 13  
EtherCAT General-Purpose Output 14  
EtherCAT General-Purpose Output 15  
EtherCAT General-Purpose Output 16  
EtherCAT General-Purpose Output 17  
EtherCAT General-Purpose Output 18  
EtherCAT General-Purpose Output 19  
EtherCAT General-Purpose Output 20  
EtherCAT General-Purpose Output 21  
EtherCAT General-Purpose Output 22  
EtherCAT General-Purpose Output 23  
EtherCAT General-Purpose Output 24  
EtherCAT General-Purpose Output 25  
EtherCAT General-Purpose Output 26  
EtherCAT General-Purpose Output 27  
EtherCAT General-Purpose Output 28  
EtherCAT General-Purpose Output 29  
EtherCAT General-Purpose Output 30  
EtherCAT General-Purpose Output 31  
I
121  
122  
W16  
T8  
ESC_GPI22  
ESC_GPI23  
ESC_GPI24  
ESC_GPI25  
ESC_GPI26  
ESC_GPI27  
ESC_GPI28  
ESC_GPI29  
ESC_GPI30  
ESC_GPI31  
ESC_GPO0  
ESC_GPO1  
ESC_GPO2  
ESC_GPO3  
ESC_GPO4  
ESC_GPO5  
ESC_GPO6  
ESC_GPO7  
ESC_GPO8  
ESC_GPO9  
ESC_GPO10  
ESC_GPO11  
ESC_GPO12  
ESC_GPO13  
ESC_GPO14  
ESC_GPO15  
ESC_GPO16  
ESC_GPO17  
ESC_GPO18  
ESC_GPO19  
ESC_GPO20  
ESC_GPO21  
ESC_GPO22  
ESC_GPO23  
ESC_GPO24  
ESC_GPO25  
ESC_GPO26  
ESC_GPO27  
ESC_GPO28  
ESC_GPO29  
ESC_GPO30  
ESC_GPO31  
I
I
123  
U8  
I
124  
V8  
I
125  
T9  
I
126  
U9  
I
127  
V9  
I
128  
W9  
T10  
U10  
V10  
I
129  
I
130  
I
131  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
132, 8  
134, 9  
10, 135  
11, 136  
12, 137  
13, 138  
G2, W18  
G3, V18  
B2, U18  
C1, T17  
C2, T18  
D1, T19  
18  
19  
1
2
4
5
139, 14 D2, N19  
140, 15 D3, M19  
6
7
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
M18  
L19  
F18  
F17  
E17  
D18  
D17  
D14  
A13  
B13  
C13  
D13  
A12  
B12  
C12  
D12  
B10  
C10  
D10  
B9  
C9  
D9  
A8  
B8  
151, 30, C13, T11,  
41 U17  
ESC_I2C_SCL  
EtherCAT I2C Clock  
I/OC  
63, 89  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
150, 29, B13, V17,  
40 W11  
ESC_I2C_SDA  
ESC_LATCH0  
ESC_LATCH1  
EtherCAT I2C Data  
I/OC  
65, 87  
65, 70  
63, 71  
125, 29, T9, U14,  
34 W11  
EtherCAT LatchSignal Input 0  
EtherCAT LatchSignal Input 1  
I
I
126, 30, T11, T14,  
35 U9  
ESC_LED_ERR  
EtherCAT Error LED  
EtherCAT Link-0 Active  
EtherCAT Link-1 Active  
EtherCAT Run LED  
EtherCAT State Run  
O
O
O
O
O
145, 60 E17, M17  
143, 58 F18, N17  
144, 59 F17, M16  
146, 61 D18, L16  
147, 62 D17, J17  
105  
103  
104  
107  
108  
ESC_LED_LINK0_ACTIVE  
ESC_LED_LINK1_ACTIVE  
ESC_LED_RUN  
ESC_LED_STATE_RUN  
152, 26,  
46  
D13,  
E19, K1  
ESC_MDIO_CLK  
ESC_MDIO_DATA  
EtherCAT MDIO Clock  
EtherCAT MDIO Data  
O
128, 27  
129, 28  
153, 27, A12, E18,  
47 L1  
I/O  
ESC_PHY0_LINKSTATUS  
ESC_PHY1_LINKSTATUS  
ESC_PHY_CLK  
EtherCAT PHY-0 Link Status  
EtherCAT PHY-1 Link Status  
EtherCAT PHY Clock  
I
I
148, 86 C11, D14  
149, 68 A13, C18  
154, 48 B12, R16  
155, 76 C12, C16  
156  
133  
90  
O
O
I
ESC_PHY_RESETn  
ESC_RX0_CLK  
EtherCAT PHY Active Low Reset  
EtherCAT MII Receive-0 Clock  
EtherCAT MII Receive-0 Data Valid  
EtherCAT MII Receive-0 Error  
EtherCAT MII Receive-1 Clock  
EtherCAT MII Receive-1 Data Valid  
EtherCAT MII Receive-1 Error  
EtherCAT MII Receive-0 Data-0  
EtherCAT MII Receive-0 Data-1  
EtherCAT MII Receive-0 Data-2  
EtherCAT MII Receive-0 Data-3  
EtherCAT MII Receive-1 Data-0  
EtherCAT MII Receive-1 Data-1  
EtherCAT MII Receive-1 Data-2  
EtherCAT MII Receive-1 Data-3  
143  
144  
145  
146  
134  
135  
136  
148  
149  
150  
151  
109  
110  
111  
112  
163, 77  
162, 78  
164, 79  
A15, A8  
B15, D9  
B8, C15  
ESC_RX0_DV  
I
ESC_RX0_ERR  
I
ESC_RX1_CLK  
I
137, 69 B18, T18  
136, 70 A17, T17  
138, 71 B17, T19  
165, 80 C5, D15  
ESC_RX1_DV  
I
ESC_RX1_ERR  
I
ESC_RX0_DATA0  
ESC_RX0_DATA1  
ESC_RX0_DATA2  
ESC_RX0_DATA3  
ESC_RX1_DATA0  
ESC_RX1_DATA1  
ESC_RX1_DATA2  
ESC_RX1_DATA3  
I
I
166, 81  
167, 82  
A14, D5  
B14, C4  
I
I
168, 83 C14, D4  
139, 63 J16, N19  
140, 64 L17, M19  
141, 65 K16, M18  
142, 66 K17, L19  
127, 29, U14, V9,  
I
I
I
I
ESC_SYNC0  
ESC_SYNC1  
EtherCAT SyncSignal Output 0  
EtherCAT SyncSignal Output 1  
O
O
65, 70  
63, 71  
34  
128, 30, T11, T14,  
35 W9  
W11  
ESC_TX0_CLK  
ESC_TX0_ENA  
ESC_TX1_CLK  
ESC_TX1_ENA  
ESC_TX0_DATA0  
ESC_TX0_DATA1  
ESC_TX0_DATA2  
ESC_TX0_DATA3  
ESC_TX1_DATA0  
EtherCAT MII Transmit-0 Clock  
EtherCAT MII Transmit-0 Enable  
EtherCAT MII Transmit-1 Clock  
EtherCAT MII Transmit-1 Enable  
EtherCAT MII Transmit-0 Data-0  
EtherCAT MII Transmit-0 Data-1  
EtherCAT MII Transmit-0 Data-2  
EtherCAT MII Transmit-0 Data-3  
EtherCAT MII Transmit-1 Data-0  
I
I/O  
I
157, 85 B10, B11  
156, 84 A11, D12  
130, 44 K18, U10  
129, 45 K19, T10  
158, 87 C10, D11  
159, 88 C6, D10  
155  
154  
113  
115  
157  
170  
171  
172  
142  
I/O  
O
O
O
O
O
160, 89  
161, 90  
B9, D6  
A5, C9  
131, 75 D16, V10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
ESC_TX1_DATA1  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
C17,  
141  
EtherCAT MII Transmit-1 Data-1  
O
132, 74  
W18  
ESC_TX1_DATA2  
ESC_TX1_DATA3  
EXTSYNCOUT  
EtherCAT MII Transmit-1 Data-2  
EtherCAT MII Transmit-1 Data-3  
External ePWM Synchronization Pulse  
O
O
O
134, 73 A16, V18  
135, 72 B16, U18  
140  
139  
166  
6
A6  
D1, D7,  
G3, J3,  
P18  
105, 13,  
5, 54, 9  
165, 19,  
5, 98  
FSIRXA_CLK  
FSIRXA_D0  
FSIRXA_D1  
FSIRX-A Input Clock  
FSIRX-A Data Input 0  
FSIRX-A Data Input 1  
I
I
I
B7, C2,  
G2, J1,  
P16  
103, 12,  
3, 52, 8  
163, 18,  
4, 96  
B2, C1,  
C7, J2,  
P17  
10, 104,  
11, 4, 53  
1, 164, 2,  
97  
11, 112, C1, M17,  
FSIRXB_CLK  
FSIRXB_D0  
FSIRXB_D1  
FSIRX-B Input Clock  
FSIRX-B Data Input 0  
FSIRX-B Data Input 1  
I
I
I
105, 2  
103, 19  
1, 104  
60  
M3  
G3, M2,  
N17  
110, 58, 9  
10, 111, B2, M16,  
59  
M4  
FSIRXC_CLK  
FSIRXC_D0  
FSIRXC_D1  
FSIRXD_CLK  
FSIRXD_D0  
FSIRXD_D1  
FSIRXE_CLK  
FSIRXE_D0  
FSIRXE_D1  
FSIRXF_CLK  
FSIRXF_D0  
FSIRXF_D1  
FSIRXG_CLK  
FSIRXG_D0  
FSIRXG_D1  
FSIRXH_CLK  
FSIRXH_D0  
FSIRXH_D1  
FSIRX-C Input Clock  
FSIRX-C Data Input 0  
FSIRX-C Data Input 1  
FSIRX-D Input Clock  
FSIRX-D Data Input 0  
FSIRX-D Data Input 1  
FSIRX-E Input Clock  
FSIRX-E Data Input 0  
FSIRX-E Data Input 1  
FSIRX-F Input Clock  
FSIRX-F Data Input 0  
FSIRX-F Data Input 1  
FSIRX-G Input Clock  
FSIRX-G Data Input 0  
FSIRX-G Data Input 1  
FSIRX-H Input Clock  
FSIRX-H Data Input 0  
FSIRX-H Data Input 1  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
117, 14  
115, 12  
D2, U12  
C2, V12  
6
4
5
116, 13 D1, W10  
120, 17  
118, 15  
119, 16  
126, 20  
E2, U15  
D3, T12  
E1, T15  
F2, U9  
9
7
8
13  
121, 18 E3, W16  
10  
125, 19  
23, 93  
21, 91  
22, 92  
26, 96  
24, 94  
25, 95  
29, 99  
27, 97  
28, 98  
E4, T9  
B4, K4  
B5, F3  
A4, J4  
12  
175, 23  
14, 173  
174, 22  
27  
C3, K1  
A3, K3  
B3, K2  
G1, W11  
A2, L1  
F1, V11  
176, 24  
25  
17, 65  
28  
64  
A7, B2,  
H3, L1,  
R19  
10, 102,  
2, 27, 51  
1, 162,  
28, 95  
FSITXA_CLK  
FSITXA_D0  
FSITX-A Output Clock  
FSITX-A Data Output 0  
O
O
C8, G3,  
H1, K1,  
R17  
0, 100,  
26, 49, 9  
160, 19,  
27, 93  
D8, G2,  
H2, K2,  
R18  
1, 101,  
25, 50, 8  
161, 18,  
25, 94  
FSITXA_D1  
FSITX-A Data Output 1  
FSITX-B Output Clock  
O
O
108, 56,  
8
G2, L4,  
N16  
FSITXB_CLK  
101, 18  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
106, 55,  
6
A6, L2,  
100, 166  
P19  
FSITXB_D0  
FSITXB_D1  
FSITX-B Data Output 0  
O
107, 57,  
7
B6, L3,  
102, 167  
N18  
FSITX-B Data Output 1  
O
GPIO0  
General-Purpose Input Output 0  
General-Purpose Input Output 1  
General-Purpose Input Output 2  
General-Purpose Input Output 3  
General-Purpose Input Output 4  
General-Purpose Input Output 5  
General-Purpose Input Output 6  
General-Purpose Input Output 7  
General-Purpose Input Output 8  
General-Purpose Input Output 9  
General-Purpose Input Output 10  
General-Purpose Input Output 11  
General-Purpose Input Output 12  
General-Purpose Input Output 13  
General-Purpose Input Output 14  
General-Purpose Input Output 15  
General-Purpose Input Output 16  
General-Purpose Input Output 17  
General-Purpose Input Output 18  
General-Purpose Input Output 19  
General-Purpose Input Output 100  
General-Purpose Input Output 101  
General-Purpose Input Output 102  
General-Purpose Input Output 103  
General-Purpose Input Output 104  
General-Purpose Input Output 105  
General-Purpose Input Output 106  
General-Purpose Input Output 107  
General-Purpose Input Output 108  
General-Purpose Input Output 109  
General-Purpose Input Output 110  
General-Purpose Input Output 111  
General-Purpose Input Output 112  
General-Purpose Input Output 113  
General-Purpose Input Output 114  
General-Purpose Input Output 115  
General-Purpose Input Output 116  
General-Purpose Input Output 117  
General-Purpose Input Output 118  
General-Purpose Input Output 119  
General-Purpose Input Output 120  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
0
C8  
D8  
A7  
B7  
C7  
D7  
A6  
B6  
G2  
G3  
B2  
C1  
C2  
D1  
D2  
D3  
E1  
E2  
E3  
E4  
H1  
H2  
H3  
J1  
160  
161  
162  
163  
164  
165  
166  
167  
18  
19  
1
GPIO1  
1
GPIO2  
2
GPIO3  
3
GPIO4  
4
GPIO5  
5
GPIO6  
6
GPIO7  
7
GPIO8  
8
GPIO9  
9
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
GPIO18  
GPIO19  
GPIO100  
GPIO101  
GPIO102  
GPIO103  
GPIO104  
GPIO105  
GPIO106  
GPIO107  
GPIO108  
GPIO109  
GPIO110  
GPIO111  
GPIO112  
GPIO113  
GPIO114  
GPIO115  
GPIO116  
GPIO117  
GPIO118  
GPIO119  
GPIO120  
10  
11  
2
12  
4
13  
5
14  
6
15  
7
16  
8
17  
9
18  
10  
12  
19  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
J2  
J3  
L2  
L3  
L4  
N2  
M2  
M4  
M3  
N4  
N3  
V12  
W10  
U12  
T12  
T15  
U15  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
GPIO121  
GPIO122  
GPIO123  
GPIO124  
GPIO125  
GPIO126  
GPIO127  
GPIO128  
GPIO129  
GPIO130  
GPIO131  
GPIO132  
GPIO133  
GPIO134  
GPIO135  
GPIO136  
GPIO137  
GPIO138  
GPIO139  
GPIO140  
GPIO141  
GPIO142  
GPIO143  
GPIO144  
GPIO145  
GPIO146  
GPIO147  
GPIO148  
GPIO149  
GPIO150  
GPIO151  
GPIO152  
GPIO153  
GPIO154  
GPIO155  
GPIO156  
GPIO157  
GPIO158  
GPIO159  
GPIO160  
GPIO161  
GPIO162  
GPIO163  
GPIO164  
GPIO165  
General-Purpose Input Output 121  
General-Purpose Input Output 122  
General-Purpose Input Output 123  
General-Purpose Input Output 124  
General-Purpose Input Output 125  
General-Purpose Input Output 126  
General-Purpose Input Output 127  
General-Purpose Input Output 128  
General-Purpose Input Output 129  
General-Purpose Input Output 130  
General-Purpose Input Output 131  
General-Purpose Input Output 132  
General-Purpose Input Output 133  
General-Purpose Input Output 134  
General-Purpose Input Output 135  
General-Purpose Input Output 136  
General-Purpose Input Output 137  
General-Purpose Input Output 138  
General-Purpose Input Output 139  
General-Purpose Input Output 140  
General-Purpose Input Output 141  
General-Purpose Input Output 142  
General-Purpose Input Output 143  
General-Purpose Input Output 144  
General-Purpose Input Output 145  
General-Purpose Input Output 146  
General-Purpose Input Output 147  
General-Purpose Input Output 148  
General-Purpose Input Output 149  
General-Purpose Input Output 150  
General-Purpose Input Output 151  
General-Purpose Input Output 152  
General-Purpose Input Output 153  
General-Purpose Input Output 154  
General-Purpose Input Output 155  
General-Purpose Input Output 156  
General-Purpose Input Output 157  
General-Purpose Input Output 158  
General-Purpose Input Output 159  
General-Purpose Input Output 160  
General-Purpose Input Output 161  
General-Purpose Input Output 162  
General-Purpose Input Output 163  
General-Purpose Input Output 164  
General-Purpose Input Output 165  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
W16  
T8  
U8  
V8  
T9  
U9  
V9  
W9  
T10  
U10  
V10  
W18  
G18  
V18  
U18  
T17  
T18  
T19  
N19  
M19  
M18  
L19  
F18  
F17  
E17  
D18  
D17  
D14  
A13  
B13  
C13  
D13  
A12  
B12  
C12  
D12  
B10  
C10  
D10  
B9  
118  
C9  
D9  
A8  
B8  
C5  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-3. Digital Signals (continued)  
PIN  
SIGNAL NAME  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
TYPE  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO166  
GPIO167  
GPIO168  
GPIO20  
GPIO21  
GPIO22  
GPIO23  
GPIO24  
GPIO25  
GPIO26  
GPIO27  
GPIO28  
GPIO29  
GPIO30  
GPIO31  
GPIO32  
GPIO33  
GPIO34  
GPIO35  
GPIO36  
GPIO37  
GPIO38  
GPIO39  
GPIO40  
GPIO41  
GPIO42  
GPIO43  
GPIO44  
GPIO45  
GPIO46  
GPIO47  
GPIO48  
GPIO49  
GPIO50  
GPIO51  
GPIO52  
GPIO53  
GPIO54  
GPIO55  
GPIO56  
GPIO57  
GPIO58  
GPIO59  
GPIO60  
GPIO61  
General-Purpose Input Output 166  
General-Purpose Input Output 167  
General-Purpose Input Output 168  
General-Purpose Input Output 20  
General-Purpose Input Output 21  
General-Purpose Input Output 22  
General-Purpose Input Output 23  
General-Purpose Input Output 24  
General-Purpose Input Output 25  
General-Purpose Input Output 26  
General-Purpose Input Output 27  
General-Purpose Input Output 28  
General-Purpose Input Output 29  
General-Purpose Input Output 30  
General-Purpose Input Output 31  
General-Purpose Input Output 32  
General-Purpose Input Output 33  
General-Purpose Input Output 34  
General-Purpose Input Output 35  
General-Purpose Input Output 36  
General-Purpose Input Output 37  
General-Purpose Input Output 38  
General-Purpose Input Output 39  
General-Purpose Input Output 40  
General-Purpose Input Output 41  
General-Purpose Input Output 42  
General-Purpose Input Output 43  
General-Purpose Input Output 44  
General-Purpose Input Output 45  
General-Purpose Input Output 46  
General-Purpose Input Output 47  
General-Purpose Input Output 48  
General-Purpose Input Output 49  
General-Purpose Input Output 50  
General-Purpose Input Output 51  
General-Purpose Input Output 52  
General-Purpose Input Output 53  
General-Purpose Input Output 54  
General-Purpose Input Output 55  
General-Purpose Input Output 56  
General-Purpose Input Output 57  
General-Purpose Input Output 58  
General-Purpose Input Output 59  
General-Purpose Input Output 60  
General-Purpose Input Output 61  
166  
167  
168  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
D5  
C4  
D4  
F2  
F3  
13  
14  
J4  
22  
K4  
23  
K3  
24  
K2  
25  
K1  
27  
L1  
28  
V11  
W11  
T11  
U11  
U13  
T13  
U14  
T14  
V16  
U16  
T16  
W17  
V17  
U17  
D19  
C19  
K18  
K19  
E19  
E18  
R16  
R17  
R18  
R19  
P16  
P17  
P18  
P19  
N16  
N18  
N17  
M16  
M17  
L16  
64  
65  
63  
66  
67  
69  
70  
71  
83  
84  
85  
86  
87  
89  
130  
131  
113  
115  
128  
129  
90  
93  
94  
95  
96  
97  
98  
100  
101  
102  
103  
104  
105  
107  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
GPIO62  
GPIO63  
GPIO64  
GPIO65  
GPIO66  
GPIO67  
GPIO68  
GPIO69  
GPIO70  
GPIO71  
GPIO72  
GPIO73  
GPIO74  
GPIO75  
GPIO76  
GPIO77  
GPIO78  
GPIO79  
GPIO80  
GPIO81  
GPIO82  
GPIO83  
GPIO84  
GPIO85  
GPIO86  
GPIO87  
GPIO88  
GPIO89  
GPIO90  
GPIO91  
GPIO92  
GPIO93  
GPIO94  
GPIO95  
GPIO96  
GPIO97  
GPIO98  
GPIO99  
General-Purpose Input Output 62  
General-Purpose Input Output 63  
General-Purpose Input Output 64  
General-Purpose Input Output 65  
General-Purpose Input Output 66  
General-Purpose Input Output 67  
General-Purpose Input Output 68  
General-Purpose Input Output 69  
General-Purpose Input Output 70  
General-Purpose Input Output 71  
General-Purpose Input Output 72  
General-Purpose Input Output 73  
General-Purpose Input Output 74  
General-Purpose Input Output 75  
General-Purpose Input Output 76  
General-Purpose Input Output 77  
General-Purpose Input Output 78  
General-Purpose Input Output 79  
General-Purpose Input Output 80  
General-Purpose Input Output 81  
General-Purpose Input Output 82  
General-Purpose Input Output 83  
General-Purpose Input Output 84  
General-Purpose Input Output 85  
General-Purpose Input Output 86  
General-Purpose Input Output 87  
General-Purpose Input Output 88  
General-Purpose Input Output 89  
General-Purpose Input Output 90  
General-Purpose Input Output 91  
General-Purpose Input Output 92  
General-Purpose Input Output 93  
General-Purpose Input Output 94  
General-Purpose Input Output 95  
General-Purpose Input Output 96  
General-Purpose Input Output 97  
General-Purpose Input Output 98  
General-Purpose Input Output 99  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
J17  
J16  
L17  
K16  
K17  
B19  
C18  
B18  
A17  
B17  
B16  
A16  
C17  
D16  
C16  
A15  
B15  
C15  
D15  
A14  
B14  
C14  
A11  
B11  
C11  
D11  
C6  
108  
109  
110  
111  
112  
132  
133  
134  
135  
136  
139  
140  
141  
142  
143  
144  
145  
146  
148  
149  
150  
151  
154  
155  
156  
157  
170  
171  
172  
173  
174  
175  
176  
D6  
A5  
B5  
A4  
B4  
A3  
B3  
C3  
A2  
F1  
G1  
17  
1, 105,  
32, 33,  
43, 57, N18, T13,  
A4, C19,  
D8, J3,  
102, 131,  
161, 174,  
67, 69  
I2CA_SCL  
I2CA_SDA  
I2C-A Open-Drain Bidirectional Clock  
I2C-A Open-Drain Bidirectional Data  
I/OD  
I/OD  
92  
U13  
0, 104,  
31, 32,  
42, 56, N16, U11,  
91 U13  
B5, C8,  
D19, J2,  
101, 130,  
160, 173,  
66, 67  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
I2C-B Open-Drain Bidirectional Clock  
I2C-B Open-Drain Bidirectional Data  
GPIO  
337 BGA 176 Pin  
3, 35, 41, B18, B7, 134, 163,  
69 T14, U17 71, 89  
I2CB_SCL  
I2CB_SDA  
I/OD  
2, 34, 40, A7, K17, 112, 162,  
I/OD  
I
66  
U14, V17  
70, 87  
10, 18,  
A17, B2,  
1, 10,  
23, 30, D16, D7, 135, 142,  
36, 5, 70, E3, K4,  
MCAN_RX  
MCAN_TX  
CAN/CAN-FD Receive  
CAN/CAN-FD Transmit  
165, 23,  
63, 83  
75  
T11, V16  
B17,  
12, 136,  
141, 164,  
18, 22,  
19, 22, C17, C7,  
31, 37, 4, E4, G2,  
71, 74, 8 J4, U11,  
U16  
O
66, 84  
MCLKRA  
MCLKRB  
McBSP-A Receive Clock  
McBSP-B Receive Clock  
I
I
58, 7  
3, 60  
B6, N17 103, 167  
B7, M17 105, 163  
167, 22, C11, C4,  
MCLKXA  
MCLKXB  
MDRA  
McBSP-A Transmit Clock  
O
O
I
156, 22  
86  
J4  
14, 26,  
86  
C11, D2, 156, 27,  
McBSP-B Transmit Clock  
K1  
6
166, 21, B11, D5,  
McBSP-A Receive Serial Data  
McBSP-B Receive Serial Data  
McBSP-A Transmit Serial Data  
McBSP-B Transmit Serial Data  
14, 155  
85  
F3  
13, 25,  
85  
B11, D1, 155, 25,  
MDRB  
I
K2  
5
165, 20, A11, C5,  
MDXA  
O
O
13, 154  
84  
F2  
12, 24,  
84  
A11, C2, 154, 24,  
K3  
MDXB  
4
MFSRA  
MFSRB  
McBSP-A Receive Frame Sync  
McBSP-B Receive Frame Sync  
I
I
5, 59  
1, 61  
D7, M16 104, 165  
D8, L16 107, 161  
168, 23, D11, D4,  
MFSXA  
MFSXB  
McBSP-A Transmit Frame Sync  
McBSP-B Transmit Frame Sync  
Output X-BAR Output 1  
O
O
O
O
157, 23  
87  
K4  
D11, D3, 157, 28,  
L1  
15, 27,  
87  
7
2, 24, 34, A7, K3, 103, 162,  
58 N17, U14 24, 70  
OUTPUTXBAR1  
OUTPUTXBAR2  
25, 3, 37, B7, K2, 104, 163,  
Output X-BAR Output 2  
59  
M16, U16 25, 84  
C7, D2, 105, 164,  
14, 26, 4,  
48, 5, 60  
OUTPUTXBAR3  
OUTPUTXBAR4  
Output X-BAR Output 3  
Output X-BAR Output 4  
O
O
D7, K1,  
165, 27,  
6, 90  
M17, R16  
A6, D3,  
L1, L16,  
R17  
15, 27,  
49, 6, 61  
107, 166,  
28, 7, 93  
B6, V11,  
V12  
OUTPUTXBAR5  
OUTPUTXBAR6  
OUTPUTXBAR7  
Output X-BAR Output 5  
Output X-BAR Output 6  
Output X-BAR Output 7  
O
O
O
115, 28, 7  
116, 29, 9  
11, 16, 30  
167, 64  
19, 65  
G3, W10,  
W11  
C1, E1,  
T11  
2, 63, 8  
OUTPUTXBAR8  
PMBUSA_ALERT  
PMBUSA_CTL  
PMBUSA_SCL  
Output X-BAR Output 8  
O
I/OD  
I
17, 31  
26, 93  
27, 94  
24, 91  
E2, U11  
B4, K1  
A3, L1  
B5, K3  
66, 9  
PMBus-A Open-Drain Bidirectional Alert Signal  
PMBus-A Control Signal  
175, 27  
176, 28  
173, 24  
PMBus-A Open-Drain Bidirectional Clock  
I/OD  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
PMBUSA_SDA  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
PMBus-A Open-Drain Bidirectional Data  
I/OD  
I
25, 92  
A4, K2  
174, 25  
136, 28, B11, C19, 110, 131,  
35, 43, G3, L17, 155, 19,  
49, 64, R17, T14, 64, 71,  
SCIA_RX  
SCI-A Receive Data  
SCI-A Transmit Data  
85, 9  
T17, V11  
93  
A11, D19,  
135, 29, G2, K16, 111, 130,  
34, 36,  
42, 48,  
R16,  
U14,  
U18,  
154, 18,  
65, 70,  
83, 90  
SCIA_TX  
O
65, 8, 84  
V16, W11  
11, 138, B17, C1,  
100, 12,  
136, 157,  
2, 23, 7  
15, 19,  
23, 55,  
71, 87  
D11, D3,  
E4, K4,  
P19, T19  
SCIB_RX  
SCIB_TX  
SCI-B Receive Data  
SCI-B Transmit Data  
I
A17, B2,  
C11, D2,  
E3, G3,  
J4, P18,  
T18  
10, 137,  
14, 18,  
22, 54,  
1, 10,  
135, 156,  
19, 22, 6,  
98  
O
70, 86, 9  
A16, A5,  
D1, J17, 102, 108,  
L3, N18, 140, 172,  
N19,  
W17  
107, 13,  
139, 39,  
57, 62,  
73, 90  
SCIC_RX  
SCIC_TX  
SCI-C Receive Data  
SCI-C Transmit Data  
I
5, 86  
106, 12, B16, C2,  
140, 38, D6, J16,  
101, 109,  
139, 171,  
4, 85  
O
56, 63,  
72, 89  
L2, M19,  
N16, T16  
105, 141, A15, A3,  
128, 144,  
176  
SCID_RX  
SCID_TX  
SD1_C1  
SD1_C2  
SD1_C3  
SD1_C4  
SD1_D1  
SD1_D2  
SD1_D3  
SCI-D Receive Data  
I
O
I
46, 77,  
94  
E19, J3,  
M18  
104, 142, B4, C16,  
129, 143,  
175  
SCI-D Transmit Data  
47, 76,  
93  
E18, J2,  
L19  
123, 17, E2, L17,  
110, 9,  
93, 97  
SDFM-1 Channel 1 Clock Input  
SDFM-1 Channel 2 Clock Input  
SDFM-1 Channel 3 Clock Input  
SDFM-1 Channel 4 Clock Input  
SDFM-1 Channel 1 Data Input  
SDFM-1 Channel 2 Data Input  
SDFM-1 Channel 3 Data Input  
49, 53,  
64  
P17,  
R17, U8  
125, 19, E4, K17,  
112, 12,  
95, 98  
I
51, 54,  
66  
P18,  
R19, T9  
127, 21, C18, F3,  
53, 55, P17, P19,  
100, 133,  
14, 97  
I
68  
V9  
129, 23, A17, K4,  
100, 101,  
135, 23  
I
55, 56,  
70  
N16,  
P19, T10  
122, 16, E1, J16,  
109, 8,  
83, 90  
I
36, 48,  
63  
R16, T8,  
V16  
124, 18, E3, K16,  
10, 111,  
84, 94  
I
37, 50,  
65  
R18,  
U16, V8  
126, 20, B19, F2,  
38, 52, P16, T16,  
13, 132,  
85, 96  
I
67  
U9  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
128, 22, B18, J4,  
134, 22,  
86, 98  
SD1_D4  
SD2_C1  
SD2_C2  
SDFM-1 Channel 4 Data Input  
I
39, 54,  
69  
P18,  
W17, W9  
131, 25, D15, K2, 102, 148,  
SDFM-2 Channel 1 Clock Input  
SDFM-2 Channel 2 Clock Input  
I
I
57, 80  
N18, V10  
25  
133, 27,  
58, 59,  
74  
C17,  
103, 104,  
G18, L1, 118, 141,  
M16, N17  
28  
135, 29, C16, L16,  
104, 107,  
143, 65  
SD2_C3  
SD2_C4  
SD2_D1  
SDFM-2 Channel 3 Clock Input  
SDFM-2 Channel 4 Clock Input  
SDFM-2 Channel 1 Data Input  
I
I
I
59, 61,  
76  
M16,  
U18, W11  
137, 31, B15, J16,  
105, 109,  
145, 66  
60, 63,  
78  
M17,  
T18, U11  
130, 24, C15, K3,  
101, 146,  
24, 93  
49, 56,  
79  
N16,  
R17, U10  
A16, K1,  
N17,  
R18,  
132, 26,  
50, 58,  
73  
103, 140,  
27, 94  
SD2_D2  
SD2_D3  
SDFM-2 Channel 2 Data Input  
I
W18  
D16,  
M17,  
R19, V11, 64, 95  
V18  
134, 28,  
51, 60,  
75  
105, 142,  
SDFM-2 Channel 3 Data Input  
SDFM-2 Channel 4 Data Input  
I
I
136, 30, A15, J17,  
52, 62, P16, T11,  
108, 144,  
63, 96  
SD2_D4  
77  
T17  
18, 34, E3, M17, 10, 101,  
56, 60 N16, U14 105, 70  
SPIA_CLK  
SPI-A Clock  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
16, 32,  
54, 58  
E1, N17, 103, 67,  
P18, U13 8, 98  
SPIA_SIMO  
SPIA_SOMI  
SPIA_STEn  
SPIB_CLK  
SPI-A Slave In, Master Out (SIMO)  
SPI-A Slave Out, Master In (SOMI)  
SPI-A Slave Transmit Enable (STE)  
SPI-B Clock  
17, 33, E2, M16, 100, 104,  
55, 59  
P19, T13  
E4, L16, 102, 107,  
N18, T14 12, 71  
J4, K1, 103, 111,  
K16, N17 22, 27  
J16, K3, 105, 109,  
M17 24  
K2, L16, 107, 110,  
L17 25  
K17, K4, 104, 112,  
69, 9  
19, 35,  
57, 61  
22, 26,  
58, 65  
24, 60,  
63  
SPIB_SIMO  
SPIB_SOMI  
SPIB_STEn  
SPI-B Slave In, Master Out (SIMO)  
SPI-B Slave Out, Master In (SOMI)  
SPI-B Slave Transmit Enable (STE)  
25, 61,  
64  
23, 27,  
59, 66  
L1, M16  
23, 28  
102, 124, B17, H3,  
136, 22,  
96  
SPIC_CLK  
SPIC_SIMO  
SPIC_SOMI  
SPIC_STEn  
SPI-C Clock  
I/O  
I/O  
I/O  
I/O  
22, 52,  
71  
J4, P16,  
V8  
100, 122, B18, F2,  
20, 50, H1, R18,  
13, 134,  
94  
SPI-C Slave In, Master Out (SIMO)  
SPI-C Slave Out, Master In (SOMI)  
SPI-C Slave Transmit Enable (STE)  
69  
T8  
101, 123, A17, F3,  
21, 51, H2, R19,  
135, 14,  
95  
70  
U8  
103, 125, B16, J1,  
139, 23,  
97  
23, 53,  
72  
K4, P17,  
T9  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-3. Digital Signals (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
SPID_CLK  
SPI-D Clock  
I/O  
I/O  
I/O  
I/O  
32, 93  
30, 91  
31, 92  
33, 94  
B4, U13  
B5, T11  
A4, U11  
A3, T13  
B4, E3,  
175, 67  
173, 63  
174, 66  
176, 69  
10, 101,  
SPID_SIMO  
SPID_SOMI  
SPID_STEn  
SPI-D Slave In, Master Out (SIMO)  
SPI-D Slave Out, Master In (SOMI)  
SPI-D Slave Transmit Enable (STE)  
18, 56,  
65, 93  
SSIA_CLK  
SSIA_FSS  
SSIA_RX  
SSIA_TX  
SSI-A Clock  
I/O  
I/O  
I/O  
I/O  
K16, N16 111, 175  
19, 57,  
66, 94  
A3, E4, 102, 112,  
K17, N18 12, 176  
SSI-A Frame Sync  
17, 55,  
64, 92  
A4, E2, 100, 110,  
L17, P19  
SSI-A Serial Data Receive  
SSI-A Serial Data Transmit  
174, 9  
16, 54,  
63, 91  
B5, E1, 109, 173,  
J16, P18  
K3  
8, 98  
24  
TRACE_CLK  
TRACE_DATA0  
TRACE_DATA1  
TRACE_DATA2  
TRACE_DATA3  
TRACE_SWO  
UARTA_RX  
Trace Clock  
O
O
24  
20  
Trace Data 0  
F2  
13  
Trace Data 1  
O
21  
F3  
14  
Trace Data 2  
O
22  
J4  
22  
Trace Data 3  
O
23  
K4  
23  
Trace Single Wire Out  
UART-A Serial Data Receive  
UART-A Serial Data Transmit  
USB-0 PHY differential data  
USB-0 PHY differential data  
O
25  
K2  
25  
I/O  
I/O  
O
43, 85  
42, 84  
42  
B11, C19 131, 155  
A11, D19 130, 154  
UARTA_TX  
USB0DM  
D19  
C19  
130  
131  
USB0DP  
O
43  
External Clock Output. This pin outputs a divided-down  
version of a chosen clock signal from within the device.  
XCLKOUT  
O
73  
A16  
140  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
6.3.3 Power and Ground  
Table 6-4. Power and Ground  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
1.2-V Digital Logic Power Pins. TI recommends  
placing a decoupling capacitor near each VDD pin with  
a minimum total capacitance of approximately 20 µF.  
The exact value of the decoupling capacitance should  
be determined by your system voltage regulation  
solution. A single 56Ω resistor (10% tolerance) should  
be placed between between VDD and VSS. This  
resistor provides a load to consume an internal  
VDD3VFL to VDD current source and avoid VDD  
voltage rising during low power device conditions.  
E11, E9,  
F11, F9,  
117, 126,  
G14,  
137, 153,  
G15, J14,  
158, 16,  
J15, K5,  
169, 21,  
K6, P10,  
61, 76  
VDD  
P13,  
R10, R13  
3.3-V Flash power pin. Place a minimum 0.1-µF  
decoupling capacitor on each pin  
VDD3VFL  
VDDA  
R11, R12  
P6, R6  
72  
3.3-V Analog Power Pins. Place a minimum 2.2-µF  
decoupling capacitor to VSSA on each pin.  
36, 54  
A18, A9,  
B1, E10,  
E13, E16,  
E7, F10,  
F13, F16,  
F4, F7,  
G4, G5,  
G6, H5,  
H6, L14,  
L15, M1,  
M5, M6,  
N14,  
106, 11,  
114, 116,  
127, 138,  
147, 15,  
152, 159,  
168, 20,  
26, 3, 62,  
68, 75,  
3.3-V Digital I/O Power Pins. Place a minimum 0.1-µF  
decoupling capacitor on each pin.  
VDDIO  
82, 88,  
91, 99  
N15, P9,  
R9, V19,  
W8  
Power pins for the 3.3-V on-chip crystal oscillator (X1  
and X2) and the two zero-pin internal oscillators  
(INTOSC). Place a 0.1-μF (minimum) decoupling  
capacitor on each pin.  
VDDOSC  
H16, H17 120, 125  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-4. Power and Ground (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
A1, A10,  
A19, E12,  
E14, E15,  
E5, E6,  
E8, F12,  
F14, F15,  
F5, F6,  
F8, G16,  
G17,  
H10, H11,  
H12,  
H14,  
H15, H8,  
H9, J10,  
J11, J12,  
J5, J6,  
J8, J9,  
K10, K11,  
K12, K14, 177, 178,  
K15, K8, 179, 180  
K9, L10,  
L11, L12,  
L18, L5,  
L6, L8,  
VSS  
Digital Ground  
L9, M10,  
M11,  
M12,  
M14,  
M15, M8,  
M9, N1,  
N5, N6,  
P11, P12,  
P14, P15,  
P7, P8,  
R14,  
R15, R7,  
R8, W19,  
W7  
P1, P5,  
VSSA  
Analog Ground  
R5, V7,  
W1  
34, 52  
122  
Crystal oscillator (X1 and X2) ground pin. When using  
an external crystal, do not connect this pin to the board  
ground. Instead, connect it to the ground reference of  
the external crystal oscillator circuit. If an external  
crystal is not used, this pin may be connected to the  
board ground.  
VSSOSC  
H18, H19  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
6.3.4 Test, JTAG, and Reset  
Table 6-5. Test, JTAG, and Reset  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
Error Status Output. When used, this signal requires  
an external pulldown.  
ERRORSTS  
FLT1  
O
U19  
W12  
V13  
92  
73  
74  
Flash test pin 1. Reserved for TI. Must be left  
unconnected.  
I/O  
I/O  
Flash test pin 2. Reserved for TI. Must be left  
unconnected.  
FLT2  
No Connection. This pin is not internally connected to  
the device. This pin may be left open or connected to  
any voltage within the maximum operating conditions.  
NC  
H4, J18  
V15  
119  
81  
JTAG test-mode select (TMS) with internal pullup. This  
serial control input is clocked into the TAP controller on  
the rising edge of TCK.  
TCK  
TDI  
I
I
JTAG test data input (TDI) with internal pullup. TDI is  
clocked into the selected register (instruction or data)  
on a rising edge of TCK.  
W13  
77  
JTAG scan out, test data output (TDO). The contents  
of the selected register (instruction or data) are shifted  
out of TDO on the falling edge of TCK.  
TDO  
O
W15  
78  
JTAG test-mode select (TMS) with internal pullup. This  
serial control input is clocked into the TAP controller on  
the rising edge of TCK. An external pullup resistor  
(recommended 2.2 kΩ) on the TMS pin to VDDIO  
should be placed on the board to keep JTAG in reset  
during normal operation.  
TMS  
I
W14  
80  
JTAG test reset with internal pulldown. TRSTn, when  
driven high, gives the scan system control of the  
operations of the device. If this signal is driven low, the  
device operates in its functional mode, and the test  
reset signals are ignored. NOTE: TRST must be  
maintained low at all times during normal device  
operation. An external pulldown resistor is required on  
this pin. The value of this resistor should be based on  
drive strength of the debugger pods applicable to the  
design. A 2.2-kΩ or smaller resistor generally offers  
adequate protection. The value of the resistor is  
application-specific. TI recommends that each target  
board be validated for proper operation of the  
debugger and the application. This pin has an internal  
50-ns (nominal) glitch filter.  
TRSTn  
I
V14  
79  
Crystal oscillator input or single-ended clock input. The  
device initialization software must configure this pin  
before the crystal oscillator is enabled. To use this  
oscillator, a quartz crystal circuit must be connected to  
X1 and X2. This pin can also be used to feed a single-  
ended 3.3-V level clock.  
X1  
X2  
I
G19  
J19  
123  
121  
Crystal oscillator output.  
O
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-5. Test, JTAG, and Reset (continued)  
PIN  
TYPE  
SIGNAL NAME  
DESCRIPTION  
GPIO  
337 BGA 176 Pin  
Device Reset (in) and Watchdog Reset (out). During a  
power-on condition, this pin is driven low by the  
device. An external circuit may also drive this pin to  
assert a device reset. This pin is also driven low by the  
MCU when a watchdog reset occurs. During watchdog  
reset, the XRSn pin is driven low for the watchdog  
reset duration of 512 OSCCLK cycles. A resistor  
between 2.2 kΩ and 10 kΩ should be placed between  
XRSn and VDDIO. If a capacitor is placed between  
XRSn and VSS for noise filtering, it should be 100 nF  
or smaller. These values will allow the watchdog to  
properly drive the XRSn pin to VOL within 512  
OSCCLK cycles when the watchdog reset is asserted.  
The output buffer of this pin is an open-drain with an  
internal pullup. If this pin is driven by an external  
device, it should be done using an open-drain device.  
If this pin is driven by an external device, it should be  
done using an open-drain device.  
XRSn  
I/OD  
F19  
124  
6.4 Pins With Internal Pullup and Pulldown  
Some pins on the device have internal pullups or pulldowns. Table 6-6 lists the pull direction and when it is  
active. The pullups on GPIO pins are disabled by default and can be enabled through software. In order to avoid  
any floating unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are not bonded out in  
a particular package. Other pins noted in Table 6-6 with pullups and pulldowns are always on and cannot be  
disabled.  
Table 6-6. Pins With Internal Pullup and Pulldown  
RESET  
(XRSn = 0)  
PIN  
DEVICE BOOT  
APPLICATION SOFTWARE  
Pullup enable is application-  
defined  
GPIOx  
Pullup disabled  
Pullup disabled(1)  
TRSTn  
TCK  
Pulldown active  
Pullup active  
TMS  
Pullup active  
TDI  
Pullup active  
XRSn  
Pullup active  
ERRORSTS  
DACOUTx  
Other pins  
Pulldown active  
Pulldown active  
No pullup or pulldown present  
(1) Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM.  
6.5 Pin Multiplexing  
GPIO muxed pins are listed in the GPIO Muxed Pins table in Section 6.5.1.  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
6.5.1 GPIO Muxed Pins Table  
Table 6-7. GPIO Muxed Pins  
0, 4, 8, 12  
GPIO0  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
ALT  
EPWM1A  
EPWM1B  
EPWM2A  
EPWM2B  
EPWM3A  
EPWM3B  
EPWM4A  
EPWM4B  
I2CA_SDA  
I2CA_SCL  
I2CB_SDA  
I2CB_SCL  
CANA_TX  
CANA_RX  
CANB_TX  
CANB_RX  
CM-I2CA_SDA  
CM-I2CA_SCL  
ESC_GPI0  
ESC_GPI1  
ESC_GPI2  
ESC_GPI3  
ESC_GPI4  
ESC_GPI5  
ESC_GPI6  
ESC_GPI7  
FSITXA_D0  
FSITXA_D1  
FSITXA_CLK  
FSIRXA_D0  
FSIRXA_D1  
FSIRXA_CLK  
FSITXB_D0  
FSITXB_D1  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
MFSRB  
OUTPUTXBAR1  
OUTPUTXBAR2  
OUTPUTXBAR3  
OUTPUTXBAR2  
MFSRA  
MCLKRB  
MCAN_TX  
MCAN_RX  
OUTPUTXBAR3  
OUTPUTXBAR4 EXTSYNCOUT  
EQEP3_A  
EQEP3_B  
MCLKRA  
OUTPUTXBAR5  
ADCSOCAO  
EQEP3_STROB  
E
GPIO8  
EPWM5A  
CANB_TX  
SCIA_TX  
MCAN_TX  
MCAN_RX  
ESC_GPO0  
FSITXB_CLK  
FSITXA_D1  
FSIRXA_D0  
GPIO9  
EPWM5B  
EPWM6A  
EPWM6B  
SCIB_TX  
CANB_RX  
SCIB_RX  
OUTPUTXBAR6 EQEP3_INDEX  
SCIA_RX  
SCIB_TX  
SCIB_RX  
ESC_GPO1  
ESC_GPO2  
ESC_GPO3  
FSIRXB_D0  
FSIRXB_D1  
FSIRXB_CLK  
FSITXA_D0  
FSITXA_CLK  
FSIRXA_D1  
FSIRXA_CLK  
FSIRXA_D1  
GPIO10  
GPIO11  
ADCSOCBO  
EQEP1_A  
EQEP1_B  
OUTPUTXBAR7  
EQEP1_STROB  
E
GPIO12  
EPWM7A  
CANB_TX  
MDXB  
SCIC_TX  
ESC_GPO4  
FSIRXC_D0  
FSIRXA_D0  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
GPIO18  
GPIO19  
GPIO20  
GPIO21  
EPWM7B  
EPWM8A  
CANB_RX  
SCIB_TX  
SCIB_RX  
CANB_TX  
CANB_RX  
SCIB_TX  
SCIB_RX  
MDXA  
MDRB  
MCLKXB  
EQEP1_INDEX  
SCIC_RX  
ESC_GPO5  
ESC_GPO6  
ESC_GPO7  
FSIRXC_D1  
FSIRXC_CLK  
FSIRXD_D0  
FSIRXD_D1  
FSIRXD_CLK  
FSIRXE_D0  
FSIRXE_D1  
FSIRXE_CLK  
FSIRXF_D0  
FSIRXA_CLK  
OUTPUTXBAR3  
OUTPUTXBAR4  
EPWM8B  
MFSXB  
SPIA_SIMO  
SPIA_SOMI  
SPIA_CLK  
SPIA_STEn  
EQEP1_A  
EQEP1_B  
OUTPUTXBAR7  
OUTPUTXBAR8  
CANA_RX  
CANA_TX  
EPWM9A  
EPWM9B  
EPWM10A  
EPWM10B  
EPWM11A  
EPWM11B  
SD1_D1  
SD1_C1  
SD1_D2  
SD1_C2  
SD1_D3  
SD1_C3  
SSIA_TX  
SSIA_RX  
MCAN_RX  
MCAN_TX  
EMIF1_CS2n  
EMIF1_CS3n  
EMIF1_BA0  
EMIF1_BA1  
SSIA_CLK  
SSIA_FSS  
CANB_TX  
TRACE_DATA0  
TRACE_DATA1  
SPIC_SIMO  
SPIC_SOMI  
MDRA  
CANB_RX  
EQEP1_STROB  
E
GPIO22  
MCLKXA  
SCIB_TX  
EPWM12A  
EPWM12B  
SPIB_CLK  
SD1_D4  
MCAN_TX  
EMIF1_RAS  
TRACE_DATA2  
FSIRXF_D1  
SPIC_CLK  
GPIO23  
GPIO24  
GPIO25  
EQEP1_INDEX  
OUTPUTXBAR1  
OUTPUTXBAR2  
MFSXA  
EQEP2_A  
EQEP2_B  
SCIB_RX  
MDXB  
SPIB_STEn  
SPIB_SIMO  
SPIB_SOMI  
SD1_C4  
SD2_D1  
SD2_C1  
MCAN_RX  
EMIF1_CAS  
EMIF1_DQM0  
EMIF1_DQM1  
TRACE_DATA3  
TRACE_CLK  
TRACE_SWO  
FSIRXF_CLK  
EPWM13A  
EPWM13B  
SPIC_STEn  
PMBUSA_SCL  
PMBUSA_SDA  
FSIRXG_D0  
FSIRXG_D1  
MDRB  
FSITXA_D1  
FSITXA_D0  
PMBUSA_ALER  
T
ESC_MDIO_CL  
K
GPIO26  
GPIO27  
OUTPUTXBAR3 EQEP2_INDEX  
MCLKXB  
MFSXB  
OUTPUTXBAR3  
OUTPUTXBAR4  
SPIB_CLK  
SD2_D2  
SD2_C2  
EMIF1_DQM2  
EMIF1_DQM3  
EPWM14A  
EPWM14B  
FSIRXG_CLK  
FSIRXH_D0  
EQEP2_STROB  
ESC_MDIO_DA  
TA  
OUTPUTXBAR4  
E
SPIB_STEn  
PMBUSA_CTL  
FSITXA_CLK  
GPIO28  
GPIO29  
SCIA_RX  
SCIA_TX  
EMIF1_CS4n  
OUTPUTXBAR5  
OUTPUTXBAR6  
EQEP3_A  
EQEP3_B  
SD2_D3  
SD2_C3  
EMIF1_CS2n  
EMIF1_CS3n  
EPWM15A  
EPWM15B  
FSIRXH_D1  
EMIF1_SDCKE  
ESC_LATCH0  
ESC_LATCH1  
I2CA_SDA  
ESC_I2C_SDA  
ESC_I2C_SCL  
CM-I2CA_SDA  
CM-I2CA_SCL  
ESC_SYNC0  
ESC_SYNC1  
FSIRXH_CLK  
EQEP3_STROB  
E
GPIO30  
GPIO31  
GPIO32  
CANA_RX  
CANA_TX  
I2CA_SDA  
EMIF1_CLK  
EMIF1_WEn  
EMIF1_CS0n  
MCAN_RX  
MCAN_TX  
SPIA_SIMO  
OUTPUTXBAR7  
SD2_D4  
SD2_C4  
EMIF1_CS4n  
EMIF1_RNW  
EMIF1_OEn  
EPWM16A  
EPWM16B  
SPID_SIMO  
SPID_SOMI  
SPID_CLK  
OUTPUTXBAR8 EQEP3_INDEX  
CLB_OUTPUTX  
BAR1  
I2CA_SCL  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D TMS320F28384D-Q1 TMS320F28388S TMS320F28386S  
TMS320F28386S-Q1 TMS320F28384S TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-7. GPIO Muxed Pins (continued)  
0, 4, 8, 12  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
ALT  
CLB_OUTPUTX  
BAR2  
GPIO33  
I2CA_SCL  
EMIF1_RNW  
SPIA_SOMI  
EMIF1_BA0  
SPID_STEn  
CLB_OUTPUTX  
BAR3  
GPIO34  
GPIO35  
GPIO36  
GPIO37  
GPIO38  
OUTPUTXBAR1  
SCIA_RX  
EMIF1_CS2n  
EMIF1_CS3n  
EMIF1_WAIT  
EMIF1_OEn  
EMIF1_A0  
SPIA_CLK  
I2CB_SDA  
I2CB_SCL  
CANA_RX  
CANA_TX  
CANB_TX  
EMIF1_BA1  
EMIF1_A0  
EMIF1_A1  
EMIF1_A2  
EMIF1_A3  
EMIF1_A4  
ESC_LATCH0 ENET_MII_CRS  
ESC_LATCH1 ENET_MII_COL  
MCAN_RX  
SCIA_TX  
ESC_SYNC0  
ESC_SYNC1  
CLB_OUTPUTX  
BAR4  
SPIA_STEn  
CLB_OUTPUTX  
BAR5  
SCIA_TX  
SD1_D1  
SD1_D2  
SD1_D3  
SD1_D4  
CLB_OUTPUTX  
BAR6  
OUTPUTXBAR2  
MCAN_TX  
CLB_OUTPUTX  
BAR7  
ENET_MII_RX_  
ENET_MII_CRS  
DV  
SCIC_TX  
SCIC_RX  
CLB_OUTPUTX  
BAR8  
ENET_MII_RX_  
ENET_MII_COL  
ERR  
GPIO39  
GPIO40  
GPIO41  
EMIF1_A1  
EMIF1_A2  
EMIF1_A3  
CANB_RX  
I2CB_SDA  
I2CB_SCL  
ENET_MII_CRS  
ESC_I2C_SDA  
ESC_I2C_SCL  
ENET_REVMII_  
ENET_MII_COL  
MDIO_RST  
ENET_MDIO_C  
UARTA_TX  
LK  
GPIO42  
GPIO43  
GPIO44  
GPIO45  
GPIO46  
I2CA_SDA  
I2CA_SCL  
SCIA_TX  
SCIA_RX  
USB0DM  
USB0DP  
ENET_MDIO_D  
UARTA_RX  
ATA  
ENET_MII_TX_  
CLK  
EMIF1_A4  
EMIF1_A5  
EMIF1_A6  
ESC_TX1_CLK  
ESC_TX1_ENA  
ENET_MII_TX_  
EN  
ENET_MII_TX_  
ERR  
ESC_MDIO_CL  
K
SCID_RX  
ESC_MDIO_DA  
TA  
GPIO47  
GPIO48  
GPIO49  
EMIF1_A7  
EMIF1_A8  
EMIF1_A9  
SCID_TX  
SCIA_TX  
SCIA_RX  
ENET_PPS0  
ENET_PPS1  
OUTPUTXBAR3  
OUTPUTXBAR4  
SD1_D1  
SD1_C1  
ESC_PHY_CLK  
FSITXA_D0  
ENET_MII_RX_  
CLK  
EMIF1_A5  
EMIF1_A6  
EMIF1_A7  
EMIF1_A8  
EMIF1_A9  
EMIF1_A10  
EMIF1_D0  
EMIF1_D1  
EMIF1_D2  
SD2_D1  
SD2_D2  
SD2_D3  
SD2_D4  
SD1_C1  
SD1_C2  
SD1_C3  
SD1_C4  
ENET_MII_RX_  
DV  
GPIO50  
GPIO51  
GPIO52  
GPIO53  
GPIO54  
GPIO55  
GPIO56  
GPIO57  
EQEP1_A  
EQEP1_B  
EMIF1_A10  
EMIF1_A11  
EMIF1_A12  
EMIF1_D31  
EMIF1_D30  
EMIF1_D29  
EMIF1_D28  
EMIF1_D27  
SPIC_SIMO  
SPIC_SOMI  
SPIC_CLK  
SPIC_STEn  
SCIB_TX  
SD1_D2  
SD1_C2  
SD1_D3  
SD1_C3  
SD1_D4  
SD1_C4  
SD2_D1  
SD2_C1  
FSITXA_D1  
FSITXA_CLK  
FSIRXA_D0  
FSIRXA_D1  
FSIRXA_CLK  
FSITXB_D0  
FSITXB_CLK  
FSITXB_D1  
ENET_MII_RX_  
ERR  
EQEP1_STROB  
E
ENET_MII_RX_  
DATA0  
ENET_MII_RX_  
DATA1  
EQEP1_INDEX  
SPIA_SIMO  
SPIA_SOMI  
SPIA_CLK  
EMIF2_D15  
EMIF2_D14  
EMIF2_D13  
EMIF2_D12  
EMIF2_D11  
ENET_MII_RX_  
DATA2  
EQEP2_A  
EQEP2_B  
SSIA_TX  
SSIA_RX  
SSIA_CLK  
SSIA_FSS  
ENET_MII_RX_  
DATA3  
SCIB_RX  
EQEP2_STROB  
E
ENET_MII_TX_  
SCIC_TX  
I2CA_SDA  
EN  
ENET_MII_TX_  
SPIA_STEn  
EQEP2_INDEX  
SCIC_RX  
I2CA_SCL  
ERR  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D TMS320F28384D-Q1 TMS320F28388S TMS320F28386S  
TMS320F28386S-Q1 TMS320F28384S TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-7. GPIO Muxed Pins (continued)  
0, 4, 8, 12  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
ALT  
ESC_LED_LINK ENET_MII_TX_  
0_ACTIVE CLK  
GPIO58  
MCLKRA  
EMIF1_D26  
EMIF2_D10  
OUTPUTXBAR1  
SPIB_CLK  
SD2_D2  
EMIF1_D3  
SD2_C2  
FSIRXB_D0  
SPIA_SIMO  
ESC_LED_LINK ENET_MII_TX_  
GPIO59  
GPIO60  
GPIO61  
GPIO62  
GPIO63  
GPIO64  
GPIO65  
GPIO66  
GPIO67  
GPIO68  
GPIO69  
GPIO70  
GPIO71  
GPIO72  
GPIO73  
GPIO74  
GPIO75  
GPIO76  
MFSRA  
MCLKRB  
MFSRB  
EMIF1_D25  
EMIF1_D24  
EMIF1_D23  
EMIF1_D22  
EMIF1_D21  
EMIF1_D20  
EMIF1_D19  
EMIF1_D18  
EMIF1_D17  
EMIF1_D16  
EMIF1_D15  
EMIF1_D14  
EMIF1_D13  
EMIF1_D12  
EMIF1_D11  
EMIF1_D10  
EMIF1_D9  
EMIF2_D9  
EMIF2_D8  
EMIF2_D7  
EMIF2_D6  
EMIF2_D5  
EMIF2_D4  
EMIF2_D3  
EMIF2_D2  
EMIF2_D1  
EMIF2_D0  
OUTPUTXBAR2  
OUTPUTXBAR3  
OUTPUTXBAR4  
EQEP3_A  
SPIB_STEn  
SPIB_SIMO  
SPIB_SOMI  
CANA_RX  
CANA_TX  
SCIA_RX  
SD2_C2  
SD2_D3  
SD2_C3  
SD2_D4  
SD2_C4  
EMIF1_D4  
EMIF1_D5  
EMIF1_D6  
EMIF1_D7  
SSIA_TX  
SD2_C3  
SD2_C4  
FSIRXB_D1  
FSIRXB_CLK  
CANA_RX  
SPIA_SOMI  
SPIA_CLK  
SPIA_STEn  
1_ACTIVE  
DATA0  
ENET_MII_TX_  
DATA1  
ESC_LED_ERR  
ENET_MII_TX_  
DATA2  
ESC_LED_RUN  
ESC_LED_STAT ENET_MII_TX_  
SCIC_RX  
SCIC_TX  
CANA_TX  
E_RUN  
DATA3  
ENET_MII_RX_  
DATA0  
ESC_RX1_DAT  
A0  
EQEP3_B  
SD1_D1  
SD1_C1  
SD1_D2  
SD1_C2  
SD1_D3  
SD1_C3  
SD1_D4  
SD1_C4  
SPIB_SIMO  
SPIB_SOMI  
SPIB_CLK  
SPIB_STEn  
EQEP3_STROB  
E
ENET_MII_RX_ ENET_MII_RX_  
DV DATA1  
ESC_RX1_DAT  
A1  
SSIA_RX  
SSIA_CLK  
SSIA_FSS  
ENET_MII_RX_ ENET_MII_RX_  
ERR DATA2  
ESC_RX1_DAT  
A2  
EQEP3_INDEX  
SCIA_TX  
ENET_MII_RX_ ENET_MII_RX_  
DATA0 DATA3  
ESC_RX1_DAT  
A3  
I2CB_SDA  
ENET_MII_RX_ ENET_REVMII_  
CLK  
MDIO_RST  
ESC_PHY1_LIN  
KSTATUS  
ENET_MII_INTR  
ENET_MII_TX_ ENET_MII_RX_  
I2CB_SCL  
SCIB_TX  
SCIB_RX  
SCIC_TX  
SCIC_RX  
ESC_RX1_CLK  
ESC_RX1_DV  
ESC_RX1_ERR  
SPIC_SIMO  
SPIC_SOMI  
SPIC_CLK  
SPIC_STEn  
EN  
CLK  
ENET_MII_RX_  
DV  
CANA_RX  
CANA_TX  
CANB_TX  
CANB_RX  
MCAN_RX  
MCAN_TX  
ENET_MII_RX_ ENET_MII_RX_  
DATA0 ERR  
ENET_MII_RX_ ENET_MII_TX_  
DATA1 DATA3  
ESC_TX1_DATA  
3
ENET_RMII_CL ENET_MII_TX_  
ESC_TX1_DATA  
2
XCLKOUT  
SD2_D2  
SD2_C2  
SD2_D3  
SD2_C3  
K
DATA2  
ENET_MII_TX_  
DATA1  
ESC_TX1_DATA  
1
MCAN_TX  
MCAN_RX  
ENET_MII_TX_  
DATA0  
ESC_TX1_DATA  
0
ENET_MII_RX_  
ERR  
ESC_PHY_RES  
ETn  
EMIF1_D8  
SCID_TX  
GPIO77  
GPIO78  
GPIO79  
EMIF1_D7  
EMIF1_D6  
EMIF1_D5  
SCID_RX  
EQEP2_A  
EQEP2_B  
SD2_D4  
SD2_C4  
SD2_D1  
ESC_RX0_CLK  
ESC_RX0_DV  
ESC_RX0_ERR  
EQEP2_STROB  
E
ESC_RX0_DAT  
A0  
GPIO80  
GPIO81  
GPIO82  
EMIF1_D4  
EMIF1_D3  
EMIF1_D2  
SD2_C1  
ESC_RX0_DAT  
A1  
EQEP2_INDEX  
ESC_RX0_DAT  
A2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D TMS320F28384D-Q1 TMS320F28388S TMS320F28386S  
TMS320F28386S-Q1 TMS320F28384S TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-7. GPIO Muxed Pins (continued)  
0, 4, 8, 12  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
ALT  
ESC_RX0_DAT  
A3  
GPIO83  
EMIF1_D1  
GPIO84  
GPIO85  
SCIA_TX  
SCIA_RX  
MDXB  
MDRB  
UARTA_TX  
UARTA_RX  
ESC_TX0_ENA  
ESC_TX0_CLK  
MDXA  
MDRA  
EMIF1_D0  
ESC_PHY0_LIN  
KSTATUS  
GPIO86  
GPIO87  
GPIO88  
GPIO89  
GPIO90  
GPIO91  
GPIO92  
GPIO93  
GPIO94  
GPIO95  
GPIO96  
GPIO97  
GPIO98  
EMIF1_A13  
EMIF1_CAS  
EMIF1_RAS  
EMIF1_DQM0  
EMIF1_DQM1  
EMIF1_DQM2  
EMIF1_DQM3  
EMIF1_BA1  
SCIB_TX  
SCIB_RX  
MCLKXB  
MFSXB  
MCLKXA  
MFSXA  
ESC_TX0_DATA  
0
EMIF1_A14  
EMIF1_A15  
EMIF1_A16  
EMIF1_A17  
EMIF1_A18  
EMIF1_A19  
EMIF1_DQM3  
EMIF1_DQM1  
EMIF1_CAS  
EMIF1_RAS  
EMIF1_DQM2  
EMIF1_DQM0  
ESC_TX0_DATA  
1
ESC_TX0_DATA  
2
SCIC_TX  
SCIC_RX  
I2CA_SDA  
I2CA_SCL  
SCID_TX  
SCID_RX  
ESC_TX0_DATA  
3
CLB_OUTPUTX  
BAR1  
PMBUSA_SCL  
PMBUSA_SDA  
SSIA_TX  
SSIA_RX  
SSIA_CLK  
SSIA_FSS  
FSIRXF_D0  
FSIRXF_D1  
FSIRXF_CLK  
FSIRXG_D0  
FSIRXG_D1  
FSIRXG_CLK  
FSIRXH_D0  
FSIRXH_D1  
SPID_SIMO  
SPID_SOMI  
SPID_CLK  
SPID_STEn  
CLB_OUTPUTX  
BAR2  
PMBUSA_ALER  
T
CLB_OUTPUTX  
BAR3  
EMIF1_BA0  
CLB_OUTPUTX  
BAR4  
EMIF1_BA1  
PMBUSA_CTL  
CLB_OUTPUTX  
BAR5  
EMIF2_A12  
EMIF2_DQM1  
EMIF2_DQM0  
EMIF2_A0  
CLB_OUTPUTX  
BAR6  
EQEP1_A  
EQEP1_B  
CLB_OUTPUTX  
BAR7  
EQEP1_STROB  
E
CLB_OUTPUTX  
BAR8  
GPIO99  
EMIF2_A1  
EMIF2_A2  
EMIF2_A3  
EQEP1_INDEX  
EQEP2_A  
FSIRXH_CLK  
FSITXA_D0  
FSITXA_D1  
GPIO100  
GPIO101  
SPIC_SIMO  
SPIC_SOMI  
ESC_GPI0  
ESC_GPI1  
EQEP2_B  
EQEP2_STROB  
E
GPIO102  
EMIF2_A4  
SPIC_CLK  
ESC_GPI2  
FSITXA_CLK  
GPIO103  
GPIO104  
EMIF2_A5  
EMIF2_A6  
EQEP2_INDEX  
EQEP3_A  
SPIC_STEn  
SCID_TX  
ESC_GPI3  
ESC_GPI4  
FSIRXA_D0  
FSIRXA_D1  
I2CA_SDA  
I2CA_SCL  
CM-I2CA_SDA  
CM-I2CA_SCL  
ENET_MDIO_C  
LK  
GPIO105  
GPIO106  
GPIO107  
EMIF2_A7  
EMIF2_A8  
EMIF2_A9  
EQEP3_B  
SCID_RX  
SCIC_TX  
SCIC_RX  
ESC_GPI5  
ESC_GPI6  
ESC_GPI7  
FSIRXA_CLK  
FSITXB_D0  
EQEP3_STROB  
E
ENET_MDIO_D  
ATA  
ENET_REVMII_  
MDIO_RST  
EQEP3_INDEX  
FSITXB_D1  
GPIO108  
GPIO109  
GPIO110  
EMIF2_A10  
EMIF2_A11  
EMIF2_WAIT  
ESC_GPI8  
ESC_GPI9  
ESC_GPI10  
FSITXB_CLK  
ENET_MII_INTR  
ENET_MII_CRS  
ENET_MII_COL  
FSIRXB_D0  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D TMS320F28384D-Q1 TMS320F28388S TMS320F28386S  
TMS320F28386S-Q1 TMS320F28384S TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-7. GPIO Muxed Pins (continued)  
0, 4, 8, 12  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
ALT  
ENET_MII_RX_  
CLK  
GPIO111  
EMIF2_BA0  
ESC_GPI11  
FSIRXB_D1  
ENET_MII_RX_  
DV  
GPIO112  
GPIO113  
GPIO114  
GPIO115  
GPIO116  
GPIO117  
GPIO118  
GPIO119  
GPIO120  
GPIO121  
GPIO122  
GPIO123  
GPIO124  
EMIF2_BA1  
EMIF2_CAS  
EMIF2_RAS  
EMIF2_CS0n  
EMIF2_CS2n  
EMIF2_SDCKE  
EMIF2_CLK  
EMIF2_RNW  
EMIF2_WEn  
EMIF2_OEn  
EMIF2_D15  
EMIF2_D14  
EMIF2_D13  
ESC_GPI12  
ESC_GPI13  
ESC_GPI14  
ESC_GPI15  
ESC_GPI16  
ESC_GPI17  
ESC_GPI18  
ESC_GPI19  
ESC_GPI20  
ESC_GPI21  
ESC_GPI22  
ESC_GPI23  
ESC_GPI24  
FSIRXB_CLK  
ENET_MII_RX_  
ERR  
ENET_MII_RX_  
DATA0  
ENET_MII_RX_  
DATA1  
OUTPUTXBAR5  
OUTPUTXBAR6  
FSIRXC_D0  
FSIRXC_D1  
FSIRXC_CLK  
FSIRXD_D0  
FSIRXD_D1  
FSIRXD_CLK  
FSIRXE_D0  
ENET_MII_RX_  
DATA2  
ENET_MII_RX_  
DATA3  
ENET_MII_TX_  
EN  
ENET_MII_TX_  
ERR  
ENET_MII_TX_  
CLK  
ENET_MII_TX_  
DATA0  
ENET_MII_TX_  
DATA1  
SPIC_SIMO  
SPIC_SOMI  
SD1_D1  
SD1_C1  
SD1_D2  
ENET_MII_TX_  
DATA2  
ENET_MII_TX_  
DATA3  
SPIC_CLK  
GPIO125  
GPIO126  
GPIO127  
GPIO128  
GPIO129  
GPIO130  
EMIF2_D12  
EMIF2_D11  
EMIF2_D10  
EMIF2_D9  
EMIF2_D8  
EMIF2_D7  
SPIC_STEn  
SD1_C2  
SD1_D3  
SD1_C3  
SD1_D4  
SD1_C4  
SD2_D1  
ESC_GPI25  
ESC_GPI26  
ESC_GPI27  
ESC_GPI28  
ESC_GPI29  
ESC_GPI30  
FSIRXE_D1  
ESC_LATCH0  
ESC_LATCH1  
ESC_SYNC0  
ESC_SYNC1  
ESC_TX1_ENA  
ESC_TX1_CLK  
FSIRXE_CLK  
ESC_TX1_DATA  
0
GPIO131  
EMIF2_D6  
EMIF2_D5  
SD2_C1  
ESC_GPI31  
ESC_GPO0  
ESC_TX1_DATA  
1
GPIO132  
GPIO133  
GPIO134  
SD2_D2  
SD2_C2  
SD2_D3  
AUXCLKIN  
ESC_TX1_DATA  
2
EMIF2_D4  
EMIF2_D3  
ESC_GPO1  
ESC_GPO2  
ESC_TX1_DATA  
3
GPIO135  
SCIA_TX  
SD2_C3  
GPIO136  
GPIO137  
GPIO138  
EMIF2_D2  
EMIF2_D1  
EMIF2_D0  
SCIA_RX  
SCIB_TX  
SCIB_RX  
SD2_D4  
SD2_C4  
ESC_GPO3  
ESC_GPO4  
ESC_GPO5  
ESC_RX1_DV  
ESC_RX1_CLK  
ESC_RX1_ERR  
EPWM13A  
EPWM13B  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D TMS320F28384D-Q1 TMS320F28388S TMS320F28386S  
TMS320F28386S-Q1 TMS320F28384S TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-7. GPIO Muxed Pins (continued)  
0, 4, 8, 12  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
ALT  
ESC_RX1_DAT  
A0  
GPIO139  
EPWM14A  
SCIC_RX  
ESC_GPO6  
ESC_RX1_DAT  
A1  
GPIO140  
GPIO141  
GPIO142  
GPIO143  
GPIO144  
EPWM14B  
EPWM15A  
EPWM15B  
EPWM16A  
EPWM16B  
SCIC_TX  
SCID_RX  
SCID_TX  
ESC_GPO7  
ESC_GPO8  
ESC_GPO9  
ESC_GPO10  
ESC_GPO11  
ESC_RX1_DAT  
A2  
ESC_RX1_DAT  
A3  
ESC_LED_LINK  
0_ACTIVE  
ESC_LED_LINK  
1_ACTIVE  
GPIO145  
GPIO146  
EPWM1A  
EPWM1B  
ESC_GPO12  
ESC_GPO13  
ESC_LED_ERR  
ESC_LED_RUN  
ESC_LED_STAT  
E_RUN  
GPIO147  
GPIO148  
GPIO149  
EPWM2A  
EPWM2B  
EPWM3A  
ESC_GPO14  
ESC_GPO15  
ESC_GPO16  
ESC_PHY0_LIN  
KSTATUS  
ESC_PHY1_LIN  
KSTATUS  
GPIO150  
GPIO151  
EPWM3B  
EPWM4A  
ESC_GPO17  
ESC_GPO18  
ESC_I2C_SDA  
ESC_I2C_SCL  
ESC_MDIO_CL  
K
GPIO152  
EPWM4B  
ESC_GPO19  
ESC_MDIO_DA  
TA  
GPIO153  
GPIO154  
GPIO155  
EPWM5A  
EPWM5B  
EPWM6A  
ESC_GPO20  
ESC_GPO21  
ESC_GPO22  
ESC_PHY_CLK  
ESC_PHY_RES  
ETn  
GPIO156  
GPIO157  
EPWM6B  
EPWM7A  
ESC_GPO23  
ESC_GPO24  
ESC_TX0_ENA  
ESC_TX0_CLK  
ESC_TX0_DATA  
0
GPIO158  
GPIO159  
GPIO160  
GPIO161  
EPWM7B  
EPWM8A  
EPWM8B  
EPWM9A  
ESC_GPO25  
ESC_GPO26  
ESC_GPO27  
ESC_GPO28  
ESC_TX0_DATA  
1
ESC_TX0_DATA  
2
ESC_TX0_DATA  
3
GPIO162  
GPIO163  
GPIO164  
EPWM9B  
EPWM10A  
EPWM10B  
ESC_GPO29  
ESC_GPO30  
ESC_GPO31  
ESC_RX0_DV  
ESC_RX0_CLK  
ESC_RX0_ERR  
ESC_RX0_DAT  
A0  
GPIO165  
GPIO166  
EPWM11A  
EPWM11B  
MDXA  
MDRA  
ESC_RX0_DAT  
A1  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D TMS320F28384D-Q1 TMS320F28388S TMS320F28386S  
TMS320F28386S-Q1 TMS320F28384S TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-7. GPIO Muxed Pins (continued)  
0, 4, 8, 12  
1
2
3
5
6
7
9
10  
11  
13  
14  
15  
ALT  
ESC_RX0_DAT  
A2  
GPIO167  
EPWM12A  
MCLKXA  
ESC_RX0_DAT  
A3  
GPIO168  
EPWM12B  
MFSXA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D TMS320F28384D-Q1 TMS320F28388S TMS320F28386S  
TMS320F28386S-Q1 TMS320F28384S TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
6.5.2 Input X-BAR  
The Input X-BAR is used to route any GPIO input to the ADC, eCAP, and ePWM peripherals as well as to  
external interrupts (XINT) (see Figure 6-7). Table 6-8 lists the input X-BAR destinations. For details on  
configuring the Input X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F2838x Real-Time  
Microcontrollers Technical Reference Manual.  
Figure 6-7. Input X-BAR  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 6-8. Input X-BAR Destinations  
INPUT  
DESTINATION  
INPUT1  
INPUT2  
INPUT3  
INPUT4  
eCAPx, ePWM X-BAR, ePWM[TZ1,TRIP1], Output X-BAR, EtherCAT, ERAD  
eCAPx, ePWM X-BAR, ePWM[TZ2,TRIP2], Output X-BAR, EtherCAT, ERAD  
eCAPx, ePWM X-BAR, ePWM[TZ3,TRIP3], Output X-BAR, EtherCAT, ERAD  
eCAPx, ePWM X-BAR, XINT1, Output X-BAR, EtherCAT, ERAD  
eCAPx, ePWM X-BAR, XINT2, ADCEXTSOC, EXTSYNCIN1, ePWM SYNC, eCAP SYNC, Output X-BAR,  
EtherCAT, ERAD  
INPUT5  
INPUT6  
eCAPx, ePWM X-BAR, XINT3, ePWM[TRIP6], EXTSYNCIN2, Output X-BAR, ePWM SYNC, eCAP SYNC,  
Output X-BAR, EtherCAT, ERAD  
INPUT7  
INPUT8  
eCAPx, ePWM X-BAR, EtherCAT, ERAD, eCAP1 Capture Input  
eCAPx, ePWM X-BAR, EtherCAT, ERAD, eCAP2 Capture Input  
eCAPx, ePWM X-BAR, EtherCAT, ERAD, eCAP3 Capture Input  
eCAPx, ePWM X-BAR, EtherCAT, ERAD, eCAP4 Capture Input  
eCAPx, ePWM X-BAR, EtherCAT, ERAD, eCAP5 Capture Input  
eCAPx, ePWM X-BAR, EtherCAT, ERAD, eCAP6 Capture Input  
eCAPx, ePWM X-BAR, XINT4, EtherCAT  
INPUT9  
INPUT10  
INPUT11  
INPUT12  
INPUT13  
INPUT14  
INPUT15  
INPUT16  
eCAPx, ePWM X-BAR, XINT5, EtherCAT, ERAD  
eCAPx, EtherCAT  
eCAPx, EtherCAT, DCCx  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
6.5.3 Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR  
The Output X-BAR has eight outputs that can be selected on the GPIO mux as OUTPUTXBARx. The CLB X-  
BAR has eight outputs that are connected to the CLB global mux as AUXSIGx. The CLB Output X-BAR has  
eight outputs that can be selected on the GPIO mux as CLB_OUTPUTXBARx. The ePWM X-BAR has eight  
outputs that are connected to the TRIPx inputs of the ePWM. The sources for the Output X-BAR, CLB X-BAR,  
CLB Output X-BAR, and ePWM X-BAR are shown in Figure 6-8. For details on the Output X-BAR, CLB X-BAR,  
CLB Output X-BAR, and ePWM X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F2838x Real-Time  
Microcontrollers Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
CTRIPOUTH  
CTRIPOUTL  
(Output X-BAR only)  
(ePWM X-BAR only)  
CMPSSx  
CTRIPH  
CTRIPL  
ePWM and eCAP  
Sync Chain  
EXTSYNCOUT  
ADCSOCA0  
AUXSIG1  
AUXSIG2  
AUXSIG3  
AUXSIG4  
AUXSIG5  
AUXSIG6  
AUXSIG7  
AUXSIG8  
CLB  
Global  
Mux  
ADCSOCA0  
Select Circuit  
CLB  
X-BAR  
ADCSOCB0  
Select Circuit  
ADCSOCB0  
ECAPxOUT  
TRIP4  
TRIP5  
eCAPx  
ADCx  
EVT1  
EVT2  
EVT3  
EVT4  
All  
ePWM  
Modules  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
EPWM  
X-BAR  
INPUT1-6  
INPUT7-14  
(ePWM X-BAR only)  
Input X-BAR  
CLAHALT  
eQEPx  
CLAHALT  
OUTPUTXBAR1  
OUTPUTXBAR2  
OUTPUTXBAR3  
OUTPUTXBAR4  
OUTPUTXBAR5  
OUTPUTXBAR6  
OUTPUTXBAR7  
OUTPUTXBAR8  
FLT1.COMPH  
FLT1.COMPL  
Output  
X-BAR  
SDFMx  
FLT4.COMPH  
FLT4.COMPL  
GPIO  
Mux  
X-BAR Flags  
(shared)  
CLB_OUTPUTXBAR1  
CLB_OUTPUTXBAR2  
CLB_OUTPUTXBAR3  
CLB_OUTPUTXBAR4  
CLB_OUTPUTXBAR5  
CLB_OUTPUTXBAR6  
CLB_OUTPUTXBAR7  
CLB_OUTPUTXBAR8  
CLB  
Output  
X-BAR  
CLB Input X-BAR  
CLB TILEx  
Figure 6-8. Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR Sources  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
6.5.4 USB Pin Muxing  
Table 6-9 lists assignment of the alternate USB function mapping. These can be configured with the GPBAMSEL  
register.  
Table 6-9. Alternate USB Function  
GPIO  
GPBAMSEL SETTING  
GPBAMSEL[10] = 1b  
GPBAMSEL[11] = 1b  
USB FUNCTION  
USB0DM  
GPIO42  
GPIO43  
USB0DP  
6.5.5 High-Speed SPI Pin Muxing  
The SPI module on this device has a high-speed mode. To achieve the highest possible speed, a special GPIO  
configuration is used on a single GPIO mux option for each SPI. These GPIOs may also be used by the SPI  
when not in high-speed mode (HS_MODE = 0).  
To select the mux options that enable the SPI high-speed mode, configure the GPyGMUX and GPyMUX  
registers as shown in Table 6-10.  
Table 6-10. GPIO Configuration for High-Speed SPI  
GPIO  
SPI SIGNAL  
MUX CONFIGURATION  
SPIA  
SPIB  
SPIC  
SPID  
GPIO58  
GPIO59  
GPIO60  
GPIO61  
SPISIMOA  
SPISOMIA  
SPICLKA  
SPISTEA  
GPBGMUX2[21:20]=11b  
GPBMUX2[21:20]=11b  
GPBMUX2[23:22]=11b  
GPBMUX2[25:24]=11b  
GPBMUX2[27:26]=11b  
GPBGMUX2[23:22]=11b  
GPBGMUX2[25:24]=11b  
GPBGMUX2[27:26]=11b  
GPIO63  
GPIO64  
GPIO65  
GPIO66  
SPISIMOB  
SPISOMIB  
SPICLKB  
SPISTEB  
GPBGMUX2[31:30]=11b  
GPCGMUX1[1:0]=11b  
GPCGMUX1[3:2]=11b  
GPCGMUX1[5:4]=11b  
GPBMUX2[31:30]=11b  
GPCMUX1[1:0]=11b  
GPCMUX1[3:2]=11b  
GPCMUX1[5:4]=11b  
GPIO69  
GPIO70  
GPIO71  
GPIO72  
SPISIMOC  
SPISOMIC  
SPICLKC  
SPISTEC  
GPCGMUX1[11:10]=11b  
GPCGMUX1[13:12]=11b  
GPCGMUX1[15:14]=11b  
GPCGMUX1[17:16]=11b  
GPCMUX1[11:10]=11b  
GPCMUX1[13:12]=11b  
GPCMUX1[15:14]=11b  
GPCMUX1[17:16]=11b  
GPIO91  
GPIO92  
GPIO93  
GPIO94  
SPISIMOD  
SPISOMID  
SPICLKD  
SPISTED  
GPCGMUX2[23:22]=11b  
GPCGMUX2[25:24]=11b  
GPCGMUX2[27:26]=11b  
GPCGMUX2[29:28]=11b  
GPCMUX2[23:22]=11b  
GPCMUX2[25:24]=11b  
GPCMUX2[27:26]=11b  
GPCMUX2[29:28]=11b  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
6.5.6 High-Speed SSI Pin Muxing  
The SSI module on this device has a high-speed mode. To enable the high-speed mode on the SSI module,  
enable the high-speed clock and the high-speed capabilities of the SSI module (SSICR1[HSCLKEN] and  
SSIPP[HSCLK]). The GPIO Configuration for High-Speed SSI table lists the SSI high-speed-capable pinmux  
options.  
Table 6-11. GPIO Configuration for High-Speed SSI  
GPIO  
SSI SIGNAL  
GPIO MUX SELECTION INDEX  
GPIO16  
GPIO17  
GPIO18  
GPIO19  
SSIA_TX  
11  
11  
11  
11  
SSIA_RX  
SSIA_CLK  
SSIA_FSS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
6.6 Connections for Unused Pins  
For applications that do not need to use all functions of the device, Table 6-12 lists acceptable conditioning for  
any unused pins. When multiple options are listed in Table 6-12, any are acceptable. Pins not listed in Table 6-12  
must be connected according to the Pin Attributes table.  
Table 6-12. Connections for Unused Pins  
SIGNAL NAME  
ACCEPTABLE PRACTICE  
Analog  
VREFHIx  
VREFLOx  
Tie to VDDA  
Tie to VSSA  
No Connect  
ADCINx (except DAC pins)  
ADCINx (DAC pins)  
Tie to VSSA  
No Connect  
Pulldown to VSSA through 5-kΩ resistor  
Digital  
No connection (input mode with internal pullup enabled)  
No connection (output mode with internal pullup disabled)  
GPIOx  
Pullup or pulldown resistor (any value resistor, input mode, and with internal pullup  
disabled)  
X1  
X2  
Tie to VSS  
No Connect  
No Connect  
TCK  
TDI  
Pullup resistor  
No Connect  
Pullup resistor  
TDO  
No Connect  
TMS  
No Connect  
TRSTn  
ERRORSTS  
FLT1  
Pulldown resistor (2.2 kΩ or smaller)  
No Connect  
No Connect  
FLT2  
No Connect  
Power and Ground  
VDD  
All VDD pins must be connected per the Pin Attributes table.  
If a dedicated analog supply is not used, tie to VDDIO.  
All VDDIO pins must be connected per the Pin Attributes table.  
Must be tied to VDDIO  
VDDA  
VDDIO  
VDD3VFL  
VDDOSC  
VSS  
Must be tied to VDDIO  
All VSS pins must be connected to board ground.  
If a dedicated analog ground is not used, tie to VSS.  
If an external crystal is not used, this pin may be connected to the board ground.  
VSSA  
VSSOSC  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7 Specifications  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those indicated under the Recommended Operating Conditions is not implied. Exposure to absolute-maximum-  
rated conditions for extended periods may affect device reliability. All voltage values are with respect to VSS,  
unless otherwise noted.  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
4.6  
4.6  
4.6  
4.6  
1.5  
4.6  
4.6  
UNIT  
VDDIO with respect to VSS  
VDDA with respect to VSSA  
VDD3VFL with respect to VSS  
VDDOSC with respect to VSS  
VDD with respect to VSS  
VIN (3.3 V)  
Supply voltage  
V
Input voltage  
V
V
Output voltage  
VO  
Digital/analog input (per pin), IIK (VIN < VSS/VSSA or VIN > VDDIO/  
VDDA)(2)  
–20  
–20  
20  
20  
Input clamp current  
mA  
Total for all inputs, IIKTOTAL  
(VIN < VSS/VSSA or VIN > VDDIO/VDDA)  
Output current  
Digital output (per pin), IOUT  
–20  
–40  
–40  
–65  
20  
125  
150  
150  
mA  
°C  
°C  
°C  
Ambient temperature  
Operating junction temperature  
Storage temperature(1)  
TA  
TJ  
Tstg  
(1) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device  
life. For additional information, see the Semiconductor and IC Package Thermal Metrics Application Report.  
(2) Continuous clamp current per pin is ±2 mA. Do not operate in this condition continuously as VDDIO/VDDA voltage may internally rise and  
impact other electrical specifications.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
UNIT  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.2 ESD Ratings – Commercial  
VALUE  
TMS320F28388D, TMS320F28386D, TMS320F28384D, TMS320F28388S, TMS320F28386S, and TMS320F28384S in 337-ball ZWT  
package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge (ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101 or ANSI/ESDA/JEDEC JS-002(2)  
TMS320F28388D, TMS320F28386D, TMS320F28384D, TMS320F28388S, TMS320F28386S, and TMS320F28384S in 176-pin PTP  
package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge (ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101 or ANSI/ESDA/JEDEC JS-002(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 ESD Ratings – Automotive  
VALUE  
UNIT  
TMS320F28386D-Q1 and TMS320F28384D-Q1 in 337-ball ZWT package  
Human body model (HBM), per  
AEC Q100-002(1)  
All pins  
All pins  
±2000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
±500  
±750  
V
Corner balls on 337-ball ZWT:  
A1, A19, W1, W19  
TMS320F28386D-Q1, TMS320F28384D-Q1, TMS320F28386S-Q1, and TMS320F28384S-Q1 in 176-pin PTP package  
Human body model (HBM), per  
AEC Q100-002(1)  
All pins  
±2000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM),  
per AEC Q100-011  
All pins  
±500  
±750  
V
Corner pins on 176-pin PTP:  
1, 44, 45, 88, 89, 132, 133, 176  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.4 Recommended Operating Conditions  
MIN  
3.14  
3.14  
1.14  
NOM  
3.3  
3.3  
1.2  
0
MAX  
3.47  
3.47  
1.26  
UNIT  
Device supply voltage, VDDIO(1)  
Analog supply voltage, VDDA  
Device supply voltage, VDD  
Device ground, VSS  
V
V
V
V
V
Analog ground, VSSA  
0
Supply ramp rate of VDDIO, VDD,  
VDDA with respect to VSS(2)  
SRSUPPLY  
105  
10  
V/s  
ms  
VDDIO supply ramp time from 1V to  
VDDIOMIN  
tVDDIO-RAMP  
VIN  
Digital input voltage  
VSS – 0.3  
VSSA – 0.3  
–40  
VDDIO + 0.3  
VDDA + 0.3  
125  
V
V
VIN  
Analog input voltage  
S version(3)  
Junction temperature, TJ  
Free-Air temperature, TA  
°C  
°C  
Q version(3) (AEC Q100 qualification)  
–40  
125  
(1) VDDIO, VDD3VFL, and VDDOSC should be maintained within 0.3 V of each other.  
(2) Supply ramp rate faster than this can trigger the on-chip ESD protection.  
(3) Operation above TJ = 105°C for extended duration will reduce the lifetime of the device. See Calculating Useful Lifetimes of Embedded  
Processors for more information.  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.5 Power Consumption Summary  
Current values listed in this section are representative for the test conditions given and not the absolute  
maximum possible. The actual device currents in an application will vary with application code and pin  
configurations. Section 7.5.1 lists the system current consumption values for an external supply.  
7.5.1 System Current Consumption (External Supply)  
over operating free-air temperature range (unless otherwise noted).  
TYP : Vnom, 30  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPERATING MODE  
VDD current consumption during  
operational usage(3)  
IDD  
288  
45  
8
475  
mA  
mA  
mA  
VDDIO current consumption during  
operational usage(2)  
IDDIO  
See Section 7.5.2.  
VDDA current consumption during  
operational usage  
IDDA  
15  
IDLE MODE  
IDD  
VDD current consumption while device is in  
Idle mode(3)  
90  
4
265  
7
mA  
mA  
mA  
CPU is in IDLE mode  
VDDIO current consumption while device is  
in Idle mode(2)  
Flash is powered down  
XCLKOUT is turned off  
IDDIO  
VDDA current consumption while device is  
in Idle mode  
IDDA  
0.002  
0.010  
STANDBY MODE  
VDD current consumption while device is in  
Standby mode(3)  
IDD  
30  
4
200  
7
mA  
mA  
mA  
CPU is in STANDBY mode  
VDDIO current consumption while device is  
in Standby mode(2)  
Flash is powered down  
XCLKOUT is turned off  
IDDIO  
IDDA  
VDDA current consumption while device is  
in Standby mode  
0.002  
0.010  
FLASH ERASE/PROGRAM  
VDD Current consumption during Erase/  
IDD  
CPU is running from Flash, performing  
Erase and Program on the unused sector.  
242  
56  
360  
75  
mA  
mA  
mA  
Program cycle(1) (3)  
VDDIO Current consumption during Erase/  
Program cycle(1) (2)  
SYSCLK is running at 200 MHz.  
I/Os are inputs with pullups enabled.  
Peripheral clocks are turned OFF.  
IDDIO  
VDDA Current consumption during Erase/  
Program cycle  
IDDA  
0.01  
0.15  
RESET MODE  
CPU is held in reset via external low signal  
driven onto XRSn  
VDD current consumption while held in  
reset via XRSn(3)  
IDD  
55  
15  
mA  
mA  
mA  
XRSn held low through power-up  
CPU is held in reset via external low signal  
driven onto XRSn  
VDDIO current consumption while held in  
reset via XRSn(2)  
IDDIO  
XRSn held low through power-up  
CPU is held in reset via external low signal  
driven onto XRSn  
VDDA current consumption while held in  
reset via XRSn  
IDDA  
0.05  
XRSn held low through power-up  
(1) Brown-out events during flash programming can corrupt flash data and permanently lock the device. Programming environments using  
alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system  
components with sufficient margin to avoid supply brown-out conditions.  
(2) Includes current consumption for VDD3VFL supply (VDDIO + VDD3VFL).  
(3) VDD current values in this table do not include the 21-mA current from VDD to VSS through the 56Ω resistor that is mentioned in the  
Signal Descriptions section  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.5.2 Operating Mode Test Description  
Section 7.5.1 and the Typical Current Reduction per Disabled Peripheral table list the current consumption  
values for the operational mode of the device. The operational mode provides an estimation of what an  
application might encounter. The test condition for these measurements has the following properties:  
Code is executing from RAM.  
FLASH is read and kept in active state.  
No external components are driven by I/O pins.  
All peripherals have clocks enabled.  
All CPUs are actively executing code.  
CPU1 and CPU2 are operating at 200 MHz and CM is operating at 125 MHz.  
All analog peripherals are powered up. ADCs and DACs are periodically converting.  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.5.3 Current Consumption Graphs  
Figure 7-1, Figure 7-2, and Figure 7-3 show a typical representation of the relationship between frequency,  
temperature, core supply, and current consumption on the device. Actual results will vary based on the system  
implementation and conditions.  
Figure 7-1 shows the typical operating current profile across temperature and core supply voltage. Figure 7-2  
shows the typical standby current profile across temperature and core supply voltage. Figure 7-3 shows how the  
typical operating currents change with changing clock frequency of the C28x CPUs and changing clock  
frequency of the CM module.  
330  
Vdd = 1.14  
Vdd = 1.2  
Vdd = 1.26  
325  
320  
315  
310  
305  
300  
295  
290  
285  
280  
275  
270  
265  
-40 -20  
0
20  
40  
Temperature (°C)  
60  
80 100 120 140 160  
D001  
Figure 7-1. Typical Operating Current Versus Temperature  
57  
Vdd = 1.14  
Vdd = 1.2  
Vdd = 1.26  
54  
51  
48  
45  
42  
39  
36  
33  
30  
27  
24  
21  
-40 -20  
0
20  
40  
Temperature (°C)  
60  
80 100 120 140 160  
D002  
Figure 7-2. Typical Standby Current Versus Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
300  
CMCLK = 125 MHz  
CMCLK = 75 MHz  
CMCLK = 25 MHz  
275  
250  
225  
200  
175  
150  
125  
100  
75  
50  
25  
20  
40  
60  
80  
100 120 140 160 180 200  
SYSCLK (MHz)  
D003  
Figure 7-3. Typical Operating Current Versus SYSCLK  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.5.4 Reducing Current Consumption  
The F2838x devices provide some methods to reduce the device current consumption:  
One of the two low-power modes—IDLE or STANDBY—could be entered during idle periods in the  
application.  
The flash module may be powered down if the code is run from RAM.  
Disable the pullups on pins that assume an output function.  
Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be  
achieved by turning off the clock to any peripheral that is not used in a given application. The Typical Current  
Reduction per Disabled Peripheral table lists the typical current reduction that may be achieved by disabling  
the clocks using the PCLKCRx register.  
To realize the lowest VDDA current consumption in an LPM, see the Analog-to-Digital Converter (ADC)  
chapter of the TMS320F2838x Real-Time Microcontrollers Technical Reference Manual to ensure each  
module is powered down as well.  
Table 7-1. Typical Current Reduction per Disabled Peripheral  
PERIPHERAL(1)  
IDD CURRENT REDUCTION (mA)  
ADC(2)  
2.6  
1.5  
0.3  
1.6  
0.4  
2.4  
1.4  
0.4  
0.4  
0.7  
0.7  
0.5  
0.1  
0.4  
1.6  
0.2  
1.4  
0.3  
0.7  
1.0  
4.0  
2.0  
1.1  
0.5  
2.9  
3.7  
0.7  
0.9  
0.4  
1.5  
2.4  
0.6  
0.3  
CLA  
CLA BGCRC  
CLB  
CM - AES  
CM - GCRC  
CM - I2C  
CM - SSI  
CM - uDMA  
CM - UART  
CMPSS(2)  
CPU BGCRC  
CPU TIMER  
DAC(2)  
DCAN  
DCC  
DMA  
eCAP1 to eCAP5  
eCAP6 to eCAP7(3)  
EMIF  
ERAD  
ePWM1 - ePWM8(4)  
ePWM9 - ePWM16  
eQEP  
EtherCAT  
Ethernet  
FSI RX  
FSI TX  
I2C  
MCAN (CAN-FD)  
McBSP  
PMBUS  
SCI  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-1. Typical Current Reduction per Disabled Peripheral (continued)  
PERIPHERAL(1)  
IDD CURRENT REDUCTION (mA)  
SDFM  
SPI  
2.7  
0.7  
5.4  
USB  
(1) All peripherals are disabled upon reset. Use the PCLKCRx register to individually enable peripherals. For peripherals with multiple  
instances, the current quoted is for a single module.  
(2) This current represents the current drawn by the digital portion of the each module.  
(3) eCAP6 and eCAP7 can also be configured as HRCAP.  
(4) ePWM1 to ePWM8 can also be configured as HRPWM.  
7.6 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
TEST  
PARAMETER  
MIN  
TYP  
MAX UNIT  
CONDITIONS  
IOH = IOH MIN  
IOH = –100 μA  
IOL = IOL MAX  
IOL = 100 µA  
VDDIO * 0.8  
VDDIO – 0.2  
VOH  
High-level output voltage  
V
0.4  
V
0.2  
VOL  
Low-level output voltage  
IOH  
IOL  
High-level output source current for all output pins  
Low-level output sink current for all output pins  
High-level output  
–4  
mA  
4
mA  
Group 1(1)  
Group 2(2)  
Group 3(3)  
Group 4(4)  
Group 1(1)  
Group 2(2)  
Group 3(3)  
Group 4(4)  
impedance for group 1  
output pins  
70  
35  
45  
60  
70  
35  
45  
60  
Ω
High-level output  
impedance for group 2  
output pins  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
ROH  
High-level output  
impedance for group 3  
output pins  
High-level output  
impedance for group 4  
output pins  
Low-level output  
impedance for group 1  
output pins  
Low-level output  
impedance for group 2  
output pins  
ROL  
Low-level output  
impedance for group 3  
output pins  
Low-level output  
impedance for group 4  
output pins  
GPIO42, GPIO43  
All other pins  
VDDIO * 0.7  
2.0  
V
V
High-level input voltage  
(3.3V)  
VIH  
VIL  
Low-level input voltage (3.3V)  
Input hysteresis  
0.8  
V
VHYSTERESIS  
150  
mV  
Digital Inputs with  
pulldown(5)  
VDDIO = 3.3 V  
VIN = VDDIO  
IPULLDOWN  
IPULLUP  
Input current  
Input current  
120  
150  
µA  
µA  
Digital Inputs with pullup VDDIO = 3.3 V  
enabled(5)  
VIN = 0 V  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.6 Electrical Characteristics (continued)  
over recommended operating conditions (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Pullups and outputs  
disabled  
0 V ≤ VIN ≤ VDDIO  
Digital  
-2  
2
µA  
µA  
Analog (except  
ADCINB0 or  
DACOUTx)  
ILEAK  
Pin leakage  
-0.3  
0.3  
11  
0 V ≤ VIN ≤ VDDA  
ADCINB0(6)  
2
66  
2
µA  
µA  
pF  
DACOUTx  
CI  
Input capacitance(7)  
VDDIO power on reset  
voltage  
VDDIO-POR  
2.5  
V
(1) Group 1: GPIO0-2, 6, 8-10, 16, 18-29, 31-41, 44-70, 72-117, 119-132, 134-138  
(2) Group 2: GPIO3-5, 7, 11-15, 17, 133, 139-168  
(3) Group 3: GPIO30, 71, 118  
(4) Group 4: USB pins (GPIO42, 43)  
(5) See Table 6-6 for a list of pins with a pullup or pulldown.  
(6) The MAX input leakage shown on ADCINB0 is at high temperature.  
(7) The analog pins are specified separately; see Table 7-8.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Thermal Resistance Characteristics for ZWT Package  
°C/W(1)  
8.3  
AIR FLOW (lfm)(2)  
JC  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
Junction-to-ambient thermal resistance  
N/A  
N/A  
0
JB  
11.6  
20.6  
18.6  
17.4  
16.5  
0.3  
JA (High k PCB)  
150  
250  
500  
0
JMA  
Junction-to-moving air thermal resistance  
0.4  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
0.5  
0.6  
11.4  
11.2  
11.1  
11.1  
150  
250  
500  
PsiJB  
Junction-to-board  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
7.8 Thermal Resistance Characteristics for PTP Package  
°C/W(1)  
6.97  
6.05  
17.8  
12.8  
11.4  
10.1  
0.11  
0.24  
0.33  
0.42  
6.1  
AIR FLOW (lfm)(2)  
JC  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
Junction-to-ambient thermal resistance  
N/A  
N/A  
0
JB  
JA (High k PCB)  
150  
250  
500  
0
JMA  
Junction-to-moving air thermal resistance  
150  
250  
500  
0
PsiJT  
Junction-to-package top  
5.5  
150  
250  
500  
PsiJB  
Junction-to-board  
5.4  
5.3  
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.9 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems that  
exceed the recommended maximum power dissipation in the end product may require additional thermal  
enhancements. Ambient temperature (TA) varies with the end application and product design. The critical factor  
that affects reliability and functionality is TJ, the junction temperature, not the ambient temperature. Hence, care  
should be taken to keep TJ within the specified limits. Tcase should be measured to estimate the operating  
junction temperature TJ. Tcase is normally measured at the center of the package top-side surface. The thermal  
application report Semiconductor and IC Package Thermal Metrics helps to understand the thermal metrics and  
definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.10 System  
7.10.1 Power Sequencing  
Signal Pin Requirements: Before powering the device, no voltage larger than 0.3 V above VDDIO can be  
applied to any digital pin, and no voltage larger than 0.3 V above VDDA can be applied to any analog pin  
(including VREFHI).  
VDDIO and VDDA Requirements: The 3.3-V supplies VDDIO and VDDA should be powered up together and  
kept within 0.3 V of each other during functional operation.  
VDD Requirements: During the supply ramp, VDD should be kept no more than 0.3 V above VDDIO.  
A single 56Ω resistor (10% tolerance) should be placed between VDD and VSS. This resistor provides a load to  
consume an internal VDD3VFL-to-VDD current source and avoid VDD voltage rising during low-power device  
conditions.  
7.10.2 Reset Timing  
XRSn is the device reset pin. It functions as an input and open-drain output. The device has a built-in power-on  
reset (POR). During power up, the POR circuit drives the XRSn pin low. A watchdog or NMI watchdog reset also  
drives the pin low. An external circuit may drive the pin to assert a device reset.  
A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRSn and VDDIO. A capacitor should be  
placed between XRSn and VSS for noise filtering; the capacitance should be 100 nF or smaller. These values will  
allow the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is  
asserted. Figure 7-4 shows the recommended reset circuit.  
VDDIO  
2.2 kW to 10 kW  
Optional open-drain  
Reset source  
XRSn  
£100 nF  
Figure 7-4. Reset Circuit  
7.10.2.1 Reset Sources  
The following reset sources exist on this device: XRSn, WDRSn, NMIWDRSn, SYSRSn, SCCRESET,  
ECAT_RESET_OUT, SIMRESET_XRSn, and SIMRESET_CPU1RSn. See the Reset Signals table in the  
System Control chapter of the TMS320F2838x Real-Time Microcontrollers Technical Reference Manual.  
The parameter th(boot-mode) must account for a reset initiated from any of these sources.  
CAUTION  
Some reset sources are internally driven by the device. Some of these sources will drive XRSn low.  
Use this to disable any other devices driving the boot pins. The SCCRESET and debugger reset  
sources do not drive XRSn; therefore, the pins used for boot mode should not be actively driven by  
other devices in the system. The boot configuration has a provision for changing the boot pins in  
OTP; for more details, see the TMS320F2838x Real-Time Microcontrollers Technical Reference  
Manual.  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.10.2.2 Reset Electrical Data and Timing  
Section 7.10.2.2.1 lists the reset (XRSn) timing requirements. Section 7.10.2.2.2 lists the reset (XRSn) switching  
characteristics. Figure 7-5 shows the power-on reset. Figure 7-6 shows the warm reset.  
7.10.2.2.1 Reset (XRSn) Timing Requirements  
MIN  
1.5  
MAX  
UNIT  
ms  
th(boot-mode)  
tw(RSL2)  
Hold time for boot-mode pins  
Pulse duration, XRSn low on warm reset  
3.2  
µs  
7.10.2.2.2 Reset (XRSn) Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
100  
MAX  
UNIT  
tw(RSL1)  
tw(WDRS)  
tboot-flash  
Pulse duration, XRSn driven low by device after supplies are stable  
Pulse duration, reset pulse generated by watchdog  
µs  
cycles  
ms  
512tc(OSCCLK)  
Boot-ROM execution time to first instruction fetch in flash  
1.2  
7.10.2.2.3 Reset Timing Diagrams  
VDDIO, VDDA  
(3.3 V)  
VDD (1.2 V)  
t
w(RSL1)  
XRSn(A)  
t
boot-flash  
Boot ROM  
CPU  
Execution  
Phase  
User-code  
User-code dependent  
(B)  
h(boot-mode)  
t
GPIO pins as input  
Boot-ROM execution starts  
Boot-Mode Pins  
Peripheral/GPIO function  
Based on boot code  
I/O Pins  
GPIO pins as input (pullups are disabled)  
User-code dependent  
A. The XRSn pin can be driven externally by a supervisor or an external pullup resistor, see the Pin Attributes table.  
B. After reset from any source (see Section 7.10.2.1), the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode  
pin, the boot code branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in  
debugger environment), the boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user  
environment and could be with or without PLL enabled.  
Figure 7-5. Power-on Reset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
t
w(RSL2)  
XRSn  
User Code  
CPU  
Execution  
Phase  
User Code  
Boot ROM  
Boot-ROM execution starts  
(initiated by any reset source)  
(A)  
t
h(boot-mode)  
Peripheral/GPIO Function  
User-Code Dependent  
GPIO Pins as Input  
Boot-Mode Pins  
I/O Pins  
Peripheral/GPIO Function  
User-Code Execution Starts  
GPIO Pins as Input (Pullups are Disabled)  
User-Code Dependent  
A. After reset from any source (see Section 7.10.2.1), the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot  
Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in  
debugger environment), the Boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user  
environment and could be with or without PLL enabled.  
Figure 7-6. Warm Reset  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.10.3 Clock Specifications  
7.10.3.1 Clock Sources  
Table 7-2 lists four possible clock sources. Figure 7-7 provides an overview of the device's clocking system.  
Table 7-2. Possible Reference Clock Sources  
CLOCK SOURCE  
MODULES CLOCKED  
COMMENTS  
INTOSC1  
Can be used to provide clock for:  
Internal oscillator 1.  
Zero-pin overhead 10-MHz internal oscillator.  
Watchdog block  
Main PLL  
CPU-Timer 2  
INTOSC2(1)  
Can be used to provide clock for:  
Internal oscillator 2.  
Zero-pin overhead 10-MHz internal oscillator.  
Main PLL  
Auxiliary PLL  
CPU-Timer 2  
XTAL  
Can be used to provide clock for:  
External crystal or resonator connected between the X1 and X2 pins  
or single-ended clock connected to the X1 pin.  
Main PLL  
Auxiliary PLL  
CPU-Timer 2  
AUXCLKIN  
Can be used to provide clock for:  
Single-ended 3.3-V level clock source. GPIO133/AUXCLKIN pin  
should be used to provide the input clock.  
Auxiliary PLL  
CPU-Timer 2  
(1) On reset, internal oscillator 2 (INTOSC2) is the default clock source for both system PLL (OSCCLK) and auxiliary PLL (AUXOSCCLK).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
AUXPLLCLKEN  
AUXCLKDIV  
AUXOSCCLK  
AUX PLL  
AUXCLK  
Divider  
SYSCLKDIVSEL  
AUXCLKSRCCEL  
SYS  
Divider  
PLLRAWCLK  
SYS PLL  
AUXPLLRAWCLK  
USBBITCLK  
PLLSYSCLK  
PLLCLKEN  
OSCCLKSRCSEL  
One per CMCLK peripheral  
CMPCLKCRx.PERx  
CMDIVSRCSEL  
PLLSYSCLK  
WDCLK  
CMCLK  
DIVIDER  
CMCLK  
DIVSRCSEL  
NMIWDs  
GSx RAMs  
GPIOs  
Watch Dog  
Timers  
CPU1  
CPU2  
ETHERCATCLK  
MSG RAMs  
IPC  
XBARs  
AnalogSubsys  
SystemControl  
EMIF1  
CM.PERx.SYSCLK  
ECATDIV  
ETHERCATCLK  
Divider  
CPU2.CPUCLK  
CM.PERx.SYSCLK  
FPU  
TMU  
PHYCLKEN  
CPU1.CPUCLK  
VCRC  
Flash  
CPU1.SYSCLK  
FPU  
TMU  
VCRC  
Flash  
DCSM  
HWBIST  
DCSM  
MxRAM  
DxRAM  
BootROM  
HWBIST  
/4  
CPU2.SYSCLK  
CPUTIMERx  
DMA  
ETHERCAT  
PALLOCATE0  
.USB  
ETHERCATPHYCLK  
CPUTIMERx  
DMA  
CLA1  
XINT  
PIE  
CPU1.PCLKCRx  
CLA1  
XINT  
USB  
LSx RAM  
MSG RAMs  
MxRAM  
DxRAM  
BootROM  
BGCRC  
ERAD  
PIE  
CPU1_CPU2_CM  
.PERx.SYSCLK  
LSx RAM  
MSG RAMs  
BGCRC  
ERAD  
CPU2.PCLKCRx  
CPU2.PERx.SYSCLK  
CANx  
PALLOCATE0.CANx  
CPUSELx.CANx  
EMIF2  
WD  
X1 (XTAL)  
One per SYSCLK peripheral  
AUXCLKIN  
CPU2.PCLKCRx  
CPUSELx  
One per LSPCLK peripheral  
CANxBITCLK  
CPUSELx  
CPU1.PCLKCRx  
CANxBIT Clock  
CPU1.PCLKCRx  
LSP  
Divider  
LSPCLKDIV  
PERx.SYSCLK  
CPU2.PCLKCRx  
PERx.SYSCLK  
EPWMCLKDIV  
HRCAL  
/1  
/2  
PERx.LSPCLK  
ECAPx  
EQEPx  
SDFMx  
SPIx  
SCIx  
McBSPx  
ADC  
One per ePWM peripheral  
McBSPx Bit  
Clock  
CPU1.PCLKCRx  
SPIx Bit Clock  
SCIx Bit Clock  
CPUSELx  
EPWMCLK  
CMPSSx  
DACx  
FSIx  
I2C  
PMBUS  
DCCx  
CPU2.PCLKCRx  
ePWM  
HRPWM  
HRCAL  
CPU1.PCLKCRx  
HRCALCLK  
Figure 7-7. Clocking System  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
SYSPLL / AUXPLL  
OSCCLK/  
INTCLK/  
VCOCLK/  
PLLRAWCLK/  
AUXOSCCLK  
AUXINTCLK  
AUXVCOCLK  
AUXPLLRAWCLK  
÷
÷
VCO  
(REFDIV+1)  
(ODIV+1)  
÷
IMULT  
Figure 7-8. SYSPLL/AUXPLL  
In Figure 7-8,  
IMULT  
fOSCCLK  
REVDIV +1  
=
ì
fPLLRAWCLK  
ODIV +1  
(
)
fAUXOSCCLK  
(
)
IMULT  
=
ì
fAUXPLLRAWCLK  
REVDIV +1  
ODIV +1  
(
)
(
)
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.3.2 Clock Frequencies, Requirements, and Characteristics  
This section provides the frequencies and timing requirements of the input clocks, PLL lock times, frequencies of  
the internal clocks, and the frequency and switching characteristics of the output clock.  
7.10.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times  
Section 7.10.3.2.1.1 lists the frequency requirements for the input clocks. Section 7.10.3.2.1.2 lists the XTAL  
oscillator characteristics. Section 7.10.3.2.1.3 and Section 7.10.3.2.1.4 list the timing requirements for the input  
clocks. Section 7.10.3.2.1.5 lists the PLL lock times for SYSPLL and AUXPLL.  
7.10.3.2.1.1 Input Clock Frequency  
MIN  
10  
MAX  
20  
UNIT  
MHz  
MHz  
MHz  
f(XTAL)  
f(X1)  
Frequency, X1/X2, from external crystal or resonator  
Frequency, X1, from external oscillator  
10  
25  
f(AUXI)  
Frequency, AUXCLKIN, from external oscillator  
10  
60  
7.10.3.2.1.2 XTAL Oscillator Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
–0.3  
TYP  
MAX  
UNIT  
X1 VIL  
X1 VIH  
Valid low-level input voltage  
Valid high-level input voltage  
0.3 * VDDIO  
VDDIO + 0.3  
V
V
0.7 * VDDIO  
7.10.3.2.1.3 X1 Timing Requirements  
MIN  
MAX  
UNIT  
ns  
tf(X1)  
Fall time, X1  
6
6
tr(X1)  
Rise time, X1  
ns  
tw(X1L)  
tw(X1H)  
Pulse duration, X1 low as a percentage of tc(X1)  
Pulse duration, X1 high as a percentage of tc(X1)  
45%  
45%  
55%  
55%  
7.10.3.2.1.4 AUXCLKIN Timing Requirements  
MIN  
MAX  
6
UNIT  
ns  
tf(AUXI)  
Fall time, AUXCLKIN  
tr(AUXI)  
tw(AUXL)  
tw(AUXH)  
Rise time, AUXCLKIN  
6
ns  
Pulse duration, AUXCLKIN low as a percentage of tc(XCI)  
Pulse duration, AUXCLKIN high as a percentage of tc(XCI)  
45%  
45%  
55%  
55%  
7.10.3.2.1.5 APLL Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
PLL Lock Time  
SYSPLL / AUXPLL Lock time(1)  
MIN TYP  
MAX UNIT  
5µs + (1024 * (REFDIV + 1) * tc(OSCCLK)  
)
µs  
(1) The PLL lock time here defines the typical time that takes for the PLL to lock once PLL is enabled (SYSPLLCTL1[PLLENA]=1 or  
AUXPLLCTL1[PLLENA]=1). Additional time to verify the PLL clock using Dual Clock Comparator (DCC) is not accounted here. TI  
recommends using the latest example software from C2000Ware for initializing the PLLs. For the system PLL, see InitSysPll() or  
SysCtl_setClock(). For the auxiliary PLL, see InitAuxPll() or SysCtl_setAuxClock().  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.10.3.2.2 Internal Clock Frequencies  
Section 7.10.3.2.2.1 provides the clock frequencies for the internal clocks. Up to 1000 ppm of variation is  
accounted for in the frequencies below when using an external clock source such as a crystal or resonator.  
7.10.3.2.2.1 Internal Clock Frequencies  
MIN  
2
TYP  
MAX  
200  
500  
125  
500  
25  
UNIT  
MHz  
ns  
f(SYSCLK)  
Frequency, device (system) clock  
tc(SYSCLK)  
f(CMCLK)  
Period, device (system) clock  
5
Frequency, Connectivity Manager (CM) clock  
Period, Connectivity Manager (CM) clock  
Frequency, system PLL going into VCO (after REFDIV)(1)  
Frequency, system PLL VCO (before ODIV)  
Frequency, system PLL output (before SYSCLK divider)  
Frequency, auxiliary PLL going into VCO (after REFDIV)  
Frequency, auxiliary PLL VCO (before ODIV)  
Frequency, auxiliary PLL output (before AUXCLK divider)  
Frequency, PLLSYSCLK  
2
MHz  
ns  
tc(CMCLK)  
8
f(INTCLK)  
10  
220  
6
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
f(VCOCLK)  
f(PLLRAWCLK)  
f(AUXINTCLK)  
f(AUXVCOCLK)  
f(AUXPLLRAWCLK)  
f(PLL)  
600  
400  
25  
10  
220  
6
600  
400  
200  
2
f(PLL_LIMP)  
f(AUXPLL)  
f(AUXPLL_LIMP)  
f(LSP)  
Frequency, PLL Limp Frequency (2)  
45/(ODIV+1)  
45/(ODIV+1)  
Frequency, AUXPLLCLK  
2
150  
Frequency, AUXPLL Limp Frequency (3)  
Frequency, LSPCLK  
2
5
200  
500  
tc(LSPCLK)  
Period, LSPCLK  
Frequency, OSCCLK (INTOSC1 or INTOSC2 or XTAL or  
X1)  
f(OSCCLK)  
See respective clock  
See respective clock  
MHz  
MHz  
Frequency, auxiliary OSCCLK (INTOSC1 or INTOSC2 or  
XTAL or X1 or AUXCLKIN)  
f(AUXOSCCLK)  
f(EPWM)  
Frequency, EPWMCLK  
Frequency, HRPWMCLK  
200  
200  
MHz  
MHz  
f(HRPWM)  
60  
(1) INTOSC1 and INTOSC2 with +/-3% resolution can be used as a Reference Clock to PLL  
(2) PLL output frequency when OSCCLK is dead (Loss of OSCCLK causes PLL to Limp)  
(3) PLL output frequency when AUXOSCCLK is dead (Loss of AUXOSCCCLK causes AUXPLL to Limp)  
7.10.3.2.3 Output Clock Frequency and Switching Characteristics  
Section 7.10.3.2.3.1 lists the frequency and switching characteristics of the output clock, XCLKOUT.  
7.10.3.2.3.1 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER(1)  
MIN  
MAX  
5
UNIT  
ns  
tf(XCO)  
Fall time, XCLKOUT  
Rise time, XCLKOUT  
tr(XCO)  
tw(XCOL)  
tw(XCOH)  
f(XCO)  
5
ns  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
Frequency, XCLKOUT  
H – 2(2)  
H – 2(2)  
H + 2(2)  
H + 2(2)  
50  
ns  
ns  
MHz  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.3.3 Input Clocks  
In addition to the internal 0-pin oscillators, multiple external clock source options are available. Figure 7-9 shows  
the recommended methods of connecting crystals, resonators, and oscillators to pins X1/X2 (also referred to as  
XTAL) and AUXCLKIN.  
X1  
X2  
X1  
X2  
v
v
ssosc  
ssosc  
RESONATOR  
CRYSTAL  
R
C
C
L1  
D
L2  
X1  
X2  
GPIO133/AUXCLKIN  
v
ssosc  
NC  
3.3V  
VDD  
CLK  
3.3V  
VDD  
CLK  
OUT  
GND  
OUT  
GND  
3.3V OSCILLATOR  
3.3V OSCILLATOR  
Figure 7-9. Connecting Input Clocks to a 2838x Device  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.10.3.4 Crystal Oscillator  
When using a quartz crystal, it may be necessary to include a damping resistor (RD) in the crystal circuit to  
prevent over-driving the crystal (drive level can be found in the crystal data sheet). In higher-frequency  
applications (10 MHz or greater), RD is generally not required. If a damping resistor is required, RD should be as  
small as possible because the size of the resistance affects start-up time (smaller RD = faster start-up time). TI  
recommends that the crystal manufacturer characterize the crystal with the application board. Section 7.10.3.4.1  
lists the crystal oscillator parameters. Table 7-3 lists the crystal equivalent series resistance (ESR) requirements.  
Section 7.10.3.4.3 lists the crystal oscillator electrical characteristics.  
7.10.3.4.1 Crystal Oscillator Parameters  
MIN  
MAX  
24  
UNIT  
pF  
CL1, CL2  
C0  
Load capacitance  
12  
Crystal shunt capacitance  
7
pF  
7.10.3.4.2 Crystal Equivalent Series Resistance (ESR) Requirements Table  
For Table 7-3, ESR = Negative Resistance/3.  
Table 7-3. Crystal Equivalent Series Resistance (ESR) Requirements  
MAXIMUM ESR (Ω)  
(CL1 = CL2 = 12 pF)  
MAXIMUM ESR (Ω)  
(CL1 = CL2 = 24 pF)  
CRYSTAL FREQUENCY (MHz)  
10  
12  
14  
16  
18  
20  
55  
50  
50  
45  
45  
45  
110  
95  
90  
75  
65  
50  
7.10.3.4.3 Crystal Oscillator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ESR MAX = 110 Ω  
CL1 = CL2 = 24 pF  
C0 = 7 pF  
f = 10 MHz  
4
ms  
Start-up  
time(1)  
ESR MAX = 50 Ω  
CL1 = CL2 = 24 pF  
C0 = 7 pF  
f = 20 MHz  
2
ms  
Crystal drive level (DL)  
1
mW  
(1) Start-up time is dependent on the crystal and tank circuit components. TI recommends that the crystal vendor characterize the  
application with the chosen crystal.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.3.5 Internal Oscillators  
All F2838x devices contain two independent internal oscillators, referred to as INTOSC1 and INTOSC2. By  
default, both oscillators are enabled at power up. INTOSC2 is set as the source for the system reference clock  
(OSCCLK) and INTOSC1 is set as the backup clock source. INTOSC1 can also be manually configured as the  
system reference clock (OSCCLK).  
Section 7.10.3.5.1 provides the electrical characteristics of the internal oscillators to determine if this module  
meets the clocking requirements of the application.  
Note  
This oscillator cannot be used as the PLL source if the PLLSYSCLK is configured to frequencies  
above 194 MHz.  
7.10.3.5.1 INTOSC Characteristics  
over recommended operating conditions (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
MHz  
%
Frequency, INTOSC1 and  
INTOSC2  
fINTOSC  
9.7  
10  
10.3  
Frequency stability at room  
temperature  
30°C, Nominal  
VDD  
±0.1  
±0.2  
fINTOSC-STABILITY  
Frequency stability over VDD  
Start-up and settling time  
30°C  
%
tINT0SC-ST  
20  
µs  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.10.4 Flash Parameters  
The on-chip flash memory is tightly integrated to the CPU, allowing code execution directly from flash through  
128-bit-wide prefetch reads and a pipeline buffer. Flash performance for sequential code is equal to execution  
from RAM. Factoring in discontinuities, most applications will run with an efficiency of approximately 80% relative  
to code executing from RAM.  
This device also has an One-Time-Programmable (OTP) sector used for the dual code security module (DCSM),  
which cannot be erased after it is programmed.  
Table 7-4 lists the minimum required flash wait states at different frequencies. The Flash Parameters table lists  
the flash parameters.  
Table 7-4. Flash Wait States  
CPUCLK (MHz)  
MINIMUM WAIT STATES (1)  
EXTERNAL OSCILLATOR OR CRYSTAL  
150 < CPUCLK ≤ 200  
INTOSC1 OR INTOSC2  
145 < CPUCLK ≤ 194  
97 < CPUCLK ≤ 145  
48 < CPUCLK ≤ 97  
CPUCLK ≤ 48  
3
2
1
0
100 < CPUCLK ≤ 150  
50 < CPUCLK ≤ 100  
CPUCLK ≤ 50  
(1) Minimum required FRDCNTL[RWAIT].  
Table 7-5. Flash Parameters  
PARAMETER  
MIN  
TYP  
40  
MAX  
300  
UNIT  
µs  
128 data bits + 16 ECC bits  
8KW sector  
Program Time(1)  
90  
180  
ms  
Program Time(1)  
32KW sector  
360  
30  
720  
ms  
EraseTime(2) at < 25 cycles  
EraseTime(2) at 1000 cycles  
EraseTime(2) at 2000 cycles  
EraseTime(2) at 20K cycles  
Nwec Write/Erase Cycles  
8KW or 32KW sector  
8KW or 32KW sector  
8KW or 32KW sector  
8KW or 32KW sector  
55  
ms  
40  
350  
ms  
50  
600  
ms  
110  
4000  
20000  
ms  
cycles  
years  
tretention Data retention duration at TJ = 85oC  
20  
(1) Program time is at the maximum device frequency. Program time includes overhead of the flash state machine but does not include  
the time to transfer the following into RAM:  
• Code that uses flash API to program the flash  
• Flash API itself  
• Flash data to be programmed  
In other words, the time indicated in this table is applicable after all the required code/data is available in the device RAM, ready for  
programming. The transfer time will significantly vary depending on the speed of the emulator used.  
Program time calculation is based on programming 144 bits at a time at the specified operating frequency. Program time includes  
Program verify by the CPU. The program time does not degrade with write/erase (W/E) cycling, but the erase time does.  
Erase time includes Erase verify by the CPU and does not involve any data transfer.  
(2) Erase time includes Erase verify by the CPU.  
Note  
The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit  
word may only be programmed once per write/erase cycle. For more details, see the "Flash: Minimum  
Programming Word Size" advisory in the TMS320F2838x Real-Time MCUs Silicon Errata.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.5 Emulation/JTAG  
The JTAG port has five dedicated pins: TRSTn, TMS, TDI, TDO, and TCK. The TRSTn signal should always be  
pulled down through a 2.2-kΩ pulldown resistor on the board. This MCU does not support the EMU0 and EMU1  
signals that are present on 14-pin and 20-pin emulation headers. These signals should always be pulled up at  
the emulation header through a pair of board pullup resistors ranging from 2.2 kΩ to 4.7 kΩ (depending on the  
drive strength of the debugger ports). Typically, a 2.2-kΩ value is used.  
See Figure 7-10 to see how the 14-pin JTAG header connects to the MCU’s JTAG port signals. Figure 7-11  
shows how to connect to the 20-pin header. The 20-pin JTAG header terminals EMU2, EMU3, and EMU4 are  
not used and should be grounded.  
The PD (Power Detect) terminal of the JTAG debug probe header should be connected to the board 3.3-V  
supply. Header GND terminals should be connected to board ground. TDIS (Cable Disconnect Sense) should  
also be connected to board ground. The JTAG clock should be looped from the header TCK output terminal back  
to the RTCK input terminal of the header (to sense clock continuity by the JTAG debug probe). Header terminal  
RESETn is an open-drain output from the JTAG debug probe header that enables board components to be reset  
through JTAG debug probe commands (available only through the 20-pin header).  
Typically, no buffers are needed on the JTAG signals when the distance between the MCU target and the JTAG  
header is smaller than 6 inches (15.24 cm), and no other devices are present on the JTAG chain. Otherwise,  
each signal should be buffered. Additionally, for most JTAG debug probe operations at 10 MHz, no series  
resistors are needed on the JTAG signals. However, if high emulation speeds are expected, 22-Ω resistors  
should be placed in series on each JTAG signal.  
For more information about hardware breakpoints and watchpoints, see Hardware Breakpoints and Watchpoints  
for C28x in CCS.  
For more information about JTAG emulation, see the XDS Target Connection Guide.  
Distance between the header and the target  
should be less than 6 inches (15.24 cm).  
2.2 kW  
GND  
TRSTn  
TMS  
TDI  
2
1
3
TMS  
TDI  
TRSTn  
TDIS  
4
GND  
100 W  
MCU  
5
6
3.3 V  
PD  
KEY  
7
8
TDO  
TCK  
TDO  
RTCK  
TCK  
GND  
GND  
GND  
EMU1  
9
10  
12  
14  
11  
13  
4.7 kW  
4.7 kW  
3.3 V  
EMU0  
3.3 V  
Figure 7-10. Connecting to the 14-Pin JTAG Header  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Distance between the header and the target  
should be less than 6 inches (15.24 cm).  
2.2 kW  
TRSTn  
TMS  
TDI  
GND  
GND  
2
1
3
TMS  
TRSTn  
TDIS  
4
TDI  
100 W  
MCU  
5
6
3.3V  
PD  
KEY  
7
8
TDO  
TCK  
TDO  
GND  
GND  
GND  
EMU1  
GND  
EMU3  
GND  
9
10  
12  
14  
16  
18  
20  
RTCK  
TCK  
11  
13  
15  
17  
19  
4.7 kW  
4.7 kW  
3.3 V  
EMU0  
RESETn  
EMU2  
EMU4  
3.3 V  
open  
drain  
A low pulse from the JTAG debug probe  
can be tied with other reset sources  
to reset the board.  
GND  
GND  
Figure 7-11. Connecting to the 20-Pin JTAG Header  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.5.1 JTAG Electrical Data and Timing  
Section 7.10.5.1.1 lists the JTAG timing requirements. Section 7.10.5.1.2 lists the JTAG switching  
characteristics. Figure 7-12 shows the JTAG timing.  
7.10.5.1.1 JTAG Timing Requirements  
NO.  
MIN  
66.66  
26.66  
26.66  
13  
MAX  
UNIT  
ns  
1
tc(TCK)  
Cycle time, TCK  
1a  
1b  
tw(TCKH)  
Pulse duration, TCK high (40% of tc)  
Pulse duration, TCK low (40% of tc)  
Input setup time, TDI valid to TCK high  
Input setup time, TMS valid to TCK high  
Input hold time, TDI valid from TCK high  
Input hold time, TMS valid from TCK high  
ns  
tw(TCKL)  
ns  
tsu(TDI-TCKH)  
tsu(TMS-TCKH)  
th(TCKH-TDI)  
th(TCKH-TMS)  
3
4
ns  
ns  
13  
11  
11  
7.10.5.1.2 JTAG Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
2
td(TCKL-TDO)  
Delay time, TCK low to TDO valid  
6
30  
ns  
7.10.5.1.3 JTAG Timing  
1
1a  
1b  
TCK  
TDO  
2
3
4
TDI/TMS  
Figure 7-12. JTAG Timing  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.10.6 GPIO Electrical Data and Timing  
The peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. On reset, GPIO pins  
are configured as inputs. For specific inputs, the user can also select the number of input qualification cycles to  
filter unwanted noise glitches.  
The GPIO module contains an Output X-BAR which allows an assortment of internal signals to be routed to a  
GPIO in the GPIO mux positions denoted as OUTPUTXBARx. The GPIO module also contains an Input X-BAR  
which is used to route signals from any GPIO input to different IP blocks such as the ADC(s), eCAP(s),  
ePWM(s), and external interrupts. For more details, see the X-BAR chapter in the TMS320F2838x Real-Time  
Microcontrollers Technical Reference Manual.  
7.10.6.1 GPIO - Output Timing  
Section 7.10.6.1.1 lists the general-purpose output switching characteristics. Figure 7-13 shows the general-  
purpose output timing.  
7.10.6.1.1 General-Purpose Output Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
8(1)  
8(1)  
50  
UNIT  
ns  
tr(GPO)  
tf(GPO)  
tfGPO  
Rise time, GPIO switching low to high  
All GPIOs  
All GPIOs  
Fall time, GPIO switching high to low  
Toggling frequency, GPIO pins  
ns  
MHz  
(1) Rise time and fall time vary with load. These values assume a 40-pF load.  
7.10.6.1.2 General-Purpose Output Timing  
GPIO  
tr(GPO)  
tf(GPO)  
Figure 7-13. General-Purpose Output Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.6.2 GPIO - Input Timing  
Section 7.10.6.2.1 lists the general-purpose input timing requirements. Figure 7-14 shows the sampling mode.  
7.10.6.2.1 General-Purpose Input Timing Requirements  
MIN  
1tc(SYSCLK)  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
QUALPRD = 0  
QUALPRD ≠ 0  
tw(SP)  
Sampling period  
2tc(SYSCLK) * QUALPRD  
tw(SP) * (n(1) – 1)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
2tc(SYSCLK)  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
7.10.6.2.2 Sampling Mode  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
tw(SP)  
Sampling Period determined  
by GPxCTRL[QUALPRD](B)  
tw(IQSW)  
(SYSCLK cycle * 2 * QUALPRD) * 5(C)  
Sampling Window  
SYSCLK  
QUALPRD = 1  
(SYSCLK/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to  
0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLK cycle. For any other value "n", the qualification sampling period in 2n  
SYSCLK cycles (that is, at every 2n SYSCLK cycles, the GPIO pin will be sampled).  
B. The qualification period selected through the GPxCTRL register applies to groups of 8 GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLK cycles or greater. In other words,  
the inputs should be stable for (5 x QUALPRD x 2) SYSCLK cycles. This would ensure 5 sampling periods for detection to occur.  
Because external signals are driven asynchronously, an 13-SYSCLK-wide pulse ensures reliable recognition.  
Figure 7-14. Sampling Mode  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.10.6.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLK.  
Sampling frequency = SYSCLK/(2 ´ QUALPRD), if QUALPRD ¹ 0  
(1)  
Sampling frequency = SYSCLK, if QUALPRD = 0  
(2)  
Sampling period = SYSCLK cycle ´ 2 ´ QUALPRD, if QUALPRD ¹ 0  
(3)  
In Equation 1, Equation 2, and Equation 3, SYSCLK cycle indicates the time period of SYSCLK.  
Sampling period = SYSCLK cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the  
signal. This is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using 3 samples  
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0  
Sampling window width = (SYSCLK cycle) × 2, if QUALPRD = 0  
Case 2:  
Qualification using 6 samples  
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0  
Sampling window width = (SYSCLK cycle) × 5, if QUALPRD = 0  
Figure 7-15 shows the general-purpose input timing.  
SYSCLK  
GPIOxn  
tw(GPI)  
Figure 7-15. General-Purpose Input Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.7 Interrupts  
Figure 7-16 provides a high-level view of the interrupt architecture.  
As shown in Figure 7-16, the devices support five external interrupts (XINT1 to XINT5) that can be mapped onto  
any of the GPIO pins.  
In this device, 16 ePIE block interrupts are grouped into 1 CPU interrupt. In total, there are 12 CPU interrupt  
groups, with 16 interrupts per group.  
CM_STATUS  
SYS_ERR  
CPU1.CRC  
CPU1.CLA1.CRC  
CPU1.TINT0  
CPU1.TIMER0  
CPU1.LPMINT  
CPU1.WDINT  
CPU1.NMIWD  
CMNMIWDRSn  
LPM Logic  
CPU1.WD  
CPU1.WAKEINT  
NMI  
CPU1  
CPU1  
ePIE  
CPU1.XINT1 Control  
INPUTXBAR4  
INT1  
To  
INT12  
GPIO0  
GPIO1  
...  
CPU1.XINT2 Control  
CPU1.XINT3 Control  
CPU1.XINT4 Control  
CPU1.XINT5 Control  
INPUTXBAR5  
INPUTXBAR6  
INPUTXBAR13  
Input  
X-Bar  
...  
GPIOx  
INPUTXBAR14  
CPU1.TINT1  
CPU1.TINT2  
INT13  
INT14  
CPU1.TIMER1  
CPU1.TIMER2  
IPC  
4 CPU-to-CPU  
8 CM-to-CPU  
Interrupts  
Peripherals  
NMI  
CPU2.NMIWD  
CPU2  
CPU2.XINT1 Control  
CPU2.XINT2 Control  
CPU2.XINT3 Control  
CPU2.XINT4 Control  
CPU2.XINT5 Control  
INT1  
To  
INT12  
CPU2  
ePIE  
CPU2.TINT1  
CPU2.TINT2  
CPU2.TIMER1  
CPU2.TIMER2  
INT13  
INT14  
CPU2.LPMINT  
CPU2.WDINT  
LPM Logic  
CPU2.WD  
CPU2.WAKEINT  
CPU2.TINT0  
CPU2.TIMER0  
CPU2.CRC  
CPU2.CLA1.CRC  
SYS_ERR  
Figure 7-16. External and ePIE Interrupt Sources  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.10.7.1 External Interrupt (XINT) Electrical Data and Timing  
Section 7.10.7.1.1 lists the external interrupt timing requirements. Section 7.10.7.1.2 lists the external interrupt  
switching characteristics. Figure 7-17 shows the external interrupt timing. For an explanation of the input qualifier  
parameters, see Section 7.10.6.2.1.  
7.10.7.1.1 External Interrupt Timing Requirements  
MIN  
2tc(SYSCLK)  
MAX  
UNIT  
cycles  
cycles  
Synchronous  
With qualifier  
tw(INT)  
Pulse duration, INT input low/high  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
7.10.7.1.2 External Interrupt Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
td(INT) Delay time, INT low/high to interrupt-vector fetch(1)  
(1) This assumes that the ISR is in a single-cycle memory.  
7.10.7.1.3 External Interrupt Timing  
tw(IQSW) + 14tc(SYSCLK)  
tw(IQSW) + tw(SP) + 14tc(SYSCLK) cycles  
tw(INT)  
XINT1, XINT2, XINT3,  
XINT4, XINT5  
td(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 7-17. External Interrupt Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.8 Low-Power Modes  
This device has two clock-gating low-power modes.  
Further details, as well as the entry and exit procedure, for all of the low-power modes can be found in the Low  
Power Modes section of the TMS320F2838x Real-Time Microcontrollers Technical Reference Manual.  
7.10.8.1 Clock-Gating Low-Power Modes  
IDLE and STANDBY modes on this device are similar to those on other C28x devices. Table 7-6 describes the  
effect on the system when any of the clock-gating low-power modes are entered.  
Table 7-6. Effect of Clock-Gating Low-Power Modes on the Device  
MODULES/CLOCK DOMAIN  
CPU1 IDLE  
Active  
Active  
Gated  
N/A  
CPU1 STANDBY  
CPU2 IDLE  
CPU2 STANDBY  
CPU1.CLKIN  
Gated  
Gated  
Gated  
N/A  
N/A  
N/A  
N/A  
CPU1.SYSCLK  
CPU1.CPUCLK  
CPU2.CLKIN  
N/A  
N/A  
N/A  
Active  
Active  
Gated  
Active  
Gated  
Gated  
Gated  
CPU2.SYSCLK  
CPU2.CPUCLK  
N/A  
N/A  
N/A  
N/A  
Clock to modules Connected to  
PERx.SYSCLK  
Active  
Gated if CPUSEL.PERx =  
CPU1  
Gated if CPUSEL.PERx =  
CPU2  
CPU1.WDCLK  
CPU2.WDCLK  
AUXPLLCLK  
PLL  
Active  
N/A  
Active  
N/A  
N/A  
N/A  
Active  
Active  
Active  
Active  
Active  
Active  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
INTOSC1  
INTOSC2  
Flash(1)  
X1/X2 Crystal Oscillator  
(1) Entering any of the low-power modes does not automatically power down the flash. The application should always power down the  
flash memory before entering a low-power mode.  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.10.8.2 Low-Power Mode Wakeup Timing  
Section 7.10.8.2.1 lists the IDLE mode timing requirements, Section 7.10.8.2.2 lists the switching characteristics,  
and Figure 7-18 shows the timing diagram for IDLE mode. For an explanation of the input qualifier parameters,  
see Section 7.10.6.2.1.  
7.10.8.2.1 IDLE Mode Timing Requirements  
MIN  
2tc(SYSCLK)  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
tw(WAKE)  
Pulse duration, external wake-up signal  
cycles  
2tc(SYSCLK) + tw(IQSW)  
7.10.8.2.2 IDLE Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
40tc(SYSCLK) cycles  
Wakeup from Flash  
(Flash module in active state)  
40tc(SYSCLK) + tw(WAKE) cycles  
Delay time,  
external wake  
(2)  
6700tc(SYSCLK)  
cycles  
Wakeup from Flash  
(Flash module in sleep state)  
td(WAKE-IDLE) signal to program  
execution  
6700tc(SYSCLK) (2) + tw(WAKE) cycles  
25tc(SYSCLK) cycles  
resume(1)  
Wakeup from RAM  
25tc(SYSCLK) + tw(WAKE) cycles  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
(2) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and FPAC1[PSLEEP] is 0x860.  
7.10.8.2.3 IDLE Entry and Exit Timing Diagram  
td(WAKE-IDLE)  
Address/Data  
(internal)  
XCLKOUT  
tw(WAKE)  
WAKE(A)  
A. WAKE can be any enabled interrupt, WDINT or XRSn. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum)  
is needed before the wake-up signal could be asserted.  
Figure 7-18. IDLE Entry and Exit Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Section 7.10.8.2.4 lists the STANDBY mode timing requirements, Section 7.10.8.2.5 lists the switching  
characteristics, and Figure 7-19 shows the timing diagram for STANDBY mode.  
7.10.8.2.4 STANDBY Mode Timing Requirements  
MIN  
MAX  
UNIT  
QUALSTDBY = 0 | 2tc(OSCCLK)  
QUALSTDBY > 0 |  
3tc(OSCCLK)  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
cycles  
(2 + QUALSTDBY) * tc(OSCCLK)  
(1)  
(2 + QUALSTDBY)tc(OSCCLK)  
(1) QUALSTDBY is a 6-bit field in the LPMCR register.  
7.10.8.2.5 STANDBY Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Delay time, IDLE instruction executed to  
XCLKOUT stop  
td(IDLE-XCOS)  
16tc(INTOSC1) cycles  
Wakeup from flash  
(Flash module in  
active state)  
td(WAKE-STBY)  
175tc(SYSCLK) + tw(WAKE-INT) cycles  
Delay time, external wake signal to program  
execution resume(1)  
Wakeup from flash  
(Flash module in  
sleep state)  
td(WAKE-STBY)  
td(WAKE-STBY)  
6700tc(SYSCLK) (2) + tw(WAKE-INT) cycles  
Wakeup from RAM  
3tc(OSC) + 15tc(SYSCLK) + tw(WAKE-INT) cycles  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered  
by the wake-up signal) involves additional latency.  
(2) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and  
FPAC1[PSLEEP]. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and FPAC1[PSLEEP] is 0x860.  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.10.8.2.6 STANDBY Entry and Exit Timing Diagram  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
(G)  
Device  
Status  
STANDBY  
STANDBY  
Normal Execution  
Flushing Pipeline  
Wake-up  
Signal  
tw(WAKE-INT)  
td(WAKE-STBY)  
OSCCLK  
XCLKOUT  
td(IDLE-XCOS)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The LPM block responds to the STANDBY signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off.  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode. After  
the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.  
D. The external wake-up signal is driven active.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal  
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wakeup behavior of the device will not be deterministic and the device  
may not exit low-power mode for subsequent wakeup pulses.  
F. After a latency period, the STANDBY mode is exited.  
G. Normal execution resumes. The device will respond to the interrupt (if enabled).  
Figure 7-19. STANDBY Entry and Exit Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.9 External Memory Interface (EMIF)  
The EMIF provides a means of connecting the CPU to various external storage devices like asynchronous  
memories (SRAM, NOR flash) or synchronous memory (SDRAM).  
7.10.9.1 Asynchronous Memory Support  
The EMIF supports asynchronous memories:  
SRAMs  
NOR Flash memories  
There is an external wait input that allows slower asynchronous memories to extend the memory access. The  
EMIF module supports up to three chip selects ( EMIF_CS[4:2]). Each chip select has the following individually  
programmable attributes:  
Data bus width  
Read cycle timings: setup, hold, strobe  
Write cycle timings: setup, hold, strobe  
Bus turnaround time  
Extended wait option with programmable time-out  
Select strobe option  
7.10.9.2 Synchronous DRAM Support  
The EMIF memory controller is compliant with the JESD21-C SDR SDRAMs that use a 32-bit or 16-bit data bus.  
The EMIF has a single SDRAM chip select ( EMIF_CS[0]).  
The address space of the EMIF, for the synchronous memory (SDRAM), lies beyond the 22-bit range of the  
program address bus and can only be accessed through the data bus, which places a restriction on the C  
compiler being able to work effectively on data in this space. Therefore, when using SDRAM, the user is advised  
to copy data (using the DMA) from external memory to RAM before working on it. See the examples in  
C2000Ware for C2000 MCUs and the TMS320F2838x Real-Time Microcontrollers Technical Reference Manual.  
SDRAM configurations supported are:  
One-bank, two-bank, and four-bank SDRAM devices  
Devices with 8-, 9-, 10-, and 11-column addresses  
CAS latency of two or three clock cycles  
16-bit/32-bit data bus width  
3.3-V LVCMOS interface  
Additionally, the EMIF supports placing the SDRAM in self-refresh and power-down modes. Self-refresh mode  
allows the SDRAM to be put in a low-power state while still retaining memory contents because the SDRAM will  
continue to refresh itself even without clocks from the microcontroller. Power-down mode achieves even lower  
power, except the microcontroller must periodically wake up and issue refreshes if data retention is required. The  
EMIF module does not support mobile SDRAM devices.  
On this device, the EMIF does not support burst access for SDRAM configurations. This means every access to  
an external SDRAM device will have CAS latency.  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.10.9.3 EMIF Electrical Data and Timing  
7.10.9.3.1 Asynchronous RAM  
Section 7.10.9.3.1.1 lists the EMIF asynchronous memory timing requirements. Section 7.10.9.3.1.2 lists the  
EMIF asynchronous memory switching characteristics. Figure 7-20 through Figure 7-23 show the EMIF  
asynchronous memory timing diagrams.  
7.10.9.3.1.1 EMIF Asynchronous Memory Timing Requirements  
NO.  
MIN  
MAX  
UNIT  
Reads and Writes  
E
EMIF clock period  
tc(SYSCLK)  
2E(1)  
ns  
ns  
2
Reads  
12  
tw(EM_WAIT)  
Pulse duration, EMxWAIT assertion and deassertion  
tsu(EMDV-EMOEH)  
th(EMOEH-EMDIV)  
Setup time, EMxD[y:0] valid before EMxOE high  
Hold time, EMxD[y:0] valid after EMxOE high  
15  
0
ns  
ns  
13  
Setup Time, EMxWAIT asserted before end of Strobe  
Phase(2)  
14  
Writes  
28  
tsu(EMOEL-EMWAIT)  
4E+20(1)  
ns  
Setup Time, EMxWAIT asserted before end of Strobe  
Phase(2)  
tsu(EMWEL-EMWAIT)  
4E+20(1)  
ns  
(1) E = EMxCLK period in ns.  
(2) Setup before end of STROBE phase (if no extended wait states are inserted) by which EMxWAIT must be asserted to add extended  
wait states. Figure 7-21 and Figure 7-23 describe EMIF transactions that include extended wait states inserted during the STROBE  
phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where  
the HOLD phase would begin if there were no extended wait cycles.  
7.10.9.3.1.2 EMIF Asynchronous Memory Switching Characteristics  
NO.  
PARAMETER(1) (2) (3)  
MIN  
MAX UNIT  
1
td(TURNAROUND)  
Turn around time  
(TA)*E–3  
(TA)*E+2  
ns  
Reads  
EMIF read cycle time (EW = 0)  
(RS+RST+RH)*E–3  
(RS+RST+RH)*E+2  
ns  
ns  
3
4
tc(EMRCYCLE)  
(RS+RST+RH+  
(EWC*16))*E–3  
(RS+RST+RH+  
(EWC*16))*E+2  
EMIF read cycle time (EW = 1)  
Output setup time, EMxCS[y:2] low to  
EMxOE low (SS = 0)  
(RS)*E–3  
–3  
(RS)*E+2  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tsu(EMCEL-EMOEL)  
Output setup time, EMxCS[y:2] low to  
EMxOE low (SS = 1)  
Output hold time, EMxOE high to  
EMxCS[y:2] high (SS = 0)  
(RH)*E–3  
–3  
(RH)*E  
0
5
th(EMOEH-EMCEH)  
Output hold time, EMxOE high to  
EMxCS[y:2] high (SS = 1)  
Output setup time, EMxBA[y:0] valid to  
EMxOE low  
6
7
8
9
tsu(EMBAV-EMOEL)  
th(EMOEH-EMBAIV)  
tsu(EMAV-EMOEL)  
th(EMOEH-EMAIV)  
(RS)*E–3  
(RH)*E–3  
(RS)*E–3  
(RH)*E–3  
(RS)*E+2  
(RH)*E  
(RS)*E+2  
(RH)*E  
Output hold time, EMxOE high to  
EMxBA[y:0] invalid  
Output setup time, EMxA[y:0] valid to  
EMxOE low  
Output hold time, EMxOE high to  
EMxA[y:0] invalid  
EMxOE active low width (EW = 0)  
EMxOE active low width (EW = 1)  
(RST)*E–1  
(RST)*E+1  
ns  
ns  
10  
tw(EMOEL)  
(RST+(EWC*16))*E–1  
(RST+(EWC*16))*E+1  
Delay time from EMxWAIT deasserted  
to EMxOE high  
11  
29  
30  
td(EMWAITH-EMOEH)  
tsu(EMDQMV-EMOEL)  
th(EMOEH-EMDQMIV)  
4*E+10  
(RS)*E–3  
(RH)*E–3  
5*E+15  
(RS)*E+2  
(RH)*E  
ns  
ns  
ns  
Output setup time, EMxDQM[y:0] valid  
to EMxOE low  
Output hold time, EMxOE high to  
EMxDQM[y:0] invalid  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
MAX UNIT  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.10.9.3.1.2 EMIF Asynchronous Memory Switching Characteristics (continued)  
NO.  
PARAMETER(1) (2) (3)  
MIN  
Writes  
EMIF write cycle time (EW = 0)  
(WS+WST+WH)*E–3  
(WS+WST+WH)*E+2  
ns  
ns  
15  
16  
tc(EMWCYCLE)  
(WS+WST+WH+  
(EWC*16))*E–3  
(WS+WST+WH+  
(EWC*16))*E+2  
EMIF write cycle time (EW = 1)  
Output setup time, EMxCS[y:2] low to  
EMxWE low (SS = 0)  
(WS)*E–3  
–3  
(WS)*E+2  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tsu(EMCEL-EMWEL)  
Output setup time, EMxCS[y:2] low to  
EMxWE low (SS = 1)  
Output hold time, EMxWE high to  
EMxCS[y:2] high (SS = 0)  
(WH)*E–3  
–3  
(WH)*E  
17  
th(EMWEH-EMCEH)  
Output hold time, EMxWE high to  
EMxCS[y:2] high (SS = 1)  
0
Output setup time, EMxDQM[y:0] valid  
to EMxWE low  
18  
19  
20  
21  
22  
23  
tsu(EMDQMV-EMWEL)  
th(EMWEH-EMDQMIV)  
tsu(EMBAV-EMWEL)  
th(EMWEH-EMBAIV)  
tsu(EMAV-EMWEL)  
th(EMWEH-EMAIV)  
(WS)*E–3  
(WH)*E–3  
(WS)*E–3  
(WH)*E–3  
(WS)*E–3  
(WH)*E–3  
(WST)*E–1  
(WST+(EWC*16))*E–1  
4*E+10  
(WS)*E+2  
(WH)*E  
Output hold time, EMxWE high to  
EMxDQM[y:0] invalid  
Output setup time, EMxBA[y:0] valid to  
EMxWE low  
(WS)*E+2  
(WH)*E  
Output hold time, EMxWE high to  
EMxBA[y:0] invalid  
Output setup time, EMxA[y:0] valid to  
EMxWE low  
(WS)*E+2  
(WH)*E  
Output hold time, EMxWE high to  
EMxA[y:0] invalid  
EMxWE active low width  
(EW = 0)  
(WST)*E+1  
(WST+(EWC*16))*E+1  
5*E+15  
24  
tw(EMWEL)  
EMxWE active low width  
(EW = 1)  
Delay time from EMxWAIT deasserted  
to EMxWE high  
25  
26  
27  
td(EMWAITH-EMWEH)  
tsu(EMDV-EMWEL)  
th(EMWEH-EMDIV)  
Output setup time, EMxD[y:0] valid to  
EMxWE low  
(WS)*E–3  
(WH)*E–3  
(WS)*E+2  
(WH)*E  
Output hold time, EMxWE high to  
EMxD[y:0] invalid  
(1) TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,  
MEWC = Maximum external wait cycles. These parameters are programmed through the Asynchronous Bank and Asynchronous Wait  
Cycle Configuration Registers. These support the following ranges of values: TA[4–1], RS[16–1], RST[64–4], RH[8–1], WS[16–1],  
WST[64–1], WH[8–1], and MEWC[1–256]. See the TMS320F2838x Real-Time Microcontrollers Technical Reference Manual for more  
information.  
(2) E = EMxCLK period in ns.  
(3) EWC = external wait cycles determined by EMxWAIT input signal. EWC supports the following range of values. EWC[256–1]. The  
maximum wait time before time-out is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See the  
TMS320F2838x Real-Time Microcontrollers Technical Reference Manual for more information.  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.10.9.3.1.3 EMIF Asynchronous Memory Timing Diagrams  
3
1
EMxCS[y:2]  
EMxBA[y:0]  
EMxA[y:0]  
EMxDQM[y:0]  
4
8
5
9
6
7
29  
30  
10  
EMxOE  
13  
12  
EMxD[y:0]  
EMxWE  
Figure 7-20. Asynchronous Memory Read Timing  
Extended Due to EMxWAIT  
SETUP  
STROBE  
STROBE HOLD  
EMxCS[y:2]  
EMxBA[y:0]  
EMxA[y:0]  
EMxD[y:0]  
14  
11  
EMxOE  
2
2
EMxWAIT  
Asserted  
Deasserted  
Figure 7-21. EMxWAIT Read Timing Requirements  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
15  
1
EMxCS[y:2]  
EMxBA[y:0]  
EMxA[y:0]  
EMxDQM[y:0]  
16  
18  
17  
19  
21  
23  
20  
24  
22  
EMxWE  
27  
26  
EMxD[y:0]  
EMxOE  
Figure 7-22. Asynchronous Memory Write Timing  
Extended Due to EMxWAIT  
SETUP  
STROBE  
STROBE HOLD  
EMxCS[y:2]  
EMxBA[y:0]  
EMxA[y:0]  
EMxD[y:0]  
28  
25  
EMxWE  
2
2
EMxWAIT  
Asserted  
Deasserted  
Figure 7-23. EMxWAIT Write Timing Requirements  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.10.9.3.2 Synchronous RAM  
Section 7.10.9.3.2.1 lists the EMIF synchronous memory timing requirements. Section 7.10.9.3.2.2 lists the  
EMIF synchronous memory switching characteristics. Figure 7-24 and Figure 7-25 show the synchronous  
memory timing diagrams.  
7.10.9.3.2.1 EMIF Synchronous Memory Timing Requirements  
NO.  
MIN  
2
MAX  
UNIT  
ns  
19  
tsu(EMIFDV-EM_CLKH)  
th(CLKH-DIV)  
Input setup time, read data valid on EMxD[y:0] before EMxCLK rising  
Input hold time, read data valid on EMxD[y:0] after EMxCLK rising  
20  
1.5  
ns  
7.10.9.3.2.2 EMIF Synchronous Memory Switching Characteristics  
NO.  
PARAMETER  
MIN  
10  
3
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tc(CLK)  
Cycle time, EMIF clock EMxCLK  
2
tw(CLK)  
Pulse width, EMIF clock EMxCLK high or low  
3
td(CLKH-CSV)  
toh(CLKH-CSIV)  
td(CLKH-DQMV)  
toh(CLKH-DQMIV)  
td(CLKH-AV)  
Delay time, EMxCLK rising to EMxCS[y:2] valid  
Output hold time, EMxCLK rising to EMxCS[y:2] invalid  
Delay time, EMxCLK rising to EMxDQM[y:0] valid  
Output hold time, EMxCLK rising to EMxDQM[y:0] invalid  
Delay time, EMxCLK rising to EMxA[y:0] and EMxBA[y:0] valid  
Output hold time, EMxCLK rising to EMxA[y:0] and EMxBA[y:0] invalid  
Delay time, EMxCLK rising to EMxD[y:0] valid  
8
8
8
8
8
8
8
8
4
1
1
1
1
1
1
1
1
5
6
7
8
toh(CLKH-AIV)  
td(CLKH-DV)  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
toh(CLKH-DIV)  
td(CLKH-RASV)  
toh(CLKH-RASIV)  
td(CLKH-CASV)  
toh(CLKH-CASIV)  
td(CLKH-WEV)  
toh(CLKH-WEIV)  
td(CLKH-DHZ)  
toh(CLKH-DLZ)  
Output hold time, EMxCLK rising to EMxD[y:0] invalid  
Delay time, EMxCLK rising to EMxRAS valid  
Output hold time, EMxCLK rising to EMxRAS invalid  
Delay time, EMxCLK rising to EMxCAS valid  
Output hold time, EMxCLK rising to EMxCAS invalid  
Delay time, EMxCLK rising to EMxWE valid  
Output hold time, EMxCLK rising to EMxWE invalid  
Delay time, EMxCLK rising to EMxD[y:0] tri-stated  
Output hold time, EMxCLK rising to EMxD[y:0] driving  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.10.9.3.2.3 EMIF Synchronous Memory Timing Diagrams  
BASIC SDRAM  
1
READ OPERATION  
2
2
EMxCLK  
EMxCS[y:2]  
EMxDQM[y:0]  
EMxBA[y:0]  
EMxA[y:0]  
4
3
5
7
7
6
8
8
19  
20  
2 EM_CLK Delay  
18  
17  
EMxD[y:0]  
EMxRAS  
11  
12  
13  
14  
EMxCAS  
EMxWE  
Figure 7-24. Basic SDRAM Read Operation  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
1
BASIC SDRAM  
WRITE OPERATION  
2
2
EMxCLK  
3
5
7
7
4
EMxCS[y:2]  
EMxDQM[y:0]  
EMxBA[y:0]  
EMxA[y:0]  
6
8
8
9
10  
EMxD[y:0]  
EMxRAS  
EMxCAS  
EMxWE  
11  
12  
13  
15  
16  
Figure 7-25. Basic SDRAM Write Operation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.11 C28x Analog Peripherals  
7.11.1 Analog Subsystem  
The analog modules on this device include the Analog-to-Digital Converter (ADC), Temperature Sensor, Buffered  
Digital-to-Analog Converter (DAC), and Comparator Subsystem (CMPSS).  
The analog subsystem has the following features:  
Flexible voltage references  
– The ADCs are referenced to VREFHIx and VREFLOx pins  
VREFHIx pin voltage must be driven in externally  
The buffered DACs are referenced to VREFHIx and VSSA  
– Alternately, these DACs can be referenced to the VDAC pin and VSSA  
The comparator DACs are referenced to VDDA and VSSA  
– Alternately, these DACs can be referenced to the VDAC pin and VSSA  
Flexible pin usage  
– Buffered DAC and comparator subsystem functions multiplexed with ADC inputs  
Internal connection to VREFLO on all ADCs for offset self-calibration  
Figure 7-26 shows the Analog Subsystem Block Diagram for the 337-ball ZWT package.  
Figure 7-27 shows the Analog Subsystem Block Diagram for the 176-pin PTP package.  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
VREFHIA  
VREFHIA  
VDAC  
Comparator Subsystem 1  
Digital  
DACOUTA/ADCINA0  
DACOUTB/ADCINA1  
CMPIN1P/ADCINA2  
CMPIN1N/ADCINA3  
CMPIN2P/ADCINA4  
CMPIN2N/ADCINA5  
0
1
2
3
4
5
6
7
8
REFHI  
CMPIN1P  
CTRIP1H  
DACREFSEL  
VDDA or VDAC  
Filter  
CTRIPOUT1H  
12-bit  
Buffered  
DAC  
DAC12  
DAC12  
ADC-A  
16-bits  
or  
12-bits  
(selectable)  
CTRIP1L  
Digital  
Filter  
CMPIN1N  
CMPIN2P  
CTRIPOUT1L  
VREFLOA  
VREFLOA  
VSSA  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 2  
Digital  
VREFHIA  
VDAC  
CTRIP2H  
VDDA or VDAC  
Filter  
CTRIPOUT2H  
TEMP SENSOR  
CMPIN4P/ADCIN14  
CMPIN4N/ADCIN15  
DACREFSEL  
DAC12  
DAC12  
REFLO  
REFHI  
12-bit  
Buffered  
DAC  
CTRIP2L  
Digital  
Filter  
VREFLOA  
VREFHIB  
CMPIN2N  
CMPIN3P  
CTRIPOUT2L  
VSSA  
Comparator Subsystem 3  
Digital  
VDAC/ADCINB0  
DACOUTC/ADCINB1  
CMPIN3P/ADCINB2  
CMPIN3N/ADCINB3  
ADCINB4  
0
1
2
3
4
5
6
7
8
CTRIP3H  
VREFHIB VDAC  
DACREFSEL  
VDDA or VDAC  
Filter  
CTRIPOUT3H  
DAC12  
DAC12  
ADCINB5  
ADC-B  
16-bits  
or  
12-bits  
(selectable)  
CTRIP3L  
Digital  
Filter  
12-bit  
Buffered  
DAC  
CMPIN3N  
CMPIN4P  
CTRIPOUT3L  
VREFLOB  
VREFLOB  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 4  
Digital  
VSSA  
CTRIP4H  
VDDA or VDAC  
Filter  
CTRIPOUT4H  
DAC12  
DAC12  
REFLO  
REFHI  
Digital  
Filter  
CTRIP4L  
VREFLOB  
VREFHIC  
CMPIN4N  
CMPIN5P  
CTRIPOUT4L  
Comparator Subsystem 5  
Digital  
0
1
CTRIP5H  
CMPIN6P/ADCINC2  
CMPIN6N/ADCINC3  
CMPIN5P/ADCINC4  
CMPIN5N/ADCINC5  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
VDDA or VDAC  
Filter  
CTRIPOUT5H  
DAC12  
DAC12  
ADC-C  
16-bits  
or  
12-bits  
(selectable)  
CTRIP5L  
Digital  
Filter  
CTRIPOUT5L  
CMPIN5N  
CMPIN6P  
VREFLOC  
VREFLOC  
Comparator Subsystem 6  
Digital  
CTRIP6H  
VDDA or VDAC  
Filter  
CTRIPOUT6H  
DAC12  
DAC12  
REFLO  
REFHI  
Digital  
Filter  
CTRIP6L  
VREFLOC  
VREFHID  
CTRIPOUT6L  
CMPIN6N  
CMPIN7P  
Comparator Subsystem 7  
Digital  
CMPIN7P/ADCIND0  
CMPIN7N/ADCIND1  
CMPIN8P/ADCIND2  
CMPIN8N/ADCIND3  
ADCIND4  
0
1
2
3
4
5
6
7
8
CTRIP7H  
VDDA or VDAC  
Filter  
CTRIPOUT7H  
DAC12  
DAC12  
ADCIND5  
ADC-D  
16-bits  
or  
12-bits  
(selectable)  
CTRIP7L  
Digital  
Filter  
CTRIPOUT7L  
CMPIN7N  
CMPIN8P  
VREFLOD  
VREFLOD  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 8  
Digital  
CTRIP8H  
VDDA or VDAC  
Filter  
CTRIPOUT8H  
DAC12  
DAC12  
REFLO  
Digital  
Filter  
CTRIP8L  
VREFLOD  
CTRIPOUT8L  
CMPIN8N  
Figure 7-26. Analog Subsystem Block Diagram (337-Ball ZWT)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
VREFHIA  
VREFHIA VDAC  
Comparator Subsystem 1  
Digital  
DACOUTA/ADCINA0  
DACOUTB/ADCINA1  
CMPIN1P/ADCINA2  
CMPIN1N/ADCINA3  
CMPIN2P/ADCINA4  
CMPIN2N/ADCINA5  
0
1
2
3
4
5
6
7
8
REFHI  
CMPIN1P  
CTRIP1H  
DACREFSEL  
VDDA or VDAC  
Filter  
CTRIPOUT1H  
12-bit  
Buffered  
DAC  
DAC12  
DAC12  
ADC-A  
16-bits  
or  
12-bits  
(selectable)  
CTRIP1L  
Digital  
Filter  
CMPIN1N  
CMPIN2P  
CTRIPOUT1L  
VREFLOA  
VREFLOA  
VSSA  
VSSA  
VSSA  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 2  
Digital  
VREFHIA VDAC  
DACREFSEL  
CTRIP2H  
VDDA or VDAC  
Filter  
CTRIPOUT2H  
TEMP SENSOR  
CMPIN4P/ADCIN14  
CMPIN4N/ADCIN15  
DAC12  
DAC12  
REFLO  
REFHI  
12-bit  
Buffered  
DAC  
CTRIP2L  
Digital  
Filter  
VREFLOA  
VREFHIB  
CMPIN2N  
CMPIN3P  
CTRIPOUT2L  
Comparator Subsystem 3  
Digital  
VDAC/ADCINB0  
DACOUTC/ADCINB1  
CMPIN3P/ADCINB2  
CMPIN3N/ADCINB3  
0
1
2
3
4
5
6
7
8
CTRIP3H  
VREFHIB VDAC  
DACREFSEL  
VDDA or VDAC  
Filter  
CTRIPOUT3H  
DAC12  
DAC12  
ADC-B  
16-bits  
or  
12-bits  
(selectable)  
12-bit  
Buffered  
DAC  
CTRIP3L  
Digital  
Filter  
CMPIN3N  
CMPIN4P  
CTRIPOUT3L  
VREFLOB  
VREFLOB  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 4  
Digital  
CTRIP4H  
VDDA or VDAC  
Filter  
CTRIPOUT4H  
DAC12  
DAC12  
REFLO  
REFHI  
Digital  
Filter  
CTRIP4L  
VREFLOB  
VREFHIC  
CMPIN4N  
CMPIN5P  
CTRIPOUT4L  
Comparator Subsystem 5  
Digital  
0
1
CTRIP5H  
CMPIN6P/ADCINC2  
CMPIN6N/ADCINC3  
CMPIN5P/ADCINC4  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
VDDA or VDAC  
Filter  
CTRIPOUT5H  
DAC12  
DAC12  
ADC-C  
16-bits  
or  
12-bits  
(selectable)  
CTRIP5L  
Digital  
Filter  
CTRIPOUT5L  
VREFLOC  
VREFLOC  
Comparator Subsystem 6  
Digital  
CMPIN6P  
CTRIP6H  
VDDA or VDAC  
Filter  
CTRIPOUT6H  
DAC12  
DAC12  
REFLO  
REFHI  
Digital  
Filter  
CTRIP6L  
VREFLOC  
VREFHID  
CTRIPOUT6L  
CMPIN6N  
CMPIN7P  
Comparator Subsystem 7  
Digital  
CMPIN7P/ADCIND0  
CMPIN7N/ADCIND1  
CMPIN8P/ADCIND2  
CMPIN8N/ADCIND3  
ADCIND4  
0
1
2
3
4
5
6
7
8
CTRIP7H  
VDDA or VDAC  
Filter  
CTRIPOUT7H  
DAC12  
DAC12  
ADC-D  
16-bits  
or  
12-bits  
(selectable)  
CTRIP7L  
Digital  
Filter  
CTRIPOUT7L  
CMPIN7N  
CMPIN8P  
VREFLOD  
VREFLOD  
9
10  
11  
12  
13  
14  
15  
Comparator Subsystem 8  
Digital  
CTRIP8H  
VDDA or VDAC  
Filter  
CTRIPOUT8H  
DAC12  
DAC12  
REFLO  
Digital  
Filter  
CTRIP8L  
VREFLOD  
CTRIPOUT8L  
CMPIN8N  
Figure 7-27. Analog Subsystem Block Diagram (176-Pin PTP)  
Copyright © 2021 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.11.2 Analog-to-Digital Converter (ADC)  
The ADC module is a successive approximation (SAR) style ADC with a selectable resolution of either 16 bits or  
12 bits. The ADC is composed of a core and a wrapper. The core is composed of the analog circuits, which  
include the channel select MUX, the sample-and-hold (S/H) circuit, the successive approximation circuits,  
voltage reference circuits, and other analog support circuits. The wrapper is composed of the digital circuits that  
configure and control the ADC. These circuits include the logic for programmable conversions, result registers,  
interfaces to analog circuits, interfaces to the peripheral buses, post-processing circuits, and interfaces to other  
on-chip modules.  
Each ADC module consists of a single sample-and-hold (S/H) circuit. The ADC module is designed to be  
duplicated multiple times on the same chip, allowing simultaneous sampling or independent operation of multiple  
ADCs. The ADC wrapper is start-of-conversion (SOC) based (see the SOC Principle of Operation section of the  
Analog-to-Digital Converter (ADC) chapter in the TMS320F2838x Real-Time Microcontrollers Technical  
Reference Manual).  
Each ADC has the following features:  
Selectable resolution of 12 bits or 16 bits  
Ratiometric external reference set by VREFHI and VREFLO pins  
Differential signal conversions (16-bit mode only)  
Single-ended signal conversions  
Input multiplexer with up to 16 channels (single-ended) or 8 channels (differential)  
16 configurable SOCs  
16 individually addressable result registers  
Multiple trigger sources  
– S/W: software immediate start  
– All ePWMs: ADCSOC A or B  
– GPIO Input X-BAR INPUT5  
– CPU Timer 0, CPU Timer 1, CPU Timer 2 (from each C28x core present)  
– ADCINT1, ADCINT2  
Four flexible PIE interrupts  
Configurable interrupt placement  
Burst mode  
Four post-processing blocks, each with:  
– Saturating offset calibration  
– Error from setpoint calculation  
– High, low, and zero-crossing compare, with interrupt and ePWM trip capability  
– Trigger-to-sample delay capture  
Note  
Not every channel may be pinned out from all ADCs. See Section 6 to determine which channels are  
available.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 7-28 shows the ADC module block diagram.  
Analog to Digital Core  
Analog to Digital Wrapper Logic  
SIGNALMODE  
SIGNALMODE  
RESOLUTION  
RESOLUTION  
ADCSOC  
Input Circuit  
SOCx (0-15)  
CHSEL  
[15:0]  
[15:0]  
[15:0]  
SOC  
Arbitration  
& Control  
ACQPS  
CHSEL  
0
1
ADCIN0  
ADCIN1  
ADCIN2  
ADCIN3  
ADCIN4  
ADCIN5  
ADCIN6  
ADCIN7  
ADCIN8  
ADCIN9  
ADCIN10  
ADCIN11  
ADCIN12  
ADCIN13  
ADCIN14  
ADCIN15  
2
3
.
.
.
.
.
.
4
5
ADCCOUNTER  
6
TRIGGER[15:0]  
VIN+  
7
DOUT  
8
VIN-  
9
10  
11  
12  
13  
14  
15  
SOC Delay  
Timestamp  
Trigger  
Timestamp  
S/H Circuit  
Converter  
RESULT  
-
+
ADCPPBxOFFCAL  
S
saturate  
+
ADCPPBxOFFREF  
ADCPPBxRESULT  
-
S
ADCEVT  
VREFHI  
Event  
Logic  
CONFIG  
ADCEVTINT  
VREFLO  
Reference Voltage Levels  
Post Processing Block (1-4)  
Interrupt Block (1-4)  
ADCINT1-4  
Figure 7-28. ADC Module Block Diagram  
7.11.2.1 Result Register Mapping  
The ADC results and the ADC PPB results are duplicated for each memory bus controller in the system. Bus  
controllers include all C28x CPUs, C28x DMAs, and CLAs present on the specific part family and part number.  
For each bus controller, no access configuration is needed to allow read access to the result registers and no  
contention occurs in cases where multiple bus controllers try to read the ADC results simultaneously.  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.11.2.2 ADC Configurability  
Some ADC configurations are individually controlled by the SOCs, while others are globally controlled per ADC  
module. Table 7-7 summarizes the basic ADC options and their level of configurability.  
Table 7-7. ADC Options and Configuration Levels  
OPTIONS  
CONFIGURABILITY  
Clock  
Per module(1)  
Per module(1)  
Per module  
Resolution  
Signal mode  
Reference voltage source  
Trigger source  
Not configurable (external reference only)  
Per SOC(1)  
Converted channel  
Acquisition window duration  
EOC location  
Per SOC  
Per SOC(1)  
Per module  
Per module(1)  
Burst Mode  
(1) Writing these values differently to different ADC modules could cause the ADCs to operate  
asynchronously. For guidance on when the ADCs are operating synchronously or asynchronously,  
see the Ensuring Synchronous Operation section of the Analog-to-Digital Converter (ADC) chapter  
in the TMS320F2838x Real-Time Microcontrollers Technical Reference Manual.  
7.11.2.2.1 Signal Mode  
The ADC supports two signal modes: single-ended and differential. In single-ended mode, the input voltage to  
the converter is sampled through a single pin (ADCINx), referenced to VREFLO. In differential signaling mode,  
the input voltage to the converter is sampled through a pair of input pins, one of which is the positive input  
(ADCINxP) and the other is the negative input (ADCINxN). The actual input voltage is the difference between the  
two (ADCINxP – ADCINxN). Figure 7-29 shows the differential signaling mode. Figure 7-30 shows the single-  
ended signaling mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Pin Voltages  
VREFHI  
VREFHI  
ADCINxP  
VREFHI/2  
ADCINxN  
ADCINxP  
ADCINxN  
ADC  
VREFLO  
VREFLO  
(VSSA)  
Input Common Mode  
VREFHI  
Vin Common Mode  
VREFHI/2 50mV  
VREFLO  
(VSSA)  
Effective Input Voltage  
+VREFHI  
ADC Vin  
0
-VREFHI  
Digital Output  
2n - 1  
ADC Vin  
0
Figure 7-29. Differential Signaling Mode  
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Pin Voltage  
VREFHI  
VREFHI  
ADCINx  
ADCINx  
ADC  
VREFHI/2  
VREFLO  
VREFLO  
(VSSA)  
Digital Output  
2n - 1  
ADC Vin  
0
Figure 7-30. Single-ended Signaling Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.2.3 ADC Electrical Data and Timing  
Section 7.11.2.3.1 lists the ADC operating conditions for the 16-bit differential mode. Section 7.11.2.3.2 lists the  
ADC characteristics for the 16-bit differential mode. Section 7.11.2.3.3 lists the ADC operating conditions for the  
16-bit single-ended mode. Section 7.11.2.3.4 lists the ADC characteristics for the 16-bit single-ended mode.  
Section 7.11.2.3.5 lists the ADC operating conditions for the 12-bit single-ended mode. Section 7.11.2.3.6 lists  
the ADC characteristics for the 12-bit single-ended mode. Section 7.11.2.3.7 lists the ADCEXTSOC timing  
requirements.  
7.11.2.3.1 ADC Operating Conditions (16-bit Differential)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
ADCCLK (derived from PERx.SYSCLK)  
Sample rate  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
50 MHz  
5
200-MHz SYSCLK  
With 50 Ω or less Rs  
1.1 MSPS  
Sample window duration (set by ACQPS and  
PERx.SYSCLK)(1)  
320  
ns  
VREFHI  
2.4 2.5 or 3.0  
VSSA VSSA  
VREFLO  
VDDA  
VSSA  
V
V
V
VREFLO  
Conversion range  
VREFHI  
ADC input signal common mode voltage(2) (3)  
VREFCM – 50 VREFCM VREFCM + 50 mV  
(1) The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation.  
(2) VREFCM = (VREFHI + VREFLO)/2  
(3) The VREFCM requirements will not be met if the negative ADC input pin is connected to VSSA or VREFLO.  
7.11.2.3.1.1 ADC Operating Conditions (16-bit Differential) Notes  
Note  
The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input exceeds this  
level, the VREF internal to the device may be disturbed, which can impact results for other ADC or  
DAC inputs using the same VREF.  
Note  
The VREFHI pin must be kept below VDDA for the ADC and DAC to meet specified performance  
parameters. The VREFHI pin must be kept below VDDA + 0.3 V for functional operation. If the  
VREFHI pin exceeds VDDA + 0.3 V, a blocking circuit may activate, causing the interval value of  
VREFHI to float to 0 V internally, giving improper ADC conversion or DAC output.  
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.11.2.3.2 ADC Characteristics (16-bit Differential)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
General  
ADCCLK Conversion Cycles  
29.6  
31 ADCCLKs  
Power Up Time  
500  
µs  
VREFHI input current (1)  
190  
µA  
External Reference Capacitor  
Value(2)  
22  
µF  
DC Characteristics  
Gain Error  
–64  
–6  
±9  
±4  
64  
6
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Offset Error  
Channel-to-Channel Gain Error  
Channel-to-Channel Offset Error  
ADC-to-ADC Gain Error  
ADC-to-ADC Offset Error  
DNL Error  
±6  
±3  
Identical VREFHI and VREFLO for all ADCs  
Identical VREFHI and VREFLO for all ADCs  
±6  
±3  
>–1  
–3.5  
–2  
±0.5  
±1.0  
1
3.5  
2
INL Error  
VREFHI = 2.5 V, synchronous ADCs  
VREFHI = 2.5 V, asynchronous ADCs  
ADC-to-ADC Isolation  
LSBs  
Not Supported  
AC Characteristics  
VREFHI = 2.5 V, fin = 10 kHz, SYSCLK from X1  
90.2  
90.2  
dB  
dB  
SNR(3)  
VREFHI = 2.5 V, fin = 10 kHz, SYSCLK from  
INTOSC  
THD(3)  
VREFHI = 2.5 V, fin = 10 kHz  
–105  
106  
dB  
dB  
SFDR(3)  
VREFHI = 2.5 V, fin = 10 kHz  
VREFHI = 2.5 V, fin = 10 kHz, SYSCLK from X1  
90.0  
SINAD(3)  
dB  
VREFHI = 2.5 V, fin = 10 kHz, SYSCLK from  
INTOSC  
90.0  
14.65  
14.65  
VREFHI = 2.5 V, fin = 10 kHz, SYSCLK from  
X1, Single ADC  
VREFHI = 2.5 V, fin = 10 kHz, SYSCLK from  
X1, synchronous ADCs  
ENOB(3)  
bits  
VREFHI = 2.5 V, fin = 10 kHz, SYSCLK from  
X1, asynchronous ADCs  
Not  
Supported  
VDD = 1.2-V DC + 200mV  
DC up to Sine at 1 kHz  
77  
74  
77  
74  
VDD = 1.2-V DC + 200 mV  
Sine at 800 kHz  
PSRR  
dB  
VDDA = 3.3-V DC + 200 mV  
DC up to Sine at 800 kHz  
VDDA = 3.3-V DC + 200 mV  
Sine at 800 kHz  
(1) Load current on VREFHI increases when ADC input is greater than VDDA. This causes inaccurate conversions.  
(2) A ceramic capacitor with package size of 0805 or smaller is preferred. Up to ±20% tolerance is acceptable.  
(3) IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and  
crosstalk  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.2.3.3 ADC Operating Conditions (16-bit Single-Ended)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
ADCCLK (derived from PERx.SYSCLK)  
Sample rate  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
50 MHz  
5
200-MHz SYSCLK  
With 50 Ω or less Rs  
1.1 MSPS  
Sample window duration (set by ACQPS and  
PERx.SYSCLK)(1)  
320  
ns  
VREFHI  
2.4  
VSSA  
2.5 or 3.0  
VSSA  
VDDA  
VSSA  
V
V
V
VREFLO  
Conversion range  
External reference  
VREFLO  
VREFHI  
(1) The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation.  
7.11.2.3.3.1 ADC Operating Conditions (16-bit Single-Ended) Notes  
Note  
The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input exceeds this  
level, the VREF internal to the device may be disturbed, which can impact results for other ADC or  
DAC inputs using the same VREF.  
Note  
The VREFHI pin must be kept below VDDA for the ADC and DAC to meet specified performance  
parameters. The VREFHI pin must be kept below VDDA + 0.3 V for functional operation. If the  
VREFHI pin exceeds VDDA + 0.3 V, a blocking circuit may activate, causing the interval value of  
VREFHI to float to 0 V internally, giving improper ADC conversion or DAC output.  
Copyright © 2021 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.11.2.3.4 ADC Characteristics (16-bit Single-Ended)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
General  
ADCCLK Conversion Cycles  
29.6  
31 ADCCLKs  
Power Up Time  
500  
µs  
VREFHI input current(1)  
190  
µA  
External Reference Capacitor  
Value(2)  
22  
µF  
DC Characteristics  
Gain Error  
–64  
–6  
±20  
±4  
64  
6
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Offset Error  
Channel-to-Channel Gain Error  
Channel-to-Channel Offset Error  
ADC-to-ADC Gain Error  
ADC-to-ADC Offset Error  
DNL Error  
±6  
±6  
Identical VREFHI and VREFLO for all ADCs  
Identical VREFHI and VREFLO for all ADCs  
±6  
±6  
>–1  
–6  
±0.5  
±1.5  
1
6
2
INL Error  
VREFHI = 2.5 V, synchronous ADCs  
VREFHI = 2.5 V, asynchronous ADCs  
–2  
ADC-to-ADC Isolation  
LSBs  
Not Supported  
AC Characteristics  
VREFHI = 2.5 V, fin = 10 kHz, SYSCLK from X1 via  
PLL  
83.5  
83.5  
-94  
dB  
dB  
dB  
dB  
SNR(3)  
VREFHI = 2.5 V, fin = 10 kHz, SYSCLK from  
INTOSC via PLL  
VREFHI = 2.5 V, fin = 10 kHz, SYSCLK from X1 via  
PLL  
THD(3)  
VREFHI = 2.5 V, fin = 10 kHz SYSCLK from X1 via  
PLL  
SFDR(3)  
93  
VREFHI = 2.5 V, fin = 10 kHz, SYSCLK from X1 via  
PLL  
83.4  
83.4  
13.5  
13.5  
SINAD(3)  
dB  
VREFHI = 2.5 V, fin = 10 kHz, SYSCLK from  
INTOSC via PLL  
VREFHI = 2.5 V, fin = 10 kHz, SYSCLK from  
X1, Single ADC  
VREFHI = 2.5 V, fin = 10 kHz, SYSCLK from  
X1, synchronous ADCs  
ENOB(3)  
bits  
VREFHI = 2.5 V, fin = 10 kHz, SYSCLK from  
X1, asynchronous ADCs  
Not  
Supported  
VDD = 1.2-V DC + 200mV  
DC up to Sine at 1 kHz  
77  
74  
77  
74  
Sine at 800 kHz  
PSRR  
dB  
VDDA = 3.3-V DC + 200 mV  
DC up to Sine at 1 kHz  
Sine at 800 kHz  
(1) Load current on VREFHI increases when ADC input is greater than VDDA. This causes inaccurate conversions.  
(2) A ceramic capacitor with package size of 0805 or smaller is preferred. Up to ±20% tolerance is acceptable.  
(3) IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and  
crosstalk  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.2.3.5 ADC Operating Conditions (12-bit Single-Ended)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
ADCCLK (derived from PERx.SYSCLK)  
Sample rate  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
50 MHz  
5
200-MHz SYSCLK  
With 50 Ω or less Rs  
3.45 MSPS  
Sample window duration (set by ACQPS and  
PERx.SYSCLK)(1)  
75  
ns  
VREFHI  
2.4  
VSSA  
2.5 or 3.0  
VSSA  
VDDA  
VSSA  
V
V
V
VREFLO  
Conversion range  
External reference  
VREFLO  
VREFHI  
(1) The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation.  
7.11.2.3.5.1 ADC Operating Conditions (12-bit Single-Ended) Notes  
Note  
The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input exceeds this  
level, the VREF internal to the device may be disturbed, which can impact results for other ADC or  
DAC inputs using the same VREF.  
Note  
The VREFHI pin must be kept below VDDA for the ADC and DAC to meet specified performance  
parameters. The VREFHI pin must be kept below VDDA + 0.3 V for functional operation. If the  
VREFHI pin exceeds VDDA + 0.3 V, a blocking circuit may activate, causing the interval value of  
VREFHI to float to 0 V internally, giving improper ADC conversion or DAC output.  
7.11.2.3.6 ADC Characteristics (12-bit Single-Ended)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
General  
ADCCLK Conversion Cycles  
10.1  
11 ADCCLKs  
Power Up Time  
500  
µs  
VREFHI input current(1)  
130  
µA  
External Reference Capacitor  
Value(2)  
2.2  
µF  
DC Characteristics  
Gain Error  
–5  
–4  
±3  
±2  
5
4
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSBs  
Offset Error  
Channel-to-Channel Gain Error  
Channel-to-Channel Offset Error  
ADC-to-ADC Gain Error  
ADC-to-ADC Offset Error  
DNL Error  
±4  
±2  
Identical VREFHI and VREFLO for all ADCs  
Identical VREFHI and VREFLO for all ADCs  
±4  
±2  
>–1  
–2  
±0.5  
±1.0  
1
2
1
INL Error  
ADC-to-ADC Isolation  
VREFHI = 2.5 V, synchronous ADCs  
–1  
VREFHI = 2.5 V, asynchronous ADCs, 337-ball  
ZWT package  
ADC-to-ADC Isolation  
ADC-to-ADC Isolation  
-2  
-9  
2
9
LSBs  
LSBs  
VREFHI = 2.5 V, asynchronous ADCs, 176-pin  
PTP package  
Copyright © 2021 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.11.2.3.6 ADC Characteristics (12-bit Single-Ended) (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC Characteristics  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1  
via PLL  
69.1  
69.1  
–88  
89  
dB  
dB  
dB  
dB  
SNR(3)  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
INTOSC via PLL  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1  
via PLL  
THD(3)  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1  
via PLL  
SFDR(3)  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1  
via PLL  
69.0  
69.0  
11.2  
11.2  
10.9  
9.7  
SINAD(3)  
ENOB(3)  
dB  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
INTOSC via PLL  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
X1, Single ADC  
bits  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
X1, synchronous ADCs  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
X1, asynchronous ADCs, 337-ball ZWT package  
ENOB(3)  
ENOB(3)  
bits  
bits  
VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from  
X1, asynchronous ADCs, 176-pin PTP package  
VDD = 1.2-V DC + 100mV  
DC up to Sine at 1 kHz  
60  
VDD = 1.2-V DC + 100 mV  
Sine at 800 kHz  
57  
PSRR  
dB  
VDDA = 3.3-V DC + 200 mV  
DC up to Sine at 1 kHz  
60  
VDDA = 3.3-V DC + 200 mV  
Sine at 800 kHz  
57  
(1) Load current on VREFHI increases when ADC input is greater than VDDA. This causes inaccurate conversions.  
(2) A ceramic capacitor with package size of 0805 or smaller is preferred. Up to ±20% tolerance is acceptable.  
(3) IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and  
crosstalk  
7.11.2.3.7 ADCEXTSOC Timing Requirements  
MIN  
2tc(SYSCLK)  
MAX  
UNIT  
cycles  
cycles  
Synchronous  
tw(INT)  
Pulse duration, INT input low/high  
With qualifier(1)  
tw(IQSW) + tw(SP) + 1tc(SYSCLK)  
(1) For an explanation of the input qualifier parameters, see Section 7.10.6.2.1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.2.3.8 ADC Input Models  
Note  
ADC channels ADCINA0, ADCINA1, and ADCINB1 have a 50-kΩ pulldown resistor to VSSA.  
For single-ended operation, the ADC input characteristics are given by Section 7.11.2.3.8.1, Section  
7.11.2.3.8.2, and Figure 7-31.  
7.11.2.3.8.1 Single-Ended Input Model Parameters (12-bit Resolution)  
DESCRIPTION  
Parasitic input capacitance  
VALUE  
See Table 7-8  
425 Ω  
Cp  
Ron  
Ch  
Rs  
Sampling switch resistance  
Sampling capacitor  
14.5 pF  
Nominal source impedance  
50 Ω  
7.11.2.3.8.2 Single-Ended Input Model Parameters (16-bit Resolution)  
DESCRIPTION  
VALUE  
See Table 7-8  
425 Ω  
Cp  
Ron  
Ch  
Rs  
Parasitic input capacitance  
Sampling switch resistance  
Sampling capacitor  
32.5 pF  
Nominal source impedance  
50 Ω  
7.11.2.3.8.3 Single-Ended Input Model  
ADC  
ADCINx  
Rs  
Switch  
Ron  
AC  
Cp  
Ch  
VREFLO  
Figure 7-31. Single-Ended Input Model  
Copyright © 2021 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
For differential operation, the ADC input characteristics are given by Section 7.11.2.3.8.4 and Figure 7-32.  
7.11.2.3.8.4 Differential Input Model Parameters (16-bit Resolution)  
DESCRIPTION  
Parasitic input capacitance  
VALUE  
See Table 7-8  
700 Ω  
Cp  
Ron  
Ch  
Rs  
Sampling switch resistance  
Sampling capacitor  
16.5 pF  
Nominal source impedance  
50 Ω  
7.11.2.3.8.5 Differential Input Model  
ADC  
ADCINxP  
ADCINxN  
Rs  
Cp  
Cp  
Ron  
Switch  
Switch  
AC  
Ch  
VSSA  
Ron  
Rs  
Figure 7-32. Differential Input Model  
Table 7-8 lists the parasitic capacitance on each channel. Also, enabling a comparator adds approximately  
1.4 pF of capacitance on positive comparator inputs and 2.5 pF of capacitance on negative comparator inputs.  
Table 7-8. Per-Channel Parasitic Capacitance  
Cp (pF)  
ADC CHANNEL  
COMPARATOR DISABLED  
COMPARATOR ENABLED  
ADCINA0  
ADCINA1  
ADCINA2  
ADCINA3  
ADCINA4  
ADCINA5  
ADCINB0(1)  
ADCINB1  
ADCINB2  
ADCINB3  
ADCINB4  
ADCINB5  
ADCINC2  
ADCINC3  
ADCINC4  
ADCINC5  
ADCIND0  
ADCIND1  
ADCIND2  
ADCIND3  
ADCIND4  
ADCIND5  
ADCIN14  
ADCIN15  
12.9  
10.3  
5.9  
6.3  
5.9  
6.3  
117.0  
10.6  
5.9  
6.2  
5.2  
5.1  
5.5  
5.8  
5.0  
5.3  
5.3  
5.7  
5.3  
5.6  
4.3  
4.3  
8.6  
9.0  
N/A  
N/A  
7.3  
8.8  
7.3  
8.8  
N/A  
N/A  
7.3  
8.7  
N/A  
N/A  
6.9  
8.3  
6.4  
7.8  
6.7  
8.2  
6.7  
8.1  
N/A  
N/A  
10.0  
11.5  
(1) The increased capacitance is due to VDAC functionality.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
These input models should be used along with actual signal source impedance to determine the acquisition  
window duration. See the Choosing an Acquisition Window Duration section of the TMS320F2838x Real-Time  
Microcontrollers Technical Reference Manual for more information.  
The user should analyze the ADC input setting assuming worst-case initial conditions on Ch. This will require  
assuming that Ch could start the S+H window completely charged to VREFHI or completely discharged to  
VREFLO. When the ADC transitions from an odd-numbered channel to an even-numbered channel, or vice-  
versa, the actual initial voltage on Ch will be close to being completely discharged to VREFLO. For even-to-even  
or odd-to-odd channel transitions, the initial voltage on Ch will be close to the voltage of the previously converted  
channel.  
7.11.2.3.9 ADC Timing Diagrams  
Section 7.11.2.3.9.1 lists the ADC timings in 12-bit mode (SYSCLK cycles). Section 7.11.2.3.9.2 lists the ADC  
timings in 16-bit mode. Figure 7-33 and Figure 7-34 show the ADC conversion timings for two SOCs given the  
following assumptions:  
SOC0 and SOC1 are configured to use the same trigger.  
No other SOCs are converting or pending when the trigger occurs.  
The round robin pointer is in a state that causes SOC0 to convert first.  
ADCINTSEL is configured to set an ADCINT flag upon end of conversion for SOC0 (whether this flag  
propagates through to the CPU to cause an interrupt is determined by the configurations in the PIE module).  
Table 7-9 lists the descriptions of the ADC timing parameters that are in Figure 7-33 and Figure 7-34.  
Table 7-9. ADC Timing Parameters  
PARAMETER  
DESCRIPTION  
The duration of the S+H window.  
At the end of this window, the value on the S+H capacitor becomes the voltage to be converted into a digital  
value. The duration is given by (ACQPS + 1) SYSCLK cycles. ACQPS can be configured individually for each  
SOC, so tSH will not necessarily be the same for different SOCs.  
tSH  
Note: The value on the S+H capacitor will be captured approximately 5 ns before the end of the S+H window  
regardless of device clock settings.  
The time from the end of the S+H window until the ADC conversion results latch in the ADCRESULTx register.  
tLAT  
If the ADCRESULTx register is read before this time, the previous conversion results will be returned.  
The time from the end of the S+H window until the next ADC conversion S+H window can begin. The  
subsequent sample can start before the conversion results are latched.  
tEOC  
The time from the end of the S+H window until an ADCINT flag is set (if configured).  
If the INTPULSEPOS bit in the ADCCTL1 register is set, tINT will coincide with the conversion results being  
latched into the result register.  
tINT  
If the INTPULSEPOS bit is 0, tINT will coincide with the end of the S+H window. If tINT triggers a read of the  
ADC result register (directly through DMA or indirectly by triggering an ISR that reads the result), care must be  
taken to ensure the read occurs after the results latch (otherwise, the previous results will be read).  
Copyright © 2021 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.11.2.3.9.1 ADC Timings in 12-Bit Mode (SYSCLK Cycles)  
ADCCLK  
CYCLES  
ADCCLK PRESCALE  
SYSCLK CYCLES  
ADCCTL2  
[PRESCALE]  
RATIO  
ADCCLK:SYSCLK  
(1)  
tEOC  
tLAT  
tINT(EARLY)  
tINT(LATE)  
tEOC  
0
1
1
1.5  
2
11  
13  
1
11  
11.0  
Invalid  
2
21  
26  
31  
36  
41  
46  
51  
56  
61  
66  
71  
76  
81  
86  
23  
28  
34  
39  
44  
49  
55  
60  
65  
70  
76  
81  
86  
91  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
21  
26  
31  
36  
41  
46  
51  
56  
61  
66  
71  
76  
81  
86  
10.5  
10.4  
10.3  
10.3  
10.3  
10.2  
10.2  
10.2  
10.2  
10.2  
10.1  
10.1  
10.1  
10.1  
3
2.5  
3
4
5
3.5  
4
6
7
4.5  
5
8
9
5.5  
6
10  
11  
12  
13  
14  
15  
6.5  
7
7.5  
8
8.5  
(1) Refer to the "ADC: DMA Read of Stale Result" advisory in the TMS320F2838x Real-Time MCUs Silicon Errata.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Sample n  
Input on SOC0.CHSEL  
Input on SOC1.CHSEL  
Sample n+1  
SOC0  
SOC1  
ADC S+H  
SYSCLK  
ADCCLK  
ADCTRIG  
ADCSOCFLG.SOC0  
ADCSOCFLG.SOC1  
ADCRESULT0  
ADCRESULT1  
ADCINTFLG.ADCINTx  
Sample n  
(old data)  
(old data)  
Sample n+1  
tSH  
tLAT  
tEOC  
tINT  
Figure 7-33. ADC Timings for 12-Bit Mode  
Copyright © 2021 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.11.2.3.9.2 ADC Timings in 16-Bit Mode  
ADCCLK  
ADCCLK PRESCALE  
SYSCLK CYCLES  
CYCLES  
ADCCTL2  
[PRESCALE]  
RATIO  
ADCCLK:SYSCLK  
(1)  
tEOC  
tLAT  
32  
tINT(EARLY)  
tINT(LATE)  
tEOC  
0
1
1
1.5  
2
31  
1
31  
31.0  
Invalid  
2
60  
61  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
60  
30.0  
30.0  
30.0  
29.7  
29.8  
29.8  
29.8  
29.6  
29.7  
29.7  
29.7  
29.6  
29.6  
29.6  
3
2.5  
3
75  
75  
75  
4
90  
91  
90  
5
3.5  
4
104  
119  
134  
149  
163  
178  
193  
208  
222  
237  
252  
106  
120  
134  
150  
165  
179  
193  
209  
224  
238  
252  
104  
119  
134  
149  
163  
178  
193  
208  
222  
237  
252  
6
7
4.5  
5
8
9
5.5  
6
10  
11  
12  
13  
14  
15  
6.5  
7
7.5  
8
8.5  
(1) Refer to the "ADC: DMA Read of Stale Result" advisory in the TMS320F2838x Real-Time MCUs Silicon Errata.  
Sample n  
Input on SOC0.CHSEL  
Input on SOC1.CHSEL  
Sample n+1  
SOC0  
SOC1  
ADC S+H  
SYSCLK  
ADCCLK  
ADCTRIG  
ADCSOCFLG.SOC0  
ADCSOCFLG.SOC1  
ADCRESULT0  
ADCRESULT1  
ADCINTFLG.ADCINTx  
Sample n  
(old data)  
(old data)  
Sample n+1  
tSH  
tLAT  
tEOC  
tINT  
Figure 7-34. ADC Timings for 16-Bit Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.2.4 Temperature Sensor Electrical Data and Timing  
The temperature sensor can be used to measure the device junction temperature. The temperature sensor is  
sampled through an internal connection to the ADC and translated into a temperature through TI-provided  
software. When sampling the temperature sensor, the ADC must meet the acquisition time listed in Section  
7.11.2.4.1.  
7.11.2.4.1 Temperature Sensor Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Tacc  
tstartup  
tacq  
Temperature Accuracy  
External reference  
±15  
°C  
Start-up time  
(TSNSCTL[ENABLE] to  
sampling temperature sensor)  
500  
µs  
ns  
ADC acquisition time  
700  
Copyright © 2021 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.11.3 Comparator Subsystem (CMPSS)  
The comparator subsystem is built around a number of modules. Each subsystem contains two comparators,  
two reference 12-bit DACs, two digital filters, and one ramp generator. Comparators are denoted "H" or "L" within  
each module, where “H” and “L” represent high and low, respectively. Each comparator generates a digital  
output which indicates whether the voltage on the positive input is greater than the voltage on the negative input.  
The positive input of the comparator is driven from an external pin. The negative input can be driven by an  
external pin or by the programmable reference 12-bit DAC. Each comparator output passes through a  
programmable digital filter that can remove spurious trip signals. An unfiltered output is also available if filtering  
is not required. A ramp generator circuit is optionally available to control the reference 12-bit DAC value for the  
high comparator in the subsystem.  
Each CMPSS includes:  
Two analog comparators  
Two programmable reference 12-bit DACs  
One ramp generator  
Two digital filters  
Ability to synchronize submodules with EPWMSYNCPER  
Ability to extend clear signal with EPWMBLANK  
Ability to synchronize output with SYSCLK  
Ability to latch output  
Ability to invert output  
Option to use hysteresis on the input  
Option for negative input of comparator to be driven by an external signal or by the reference DAC  
Option to choose between VDDA or VDAC to be the DAC reference voltage  
The block diagram for the CMPSS is shown in Figure 7-35.  
CTRIPx (x= "H" or "L") signals are connected to the ePWM X-BAR for ePWM trip response. For more details  
on the ePWM X-BAR mux configuration, see the Enhanced Pulse Width Modulator (ePWM) chapter of the  
TMS320F2838x Real-Time Microcontrollers Technical Reference Manual.  
CTRIPxOUTx (x= "H" or "L") signals are connected to the Output X-BAR for external signaling. For more  
details on the Output X-BAR mux configuration, see the General-Purpose Input/Output (GPIO) chapter of the  
TMS320F2838x Real-Time Microcontrollers Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 7-35. CMPSS Module Block Diagram  
Figure 7-36 shows the CMPSS connectivity on the 337-ball ZWT and 176-pin PTP packages.  
Comparator Subsystem 1  
CMPIN1P Pin  
CTRIP1H  
Digital  
Filter  
CTRIPOUT1H  
VDDA or VDAC  
CTRIP1H  
CTRIP1L  
CTRIP2H  
CTRIP2L  
DAC12  
DAC12  
CTRIP1L  
Digital  
Filter  
CTRIPOUT1L  
ePWMs  
ePWM X-BAR  
CMPIN1N Pin  
CMPIN2P Pin  
CTRIP8H  
CTRIP8L  
Comparator Subsystem 2  
Digital  
CTRIP2H  
CTRIPOUT2H  
VDDA or VDAC  
Filter  
DAC12  
DAC12  
CTRIP2L  
Digital  
Filter  
CTRIPOUT2L  
CMPIN2N Pin  
CTRIPOUT1H  
CTRIPOUT1L  
CTRIPOUT2H  
CTRIPOUT2L  
Comparator Subsystem 8  
Digital  
CMPIN8P Pin  
CTRIP8H  
Output X-BAR  
GPIO Mux  
CTRIPOUT8H  
VDDA or VDAC  
Filter  
CTRIPOUT8H  
CTRIPOUT8L  
DAC12  
DAC12  
CTRIP8L  
Digital  
Filter  
CTRIPOUT8L  
CMPIN8N Pin  
Figure 7-36. CMPSS Connectivity (337-Ball ZWT and 176-Pin PTP)  
Copyright © 2021 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.11.3.1 CMPSS Electrical Data and Timing  
Section 7.11.3.1.1 lists the comparator electrical characteristics. Figure 7-37 shows the CMPSS comparator  
input referred offset. Figure 7-38 shows the CMPSS comparator hysteresis.  
7.11.3.1.1 Comparator Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TPU  
Power-up time  
500  
µs  
Comparator input (CMPINxx)  
range  
0
VDDA  
20  
V
Low common mode, inverting  
input set to 50 mV  
Input referred offset error  
–20  
mV  
1x  
12  
24  
36  
48  
21  
26  
30  
46  
2x  
Hysteresis(1)  
LSB  
3x  
4x  
Response time (delay from  
CMPINx input change to output  
on ePWM X-BAR or Output X-  
BAR)  
Step response  
60  
ns  
Ramp response (1.65 V/µs)  
Ramp response (8.25 mV/µs)  
Up to 250 kHz  
ns  
dB  
dB  
PSRR  
CMRR  
Power Supply Rejection Ratio  
Common Mode Rejection Ratio  
40  
(1) The CMPSS DAC is used as the reference to determine how much hysteresis to apply. Therefore, hysteresis will scale with the  
CMPSS DAC reference voltage. Hysteresis is available for all comparator input source configurations.  
7.11.3.1.2 CMPSS Comparator Input Referred Offset and Hysteresis  
Note  
The CMPSS inputs must be kept below VDDA + 0.3 V to ensure proper functional operation. If a  
CMPSS input exceeds this level, an internal blocking circuit will isolate the internal comparator from  
the external pin until the external pin voltage returns below VDDA + 0.3 V. During this time, the  
internal comparator input will be floating and can decay below VDDA within approximately 0.5 µs.  
After this time, the comparator could begin to output an incorrect result depending on the value of the  
other comparator input.  
Input Referred Offset  
CTRIPx  
Logic Level  
CTRIPx = 1  
CTRIPx = 0  
COMPINxP  
Voltage  
0
CMPINxN or  
DACxVAL  
Figure 7-37. CMPSS Comparator Input Referred Offset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Hysteresis  
CTRIPx  
Logic Level  
CTRIPx = 1  
CTRIPx = 0  
COMPINxP  
Voltage  
0
CMPINxN or  
DACxVAL  
Figure 7-38. CMPSS Comparator Hysteresis  
Section 7.11.3.1.3 lists the CMPSS DAC static electrical characteristics.  
7.11.3.1.3 CMPSS DAC Static Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0
TYP  
MAX  
UNIT  
Internal reference  
VDDA  
CMPSS DAC output range  
V
External reference  
0
VDAC(4)  
Static offset error(1)  
Static gain error(1)  
Static DNL  
–25  
–2  
25  
2
mV  
% of FSR  
LSB  
Endpoint corrected  
>–1  
–16  
4
Static INL  
Endpoint corrected  
16  
1
LSB  
Settling time  
Resolution  
Settling to 1LSB after full-scale output change  
µs  
12  
bits  
Error induced by comparator trip or CMPSS  
DAC code change within the same CMPSS  
module  
CMPSS DAC output disturbance(2)  
–100  
2.4  
100  
LSB  
CMPSS DAC disturbance time(2)  
VDAC reference voltage  
VDAC load(3)  
200  
2.5 or 3.0  
6
ns  
V
When VDAC is reference  
When VDAC is reference  
VDDA  
kΩ  
(1) Includes comparator input referred errors.  
(2) Disturbance error may be present on the CMPSS DAC output for a certain amount of time after a comparator trip.  
(3) Per active CMPSS module.  
(4) The maximum output voltage is VDDA when VDAC > VDDA.  
7.11.3.1.4 CMPSS Illustrative Graphs  
Note  
The VDAC pin must be kept below VDDA for the DAC and CMPSS to meet specified performance  
parameters. The VDAC pin must be kept below VDDA + 0.3 V for functional operation. If the VDAC  
pin exceeds VDDA + 0.3 V, a blocking circuit may activate, causing the interval value of VDAC to float  
to 0 V internally, giving improper DAC output or CMPSS trips.  
Figure 7-39 shows the CMPSS DAC static offset. Figure 7-40 shows the CMPSS DAC static gain. Figure 7-41  
shows the CMPSS DAC static linearity.  
Copyright © 2021 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Offset Error  
Figure 7-39. CMPSS DAC Static Offset  
Ideal Gain  
Actual Gain  
Figure 7-40. CMPSS DAC Static Gain  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Linearity Error  
Figure 7-41. CMPSS DAC Static Linearity  
Copyright © 2021 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.11.4 Buffered Digital-to-Analog Converter (DAC)  
The buffered DAC module consists of an internal 12-bit DAC and an analog output buffer that is capable of  
driving an external load. An integrated pulldown resistor on the DAC output helps to provide a known pin voltage  
when the output buffer is disabled. This pulldown resistor cannot be disabled and remains as a passive  
component on the pin, even for other shared pinmux functions. The buffered DAC is a general-purpose DAC that  
can be used to generate a DC voltage in addition to AC waveforms such as sine waves, square waves, triangle  
waves, and so forth. Software writes to the DAC value register can take effect immediately or can be  
synchronized with EPWMSYNCPER events.  
Each buffered DAC has the following features:  
12-bit programmable internal DAC  
Selectable reference voltage source  
Pulldown resistor on output  
Ability to synchronize with EPWMSYNCPER  
The block diagram for the buffered DAC is shown in Figure 7-42.  
DACCTL[DACREFSEL]  
VDAC  
0
1
DACREF  
VREFHI  
VDDA  
DACCTL[LOADMODE]  
SYSCLK  
>
Q
Q
0
1
DACVALS  
D
12-bit  
DAC  
DACOUT  
DACVALA  
Buffer  
D
RPD  
EPWM1SYNCPER  
EPWM2SYNCPER  
EPWM3SYNCPER  
0
1
2
EN  
VSSA  
VSSA  
...  
EPWMnSYNCPER  
Y
n-1  
DACCTL[SYNCSEL]  
Figure 7-42. DAC Module Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.11.4.1 Buffered DAC Electrical Data and Timing  
Section 7.11.4.1.1 lists the buffered DAC operating conditions. Section 7.11.4.1.2 lists the buffered DAC  
electrical characteristics. Figure 7-43 shows the buffered DAC offset. Figure 7-44 shows the buffered DAC gain.  
Figure 7-45 shows the buffered DAC linearity.  
7.11.4.1.1 Buffered DAC Operating Conditions  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Resistive Load  
Capacitive Load  
TEST CONDITIONS  
MIN(1)  
TYP(1)  
MAX(1)  
UNIT  
kΩ  
pF  
V
RL  
5
CL  
100  
VDDA – 0.3  
VDDA  
VOUT  
Valid Output Voltage Range(2) RL = 5 kΩ  
Reference Voltage(3)  
VDAC or VREFHI  
0.3  
2.4  
2.5 or 3.0  
V
(1) Typical values are measured with VREFHI = 3.3 V unless otherwise noted. Minimum and maximum values are tested or characterized  
with VREFHI = 2.5 V.  
(2) This is the linear output range of the DAC. The DAC can generate voltages outside this range, but the output voltage will not be linear  
due to the buffer.  
(3) For best PSRR performance, VDAC or VREFHI should be less than VDDA.  
Copyright © 2021 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.11.4.1.2 Buffered DAC Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP(1)  
MAX(1)  
UNIT  
General  
Resolution  
12  
50  
bits  
kΩ  
RPD  
Pulldown Resistor  
Load Regulation  
Glitch Energy  
–1  
1
mV/V  
V-ns  
1.5  
2
Voltage Output Settling Time Settling to 2 LSBs after 0.3V-  
Full-Scale to-3V transition  
µs  
µs  
Voltage Output Settling Time Settling to 2 LSBs after 0.3V-  
1.6  
1/4th Full-Scale  
to-0.75V transition  
Slew rate from 0.3V-to-3V  
transition  
Voltage Output Slew Rate  
2.8  
4.5  
V/µs  
ns  
Load Transient Settling  
Time(6)  
5-kΩ Load  
328  
Reference Input Resistance(2) VDAC or VREFHI  
170  
kΩ  
µs  
TPU  
Power-up Time External Reference mode  
500  
DC Characteristics  
Offset  
Gain  
DNL  
INL  
Offset Error  
Midpoint  
–10  
–2.5  
> –1  
–5  
10  
2.5  
1
mV  
% of FSR  
LSB  
Gain Error(3)  
Differential Non Linearity(4)  
Endpoint corrected  
Endpoint corrected  
±0.4  
±2  
Integral Non Linearity  
5
LSB  
AC Characteristics  
Integrated noise from 100 Hz  
to 100 kHz  
500  
µVrms  
Output Noise  
Noise density at 10 kHz  
1020 Hz, 1 MSPS  
711  
67  
nVrms/√Hz  
SNR  
THD  
Signal to Noise Ratio  
dB  
dB  
Total Harmonic Distortion  
1020 Hz, 1 MSPS  
–63  
1020 Hz, 1 MSPS (including  
harmonics and spurs)  
66  
Spurious Free Dynamic  
Range  
SFDR  
PSRR  
dBc  
dB  
1020 Hz, 1 MSPS (including  
only spurs)  
104  
DC  
70  
30  
Power Supply Rejection  
Ratio(5)  
100 kHz  
(1) Typical values are measured with VREFHI = 3.3 V unless otherwise noted. Minimum and maximum values are tested or characterized  
with VREFHI = 2.5 V.  
(2) Per active Buffered DAC module.  
(3) Gain error is calculated for linear output range.  
(4) The DAC output is monotonic.  
(5) VREFHI = 3.2 V, VDDA = 3.3 V DC + 100 mV Sine.  
(6) Settling to within 3LSBs.  
7.11.4.1.3 Buffered DAC Notes and Illustrative Graphs  
Note  
The VDAC pin must be kept below VDDA for the DAC and CMPSS to meet specified performance  
parameters. The VDAC pin must be kept below VDDA + 0.3 V for functional operation. If the VDAC  
pin exceeds VDDA + 0.3 V, a blocking circuit may activate, causing the interval value of VDAC to float  
to 0 V internally, giving improper DAC output or CMPSS trips.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Note  
The VREFHI pin must be kept below VDDA for the ADC and DAC to meet specified performance  
parameters. The VREFHI pin must be kept below VDDA + 0.3 V for functional operation. If the  
VREFHI pin exceeds VDDA + 0.3 V, a blocking circuit may activate, causing the interval value of  
VREFHI to float to 0 V internally, giving improper ADC conversion or DAC output.  
Offset Error  
Code 2048  
Figure 7-43. Buffered DAC Offset  
Copyright © 2021 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Actual Gain  
Ideal Gain  
Code 3722  
Code 373  
Linear Range  
(3.3-V Reference)  
Figure 7-44. Buffered DAC Gain  
Linearity Error  
Code 3722  
Code 373  
Linear Range  
(3.3-V Reference)  
Figure 7-45. Buffered DAC Linearity  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.12 C28x Control Peripherals  
Note  
For the actual number of each peripheral on a specific device, see the Device Comparison table.  
7.12.1 Enhanced Capture and High-Resolution Capture (eCAP, HRCAP)  
The eCAP module can be used in systems where accurate timing of external events is important.  
Applications for eCAP include:  
Speed measurements of rotating machinery (for example, toothed sprockets sensed through Hall sensors)  
Elapsed time measurements between position sensor pulses  
Period and duty cycle measurements of pulse train signals  
Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors  
The eCAP module includes the following features:  
4-event time-stamp registers (each 32 bits)  
Edge-polarity selection for up to four sequenced time-stamp capture events  
Interrupt on either of the four events  
Single shot capture of up to four event timestamps  
Continuous mode capture of timestamps in a four-deep circular buffer  
Absolute time-stamp capture  
Difference (Delta) mode time-stamp capture  
All of the above resources dedicated to a single input pin  
When not used in capture mode, the eCAP module can be configured as a single-channel PWM output  
(APWM).  
The capture functionality of the Type-2 eCAP is enhanced from the Type-0 eCAP with the following added  
features:  
Event filter reset bit  
– Writing a 1 to ECCTL2[CTRFILTRESET] will clear the event filter, the modulo counter, and any pending  
interrupts flags. Resetting the bit is useful for initialization and debug.  
Modulo counter status bits  
– The modulo counter (ECCTL2 [MODCTRSTS]) indicates which capture register will be loaded next. In the  
Type-0 eCAP, it was not possible to know current state of modulo counter.  
DMA trigger source  
– eCAPxDMA is added as a DMA trigger. CEVT[1–4] can be configured as the source for eCAPxDMA.  
Input multiplexer  
– ECCTL0 [INPUTSEL] selects one of 128 input signals.  
EALLOW protection  
– EALLOW protection is added to critical registers. To maintain software compatibility with the Type-0 eCAP,  
configure DEV_CFG_REGS.ECAPTYPE to make these registers unprotected.  
ECAPxSYNCINSEL register  
– The ECAPSxYNCINSEL register is added for each eCAP to select an external SYNCIN. Every eCAP can  
have a separate SYNCIN signal.  
The eCAP inputs connect to any GPIO input through the Input X-BAR. The APWM outputs connect to GPIO pins  
through the Output X-BAR to OUTPUTx positions in the GPIO mux. See Section 6.5.2 and Section 6.5.3.  
Figure 7-46 shows the eCAP and HRCAP block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
ECCTL2 [ SYNCI_EN, SYNCOSEL, SWSYNC]  
ECCTL2[CAP/APWM]  
APWM Mode  
CTRPHS  
(phase register−32 bit)  
ECAPxSYNCIN  
OVF  
RST  
CTR_OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
ECAPxSYNCOUT  
PWM  
Compare  
Logic  
Output  
X-Bar  
(counter−32 bit)  
Delta−Mode  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
PRD [0−31]  
32  
ECCTL1 [ CAPLDEN, CTRRSTx]  
HRCTRL[HRE]  
32  
32  
LD1  
CAP1  
Polarity  
Select  
LD  
(APRD Active)  
APRD  
32  
shadow  
CMP [0−31]  
32  
HRCTRL[HRE]  
32  
HRCTRL[HRE]  
32  
CAP2  
Polarity  
Select  
LD2  
LD  
Other  
Sources  
(ACMP Active)  
[127:16]  
[15:0]  
Event  
Prescale  
Event  
32  
ACMP  
16  
qualifier  
Input  
shadow  
LD  
ECCTL1[PRESCALE]  
HRCTRL[HRE]  
32  
X-Bar  
32  
Polarity  
Select  
LD3  
LD4  
CAP3  
(APRD Shadow)  
HRCTRL[HRE]  
32  
32  
CAP4  
Polarity  
Select  
LD  
(ACMP Shadow)  
Edge Polarity Select  
ECCTL1[CAPxPOL]  
4
Capture Events  
4
CEVT[1:4]  
ECAPxDMA_INT  
ECCTL2[CTRFILTRESET]  
Interrupt  
Continuous /  
Oneshot  
Trigger  
and  
MODCNTRSTS  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Capture Control  
ECCTL2[DMAEVTSEL]  
Flag  
Control  
ECAPx  
(to ePIE)  
ECCTL2 [ REARM, CONT_ONESHT, STOP_WRAP]  
Registers: ECEINT, ECFLG, ECCLR, ECFRC  
Capture Pulse  
HR Input  
SYSCLK  
HRCLK  
(A)  
HR Submodule  
ECAPx_HRCAL  
(to ePIE)  
Copyright © 2018, Texas Instruments Incorporated  
A. The HRCAP submodule is not available on all eCAP modules; in this case, the high-resolution muxes and hardware are not  
implemented.  
Figure 7-46. eCAP and HRCAP Block Diagram  
The eCAP module is clocked by PERx.SYSCLK.  
The clock enable bits (ECAPx) in the PCLKCR3 register turn off the eCAP module individually (for low-power  
operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is off.  
The eCAP6 and eCAP7 modules can be configured as high-resolution capture (HRCAP) submodules. The  
HRCAP submodule measures the difference, in time, between pulses asynchronously to the system clock. This  
submodule is new to the eCAP Type 2 module, and features many enhancements over the Type 0 HRCAP  
module.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Applications for the HRCAP include:  
Capacitive touch applications  
High-resolution period and duty-cycle measurements of pulse train cycles  
Instantaneous speed measurements  
Instantaneous frequency measurements  
Voltage measurements across an isolation boundary  
Distance/sonar measurement and scanning  
Flow measurements  
The HRCAP submodule includes the following features:  
Pulse-width capture in either non-high-resolution or high-resolution modes  
Absolute mode pulse-width capture  
Continuous or "one-shot" capture  
Capture on either falling or rising edge  
Continuous mode capture of pulse widths in 4-deep buffer  
Hardware calibration logic for precision high-resolution capture  
All of the resources in this list are available on any pin using the Input X-BAR.  
The HRCAP submodule includes one high-resolution capture channel in addition to a calibration block. The  
calibration block allows the HRCAP submodule to be continually recalibrated, at a set interval, with no “down  
time”. Because the HRCAP submodule now uses the same hardware as its respective eCAP, if the HRCAP is  
used, the corresponding eCAP will be unavailable.  
Each high-resolution-capable channel has the following independent key resources.  
All hardware of the respective eCAP  
High-resolution calibration logic  
Dedicated calibration interrupt  
7.12.1.1 eCAP Synchronization  
The eCAP modules can be synchronized with each other by selecting a common SYNCIN source. SYNCIN  
source for eCAP can be either software sync-in or external sync-in. The external sync-in signal can come from  
EPWM or eCAP or X-Bar or EtherCAT. The SYNC signal is defined by the selection in the  
ECAPxSYNCINSEL[SEL] bit for ECAPx as shown in Figure 7-47.  
ECAPx  
Disable  
0x0  
0x1  
ECAPxSYNCIN  
ECAPxSYNCOUT  
EPWM[1..16]SYNCOUT  
ECAP[1..7]SYNCOUT  
INPUT5 (Input X-Bar)  
EPWMxSYNCOUT  
ECCTL2[SWSYNC]  
CTR=PRD  
EXTSYNCOUT  
Disable  
INPUT6 (Input X-Bar)  
ETHERCATSYNC0  
ETHERCATSYNC1  
Disable  
0x1f  
SYNCSELECT[SYNCOUT]  
ECCTL2[SYNCOSEL]  
ECAPSYNCINSEL[SEL]  
Figure 7-47. eCAPSynchronization Scheme  
Copyright © 2021 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.12.1.2 eCAP Electrical Data and Timing  
Section 7.12.1.2.1 lists the eCAP timing requirements and Section 7.12.1.2.2 lists the eCAP switching  
characteristics.  
7.12.1.2.1 eCAP Timing Requirements  
MIN  
2tc(SYSCLK)  
NOM  
MAX  
UNIT  
Asynchronous  
Synchronous  
tw(CAP)  
Capture input pulse width  
2tc(SYSCLK)  
ns  
With input qualifier  
1tc(SYSCLK) + tw_(IQSW)  
7.12.1.2.2 eCAP Switching Charcteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
20  
TYP  
MAX  
UNIT  
ns  
tw(APWM)  
Pulse duration, APWMx output high/low  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.1.3 HRCAP Electrical Data and Timing  
Section 7.12.1.3.1 lists the HRCAP switching characteristics. Figure 7-48 shows the HRCAP accuracy precision  
and resolution. Figure 7-49 shows the HRCAP standard deviation characteristics.  
7.12.1.3.1 HRCAP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
Input pulse width  
110  
Measurement length ≤ 5 µs  
Measurement length > 5 µs  
±390  
±450  
540  
ps  
Accuracy(1) (2) (3) (4)  
1450  
ps  
Standard deviation  
Resolution  
See Figure 7-49  
300  
ps  
(1) Value obtained using an oscillator of 100 PPM, oscillator accuracy directly affects the HRCAP accuracy.  
(2) Measurement is completed using rising-rising or falling-falling edges  
(3) Opposite polarity edges will have an additional inaccuracy due to the difference between VIH and VIL. This effect is dependent on the  
signal’s slew rate.  
(4) Accuracy only applies to time-converted measurements.  
7.12.1.3.2 HRCAP Graphs  
HRCAP’s Mean  
Accuracy  
Resolution  
(Step Size)  
Precision  
(Standard Deviation)  
Actual  
Input Signal  
A. The HRCAP has some variation in performance, this results in a probability distribution which is described using the following terms:  
Accuracy: The time difference between the input signal and the mean of the HRCAP’s distribution.  
Precision: The width of the HRCAP’s distribution, this is given as a standard deviation.  
Resolution: The minimum measurable increment.  
Figure 7-48. HRCAP Accuracy Precision and Resolution  
Copyright © 2021 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
2
1.8  
1.6  
1.4  
1.2  
1
7.4  
Typical Core Conditions  
Noisy Core Supply  
6.66  
5.92  
5.18  
4.44  
3.7  
0.8  
0.6  
0.4  
0.2  
2.96  
2.22  
1.48  
0.74  
0
1000  
2000  
3000  
4000  
5000  
Time Between Edges(nS)  
6000  
7000  
8000  
9000  
10000  
A. Typical core conditions: All peripheral clocks are enabled.  
B. Noisy core supply: All core clocks are enabled and disabled with a regular period during the measurement. This resulted in the 1.2-V rail  
experiencing a 18.5-mA swing during the measurement.  
C. Fluctuations in current and voltage on the 1.2-V rail cause the standard deviation of the HRCAP to rise. Care should be taken to ensure  
that the 1.2-V supply is clean, and that noisy internal events, such as enabling and disabling clock trees, have been minimized while  
using the HRCAP.  
Figure 7-49. HRCAP Standard Deviation Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.2 Enhanced Pulse Width Modulator (ePWM)  
The ePWM peripheral is a key element in controlling many of the power electronic systems found in both  
commercial and industrial equipment. The ePWM type-4 module is able to generate complex pulse width  
waveforms with minimal CPU overhead by building the peripheral up from smaller modules with separate  
resources that can operate together to form a system. Some of the highlights of the ePWM type-4 module  
include complex waveform generation, dead-band generation, a flexible synchronization scheme, advanced trip-  
zone functionality, and global register reload capabilities.  
Figure 7-50 shows the signal interconnections with the ePWM. Figure 7-51 shows the ePWM trip input  
connectivity.  
Copyright © 2021 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Time-Base (TB)  
TBPRD Shadow (24)  
ePWM  
SYNC  
Scheme  
EXTSYNCIN  
EXTSYNCOUT  
TBPRDHR (8)  
TBPRD Active (24)  
CTR=PRD  
EPWMxSYNCI  
TBCTL[PHSEN]  
TBCTL[SWFSYNC]  
DCAEVT1/sync(A)  
DCBEVT1/sync(A)  
Counter  
Up/Down  
(16 bit)  
CTR=ZERO  
CTR_Dir  
TBCTR  
Active (16)  
CTR=PRD  
EPWMx_INT  
CTR=ZERO  
TBPHSHR (8)  
EPWMxSOCA  
EPWMxSOCB  
CTR=PRD or ZERO  
CTR=CMPA  
16  
8
On-chip  
ADC  
Event  
Trigger  
And  
Interrupt  
(ET)  
Phase  
Control  
TBPHS Active (24)  
CTR=CMPB  
CTR=CMPC  
CTR=CMPD  
CTR_Dir  
DCAEVT1.soc(A)  
DCBEVT1.soc(A)  
ADCSOCOUTSELECT  
Counter Compare (CC)  
Action  
Qualifier  
(AQ)  
CTR=CMPA  
CMPAHR (8)  
Select and pulse stretch  
for external ADC  
16  
HiRes PWM (HRPWM)  
CMPAHR (8)  
EPWMA  
ADCSOCAO  
ADCSOCBO  
CMPA Active (24)  
CMPA Shadow (24)  
ePWMxA  
Trip  
Zone  
(TZ)  
Dead  
Band  
(DB)  
PWM  
Chopper  
(DB)  
CTR=CMPB  
CMPBHR (8)  
16  
CMPB Active (16)  
EPWMB  
ePWMxB  
CMPB Shadow (16)  
CMPBHR (8)  
CTR=CMPC  
EPWMx_TZ_INT  
TZ1 to TZ3  
TBCNT (16)  
CMPC[15-0]  
CTR=ZERO  
DCAEVT1.inter  
DCBEVT1.inter  
DCAEVT2.inter  
EMUSTOP  
16  
CLOCKFAIL  
CMPC Active (16)  
EQEPxERR  
DCBEVT2.inter  
DCAEVT1.force(A)  
DCBEVT1.force(A)  
DCAEVT2.force(A)  
CMPC Shadow (16)  
TBCNT (16)  
CTR=CMPD  
DCBEVT2.force(A)  
CMPD[15-0]  
16  
CMPD Active (16)  
CMPD Shadow (16)  
A. These events are generated by the ePWM digital compare (DC) submodule based on the levels of the TRIPIN inputs.  
Figure 7-50. ePWM Submodules and Critical Internal Signal Interconnects  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
GPIO0  
Async/  
Sync/  
Input X-Bar  
Sync+Filter  
GPIOx  
Other Sources  
INPUT[1:16]  
16:127  
0:15  
eCAPx  
XINT1  
XINT2  
XINT3  
XINT4  
XINT5  
ADC  
Wrapper(s)  
PIE,  
CLA  
ePWM  
eCAP  
Sync Chain  
EXTSYNCIN1  
EXTSYNCIN2  
TZ1  
TZ2  
TZ3  
EPWMINT  
TZINT  
TRIP1  
TRIP2  
TRIP3  
TRIP6  
EPWMx.EPWMCLK  
PCLKCR2[EPWMx]  
TBCLKSYNC  
PCLKCR0[TBCLKSYNC]  
TRIP4  
TRIP5  
TRIP7  
TRIP8  
TRIP9  
TRIP10  
TRIP11  
TRIP12  
INPUT[1:14]  
CMPSSx.TRIPH  
CMPSSx.TRIPHORL  
SDFM  
CMPSSx.TRIPL  
ADCx.EVT1-4  
ECAPx.OUT  
All  
ePWM  
Modules  
FLT1  
FLT2  
FLT3  
FLT4  
ePWM  
X-Bar  
SD1.FLTx.COMPx  
SD1.FLTx.DRINTx  
EXTSYNCOUT  
ADCSOCx  
ADCSOCAO Select  
ADCSOCBO Select  
CLAHALT  
TRIP14  
TRIP15  
TZ4  
TZ5  
TZ6  
ECCERR  
SOCA  
SOCB  
CPU1.PIEVECTERROR  
CPU2.PIEVECTERROR  
ADC  
Wrapper(s)  
EQEPERR  
CLKFAIL  
CPU1.EMUSTOP  
CPU2.EMUSTOP  
EPWMn.EMUSTOP  
EPWMSYNCPER  
Blanking Window  
DAC  
CPUSEL0.EPWMx  
CMPSS  
Figure 7-51. ePWM Trip Input Connectivity  
Copyright © 2021 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.12.2.1 Control Peripherals Synchronization  
The ePWM and eCAP synchronization scheme on the device provides flexibility in partitioning the ePWM and  
eCAP modules between CPU1 and CPU2 and allows localized synchronization within the modules belonging to  
the same CPU. Like the other peripherals, the partitioning of the ePWM and eCAP modules needs to be done  
using the CPUSELx registers. Figure 7-52 shows the synchronization scheme.  
TBCTL  
SWFSYNC  
CTR=ZERO  
CTR=CMPB  
CTR=CMPC  
CTR=CMPD  
CLR  
DCAEVT1.sync  
One Shot  
Latch  
DCBEVT1.sync  
0
Set  
Q
EPWMSYNCOUTEN  
1
SWEN  
ZEROEN  
0
0
1
CMPBEN  
EPWMxSYNCOUT  
1
0
OR  
CMPCEN  
CMPDEN  
DCARVT1EN  
DCBEVT1EN  
TBCTL2[SELFCLRTRREM]  
Clear  
Register  
Disable  
0
EPWM1SYNCOUT  
|
|
|
EPWMxSYNCOUT  
ECAP1SYNCOUT  
HRPCTL[PWMSYNCSELX]  
CTR=CMPC UP  
EPWMxSYNCIN  
|
|
|
CTR=CMPC DOWN  
CTR=CMPD UP  
ECAPySYNCOUT  
Other Sources  
EPWMxSYNCPER  
CTR=CMPD DOWN  
HRPCTL[PWMSYNCSEL]  
CTR=PRD  
CMPSS  
DAC  
EPWMSYNCINSEL  
Note: SYNCO and SYNCOUT are used interchangeably  
CTR=ZERO  
Figure 7-52. Synchronization Chain Architecture  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.2.2 ePWM Electrical Data and Timing  
Section 7.12.2.2.1 lists the PWM timing requirements and Section 7.12.2.2.2 lists the PWM switching  
characteristics. For an explanation of the input qualifier parameters, see Section 7.10.6.2.1.  
7.12.2.2.1 ePWM Timing Requirements  
MIN  
MAX  
UNIT  
f(EPWM)  
Frequency, EPWMCLK  
Sync input pulse width  
200  
MHz  
Asynchronous  
Synchronous  
2tc(EPWMCLK)  
2tc(EPWMCLK)  
tw(SYNCIN)  
cycles  
With input qualifier  
1tc(EPWMCLK) + tw(IQSW)  
7.12.2.2.2 ePWM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
20  
MAX  
UNIT  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
ns  
tw(SYNCOUT)  
8tc(SYSCLK)  
cycles  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
Delay time, trip input active to PWM Hi-Z  
(1)  
td(TZ-PWM)  
tskew(PWM)  
30  
ns  
ns  
Skew between any two PWM outputs  
2.5  
(1) The delay time is only for GPIO sources, it excludes the CMPSS.  
7.12.2.2.3 Trip-Zone Input Timing  
Section 7.12.2.2.3.1 lists the trip-zone input timing requirements. Figure 7-53 shows the PWM Hi-Z  
characteristics. For an explanation of the input qualifier parameters, see Section 7.10.6.2.1.  
7.12.2.2.3.1 Trip-Zone Input Timing Requirements  
MIN  
1tc(EPWMCLK)  
MAX UNIT  
cycles  
Asynchronous  
Synchronous  
tw(TZ)  
Pulse duration, TZx input low  
2tc(EPWMCLK)  
cycles  
With input qualifier  
1tc(EPWMCLK) + tw(IQSW)  
cycles  
EPWMCLK  
tw(TZ)  
TZ(A)  
td(TZ-PWM)  
PWM(B)  
A. TZ: TZ1, TZ2, TZ3, TRIP1–TRIP12  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software.  
Figure 7-53. PWM Hi-Z Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.12.2.3 External ADC Start-of-Conversion Electrical Data and Timing  
Section 7.12.2.3.1 lists the external ADC start-of-conversion switching characteristics. Figure 7-54 shows the  
ADCSOCAO or ADCSOCBO timing.  
7.12.2.3.1 External ADC Start-of-Conversion Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCL)  
Pulse duration, ADCSOCxO low  
32tc(SYSCLK)  
cycles  
tw(ADCSOCL)  
ADCSOCAO  
or  
ADCSOCBO  
Figure 7-54. ADCSOCAO or ADCSOCBO Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.3 High-Resolution Pulse Width Modulator (HRPWM)  
The HRPWM combines multiple delay lines in a single module and a simplified calibration system by using a  
dedicated calibration delay line. For each ePWM module, there are two HR outputs:  
HR Duty and Deadband control on Channel A  
HR Duty and Deadband control on Channel B  
The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be  
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:  
Significantly extends the time resolution capabilities of conventionally derived digital PWM  
This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual edge  
control for frequency/period modulation.  
Finer time granularity control or edge positioning is controlled through extensions to the Compare A, B,  
phase, period and deadband registers of the ePWM module.  
Note  
The minimum HRPWMCLK frequency allowed for HRPWM is 60 MHz.  
7.12.3.1 HRPWM Electrical Data and Timing  
Section 7.12.3.1.1 lists the high-resolution PWM switching characteristics.  
7.12.3.1.1 High-Resolution PWM Characteristics  
PARAMETER  
MIN  
TYP  
MAX UNIT  
310 ps  
Micro Edge Positioning (MEP) step size(1)  
150  
(1) The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher  
temperature and lower voltage and decrease with lower temperature and higher voltage.  
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI  
software libraries for details of using SFO functions in end applications. SFO functions help to estimate the number of MEP steps per  
SYSCLK period dynamically while the HRPWM is in operation.  
Copyright © 2021 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.12.4 Enhanced Quadrature Encoder Pulse (eQEP)  
The eQEP module on this device is Type-2. The eQEP interfaces directly with linear or rotary incremental  
encoders to obtain position, direction, and speed information from rotating machines used in high-performance  
motion and position control systems.  
The eQEP peripheral contains the following major functional units (see Figure 7-55):  
Programmable input qualification for each pin (part of the GPIO MUX)  
Quadrature decoder unit (QDU)  
Position counter and control unit for position measurement (PCCU)  
Quadrature edge-capture unit for low-speed measurement (QCAP)  
Unit time base for speed/frequency measurement (UTIME)  
Watchdog timer for detecting stalls (QWDOG)  
Quadrature Mode Adapter (QMA)  
System  
control registers  
To CPU  
EQEPxENCLK  
SYSCLK  
QCPRD  
Enhanced QEP (eQEP) peripheral  
QCAPCTL  
16  
QCTMR  
16  
16  
Quadrature  
capture unit  
(QCAP)  
QCTMRLAT  
QCPRDLAT  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
used by  
multiple units  
32  
16  
QDECCTL  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
UTIME  
QWDOG  
EQEPx_A  
EQEPx_B  
EQEPxAIN  
WDTOUT  
QMA  
EQEPxBIN  
EQEPxINT  
QCLK  
PIE  
QDIR  
EQEPxIIN  
Quadrature  
32  
QI  
GPIO  
MUX  
EQEPx_INDEX  
EQEPxIOUT  
Position counter/  
control unit  
(PCCU)  
decoder  
(QDU)  
QS  
EQEPxIOE  
QPOSLAT  
PHE  
QPOSSLAT  
QPOSILAT  
PCSOUT  
EQEPxSIN  
EQEPx_STROBE  
EQEPxSOUT  
EQEPxSOE  
32  
32  
16  
QEINT  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QPOSCMP  
QFRC  
QCLR  
QPOSCTL  
Copyright © 2017, Texas Instruments Incorporated  
Figure 7-55. eQEP Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.12.4.1 eQEP Electrical Data and Timing  
Section 7.12.4.1.1 lists the eQEP timing requirement. GPIO asynchronous mode should not be used for eQEP  
input pins. For an explanation of the input qualifier parameters, see Section 7.10.6.2.1.  
Section 7.12.4.1.2 lists the eQEP switching characteristics.  
7.12.4.1.1 eQEP Timing Requirements  
MIN  
MAX  
UNIT  
Synchronous(1)  
2tc(SYSCLK)  
tw(QEPP)  
QEP input period  
cycles  
With input qualifier  
Synchronous(1)  
2[1tc(SYSCLK) + tw(IQSW)]  
2tc(SYSCLK)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
cycles  
cycles  
cycles  
cycles  
With input qualifier  
Synchronous(1)  
With input qualifier  
Synchronous(1)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
2tc(SYSCLK) + tw(IQSW)  
2tc(SYSCLK)  
With input qualifier  
Synchronous(1)  
With input qualifier  
2tc(SYSCLK) + tw(IQSW)  
(1) The GPIO GPxQSELn Asynchronous mode should not be used for eQEP module input pins.  
7.12.4.1.2 eQEP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
4tc(SYSCLK)  
6tc(SYSCLK)  
UNIT  
cycles  
cycles  
td(CNTR)xin  
Delay time, external clock to counter increment  
td(PCS-OUT)QEP  
Delay time, QEP input edge to position compare sync output  
Copyright © 2021 Texas Instruments Incorporated  
176 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.12.5 Sigma-Delta Filter Module (SDFM)  
The SDFM is a four-channel digital filter designed specifically for current measurement and resolver position  
decoding in motor control applications. Each input channel can receive an independent sigma-delta (ΣΔ)  
modulated bit stream. The bit streams are processed by four individually programmable digital decimation filters.  
The filter set includes a fast comparator (secondary filter) for immediate digital threshold comparisons for over-  
current and under-current monitoring, and zeros-crossing detection. Figure 7-56 shows a block diagram of the  
SDFMs.  
SDFM features include:  
Eight external pins per SDFM module  
– Four sigma-delta data input pins per SDFM module (SD-Dx, where x = 1 to 4)  
– Four sigma-delta clock input pins per SDFM module (SD-Cx, where x = 1 to 4)  
Configurable modulator clock mode supported:  
– Mode 0: Modulator clock rate equals the modulator data rate.  
Four independent, configurable secondary filter (comparator) units per SDFM module:  
– Four different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available  
– Ability to detect over-value condition, under-value condition, and Threshold-crossing conditions  
1. Two independent Higher Threshold comparators (used to detect over-value condition)  
2. Two independent Lower Threshold comparators (used to detect under-value condition)  
3. One independent Threshold-Crossing comparator (used to measure duty cycle/frequency with eCAP)  
– OSR value for comparator filter unit (COSR) programmable from 1 to 32  
Four independent configurable primary filter (data filter) units per SDFM module:  
– Four different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available  
– OSR value for data filter unit (DOSR) programmable from 1 to 256  
– Ability to enable or disable (or both) individual filter module  
– Ability to synchronize all four independent filters of an SDFM module by using the Master Filter Enable  
(MFE) bit or by using PWM signals  
Data filter output can be represented in either 16 bits or 32 bits.  
Data filter unit has a programmable mode FIFO to reduce interrupt overhead. The FIFO has the following  
features:  
– The primary filter (data filter) has a 16-deep x 32-bit FIFO.  
– The FIFO can interrupt the CPU after programmable number of data-ready events.  
– FIFO Wait-for-Sync feature: Ability to ignore data-ready events until the PWM synchronization signal  
(SDSYNC) is received. Once the SDSYNC event is received, the FIFO is populated on every data-ready  
event.  
– Data filter output can be represented in either 16 bits or 32 bits.  
PWMx.SOCA/SOCB can be configured to serve as SDSYNC source on a per-data-filter-channel basis.  
PWMs can be used to generate a modulator clock for sigma-delta modulators.  
Configurable Input Qualification available for both SD-Cx and SD-Dx  
Ability to use one filter channel clock (SD-C1) to provide clock to other filter clock channels.  
Configurable digital filter available on comparator filter events to blankout comparator events caused by  
spurious noise  
Note  
Care should be taken to avoid noise on the SDx_Cy input. If the minimum pulse width requirements  
are not met (for example, through a noise glitch), then the SDFM results could become undefined.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 7-56 shows the SDFM block diagram.  
Output XBAR  
PWM XBAR  
SDyFLTx_CEVT1 SDyFLTx_CEVT2  
Comparator  
Signals  
SDyFLTx.DR  
SDFM- Sigma Delta Filter Module  
G4  
Streams  
DMA  
Filter Module 1  
Secondary  
(Comparator)  
Filter  
Interrupt  
Unit  
SDy_D1  
SDy_C1  
Input  
Ctrl  
SDy_ERR  
Primary (Data)  
Filter  
SDyFLTx.DR  
CLA  
PWMi.SOCA / SOCB  
PWMj.CMPC  
FIFO  
SDy_D2  
SDy_C2  
Filter Module 2  
SDy_ERR  
SDyFLTx.DR  
C28x  
GPIO  
MUX  
PWMi.SOCA / SOCB  
PWMj.CMPC  
SDy_D3  
SDy_C3  
Filter Module 3  
Filter Module 4  
SDyFLTx_CEVT1  
SDyFLTx_CEVT2  
ECAP  
PWMi.SOCA / SOCB  
PWMj.CMPD  
Register  
Map  
SDy_D4  
SDy_C4  
PWMi.SOCA / SOCB  
PWMj.CMPD  
LEGEND  
Where,  
j
i
=
=
y =  
x =  
11 for SDFM1 & 12 for SDFM2  
1 to Max. no of PWMs  
1 for SDFM1 & 2 for SDFM2  
1 t 4  
Interrupt / trigger sources from SDFM  
Internal secondary filter signals  
Figure 7-56. SDFM Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
178 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.12.5.1 SDFM Electrical Data and Timing (Using ASYNC)  
Section 7.12.5.1.1 lists the SDFM timing requirements. The following configurations should be made:  
SDFM GPIO pins should be configured in ASYNC mode only (using GPYQSELn = 0b11).  
Both SDx-Cy and SDx-Dy signals need to be synchronized to PLLRAWCLK (using SDCTLPARMx registers).  
Figure 7-57 shows the SDFM timing diagram.  
7.12.5.1.1 SDFM Timing Requirements When Using Asynchronous GPIO (ASYNC) Option  
MIN  
MAX  
UNIT  
Mode 0  
tc(SDC)M0  
Cycle time, SDx_Cy  
4 * tc(PLLRAWCLK)  
2 * tc(PLLRAWCLK)  
256 * SYSCLK period  
ns  
ns  
ns  
ns  
tw(SDDHL)M0  
Pulse duration, SDx_Dy (high / Low)  
Setup time, SDx_Dy valid before SDx_Cy goes high  
Hold time, SDx_Dy wait after SDx_Cy goes high  
tsu(SDDV-SDCH)M0  
th(SDCH-SDD)M0  
1 * tc(PLLRAWCLK) + 5  
1 * tc(PLLRAWCLK) + 5  
7.12.5.1.2 SDFM Timing Diagram  
WARNING  
Special precautions should be taken on both SD-Cx and SD-Dx signals to ensure a clean and noise-  
free signal that meets SDFM timing requirements. Precautions such as series termination resistors  
for ringing noise due to any impedance mismatch of clock driver and spacing of traces from other  
noisy signals are recommended.  
Note  
The SDFM SD-Cx and SD-Dx signals, when synchronized to PLLRAWCLK, provide protection against  
SDFM module corruption due to occasional random noise glitches that may result in a false  
comparator trip and filter output. However, the signals do not provide protection against persistent  
violations of the above timing requirements. Timing violations will result in data corruption proportional  
to the number of bits which violate the requirements.  
Mode 0  
tw(SDCH)M0  
tc(SDC)M0  
SDx_Cy  
SDx_Dy  
tsu(SDDV-SDCH)M0  
th(SDCH-SDD)M0  
Figure 7-57. SDFM Timing Diagram – Mode 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13 C28x Communications Peripherals  
Note  
For the actual number of each peripheral on a specific device, see the Device Comparison table.  
7.13.1 Controller Area Network (CAN)  
This device uses the CAN IP known as DCAN.  
The CAN module performs CAN protocol communication according to ISO 11898-1 (identical to Bosch® CAN  
protocol specification 2.0 A, B). The bit rate can be programmed to values up to 1 Mbps. A CAN transceiver chip  
is required for the connection to the physical layer (CAN bus).  
For communication on a CAN network, individual message objects can be configured. The message objects and  
identifier masks are stored in the Message RAM.  
All functions concerning the handling of messages are implemented in the message handler. These functions  
are: acceptance filtering; the transfer of messages between the CAN Core and the Message RAM; and the  
handling of transmission requests as well as the generation of interrupts or DMA requests.  
The register set of the CAN may be accessed directly by the CPU through the module interface. These registers  
are used to control and configure the CAN core and the message handler, and to access the message RAM.  
The CAN module implements the following features:  
Complies with ISO11898-1 ( Bosch® CAN protocol specification 2.0 A and B)  
Bit rates up to 1 Mbps  
Multiple clock sources  
32 message objects (mailboxes), each with the following properties:  
– Configurable as receive or transmit  
– Configurable with standard (11-bit) or extended (29-bit) identifier  
– Supports programmable identifier receive mask  
– Supports data and remote frames  
– Holds 0 to 8 bytes of data  
– Parity-checked configuration and data RAM  
Individual identifier mask for each message object  
Programmable FIFO mode for message objects  
Programmable loop-back modes for self-test operation  
Suspend mode for debug support  
Software module reset  
Automatic bus-on, after bus-off state by a programmable 32-bit timer  
Message-RAM parity-check mechanism  
Two interrupt lines  
DMA support  
Note  
For a CAN bit clock of 200 MHz, the smallest bit rate possible is 7.8125 kbps.  
Note  
The accuracy of the on-chip zero-pin oscillator is in Section 7.10.3.5.1. Depending on parameters  
such as the CAN bit timing settings, bit rate, bus length, and propagation delay, the accuracy of this  
oscillator may not meet the requirements of the CAN protocol. In this situation, an external clock  
source must be used.  
Copyright © 2021 Texas Instruments Incorporated  
180 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Figure 7-58 shows the CAN block diagram.  
CAN_H  
CAN_L  
CAN Bus  
3.3V CAN Transceiver  
CANx TX pin  
External connections  
Device  
CANx RX pin  
CAN  
CAN Core  
Message RAM  
Message Handler  
Message  
RAM  
Interface  
Register and Message  
Object Access (IFx)  
32  
Message  
Objects  
(Mailboxes)  
Test Modes  
Only  
Module Interface  
CANINT0 CANINT1  
(to ePIE)  
CPU Bus  
Figure 7-58. CAN Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.2 Fast Serial Interface (FSI)  
The Fast Serial Interface (FSI) module is a serial communication peripheral capable of reliable and robust high-  
speed communications. The FSI is designed to ensure data robustness across many system conditions such as  
chip-to-chip as well as board-to-board across an isolation barrier. Payload integrity checks such as CRC, start-  
and end-of-frame patterns, and user-defined tags, are encoded before transmit and then verified after receipt  
without additional CPU interaction. Line breaks can be detected using periodic transmissions, all managed and  
monitored by hardware. The FSI is also tightly integrated with other control peripherals on the device. To ensure  
that the latest sensor data or control parameters are available, frames can be transmitted on every control loop  
period. An integrated skew-compensation block has been added on the receiver to handle skew that may occur  
between the clock and data signals due to a variety of factors, including trace-length mismatch and skews  
induced by an isolation chip. With embedded data robustness checks, data-link integrity checks, skew  
compensation, and integration with control peripherals, the FSI can enable high-speed, robust communication in  
any system. These and many other features of the FSI follow.  
The FSI module includes the following features:  
Independent transmitter and receiver cores  
Source-synchronous transmission  
Double data rate (DDR)  
One or two data lines  
Programmable data length  
Skew adjustment block to compensate for board and system delay mismatches  
Frame error detection  
Programmable frame tagging for message filtering  
Hardware ping to detect line breaks during communication (ping watchdog)  
Two interrupts per FSI core  
Externally triggered frame generation  
Hardware- or software-calculated CRC  
Embedded ECC computation module  
Register write protection  
DMA support  
CLA task triggering  
SPI signaling mode (limited features available)  
Operating the FSI at maximum speed (50 MHz) at dual data rate (100 Mbps) may require the integrated skew  
compensation block to be configured according to the specific operating conditions on a case-by-case basis.  
The Fast Serial Interface (FSI) Skew Compensation Application Report provides example software on how to  
configure and set up the integrated skew compensation block on the Fast Serial Interface.  
The FSI consists of independent transmitter (FSITX) and receiver (FSIRX) cores. The FSITX and FSIRX cores  
are configured and operated independently. The features available on the FSITX and FSIRX are described in  
Section 7.13.2.1 and Section 7.13.2.2, respectively.  
Copyright © 2021 Texas Instruments Incorporated  
182 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.2.1 FSI Transmitter  
The FSI transmitter module handles the framing of data, CRC generation, signal generation of TXCLK, TXD0,  
and TXD1, as well as interrupt generation. The operation of the transmitter core is controlled and configured  
through programmable control registers. The transmitter control registers let the CPU (or the CLA) program,  
control, and monitor the operation of the FSI transmitter. The transmit data buffer is accessible by the CPU, CLA,  
and the DMA.  
The transmitter has the following features:  
Automated ping frame generation  
Externally triggered ping frames  
Externally triggered data frames  
Software-configurable frame lengths  
16-word data buffer  
Data buffer underrun and overrun detection  
Hardware-generated CRC on data bits  
Software ECC calculation on select data  
DMA support  
CLA task triggering  
Figure 7-59 shows the FSITX CPU interface. Figure 7-60 shows the high-level block diagram of the FSITX. Not  
all data paths and internal connections are shown. This diagram provides a high-level overview of the internal  
modules present in the FSITX.  
PLLRAWCLK  
PCLKCR18  
SYSCLK  
SYSRSN  
C28x  
ePIE  
FSITXyINT1  
FSITXyINT2  
CLA  
FSITXyCLK  
FSITXyD0  
FSITXyD1  
FSITX  
DMA  
FSITXyDMA  
32  
A. The signals connected to the trigger muxes are described in the External Frame Trigger Mux section of the Fast Serial Interface (FSI)  
chapter in the TMS320F2838x Real-Time Microcontrollers Technical Reference Manual.  
Figure 7-59. FSITX CPU Interface  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
FSITX  
PLLRAWCLK  
SYSRSN  
SYSCLK  
FSI Mode:  
TXCLKIN  
Transmit Clock  
Generator  
TXCLK = TXCLKIN/2  
SPI Signaling Mode:  
TXCLK = TXCLKIN  
Register Interface  
Core Reset  
FSITXINT1  
FSITXINT2  
Control Registers,  
Interrupt Management  
TXCLK  
Ping Time-out Counter  
FSITX_DMA_EVT  
TXD0  
TXD1  
Transmitter Core  
External Frame Triggers  
Transmit Data  
Buffer  
ECC Logic  
Figure 7-60. FSITX Block Diagram  
7.13.2.1.1 FSITX Electrical Data and Timing  
Section 7.13.2.1.1.1 lists the FSITX switching characteristics. Figure 7-61 shows the FSITX timings.  
7.13.2.1.1.1 FSITX Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
20  
MAX  
UNIT  
ns  
1
tc(TXCLK)  
tw(TXCLK)  
Cycle time, TXCLK  
2
Pulse width, TXCLK low or TXCLK high  
(0.5tc(TXCLK)) – 1  
(0.5tc(TXCLK)) + 1  
ns  
Delay time, Data valid after TXCLK high or  
low  
3
td(TXCLKL–TXD)  
(0.25tc(TXCLK)) – 2  
(0.25tc(TXCLK)) + 2.5  
ns  
7.13.2.1.1.2 FSITX Timings  
1
2
FSITXCLK  
FSITXD0  
FSITXD1  
3
Figure 7-61. FSITX Timings  
Copyright © 2021 Texas Instruments Incorporated  
184 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.2.2 FSI Receiver  
The receiver module interfaces to the FSI clock (RXCLK) and the data lines (RXD0 and RXD1) after they pass  
through the programmable delay line. The receiver core handles the data framing, CRC computation, and frame-  
related error checking. The receiver bit clock and state machine are run by the RXCLK input, which is  
asynchronous to the device system clock.  
The receiver control registers let the CPU (or the CLA) program, control, and monitor the operation of the FSIRX.  
The receive data buffer is accessible by the CPU, CLA, and the DMA.  
The receiver core has the following features:  
16-word data buffer  
Multiple supported frame types  
Ping frame watchdog  
Frame watchdog  
CRC calculation and comparison in hardware  
ECC detection  
Programmable delay line control on incoming signals  
DMA support  
CLA task triggering  
Figure 7-62 shows the FSIRX CPU interface. Figure 7-63 provides a high-level overview of the internal modules  
present in the FSIRX. Not all data paths and internal connections are shown.  
PCLKCR18  
SYSCLK  
SYSRSN  
C28x  
ePIE  
FSIRXyINT1  
FSIRXyINT2  
CLA  
FSIRXyCLK  
FSIRXyD0  
FSIRXyD1  
FSIRX  
DMA  
FSIRXyDMA  
Figure 7-62. FSIRX CPU Interface  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 185  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
FSIRX  
SYSRSn  
SYSCLK  
Frame Watchdog  
Register Interface  
Core Reset  
FSIRXINT1  
Control Registers,  
Interrupt Management  
FSIRXINT2  
RXCLK  
RXD0  
Ping Watchdog  
FSIRX_DMA_EVT  
Receiver Core  
Skew  
Control  
RXD1  
Receive Data  
Buffer  
ECC Check  
Logic  
Figure 7-63. FSIRX Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
186 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.2.2.1 FSIRX Electrical Data and Timing  
Section 7.13.2.2.1.1 lists the FSIRX timing requirements. Section 7.13.2.2.1.2 lists the FSIRX electrical  
characteristics. Figure 7-64 shows the FSIRX timings.  
7.13.2.2.1.1 FSIRX Timing Requirements  
NO.  
MIN  
20  
MAX  
UNIT  
ns  
1
tc(RXCLK)  
tw(RXCLK)  
Cycle time, RXCLK  
2
Pulse width, RXCLK low or RXCLK high.  
(0.5tc(RXCLK)) – 1  
(0.5tc(RXCLK)) + 1  
ns  
Setup time with respect to RXCLK, applies to  
both edges of the clock  
3
4
tsu(RXCLK–RXD)  
th(RXCLK–RXD)  
3
ns  
ns  
Hold time with respect to RXCLK, applies to  
both edges of the clock  
2.5  
7.13.2.2.1.2 FSIRX Switching Characteristics  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
RXCLK delay compensation at  
RX_DLYLINE_CTRL[RXCLK_DLY]=31  
1
td(RXCLK)  
10  
30  
ns  
RXD0 delay compensation at  
RX_DLYLINE_CTRL[RXD0_DLY]=31  
2
3
4
td(RXD0)  
10  
10  
30  
30  
1
ns  
ns  
ns  
RXD1 delay compensation  
at RX_DLYLINE_CTRL[RXD1_DLY]=31  
td(RXD1)  
Incremental delay of each delay line element  
for RXCLK, RXD0, and RXD1  
td(DELAY_ELEMENT)  
0.3  
7.13.2.2.1.3 FSIRX Timing Diagram  
1
2
FSIRXCLK  
FSIRXD0  
FSIRXD1  
3
4
Figure 7-64. FSIRX Timings  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 187  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.2.3 SPI Signaling Mode  
The FSI supports a SPI signaling mode to enable communication with programmable SPI devices. In this mode,  
the FSI transmits its data in the same manner as a SPI in a single clock configuration mode. While the FSI is  
able to physically interface with a SPI in this mode, the external device must be able to encode and decode an  
FSI frame to communicate successfully. This is because the FSI transmits all SPI frame phases with the  
exception of the preamble and postamble. The FSI provides the same data validation and frame checking as if it  
was in standard FSI mode, allowing for more robust communication without consuming CPU cycles. The  
external SPI is required to send all relevant information and can access standard FSI features such as the ping  
frame watchdog on the FSIRX, frame tagging, or custom CRC values. The list of features of the SPI signaling  
mode follows:  
Data will transmit on rising edge and receive on falling edge of the clock.  
Only 16-bit word size is supported.  
TXD1 will be driven like an active-low chip-select signal. The signal will be low for the duration of the full  
frame transmission.  
No receiver chip-select input is required. RXD1 is not used. Data is shifted into the receiver on every active  
clock edge.  
No preamble or postamble clocks will be transmitted. All signals return to the idle state after the frame phase  
is finished.  
It is not possible to transmit in the SPI slave configuration because the FSI TXCLK cannot take an external  
clock source.  
7.13.2.3.1 FSITX SPI Signaling Mode Electrical Data and Timing  
Section 7.13.2.3.1.1 lists the FSITX SPI signaling mode switching characteristics. Figure 7-65 shows the FSITX  
SPI signaling mode timings. Special timings are not required for the FSIRX in SPI signaling mode. FSIRX  
timings listed in Section 7.13.2.2.1.1 are applicable in the SPI signaling mode. Setup and Hold times are only  
valid on the falling edge of FSIRXCLK because this is the active edge in SPI signaling mode.  
7.13.2.3.1.1 FSITX SPI Signaling Mode Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
20  
MAX  
UNIT  
ns  
1
tc(TXCLK)  
Cycle time, TXCLK  
2
tw(TXCLK)  
Pulse width, TXCLK low or TXCLK high  
Delay time, TXD0 valid after TXCLK high  
Delay time, TXCLK high after TXD1 low  
Delay time, TXD1 high after TXCLK low  
(0.5tc(TXCLK)) – 1  
(0.5tc(TXCLK)) + 1  
3
ns  
3
td(TXCLKH–TXD0)  
td(TXD1-TXCLK)  
td(TXCLK-TXD1)  
ns  
4
tw(TXCLK) – 3  
tw(TXCLK) – 2  
ns  
5
ns  
7.13.2.3.1.2 FSITX SPI Signaling Mode Timings  
1
2
FSITXCLK  
3
FSITXD0  
5
4
FSITXD1  
Figure 7-65. FSITX SPI Signaling Mode Timings  
Copyright © 2021 Texas Instruments Incorporated  
188 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.3 Inter-Integrated Circuit (I2C)  
The I2C module has the following features:  
Compliance with the NXPSemiconductors I2C bus specification (version 2.1):  
– Support for 8-bit format transfers  
– 7-bit and 10-bit addressing modes  
– General call  
– START byte mode  
– Support for multiple master-transmitters and slave-receivers  
– Support for multiple slave-transmitters and master-receivers  
– Combined master transmit/receive and receive/transmit mode  
– Data transfer rate from 10 kbps up to 400 kbps (Fast-mode)  
Receive FIFO and Transmitter FIFO (16-deep x 8-bit FIFO)  
Supports two ePIE interrupts:  
– I2Cx Interrupt – Any of the below events can be configured to generate an I2Cx interrupt:  
Transmit-data ready  
Receive-data ready  
Register-access ready  
No-acknowledgment received  
Arbitration lost  
Stop condition detected  
Addressed as slave  
– I2Cx_FIFO interrupts:  
Transmit FIFO interrupt  
Receive FIFO interrupt  
Module enable/disable capability  
Free data format mode  
Figure 7-66 shows the I2C block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 189  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
I2C module  
I2CXSR  
I2CDXR  
TX FIFO  
RX FIFO  
FIFO Interrupt  
to CPU/PIE  
SDA  
Peripheral bus  
I2CRSR  
I2CDRR  
Control/status  
registers  
CPU  
Clock  
synchronizer  
SCL  
Prescaler  
Noise filters  
Arbitrator  
Interrupt to  
CPU/PIE  
I2C INT  
Figure 7-66. I2C Module Conceptual Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
190 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.3.1 I2C Electrical Data and Timing  
Section 7.13.3.1.1 lists the I2C timing requirements. Section 7.13.3.1.2 lists the I2C switching characteristics.  
Figure 7-67 shows the I2C timing diagram.  
Note  
To meet all of the I2C protocol timing specifications, the I2C module clock (Fmod) must be configured  
from 7 MHz to 12 MHz.  
7.13.3.1.1 I2C Timing Requirements  
NO.  
MIN  
MAX  
UNIT  
Standard mode  
T0  
T1  
fmod  
I2C module frequency  
7
12  
MHz  
µs  
Hold time, START condition, SCL fall delay after  
SDA fall  
th(SDA-SCL)START  
4.0  
Setup time, Repeated START, SCL rise before SDA  
fall delay  
T2  
tsu(SCL-SDA)START  
4.7  
µs  
T3  
T4  
T5  
T6  
T7  
T8  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
µs  
ns  
ns  
ns  
ns  
ns  
250  
1000  
1000  
300  
tr(SCL)  
Rise time, SCL  
tf(SDA)  
Fall time, SDA  
tf(SCL)  
Fall time, SCL  
300  
Setup time, STOP condition, SCL rise before SDA  
rise delay  
T9  
tsu(SCL-SDA)STOP  
4.0  
0
µs  
Pulse duration of spikes that will be suppressed by  
filter  
T10  
tw(SP)  
Cb  
50  
ns  
T11  
capacitance load on each bus line  
400  
pF  
Fast mode  
T0  
fmod  
I2C module frequency  
7
12  
MHz  
µs  
Hold time, START condition, SCL fall delay after  
SDA fall  
T1  
T2  
th(SDA-SCL)START  
0.6  
Setup time, Repeated START, SCL rise before SDA  
fall delay  
tsu(SCL-SDA)START  
0.6  
µs  
T3  
T4  
T5  
T6  
T7  
T8  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
100  
20  
µs  
ns  
ns  
ns  
ns  
ns  
300  
300  
300  
300  
tr(SCL)  
Rise time, SCL  
20  
tf(SDA)  
Fall time, SDA  
11.4  
11.4  
tf(SCL)  
Fall time, SCL  
Setup time, STOP condition, SCL rise before SDA  
rise delay  
T9  
tsu(SCL-SDA)STOP  
0.6  
0
µs  
Pulse duration of spikes that will be suppressed by  
filter  
T10  
T11  
tw(SP)  
Cb  
50  
ns  
capacitance load on each bus line  
400  
pF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 191  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.3.1.2 I2C Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
TEST CONDITIONS  
0.1 Vbus < Vi < 0.9 Vbus  
0.1 Vbus < Vi < 0.9 Vbus  
MIN  
MAX UNIT  
Standard mode  
S1  
S2  
S3  
S4  
fSCL  
SCL clock frequency  
0
10  
100  
kHz  
µs  
TSCL  
SCL clock period  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL clock low  
Pulse duration, SCL clock high  
4.7  
4.0  
µs  
µs  
Bus free time between STOP and START  
conditions  
S5  
tBUF  
4.7  
µs  
S6  
S7  
S8  
tv(SCL-DAT)  
tv(SCL-ACK)  
II  
Valid time, data after SCL fall  
Valid time, Acknowledge after SCL fall  
Input current on pins  
3.45  
3.45  
10  
µs  
µs  
µA  
–10  
Fast mode  
S1  
S2  
S3  
S4  
fSCL  
SCL clock frequency  
0
2.5  
1.3  
0.6  
400  
kHz  
µs  
TSCL  
SCL clock period  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL clock low  
Pulse duration, SCL clock high  
µs  
µs  
Bus free time between STOP and START  
conditions  
S5  
tBUF  
1.3  
µs  
S6  
S7  
S8  
tv(SCL-DAT)  
tv(SCL-ACK)  
II  
Valid time, data after SCL fall  
Valid time, Acknowledge after SCL fall  
Input current on pins  
0.9  
0.9  
10  
µs  
µs  
µA  
–10  
Copyright © 2021 Texas Instruments Incorporated  
192 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.3.1.3 I2C Timing Diagram  
STOP  
START  
SDA  
SCL  
ACK  
Contd...  
Contd...  
S7  
S6  
T10  
T5  
T7  
S3  
S4  
9th  
clock  
T6  
T8  
S2  
Repeated  
START  
STOP  
S5  
SDA  
ACK  
T2  
T9  
T1  
SCL  
9th  
clock  
Figure 7-67. I2C Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 193  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.4 Multichannel Buffered Serial Port (McBSP)  
The McBSPs feature:  
Full-duplex communication  
Double-buffered transmission and triple-buffered reception, allowing a continuous data stream  
Independent clocking and framing for reception and transmission  
The capability to send interrupts to the CPU and to send DMA events to the DMA controller  
128 channels for transmission and reception  
Multichannel selection modes that enable or disable block transfers in each of the channels  
Direct interface to industry-standard codecs, analog interface chips (AICs), and other serially connected A/D  
and D/A devices  
Support for external generation of clock signals and frame-synchronization signals  
A programmable sample rate generator for internal generation and control of clock signals and frame-  
synchronization signals  
Programmable polarity for frame-synchronization pulses and clock signals  
Direct interface to:  
– T1/E1 framers  
– IOM-2 compliant devices  
– AC97-compliant devices (the necessary multiphase frame capability is provided)  
– I2S compliant devices  
– SPI devices  
A wide selection of data sizes: 8, 12, 16, 20, 24, and 32 bits  
Note  
A value of the chosen data size is referred to as a serial word or word throughout the McBSP  
documentation. Elsewhere, word is used to describe a 16-bit value.  
μ-law and A-law companding  
The option of transmitting/receiving 8-bit data with the LSB first  
Status bits for flagging exception/error conditions  
ABIS mode is not supported  
Copyright © 2021 Texas Instruments Incorporated  
194 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Figure 7-68 shows the block diagram of the McBSP module.  
TX  
Interrupt  
MXINT  
CPU  
Peripheral Write Bus  
TX Interrupt Logic  
To CPU  
16  
16  
McBSP Transmit  
Interrupt Select Logic  
DXR2 Transmit Buffer  
DXR1 Transmit Buffer  
16  
PERx.LSPCLK  
MFSXx  
16  
MCLKXx  
Compand Logic  
XSR2  
XSR1  
MDXx  
MDRx  
RSR1  
16  
RSR2  
16  
CPU  
DMA Bus  
MCLKRx  
Expand Logic  
MFSRx  
RBR2 Register  
16  
RBR1 Register  
16  
DRR2 Receive Buffer  
DRR1 Receive Buffer  
McBSP Receive  
Interrupt Select Logic  
16  
16  
RX  
Interrupt  
RX Interrupt Logic  
MRINT  
CPU  
Peripheral Read Bus  
To CPU  
Figure 7-68. McBSP Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 195  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.4.1 McBSP Electrical Data and Timing  
7.13.4.1.1 McBSP Transmit and Receive Timing  
Section 7.13.4.1.1.1 lists the McBSP timing requirements:  
Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the  
timing references of that signal are also inverted.  
2P = 1/CLKG in ns. CLKG is the output of sample rate generator mux. CLKG = CLKSRG / (1 + CLKGDV).  
CLKSRG can be LSPCLK, CLKX, CLKR as source. CLKSRG ≤ (SYSCLK/2).  
Section 7.13.4.1.1.2 lists the McBSP switching characteristics:  
Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the  
timing references of that signal are also inverted.  
2P = 1/CLKG in ns.  
Figure 7-69 and Figure 7-70 show the McBSP timing diagrams.  
7.13.4.1.1.1 McBSP Timing Requirements  
NO.  
MIN  
MAX UNIT  
1
kHz  
McBSP module clock (CLKG, CLKX, CLKR) range  
McBSP module cycle time (CLKG, CLKX, CLKR) range  
25  
1
MHz  
ns  
40  
ms  
ns  
M11 tc(CKRX)  
M12 tw(CKRX)  
M13 tr(CKRX)  
M14 tf(CKRX)  
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
2P  
Pulse duration, CLKR/X high or CLKR/X low  
Rise time, CLKR/X  
P – 7  
ns  
7
7
ns  
Fall time, CLKR/X  
ns  
21  
2
M15 tsu(FRH-CKRL)  
M16 th(CKRL-FRH)  
M17 tsu(DRV-CKRL)  
M18 th(CKRL-DRV)  
M19 tsu(FXH-CKXL)  
M20 th(CKXL-FXH)  
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
0
6
21  
5
0
Hold time, DR valid after CLKR low  
3
21  
2
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
CLKX ext  
CLKX int  
0
CLKX ext  
6
Copyright © 2021 Texas Instruments Incorporated  
196 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.4.1.1.2 McBSP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
M1  
M2  
M3  
PARAMETER  
MIN  
MAX UNIT  
tc(CKRX)  
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
CLKR/X int  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
2P  
ns  
tw(CKRXH)  
tw(CKRXL)  
Pulse duration, CLKR/X high  
Pulse duration, CLKR/X low  
D – 5 (1)  
D + 5 (1)  
ns  
ns  
C – 5 (1)  
C + 5 (1)  
–3  
3
4
27  
4
M4  
M5  
M6  
td(CKRH-FRV)  
td(CKXH-FXV)  
tdis(CKXH-DXHZ)  
Delay time, CLKR high to internal FSR valid  
Delay time, CLKX high to internal FSX valid  
ns  
ns  
ns  
–3  
3
27  
8
–8  
4
Disable time, CLKX high to DX high impedance  
following last data bit  
25  
5
Delay time, CLKX high to DX valid.  
–3  
This applies to all bits except the first bit  
transmitted.  
CLKX ext  
7
25  
CLKX int  
CLKX ext  
CLKX int  
–3  
7
5
25  
Delay time, CLKX high to DX  
DXENA = 0  
valid  
M7  
td(CKXH-DXV)  
ns  
Only applies to first bit  
P – 3  
P + 5  
transmitted when in Data  
Delay 1 or 2 (XDATDLY=01b  
DXENA = 1  
CLKX ext  
P + 7  
P + 25  
or 10b) modes  
CLKX int  
CLKX ext  
CLKX int  
–8  
5
Enable time, CLKX high to  
DXENA = 0  
DX driven  
Only applies to first bit  
P – 8  
M8  
M9  
ten(CKXH-DX)  
ns  
ns  
ns  
transmitted when in Data  
Delay 1 or 2 (XDATDLY=01b  
DXENA = 1  
CLKX ext  
P + 5  
or 10b) modes  
FSX int  
FSX ext  
FSX int  
8
18.5  
Delay time, FSX high to DX  
DXENA = 0  
valid  
Only applies to first bit  
P + 8  
td(FXH-DXV)  
transmitted when in Data  
Delay 0 (XDATDLY=00b)  
DXENA = 1  
FSX ext  
P + 18.5  
mode.  
FSX int  
FSX ext  
FSX int  
–2  
6
Enable time, FSX high to DX  
DXENA = 0  
driven  
Only applies to first bit  
P – 2  
M10 ten(FXH-DX)  
transmitted when in Data  
Delay 0 (XDATDLY=00b)  
DXENA = 1  
FSX ext  
P + 6  
mode  
(1) C = CLKRX low pulse width = P  
D = CLKRX high pulse width = P  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 197  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.4.1.1.3 McBSP Receive and Transmit Timing Diagrams  
M1, M11  
M2, M12  
M3, M12  
M13  
CLKR  
M4  
M4  
M14  
FSR (int)  
M15  
M16  
FSR (ext)  
M18  
M17  
DR  
(RDATDLY=00b)  
Bit (n−1)  
M17  
(n−2)  
(n−3)  
(n−2)  
(n−4)  
M18  
DR  
(RDATDLY=01b)  
Bit (n−1)  
(n−3)  
(n−2)  
M17  
M18  
DR  
(RDATDLY=10b)  
Bit (n−1)  
Figure 7-69. McBSP Receive Timing  
M1, M11  
M2, M12  
M13  
M3, M12  
CLKX  
FSX (int)  
FSX (ext)  
DX  
M5  
M5  
M19  
M20  
M9  
M7  
M7  
M10  
Bit 0  
Bit (n−1)  
(n−2)  
(n−3)  
(n−2)  
(XDATDLY=00b)  
M8  
DX  
(XDATDLY=01b)  
Bit (n−1)  
M8  
Bit 0  
M6  
M7  
DX  
(XDATDLY=10b)  
Bit 0  
Bit (n−1)  
Figure 7-70. McBSP Transmit Timing  
Copyright © 2021 Texas Instruments Incorporated  
198 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.4.1.2 McBSP as SPI Master or Slave Timing  
Section 7.13.4.1.2.1 lists the McBSP as SPI master timing requirements. Section 7.13.4.1.2.2 lists the McBSP as  
SPI master switching characteristics. Section 7.13.4.1.2.3 lists the McBSP as SPI slave timing requirements.  
Section 7.13.4.1.2.4 lists the McBSP as SPI slave switching characteristics.  
Figure 7-71 through Figure 7-74 show the McBSP as SPI master or slave timing diagrams.  
7.13.4.1.2.1 McBSP as SPI Master Timing Requirements  
NO.  
MIN  
MAX  
UNIT  
CLOCK  
tc(CLKG)  
P
Cycle time, CLKG(1)  
2 * tc(LSPCLK)  
tc(LSPCLK)  
ns  
ns  
Cycle time, LSPCLK(1)  
M33,  
M42,  
M52,  
M61  
tc(CKX)  
Cycle time, CLKX  
2P  
ns  
CLKSTP = 10b, CLKXP = 0  
M30  
M31  
tsu(DRV-CKXL)  
th(CKXL-DRV)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
30  
1
ns  
ns  
CLKSTP = 11b, CLKXP = 0  
M39  
M40  
tsu(DRV-CKXH)  
th(CKXH-DRV)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
30  
1
ns  
ns  
CLKSTP = 10b, CLKXP = 1  
M49  
M50  
tsu(DRV-CKXH)  
th(CKXH-DRV)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
30  
1
ns  
ns  
CLKSTP = 11b, CLKXP = 1  
M58  
M59  
tsu(DRV-CKXL)  
th(CKXL-DRV)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
30  
1
ns  
ns  
(1) CLKG should be configured to LSPCLK/2 by setting CLKSM = 1 and CLKGDV = 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 199  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.4.1.2.2 McBSP as SPI Master Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
CLOCK  
M33  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
tc(CLKG)  
Cycle time, CLKG(1) (n * tc(LSPCLK)  
Half CLKG cycle; 0.5 * tc(CLKG)  
LSPCLK to CLKG divider  
)
40  
20  
2
ns  
ns  
ns  
P
n
CLKSTP = 10b, CLKXP = 0  
M24  
M25  
M26  
th(CKXL-FXL)  
td(FXL-CKXH)  
td(CLKXH-DXV)  
Hold time, FSX high after CLKX low  
Delay time, FSX low to CLKX high  
Delay time, CLKX high to DX valid  
2P – 4  
P - 4  
–3  
ns  
ns  
ns  
5
Disable time, DX high impedance following last data bit from  
CLKX low  
M28  
M29  
tdis(FXH-DXHZ)  
td(FXL-DXV)  
P – 8  
P – 3  
ns  
ns  
Delay time, FSX low to DX valid  
P + 6  
CLKSTP = 11b, CLKXP = 0  
M34  
M35  
M36  
th(CKXL-FXH)  
td(FXL-CKXH)  
td(CLKXL-DXV)  
Hold time, FSX high after CLKX low  
Delay time, FSX low to CLKX high  
Delay time, CLKX low to DX valid  
P – 4  
2P – 4  
–3  
ns  
ns  
ns  
5
5
Disable time, DX high impedance following last data bit from  
CLKX low  
M37  
M38  
tdis(CKXL-DXHZ)  
td(FXL-DXV)  
P – 8  
–3  
ns  
ns  
Delay time, FSX low to DX valid  
CLKSTP = 10b, CLKXP = 1  
M43  
M44  
M45  
th(CKXH-FXH)  
td(FXL-CKXL)  
td(CLKXL-DXV)  
Hold time, FSX high after CLKX high  
Delay time, FSX low to CLKX low  
Delay time, CLKX low to DX valid  
2P – 4  
P – 4  
–3  
ns  
ns  
ns  
5
5
Disable time, DX high impedance following last data bit from  
CLKX high  
M47  
M48  
tdis(CKXH-DXHZ)  
td(FXL-DXV)  
P – 8  
–3  
ns  
ns  
Delay time, FSX low to DX valid  
CLKSTP = 11b, CLKXP = 1  
M53  
M54  
M55  
th(CKXH-FXH)  
td(FXL-CKXL)  
td(CLKXH-DXV)  
Hold time, FSX high after CLKX high  
Delay time, FSX low to CLKX low  
Delay time, CLKX high to DX valid  
P – 4  
2P – 4  
–3  
ns  
ns  
ns  
5
5
Disable time, DX high impedance following last data bit from  
CLKX high  
M56  
M57  
tdis(CKXH-DXHZ)  
td(FXL-DXV)  
P – 8  
–3  
ns  
ns  
Delay time, FSX low to DX valid  
(1) CLKG should be configured to LSPCLK/2 by setting CLKSM = 1 and CLKGDV = 1.  
Copyright © 2021 Texas Instruments Incorporated  
200 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.4.1.2.3 McBSP as SPI Slave Timing Requirements  
NO.  
MIN  
MAX  
UNIT  
CLOCK  
tc(CLKG)  
P
Cycle time, CLKG(1)  
2 * tc(LSPCLK)  
tc(LSPCLK)  
ns  
ns  
Cycle time, LSPCLK(1)  
M33,  
M42,  
M52,  
M61  
tc(CKX)  
Cycle time, CLKX(2)  
16P  
ns  
CLKSTP = 10b, CLKXP = 0  
M30  
M31  
M32  
tsu(DRV-CKXL)  
th(CKXL-DRV)  
tsu(BFXL-CKXH)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX high  
8P – 10  
8P – 10  
8P+10  
ns  
ns  
ns  
CLKSTP = 11b, CLKXP = 0  
M39  
M40  
M41  
tsu(DRV-CKXH)  
th(CKXH-DRV)  
tsu(FXL-CKXH)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX high  
8P – 10  
8P – 10  
16P+10  
ns  
ns  
ns  
CLKSTP = 10b, CLKXP = 1  
M49  
M50  
M51  
tsu(DRV-CKXH)  
th(CKXH-DRV)  
tsu(FXL-CKXL)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
Setup time, FSX low before CLKX low  
8P – 10  
8P – 10  
8P+10  
ns  
ns  
ns  
CLKSTP = 11b, CLKXP = 1  
M58  
M59  
M60  
tsu(DRV-CKXL)  
th(CKXL-DRV)  
tsu(FXL-CKXL)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
Setup time, FSX low before CLKX low  
8P – 10  
8P – 10  
16P+10  
ns  
ns  
ns  
(1) CLKG should be configured to LSPCLK/2 by setting CLKSM = 1 and CLKGDV = 1  
(2) For SPI slave modes CLKX must be a minimum of 8 CLKG cycles  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 201  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.4.1.2.4 McBSP as SPI Slave Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
CLOCK  
2P  
CLKSTP = 10b, CLKXP = 0  
Cycle time, CLKG  
ns  
M26  
M28  
M29  
td(CLKXH-DXV)  
tdis(CKXL-DXHZ)  
td(FXL-DXV)  
Delay time, CLKX high to DX valid  
3P+6  
6P+6  
5P+20  
5P+20  
5P+20  
5P + 20  
ns  
ns  
ns  
Disable time, DX high impedance following last data bit from  
CLKX low  
Delay time, FSX low to DX valid  
4P + 6  
CLKSTP = 11b, CLKXP = 0  
M36  
M37  
M38  
td(CLKXL-DXV)  
tdis(CKXL-DXHZ)  
td(FXL-DXV)  
Delay time, CLKX low to DX valid  
3P+6  
7P+6  
ns  
ns  
ns  
Disable time, DX high impedance following last data bit from  
CLKX low  
Delay time, FSX low to DX valid  
4P + 6  
CLKSTP = 10b, CLKXP = 1  
M45  
M47  
M48  
td(CLKXL-DXV)  
tdis(CLKXH-DXHZ)  
td(FXL-DXV)  
Delay time, CLKX low to DX valid  
3P+6  
6P+6  
ns  
ns  
ns  
Disable time, DX high impedance following last data bit from  
CLKX high  
Delay time, FSX low to DX valid  
4P + 6  
CLKSTP = 11b, CLKXP = 1  
M55  
M56  
M57  
td(CLKXH-DXV)  
tdis(CKXH-DXHZ)  
td(FXL-DXV)  
Delay time, CLKX high to DX valid  
3P+6  
7P + 6  
4P + 6  
ns  
ns  
ns  
Disable time, DX high impedance following last data bit from  
CLKX high  
Delay time, FSX low to DX valid  
7.13.4.1.2.5 McBSP as SPI Master or Slave Timing Diagrams  
M33  
M32  
MSB  
LSB  
CLKX  
M25  
M24  
FSX  
M26  
M29  
M28  
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
M31  
(n-2)  
(n-3)  
(n-4)  
M30  
Bit 0  
(n-3)  
(n-4)  
Figure 7-71. McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
Copyright © 2021 Texas Instruments Incorporated  
202 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
M42  
MSB  
M41  
LSB  
CLKX  
FSX  
DX  
M35  
M34  
M36  
(n-2)  
M40  
(n-2)  
M37  
M38  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-3)  
(n-4)  
M39  
DR  
Bit 0  
(n-3)  
(n-4)  
Figure 7-72. McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
M52  
M51  
MSB  
LSB  
CLKX  
FSX  
M43  
M44  
M48  
M47  
M45  
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
M49  
M50  
(n-2)  
Bit 0  
(n-3)  
(n-4)  
Figure 7-73. McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
M61  
M60  
MSB  
M54  
LSB  
CLKX  
FSX  
DX  
M53  
M56  
M55  
M57  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
M58  
M59  
(n-2)  
DR  
Bit 0  
Bit(n-1)  
(n-3)  
(n-4)  
Figure 7-74. McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 203  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.5 Power Management Bus (PMBus)  
The PMBus module provides an interface between the microcontroller and devices compliant with the SMI  
Forum PMBus Specification Part I version 1.0 and Part II version 1.1. PMBus is based on SMBus, which uses a  
similar physical layer to I2C.  
The PMBus module has the following features:  
Compliance with the SMI Forum PMBus Specification (Part I v1.0 and Part II v1.1)  
Support for master and slave modes  
Support for two speeds:  
– Standard Mode: Up to 100 kHz  
– Fast Mode: Up to 400 kHz  
Packet error checking  
CONTROL and ALERT signals  
Clock high and low time-outs  
Four-byte transmit and receive buffers  
One maskable interrupt, which can be generated by several conditions:  
– Receive data ready  
– Transmit buffer empty  
– Slave address received  
– End of message  
– ALERT input asserted  
– Clock low time-out  
– Clock high time-out  
– Bus free  
Figure 7-75 shows the PMBus block diagram.  
PCLKCR20  
SYSCLK  
PMBCTRL  
Div  
ALERT  
CTL  
DMA  
CPU  
PIE  
Bit clock  
Other registers  
GPIO Mux  
PMBTXBUF  
SCL  
Shift register  
PMBRXBUF  
SDA  
PMBUSA_INT  
PMBus Module  
Figure 7-75. PMBus Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
204 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.5.1 PMBus Electrical Data and Timing  
Section 7.13.5.1.1 lists the PMBus electrical characteristics. Section 7.13.5.1.2 lists the PMBus fast mode  
switching characteristics. Section 7.13.5.1.3 lists the PMBus standard mode switching characteristics.  
7.13.5.1.1 PMBus Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.8  
UNIT  
V
VIL  
VIH  
VOL  
IOL  
Valid low-level input voltage  
Valid high-level input voltage  
Low-level output voltage  
Low-level output current  
2.1  
VDDIO  
0.4  
V
At Ipullup = 4 mA  
V
VOL ≤ 0.4 V  
4
0
mA  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
50  
ns  
Ii  
Input leakage current on each pin  
Capacitance on each pin  
0.1 Vbus < Vi < 0.9 Vbus  
–10  
10  
10  
µA  
pF  
Ci  
7.13.5.1.2 PMBus Fast Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fSCL  
tBUF  
SCL clock frequency  
10  
400  
kHz  
Bus free time between STOP and  
START conditions  
1.3  
0.6  
0.6  
0.6  
µs  
µs  
µs  
µs  
START condition hold time -- SDA fall  
to SCL fall delay  
tHD;STA  
tSU;STA  
tSU;STO  
Repeated START setup time -- SCL  
rise to SDA fall delay  
STOP condition setup time -- SCL rise  
to SDA rise delay  
tHD;DAT  
tSU;DAT  
tTimeout  
tLOW  
Data hold time after SCL fall  
Data setup time before SCL rise  
Clock low time-out  
300  
100  
25  
ns  
ns  
ms  
µs  
µs  
35  
Low period of the SCL clock  
High period of the SCL clock  
1.3  
0.6  
tHIGH  
50  
25  
Cumulative clock low extend time  
(slave device)  
tLOW;SEXT  
tLOW;MEXT  
From START to STOP  
Within each byte  
ms  
ms  
Cumulative clock low extend time  
(master device)  
10  
tr  
tf  
Rise time of SDA and SCL  
Fall time of SDA and SCL  
5% to 95%  
95% to 5%  
20  
20  
300  
300  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 205  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.5.1.3 PMBus Standard Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fSCL  
tBUF  
SCL clock frequency  
10  
100  
kHz  
Bus free time between STOP and  
START conditions  
4.7  
4
µs  
µs  
µs  
µs  
START condition hold time -- SDA fall  
to SCL fall delay  
tHD;STA  
tSU;STA  
tSU;STO  
Repeated START setup time -- SCL  
rise to SDA fall delay  
4.7  
4
STOP condition setup time -- SCL rise  
to SDA rise delay  
tHD;DAT  
tSU;DAT  
tTimeout  
tLOW  
Data hold time after SCL fall  
Data setup time before SCL rise  
Clock low time-out  
300  
250  
25  
ns  
ns  
ms  
µs  
µs  
35  
Low period of the SCL clock  
High period of the SCL clock  
4.7  
4
tHIGH  
50  
25  
Cumulative clock low extend time  
(slave device)  
tLOW;SEXT  
tLOW;MEXT  
From START to STOP  
Within each byte  
ms  
ms  
Cumulative clock low extend time  
(master device)  
10  
tr  
tf  
Rise time of SDA and SCL  
Fall time of SDA and SCL  
1000  
300  
ns  
ns  
Copyright © 2021 Texas Instruments Incorporated  
206 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.6 Serial Communications Interface (SCI)  
The SCI is a 2-wire asynchronous serial port, commonly known as a UART. The SCI module supports digital  
communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero  
(NRZ) format  
The SCI receiver and transmitter each have a 16-level-deep FIFO for reducing servicing overhead, and each has  
its own separate enable and interrupt bits. Both can be operated independently for half-duplex communication,  
or simultaneously for full-duplex communication. To specify data integrity, the SCI checks received data for break  
detection, parity, overrun, and framing errors. The bit rate is programmable to different speeds through a 16-bit  
baud-select register. Figure 7-76 shows the SCI block diagram.  
Features of the SCI module include:  
Two external pins:  
– SCITXD: SCI transmit-output pin  
– SCIRXD: SCI receive-input pin  
– Baud rate programmable to 64K different rates  
Data-word format  
– One start bit  
– Data-word length programmable from 1 to 8 bits  
– Optional even/odd/no parity bit  
– 1 or 2 stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wakeup multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with  
status flags.  
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY  
flag (transmitter-shift register is empty)  
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break  
condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
NRZ format  
Auto baud-detect hardware logic  
16-level transmit and receive FIFO  
Note  
All registers in this module are 8-bit registers. When a register is accessed, the register data is in the  
lower byte (bits 7–0), and the upper byte (bits 15–8) is read as zeros. Writing to the upper byte has no  
effect.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 207  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
TXENA  
SCICTL1.1  
TXSHF  
Register  
SCITXD  
Frame  
Format and Mode  
8
Parity  
Even/Odd  
SCICCR.6  
TXEMPTY  
SCICTL2.6  
0
1
8
Enable  
TX FIFO_0  
TX FIFO_1  
TXINT  
To CPU  
SCICCR.5  
TX Interrupt  
Logic  
TX FIFO Interrupts  
8
TX FIFO_N  
TXINTENA  
SCICTL2.0  
TXRDY  
8
1
0
TXWAKE  
SCICTL2.7  
SCICTL1.3  
SCI TX Interrupt Select Logic  
8
WUT  
Transmit Data  
Buffer Register  
SCITXBUF.7-0  
Auto Baud Detect Logic  
RXENA  
Baud Rate  
MSB/LSB  
Registers  
SCICTL1.0  
LSPCLK  
RXSHF  
Register  
SCIRXD  
SCIHBAUD.15-8  
SCILBAUD.7-0  
RXWAKE  
8
SCIRXST.1  
0
1
8
SCIFFENA  
SCIFFTX.14  
RX FIFO_0  
RX FIFO_1  
RXINT  
To CPU  
8
RX FIFO Interrupts  
RX Interrupt  
Logic  
RX FIFO_N  
RXFFOVF  
8
1
SCIFFRX.15  
0
RXBKINTENA  
SCICTL2.1  
RXRDY  
SCIRXST.6  
RXENA  
BRKDT  
RXERRINTENA  
SCICTL1.6  
SCICTL1.0  
SCIRXST.5  
SCI RX Interrupt Select Logic  
8
SCIRXST.5-2  
BRKDT FE OE PE  
RXERROR  
Receive Data  
Buffer Register  
SCIRXBUF.7-0  
SCIRXST.7  
Figure 7-76. SCI Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
208 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.7 Serial Peripheral Interface (SPI)  
The SPI is a high-speed synchronous serial input/output (I/O) port that allows a serial bit stream of programmed  
length (1 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate. The SPI is  
normally used for communications between the microcontroller and external peripherals or another controller.  
Typical applications include external I/O or peripheral expansion through devices such as shift registers, display  
drivers, and ADCs. Multidevice communications are supported by the master/slave operation of the SPI. The  
port supports 16-level receive and transmit FIFOs for reducing CPU servicing overhead.  
The SPI module features include:  
SPISOMI: SPI slave-output/master-input pin  
SPISIMO: SPI slave-input/master-output pin  
SPISTE: SPI slave transmit-enable pin  
SPICLK: SPI serial-clock pin  
Two operational modes: master and slave  
Baud rate: 125 different programmable rates  
Data word length: 1 to 16 data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling  
edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising  
edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive-and-transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.  
16-level transmit and receive FIFO  
Delayed transmit control  
3-wire SPI mode  
SPISTE inversion for digital audio interface receive mode on devices with two SPI modules  
DMA support  
High-speed mode for up to 50-MHz full-duplex communication  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 209  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 7-77 shows the SPI CPU Interface.  
PCLKCR8  
Low-Speed  
LSPCLK  
Prescaler  
SYSCLK  
CPU  
Bit  
Clock  
SYSRS  
SPISIMO  
SPISOMI  
GPIO  
SPI  
SPIINT  
SPITXINT  
SPICLK  
SPISTE  
MUX  
PIE  
SPIRXDMA  
SPITXDMA  
DMA  
Figure 7-77. SPI CPU Interface  
Copyright © 2021 Texas Instruments Incorporated  
210 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.7.1 SPI Electrical Data and Timing  
Note  
All timing parameters for SPI High-Speed Mode assume a load capacitance of 5 pF on SPICLK,  
SPISIMO, and SPISOMI.  
For more information about the SPI in High-Speed mode, see the Serial Peripheral Interface (SPI) chapter of the  
TMS320F2838x Real-Time Microcontrollers Technical Reference Manual.  
To use the SPI in High-Speed mode, the application must use the high-speed enabled GPIOs (see Section  
6.5.5).  
7.13.7.1.1 SPI Master Mode Timings  
Section 7.13.7.1.1.1 lists the SPI master mode timing requirements. Section 7.13.7.1.1.2 lists the SPI master  
mode switching characteristics (clock phase = 0). Section 7.13.7.1.1.3 lists the SPI master mode switching  
characteristics (clock phase = 1). Figure 7-78 shows the SPI master mode external timing where the clock phase  
= 0. Figure 7-79 shows the SPI master mode external timing where the clock phase = 1.  
7.13.7.1.1.1 SPI Master Mode Timing Requirements  
(BRR + 1)  
NO.  
MIN  
MAX UNIT  
CONDITION(1)  
High-Speed Mode  
8
9
tsu(SOMI)M  
th(SOMI)M  
Setup time, SPISOMI valid before SPICLK  
Hold time, SPISOMI valid after SPICLK  
Even, Odd  
Even, Odd  
1
5
ns  
ns  
Normal Mode  
8
9
tsu(SOMI)M  
th(SOMI)M  
Setup time, SPISOMI valid before SPICLK  
Hold time, SPISOMI valid after SPICLK  
Even, Odd  
Even, Odd  
20  
0
ns  
ns  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
211  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
MAX UNIT  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.7.1.1.2 SPI Master Mode Switching Characteristics (Clock Phase = 0)  
over recommended operating conditions (unless otherwise noted)  
(BRR + 1)  
NO.  
PARAMETER  
MIN  
CONDITION(1)  
General  
Even  
Odd  
4tc(LSPCLK)  
5tc(LSPCLK)  
128tc(LSPCLK)  
1
2
tc(SPC)M  
Cycle time, SPICLK  
ns  
ns  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M – 1  
0.5tc(SPC)M + 1  
tw(SPC1)M  
Pulse duration, SPICLK, first pulse  
0.5tc(SPC)M +0.5tc(LSPCLK)  
– 1  
0.5tc(SPC)M +0.5tc(LSPCLK)  
+ 1  
Odd  
Even  
Odd  
0.5tc(SPC)M – 1  
0.5tc(SPC)M + 1  
Pulse duration, SPICLK, second  
pulse  
3
tw(SPC2)M  
ns  
ns  
ns  
0.5tc(SPC)M –0.5tc(LSPCLK)  
1.5tc(SPC)M –3tc(SYSCLK)  
1.5tc(SPC)M –4tc(SYSCLK)  
1
0.5tc(SPC)M –0.5tc(LSPCLK)  
+ 1  
3
1.5tc(SPC)M –3tc(SYSCLK)  
+
3
Even  
23 td(SPC)M  
Delay time, SPISTE active to SPICLK  
3
1.5tc(SPC)M –4tc(SYSCLK)  
+
3
Odd  
Even  
Odd  
0.5tc(SPC)M – 3  
0.5tc(SPC)M + 3  
Valid time, SPICLK to SPISTE  
inactive  
24 tv(STE)M  
0.5tc(SPC)M –0.5tc(LSPCLK)  
3
0.5tc(SPC)M –0.5tc(LSPCLK)  
+ 3  
High-Speed Mode  
4
td(SIMO)M  
Delay time, SPICLK to SPISIMO valid Even, Odd  
1
5
ns  
ns  
Even  
0.5tc(SPC)M – 1  
Valid time, SPISIMO valid after  
5
tv(SIMO)M  
0.5tc(SPC)M –0.5tc(LSPCLK)  
1
SPICLK  
Odd  
Normal Mode  
4
td(SIMO)M  
Delay time, SPICLK to SPISIMO valid Even, Odd  
ns  
ns  
Even  
0.5tc(SPC)M – 3  
Valid time, SPISIMO valid after  
5
tv(SIMO)M  
0.5tc(SPC)M –0.5tc(LSPCLK)  
3
SPICLK  
Odd  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
Copyright © 2021 Texas Instruments Incorporated  
212 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.7.1.1.3 SPI Master Mode Switching Characteristics (Clock Phase = 1)  
over recommended operating conditions (unless otherwise noted)  
(BRR + 1)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
CONDITION(1)  
General  
Even  
Odd  
4tc(LSPCLK)  
5tc(LSPCLK)  
128tc(LSPCLK)  
1
2
tc(SPC)M  
Cycle time, SPICLK  
ns  
ns  
127tc(LSPCLK)  
Even  
0.5tc(SPC)M – 1  
0.5tc(SPC)M + 1  
Pulse duration, SPICLK, first  
pulse  
tw(SPCH)M  
0.5tc(SPC)M  
Odd  
Even  
Odd  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1  
0.5tc(SPC)M – 1  
0.5tc(LSPCLK) + 1  
0.5tc(SPC)M + 1  
Pulse duration, SPICLK,  
second pulse  
3
tw(SPC2)M  
ns  
0.5tc(SPC)M  
+
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1  
0.5tc(LSPCLK) + 1  
Delay time, SPISTE valid to  
SPICLK  
2tc(SPC)M – 3tc(SYSCLK)  
+
3
23 td(SPC)M  
Even, Odd  
2tc(SPC)M – 3tc(SYSCLK) – 3  
ns  
ns  
Even  
Odd  
– 3  
– 3  
+3  
+3  
Valid time, SPICLK to SPISTE  
invalid  
24 tv(STE)M  
High-Speed Mode  
Even  
Odd  
0.5tc(SPC)M – 1  
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1  
0.5tc(SPC)M – 1  
Delay time, SPISIMO valid to  
SPICLK  
4
5
td(SIMO)M  
ns  
ns  
Even  
Odd  
Valid time, SPISIMO valid after  
SPICLK  
tv(SIMO)M  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1  
Normal Mode  
Even  
Odd  
0.5tc(SPC)M – 5  
0.5tc(SPC)M + 0.5tc(LSPCLK) – 5  
0.5tc(SPC)M – 3  
Delay time, SPISIMO valid to  
SPICLK  
4
5
td(SIMO)M  
ns  
ns  
Even  
Odd  
Valid time, SPISIMO valid after  
SPICLK  
tv(SIMO)M  
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3  
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is  
greater than 3.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 213  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.7.1.1.4 SPI Master Mode External Timing  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes.  
Figure 7-78. SPI Master Mode External Timing (Clock Phase = 0)  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE(A)  
24  
23  
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes.  
Figure 7-79. SPI Master Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
214 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.7.1.2 SPI Slave Mode Timings  
Section 7.13.7.1.2.1 lists the SPI slave mode timing requirements. Section 7.13.7.1.2.2 lists the SPI slave mode  
switching characteristics. Figure 7-80 shows the SPI slave mode external timing where the clock phase = 0.  
Figure 7-81 shows the SPI slave mode external timing where the clock phase = 1.  
7.13.7.1.2.1 SPI Slave Mode Timing Requirements  
NO.  
MIN  
4tc(SYSCLK)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
19 tsu(SIMO)S  
20 th(SIMO)S  
Cycle time, SPICLK  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPICLK, first pulse  
Pulse duration, SPICLK, second pulse  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO valid after SPICLK  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
Setup time, SPISTE valid before  
SPICLK (Clock Phase = 0)  
2tc(SYSCLK) + 11  
ns  
25 tsu(STE)S  
Setup time, SPISTE valid before  
SPICLK (Clock Phase = 1)  
2tc(SYSCLK) + 20  
1.5tc(SYSCLK)  
ns  
ns  
26 th(STE)S  
Hold time, SPISTE invalid after SPICLK  
7.13.7.1.2.2 SPI Slave Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
0
MAX  
UNIT  
High-Speed Mode  
15  
16  
td(SOMI)S  
tv(SOMI)S  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI valid after SPICLK  
9
ns  
ns  
Normal Mode  
15  
16  
td(SOMI)S  
tv(SOMI)S  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI valid after SPICLK  
20  
ns  
ns  
0
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 215  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.7.1.2.3 SPI Slave Mode External Timing  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
Figure 7-80. SPI Slave Mode External Timing (Clock Phase = 0)  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
16  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
Figure 7-81. SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
216 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.8 EtherCAT Slave Controller (ESC)  
Ethernet for Control Automation Technology ( EtherCAT®) is an Ethernet-based fieldbus system, invented by  
Beckhoff Automation and is standardized in IEC 61158. All the slave nodes connected to the bus interpret,  
process, and modify the data addressed to them quickly, without having to buffer the frame inside the node. This  
real-time behavior, frame processing, and forwarding requirements are implemented by the EtherCAT slave  
controller (ESC) hardware. EtherCAT does not require software interaction for data transmission inside the  
slaves. EtherCAT only defines the MAC layer while the higher-layer protocols and stack are implemented in  
software on the microcontrollers connected to the ESC.  
The EtherCAT:  
Involves master and slave(s) setup where slave nodes are physically connected daisy-chain style but  
logically operate on a loop  
Specializes in precise, low-jitter synchronization across slave nodes  
Uses IEEE 802.3 Ethernet physical layer and standard Ethernet frames  
7.13.8.1 ESC Features  
The ESC on this MCU provides the following functionality:  
Up to 2 MII ports to connect to EtherCAT PHYs  
Process data interface through 16-bit asynchronous interface  
64-bit distributed clocking  
– Sync output signals to synchronize device events and latch input signals supporting time-stamping for  
events  
– Distributed clock features of SYNC0/1 (o/ps) and LATCH0/1 able to synchronize GPIOs and allow inputs  
from any GPIOs as well as other muxing options for internal device events  
8 Field bus Memory Management Units (FMMUs)  
– Support all native types of RD/, WR/, RDWR, and built-in features of bit- and byte-addressing  
8 Sync Managers  
I2C EEPROM interface  
Up-to 32 general-purpose inputs (GPIs) and 32 general-purpose outputs (GPOs)  
2 SYNC and 2 LATCH signals connected to GPIO pads  
16KB RAM with parity  
7.13.8.2 ESC Subsystem Integrated Features  
In addition to the ESC features, the following are the device-specific features provided by the integration of the  
ESC and the MCU:  
ESC access allocation to either the CM subsystem or CPU1 subsystem during initialization  
EtherCAT reset request from master can be routed to NMI or general interrupt controller on MCU  
RAM Parity error routed to NMI on MCU  
DMA access to EtherCAT RAM  
Up to 32 GPIs and up to 32 GPOs feature integrated to 16-bit ASYNC PDI interface  
Interface to CLB  
Distributed clock feature of SYNC0/1 able to synchronize PWMs, generate interrupt/DMA requests, or trigger  
eCAP capture to allow external component action through GPIO access.  
EtherCAT SYNC0/1 pulse can trigger a CLA task.  
Distributed clock feature of LATCH0/1 allows inputs from any GPIO or PWM crossbar triggers  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 217  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.8.3 EtherCAT IP Block Diagram  
Figure 7-82 shows the general functionality of EtherCAT IP.  
MII Ports towards  
PHYs  
PDI Bus, IRQ, / General  
purpose IOs, WD trig  
Clocks  
(25,,100 MHz)  
0
1
Misc.  
Config.  
Processing Unit  
AutoForwarder  
+
Loopback  
PDI  
PHY MDIO  
Reset  
PHY  
Management  
PDI Interface  
ECAT Interface  
Reset  
Controller  
SYNC  
Distributed  
clock  
Proc.  
Memory  
Interface  
LATCH  
RAM  
User  
&
Process  
8KB *2  
PROM  
Interface  
EEPROM  
Interface  
FMMU  
LED  
Status  
Indicators  
Monitoring  
Sync Manager  
ESC Address Space  
Registers  
EtherCAT IP Core  
Figure 7-82. EtherCAT IP Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
218 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.8.4 EtherCAT Electrical Data and Timing  
Section 7.13.8.4.1 lists the EtherCAT timing requirements. Section 7.13.8.4.2 lists the EtherCAT switching  
characteristics. Figure 7-83 through Figure 7-87 show the EtherCAT timing diagrams.  
7.13.8.4.1 EtherCAT Timing Requirements  
NO.  
MIN  
NOM  
MAX UNIT  
EtherCAT  
tc(ECATCLK)  
tc(TXCLK)  
tw(TXCK)  
tc(RXCK)  
Cycle time, ECATCLK  
10  
40  
ns  
ns  
MII1  
MII2/MII3  
MII4  
Cycle time, ESC_TXy_CLK  
Pulse duration, ESC_TXy_CLK high or low  
Cycle time, ESC_RXy_CLK  
16  
24  
24  
ns  
ns  
ns  
40  
MII5/MII6  
tw(RXCK)  
Pulse duration, ESC_RXy_CLK high or low  
16  
10  
2
Setup time, receive signals valid before ESC_RXy_CLK  
high  
MII8  
MII9  
tsu(RXDV-RXCKH)  
th(RXCKH-RXDV)  
ns  
ns  
Hold time, receive signals valid after ESC_RXy_CLK high  
MDIO  
Setup time, ESC_MDIO_DATA valid before  
ESC_MDIO_CLK high  
MDIO4  
MDIO5  
tsu(MDV-MCKH)  
th(MCKH-MDV)  
20  
–1  
ns  
ns  
Hold time, ESC_MDIO_DATA valid after ESC_MDIO_CLK  
high  
7.13.8.4.2 EtherCAT Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Auto Shift Compensation  
Delay time, ESC_TXy_CLK to  
ESC_TXy_DATA[3:0] and  
ESC_TXy_ENA  
20 + input_dly +  
output_dly +  
TX_SHIFT*tc(CLK_100)  
30 + input_dly +  
output_dly +  
TX_SHIFT*tc(CLK_100)  
MII7  
td(TXCLK-TXDV)  
ns  
MDIO  
MDIO1  
tc(MCK)  
Cycle time, ESC_MDIO_CLK  
400  
ns  
ns  
Pulse duration, ESC_MDIO_CLK  
high or low  
MDIO2/MDIO3 tw(MCK)  
MDIO7 td(MCKH-MDV)  
tv(MCKH-MDV)  
160  
240  
Delay time, ESC_MDIO_CLK  
high to ESC_MDIO_DATA valid  
0.5tc(MCK) + 30  
ns  
ns  
Valid time, ESC_MDIO_DATA  
valid after ESC_MDIO_CLK high  
0.5tc(MCK) – 3.0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 219  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.8.4.3 EtherCAT Timing Diagrams  
MII1  
MII2  
MII3  
ESC_TXy_CLK  
Figure 7-83. EtherCAT Transmit Clock Timing (MII Operation)  
MII7  
ESC_TXy_CLK (input)  
ESC_TXy_DATA3–ESC_TXy_DATA0,  
ESC_TXy_EN (outputs)  
Figure 7-84. EtherCAT Transmit Interface Timing (MII Operation)  
MII4  
MII5  
MII6  
ESC_RXy_CLK  
Figure 7-85. EtherCAT Receive Clock Timing (MII Operation)  
MII8  
MII9  
ESC_RXy_CLK (input)  
ESC_RXy_DATA3–ESC_RXy_DATA0,  
ESC_RXy_DV, ESC_RXy_ERR (inputs)  
Figure 7-86. EtherCAT Receive Interface Timing (MII Operation)  
MDIO1  
MDIO2  
MDIO3  
ESC_MDIO_CLK  
MDIO4  
MDIO5  
ESC_MDIO_DATA (input)  
MDIO7  
ESC_MDIO_DATA (output)  
Figure 7-87. EtherCAT MDIO Timing Diagrams  
Copyright © 2021 Texas Instruments Incorporated  
220 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.13.9 Universal Serial Bus (USB) Controller  
The USB controller operates as a full-speed or low-speed function controller during point-to-point  
communications with USB host or device functions.  
The USB module has the following features:  
USB 2.0 full-speed and low-speed operation  
Integrated PHY  
Three transfer types: control, interrupt, and bulk  
32 endpoints  
– One dedicated control IN endpoint and one dedicated control OUT endpoint  
– 15 configurable IN endpoints and 15 configurable OUT endpoints  
4KB of dedicated endpoint memory  
Figure 7-88 shows the USB block diagram.  
Endpoint Control  
Transmit  
Receive  
EP0 –31  
Control  
CPU Interface  
Interrupt  
Control  
Interrupts  
CPU Bus  
Host  
Transaction  
Scheduler  
Combine  
Endpoints  
EP Reg.  
Decoder  
Common  
Regs  
UTM  
Synchronization  
Packet  
Encode/Decode  
FIFO RAM  
Controller  
Rx  
Buff  
Rx  
Buff  
Data Sync  
Packet Encode  
Packet Decode  
CRC Gen/Check  
Cycle  
Control  
Tx  
Buff  
Tx  
Buff  
HNP/SRP  
USB FS/LS  
PHY  
FIFO  
Decoder  
Timers  
Cycle Control  
USB DataLines  
D+ andD-  
Figure 7-88. USB Block Diagram  
Note  
The accuracy of the on-chip zero-pin oscillator (Section 7.10.3.5.1, INTOSC Characteristics) will not  
meet the accuracy requirements of the USB protocol. An external clock source must be used for  
applications using USB. For applications using the USB boot mode, see Section 8.6 for clock  
frequency requirements.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 221  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.13.9.1 USB Electrical Data and Timing  
Section 7.13.9.1.1 lists the USB input ports DP and DM timing requirements. Section 7.13.9.1.2 lists the USB  
output ports DP and DM switching characteristics.  
7.13.9.1.1 USB Input Ports DP and DM Timing Requirements  
MIN  
0.8  
MAX  
UNIT  
V
V(CM)  
Z(IN)  
VCRS  
VIL  
Differential input common mode range  
Input impedance  
2.5  
300  
1.3  
kΩ  
V
Crossover voltage  
2.0  
Static SE input logic-low level  
Static SE input logic-high level  
Differential input voltage  
0.8  
V
VIH  
2.0  
0.2  
V
VDI  
V
7.13.9.1.2 USB Output Ports DP and DM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
D+, D– single-ended  
D+, D– single-ended  
D+, D– impedance  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
VOH  
USB 2.0 load conditions  
USB 2.0 load conditions  
2.8  
0
3.6  
0.3  
44  
V
V
Ω
VOL  
Z(DRV)  
28  
Full speed, differential, CL = 50 pF, 10%/90%,  
Rpu on D+  
tr  
tf  
Rise time  
Fall time  
4
4
20  
20  
ns  
ns  
Full speed, differential, CL = 50 pF, 10%/90%,  
Rpu on D+  
Copyright © 2021 Texas Instruments Incorporated  
222 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.14 Connectivity Manager (CM) Peripherals  
Note  
For the actual number of each peripheral on a specific device, see the Device Comparison table.  
7.14.1 Modular Controller Area Network (MCAN) [CAN FD]  
The Controller Area Network (CAN) is a serial communications protocol that efficiently supports distributed real-  
time control with a high level of security. CAN has high immunity to electrical interference and the ability to self-  
diagnose and repair data errors. In a CAN network, many short messages are broadcasted to the entire network,  
which provides data consistency in every node of the system.  
The MCAN module supports both Classic CAN and CAN FD (CAN with flexible data-rate) specifications. The  
CAN FD feature allows high throughput and increased payload per data frame. Classic CAN and CAN FD  
devices can coexist on the same network without any conflict. The MCAN module is compliant to ISO  
11898-1:2015.  
The MCAN module implements the following features:  
Conforms with CAN Protocol 2.0 A, B and ISO 11898-1:2015  
Full CAN FD support (up to 64 data bytes)  
AUTOSAR and SAE J1939 support  
Up to 32 dedicated transmit buffers  
Configurable transmit FIFO, up to 32 elements  
Configurable transmit queue, up to 32 elements  
Configurable transmit Event FIFO, up to 32 elements  
Up to 64 dedicated receive buffers  
Two configurable receive FIFOs, up to 64 elements each  
Up to 128 filter elements  
Loop-back mode for self-test  
Maskable interrupt (two configurable interrupt lines, correctable ECC, counter overflow and clock stop/  
wakeup)  
Non-maskable interrupt (uncorrectable ECC)  
Two clock domains (CAN clock/host clock)  
ECC check for Message RAM  
Clock stop and wakeup support  
Timestamp counter  
Non-supported features:  
Host bus firewall  
GPIO is not integrated, such as DCAN  
Clock calibration  
Debug over CAN  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 223  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 7-89 provides an overview of the MCAN module.  
Device  
MCANSS  
Uncorrectable ECC  
CM NMI  
NVIC  
Correctable ECC  
Configurable Interrupts (2 lines)  
Counter Overflow and Clock Stop/  
Wakeup  
mcanss_tx  
mcanss_rx  
CPU BUS  
CM.PERx.SYSCLK  
MCAN Bit Clock  
Peripheral Clock  
Bit Timing Clock  
Clock disable/  
enable  
Wakeup  
Clock Stop and Wakeup  
CMSOFTPRESET1  
Reset  
Figure 7-89. MCAN Module Overview  
Copyright © 2021 Texas Instruments Incorporated  
224 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.14.2 Ethernet Media Access Controller (EMAC)  
The Ethernet module enables a host to transmit and receive data over the Ethernet in compliance with IEEE  
802.3-2015. The Ethernet module contains the following characteristics:  
IEEE 802.3-2015 for Ethernet MAC, Media Independent Interface (MII)  
IEEE 1588-2008 for precision networked clock synchronization  
IEEE 802.3az-2010 for Energy Efficient Ethernet (EEE)  
Reduced Media Independent Interface (RMII) specification version 1.2 from RMII consortium  
Reverse Media Independent Interface (RevMII)  
For more information about the Ethernet module, see the Ethernet chapter of the TMS320F2838x Real-Time  
Microcontrollers Technical Reference Manual.  
7.14.2.1 MAC Features  
The Ethernet controller supports a number of Tx and Rx MAC features. The MAC includes the following feature  
groups:  
MAC Tx and Rx features  
MAC Tx features  
MAC Rx features  
7.14.2.1.1 MAC Tx and Rx Features  
The combined features for Tx and Rx are as follows:  
Separate transmission, reception, and control interfaces to the application  
Little-endian mode for Transmit and Receive paths  
10, 100 data transfer rates with the following PHY interfaces:  
– IEEE 802.3-compliant MII (default) interface to communicate with an external Ethernet PHY  
– RMII interface to communicate with an external Fast Ethernet PHY  
– RevMII interface to directly communicate with a remote MAC  
Half-duplex operation:  
– CSMA/CD Protocol support  
– Flow control using backpressure support (based on implementation-specific white papers and UNH  
Ethernet Clause 4 MAC Test Suite - Annex D)  
Standard IEEE 802.3az-2010 for Energy Efficient Ethernet in MII PHYs.  
Full-duplex flow control operations (IEEE 802.3x Pause packets and Priority flow control)  
Network statistics with RMON or MIB Counters (RFC2819/RFC2665)  
Support Ethernet packet timestamping as described in IEEE 1588-2002 and IEEE 1588-2008 (64-bit  
timestamps given in the Tx or Rx status of PTP packet). Both one-step and two-step timestamping is  
supported in the TX direction.  
Flexibility to control the Pulse-Per-Second (PPS) output signal  
MDIO (Clause 22 and Clause 45) master interface for PHY device configuration and management  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 225  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.14.2.1.2 MAC Tx Features  
The MAC Tx features are as follows:  
Preamble and start-of-packet data (SFD) insertion  
Separate 32-bit status for each packet transmitted from the application  
Automatic CRC and pad generation controllable on a per-packet basis  
Programmable packet length to support Standard or Jumbo Ethernet packets up to 16KB in size  
Programmable Inter Packet Gap (40–96 bit times in steps of 8)  
IEEE 802.3x Flow Control automatic transmission of zero-quanta Pause packet when flow control input  
transitions from assertion to deassertion (in full-duplex mode)  
Source Address field insertion or replacement, and VLAN insertion, replacement, and deletion in transmitted  
packets with per-packet or static-global control  
Insertion, replacement, or deletion of up to two VLAN tags  
Insert, replace, or delete queue/channel-based VLAN tags  
7.14.2.1.3 MAC Rx Features  
The MAC Rx features are as follows:  
Flexible address filtering modes:  
– Destination Address filters with masks for each byte  
– Source Address comparison check with masks for each byte  
– 64-bit Hash filter for multicast and unicast (DA) addresses  
– Option to pass all multicast addressed packets  
– Promiscuous mode to pass all packets without any filtering for network monitoring  
– Pass all incoming packets (as per filter) with a status report  
Additional packet filtering:  
– VLAN tag-based: Perfect match and Hash-based filtering. Filtering based on either outer or inner VLAN  
tag is possible.  
– Layer 3 and Layer 4-based: TCP or UDP over IPv4 or IPv6  
– Extended VLAN-tag based filtering 4-filter selection  
IEEE 802.1Q VLAN tag detection and option to delete the VLAN tags in received packets  
Module to detect remote wake-up packets and AMD magic packets  
Forwarding of received Pause packets to the application (in full-duplex mode)  
Receive module for Layer-3/Layer-4 checksum offload for received packets  
Stripping of up to two VLAN Tags and providing the tags in the status.  
Copyright © 2021 Texas Instruments Incorporated  
226 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.14.2.2 Ethernet Electrical Data and Timing  
Section 7.14.2.2.1 lists the Ethernet timing requirements. Section 7.14.2.2.2 lists the Ethernet switching  
characteristics. Figure 7-90 through Figure 7-96 show the Ethernet timing diagrams.  
7.14.2.2.1 Ethernet Timing Requirements  
NO.  
MIN  
NOM  
MAX  
UNIT  
MII 100 Mbps  
MII1  
tc(TXCK)  
Cycle time, ENET_MII_TX_CLK  
40  
ns  
ns  
ns  
ns  
MII2/  
MII3  
tw(TXCK)  
tc(RXCK)  
tw(RXCK)  
Pulse duration, ENET_MII_TX_CLK high or low  
Cycle time, ENET_MII_RX_CLK  
16  
16  
24  
24  
MII4  
40  
MII5/  
MII6  
Pulse duration, ENET_MII_RX_CLK high or low  
Setup time, receive signals valid before ENET_MII_RX_CLK  
high  
MII8  
MII9  
tsu(MRXDV-RXCKH)  
th(RXCKH-MRXDV)  
10  
2
ns  
ns  
Hold time, receive signals valid after ENET_MII_RX_CLK high  
MII 10 Mbps  
MII1  
tc(TXCK)  
Cycle time, ENET_MII_TX_CLK  
400  
400  
ns  
ns  
ns  
ns  
MII2/  
MII3  
tw(TXCK)  
tc(RXCK)  
tw(RXCK)  
Pulse duration, ENET_MII_TX_CLK high or low  
Cycle time, ENET_MII_RX_CLK  
160  
160  
240  
240  
MII4  
MII5/  
MII6  
Pulse duration, ENET_MII_RX_CLK high or low  
Setup time, receive signals valid before ENET_MII_RX_CLK  
high  
MII8  
MII9  
tsu(MRXDV-RXCKH)  
th(RXCKH-MRXDV)  
10  
2
ns  
ns  
Hold time, receive signals valid after ENET_MII_RX_CLK high  
RMII (Internal Clock) 100 Mbps  
RMII5 tsu(MRXDV-RCKH)  
RMII6 th(RCKH-MRXDV)  
Setup time, receive signals valid before ENET_RMII_CLK high  
Hold time, receive signals valid after ENET_RMII_CLK high  
4
2
ns  
ns  
RMII (Internal Clock) 10 Mbps  
RMII5 tsu(MRXDV-RCKH)  
RMII6 th(RCKH-MRXDV)  
Setup time, receive signals valid before ENET_RMII_CLK high  
Hold time, receive signals valid after ENET_RMII_CLK high  
4
2
ns  
ns  
RMII (External Clock) 100 Mbps  
RMII1 tc(RCK)  
Cycle time, ENET_RMII_CLK  
20  
200  
400  
ns  
ns  
RMII2/  
tw(RCK)  
RMII3  
Pulse duration, ENET_RMII_CLK high or low  
8
12  
120  
240  
RMII5 tsu(MRXDV-RCKH)  
RMII6 th(RCKH-MRXDV)  
RMII (External Clock) 10 Mbps  
RMII1 tc(RCK)  
Setup time, receive signals valid before ENET_RMII_CLK high  
Hold time, receive signals valid after ENET_RMII_CLK high  
4
2
ns  
ns  
Cycle time, ENET_RMII_CLK  
ns  
ns  
RMII2/  
tw(RCK)  
RMII3  
Pulse duration, ENET_RMII_CLK high or low  
80  
RMII5 tsu(MRXDV-RCKH)  
RMII6 th(RCKH-MRXDV)  
MDIO  
Setup time, receive signals valid before ENET_RMII_CLK high  
Hold time, receive signals valid after ENET_RMII_CLK high  
4
2
ns  
ns  
MDIO1 tc(MCK)  
Cycle time, ENET_MDIO_CLK  
ns  
ns  
MDIO2/  
tw(MCK)  
MDIO3  
Pulse duration, ENET_MDIO_CLK high or low  
160  
20  
Setup time, ENET_MDIO_DATA valid before  
ENET_MDIO_CLK high  
MDIO4 tsu(MDV-MCKH)  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 227  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.14.2.2.1 Ethernet Timing Requirements (continued)  
NO.  
MIN  
NOM  
MAX  
UNIT  
Hold time, ENET_MDIO_DATA valid after ENET_MDIO_CLK  
MDIO5 th(MCKH-MDV)  
high  
–1  
ns  
7.14.2.2.2 Ethernet Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
MII 100 Mbps  
Delay time, ENET_MII_TX_CLK high to  
transmit signals valid  
MII7  
td(TXCKH-MTXDV)  
0
15  
ns  
MII 10 Mbps Switching Characteristics  
Delay time, ENET_MII_TX_CLK high to  
transmit signals valid  
MII7  
td(TXCKH-MTXDV)  
0
8
15  
ns  
RMII (Internal Clk) 100 Mbps  
RMII7 tc(RCK)  
Cycle time, ENET_RMII_CLK  
20  
ns  
ns  
RMII8/  
tw(RCK)  
RMII9  
Pulse duration, ENET_RMII_CLK high or  
low  
12  
14  
Delay time, ENET_RMII_CLK high to  
transmit signals valid  
RMII11 td(RCKH-MTXDV)  
ns  
RMII (Internal Clk) 10 Mbps  
RMII7 tc(RCK)  
Cycle time, ENET_RMII_CLK  
200  
ns  
ns  
RMII8/  
tw(RCK)  
RMII9  
Pulse duration, ENET_RMII_CLK high or  
low  
80  
0
120  
14  
Delay time, ENET_RMII_CLK high to  
transmit signals valid  
RMII11 td(RCKH-MTXDV)  
RMII (External Clk) 100 Mbps  
RMII11 td(RCKH-MTXDV)  
ns  
ns  
ns  
Delay time, ENET_RMII_TX_CLK high to  
transmit signals valid  
0
0
14  
14  
RMII (External Clk) 10 Mbps  
RMII11 td(RCKH-MTXDV)  
Delay time, ENET_RMII_CLK high to  
transmit signals valid  
MDIO  
MDIO1 tc(MCK)  
Cycle time, ENET_MDIO_CLK  
400  
ns  
ns  
MDIO2/  
tw(MCK)  
MDIO3  
Pulse duration, ENET_MDIO_CLK high or  
low  
160  
240  
Delay time, ENET_MDIO_CLK high to  
ENET_MDIO_DATA valid  
td(MCKH-MDV)  
0.5tc(MCK) + 30  
ns  
ns  
MDIO7  
Valid time, ENET_MDIO_DATA valid  
after ENET_MDIO_CLK high  
tv(MCKH-MDV)  
0.5tc(MCK)  
Copyright © 2021 Texas Instruments Incorporated  
228 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.14.2.2.3 Ethernet Timing Diagrams  
MII1  
MII2  
MII3  
ENET_MII_TX_CLK  
Figure 7-90. Transmit Clock Timing (MII Operation)  
MII7  
ENET_MII_TX_CLK (input)  
ENET_MII_TX_DATA3–ENET_MII_TX_DATA0,  
ENET_MII_TX_EN (outputs)  
Figure 7-91. Transmit Interface Timing (MII Operation)  
MII4  
MII5  
MII6  
ENET_MII_RX_CLK  
Figure 7-92. Receive Clock Timing (MII Operation)  
MII8  
MII9  
ENET_MII_RX_CLK (input)  
ENET_MII_RX_DATA3–ENET_MII_RX_DATA0,  
ENET_MII_RX_DV, ENET_MII_RX_ERR (inputs)  
Figure 7-93. Receive Interface Timing (MII Operation)  
MDIO1  
MDIO2  
MDIO3  
ENET_MDIO_CLK  
MDIO4  
MDIO5  
ENET_MDIO_DATA (input)  
MDIO7  
ENET_MDIO_DATA (output)  
Figure 7-94. MDIO Timing Diagrams  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 229  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
RMII1  
RMII3  
RMII2  
RMII6  
RMII5  
ENET_RMII_CLK  
ENET_MII_RX_DATA1–ENET_MII_RX_DATA0,  
ENET_MII_CRS, ENET_MII_RX_ERR (inputs)  
Figure 7-95. Receive Interface Timing (RMII Operation)  
RMII7  
RMII8  
RMII9  
RMII11  
ENET_RMII_CLK  
ENET_MII_TX_DATA1–ENET_MII_TX_DATA0,  
ENET_MII_TX_EN (outputs)  
Figure 7-96. Transmit Interface Timing (RMII Operation)  
Copyright © 2021 Texas Instruments Incorporated  
230 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.14.2.3 Ethernet REVMII Electrical Data and Timing  
Section 7.14.2.3.1 lists the Ethernet REVMII timing requirements. Section 7.14.2.3.2 lists the Ethernet REVMII  
switching characteristics.  
7.14.2.3.1 Ethernet REVMII Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
REVMII  
tc(RXCK)  
tw(RXCK)  
Cycle time, ENET_MII_RX_CLK  
40  
ns  
ns  
Pulse duration, ENET_MII_RX_CLK high or low  
16  
15  
24  
Setup time, ENET_MII_RX_DATA[3:0], ENET_MII_RX_EN valid  
before ENET_MII_RX_CLK high  
tsu(MRXDV-RXCKH)  
th(RXCKH-MRXDV)  
ns  
ns  
Hold time, ENET_MII_RX_DATA[3:0], ENET_MII_RX_EN valid after  
ENET_MII_RX_CLK high  
0
MDIO  
tc(MCK)  
Cycle time, ENET_MDIO_CLK  
400  
ns  
ns  
ns  
ns  
tw(MCK)  
Pulse duration, ENET_MDIO_CLK high or low  
160  
30  
3
240  
tsu(MDV-MCKH)  
th(MCKH-MDV)  
Setup time, ENET_MDIO_DATA valid before ENET_MDIO_CLK high  
Hold time, ENET_MDIO_DATA valid after ENET_MDIO_CLK high  
7.14.2.3.2 Ethernet REVMII Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
REVMII  
tc(TXCK)  
tw(TXCK)  
Cycle time, ENET_MII_TX_CLK  
40  
ns  
ns  
Pulse duration, ENET_MII_TX_CLK high or low  
16  
24  
10  
Delay time, ENET_MII_TX_CLK high to  
ENET_MII_TX_DATA[3:0], ENET_MII_TX_DV,  
ENET_MII_TX_ERR valid  
td(TXCKH-DV)  
ns  
ns  
Valid time, ENET_MII_TX_CLK high to  
ENET_MII_TX_DATA[3:0], ENET_MII_TX_DV,  
ENET_MII_TX_ERR invalid  
tv(TXCKH-DV)  
1
MDIO  
tc(MCK)  
tw(MCK)  
Cycle time, ENET_MDIO_CLK  
400  
ns  
ns  
Pulse duration, ENET_MDIO_CLK high or low  
160  
1
240  
40  
Delay time, ENET_MDIO_CLK high to  
ENET_MDIO_DATA valid  
td(MCKH-MDV)  
tv(MCKH-MDV)  
ns  
ns  
Valid time, ENET_MDIO_DATA valid  
after ENET_MDIO_CLK high  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 231  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.14.3 Inter-Integrated Circuit (CM-I2C)  
The CM-I2C bus provides bidirectional data transfer through a two-wire design; a serial data line (SDA) and a  
serial clock line (SCL); and interfaces to external I2C devices such as serial memory (RAMs and ROMs),  
networking devices, LCDs, tone generators, and so on. The CM-I2C bus can also be used for system testing and  
diagnostic purposes in product development and manufacturing.  
The CM-I2C modules support the following features:  
Devices on the CM-I2C bus can be designated as either a master or a slave.  
– Support both transmitting and receiving data as either a master or a slave  
– Support simultaneous master and slave operation  
Four CM-I2C modes:  
– Master transmit  
– Master receive  
– Slave transmit  
– Slave receive  
Receive FIFO and Transmitter FIFO (8 deep × 8 bits FIFO)  
– FIFOs can be independently assigned to master or slave  
Three transmission speeds:  
– Standard (100 kbps)  
– Fast mode (400 kbps)  
– Fast-mode plus (1 Mbps)  
Glitch suppression  
SMBus support through software  
– Clock low time-out interrupt  
– Dual slave address capability  
– Quick command capability  
Master and slave interrupt generation  
– Master generates interrupts when a transmit or receive operation completes (or aborts because of an  
error)  
– Slave generates interrupts when data has been transferred or requested by a master or when a START or  
STOP condition is detected  
Master with arbitration and clock synchronization, multiple-master support, and 7-bit addressing mode  
Efficient transfers using a Micro Direct Memory Access (µDMA) Controller  
– Separate channels for transmit and receive  
– Ability to execute single data transfers or burst data transfers using the RX and TX FIFOs in the CM-I2C  
Figure 7-97 shows the CM-I2C block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
232 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
dma_done dma_req dma_sreq interrupt  
Master Core  
I2CMSA  
RXFIFO  
RX_FIFO_7  
RX_FIFO_6  
RX_FIFO_5  
RX_FIFO_4  
RX_FIFO_3  
RX_FIFO_2  
RX_FIFO_1  
I2CMCS  
I2CMDR  
I2CMTPR  
I2CMIMR  
I2CMRIS  
Master I2CSDA  
I2CMMIS  
I2CMICR  
RX_FIFO_0  
8 bits  
I2CMCR  
Data  
TX_FIFO_7  
TX_FIFO_6  
Master I2CSCL  
Master I2CSDA  
I2CMCLKOCNT  
I2CMBMON  
I2CMBMLEN  
I2CMBCNT  
Slave I2CSDA  
TX_FIFO_5  
TX_FIFO_4  
TX_FIFO_3  
TX_FIFO_2  
TX_FIFO_1  
I2CSCL  
I2CSDA  
Slave I2CSCL  
Slave I2CSDA  
Slave Core  
I2CSOAR  
TX_FIFO_0  
TXFIFO  
I2CSCSR  
I2CSDR  
I2CSIMR  
I2C Status and Control  
I2CSRIS  
I2CSMIS  
I2CFIFODATA  
I2CFIFOCTL  
I2CFIFOSTATUS  
I2CPP  
I2CSICR  
I2CSSOAR2  
I2CSACKCTL  
Figure 7-97. CM-I2C Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 233  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.14.3.1 CM-I2C Electrical Data and Timing  
Section 7.14.3.1.1 lists the CM-I2C timing requirements. Section 7.14.3.1.2 lists the CM-I2C switching  
characteristics. Figure 7-98 shows the CM-I2C timing diagram.  
7.14.3.1.1 CM-I2C Timing Requirements  
NO.  
MIN  
MAX  
UNIT  
Standard mode  
Hold time, START condition, SCL fall delay after  
SDA fall  
T1  
T2  
th(SDA-SCL)START  
4.0  
4.7  
µs  
µs  
Setup time, Repeated START, SCL rise before SDA  
fall delay  
tsu(SCL-SDA)START  
T3  
T4  
T5  
T6  
T7  
T8  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
µs  
ns  
ns  
ns  
ns  
ns  
250  
1000  
1000  
300  
tr(SCL)  
Rise time, SCL  
tf(SDA)  
Fall time, SDA  
tf(SCL)  
Fall time, SCL  
300  
Setup time, STOP condition, SCL rise before SDA  
rise delay  
T9  
tsu(SCL-SDA)STOP  
4.0  
µs  
Pulse duration of spikes that will be suppressed by  
filter  
T10  
tw(SP)  
Cb  
tc(CMCLK)  
31 * tc(CMCLK)  
400  
ns  
T11  
capacitance load on each bus line  
pF  
Fast mode  
Hold time, START condition, SCL fall delay after  
SDA fall  
T1  
T2  
th(SDA-SCL)START  
tsu(SCL-SDA)START  
0.6  
0.6  
µs  
µs  
Setup time, Repeated START, SCL rise before SDA  
fall delay  
T3  
T4  
T5  
T6  
T7  
T8  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
100  
20  
µs  
ns  
ns  
ns  
ns  
ns  
300  
300  
300  
300  
tr(SCL)  
Rise time, SCL  
20  
tf(SDA)  
Fall time, SDA  
11.4  
11.4  
tf(SCL)  
Fall time, SCL  
Setup time, STOP condition, SCL rise before SDA  
rise delay  
T9  
tsu(SCL-SDA)STOP  
0.6  
µs  
Pulse duration of spikes that will be suppressed by  
filter  
T10  
T11  
tw(SP)  
Cb  
tc(CMCLK)  
31 * tc(CMCLK)  
400  
ns  
capacitance load on each bus line  
pF  
Fast mode plus  
Hold time, START condition, SCL fall delay after  
SDA fall  
T1  
T2  
th(SDA-SCL)START  
0.26  
0.26  
µs  
µs  
Setup time, Repeated START, SCL rise before SDA  
fall delay  
tsu(SCL-SDA)START  
T3  
T4  
T5  
T6  
T7  
T8  
th(SCL-DAT)  
tsu(DAT-SCL)  
tr(SDA)  
Hold time, data after SCL fall  
Setup time, data before SCL rise  
Rise time, SDA  
0
µs  
ns  
ns  
ns  
ns  
ns  
50  
120  
120  
120  
120  
tr(SCL)  
Rise time, SCL  
tf(SDA)  
Fall time, SDA  
11.4  
11.4  
tf(SCL)  
Fall time, SCL  
Setup time, STOP condition, SCL rise before SDA  
rise delay  
T9  
tsu(SCL-SDA)STOP  
0.26  
µs  
Copyright © 2021 Texas Instruments Incorporated  
234 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.14.3.1.1 CM-I2C Timing Requirements (continued)  
NO.  
MIN  
MAX  
31 * tc(CMCLK)  
550  
UNIT  
ns  
Pulse duration of spikes that will be suppressed by  
filter  
T10  
T11  
tw(SP)  
Cb  
tc(CMCLK)  
capacitance load on each bus line  
pF  
7.14.3.1.2 CM-I2C Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
NO.  
PARAMETER  
TEST CONDITIONS  
0.1 Vbus < Vi < 0.9 Vbus  
0.1 Vbus < Vi < 0.9 Vbus  
0.1 Vbus < Vi < 0.9 Vbus  
MIN  
MAX UNIT  
Standard mode  
S1  
S2  
S3  
S4  
fSCL  
SCL clock frequency  
0
10  
100  
kHz  
µs  
TSCL  
SCL clock period  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL clock low  
Pulse duration, SCL clock high  
4.7  
4.0  
µs  
µs  
Bus free time between STOP and START  
conditions  
S5  
tBUF  
4.7  
µs  
S6  
S7  
S8  
tv(SCL-DAT)  
tv(SCL-ACK)  
II  
Valid time, data after SCL fall  
Valid time, Acknowledge after SCL fall  
Input current on pins  
3.45  
3.45  
10  
µs  
µs  
µA  
–10  
Fast mode  
S1  
S2  
S3  
S4  
fSCL  
SCL clock frequency  
0
2.5  
1.3  
0.6  
400  
kHz  
µs  
TSCL  
SCL clock period  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL clock low  
Pulse duration, SCL clock high  
µs  
µs  
Bus free time between STOP and START  
conditions  
S5  
tBUF  
1.3  
µs  
S6  
S7  
S8  
tv(SCL-DAT)  
tv(SCL-ACK)  
II  
Valid time, data after SCL fall  
Valid time, Acknowledge after SCL fall  
Input current on pins  
0.9  
0.9  
10  
µs  
µs  
µA  
–10  
Fast mode plus  
S1  
S2  
S3  
S4  
fSCL  
SCL clock frequency  
0
1
1000  
kHz  
µs  
TSCL  
SCL clock period  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL clock low  
Pulse duration, SCL clock high  
0.5  
0.26  
µs  
µs  
Bus free time between STOP and START  
conditions  
S5  
tBUF  
0.5  
µs  
S6  
S7  
S8  
tv(SCL-DAT)  
tv(SCL-ACK)  
II  
Valid time, data after SCL fall  
Valid time, Acknowledge after SCL fall  
Input current on pins  
0.45  
0.45  
10  
µs  
µs  
µA  
–10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 235  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.14.3.1.3 CM-I2C Timing Diagram  
STOP  
START  
SDA  
SCL  
ACK  
Contd...  
Contd...  
S7  
S6  
T10  
T5  
T7  
S3  
S4  
9th  
clock  
T6  
T8  
S2  
Repeated  
START  
STOP  
S5  
SDA  
ACK  
T2  
T9  
T1  
SCL  
9th  
clock  
Figure 7-98. CM-I2C Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
236 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.14.4 Synchronous Serial Interface (SSI)  
The SSI module includes the following features:  
Programmable interface operation for Freescale® SPI, or Texas Instruments Synchronous Serial Interfaces.  
In this SSI module, only the Legacy SSI mode is supported.  
Master or slave operation  
Programmable clock bit rate and prescaler  
Separate transmit and receive FIFOs, each 16 bits wide and 8 locations deep  
Programmable data frame size from 4 to 16 bits  
Internal loopback test mode for diagnostic and debug testing  
Standard FIFO-based interrupts and End-of-Transmission interrupt  
Efficient transfers using Micro Direct Memory Access Controller (µDMA)  
– Separate channels for transmit and receive  
– Receive single request asserted when data is in the FIFO; burst request asserted when FIFO contains  
four entries  
– Transmit single request asserted when there is space in the FIFO; burst request asserted when FIFO  
contains four or more entries are available to be written in the FIFO  
– Maskable μDMA interrupts for receive and transmit complete  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 237  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 7-99. SSI Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
238 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.14.4.1 SSI Electrical Data and Timing  
Section 7.14.4.1.1 lists the SSI timing requirements. Section 7.14.4.1.2 lists the SSI switching characteristics.  
Figure 7-100 through Figure 7-102 show the SSI timing diagrams.  
7.14.4.1.1 SSI Timing Requirements  
NO.  
MIN  
NOM  
MAX UNIT  
MASTER MODE  
S8  
S8  
S9  
tRXDMS  
tRXDMS  
tRXDMH  
Rx Data setup time (high-speed mode)  
Rx Data setup time (normal mode)  
Rx Data hold time  
4
14  
2
ns  
ns  
ns  
SLAVE MODE  
S1  
S2  
tCLK_PER  
SSIClk cycle time(1)  
SSIClk high time  
SSIClk low time  
12 × tc(CMCLK)  
0.4 × tCLK_PER  
0.4 × tCLK_PER  
0
ns  
ns  
ns  
ns  
ns  
tCLK_HIGH  
tCLK_LOW  
tRXDSSU  
tRXDSH  
S3  
S12  
S13  
Rx Data setup time  
Rx Data hold time  
4 × tc(CMCLK)  
(1) In slave mode, the SSICPSR must be configured to set SSICLK to less than one twelfth of CMCLK.  
7.14.4.1.2 SSI Characteristics  
over operating free-air temperature range (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
TYP  
MAX UNIT  
MASTER MODE  
S1  
S2  
S3  
S6  
S7  
tCLK_PER  
tCLK_HIGH  
tCLK_LOW  
tTXDMOV  
tTXDMOH  
SSIClk cycle time(1)  
2 × tCMCLK  
0.4 × tCLK_PER  
0.4 × tCLK_PER  
ns  
ns  
ns  
SSIClk high time  
SSIClk low time  
Tx Data output valid time from SSIClk  
Tx Data output hold time after next SSIClk  
6
ns  
ns  
0
SLAVE MODE  
S10 tTXDSOV  
S11 tTXDSOH  
Tx Data output valid time from edge of SSIClk  
Tx Data output hold time from next SSIClk  
4 × tCMCLK+14  
ns  
ns  
4 × tCMCLK + 4  
(1) In master mode, the SSICPSR must be configured to set SSICLK to less than half of CMCLK. For master mode normal mode (non-  
high speed), a larger SSICPSR divider may be needed to meet the master RX input setup requirements.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 239  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
7.14.4.1.3 SSI Timing Diagrams  
S1  
S2  
SSIClk  
S3  
SSIFss  
SSITx  
MSB  
LSB  
SSIRx  
4 to 16 bits  
Figure 7-100. SSI Timing for TI Frame Format (FRF = 01), Single Transfer Timing Measurement  
S1  
S2  
SSIClk  
(SPO=1)  
S3  
SSIClk  
(SPO=0)  
S7  
S6  
SSITx  
(to slave)  
MSB  
LSB  
S8 S9  
SSIRx  
(from slave)  
MSB  
LSB  
SSIFss  
Figure 7-101. Master Mode SSI Timing for SPI Frame Format (FRF = 00), with SPH = 1  
S1  
S2  
SSIClk  
(SPO=1)  
S3  
SSIClk  
(SPO=0)  
S10  
S11  
SSITx  
(from master)  
MSB  
LSB  
S12  
S13  
SSIRx  
(to master)  
LSB  
MSB  
SSIFss  
Figure 7-102. Slave Mode SSI Timing for SPI Frame Format (FRF = 00), with SPH = 1  
Copyright © 2021 Texas Instruments Incorporated  
240 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.14.5 Universal Asynchronous Receiver/Transmitter (CM-UART)  
The Universal Asynchronous Receiver/Transmitter (UART) module in this device contains the following features:  
Programmable baud-rate generator allowing speeds of up to 7.8125 Mbps for regular speed (divide by 16)  
and 15.625 Mbps for high speed (divide by 8)  
Separate 16-level-deep and 8-bit-wide transmit (TX) and receive (RX) FIFOs to reduce CPU interrupt service  
loading  
Programmable FIFO length, including 1-byte-deep operation providing conventional double-buffered interface  
FIFO trigger levels of ⅛, ¼, ½, ¾, and ⅞  
Standard asynchronous communication bits for start, stop, and parity  
Line-break generation and detection  
Fully programmable serial interface characteristics  
– 5, 6, 7, or 8 data bits  
– Even, odd, stick, or no parity-bit generation and detection  
– 1 or 2 stop-bit generation  
IrDA serial-IR (SIR) encoder and decoder providing:  
– Programmable use of IrDA SIR or UART input/output  
– Support of IrDA SIR encoder and decoder functions for data rates of up to 115.2 kbps half-duplex  
– Support of normal 3/16 and low-power (1.41 to 2.23 μs) bit durations  
– Programmable internal clock generator enabling division of reference clock by 1 to 256 for low-power-  
mode bit duration  
EIA-485 9-bit support  
Standard FIFO-level and End-of-Transmission (EOT) interrupts  
Efficient transfers using Micro Direct Memory Access (µDMA) Controller  
– Separate channels for transmit and receive  
– Receive single request asserted when data is in the FIFO; burst request asserted at programmed FIFO  
level  
– Transmit single request asserted when there is space in the FIFO; burst request asserted at programmed  
FIFO level  
Figure 7-103 shows the CM-UART module block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 241  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Clock Control  
UARTCC  
CMCLK  
Baud Clock  
UARTCTL  
DMA Control  
DMA Request  
UARTDMACTL  
Interrupt Control  
TxFIFO  
16x8  
Interrupt  
UARTIFLS  
UARTIM  
Identification Registers  
.
.
.
UARTPCellID0  
UARTPCellID1  
UARTPCellID2  
UARTPCellID3  
UARTPeriphID0  
UARTPeriphID1  
UARTPeriphID2  
UARTPeriphID3  
UARTPeriphID4  
UARTPeriphID5  
UARTPeriphID6  
UARTPeriphID7  
UARTMIS  
UARTRIS  
UARTICR  
UnTx  
UnRx  
Transmitter  
(with SIR  
Transmit  
Encoder)  
Baud Rate  
Generator  
Data Register  
UARTDR  
UARTIBRD  
UARTFBRD  
Receiver  
Control/Status  
(with SIR  
Receive  
Decoder)  
RxFIFO  
16x8  
UARTRSR/ECR  
UARTFR  
UARTLCRH  
UARTCTL  
.
.
.
UARTILPR  
UART9BITADDR  
UART9BITAMASK  
UARTPP  
Figure 7-103. CM-UART Module Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
242 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
7.14.6 Trace Port Interface Unit (TPIU)  
Trace capability from the Cortex-M4 is supported on the CM subsystem.  
The Cortex-M4 supports two trace interfaces:  
Single wire trace, which follows a UART protocol and is asynchronous  
Five-pin (four data pins and one clock pin) and parallel trace  
Both options are supported on this device. Figure 7-104 shows the high-level clock and signal hook-up to and  
from the TPIU.  
Cortex-M4 with customizable components  
NVIC  
DWT  
Serial Wire Trace  
(SWO)  
TRACESWO  
Cortex-M4  
Core  
TRACEDATA[3]  
TRACEDATA[2]  
FCLK  
TPIU  
CMCLK  
HCLK  
TRACEDATA[1]  
TRACEDATA[0]  
TRACECLK  
TRACECLKIN  
Divide By 2  
Figure 7-104. Debug Trace  
Table 7-10 lists the key attributes of the two trace data export mechanisms. For more details about TPIU and  
trace mechanisms, see the Arm Architecture Reference Manual.  
Table 7-10. Key Attributes of Trace Data Export  
ATTRIBUTE PARALLEL TRACE  
Protocol  
SERIAL WIRE TRACE  
PARALLEL TRACE  
Trace Data changes on both  
edges of TRACECLK.  
UART Protocol/Manchester-encoded data stream  
Frequency(CMHCLK)/(TPIU_ACPR + 1)  
Data throughput rate  
Frequency(CMHCLK)/2  
You must configure the GPIO mux to select a trace function on the GPIO pin to use it.  
7.14.6.1 TPIU Electrical Data and Timing  
Section 7.14.6.1.1 lists the trace port switching characteristics.  
7.14.6.1.1 Trace Port Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
tc(TRACE_CLK) Cycle time, TRACE_CLK  
16  
tw(TRACE_CLK) Pulse duration, TRACE_CLK high or low  
6
10  
2
ns  
td(TRACE_DATA,  
Delay time, TRACE_CLK high to valid TRACE_DATA  
-2  
ns  
TRACE_SWO)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 243  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The TMS320F2838x is a powerful 32-bit floating-point real-time microcontroller unit (MCU) designed for  
advanced closed-loop control applications such as industrial drives and servo motor control; solar inverters and  
converters; digital power; electric vehicles; and DSP and sensing applications. The F2838x supports a dual-core  
C28x architecture along with a new Connectivity Manager that offloads critical communication tasks, significantly  
boosting system performance. The integrated analog and control peripherals with advanced connectivity  
peripherals like EtherCAT and Ethernet also let designers consolidate real-time control and real-time  
communications architectures reducing requirements for multicontroller systems.  
The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide  
200 MHz of signal processing performance in each core. The C28x CPUs are further boosted by the TMU  
accelerator, which enables fast execution of algorithms with trigonometric operations common in transforms and  
torque loop calculations.  
The F2838x real-time microcontroller family features two CLA real-time control coprocessors. The CLA is an  
independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to  
peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability  
can effectively double the computational performance of a real-time control system. By using the CLA to service  
time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and  
diagnostics. The dual C28x+CLA architecture enables intelligent partitioning between various system tasks. For  
example, one C28x+CLA core can be used to track speed and position, while the other C28x+CLA core can be  
used to control torque and current loops.  
The Connectivity Manager subsystem is based on the Cortex-M4 CPU and has access to advanced  
communication IPs like EtherCAT, Ethernet, MCAN (CAN-FD) and AES.  
The TMS320F2838x supports up to 1.5MB (512KB per CPU) of flash memory with error correction code (ECC)  
and up to 312KB (216KB total for C28x CPU1 and CPU2, and 96KB on the Cortex-M4) of SRAM. Two 128-bit  
secure zones are also available on the device for code protection.  
Performance analog and control peripherals are also integrated on the F2838x MCU to further enable system  
consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple analog  
signals, which ultimately boosts system throughput. The sigma-delta filter module (SDFM) works in conjunction  
with the sigma-delta modulator to enable isolated current shunt measurements. The Comparator Subsystem  
(CMPSS) with windowed comparators allows for protection of power stages when current limit conditions are  
exceeded or not met. Other analog and control peripherals include DACs, PWMs, eCAPs, eQEPs, and other  
peripherals.  
Peripherals such as EMIFs, CAN modules (ISO 11898-1/CAN 2.0B-compliant), EtherCAT, Ethernet, and MCAN  
(CAN-FD) extend the connectivity of the F2838x. Lastly, a USB 2.0 port with MAC and PHY lets users easily add  
universal serial bus (USB) connectivity to their application.  
Copyright © 2021 Texas Instruments Incorporated  
244 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.2 Functional Block Diagram  
Figure 8-1 shows the CPU system and associated peripherals.  
Connectivity  
Manager (CM)  
C28 CPU1  
C28 CPU2  
CPU1 - CM  
IPC  
CPU1  
CPU1.CLA  
CPU1.DMA  
FPU64  
FPU32  
TMU  
FPU64  
FPU32  
TMU  
MSGRAM0  
MSGRAM1  
CPU1.CLA1  
CPU2.CLA1  
Arm Cortex-M4  
VCRC  
VCRC  
CPU2  
CPU2.CLA  
CPU2.DMA  
AES  
CPU Timers  
GCRC  
NVIC  
NMI WD  
Windowed WD  
CPU2 - CM  
IPC  
BGCRC  
BGCRC  
CPU Timers  
DCC  
ePIE  
ERAD  
BGCRC  
BGCRC  
CPU Timers  
CM M4 CODE  
CM M4 SYS  
CM µDMA  
CM Bus Matrix  
Ethernet DMA  
MSGRAM0  
CPU - CLA  
MSGRAM  
CPU - CLA  
MSGRAM  
ePIE  
ERAD  
NMI WD  
MSGRAM1  
NMI WD  
Windowed WD  
Windowed WD  
CPU1 - CPU2  
IPC  
Boot ROM  
Secure  
Memories  
shown in Red  
Boot ROM  
Secure ROM  
Boot ROM  
CLA ROM  
CLA ROM  
MSGRAM0  
MSGRAM1  
Secure ROM  
Secure ROM  
Flash (512KB)  
Flash (512KB)  
Flash (512KB)  
C0-C1 RAM (16KB)  
E0 RAM (16KB)  
M0-M1 RAM (4KB)  
D0-D1 RAM (8KB)  
M0-M1 RAM (4KB)  
D0-D1 RAM (8KB)  
LS0-LS7 RAM  
(32KB)  
LS0-LS7 RAM  
(32KB)  
GS0-GS15 RAM  
(128KB)  
S0-S3 RAM (64KB)  
DMA - CLA  
MSGRAM  
DMA - CLA  
MSGRAM  
CPU1.DMA  
CPU2.DMA  
CM µDMA  
CM Bus  
Matrix  
PF3  
PF1  
PF9  
PF2  
PF5  
PF6  
PF10  
PF4  
MUX  
MUX  
MUX  
MUX  
Data  
169x GPIO  
2x CAN  
1x USB 1x CAN-FD  
8x FSIRX  
2x FSITX  
2x McBSP  
1x PMBUS  
4x SPI  
EMIF1  
EMIF2  
8x CLB  
8x CMPSS  
3x DAC  
2x I2C  
4x SCI  
Result  
DMA  
1x EtherCAT  
(2 Ports)  
1x Ethernet  
4x ADC  
(16-bit / 12-bit)  
INPUT XBAR  
OUTPUT XBAR  
ePWM XBAR  
1x CM-I2C  
1x CM-UART  
1x SSI  
7x eCAP  
(2 Hi-Res)  
32x ePWM  
Channels  
(16 Hi-Res)  
CLB XBAR  
CLB INPUT XBAR  
3x eQEP  
CLB OUTPUT XBAR  
8x SD Filters  
Figure 8-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
245  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D TMS320F28384D-Q1 TMS320F28388S TMS320F28386S  
TMS320F28386S-Q1 TMS320F28384S TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
8.3 Memory  
8.3.1 C28x Memory Map  
Both C28x CPUs on the device have the same memory map except where noted in the C28x Memory Map  
table. The GSx_RAM (Global Shared RAM) should be assigned to either CPU by the GSxMSEL register.  
Memories accessible by the CLA or DMA (direct memory access) are noted as well.  
Table 8-1. C28x Memory Map  
START  
ADDRESS  
CLA  
ACCESS  
DMA  
ACCESS  
ECC/  
PARITY  
ACCESS  
PROTECTION  
MEMORY  
SIZE  
END ADDRESS  
SECURITY  
M0 RAM  
M1 RAM  
1K x 16  
1K x 16  
512 x 16  
0x0000 0000  
0x0000 0400  
0x0000 0D00  
0x0000 03FF  
0x0000 07FF  
0x0000 0EFF  
ECC  
ECC  
Yes  
Yes  
PieVectTable  
CPUx.CLA1 to CPUx  
MSGRAM  
128 x 16  
128 x 16  
128 x 16  
128 x 16  
0x0000 1480  
0x0000 1500  
0x0000 1680  
0x0000 1700  
0x0000 14FF  
0x0000 157F  
0x0000 16FF  
0x0000 177F  
Yes  
Yes  
Yes  
Yes  
Parity  
Parity  
Parity  
Parity  
CPUx to CPUx.CLA1  
MSGRAM  
CPUx.CLA1 to CPUx.DMA  
MSGRAM  
Yes  
Yes  
CPUx.DMA to CPUx.CLA1  
MSGRAM  
LS0 RAM  
LS1 RAM  
LS2 RAM  
LS3 RAM  
LS4 RAM  
LS5 RAM  
LS6 RAM  
LS7 RAM  
D0 RAM  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
2K x 16  
4K x 16  
4K x 16  
0x0000 8000  
0x0000 8800  
0x0000 9000  
0x0000 9800  
0x0000 A000  
0x0000 A800  
0x0000 B000  
0x0000 B800  
0x0000 C000  
0x0000 C800  
0x0000 D000  
0x0000 E000  
0x0000 87FF  
0x0000 8FFF  
0x0000 97FF  
0x0000 9FFF  
0x0000 A7FF  
0x0000 AFFF  
0x0000 B7FF  
0x0000 BFFF  
0x0000 C7FF  
0x0000 CFFF  
0x0000 DFFF  
0x0000 EFFF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
ECC  
ECC  
ECC  
ECC  
ECC  
ECC  
ECC  
ECC  
ECC  
ECC  
Parity  
Parity  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
D1 RAM  
GS0 RAM(1)  
GS1 RAM(1)  
Yes  
Yes  
CLA DATA  
ROM(5)  
GS2 RAM(1)  
4K x 16  
0x0000 F000  
0x0000 FFFF  
Yes  
Parity  
Yes  
GS3 RAM(1)  
GS4 RAM(1)  
GS5 RAM(1)  
GS6 RAM(1)  
GS7 RAM(1)  
GS8 RAM(1)  
GS9 RAM(1)  
GS10 RAM(1)  
GS11 RAM(1)  
GS12 RAM(1)  
GS13 RAM(1)  
GS14 RAM(1)  
GS15 RAM(1)  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
0x0001 0000  
0x0001 1000  
0x0001 2000  
0x0001 3000  
0x0001 4000  
0x0001 5000  
0x0001 6000  
0x0001 7000  
0x0001 8000  
0x0001 9000  
0x0001 A000  
0x0001 B000  
0x0001 C000  
0x0001 0FFF  
0x0001 1FFF  
0x0001 2FFF  
0x0001 3FFF  
0x0001 4FFF  
0x0001 5FFF  
0x0001 6FFF  
0x0001 7FFF  
0x0001 8FFF  
0x0001 9FFF  
0x0001 AFFF  
0x0001 BFFF  
0x0001 CFFF  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Parity  
Parity  
Parity  
Parity  
Parity  
Parity  
Parity  
Parity  
Parity  
Parity  
Parity  
Parity  
Parity  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
EtherCAT RAM (direct access)  
8K x 16  
0x0003 0800  
0x0003 27FF  
Yes  
Parity  
(2)  
CM to CPUx MSGRAM0  
CM to CPUx MSGRAM1  
CPUx to CM MSGRAM0  
CPUx to CM MSGRAM1  
CPU1 to CPU2 MSGRAM0  
1K x 16  
1K x 16  
1K x 16  
1K x 16  
1K x 16  
0x0003 8000  
0x0003 8400  
0x0003 9000  
0x0003 9400  
0x0003 A000  
0x0003 83FF  
0x0003 87FF  
0x0003 93FF  
0x0003 97FF  
0x0003 A3FF  
Yes  
Yes  
Yes  
Yes  
Yes  
Parity  
Parity  
Parity  
Parity  
Parity  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Copyright © 2021 Texas Instruments Incorporated  
246 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 8-1. C28x Memory Map (continued)  
START  
ADDRESS  
CLA  
ACCESS  
DMA  
ACCESS  
ECC/  
PARITY  
ACCESS  
PROTECTION  
MEMORY  
SIZE  
END ADDRESS  
SECURITY  
CPU1 to CPU2 MSGRAM1  
CPU2 to CPU1 MSGRAM0  
CPU2 to CPU1 MSGRAM1  
USB RAM(2)  
1K x 16  
1K x 16  
1K x 16  
2K x 16  
2K x 16  
2K x 16  
1K x 16  
1K x 16  
256K x 16  
32K x 16  
96K x 16  
0x0003 A400  
0x0003 B000  
0x0003 B400  
0x0004 1000  
0x0004 9000  
0x0004 B000  
0x0007 0000  
0x0007 8000  
0x0008 0000  
0x003E 0000  
0x003E 8000  
0x0003 A7FF  
0x0003 B3FF  
0x0003 B7FF  
0x0004 17FF  
0x0004 97FF  
0x0004 B7FF  
0x0007 03FF  
0x0007 83FF  
0x000B FFFF  
0x003E 7FFF  
0x003F FFFF  
Yes  
Yes  
Yes  
Yes  
Parity  
Parity  
Parity  
Yes  
Yes  
Yes  
Yes  
CAN A Message RAM  
CAN B Message RAM  
TI OTP(4)  
Parity  
Parity  
ECC  
User OTP  
Yes(3)  
Yes  
Flash  
ECC  
Parity  
Parity  
Secure ROM  
Yes  
Boot ROM  
Pie Vector Fetch Error (part of  
Boot ROM)  
1 x 16  
0x003F FFBE  
0x003F FFBF  
Parity  
Parity  
Default Vectors (part of Boot  
ROM)  
64 x 16  
4K x 16  
0x003F FFC0  
0x0100 1000  
0x003F FFFF  
0x0100 1FFF  
CLA Data ROM  
(1) Shared between CPU subsystems.  
(2) Only on the CPU1 subsystem.  
(3) Only CPU1 User OTP is secure. CPU2 User OTP is non-secure.  
(4) TI OTP is for TI internal use only.  
(5) CLA has its Data ROM mapped at this address space.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 247  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
8.3.2 C28x Flash Memory Map  
On the F28388D, F28386D, and F28384D devices, each CPU has its own flash bank [512KB (256KW)], the total  
flash for each device is 1MB (512KW). Only one bank can be programmed or erased at a time and the code to  
program and erase the flash should be executed out of RAM.  
The F28388S, F28386S, and F28384S devices have one flash bank of 512KB (256KW) and the code to  
program the flash should be executed out of RAM. See Section 7.10.4 for details on flash wait states.  
The C28x Flash Memory Map table lists the addresses of the flash sectors.  
Table 8-2. C28x Flash Memory Map  
SECTOR  
SIZE  
START ADDRESS  
END ADDRESS  
OTP Sectors  
Sectors  
TI OTP  
1K x 16  
1K x 16  
0x0007 0000  
0x0007 8000  
0x0007 03FF  
0x0007 83FF  
User OTP(1)  
Sector 0  
Sector 1  
Sector 2  
Sector 3  
Sector 4  
Sector 5  
Sector 6  
Sector 7  
Sector 8  
Sector 9  
Sector 10  
Sector 11  
Sector 12  
Sector 13  
8K x 16  
8K x 16  
8K x 16  
8K x 16  
32K x 16  
32K x 16  
32K x 16  
32K x 16  
32K x 16  
32K x 16  
8K x 16  
8K x 16  
8K x 16  
8K x 16  
0x0008 0000  
0x0008 2000  
0x0008 4000  
0x0008 6000  
0x0008 8000  
0x0009 0000  
0x0009 8000  
0x000A 0000  
0x000A 8000  
0x000B 0000  
0x000B 8000  
0x000B A000  
0x000B C000  
0x000B E000  
0x0008 1FFF  
0x0008 3FFF  
0x0008 5FFF  
0x0008 7FFF  
0x0008 FFFF  
0x0009 7FFF  
0x0009 FFFF  
0x000A 7FFF  
0x000A FFFF  
0x000B 7FFF  
0x000B 9FFF  
0x000B BFFF  
0x000B DFFF  
0x000B FFFF  
Flash ECC Locations  
TI OTP ECC  
128 x 16  
128 x 16  
1K x 16  
1K x 16  
1K x 16  
1K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
4K x 16  
1K x 16  
1K x 16  
1K x 16  
1K x 16  
0x0107 0000  
0x0107 1000  
0x0108 0000  
0x0108 0400  
0x0108 0800  
0x0108 0C00  
0x0108 1000  
0x0108 2000  
0x0108 3000  
0x0108 4000  
0x0108 5000  
0x0108 6000  
0x0108 7000  
0x0108 7400  
0x0108 7800  
0x0108 7C00  
0x0107 007F  
0x0107 107F  
0x0108 03FF  
0x0108 07FF  
0x0108 0BFF  
0x0108 0FFF  
0x0108 1FFF  
0x0108 2FFF  
0x0108 3FFF  
0x0108 4FFF  
0x0108 5FFF  
0x0108 6FFF  
0x0108 73FF  
0x0108 77FF  
0x0108 7BFF  
0x0108 7FFF  
User OTP ECC  
Flash ECC (Sector 0)  
Flash ECC (Sector 1)  
Flash ECC (Sector 2)  
Flash ECC (Sector 3)  
Flash ECC (Sector 4)  
Flash ECC (Sector 5)  
Flash ECC (Sector 6)  
Flash ECC (Sector 7)  
Flash ECC (Sector 8)  
Flash ECC (Sector 9)  
Flash ECC (Sector 10)  
Flash ECC (Sector 11)  
Flash ECC (Sector 12)  
Flash ECC (Sector 13)  
(1) CPU1 User OTP is used for security (DCSM) configuration; so, it is not available for general-purpose use. CPU2 User OTP is available  
for general-purpose use.  
Copyright © 2021 Texas Instruments Incorporated  
248 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.3.3 EMIF Chip Select Memory Map  
The EMIF1 memory map is the same for both CPU subsystems. EMIF2 is available only on the CPU1  
subsystem. The EMIF memory map is shown in the EMIF Chip Select Memory Map table.  
Table 8-3. EMIF Chip Select Memory Map  
START  
EMIF CS  
EMIF1 CS0n - Data(1)  
SIZE(3)  
END ADDRESS  
CLA ACCESS  
DMA ACCESS  
ADDRESS  
0x8000 0000  
0x0020 0000  
0x0010 0000  
0x0030 0000  
0x0038 0000  
0x9000 0000  
0x0000 2000  
256M x 16  
1M x 16  
0x8FFF FFFF  
0x002F FFFF  
0x002F FFFF  
0x0037 FFFF  
0x003D FFFF  
0x91FF FFFF  
0x0000 2FFF  
Yes  
Yes  
Yes  
Yes  
Yes  
EMIF1 CS0n - Program + Data(1)  
EMIF1 CS2n - Program + Data  
EMIF1 CS3n - Program + Data  
EMIF1 CS4n - Program + Data  
EMIF2 CS0n - Data(2)  
2M x 16  
512K x 16  
393K x 16  
32M x 16  
4K x 16  
EMIF2 CS2n - Program + Data(2)  
Yes (Data only)  
(1) Dual Map - When EMIF1 CS0n is mapped at address 0x2x_xxxx, EMIF1 CS2n is only avaialble from 0x10_0000 to 0x1F_FFFF (1M x  
16).  
(2) Only on the CPU1 subsystem.  
(3) Available memory size listed in this table is the maximum possible size assuming 32-bit memory. This may not apply to other memory  
sizes because of pin mux setting.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 249  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
8.3.4 CM Memory Map  
The CM Memory Map table shows the CM memory map.  
Table 8-4. CM Memory Map  
START  
ADDRESS  
µDMA  
ACCESS  
ENET DMA  
ACCESS  
ECC/  
PARITY  
ACCESS  
PROTECTION  
MEMORY  
Boot ROM  
SIZE  
END ADDRESS  
SECURITY  
64K x 8  
32K x 8  
512K x 8  
2K x 8  
0x0000 0000  
0x0001 0000  
0x0020 0000  
0x0038 0000  
0x003C 0000  
0x1FFF C000  
0x1FFF E000  
0x2000 0000  
0x2000 4000  
0x2000 8000  
0x2000 C000  
0x2001 0000  
0x2008 0000  
0x2008 0800  
0x2008 2000  
0x2008 2800  
0x2008 4000  
0x2008 4800  
0x2008 6000  
0x2008 6800  
0x2200 0000  
0x4007 2000  
0x4007 6000  
0x4007 8000  
0x400B 1000  
0x0000 FFFF  
0x0001 7FFF  
0x0027 FFFF  
0x0038 07FF  
0x003C 07FF  
0x1FFF DFFF  
0x1FFF FFFF  
0x2000 3FFF  
0x2000 7FFF  
0x2000 BFFF  
0x2000 FFFF  
0x2001 3FFF  
0x2008 07FF  
0x2008 0FFF  
0x2008 27FF  
0x2008 2FFF  
0x2008 47FF  
0x2008 4FFF  
0x2008 67FF  
0x2008 6FFF  
0x23FF FFFF  
0x4007 2FFF  
0x4007 6FFF  
0x4007 C3FF  
0x400B 4FFF  
Parity  
Parity  
ECC  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Yes(1)  
Secure ROM  
Yes  
Yes  
Flash  
TI OTP(2)  
ECC  
USER OTP  
2K x 8  
ECC  
C1 RAM  
8K x 8  
Parity  
Parity  
Parity  
Parity  
Parity  
Parity  
ECC  
Yes  
Yes  
C0 RAM  
8K x 8  
S0 RAM  
16K x 8  
16K x 8  
16K x 8  
16K x 8  
16K x 8  
2K x 8  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
S1 RAM  
S2 RAM  
S3 RAM  
E0 RAM  
CPU1 to CM MSGRAM0  
CPU1 to CM MSGRAM1  
CM to CPU1 MSGRAM0  
CM to CPU1 MSGRAM1  
CPU2 to CM MSGRAM0  
CPU2 to CM MSGRAM1  
CM to CPU2 MSGRAM0  
CM to CPU2 MSGRAM1  
Bit Band RAM Zone  
CAN A Message RAM  
CAN B Message RAM  
MCAN Message RAM  
EtherCAT RAM (direct access)  
Parity  
Parity  
Parity  
Parity  
Parity  
Parity  
Parity  
Parity  
Parity  
Parity  
Parity  
ECC  
Yes  
Yes  
Yes  
Yes  
2K x 8  
2K x 8  
2K x 8  
2K x 8  
2K x 8  
2K x 8  
2K x 8  
32M x 8  
4K x 8  
4K x 8  
17K x 8  
16K x 8  
Yes  
Parity  
(1) Access protection is done via MPU.  
(2) TI OTP is for TI internal use only.  
Copyright © 2021 Texas Instruments Incorporated  
250 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.3.5 CM Flash Memory Map  
The CM Flash Memory Map table shows the CM Flash memory map.  
Table 8-5. CM Flash Memory Map  
SECTOR  
SIZE  
START ADDRESS  
END ADDRESS  
OTP Sectors  
TI OTP  
2K x 8  
2K x 8  
0x0038 0000  
0x003C 0000  
0x0038 07FF  
0x003C 07FF  
User OTP(1)  
Sectors  
Sector 0  
Sector 1  
Sector 2  
Sector 3  
Sector 4  
Sector 5  
Sector 6  
Sector 7  
Sector 8  
Sector 9  
Sector 10  
Sector 11  
Sector 12  
Sector 13  
16K x 8  
16K x 8  
16K x 8  
16K x 8  
64K x 8  
64K x 8  
64K x 8  
64K x 8  
64K x 8  
64K x 8  
16K x 8  
16K x 8  
16K x 8  
16K x 8  
0x0020 0000  
0x0020 4000  
0x0020 8000  
0x0020 C000  
0x0021 0000  
0x0022 0000  
0x0023 0000  
0x0024 0000  
0x0025 0000  
0x0026 0000  
0x0027 0000  
0x0027 4000  
0x0027 8000  
0x0027 C000  
0x0020 3FFF  
0x0020 7FFF  
0x0020 BFFF  
0x0020 FFFF  
0x0021 FFFF  
0x0022 FFFF  
0x0023 FFFF  
0x0024 FFFF  
0x0025 FFFF  
0x0026 FFFF  
0x0027 3FFF  
0x0027 7FFF  
0x0027 BFFF  
0x0027 FFFF  
Flash ECC Locations  
TI OTP ECC  
256 x 8  
256 x 8  
2K x 8  
2K x 8  
2K x 8  
2K x 8  
8K x 8  
8K x 8  
8K x 8  
8K x 8  
8K x 8  
8K x 8  
2K x 8  
2K x 8  
2K x 8  
2K x 8  
0x0088 0000  
0x0088 8000  
0x0080 0000  
0x0080 0800  
0x0080 1000  
0x0080 1800  
0x0080 2000  
0x0080 4000  
0x0080 6000  
0x0080 8000  
0x0080 A000  
0x0080 C000  
0x0080 E000  
0x0080 E800  
0x0080 F000  
0x0080 F800  
0x0088 00FF  
0x0088 80FF  
0x0080 07FF  
0x0080 0FFF  
0x0080 17FF  
0x0080 1FFF  
0x0080 3FFF  
0x0080 5FFF  
0x0080 7FFF  
0x0080 9FFF  
0x0080 BFFF  
0x0080 DFFF  
0x0080 E7FF  
0x0080 EFFF  
0x0080 F7FF  
0x0080 FFFF  
User OTP ECC  
Flash ECC (Sector 0)  
Flash ECC (Sector 1)  
Flash ECC (Sector 2)  
Flash ECC (Sector 3)  
Flash ECC (Sector 4)  
Flash ECC (Sector 5)  
Flash ECC (Sector 6)  
Flash ECC (Sector 7)  
Flash ECC (Sector 8)  
Flash ECC (Sector 9)  
Flash ECC (Sector 10)  
Flash ECC (Sector 11)  
Flash ECC (Sector 12)  
Flash ECC (Sector 13)  
(1) CM User OTP is available for general-purpose use.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 251  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
8.3.6 Memory Types  
8.3.6.1 Dedicated RAM (Mx and Dx RAM)  
The CPU subsystem has four dedicated ECC-capable RAM blocks: M0, M1, D0, and D1. M0/M1 memories are  
small nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has access to them). D0/D1  
memories are secure blocks and also have the access-protection feature (CPU write/CPU fetch protection).  
8.3.6.2 Local Shared RAM (LSx RAM)  
RAM blocks which are dedicated to each subsystem and are accessible to its CPU and CLA only, are called  
local shared RAMs (LSx RAMs).  
All LSx RAM blocks have ECC. These memories are secure and have the access protection (CPU write/CPU  
fetch) feature.  
By default, these memories are dedicated to the CPU only, and the user could choose to share these memories  
with the CLA by configuring the MSEL_LSx bit field in the LSxMSEL registers appropriately.  
Table 8-6 lists the master access for the LSx RAM.  
Table 8-6. Master Access for LSx RAM  
(With Assumption That all Other Access Protections are Disabled)  
MSEL_LSx  
CLAPGM_LSx  
CPU ALLOWED ACCESS CLA ALLOWED ACCESS  
COMMENT  
LSx memory is configured  
as CPU dedicated RAM.  
00  
X
All  
All  
Data Read  
Data Write  
LSx memory is shared  
between CPU and CLA1.  
01  
01  
0
1
Emulation Read  
Emulation Write  
LSx memory is CLA1  
program memory.  
Fetch Only  
8.3.6.3 Global Shared RAM (GSx RAM)  
RAM blocks which are accessible from both the CPU and DMA are called global shared RAMs (GSx RAMs).  
Each shared RAM block can be owned by either CPU subsystem based on the configuration of respective bits in  
the GSxMSEL register.  
All GSx RAM blocks have parity.  
When a GSx RAM block is owned by a CPU subsystem, the CPUx and CPUx.DMA will have full access to that  
RAM block whereas the other CPUy and CPUy.DMA will only have read access (no fetch/write access).  
Table 8-7 lists the master access for the GSx RAM.  
Copyright © 2021 Texas Instruments Incorporated  
252 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Table 8-7. Master Access for GSx RAM  
(With Assumption That all Other Access Protections are Disabled)  
INSTRUCTION  
FETCH  
CPUx.DMA  
WRITE  
GSxMSEL  
CPU  
READ  
WRITE  
CPUx.DMA READ  
CPU1  
CPU2  
CPU1  
CPU2  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
0
1
Yes  
Yes  
Yes  
The GSx RAMs have access protection (CPU write/CPU fetch/DMA write).  
8.3.6.4 CPU Message RAM (CPU MSGRAM)  
These RAM blocks can be used to share data between CPU1 and CPU2. Since these RAMs are used for  
interprocessor communication, they are also called IPC RAMs. The CPU MSGRAMs have CPU/DMA read/write  
access from its own CPU subsystem, and CPU/DMA read only access from the other subsystem.  
This RAM has parity.  
8.3.6.5 CLA Message RAM (CLA MSGRAM)  
These RAM blocks can be used to share data between the CPU and CLA. The CLA has read and write access  
to the CLA-to-CPU MSGRAM. The CPU has read and write access to the CPU-to-CLA MSGRAM. The CPU and  
CLA both have read access to both MSGRAMs. This RAM has parity.  
8.3.6.6 CLA - DMA Message RAM (CLA-DMA MSGRAM)  
These RAM blocks can be used to share data between the DMA and CLA. The CLA has read and write access  
to the CLA-to-DMA MSGRAM. The DMA has read and write access to the DMA-to-CLA MSGRAM. The DMA  
and CLA both have read access to both MSGRAMs. This RAM has parity.  
8.3.6.7 CPUx - CM Message RAM (CPUx-CM MSGRAM)  
These RAM blocks can be used to share data between CPU1/CPU2 and the CM. CPU1/CPU2 has read and  
write access to the CPUx-to-CM MSGRAM. The CM has read and write access to the CM-to-CPUx MSGRAM.  
CPUx and the CM both have read access to both MSGRAMs. This RAM has parity.  
8.3.6.8 Dedicated RAM (C0/C1 RAM)  
The CM subsystem has two dedicated RAM blocks: C0 and C1. These RAM blocks are tightly coupled with the  
Cortex-M4 (that is, only the CPU has access to them) and are connected via the ICODE/DCODE bus. These  
RAM blocks have an interleaving feature to improve performance. These RAMs have parity.  
8.3.6.9 Shared RAM (E0 and Sx RAM)  
The CM subsystem has shared RAMs that are accessible from the Cortex-M4 as well as other masters like  
µDMA and EtherNET DMA. These RAMs are connected via the system bus. These RAMs have an interleaving  
feature to improve performance. There are two types of shared RAM:  
E0 – This shared RAM block has ECC.  
Sx – This shared RAM block has parity.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 253  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
8.4 Identification  
Table 8-8 lists the Device Identification Registers.  
Table 8-8. Device Identification Registers  
NAME  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
Device part identification number  
TMS320F28388D  
TMS320F28386D  
TMS320F28384D  
TMS320F28388S  
TMS320F28386S  
TMS320F28384S  
Silicon revision number  
Revision 0  
0x03FF 0300  
0x03FD 0300  
0x03FB 0300  
0x03FF 0400  
0x03FD 0400  
0x03FB 0400  
PARTIDH  
REVID  
0x0005 D00A  
2
0x0005 D00C  
0x0007 020C  
0x0007 0223  
2
2
1
0x0000 0000  
0x0000 0001  
Revision A  
Unique identification number. This number is different on each  
individual device with the same PARTIDH. This can be used as  
a serial number in the application. This number is present only  
on TMS devices.  
UID_UNIQUE  
CPU identification number  
CPU1  
0xXX01  
CPU ID  
JTAGID  
CPU2  
0xXX02  
0x0038 0446  
N/A  
1
CM  
0xXX03  
N/A  
JTAG Device ID  
0x0BB4 002F  
Copyright © 2021 Texas Instruments Incorporated  
254 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.5 Bus Architecture – Peripheral Connectivity  
The C28x Bus Master Peripheral Access table provides a broad view of the peripheral and configuration register  
accessibility from each bus master on the C28x. Peripherals can be individually assigned to the CPU1 or CPU2  
subsystem (for example, ePWM can be assigned to CPU1 and eQEP assigned to CPU2).  
Table 8-9. C28x Bus Master Peripheral Access  
PERIPHERALS (BY BUS ACCESS TYPE)  
CPU1.DMA  
CPU1.CLA1  
CPU1  
CPU2  
CPU2.CLA1  
CPU2.DMA  
Peripherals that can be assigned to CPU1 or CPU2 and have Secondary Masters  
Peripheral Frame 1:  
- ePWM  
- SDFM  
- eCAP(1)  
Y
Y
Y
Y
Y
Y
Y
Y
- eQEP(1)  
- CMPSS(1)  
- DAC(1)  
- HRPWM  
Peripheral Frame 2:  
- SPI  
- McBSP  
- FSI  
Y
Y
Y
Y
- PMBus  
Peripherals that can be assigned to CPU1 or CPU2 subsystems  
SCI  
Y
Y
Y
Y
Y
Y
Y
I2C  
CAN(5)  
Y
Y
Y
Y
Y
Y
Y
ADC Configuration  
EMIF1  
Y
Y
Peripherals and Device Configuration Registers only on CPU1 subsystem  
EMIF2  
Y
Y
Y
Y
Y
USB(5)  
EtherCAT(5)  
DCC  
Y
Y
Device Capability, Peripheral Reset, Peripheral  
CPU Select  
Y
GPIO Pin Mapping and Configuration  
Analog System Control  
Y
Y
Y
Reset Configuration  
Accessible by only one CPU at a time with Semaphore  
Clock and PLL Configuration  
Y
Y
Peripherals and Registers with Unique Copies of Registers for each CPU and CLA Master(2)  
System Configuration (WD, NMIWD, LPM,  
Peripheral Clock Gating)  
Y
Y
Flash Configuration(3)  
CPU Timers  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
DMA and CLA Trigger Source Select  
ERAD  
GPIO Data(4)  
Y
Y
Y
Y
ADC Results  
Y
Y
(1) These modules are on a Peripheral Frame with DMA access; however, they cannot trigger a DMA transfer.  
(2) Each CPUx and CPUx.CLA1 can only access its own copy of these registers.  
(3) At any given time, only one CPU can perform program or erase operations on the Flash.  
(4) The GPIO Data Registers are unique for each CPUx and CPUx.CLAx. When the GPIO Pin Mapping Register is configured to assign a  
GPIO to a particular master, the respective GPIO Data Register will control the GPIO.  
(5) Accessible from CM as well.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 255  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
The CM Bus Master Peripheral Access table provides details about peripheral sharing between CPUx and the  
CM subsystem. It also provides details about accessibility from different masters within the CM subsystem to  
peripherals that are only accessible from the CM subsystem. Peripherals can be individually assigned to CPUx  
or to the CM subsystem (for example, CAN can be assigned to CPUx and USB assigned to CM).  
Table 8-10. CM Bus Master Peripheral Access  
ETHERNET  
DMA  
CPU1  
SUBSYSTEM  
CPU2  
SUBSYSTEM  
PERIPHERALS (BY BUS ACCESS TYPE)  
µDMA  
M4  
Peripherals that can be assigned to CM, CPU1, or CPU2 subsystem  
CAN  
Y
Y
Y
Y
Peripherals that can be assigned to CM or CPU1 subsystem  
EtherCAT  
USB  
Y
Y
Y
Y
Y
Y
Peripherals and System Registers only on CM subsystem  
AES  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
GCRC  
CM-I2C  
CM-UART  
SSI  
EtherNet  
MCAN (CAN-FD)  
GPIO Data  
Peripheral Reset  
CM System Configuration (WD, NMIWD, LPM,  
Peripheral Clock Gating)  
Y
Flash Configuration  
CPU Timers  
µDMA  
Y
Y
Y
Copyright © 2021 Texas Instruments Incorporated  
256 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.6 Boot ROM and Peripheral Booting  
On every reset, the device executes a boot sequence in the ROM, depending on the reset type and boot  
configuration. This sequence initializes the device to run the application code. For CPU1, the boot ROM also  
contains peripheral bootloaders that can be used to load an application into RAM. These bootloaders can be  
disabled for safety or security purposes.  
Table 8-11 summarizes available boot features across CPU1, CPU2, and CM. Table 8-12 lists the sizes of the  
various ROMs on the device.  
Table 8-11. Boot System Overview  
BOOT FEATURE  
Initiate boot process  
CPU1 (MASTER)  
Device Reset  
GPIOs  
CPU2  
CM  
CPU1 Application  
IPC Register  
CPU1 Application  
IPC Register  
Boot mode selection  
Supported boot modes:  
Flash boot  
Yes  
Yes  
Yes  
Secure Flash boot  
RAM boot  
Boot to User OTP  
No  
No  
Yes  
Yes  
No  
Yes  
Yes  
No  
Copy from IPC Message RAM and  
boot to RAM  
Peripheral boot loader support  
Yes  
Table 8-12. ROM Memory  
ROM  
CPU1 SIZE  
192KB  
64KB  
CPU2 SIZE  
CM SIZE  
64KB  
32KB  
N/A  
Unsecure boot ROM  
Secure ROM  
64KB  
64KB  
CLA data ROM  
8KB  
8KB  
8.6.1 Device Boot  
This section describes the general boot ROM procedure each time a CPU core is reset. CPU1 is the master and  
always boots first. Once CPU1 boots to the application, then the user's application code in CPU1 can configure  
the CPU2/CM boot IPC registers and release CPU2/CM from reset to boot. Table 8-13, Table 8-14, and Table  
8-15 list the general boot-up procedures for each core.  
During boot, each CPU's boot ROM code updates a boot status location in RAM that details the actions taken  
during this process. Additionally, CPU2 writes the boot status to the CPU2TOCPU1IPCBOOTSTS register and  
CM writes to CMTOCPU1IPCBOOTSTS to communicate the statuses to CPU1.  
For more details, see the Boot Status information section of the TMS320F2838x Real-Time Microcontrollers  
Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 257  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-13. CPU1 Boot ROM Procedure  
STEP  
CPU1 ACTION  
After reset, check for HWBIST reset. If there is a HWBIST reset, immediately branch and return to the user  
application. If there is no HWBIST reset, then continue boot and check the FUSE error register for any errors  
and handle accordingly.  
1
2
3
4
5
6
Clock configuration and flash power up  
Peripheral trimming and device configuration registers are loaded from OTP.  
On power-on reset (POR), all CPU1 RAMs are initialized.  
Nonmaskable interrupt (NMI) handling is enabled and DCSM initialization is performed.  
Device calibration is performed; trimming the specified peripherals with set OTP values.  
Determine if polling the GPIO pins are needed for determining the boot mode and, if so, read the boot mode  
GPIO pins to determine the boot mode to run.  
7
8
Based on the boot mode and options, the appropriate boot sequence is executed. For a flow chart of the CPU1  
boot sequences, see the CPU1 Device Boot Flow figure in the TMS320F2838x Real-Time Microcontrollers  
Technical Reference Manual.  
Table 8-14. CPU2 Boot ROM Procedure  
STEP  
CPU2 ACTION  
1
CPU2 is released from reset by CPU1 application.  
Once CPU1TOCPU2IPCFLG0 is set, read the CPU1TOCPU2IPCBOOTMODE register. If it is not set correctly  
or has an invalid value, the IPC error command is sent to CPU1, and the CPU2 core will enter an infinite loop  
and will not continue booting until the user corrects the register values and reset the CPU2.  
2
3
4
5
Flash power up  
On POR, all CPU2 RAMs are initialized.  
NMI handling is enabled.  
Based on the boot mode set in the CPU1TOCPU2IPCBOOTMODE register, CPU2 either enters the "wait for  
command" mode to wait for a future CPU1 boot mode command, or CPU2 executes the requested boot  
sequence. For a flow chart of the CPU2 boot sequences, see the CPU2 Boot Flow figure in the TMS320F2838x  
Real-Time Microcontrollers Technical Reference Manual.  
6
Table 8-15. CM Boot ROM Procedure  
STEP  
CM ACTION  
1
CM is released from reset by the CPU1 application.  
Once CPU1TOCMIPCFLG0 is set, read the CPU1TOCMIPCBOOTMODE register. If it is not set correctly or  
has an invalid value, the IPC error command is sent to CPU1, and the CM will enter an infinite loop and will not  
continue booting until the user corrects the register values and reset the CM.  
2
3
4
5
Flash power up  
On POR, all CM RAMs are initialized.  
NMI handling is enabled.  
Based on the boot mode set in the CPU1TOCPU2IPCBOOTMODE register, CM either enters the "wait for  
command" mode to wait for a future CPU1 boot mode command, or CM executes the requested boot  
sequence. For a flow chart of the CM boot sequences, see the CM Boot Flow figure in the TMS320F2838x  
Real-Time Microcontrollers Technical Reference Manual.  
6
Copyright © 2021 Texas Instruments Incorporated  
258 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.6.2 Device Boot Modes  
This section explains the default boot modes, as well as all the available boot modes, supported on this device.  
The CPU1 boot ROM uses the boot-mode select, general-purpose input/output (GPIO) pins to determine the  
boot mode configuration. The CPU2 boot ROM uses the CPU1TOCPU2IPCBOOTMODE register to determine  
the boot mode configuration. The CM boot ROM uses the CPU1TOCMIPCBOOTMODE register to determine  
the boot mode configuration.  
Table 8-16 lists the CPU1 boot mode options available for selection by the default boot-mode select pins. Users  
have the option to program the device to customize the boot modes selectable in the boot-up table as well as the  
boot-mode select pin GPIOs used.  
All the available boot modes on the device are listed in Table 8-18.  
Table 8-16. Device Default Boot Modes for CPU1  
GPIO72  
GPIO84  
BOOT MODE  
(DEFAULT BOOT MODE SELECT PIN 1)  
(DEFAULT BOOT MODE SELECT PIN 0)  
Parallel IO  
SCI/Wait Boot(1)  
CAN  
0
0
1
1
0
1
0
1
Flash/USB(2)  
(1) SCI boot mode can be used as a wait boot mode as long as SCI continues to wait for an 'A' or 'a' during the SCI autobaud lock  
process.  
(2) On an unprogrammed device, selecting flash boot when the default flash entry address is unprogrammed will switch the boot mode  
from flash boot to USB boot. For more details, see Table 8-17.  
Table 8-17. CPU1 Flash-to-USB Boot Decision Table  
VALUE AT FLASH ENTRY POINT  
REASON FOR VALUE  
REALIZED BOOT MODE  
ADDRESS  
0x00000000  
Flash is locked/secured  
Flash is not programmed  
Flash is programmed  
Boot to Flash  
USB Boot  
0xFFFFFFFF  
Any other value  
Boot to Flash  
Note  
The switch from flash boot mode to USB boot mode when flash is locked/secured or not programmed  
is only available as part of the default boot mode table on an unprogrammed device. Once a custom  
boot table is programmed in OTP or RAM, a selection of flash boot mode will not switch to USB boot  
even when the flash is unprogrammed.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 259  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-18. All Available Boot Modes  
BOOT MODE  
Parallel IO  
SCI / Wait  
CAN  
CPU SUPPORT  
DETAILS  
CPU1  
CPU1  
CPU1  
Flash  
CPU1, CPU2, CM  
For functional details of the boot modes, see the Boot  
Modes section of the TMS320F2838x Real-Time  
Microcontrollers Technical Reference Manual.  
Wait  
CPU1, CPU2, CM  
RAM  
SPI  
CPU1, CPU2, CM  
CPU1  
For boot table values and GPIOs for the boot modes, see  
Section 8.6.4.  
I2C  
USB  
CPU1  
CPU1  
Secure Flash  
User OTP  
CPU1, CPU2, CM  
CPU2, CM  
CPU2, CM  
IPC Message Copy to RAM  
Note  
All the peripheral boot modes that are supported use the first instance of the peripheral module (SCIA,  
SPIA, I2CA, CANA, and so forth). Whenever these boot modes are referred to in this section, such as  
SCI boot, it is actually referring to the first module instance, which means the SCI boot on the SCIA  
port. The same applies to the other peripheral boots.  
8.6.3 Device Boot Configurations  
This device supports from 0 boot-mode select pin to up to 3 boot-mode select pins as well as from 1 configured  
boot mode to up to 8 configured boot modes.  
To change and configure the device from the default settings to custom settings for your application, do the  
following steps:  
1. Determine all the various ways you want the application to be able to boot. (For example: Primary boot option  
of Flash boot for your main application, secondary boot option of CAN boot for firmware updates, tertiary boot  
option of SCI boot for debugging, and so forth.)  
2. Based on the number of boot modes needed, determine how many boot-mode select pins (BMSPs) are  
required to select between your selected boot modes. (For example: 2 BMSPs are required to select between  
3 boot-mode options.)  
3. Assign the required BMSPs to a physical GPIO pin. (For example, BMSP0 to GPIO50, BMSP1 to GPIO51,  
and BMSP2 left as default which is disabled.) For details on performing these configurations, see the  
Configuring Boot Mode Pins for CPU1 section of the TMS320F2838x Real-Time Microcontrollers Technical  
Reference Manual.  
4. Assign the determined boot mode definitions to indexes in your custom boot table that correlate to the  
decoded value of the BMSPs. (For example, BOOTDEF0 = Boot to Flash, BOOTDEF1 = CAN Boot,  
BOOTDEF2 = SCI Boot; all other BOOTDEFx are left as default/nothing.) For details on setting up and  
configuring the custom boot mode table, see the Configuring Boot Mode Table Options for CPU1 section of  
the TMS320F2838x Real-Time Microcontrollers Technical Reference Manual.  
For example use cases on how to configure the BMSPs and custom boot tables, see the Boot Mode Example  
Use Cases section of the TMS320F2838x Real-Time Microcontrollers Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
260 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.6.4 GPIO Assignments for CPU1  
This section details the GPIOs and boot option values used for each CPU1 boot mode set in the BOOT_DEF  
memory location located at Z1-OTP-BOOTDEF-LOW/ Z2-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH/  
Z2-OTP-BOOTDEF-HIGH. See the Configuring Boot Mode Table Options for CPU1 section of the  
TMS320F2838x Real-Time Microcontrollers Technical Reference Manual on how to configure BOOT_DEF.  
When selecting a boot mode option, be sure to verify that the necessary pins are available in the pin mux  
options for the specific device package being used.  
Note  
These configurations only apply to CPU1. For details on configuring CPU2 and CM boot modes, see  
the Booting CPU2 and CM section of the TMS320F2838x Real-Time Microcontrollers Technical  
Reference Manual.  
Table 8-19. SCI Boot Options  
OPTION  
BOOTDEF VALUE  
SCITXDA GPIO  
SCIRXDA GPIO  
GPIO28  
0 (default)  
0x01  
0x21  
0x41  
0x61  
0x81  
0xA1  
0xC1  
GPIO29  
1
2
3
4
5
6
GPIO84  
GPIO85  
GPIO36  
GPIO35  
GPIO42  
GPIO43  
GPIO65  
GPIO64  
GPIO135  
GPIO8  
GPIO136  
GPIO9  
Table 8-20. CAN Boot Options  
OPTION  
BOOTDEF VALUE  
CANTXA GPIO  
CANRXA GPIO  
GPIO36  
0 (default)  
0x02  
0x22  
0x42  
0x62  
0x82  
0xA2  
GPIO37  
1
2
3
4
5
GPIO71  
GPIO70  
GPIO63  
GPIO62  
GPIO19  
GPIO18  
GPIO4  
GPIO5  
GPIO31  
GPIO30  
Table 8-21. I2C Boot Options  
OPTION  
BOOTDEF VALUE  
SDAA GPIO  
GPIO91  
GPIO32  
GPIO42  
GPIO0  
SCLA GPIO  
GPIO92  
GPIO33  
GPIO43  
GPIO1  
0
1
2
3
4
0x07  
0x27  
0x47  
0x67  
0x87  
GPIO104  
GPIO105  
Table 8-22. USB Boot Options  
OPTION  
BOOTDEF VALUE  
USBDM GPIO  
USBDP GPIO  
0 (default)  
0x09  
GPIO42  
GPIO43  
Table 8-23. RAM Boot Options  
RAM ENTRY POINT  
(ADDRESS)  
OPTION  
BOOTDEF VALUE  
0
0x05  
0x0000 0000  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 261  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-24. Flash Boot Options  
FLASH ENTRY POINT  
(ADDRESS)  
OPTION  
BOOTDEF VALUE  
FLASH SECTOR  
0 (default)  
0x03  
0x23  
0x43  
0x63  
0x0008 0000  
0x0008 8000  
0x000A 8000  
0x000B E000  
CPU1 Bank 0 Sector 0  
CPU1 Bank 0 Sector 4  
CPU1 Bank 0 Sector 8  
CPU1 Bank 0 Sector 13  
1
2
3
Table 8-25. Secure Flash Boot Options  
FLASH ENTRY POINT  
OPTION  
BOOTDEF VALUE  
(ADDRESS)  
FLASH SECTOR  
0
1
2
3
0x0A  
0x2A  
0x4A  
0x6A  
0x0008 0000  
0x0008 8000  
0x000A 8000  
0x000B E000  
CPU1 Bank 0 Sector 0  
CPU1 Bank 0 Sector 4  
CPU1 Bank 0 Sector 8  
CPU1 Bank 0 Sector 13  
Table 8-26. Wait Boot Options  
OPTION  
BOOTDEF VALUE  
WATCHDOG  
0
1
0x04  
0x24  
Enabled  
Disabled  
Table 8-27. SPI Boot Options  
OPTION  
BOOTDEF VALUE  
SPISIMOA  
GPIO58  
GPIO16  
GPIO32  
GPIO16  
GPIO54  
SPISOMIA  
GPIO59  
GPIO17  
GPIO33  
GPIO17  
GPIO55  
SPICLKA  
SPISTEA  
GPIO61  
GPIO19  
GPIO35  
GPIO57  
GPIO57  
0
1
2
3
4
0x06  
0x26  
0x46  
0x66  
0x86  
GPIO60  
GPIO18  
GPIO34  
GPIO56  
GPIO56  
Table 8-28. Parallel Boot Options  
OPTION  
BOOTDEF VALUE  
D0-D7 GPIO  
D0 - GPIO89  
D1 - GPIO90  
D2 - GPIO58  
D3 - GPIO59  
D4 - GPIO60  
D5 - GPIO61  
D6 - GPIO62  
D7 - GPIO88  
DSP CONTROL GPIO  
HOST CONTROL GPIO  
0 (default)  
0x0  
GPIO91  
GPIO92  
Copyright © 2021 Texas Instruments Incorporated  
262 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.7 Dual Code Security Module (DCSM)  
The dual code security module (DCSM) is a security feature incorporated in this device. It prevents access and  
visibility to on-chip secure memories (and other secure resources) by unauthorized persons. It also prevents  
duplication and reverse-engineering of proprietary code. The term “secure” means that access to on-chip secure  
memories and resources is blocked. The term “unsecure” means that access is allowed; that is, the contents of  
the memory could be read by any means (for example, through a debugging tool such as Code Composer  
Studio).  
There are two security zones, Zone1 (Z1) and Zone2 (Z2). Unlike earlier C2000 devices where each CPU  
subsystem had two security zones, on this device, both security zones are shared by each CPU subsystem. This  
means secure resources from each CPU subsystem are allocated to Zone1 or Zone2. All the security  
configurations are controlled by the CPU1 subsystem only (programmed in CPU1 USER OTP), but other CPU  
subsystems have access to these configurations via their own memory map registers.  
The security of each zone is ensured by its own 128-bit password (CSM password). The password for each zone  
is stored in CPU1 USER OTP memory location based on a zone-specific link pointer. The link pointer value can  
be changed to program a different set of security settings (including passwords) in OTP.  
Code Security Module Disclaimer  
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO  
PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY AND IS  
WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD TERMS  
AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR THE WARRANTY  
PERIOD APPLICABLE FOR THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY  
CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH  
ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR  
OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY  
OR FITNESS FOR A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,  
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF  
YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE  
POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED  
TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR  
OTHER ECONOMIC LOSS.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 263  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
8.8 C28x (CPU1/CPU2) Subsystem  
8.8.1 C28x Processor  
The CPU is a 32-bit fixed-point processor. This device draws from the best features of digital signal processing;  
reduced instruction set computing (RISC); and microcontroller architectures, firmware, and tool sets.  
The CPU features include a modified Harvard architecture and circular addressing. The RISC features are  
single-cycle instruction execution, register-to-register operations, and modified Harvard architecture. The  
microcontroller features include ease of use through an intuitive instruction set, byte packing and unpacking, and  
bit manipulation. The modified Harvard architecture of the CPU enables instruction and data fetches to be  
performed in parallel. The CPU can read instructions and data while it writes data simultaneously to maintain the  
single-cycle instruction operation across the pipeline. The CPU does this over six separate address/data buses.  
For more information on CPU architecture and instruction set, see the TMS320C28x CPU and Instruction Set  
Reference Guide. For more information on the C28x Floating Point Unit (FPU), Trigonometric Math Unit, and  
Cyclic Redundancy Check (VCRC) instruction sets, see the TMS320C28x Extended Instruction Sets Technical  
Reference Manual. A brief overview of the FPU, TMU, and VCRC are provided here.  
8.8.1.1 Floating-Point Unit  
The C28x plus floating-point (C28x+FPU64) processor extends the capabilities of the C28x fixed-point CPU by  
adding registers and instructions to support both IEEE single-precision and double-percision floating-point  
operations.  
Devices with the C28x+FPU64 include the standard C28x register set plus an additional set of floating-point unit  
registers. The additional floating-point unit registers are the following:  
Eight floating-point Result registers, RnH (where n = 0–7)  
Floating-point Status register (STF)  
Repeat Block register (RB)  
All of the floating-point registers, except the repeat block register, are shadowed. This shadowing can be used in  
high-priority interrupts for fast context save and restore of the floating-point registers.  
8.8.1.2 Trigonometric Math Unit  
The TMU extends the capabilities of a C28x+FPU64 by adding instructions and leveraging existing FPU  
instructions to speed up the execution of common trigonometric and arithmetic operations listed in Table 8-29.  
Table 8-29. TMU Supported Instructions  
INSTRUCTIONS  
MPY2PIF32/64 RaH,RbH  
C EQIVALENT OPERATION  
PIPELINE CYCLES  
a = b * 2pi  
a = b / 2pi  
a = b/c  
2/3  
2/3  
5
DIV2PIF32/64 RaH,RbH  
DIVF32/64 RaH,RbH,RcH  
SQRTF32/64 RaH,RbH  
a = sqrt(b)  
a = sin(b*2pi)  
5
SINPUF32/64 RaH,RbH  
COSPUF32/64 RaH,RbH  
ATANPUF32/64 RaH,RbH  
QUADF32/64 RaH,RbH,RcH,RdH  
4
a = cos(b*2pi)  
4
a = atan(b)/2pi  
4
Operation to assist in calculating ATANPU2  
5
No changes have been made to existing instructions, pipeline or memory bus architecture. All TMU instructions  
use the existing FPU register set (R0H to R7H) to carry out their operations.  
Copyright © 2021 Texas Instruments Incorporated  
264 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.8.1.3 Fast Integer Division Unit  
The Fast Integer Division (FINTDIV) unit of the C28x CPU uniquely supports three types of integer division  
(Truncated, Modulus, Euclidean) of varying data type sizes (16/16, 32/16, 32/32, 64/32, 64/64) in unsigned or  
signed formats.  
Truncated integer division is naturally supported by C language (/, % operators).  
Modulus and Euclidean divisions are variants that are more efficient for control algorithms and are supported  
by C intrinsics.  
All three types of integer division produce both a quotient and remainder component, are interruptible, and  
execute in a minimum number of deterministic cycles (10 cycles for a 32/32 division). In addition, the Fast  
Division capabilities of the C28x CPU uniquely support fast execution of floating-point 32-bit (in 5 cycles) and 64-  
bit (in 20 cycles) division.  
For more information about fast integer division, see the Fast Integer Division – A Differentiated Offering From  
C2000™ Product Family Application Report.  
8.8.1.4 VCRC Unit  
Cyclic redundancy check (CRC) algorithms provide a straightforward method for verifying data integrity over  
large data blocks, communication packets, or code sections. The C28x+VCRC can perform 8-bit, 16-bit, 24-bit,  
and 32-bit CRCs. For example, the VCRC can compute the CRC for a block length of 10 bytes in 10 cycles. A  
CRC result register contains the current CRC, which is updated whenever a CRC instruction is executed.  
The following are the CRC polynomials used by the CRC calculation logic of the VCRC:  
CRC8 polynomial = 0x07  
CRC16 polynomial1 = 0x8005  
CRC16 polynomial2 = 0x1021  
CRC24 polynomial = 0x5d6dcb  
CRC32 polynomial1 = 0x04c11db7  
CRC32 polynomial2 = 0x1edc6f41  
This module can calculate CRCs for a byte of data in a single cycle. The CRC calculation for CRC8, CRC16,  
CRC24, and CRC32 is done byte-wise (instead of computing on a complete 16-bit or 32-bit data read by the  
C28x core) to match the byte-wise computation requirement mandated by various standards.  
The VCRC Unit also allows the user to provide the size (1b-32b) and value of any polynomial to fit custom CRC  
requirements. The CRC execution time increases to three cycles when using a custom polynomial.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 265  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
8.8.2 Embedded Real-Time Analysis and Diagnostic (ERAD)  
The ERAD module enhances the debug and system-analysis capabilities of the device. The debug and system-  
analysis enhancements provided by the ERAD module is done outside of the CPU. The ERAD module consists  
of the Enhanced Bus Comparator units and the System Event Counter units.  
The Enhanced Bus Comparator units are used to generate hardware breakpoints, hardware watch points,  
and other output events.  
The System Event Counter units are used to analyze and profile the system. The ERAD module is accessible  
by the debugger and by the application software.  
This significantly increases the debug capabilities of many real-time systems. In the TMS320F2838x devices, the  
ERAD module contains eight Enhanced Bus Comparator units (which increases the number of Hardware  
breakpoints from two to ten) and four System Event Counter units. Figure 8-2 shows the ERAD module.  
ERAD  
Cyclic Redundancy  
Check (CRC) Units  
CRC Qualifiers  
C28x  
Address Bus  
Data Bus  
Enhanced Bus  
Comparator  
(EBC) Units  
Program Counter  
Debug  
Triggers  
AU1  
AU2  
Event  
Outputs  
System Event  
Counter  
(SEC) Units  
System Events  
Counter  
Events  
Figure 8-2. ERAD Overview  
Copyright © 2021 Texas Instruments Incorporated  
266 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.8.3 Background CRC-32 (BGCRC)  
The Background CRC (BGCRC) module computes a CRC-32 on a configurable block of memory. It  
accomplishes this by fetching the specified block of memory during idle cycles (when the CPU, CLA, or DMA is  
not accessing the memory block). The calculated CRC-32 value is compared against a golden CRC-32 value to  
indicate a pass or fail. In essence, the BGCRC helps identify memory faults and corruption. There are two  
BGCRC modules (CPU_CRC and CLA_CRC) per CPU subsystem. The two BGCRC modules differ only in the  
memories they test.  
The BGCRC module has the following features:  
One cycle CRC-32 computation on 32 bits of data  
No CPU bandwidth impact for zero wait state memory  
Minimal CPU bandwidth impact for non-zero wait state memory  
Dual operation modes (CRC-32 mode and scrub mode)  
Watchdog timer to time CRC-32 completion  
Ability to pause and resume CRC-32 computation  
Figure 8-3 shows the memory map of the BGCRC module.  
Figure 8-3. BGCRC Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 267  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
8.8.4 Control Law Accelerator (CLA)  
The CLA Type-2 is an independent, fully programmable, 32-bit floating-point math processor that brings  
concurrent control-loop execution to the C28x family. The low interrupt-latency of the CLA allows it to read ADC  
samples "just-in-time." This significantly reduces the ADC sample to output delay to enable faster system  
response and higher frequency control loops. By using the CLA to service time-critical control loops, the main  
CPU is free to perform other system tasks such as communications and diagnostics.  
The control law accelerator extends the capabilities of the C28x CPU by adding parallel processing. Time-critical  
control loops serviced by the CLA can achieve low ADC sample to output delay. Thus, the CLA enables faster  
system response and higher frequency control loops. Using the CLA for time-critical tasks frees up the main  
CPU to perform other system and communication functions concurrently.  
The following is a list of major features of the CLA:  
C compilers are available for CLA software development.  
Clocked at the same rate as the main CPU (SYSCLKOUT).  
An independent architecture allowing CLA algorithm execution independent of the main C28x CPU.  
– Complete bus architecture:  
Program Address Bus (PAB) and Program Data Bus (PDB)  
Data Read Address Bus (DRAB), Data Read Data Bus (DRDB), Data Write Address Bus (DWAB), and  
Data Write Data Bus (DWDB)  
– Independent 8-stage pipeline  
– 16-bit program counter (MPC)  
– Four 32-bit result registers (MR0 to MR3)  
– Two 16-bit auxiliary registers (MAR0, MAR1)  
– Status register (MSTF)  
Instruction set includes:  
– IEEE single-precision (32-bit) floating-point math operations  
– Floating-point math with parallel load or store  
– Floating-point multiply with parallel add or subtract  
– 1/X and 1/sqrt(X) estimations  
– Data type conversions  
– Conditional branch and call  
– Data load/store operations  
The CLA program code can consist of up to eight tasks or interrupt service routines, or seven tasks and a  
main background task.  
– The start address of each task is specified by the MVECT registers.  
– There is no limit on task size as long as the tasks fit within the configurable CLA program memory space.  
– One task is serviced at a time until its completion. There is no nesting of tasks.  
– Upon task completion, a task-specific interrupt is flagged within the PIE.  
– When a task finishes, the next highest-priority pending task is automatically started.  
– The Type-2 CLA can have a main task that runs continuously in the background, while other high-priority  
events trigger a foreground task.  
Task trigger mechanisms:  
– C28x CPU through the IACK instruction  
Task1 to Task8: Up to 256 possible trigger sources from peripherals connected to the shared bus on which  
the CLA assumes secondary ownership  
Task8 can be set to be the background task, while Tasks 1 to 7 take peripheral triggers.  
Copyright © 2021 Texas Instruments Incorporated  
268 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Memory and shared peripherals:  
– Two dedicated message RAMs for communication between the CLA and the main CPU.  
– Two dedicated message RAMs for communication between the CLA and the DMA.  
– The C28x CPU can map CLA program and data memory to the main CPU space or CLA space.  
Figure 8-4 shows the CLA block diagram.  
CLA Control  
Register Set  
MIFR(16)  
MIOVF(16)  
MPERINT1  
to  
MPERINT8  
CLA_INT1  
to  
CLA_INT8  
From Shared  
Peripherals  
MICLR(16)  
MICLROVF(16)  
MIFRC(16)  
C28x  
CPU  
PIE  
INT11  
INT12  
MIER(16)  
MIRUN(16)  
LVF  
LUF  
MCTLBGRND(16)  
MSTSBGRND(16)  
CLA1SOFTINTEN(16)  
CLA1INTFRC(16)  
SYSCLK  
CLA Clock Enable  
SYSRS  
MVECT1(16)  
MVECT2(16)  
MVECT3(16)  
MVECT4(16)  
MVECT5(16)  
MVECT6(16)  
MVECT7(16)  
MVECT8(16)  
CPU Read/Write Data Bus  
CLA Program  
Memory (LSx)  
CLA Program Bus  
LSxMSEL[MSEL_LSx]  
LSxCLAPGM[CLAPGM_LSx]  
MVECTBGRND(16)  
MVECTBGRNDACTIVE(16)  
MPSACTL(16)  
MPSA1(32)  
CLA Data  
Memory (LSx)  
MPSA2(32)  
MCTL(16)  
CLA Message  
RAMs  
CLA Execution  
Register Set  
MPC(16)  
MSTF(32)  
MR0(32)  
MR1(32)  
MR2(32)  
MR3(32)  
Shared  
Peripherals  
MEALLOW  
MAR0(16)  
MAR1(16)  
CPU Read Data Bus  
Figure 8-4. CLA Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 269  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
8.8.5 Direct Memory Access (DMA)  
Each CPU has its own 6-channel DMA module. The DMA module provides a hardware method of transferring  
data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for  
other system functions. Additionally, the DMA has the capability to orthogonally rearrange the data as it is  
transferred as well as “ping-pong” data between buffers. These features are useful for structuring data into  
blocks for optimal CPU processing.  
The DMA module is an event-based machine, meaning it requires a peripheral or software trigger to start a DMA  
transfer. Although it can be made into a periodic time-driven machine by configuring a timer as the DMA trigger  
source, there is no mechanism within the module itself to start memory transfers periodically. The DMA module  
has six independent DMA channels that can be configured separately. Each channel contains its own  
independent PIE interrupt to let the CPU know when a DMA transfer has either started or completed. Five of the  
six channels are exactly the same, while Channel 1 has the ability to be configured at a higher priority than the  
others. At the heart of the DMA is a state machine and tightly coupled address control logic. It is this address  
control logic that allows for rearrangement of the block of data during the transfer as well as the process of ping-  
ponging data between buffers.  
DMA features include:  
Six channels with independent PIE interrupts  
Each DMA channel can be triggered from multiple peripheral trigger sources independently.  
Word Size: 16-bit or 32-bit (SPI limited to 16-bit)  
Throughput: 3 cycles/word without arbitration  
Copyright © 2021 Texas Instruments Incorporated  
270 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Figure 8-5 shows a device-level block diagram of the DMA.  
Message RAM  
CPU1.DMA-CLA  
Message RAM  
CPU1 - CPU2  
Message RAM  
CPU2.DMA-CLA  
Global Shared  
GSxRAM  
ADC  
RESULTS  
CPU1. DMA bus  
DMA Trigger  
Source Selection  
CPU1.  
C28x  
CPU1.  
DMA  
DMACHSRCSEL1.CHx  
DMACHSRCSEL2.CHx  
CHx.MODE.PERINTSEL  
(x = 1 to 6)  
PIE  
DMA Trigger sources  
DMA Trigger  
Source Selection  
CPU2.  
C28x  
CPU2.  
DMA  
DMACHSRCSEL1.CHx  
DMACHSRCSEL2.CHx  
CHx.MODE.PERINTSEL  
(x = 1 to 6)  
PIE  
CPU2. DMA bus  
Figure 8-5. DMA Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 271  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
8.8.6 Interprocessor Communication (IPC) Module  
The Interprocessor Communication (IPC) module allows communications between the CPU subsystems.  
IPC features include:  
Message RAMs  
IPC flags and interrupts  
IPC command registers  
Flash pump semaphore  
Clock configuration semaphore  
Free-running counter  
All IPC features are independent of each other, and most do not require any specific data format. There are also  
two registers for boot mode and status communication. For more information on these registers, see the ROM  
Code and Peripheral Booting chapter of the TMS320F2838x Real-Time Microcontrollers Technical Reference  
Manual.  
This device has three cores [one Cortex-M4 core and two C28x cores (CPU1, CPU2)] and three different IPC  
modules:  
CPU1_TO_CPU2 IPC architecture (see Figure 8-6)  
CPUx_TO_CM IPC architecture (where x = 1, 2) (see Figure 8-7)  
Copyright © 2021 Texas Instruments Incorporated  
272 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
SET31  
CLR31  
ACK31  
FLG31  
CPU1TOCPU2IPCSET[31:0]  
CPU1TOCPU2IPCCLR[31:0]  
R=0/W=1  
R=0/W=1  
SET0  
CLR0  
CPU2TOCPU1IPCACK[31:0]  
ACK0  
R=0/W=1  
ePIE  
R
FLG0  
CPU1TOCPU2_IPCINTR[3:0]  
Gen Int Pulse  
(on FLG 0->1)  
CPU1TOCPU2IPCFLG[31:0]  
CPU1TOCPU2IPCSTS[31:0]  
R
CPU1TOCPU2IPCSENDCOM  
CPU1TOCPU2IPCSENDADDR  
CPU1TOCPU2IPCSENDDATA  
CPU1TOCPU2IPCRECVCOM  
CPU1TOCPU2IPCRECVADDR  
R/W  
R/W  
R/W  
R
R
R
CPU1TOCPU2IPCRECVDATA  
R/W  
R
CPU1TOCPU2IPCREPLY  
CPU2.HALT  
CPU1.HALT  
R
64-bit Free Run Counter  
PLLSYSCLK  
R
IPCCOUNTERH/L[31:0]  
R
CPU1TOCPU2IPCBOOTMODE  
R/W  
CPU1  
CPU2  
R
CPU2TOCPU1IPCBOOTSTS  
CPU2TOCPU1IPCBOOTSTS  
R/W  
SET31  
ACK31  
CLR31  
FLG31  
CPU2TOCPU1IPCSET  
CPU2TOCPU1IPCCLR  
R=0/W=1  
R=0/W=1  
SET0  
CLR0  
ACK0  
CPU1TOCPU2IPCACK[31:0]  
R=0/W=1  
FLG0  
CPU2TOCPU1_IPCINTR[3:0]  
ePIE  
Gen Int Pulse  
(on FLG 0->1)  
CPU2TOCPU1IPCSTS[31:0]  
CPU2TOCPU1IPCFLG[31:0]  
R
R
R
CPU2TOCPU1IPCRECVCOM  
CPU2TOCPU1IPCRECVADDR  
CPU2TOCPU1IPCRECVDATA  
CPU2TOCPU1IPCSENDCOM  
CPU2TOCPU1IPCSENDADDR  
R/W  
R/W  
R/W  
R
R
CPU2TOCPU1IPCSENDDATA  
CPU1TOCPU2IPCREPLY  
R/W  
R
Figure 8-6. CPU1_TO_CPU2 IPC Module  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 273  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
SET31  
CLR31  
ACK31  
FLG31  
CPUxTOCMIPCSET[31:0]  
CPUxTOCMIPCCLR[31:0]  
R=0/W=1  
R=0/W=1  
SET0  
CLR0  
CMTOCPUxIPCACK[31:0]  
ACK0  
R=0/W=1  
NVIC  
R
FLG0  
CPUxTOCM_IPCINTR[7:0]  
Gen Int Pulse  
(on FLG 0->1)  
CPUxTOCMIPCFLG[31:0]  
CPUxTOCMIPCSTS[31:0]  
R
CPUxTOCMIPCSENDCOM  
CPUxTOCMIPCSENDADDR  
CPUxTOCMIPCSENDDATA  
R
CPUxTOCMIPCRECVCOM  
CPUxTOCMIPCRECVADDR  
R/W  
R/W  
R/W  
R
R
R
CPUxTOCMIPCRECVDATA  
CMTOCPUxIPCREPLY  
R/W  
PLLSYSCLK  
CPUx.HALT  
R
64-bit Free Run Counter  
M4.HALT  
IPCCOUNTERH/L[31:0]  
R
R
CPUxTOCMIPCBOOTMODE  
R/W  
CPUx  
M4  
R
CMTOCPU1IPCBOOTSTS  
CMTOCPU1IPCBOOTSTS  
R/W  
SET31  
ACK31  
CLR31  
FLG31  
CMTOCPUxIPCSET  
CMTOCPUxIPCCLR  
R=0/W=1  
R=0/W=1  
SET0  
CLR0  
ACK0  
CPUxTOCMIPCACK[31:0]  
R=0/W=1  
FLG0  
CMTOCPUx_IPCINTR[3:0]  
ePIE  
Gen Int Pulse  
(on FLG 0->1)  
CMTOCPUxIPCSTS[31:0]  
CMTOCPUxIPCFLG[31:0]  
R
R
R
CMTOCPUxIPCRECVCOM  
CMTOCPUxIPCRECVADDR  
CMTOCPUxIPCRECVDATA  
R/W  
CMTOCPUxIPCSENDCOM  
CMTOCPUxIPCSENDADDR  
R/W  
R/W  
R/W  
R
R
CMTOCPUxIPCSENDDATA  
CPUxTOCMIPCREPLY  
R
Where,  
x can be 1 (or) 2  
Figure 8-7. CPUx_to_CM IPC Module  
Copyright © 2021 Texas Instruments Incorporated  
274 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.8.7 C28x Timers  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The  
timers have a 32-bit count-down register that generates an interrupt when the counter reaches zero. The counter  
is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches zero, it  
is automatically reloaded with a 32-bit period value.  
CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use and is  
connected to INT13 of the CPU. CPU-Timer 2 is reserved for TI-RTOS. It is connected to INT14 of the CPU. If  
TI-RTOS is not being used, CPU-Timer 2 is available for general use.  
CPU-Timer 2 can be clocked by any one of the following:  
SYSCLK (default)  
Internal zero-pin oscillator 1 (INTOSC1)  
Internal zero-pin oscillator 2 (INTOSC2)  
X1 (XTAL)  
AUXPLLCLK  
8.8.8 Dual-Clock Comparator (DCC)  
There are three Dual-Clock Comparators (DCC0, DCC1, and DCC2) on the device. All three DCCs are only  
accessible through CPU1. The DCC module is used for evaluating and monitoring the clock input based on a  
second clock, which can be a more accurate and reliable version. This instrumentation is used to detect faults in  
clock source or clock structures, thereby enhancing the system's safety metrics.  
8.8.8.1 Features  
The DCC has the following features:  
Allows the application to ensure that a fixed ratio is maintained between frequencies of two clock signals.  
Supports the definition of a programmable tolerance window in terms of the number of reference clock cycles.  
Supports continuous monitoring without requiring application intervention.  
Supports a single-sequence mode for spot measurements.  
Allows the selection of a clock source for each of the counters, resulting in several specific use cases.  
8.8.8.2 Mapping of DCCx (DCC0, DCC1, and DCC2) Clock Source Inputs  
Table 8-30. DCCx Clock Source0 Table  
DCCxCLKSRC0[3:0]  
CLOCK NAME  
XTAL/X1  
0x0  
0x1  
0x2  
0x5  
0x6  
INTOSC1  
INTOSC2  
CPU1.SYSCLK  
CPU2.SYSCLK  
0xC  
INPUT XBAR (Output16 of input-xbar)  
Reserved  
others  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 275  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Table 8-31. DCCx Clock Source1 Table  
DCCxCLKSRC1[4:0]  
CLOCK NAME  
PLLRAWCLK  
AUXPLLRAWCLK  
INTOSC1  
0x0  
0x1  
0x2  
0x3  
0x5  
0x6  
INTOSC2  
CMCLK  
CPU1.SYSCLK  
0x7  
0x8  
Ethernet RX Clock (ENET_MII_RX_CLK)  
CPU2.SYSCLK  
Input XBAR (Output15 of the input-xbar)  
AUXCLKIN  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
EPWMCLK  
LSPCLK  
Ethercat MII0 RX Clock (ESC_RX0_CLK)  
WDCLK  
CAN0BITCLK  
0x17  
others  
Ethercat MII1 RX Clock (ESC_RX1_CLK)  
Reserved  
8.8.9 Nonmaskable Interrupt With Watchdog Timer (NMIWD)  
The NMIWD module is used to handle system-level errors. There is an NMIWD module for each CPU. The  
conditions monitored are:  
Missing system clock due to oscillator failure  
Uncorrectable ECC error on CPU access to flash memory  
Uncorrectable ECC or parity error on CPU, CLA, or DMA access to RAM  
Parity error on CPU access to ROM  
Vector fetch error on the other CPU  
CRC Fail error from BGCRC module  
Reset request from EtherCAT master or uncorrectable error on access to EtherCAT RAM  
CPU1/CPU2 HWBIST error  
NMI from ERAD module  
CPU1 only: Watchdog or NMI watchdog reset on CPU2  
CPU1 only: NMIWD reset on CM (configurable)  
If the CPU does not respond to the latched error condition, then the NMI watchdog will trigger a reset after a  
programmable time interval. The default time is 65536 SYSCLK cycles.  
Copyright © 2021 Texas Instruments Incorporated  
276 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.8.10 Watchdog  
The watchdog module is the same as the one on previous TMS320C2000 devices, but with an optional lower  
limit on the time between software resets of the counter. This windowed countdown is disabled by default, so the  
watchdog is fully backwards-compatible.  
The watchdog generates either a reset or an interrupt. It is clocked from the internal oscillator with a selectable  
frequency divider.  
Figure 8-8 shows the various functional blocks within the watchdog module.  
WDCR.WDPRECLKDIV  
WDCR.WDPS  
WDCR.WDDIS  
WDCNTR  
8-bit  
Watchdog  
Counter  
WDCLK  
(INTOSC1)  
WDCLK  
Divider  
Watchdog  
Prescaler  
Overflow  
1-count  
delay  
SYSRSn  
Clear  
Count  
WDWCR.MIN  
WDKEY (7:0)  
Watchdog  
Window  
Detector  
Out of Window  
Good Key  
Watchdog  
Key Detector  
55 + AA  
WDCR(WDCHK(2:0))  
Bad Key  
WDRSTn  
WDINTn  
Generate  
512-WDCLK  
Output Pulse  
1
0
1
Watchdog Time-out  
SCSR.WDENINT  
Figure 8-8. Windowed Watchdog  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 277  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
8.8.11 Configurable Logic Block (CLB)  
The C2000 configurable logic block (CLB) is a collection of blocks that can be interconnected using software to  
implement custom digital logic functions or enhance existing on-chip peripherals. The CLB is able to enhance  
existing peripherals through a set of crossbar interconnections, which provide a high level of connectivity to  
existing control peripherals such as enhanced pulse width modulators (ePWM), enhanced capture modules  
(eCAP), and enhanced quadrature encoder pulse modules (eQEP). The crossbars also allow the CLB to be  
connected to external GPIO pins. In this way, the CLB can be configured to interact with device peripherals to  
perform small logical functions such as comparators, or to implement custom serial data exchange protocols.  
Through the CLB, functions that would otherwise be accomplished using external logic devices can now be  
implemented inside the MCU.  
The CLB peripheral is configured through the CLB tool. For more information on the CLB tool, available  
examples, application reports and users guide, please refer to the following location in your C2000Ware package  
(C2000Ware_2_00_00_03 and higher):  
C2000WARE_INSTALL_LOCATION\utilities\clb_tool\clb_syscfg\doc  
CLB Tool User's Guide  
Designing With the C2000™ Configurable Logic Block (CLB) Application Report  
How to Migrate Custom Logic From an FPGA/CPLD to C2000™ Microcontrollers Application Report  
The CLB module and its interconnects are shown in Figure 8-9.  
Copyright © 2021 Texas Instruments Incorporated  
278 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
Figure 8-9. CLB Overview  
Absolute encoder protocol interfaces are now provided as Position Manager solutions in the C2000Ware  
MotorControl SDK. Configuration files, application programmer interface (API), and use examples for such  
solutions are provided with C2000Ware MotorControl SDK. In some solutions, the TI-configured CLB is used  
with other on-chip resources, such as the SPI port or the C28x CPU, to perform more complex functionality.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 279  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
8.9 Connectivity Manager (CM) Subsystem  
The TMS320F2838x supports dual-core C28x architecture along with a new Connectivity Manager subsystem.  
The CM subsystem is based on the industry-standard 32-bit Arm® Cortex®-M4 CPU and features a wide variety  
of communication peripherals, including EtherCAT, Ethernet, USB, MCAN (CAN-FD), DCAN, UART, SSI, I2C,  
and so on. Targeting performance and flexibility, the CM is based on 125-MHz Cortex-M4 architecture and  
provides a variety of integrated memories as well as multiple programmable GPIOs.  
8.9.1 Arm Cortex-M4 Processor  
The Arm Cortex-M4 processor provides a high-performance, low-cost platform that meets the system  
requirements of minimal memory implementation, reduced pin count, and low power consumption, while  
delivering outstanding computational performance and exceptional system response to interrupts.  
The Arm Cortex-M4 processor includes the following:  
32-bit Arm Cortex-M4 architecture optimized for small-footprint embedded applications  
Arm Cortex-M4 CPU can be operated at maximum frequency of 125 MHz  
Arm® Thumb®-2 mixed, 16-/32-bit instruction set delivers the high performance expected of a 32-bit Arm core  
in a compact memory size usually associated with 8- and 16-bit devices, typically in the range of a few  
kilobytes of memory for microcontroller-class applications  
– Single-cycle multiply instruction and hardware divide  
– Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined peripheral  
control  
– Unaligned data access, enabling data to be efficiently packed into memory  
Fast code execution permits slower processor clock or increases sleep mode time  
Harvard architecture characterized by separate buses for instruction and data  
Efficient processor core, system and memories  
Deterministic, high-performance interrupt handling for time-critical applications  
Memory protection unit (MPU) to provide a privileged mode for protected operating system functionality  
Enhanced system debug with extensive breakpoint and trace capabilities  
8.9.2 Nested Vectored Interrupt Controller (NVIC)  
The NVIC multiplexes interrupts from various peripherals into the CM interrupt lines. In essence, the NVIC is the  
PIE (Peripheral Interrupt Expansion) equivalent for the CM. The features supported by the NVIC are as follows:  
80 interrupts  
A programmable priority level of 0–7 for each interrupt. A higher level corresponds to a lower priority, so level  
0 is the highest interrupt priority.  
Low-latency exception and interrupt handling.  
Level and pulse detection of interrupt signals.  
Dynamic reprioritization of interrupts.  
Grouping of priority values into group priority and subpriority fields.  
Interrupt tail-chaining.  
An external nonmaskable interrupt.  
For more information about the NVIC, see the Nested Vectored Interrupt Controller (NVIC) section of the  
TMS320F2838x Real-Time Microcontrollers Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
280 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.9.3 Advance Encryption Standard (AES) Accelerator  
The AES module provides hardware-accelerated data encryption and decryption operations based on a binary  
key. The AES is a symmetric cipher module that supports a 128-, 192-, or 256-bit key in hardware for encryption  
and decryption. The AES module is based on a symmetric algorithm, which means that the encryption and  
decryption keys are identical. To encrypt data means to convert it from plain text to an unintelligible form called  
cipher text. Decrypting cipher text converts previously encrypted data to its original plain text form. The main  
features of the AES accelerator are discussed below.  
Basic AES encrypt and decrypt operations are supported by:  
Galois/Counter mode (GCM), with basic GHASH operation  
Counter mode with CBC-MAC (CCM)  
XTS mode  
The following feedback operating modes are available:  
Electronic code book mode (ECB)  
Cipher block chaining mode (CBC)  
Counter mode (CTR)  
Cipher feedback mode (CFB), 128-bit  
F8 mode  
Key sizes: 128, 192, and 256 bits  
Support for CBC_MAC and Fedora 9 (F9) authentication modes  
Basic GHASH operation (when selecting no encryption)  
Key scheduling in hardware  
Support for µDMA transfers  
Fully synchronous design  
Figure 8-10 shows the AES block diagram.  
I/O Control FSM/µDMA Request  
Interface  
Mode  
Control  
FSM  
AES  
Feedback  
Mode  
Control  
AES Core  
Context  
Registers  
Polynomial  
Multiplication  
HASH Block  
Figure 8-10. AES Block Diagram  
For more information about the AES accelerator, see the Advance Encryption Standard Accelerator (AES)  
chapter of the TMS320F2838x Real-Time Microcontrollers Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 281  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.4 Generic Cyclic Redundancy Check (GCRC) Module  
The Generic CRC (GCRC) is a designated Connectivity Manager module for computing the CRC value on a  
configurable block of memory. It accomplishes this by fetching the specified block of memory and using the  
integrated CRC engine. The calculated CRC value can be compared against a golden CRC value in software to  
indicate a pass or fail. In essence, the GCRC can help identify memory faults and corruption in the Conectivity  
Manager's accessible raw data.  
The Generic CRC (GCRC) module has the following features:  
Support for programmable polynomials of any order between 1 and 32  
Calculate a CRC on byte (8-bit), halfword (16-bit), and word (32-bit) data blocks  
Define the endianness and data type of the source data  
Reverse the bit order  
Select which data bits participate in the CRC computation  
Figure 8-11 shows the block diagram of the GCRC module.  
CRC Engine is triggered  
when a write function to the  
CRCDATAIN/CRCDATAOUT  
register is performed.  
CRCTRIGGER  
CRCPOLY  
DATASIZE  
CRCDATAIN  
CRCDATATRANS  
CRC Engine  
CRCDATAOUT  
CRCDATAMASK  
ENDIANNESS  
BITREVERSE  
POLYSIZE  
CRCCTRL  
DATATYPE  
REMAINDER [31:0]  
Figure 8-11. GCRC Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
282 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.9.5 CM Nonmaskable Interrupt (CMNMI) Module  
The CM subsystem has the capability of detecting all serious errors that could occur in the entire system  
(including all the subsystems), and informing the main CPU core about the errors. An NMI exception to the  
Cortex-M4 CPU on the CM subsystem will be generated only when at least one or more of the below NMI error  
sources become active. For more details on each of the sources, see the CM Subsystem NMI Sources section  
of the TMS320F2838x Real-Time Microcontrollers Technical Reference Manual.  
1. RAM/ROM uncorrectable error  
2. Reset request from the EtherCAT  
3. Clock failure  
4. MCAN uncorrectable error  
5. CM windowed watchdog timed out  
6. Flash uncorrectable error  
All these NMI sources are "OR-ed" to generate the NMI input to the Cortex-M4 NVIC. The NMI triggers a  
CMNMIWD counter running at the CM subsystem frequency. The CMNMIWD counter will stop counting only if all  
the pending NMIs are acknowledged by clearing the pending flags in the CMNMIFLG register. If the pending NMI  
is not acknowledged before the CMNMIWD counter reaches the value programmed in the NMI Watchdog period  
register (CMNMIWDPRD), an NMIWD reset is generated to the CM subsystem, which will reset the entire  
device.  
Figure 8-12 shows different sources that can trigger an NMI to the Cortex-M4 on the CM subsystem and the  
registers associated with them.  
Figure 8-12. CM Subsystem NMI Sources and NMIWD  
All the NMI sources shown in Figure 8-12 are enabled by default on reset. CMNMICFG.NMIE is disabled on  
reset and needs to be enabled by setting it to 1.  
For more information about the CMNMI, see the CM Subsystem Non-Maskable Interrupt (CMNMI) Module  
section of the TMS320F2838x Real-Time Microcontrollers Technical Reference Manual.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 283  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
8.9.6 Memory Protection Unit (MPU)  
The CM subsystem has multiple masters accessing the memory blocks and peripherals. Below is the list of  
masters on the CM subsystem:  
Cortex-M4  
µDMA  
EtherNET DMA  
In a multi-master system, it is important to have a protection mechanism to prevent unauthorized access to  
critical code, data, or peripherals from different masters or threads. This protection mechanism will:  
Prevent a process or a task from accessing memory that is not allocated to it.  
Protect Cortex-M4 code from unintended corruption by other bus masters on the CM subsystem.  
Protect stack corruption by other bus masters on CM systems.  
The Cortex-M4 has the ARM native MPU (Cortex-M4 MPU) that provides such protection (see the Memory  
Protection Unit chapter of the ARM® Cortex®-M4 Processor Technical Reference Manual). For other masters  
(µDMA and Ethernet DMA), a generic memory protection unit (CM-MPU) has been provided, which users can  
configure based on the use case, to enable the protection. Basically, one MPU for each master is provided to  
protect the accesses from that master. For more details, see the Memory Controller Module section of the  
TMS320F2838x Real-Time Microcontrollers Technical Reference Manual.  
Cx RAM  
ICODE  
Bus Matrix-1  
Flash  
ROM  
M
P
U
DCODE  
SBUS  
Cortex-M4  
Sx RAM  
MSGx RAM  
µDMA  
MPU  
µDMA  
Bus Matrix-2  
Peripherals  
- EtherNET  
- EtherCAT  
- DCAN  
EtherNET  
MPU  
- MCAN  
- USB etc  
EtherNET  
DMA  
ET  
EtherN  
Figure 8-13. CM Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
284 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.9.7 Micro Direct Memory Access (µDMA)  
The µDMA controller provides a way to offload data transfer tasks from the Arm Cortex-M4 processor, allowing  
for more efficient use of the processor and the available bus bandwidth. The µDMA controller can perform  
transfers between memory and peripherals. It has dedicated channels for each supported on-chip module and  
can be programmed to automatically perform transfers between peripherals and memory when the peripheral is  
ready to transfer more data.  
The µDMA controller provides the following features:  
Arm® PrimeCell® 32-channel configurable µDMA controller  
Support for memory-to-memory, memory-to-peripheral, and peripheral-to-memory in multiple transfer modes:  
– Basic mode  
– Ping-pong mode  
– Memory scatter-gather mode  
– Peripheral scatter-gather mode  
– Auto request mode  
Highly flexible and configurable channel operation  
– Independently configured and operated channels  
– Dedicated channels for supported on-chip modules  
– Flexible channel assignments  
– One channel each for receive and transmit path for bidirectional modules  
– Dedicated channel for software-initiated transfers  
– Per-channel configurable priority scheme  
– Optional software-initiated requests for any channel  
Two levels of priority  
Data sizes of 8, 16, and 32 bits  
Programmable transfer size in binary steps from 1 to 1024  
Source and destination address increment size of byte, halfword, word, or no increment  
Maskable peripheral requests  
Supports two interrupts:  
– µDMA Software interrupt: µDMA generates an interrupt when a software channel completes all its  
transfers  
– µDMA Error interrupt: µDMA generates an interrupt an when error is detected on a DMA transfer  
DMA transfers triggered by a peripheral event generates a corresponding peripheral interrupt when DMA  
completes all its transfers.  
Figure 8-14 shows the µDMA block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 285  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
System Memory  
CH Control Table  
µDMA  
Controller  
DMA Error  
DMASTAT  
DMASRCENDP  
DMADSTENDP  
DMACHCTRL  
DMACFG  
DMACTLBASE  
DMAALTBASE  
DMAWAITSTAT  
DMASWREQ  
dma_req  
General Peripheral N  
Registers  
dma_sreq  
IRQ  
dma_done  
DMAUSEBURSTSET  
DMAUSEBURSTCLR  
DMAREQMASKSET  
DMAREQMASKCLR  
DMAENASET  
DMASRCENDP  
DMADSTENDP  
DMACHCTRL  
dma_req  
dma_sreq  
dma_done  
DMAENACLR  
General Peripheral N  
Registers  
Nested Vectored  
Interrupt  
DMAALTSET  
IRQ  
DMAALTCLR  
Transfer Buffers Used by  
µDMA  
Controller  
(NVIC)  
DMAPRIOSET  
DMAPRIOCLR  
DMAERRCLR  
DMACHMAPn  
Arm  
Cortex-M4  
Figure 8-14. µDMA Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
286 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.9.8 Watchdog  
The Connectivity Manager (CM) has one watchdog (also referred to as windowed watchdog) timer. The  
functionality of this watchdog timer is the same as the one used on CPUx subsystems. For details about this  
module, see the Watchdog Timers section of the System Control chapter in the TMS320F2838x Real-Time  
Microcontrollers Technical Reference Manual. Following are some differences in the configuration of the  
watchdog timer on the CM versus CPUx:  
The Watchdog timer on CM is disabled by default. Software needs to clear the WDDIS bit in the WDCR  
register to enable the watchdog.  
Whenever the watchdog counter (WDCR) overflows or an incorrect value is written to WDCR[WDCHK], an  
NMI gets generated (not reset or interrupt such as CPUx watchdog timers) to the CMNMIWD module. If  
software is not able to service the NMI, then the NMIWD module will trigger a reset to the CM.  
The CM watchdog timer counter stops incrementing when the Cortex-M4 is halted during the debug session.  
8.9.9 CM Clocking  
8.9.9.1 CM Clock Sources  
Table 8-32 lists four possible clock sources. Figure 8-15 provides an overview of the device's clocking system.  
Table 8-32. Possible Reference Clock Sources  
CLOCK SOURCE  
MODULES CLOCKED  
COMMENTS  
INTOSC1  
Can be used to provide clock for:  
Internal oscillator 1.  
Zero-pin overhead 10-MHz internal oscillator.  
Watchdog block  
Main PLL  
CPU-Timer 2  
INTOSC2(1)  
Can be used to provide clock for:  
Internal oscillator 2.  
Zero-pin overhead 10-MHz internal oscillator.  
Main PLL  
Auxiliary PLL  
CPU-Timer 2  
XTAL  
Can be used to provide clock for:  
External crystal or resonator connected between the X1 and X2 pins  
or single-ended clock connected to the X1 pin.  
Main PLL  
Auxiliary PLL  
CPU-Timer 2  
AUXCLKIN  
Can be used to provide clock for:  
Single-ended 3.3-V level clock source. GPIO133/AUXCLKIN pin  
should be used to provide the input clock.  
Auxiliary PLL  
CPU-Timer 2  
(1) On reset, internal oscillator 2 (INTOSC2) is the default clock source for both system PLL (OSCCLK) and auxiliary PLL (AUXOSCCLK).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 287  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
AUXPLLCLKEN  
AUXCLKDIV  
AUXOSCCLK  
AUX PLL  
AUXCLK  
Divider  
SYSCLKDIVSEL  
AUXCLKSRCCEL  
SYS  
PLLRAWCLK  
Divider  
SYS PLL  
AUXPLLRAWCLK  
USBBITCLK  
PLLSYSCLK  
PLLCLKEN  
OSCCLKSRCSEL  
DIVSRCSEL  
PLLSYSCLK  
CMDIVSRCSEL  
ETHERNETCLK  
CMCLK  
DIVIDER  
CMCLK  
CPU2  
CPU1  
ETHDIV  
ETHERNETCLK  
Divider  
One per CMCLK peripheral  
CMPCLKCRx.PERx  
ETHERNET_SS_CLK100  
ETHERNET_SS_CLK50  
ETHERNET  
CM.PERx.SYSCLK  
CMCLK  
CM.PERx.SYSCLK  
PALLOCATE0  
.USB  
CM Flash  
GPIO  
I2C  
SSI  
UART  
MCAN  
CANx  
DCSM  
MSG RAMs  
IPC  
WD  
ETHERCAT  
ETHERNET  
GCRC  
AES  
UDMA  
CPUTimers  
USB  
CPU1.PCLKCRx  
CPU2.PCLKCRx  
CPU1/CPU2/CM  
.PERx.SYSCLK  
CPU1.PERx.SYSCLK  
CPU2.PERx.SYSCLK  
CANx  
PALLOCATE0.CANx  
CPUSELx.CANx  
X1 (XTAL)  
AUXCLKIN  
CANxBCLKSEL  
CANxBIT Clock  
MCANBCLKSEL  
MCANBIT Clock  
Figure 8-15. Clocking System  
Copyright © 2021 Texas Instruments Incorporated  
288 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
8.9.10 CM Timers  
The Connectivity Manager (CM) has three 32-bit timers that are identical, with 16-bit clock prescaling. These  
timers operate on CMCLK. The timers have a 32-bit count-down register that generates an interrupt when the  
counter reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting.  
When the counter reaches zero, it is automatically reloaded with a 32-bit period value.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 289  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
9 Applications, Implementation, and Layout  
Note  
Information in the following sections is not part of the TI component specification, and TI does not  
warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of  
components for their purposes. Customers should validate and test their design implementation to  
confirm system functionality.  
9.1 TI Reference Design  
The TI Reference Design Library is a robust reference design library spanning analog, embedded processor,  
and connectivity. Created by TI experts to help you jump start your system design, all reference designs include  
schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download  
designs at Select TI reference designs.  
Copyright © 2021 Texas Instruments Incorporated  
290 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
10 Device and Documentation Support  
10.1 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320  
MCU devices and support tools. Each TMS320MCU commercial family member has one of three prefixes:  
TMX, TMP, or TMS (for example, TMS320F28386D). Texas Instruments recommends two of three possible  
prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of  
product development from engineering prototypes (with TMX for devices and TMDX for tools) through fully  
qualified production devices and tools (with TMS for devices and TMDS for tools).  
Device development evolutionary flow:  
TMX Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
TMP Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
TMS Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, ZWT) and temperature range (for example, S). Figure 10-1 provides a legend for reading the  
complete device name for any family member.  
For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI  
sales representative.  
For additional description of the device nomenclature markings on the die, see the TMS320F2838x Real-Time  
MCUs Silicon Errata.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 291  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
-Q1  
Q
Generic Part Number: TMS 320  
F
F
28386D  
Orderable Part Number:  
PREFIX(A)  
X
(blank)  
28386D ZWT  
R
SHIPPING OPTIONS  
experimental device  
qualified device  
TMX (X) =  
Tray  
Tape and Reel  
(blank)  
R
=
=
TMS (blank) =  
QUALIFICATION (in Generic Part Number)  
DEVICE FAMILY  
Non-Automotive  
Q1 refers to Automotive AEC Q100 Grade 1 qualification.  
blank  
-Q1  
=
=
320 = TMS320 MCU Family  
TEMPERATURE RANGE (in Orderable Part Number)  
TECHNOLOGY  
−40°C to 125°C (TJ)  
S
=
=
Q
F = Flash  
−40°C to 125°C (TA)  
PACKAGE TYPE  
337-Ball ZWT New Fine Pitch Ball Grid Array (nFBGA)  
176-Pin PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack (HLQFP)  
DEVICE  
28388D  
28386D  
28384D  
28388S  
28386S  
28384S  
A. Prefix X is used in orderable part numbers.  
Figure 10-1. Device Nomenclature  
10.2 Markings  
Figure 10-2 shows the package symbolization and Table 10-1 lists the silicon revision codes.  
=
YMLLLLS  
Lot Trace Code  
=
=
=
=
=
YM  
LLLL  
S
$$  
#
2-Digit Year/Month Code  
Assembly Lot  
Assembly Site Code  
Wafer Fab Code as applicable  
Silicon Revision Code  
F28388DZWTS  
$$#-YMLLLLS  
G1  
F28388DPTPS  
$$#-YMLLLLS  
G4  
Package  
Pin 1  
Package  
Pin 1  
Figure 10-2. Package Symbolization  
Table 10-1. Revision Identification  
REVID(1)  
Address: 0x5D00C  
SILICON REVISION CODE  
SILICON REVISION  
COMMENTS  
Blank  
A
0
0x0000 0000  
This silicon revision is available as TMX.  
This silicon revision is available as TMX and  
TMS.  
A
0x0000 0001  
(1) Silicon Revision ID  
Copyright © 2021 Texas Instruments Incorporated  
292 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
10.3 Tools and Software  
TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of  
the device, generate code, and develop solutions are listed below. To view all available tools and software for  
C2000™ real-time control MCUs, visit the C2000 real-time control MCUs – Design & development page.  
Development Tools  
F28388D controlCARD for C2000 Real time control development kit  
HSEC180 controlCARD development tool for the F2838xD and F2838xS series. controlCARDs are ideal to use  
for initial evaluation and system prototyping. They are complete board-level modules that provide a low-profile,  
single-board controller solution.  
F28388D Experimenter Kit  
The Experimenter Kit is an evaluation bundle that consists of a controlCARD and a TMDSHSECDOCK  
Baseboard Docking Station. The docking station provides power to the included controlCARD and has a  
breadboard area for prototyping. Access to the controller’s key signals is available using a series of header pins.  
Software Tools  
C2000Ware for C2000 MCUs  
C2000Ware for C2000 microcontrollers is a cohesive set of development software and documentation designed  
to minimize software development time. From device-specific drivers and libraries to device peripheral examples,  
C2000Ware provides a solid foundation to begin development and evaluation. C2000Ware is now the  
recommended content delivery tool versus controlSUITE.  
Code Composer Studio(CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and  
Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug  
embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking the user  
through each step of the application development flow. Familiar tools and interfaces allow users to get started  
faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework  
with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development  
environment for embedded developers.  
Pin mux tool  
The Pin Mux Utility is a software tool which provides a Graphical User Interface for configuring pin multiplexing  
settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs.  
F021 Flash Application Programming Interface (API)  
The F021 Flash Application Programming Interface (API) provides a software library of functions to program,  
erase, and verify F021 on-chip Flash memory.  
UniFlash Standalone Flash Tool  
UniFlash is a standalone tool used to program on-chip flash memory through a GUI, command line, or scripting  
interface.  
Models  
Various models are available for download from the product Design & development pages. These models  
include I/O Buffer Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL)  
Models. To view all available models, visit the Design tools & simulation section of the Design & development  
page for each device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 293  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
Training  
To help assist design engineers in taking full advantage of the C2000 microcontroller features and performance,  
TI has developed a variety of training resources. Utilizing the online training materials and downloadable hands-  
on workshops provides an easy means for gaining a complete working knowledge of the C2000 microcontroller  
family. These training resources have been designed to decrease the learning curve, while reducing  
development time, and accelerating product time to market. For more information on the various training  
resources, visit the C2000™ real-time control MCUs – Support & training site.  
10.4 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral is  
listed below.  
Errata  
TMS320F2838x Real-Time MCUs Silicon Errata describes known advisories on silicon and provides  
workarounds.  
Technical Reference Manual  
TMS320F2838x Real-Time Microcontrollers Technical Reference Manual details the integration, the  
environment, the functional description, and the programming models for each peripheral and subsystem in the  
2838x microcontrollers.  
CPU User's Guides  
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the  
assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This Reference  
Guide also describes emulation features available on these DSPs.  
TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline, and  
instruction set of the TMU, VCU-II, and FPU accelerators.  
Peripheral Guides  
C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x  
DSPs.  
Tools Guides  
TMS320C28x Assembly Language Tools v20.8.0.STS User's Guide describes the assembly language tools  
(assembler and other tools used to develop assembly language code), assembler directives, macros, common  
object file format, and symbolic debugging directives for the TMS320C28x device.  
TMS320C28x Optimizing C/C++ Compiler v20.8.0.STS User's Guide describes the TMS320C28x C/C++  
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly  
language source code for the TMS320C28x device.  
Application Reports  
The SMT & packaging application notes website lists documentation on TI’s surface mount technology (SMT)  
and application notes on a variety of packaging-related topics.  
Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor  
devices for shipment to end users.  
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime  
of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general  
engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement.  
Copyright © 2021 Texas Instruments Incorporated  
294 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS  
including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/  
output structures and future trends.  
Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders for  
serial programming a device.  
Fast Integer Division – A Differentiated Offering From C2000™ Product Family provides an overview of the  
different division and modulo (remainder) functions and its associated properties.  
C2000™ Key Technology Guide provides a deeper look into the components that differentiate the C2000  
Microcontroller Unit (MCU) as it pertains to Real-Time Control Systems.  
10.5 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
10.6 Trademarks  
PowerPAD, C2000, Code Composer Studio, TMS320, controlSUITE, TI E2Eare trademarks of Texas  
Instruments.  
NXPis a trademark of NXP B.V.  
Arm®, Cortex®, Thumb®, PrimeCell® are registered trademarks of Arm Limited (or its subsidiaries) in the US  
and/or elsewhere.  
EtherCAT® are registered trademarks of Beckhoff Automation GmbH, Germany.  
Bosch® are registered trademarks of Robert Bosch GmbH.  
Freescale® is a registered trademark of NXP USA, INC.  
All trademarks are the property of their respective owners.  
10.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.8 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 295  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
11 Mechanical, Packaging, and Orderable Information  
11.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
To learn more about TI packaging, visit the Packaging information website.  
Copyright © 2021 Texas Instruments Incorporated  
296 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
 
 
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
PACKAGE OUTLINE  
TM  
PowerPAD HLQFP - 1.6 mm max height  
PTP0176F  
SCALE 0.550  
PLASTIC QUAD FLATPACK  
24.2  
23.8  
NOTE 3  
B
PIN 1 ID  
133  
176  
1
132  
24.2  
23.8  
NOTE 3  
26.2  
25.8  
TYP  
44  
89  
88  
45  
0.27  
0.17  
176X  
C
A
172X 0.5  
0.08  
C A B  
4X 21.5  
SEATING PLANE  
1.6 MAX  
SEE DETAIL A  
(0.13)  
TYP  
45  
88  
89  
44  
0.25  
GAGE PLANE  
(1.4)  
4X 0.78 MAX  
NOTE 4  
4X  
0.54 MAX  
NOTE 4  
0.15  
0.05  
0.08 C  
7.33  
6.78  
0 -7  
177  
0.75  
0.45  
DETAIL A  
TYPICAL  
4X  
0.2 MAX  
NOTE 4  
EXPOSED  
THERMAL PAD  
1
132  
176  
133  
8.07  
7.53  
4223382/A 03/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs.  
4. Strap features my not present.  
5. Reference JEDEC registration MS-026.  
www.ti.com  
DETAIL  
A
S
C
A
L
E
:
1
2
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 297  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PowerPADTM HLQFP - 1.6 mm max height  
PTP0176F  
PLASTIC QUAD FLATPACK  
(8.07)  
SYMM  
SOLDER MASK  
DEFINED PAD  
176  
133  
176X (1.45)  
1
132  
176X (0.3)  
172X (0.5)  
177  
SYMM  
(7.33)  
(1.5 TYP)  
(25.5)  
( 22)  
NOTE 10  
(R0.05) TYP  
(
0.2) TYP  
VIA  
89  
44  
SEE DETAILS  
45  
88  
METAL COVERED  
BY SOLDER MASK  
(1.5 TYP)  
(25.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:4X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223382/A 03/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
10. Size of metal pad may vary due to creepage requirement.  
Copyright © 2021 Texas Instruments Incorporated  
298 Submit Document Feedback  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
TMS320F28388D, TMS320F28386D, TMS320F28386D-Q1  
TMS320F28384D, TMS320F28384D-Q1, TMS320F28388S  
TMS320F28386S, TMS320F28386S-Q1, TMS320F28384S, TMS320F28384S-Q1  
www.ti.com  
SPRSP14D – MAY 2019 – REVISED FEBRUARY 2021  
EXAMPLE STENCIL DESIGN  
PowerPADTM HLQFP - 1.6 mm max height  
PTP0176F  
PLASTIC QUAD FLATPACK  
(8.07)  
BASED ON  
0.125 THICK STENCIL  
SYMM  
176  
133  
176X (1.45)  
1
132  
176X (0.3)  
172X (0.5)  
(25.5)  
(7.33)  
BASED ON  
SYMM  
177  
0.125 THICK  
STENCIL  
(R0.05) TYP  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
44  
89  
METAL COVERED  
BY SOLDER MASK  
45  
88  
(25.5)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:4X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
9.02 X 8.2  
8.07 X 7.33 (SHOWN)  
7.37 X 6.69  
0.125  
0.150  
0.175  
6.82 X 6.2  
4223382/A 03/2017  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 299  
Product Folder Links: TMS320F28388D TMS320F28386D TMS320F28386D-Q1 TMS320F28384D  
TMS320F28384D-Q1 TMS320F28388S TMS320F28386S TMS320F28386S-Q1 TMS320F28384S  
TMS320F28384S-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Mar-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
F28384DPTPQR  
F28384DPTPS  
F28384DZWTQR  
F28384DZWTS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HLQFP  
HLQFP  
NFBGA  
NFBGA  
PTP  
PTP  
ZWT  
ZWT  
176  
176  
337  
337  
200  
40  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
F28384DPTPQ  
NIPDAU  
SNAGCU  
SNAGCU  
F28384DPTPS  
F28384DZWTQ  
F28384DZWTS  
1000 RoHS & Green  
90  
RoHS & Green  
F28384SPTPQR  
F28384SPTPS  
PREVIEW  
ACTIVE  
HLQFP  
HLQFP  
PTP  
PTP  
176  
176  
200  
40  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
F28384SPTPQ  
F28384SPTPS  
F28384SZWTS  
F28386DPTPQ  
F28386DPTPQR  
F28386DPTPS  
F28386DZWTQ  
F28386DZWTQR  
F28386DZWTS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NFBGA  
HLQFP  
HLQFP  
HLQFP  
NFBGA  
NFBGA  
NFBGA  
ZWT  
PTP  
PTP  
PTP  
ZWT  
ZWT  
ZWT  
337  
176  
176  
176  
337  
337  
337  
90  
40  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
F28384SZWTS  
F28386DPTPQ  
F28386DPTPQ  
F28386DPTPS  
F28386DZWTQ  
F28386DZWTQ  
F28386DZWTS  
200  
40  
90  
1000 RoHS & Green  
90  
RoHS & Green  
F28386SPTPQR  
F28386SPTPS  
PREVIEW  
ACTIVE  
HLQFP  
HLQFP  
PTP  
PTP  
176  
176  
200  
40  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
F28386SPTPQ  
F28386SPTPS  
F28386SZWTS  
F28388DPTPS  
F28388DPTPSR  
F28388DZWTS  
F28388DZWTSR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NFBGA  
HLQFP  
HLQFP  
NFBGA  
NFBGA  
ZWT  
PTP  
PTP  
ZWT  
ZWT  
337  
176  
176  
337  
337  
90  
40  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
SNAGCU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
F28386SZWTS  
F28388DPTPS  
F28388DPTPS  
F28388DZWTS  
F28388DZWTS  
200  
90  
1000 RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Mar-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
F28388SPTPS  
F28388SPTPSR  
F28388SZWTS  
F28388SZWTSR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HLQFP  
HLQFP  
NFBGA  
NFBGA  
PTP  
PTP  
ZWT  
ZWT  
176  
176  
337  
337  
40  
200  
90  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
F28388SPTPS  
NIPDAU  
SNAGCU  
SNAGCU  
F28388SPTPS  
F28388SZWTS  
F28388SZWTS  
1000 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Mar-2021  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TMS320F28384D, TMS320F28384D-Q1, TMS320F28384S, TMS320F28384S-Q1, TMS320F28386D, TMS320F28386D-Q1, TMS320F28386S,  
TMS320F28386S-Q1 :  
Catalog: TMS320F28384D, TMS320F28384S, TMS320F28386D, TMS320F28386S  
Automotive: TMS320F28384D-Q1, TMS320F28384S-Q1, TMS320F28386D-Q1, TMS320F28386S-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE OUTLINE  
ZWT0337A  
NFBGA - 1.4 mm max height  
SCALE 0.950  
PLASTIC BALL GRID ARRAY  
16.1  
15.9  
A
B
BALL A1 CORNER  
16.1  
15.9  
1.4 MAX  
C
SEATING PLANE  
0.12 C  
0.45  
0.35  
BALL TYP  
TYP  
14.4 TYP  
SYMM  
(0.8) TYP  
(0.8) TYP  
W
V
U
T
R
P
N
M
L
14.4  
TYP  
SYMM  
K
J
H
G
F
0.55  
337X  
0.45  
E
D
C
0.15  
0.05  
C A B  
C
B
A
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19  
0.8 TYP  
0.8 TYP  
BALL A1 CORNER  
4223381/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZWT0337A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
337X ( 0.4)  
11  
12  
13 14 15 16 17 18 19  
1
3
4
6
7
8
9
10  
2
5
A
B
C
(0.8) TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
W
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:7X  
METAL UNDER  
SOLDER MASK  
0.05 MAX  
0.05 MIN  
(
0.4)  
METAL  
EXPOSED METAL  
(
0.4)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223381/A 02/2017  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZWT0337A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(
0.4) TYP  
(0.8) TYP  
11  
12  
13 14 15 16 17 18 19  
1
3
4
6
7
8
9
10  
2
5
A
B
C
(0.8) TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
U
V
W
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE:7X  
4223381/A 02/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY