FDC2114 [TI]

4 通道、12 位、电容数字转换器;
FDC2114
型号: FDC2114
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4 通道、12 位、电容数字转换器

转换器
文件: 总60页 (文件大小:1506K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
FDC2x1x 适用于接近传感和液位感测的抗 EMI 28/12 位电容数字转换器 IC  
1 特性  
3 说明  
1
抗电磁干扰 (EMI) 架构  
最高输出速率(每条有源通道):  
电容式传感是一种低功耗、低成本且高分辨率的非接触  
式感测技术, 适用于 从接近检测和手势识别到远程液  
位感测领域的各项应用。电容式传感系统中的传感器可  
以采用任意金属或导体,因此可实现高度灵活的低成本  
系统设计。  
13.3kspsFDC2112FDC2114)  
4.08kspsFDC2212FDC2214)  
最大输入电容:250nF10kHz 频率,1mH 电感  
时)  
电容式传感应用灵敏度的主要限制因素 在于 传感器的  
噪声敏感性。FDC2x1x 采用创新型抗 EMI 架构,即使  
在高噪声环境中也能维持性能不变。  
传感器激励频率:10kHz 10MHz  
通道数:2 4  
分辨率:高达 28 位  
系统噪底:100sps 时为 0.3fF  
电源电压:2.7V 3.6V  
功耗:2.1mA(有源)  
低功耗休眠模式:35μA  
关断电流:200nA  
FDC2x1x 是面向电容式传感解决方案的抗噪声和  
EMI、高分辨率、高速、多通道电容数字转换器系列。  
该系列器件采用基于窄带的创新型架构,可对噪声和干  
扰进行高度抑制,同时在高速条件下提供高分辨率。该  
系列器件支持宽激励频率范围,可为系统设计带来灵活  
性。宽频率范围对于导电液体(例如清洁剂、肥皂液和  
油墨)感测的可靠性特别有用。  
接口:I2C  
温度范围:-40°C +125°C  
space  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
FDC2112FDC221  
2
2 应用  
WSON (DNT 12)  
4.00mm x 4.00mm  
接近传感器  
FDC2114FDC221  
4
WQFN (RGH 16)  
4.00mm x 4.00mm  
手势识别  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
液位传感器(包括清洁剂、肥皂液和油墨等导电液  
体)  
碰撞避免  
雨、雾、冰、雪传感器  
汽车门及尾门一脚踢开传感器  
材料尺寸检测  
简化电路原理图  
3.3 V  
3.3 V  
FDC2114 / FDC2214  
VDD  
GND  
CLKIN  
VDD  
40 MHz  
0.1 F 1 F  
Int. Osc.  
IN0A  
SD  
Resonant  
GPIO  
GPIO  
circuit driver  
IN0B  
INTB  
L
C
MCU  
3.3 V  
Cap  
Sensor 0  
Core  
I2C  
GND  
ADDR  
SDA  
IN3A  
IN3B  
I2C  
peripheral  
Resonant  
circuit driver  
L
C
SCL  
Cap  
Sensor 3  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNOSCZ5  
 
 
 
 
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
目录  
9.3 Feature Description................................................. 12  
9.4 Device Functional Modes........................................ 21  
9.5 Programming........................................................... 21  
9.6 Register Maps......................................................... 22  
10 Application and Implementation........................ 39  
10.1 Application Information.......................................... 39  
10.2 Typical Application ............................................... 40  
10.3 Do's and Don'ts..................................................... 46  
11 Power Supply Recommendations ..................... 46  
12 Layout................................................................... 46  
12.1 Layout Guidelines ................................................. 46  
12.2 Layout Example .................................................... 46  
13 器件和文档支持 ..................................................... 51  
13.1 器件支持 ............................................................... 51  
13.2 相关链接................................................................ 51  
13.3 社区资源................................................................ 51  
13.4 ....................................................................... 51  
13.5 静电放电警告......................................................... 51  
13.6 Glossary................................................................ 51  
14 机械、封装和可订购信息....................................... 51  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
8.1 Absolute Maximum Ratings ...................................... 5  
8.2 ESD Ratings ............................................................ 5  
8.3 Recommended Operating Conditions....................... 5  
8.4 Thermal Information ................................................. 5  
8.5 Electrical Characteristics........................................... 6  
8.6 Timing Requirements................................................ 7  
8.7 Switching Characteristics - I2C................................. 8  
8.8 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 11  
9.1 Overview ................................................................. 11  
9.2 Functional Block Diagrams ..................................... 11  
9
4 修订历史记录  
Changes from Original (June 2015) to Revision A  
Page  
已添加 完整数据表。 .............................................................................................................................................................. 1  
2
版权 © 2015, Texas Instruments Incorporated  
 
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
5 说明 (续)  
FDC221x 经过优化,分辨率高达 28 位,而 FDC211x 的采样速率高达 13.3ksps,便于实现 使用 快速移动目标的  
应用。250nF 超大最高输入电容支持使用远程传感器并跟踪环境随时间、温度和湿度的变化情况。  
FDC2x1x 系列器件面向接近感测和液位感测 应用, 适用于所有液体类型。如果非导电液位感测 应用 存在干扰  
(例如人手),建议使用集成有源屏蔽驱动器的 FDC1004。  
6 Device Comparison Table  
PART NUMBER  
FDC2112  
RESOLUTION  
12 bit  
CHANNELS  
PACKAGE  
WSON-12  
WQFN-16  
WSON-12  
WQFN-16  
2
4
2
4
FDC2114  
12 bit  
FDC2212  
28 bit  
FDC2214  
28 bit  
Copyright © 2015, Texas Instruments Incorporated  
3
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
7 Pin Configuration and Functions  
FDC2112/FDC2212 WSON  
DNT-12  
Top View  
SCL  
SDA  
1
2
3
4
5
6
12  
11  
10  
9
IN1B  
IN1A  
IN0B  
IN0A  
GND  
VDD  
CLKIN  
ADDR  
INTB  
SD  
DAP  
8
7
FDC2114/FDC2214 WQFN  
RGH-16  
Top View  
SCL  
SDA  
1
2
3
4
12  
IN1B  
11  
10  
9
IN1A  
IN0B  
IN0A  
DAP  
CLKIN  
ADDR  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
SCL  
NO.  
1
I
I/O  
I
I2C Clock input  
SDA  
2
I2C Data input/output  
Master Clock input. Tie this pin to GND if internal oscillator is selected  
CLKIN  
3
I2C Address selection pin: when ADDR=L, I2C address = 0x2A, when ADDR=H, I2C address =  
0x2B.  
ADDR  
4
I
INTB  
SD  
5
6
O
I
Configurable Interrupt output pin  
Shutdown input  
VDD  
GND  
IN0A  
IN0B  
IN1A  
IN1B  
IN2A  
IN2B  
7
P
G
A
A
A
A
A
A
Power Supply  
8
Ground  
9
Capacitive sensor input 0  
Capacitive sensor input 0  
Capacitive sensor input 1  
Capacitive sensor input 1  
Capacitive sensor input 2 (FDC2114 / FDC2214 only)  
Capacitive sensor input 2 (FDC2114 / FDC2214 only)  
10  
11  
12  
13  
14  
(1) I = Input, O = Output, P=Power, G=Ground, A=Analog  
4
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
Pin Functions (continued)  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
15  
IN3A  
A
A
Capacitive sensor input 3 (FDC2114 / FDC2214 only)  
Capacitive sensor input 3 (FDC2114 / FDC2214 only)  
Connect to Ground  
IN3B  
DAP(2)  
16  
DAP  
N/A  
(2) There is an internal electrical connection between the exposed Die Attach Pad (DAP) and the GND pin of the device. Although the DAP  
can be left floating, for best performance the DAP should be connected to the same potential as the device's GND pin. Do not use the  
DAP as the primary ground for the device. The device GND pin must always be connected to ground.  
8 Specifications  
8.1 Absolute Maximum Ratings  
MIN  
MAX  
UNIT  
V
VDD  
Vi  
Supply voltage range  
5
Voltage on any pin  
–0.3  
–8  
VDD + 0.3  
V
IA  
Input current on any INx pin  
Input current on any digital pin  
Junction temperature  
8
mA  
mA  
°C  
ID  
–5  
5
TJ  
–55  
–65  
150  
150  
Tstg  
Storage temperature  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
8.2 ESD Ratings  
VALUE  
UNIT  
FDC2112 / FDC2212 in 12-pin WSON package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±750  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
FDC2114 / FDC2214 in 16-pin WQFN package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±750  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
Unless otherwise specified, all limits ensured for TA = 25°C, VDD = 3.3 V  
MIN  
2.7  
NOM  
MAX  
3.6  
UNIT  
V
VDD  
TA  
Supply voltage  
Operating temperature  
–40  
125  
°C  
8.4 Thermal Information  
FDC2112 /  
FDC2212  
FDC2214 /  
FDC2214  
THERMAL METRIC(1)  
UNIT  
DNT (WSON)  
12 PINS  
50  
RGH (WQFN)  
16 PINS  
38  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2015, Texas Instruments Incorporated  
5
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
8.5 Electrical Characteristics  
Unless otherwise specified, all limits ensured for TA = 25°C, VDD = 3.3 V(1)  
PARAMETER  
TEST CONDITIONS(2)  
MIN(3)  
TYP(4)  
MAX(3)  
UNIT  
POWER  
VDD  
Supply voltage  
TA = –40°C to +125°C  
CLKIN = 10MHz(6)  
2.7  
3.6  
V
IDD  
Supply durrent (not including  
sensor current)(5)  
2.1  
mA  
IDDSL  
ISD  
Sleep mode supply current(5)  
Shutdown mode supply current(5)  
35  
60  
1
µA  
µA  
0.2  
CAPACITIVE SENSOR  
CSENSORMAX Maximum sensor capacitance  
CIN  
1mH inductor, 10kHz oscillation  
250  
4
nF  
pF  
Sensor pin parasitic capacitance  
Number of bits  
NBITS  
FDC2112, FDC2114  
RCOUNT 0x0400  
12  
28  
bits  
bits  
FDC2212, FDC2214  
RCOUNT = 0xFFFF  
fCS  
Maximum channel sample rate  
FDC2112, FDC2114  
single active channel continuous  
conversion, SCL = 400 kHz  
13.3  
4.08  
kSPS  
kSPS  
FDC2212, FDC2214  
single active channel continuous  
conversion, SCL= 400 kHz  
EXCITATION  
fSENSOR  
Sensor excitation frequency  
TA = –40°C to +125°C  
0.01  
10  
MHz  
V
VSENSORMIN  
Minimum sensor oscillation  
amplitude (pk)(7)  
1.2  
1.8  
VSENSORMAX  
ISENSORMAX  
Maximum sensor oscillation  
amplitude (pk)  
V
Sensor maximum current drive  
HIGH_CURRENT_DRV = b0  
DRIVE_CURRENT_CH0 =  
0xF800  
1.5  
6
mA  
HIGH_CURRENT_DRV = b1  
DRIVE_CURRENT_CH0 =  
0xF800  
mA  
Channel 0 only  
MASTER CLOCK  
fCLKIN  
External master clock input  
frequency (CLKIN)  
TA = –40°C to +125°C  
2
40  
MHz  
CLKINDUTY_MIN  
CLKINDUTY_MAX  
VCLKIN_LO  
External master clock minimum  
acceptable duty cycle (CLKIN)  
40%  
60%  
External master clock maximum  
acceptable duty cycle (CLKIN)  
CLKIN low voltage threshold  
0.3*VDD  
V
(1) Electrical Characteristics values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in  
very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical tables  
under conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond which  
the device may be permanently degraded, either mechanically or electrically.  
(2) Register values are represented as either binary (b is the prefix to the digits), or hexadecimal (0x is the prefix to the digits). Decimal  
values have no prefix.  
(3) Limits are ensured by testing, design, or statistical analysis at 25°C. Limits over the operating temperature range are ensured through  
correlations using statistical quality control (SQC) method.  
(4) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped  
production material.  
(5) I2C read/write communication and pull-up resistors current through SCL, SDA not included.  
(6) Sensor capacitor: 1 layer, 20.9 x 13.9 mm, Bourns CMH322522-180KL sensor inductor with L=18µH and 33pF 1% COG/NP0 Target:  
Grounded aluminum plate (176 x 123 mm), Channel = Channel 0 (continuous mode) CLKIN = 40 MHz, CHx_FIN_SEL = b10,  
CHx_FREF_DIVIDER = b00 0000 0001 CH0_RCOUNT = 0xFFFF, SETTLECOUNT_CH0 = 0x0100, DRIVE_CURRENT_CH0 = 0x7800.  
(7) Lower VSENSORMIN oscillation amplitudes can be used, but will result in lower SNR.  
6
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
Electrical Characteristics (continued)  
Unless otherwise specified, all limits ensured for TA = 25°C, VDD = 3.3 V(1)  
PARAMETER  
TEST CONDITIONS(2)  
MIN(3)  
TYP(4)  
MAX(3)  
UNIT  
VCLKIN_HI  
fINTCLK  
CLKIN high voltage threshold  
0.7*VDD  
V
Internal master clock frequency  
range  
35  
43.4  
–13  
55  
MHz  
TCf_int_μ  
Internal master clock temperature  
coefficient mean  
ppm/°C  
8.6 Timing Requirements  
MIN  
NOM  
MAX  
2
UNIT  
ms  
tSDWAKEUP  
Wake-up time from SD high-low transition to I2C readback  
tSLEEPWAKEUP Wake-up time from sleep mode  
0.05  
ms  
tWD-TIMEOUT  
Sensor recovery time (after watchdog timeout)  
5.2  
ms  
I2C TIMING CHARACTERISTICS  
fSCL  
Clock frequency  
Clock low time  
Clock high time  
10  
1.3  
0.6  
400  
kHz  
μs  
tLOW  
tHIGH  
μs  
Hold time (repeated) START condition: after this period, the first clock  
pulse is generated  
tHD;STA  
0.6  
μs  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Setup time for a repeated START condition  
Data hold time  
0.6  
0
μs  
μs  
ns  
μs  
μs  
μs  
μs  
ns  
Data setup time  
100  
0.6  
1.3  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
Data valid time  
tVD;DAT  
tVD;ACK  
tSP  
0.9  
0.9  
50  
Data valid acknowledge time  
Pulse width of spikes that must be suppressed by the input filter(1)  
(1) This parameter is specified by design and/or characterization and is not tested in production.  
SDA  
t
BUF  
t
t
f
LOW  
t
HD;STA  
t
r
t
t
SP  
t
f
r
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 1. I2C Timing  
Copyright © 2015, Texas Instruments Incorporated  
7
 
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
8.7 Switching Characteristics - I2C  
Unless otherwise specified, all limits ensured for TA = 25°C, VDD = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOLTAGE LEVELS  
VIH  
VIL  
Input high voltage  
Input low voltage  
0.7ˣVDD  
V
V
0.3ˣVDD  
VOL  
Output low voltage (3 mA sink  
current)  
0.4  
V
V
HYS  
Hysteresis  
0.1ˣVDD  
8
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
8.8 Typical Characteristics  
Common test conditions (unless specified otherwise): Sensor capacitor: 1 layer, 20.9 x 13.9 mm, Bourns CMH322522-180KL  
sensor inductor with L=18 µH and 33 pF 1% COG/NP0 Target: Grounded aluminum plate (176 x 123 mm), Channel =  
Channel 0 (continuous mode) CLKIN = 40 MHz, CHx_FIN_SEL = b01, CHx_FREF_DIVIDER = b00 0000 0001  
CH0_RCOUNT = 0xFFFF, SETTLECOUNT_CH0 = 0x0100, DRIVE_CURRENT_CH0 = 0x7800.  
3.25  
3.225  
3.2  
3.25  
VDD = 2.7 V  
VDD = 3 V  
VDD = 3.3 V  
VDD = 3.6 V  
3.2  
3.175  
3.15  
3.125  
3.1  
3.15  
3.1  
-40°C  
-20°C  
0°C  
50°C  
85°C  
100°C  
125°C  
3.075  
3.05  
25°C  
3.05  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Temperature (°C)  
VDD (V)  
D003  
D004  
Includes 1.57 mA sensor current  
–40°C to +125°C  
Includes 1.57 mA sensor current  
Figure 2. Active Mode IDD vs. Temperature  
Figure 3. Active Mode IDD vs. VDD  
60  
55  
50  
45  
40  
35  
30  
25  
65  
60  
55  
50  
45  
40  
35  
30  
25  
VDD = 2.7 V  
VDD = 3 V  
VDD = 3.3 V  
VDD = 3.6 V  
-40°C  
-20°C  
0°C  
25°C  
50°C  
85°C  
100°C  
125°C  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Temperature (°C)  
VDD (V)  
D005  
D006  
–40°C to +125°C  
Figure 4. Sleep Mode IDD vs. Temperature  
Figure 5. Sleep Mode IDD vs. VDD  
1.4  
1.2  
1
1.6  
1.4  
1.2  
1
VDD = 2.7 V  
VDD = 3 V  
VDD = 3.3 V  
VDD = 3.6 V  
-40°C  
-20°C  
0°C  
25°C  
50°C  
85°C  
100°C  
125°C  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Temperature (°C)  
VDD (V)  
D007  
D008  
–40°C to +125°C  
Figure 6. Shutdown Mode IDD vs. Temperature  
Figure 7. Shutdown Mode IDD vs. VDD  
Copyright © 2015, Texas Instruments Incorporated  
9
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
Common test conditions (unless specified otherwise): Sensor capacitor: 1 layer, 20.9 x 13.9 mm, Bourns CMH322522-180KL  
sensor inductor with L=18 µH and 33 pF 1% COG/NP0 Target: Grounded aluminum plate (176 x 123 mm), Channel =  
Channel 0 (continuous mode) CLKIN = 40 MHz, CHx_FIN_SEL = b01, CHx_FREF_DIVIDER = b00 0000 0001  
CH0_RCOUNT = 0xFFFF, SETTLECOUNT_CH0 = 0x0100, DRIVE_CURRENT_CH0 = 0x7800.  
43.4  
43.39  
43.38  
43.37  
43.36  
43.35  
43.34  
43.33  
43.32  
43.41  
VDD = 2.7 V  
VDD = 3 V  
VDD = 3.3 V  
VDD = 3.6 V  
-40°C  
-20°C  
0°C  
25°C  
50°C  
85°C  
100°C  
125°C  
43.4  
43.39  
43.38  
43.37  
43.36  
43.35  
43.34  
43.33  
43.32  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Temperature (°C)  
VDD (V)  
D009  
D010  
–40°C to +125°C  
Data based on 1 unit  
Figure 8. Internal Oscillator Frequency vs. Temperature  
Figure 9. Internal Oscillator Frequency vs. VDD  
10  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
9 Detailed Description  
9.1 Overview  
The FDC2112, FDC2114, FDC2212, and FDC2214 are high-resolution, multichannel capacitance-to-digital  
converters for implementing capacitive sensing solutions. In contrast to traditional switched-capacitance  
architectures, the FDC2112, FDC2114, FDC2212, and FDC2214 employ an L-C resonator, also known as L-C  
tank, as a sensor. The narrow-band architecture allows unprecedented EMI immunity and greatly reduced noise  
floor when compared to other capacitive sensing solutions.  
Using this approach, a change in capacitance of the L-C tank can be observed as a shift in the resonant  
frequency. Using this principle, the FDC is a capacitance-to-digital converter (FDC) that measures the oscillation  
frequency of an LC resonator. The device outputs a digital value that is proportional to frequency. This frequency  
measurement can be converted to an equivalent capacitance  
9.2 Functional Block Diagrams  
3.3 V  
3.3 V  
FDC2112 / FDC2212  
VDD  
CLKIN  
VDD  
40 MHz  
0.1 F 1 F  
GND  
Int. Osc.  
IN0A  
IN0B  
SD  
Resonant  
circuit driver  
GPIO  
GPIO  
INTB  
L
C
MCU  
3.3 V  
Cap  
Sensor 0  
Core  
I2C  
GND  
ADDR  
SDA  
IN1A  
IN1B  
I2C  
peripheral  
Resonant  
circuit driver  
L
C
SCL  
Cap  
Sensor 1  
Copyright © 2016, Texas Instruments Incorporated  
Figure 10. Block Diagram for the FDC2112 and FDC2212  
Copyright © 2015, Texas Instruments Incorporated  
11  
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Functional Block Diagrams (continued)  
3.3 V  
3.3 V  
FDC2114 / FDC2214  
VDD  
GND  
CLKIN  
VDD  
40 MHz  
0.1 F 1 F  
Int. Osc.  
IN0A  
IN0B  
SD  
Resonant  
circuit driver  
GPIO  
GPIO  
INTB  
L
C
MCU  
3.3 V  
Cap  
Sensor 0  
Core  
I2C  
GND  
ADDR  
SDA  
IN3A  
IN3B  
I2C  
peripheral  
Resonant  
circuit driver  
L
C
SCL  
Cap  
Sensor 3  
Copyright © 2016, Texas Instruments Incorporated  
Figure 11. Block Diagrams for the FDC2114 and FDC2214  
The FDC is composed of front-end resonant circuit drivers, followed by a multiplexer that sequences through the  
active channels, connecting them to the core that measures and digitizes the sensor frequency (fSENSOR). The  
core uses a reference frequency (fREF) to measure the sensor frequency. fREF is derived from either an internal  
reference clock (oscillator), or an externally supplied clock. The digitized output for each channel is proportional  
to the ratio of fSENSOR/fREF. The I2C interface is used to support device configuration and to transmit the digitized  
frequency values to a host processor. The FDC can be placed in shutdown mode, saving current, using the SD  
pin. The INTB pin may be configured to notify the host of changes in system status.  
9.3 Feature Description  
9.3.1 Clocking Architecture  
Figure 12 shows the clock dividers and multiplexers of the FDC.  
12  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
Feature Description (continued)  
IN0A  
Cap  
Sensor 0  
L
L
÷ m  
CH0_FIN_SEL (0x14)  
÷ m  
tfIN0  
t
t
fSENSOR0  
IN0B  
IN1A  
Cap  
tfIN1  
Sensor 1  
fSENSOR1  
IN1B  
CH1_FIN_SEL (0x15)  
÷ m  
tfINt  
IN2A(1)  
Cap  
L
L
tfIN2(1)t  
Sensor 2(1)  
(1)  
(1)  
IN2B(1)  
IN3A(1)  
fSENSOR2  
CH2_FIN_SEL (0x16)(1)  
Cap  
÷ m  
tfIN3(1)t  
Sensor 3(1)  
IN3B(1)  
fSENSOR3  
CONFIG (0x1A)  
MUX_CONFIG  
(0x1B)  
CH3_FIN_SEL (0x17)(1)  
Core  
÷ n  
tfREF0  
t
CH0_FREF_DIVIDER (0x14)  
REF_CLK_SRC  
(0x1A)  
÷ n  
tfREF1  
t
fCLKIN  
CLKIN  
tfREF  
t
CH1_FREF_DIVIDER (0x15)  
tfCLK  
t
tfINT  
Int. Osc.  
t
÷ n  
tfREF2(1)t  
CH2_FREF_DIVIDER (0x16)(1)  
tfREF3(1)t  
Data Output  
÷ n  
CONFIG (0x1A)  
MUX_CONFIG  
(0x1B)  
CH3_FREF_DIVIDER (0x17)(1)  
Copyright © 2016, Texas Instruments Incorporated  
(1) FDC2114 / FDC2214 only  
Figure 12. Clocking Diagram  
In Figure 12, the key clocks are fIN, fREF, and fCLK. fCLK is selected from either the internal clock source or external  
clock source (CLKIN) . The frequency measurement reference clock, fREF, is derived from the fCLK source. It is  
recommended that precision applications use an external master clock that offers the stability and accuracy  
requirements needed for the application. The internal oscillator may be used in applications that require low cost  
and do not require high precision. The fINx clock is derived from sensor frequency for a channel x, fSENSORx. fREFx  
and fINx must meet the requirements listed in Table 1, depending on whether fCLK (master clock) is the internal or  
external clock.  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Feature Description (continued)  
Table 1. Clock Configuration Requirements  
SET  
CHx_SETTLECO  
UNT to  
VALID fREFx  
RANGE (MHz)  
VALID fINx  
RANGE  
SET CHx_FIN_SEL  
SET  
MODE(1)  
CLKIN SOURCE  
(2)  
to  
CHx_RCOUNT to  
Multi-channel  
Internal  
External  
fREFx 55  
fREFx 40  
fREFx 35  
Differential sensor  
configuration:  
b01: 0.01MHz to  
8.75MHz (divide by 1)  
b10: 5MHz to 10MHz  
(divide by 2)  
Single-channel  
Either external or  
internal  
< fREFx /4  
> 3  
> 8  
Single-ended sensor  
configuration  
b10: 0.01MHz to  
10MHz (divide by 2)  
(1) Channels 2 and 3 are only available for FDC2114 and FDC2214.  
(2) Refer to Sensor Configuration for information on differential and single-ended sensor configurations.  
Table 2 shows the clock configuration registers for all channels.  
Table 2. Clock Configuration Registers  
CHANNEL(1)  
CLOCK  
REGISTER  
FIELD [ BIT(S) ]  
REF_CLK_SRC [9]  
VALUE  
fCLK = Master  
Clock Source  
CONFIG, addr  
0x1A  
b0 = internal oscillator is used as the  
master clock  
b1 = external clock source is used as the  
master clock  
All  
fREF0  
fREF1  
fREF2  
fREF3  
fIN0  
CLOCK_DIVIDER CH0_FREF_DIVIDER [9:0]  
S_CH0, addr 0x14  
fREF0 = fCLK / CH0_FREF_DIVIDER  
fREF1 = fCLK / CH1_FREF_DIVIDER  
fREF2 = fCLK / CH2_FREF_DIVIDER  
fREF3 = fCLK / CH3_FREF_DIVIDER  
fIN0 = fSENSOR0 / CH0_FIN_SEL  
fIN1 = fSENSOR1 / CH1_FIN_SEL  
fIN2 = fSENSOR2 / CH2_FIN_SEL  
fIN3 = fSENSOR3 / CH3_FIN_SEL  
0
1
2
3
0
1
2
3
CLOCK_DIVIDER CH1_FREF_DIVIDER [9:0]  
S_CH1, addr 0x15  
CLOCK_DIVIDER CH2_FREF_DIVIDER [9:0]  
S_CH2, addr 0x16  
CLOCK_DIVIDER CH3_FREF_DIVIDER [9:0]  
S_CH3, addr 0x17  
CLOCK_DIVIDER CH0_FIN_SEL [13:12]  
S_CH0, addr 0x14  
fIN1  
CLOCK_DIVIDER CH1_FIN_SEL [13:12]  
S_CH1, addr 0x15  
fIN2  
CLOCK_DIVIDER CH2_FIN_SEL [13:12]  
S_CH2, addr 0x16  
fIN3  
CLOCK_DIVIDER CH3_FIN_SEL [13:12]  
S_CH3, addr 0x17  
(1) Channels 2 and 3 are only available for FDC2114 and FDC2214  
9.3.2 Multi-Channel and Single-Channel Operation  
The multi-channel package of the FDC enables the user to save board space and support flexible system design.  
For example, temperature drift can often cause a shift in component values, resulting in a shift in resonant  
frequency of the sensor. Using a second sensor as a reference provides the capability to cancel out a  
temperature shift. When operated in multi-channel mode, the FDC sequentially samples the active channels. In  
single-channel mode, the FDC samples a single channel, which is selectable. Table 3 shows the registers and  
values that are used to configure either multi-channel or single-channel modes.  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
 
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
Table 3. Single- and Multi-Channel Configuration Registers  
MODE  
REGISTER  
FIELD [ BIT(S) ]  
VALUE  
00 = chan 0  
01 = chan 1  
10 = chan 2  
11 = chan 3  
CONFIG, addr 0x1A  
ACTIVE_CHAN [15:14]  
Single channel  
Multi-channel  
0 = continuous conversion on a  
single channel (default)  
MUX_CONFIG addr 0x1B  
MUX_CONFIG addr 0x1B  
AUTOSCAN_EN [15]  
AUTOSCAN_EN [15]  
1 = continuous conversion on  
multiple channels  
00 = Ch0, Ch 1  
MUX_CONFIG addr 0x1B  
RR_SEQUENCE [14:13]  
01 = Ch0, Ch 1, Ch 2  
10 = Ch0, CH1, Ch2, Ch3  
The digitized sensor measurement for each channel (DATAx) represents the ratio of the sensor frequency to the  
reference frequency.  
The data output (DATAx) of the FDC2112 and FDC2114 is expressed as the 12 MSBs of a 16-bit result:  
ƒSENSORx * 212  
DATAx  
=
ƒREFx  
(1)  
(2)  
The data output (DATAx) of the FDC2212 and FDC2214 is expressed as:  
ƒSENSORx * 228  
DATAx =  
ƒREFx  
Table 4 illustrates the registers that contain the fixed point sample values for each channel.  
Table 4. Sample Data Registers  
CHANNEL(1)  
REGISTER(2)  
FIELD NAME [ BITS(S) ] AND  
VALUE (FDC2112, FDC2114)  
FIELD NAME [ BITS(S) ] AND VALUE  
(3)(4)  
(FDC2212, FDC2214)  
DATA_CH0, addr 0x00  
DATA0 [11:0]:  
DATA0 [27:16]:  
12 bits of the 16 bit result.  
0x000 = under range  
0xfff = over range  
12 MSBs of the 28 bit result  
0
DATA_LSB_CH0, addr 0x01  
DATA_CH1, addr 0x02  
Not applicable  
DATA0 [15:0]:  
16 LSBs of the 28 bit conversion result  
DATA1 [11:0]:  
DATA1 [27:16]:  
12 bits of the 16 bit result.  
0x000 = under range  
0xfff = over range  
12 MSBs of the 28 bit result  
1
2
DATA_LSB_CH1, addr 0x03  
DATA_CH2, addr 0x04  
Not applicable  
DATA1 [15:0]:  
16 LSBs of the 28 bit conversion result  
DATA2 [11:0]:  
DATA2 [27:16]:  
12 MSBs of the 28 bit result  
12 bits of the 16 bit result.  
0x000 = under range  
0xfff = over range  
DATA_LSB_CH2, addr 0x05  
Not applicable  
DATA2 [15:0]:  
16 LSBs of the 28 bit conversion result  
(1) Channels 2 and 3 are only available for FDC2114 and FDC2214.  
(2) The DATA_CHx.DATAx register must always be read first, followed by the DATA_LSB_ CHx.DATAx register of the same channel to  
ensure data coherency.  
(3) A DATA value of 0x0000000 = under range for FDC2212/FDC2214.  
(4) A DATA value of 0xFFFFFFF = over range for FDC2212/FDC2214.  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Table 4. Sample Data Registers (continued)  
CHANNEL(1)  
REGISTER(2)  
FIELD NAME [ BITS(S) ] AND  
VALUE (FDC2112, FDC2114)  
FIELD NAME [ BITS(S) ] AND VALUE  
(3)(4)  
(FDC2212, FDC2214)  
DATA_CH3, addr 0x06  
DATA3 [11:0]:  
DATA3 [27:16]:  
12 bits of the 16 bit result.  
0x000 = under range  
0xfff = over range  
12 MSBs of the 28 bit result  
DATA3 [15:0]:  
3
DATA_LSB_CH3, addr 0x07  
Not applicable  
16 LSBs of the 28 bit conversion result  
When the FDC sequences through the channels in multi-channel mode, the dwell time interval for each channel  
is the sum of three parts:  
1. sensor activation time  
2. conversion time  
3. channel switch delay  
The sensor activation time is the amount of settling time required for the sensor oscillation to stabilize, as shown  
in Figure 13. The settling wait time is programmable and should be set to a value that is long enough to allow  
stable oscillation. The settling wait time for channel x is given by:  
tSx = (CHX_SETTLECOUNTˣ16)/fREFx  
(3)  
Table 5 illustrates the registers and values for configuring the settling time for each channel.  
Channel 0  
Sensor  
Activation  
Channel 0  
Conversion  
Channel  
switch delay Sensor  
Activation  
Channel 1  
Channel 1  
Conversion  
Channel  
switch delay Sensor  
Activation  
Channel 0  
Channel 0  
Channel 1  
Figure 13. Multi-channel Mode Sequencing  
Active Channel  
Sensor Signal  
Sensor  
Activation  
Conversion  
Conversion  
Conversion  
Amplitude  
Correction  
Amplitude  
Correction  
Amplitude  
Correction  
Figure 14. Single-channel Mode Sequencing  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
Table 5. Settling Time Register Configuration  
CHANNEL(1)  
REGISTER  
FIELD  
CONVERSION TIME(2)  
(CH0_SETTLECOUNT*16)/fREF0  
(CH1_SETTLECOUNT*16)/fREF1  
(CH2_SETTLECOUNT*16)/fREF2  
(CH3_SETTLECOUNT*16)/fREF3  
0
1
2
3
SETTLECOUNT_CH0, addr 0x10  
SETTLECOUNT_CH1, addr 0x11  
SETTLECOUNT_CH2, addr 0x12  
SETTLECOUNT_CH3, addr 0x13  
CH0_SETTLECOUNT [15:0]  
CH1_SETTLECOUNT [15:0]  
CH2_SETTLECOUNT [15:0]  
CH3_SETTLECOUNT [15:0]  
(1) Channels 2 and 3 are available only in the FDC2114 and FDC2214.  
(2) fREFx is the reference frequency configured for the channel.  
The SETTLECOUNT for any channel x must satisfy:  
CHx_SETTLECOUNT > Vpk × fREFx × C × π2 / (32 × IDRIVEX)  
where  
Vpk = Peak oscillation amplitude at the programmed IDRIVE setting  
fREFx = Reference frequency for Channel x  
C = sensor capacitance including parasitic PCB capacitance  
IDRIVEX = setting programmed into the IDRIVE register in amps  
(4)  
Round the result to the next highest integer (for example, if Equation 4 recommends a minimum value of  
6.08, program the register to 7 or higher).  
The conversion time represents the number of reference clock cycles used to measure the sensor frequency.  
It is set by the CHx_RCOUNT register for the channel. The conversion time for any channel x is:  
tCx = (CHx_RCOUNT ˣ 16 + 4) /fREFx  
(5)  
The reference count value must be chosen to support the required number of effective bits (ENOB). For  
example, if an ENOB of 13 bits is required, then a minimum conversion time of 213 = 8192 clock cycles is  
required. 8192 clock cycles correspond to a CHx_RCOUNT value of 0x0200.  
Table 6. Conversion Time Configuration Registers, Channels 0 - 3(1)  
CHANNEL  
REGISTER  
RCOUNT_CH0, addr 0x08  
RCOUNT_CH1, addr 0x09  
RCOUNT_CH2, addr 0x0A  
RCOUNT_CH3, addr 0x0B  
FIELD [ BIT(S) ]  
CH0_RCOUNT [15:0]  
CONVERSION TIME  
(CH0_RCOUNT*16)/fREF0  
0
1
2
3
CH1_RCOUNT [15:0]  
CH2_RCOUNT [15:0]  
CH3_RCOUNT [15:0]  
(CH1_RCOUNT*16)/fREF1  
(CH2_RCOUNT*16)/fREF2  
(CH3_RCOUNT*16)/fREF3  
(1) Channels 2 and 3 are available only for FDC2114 and FDC2214.  
The typical channel switch delay time between the end of conversion and the beginning of sensor activation of  
the subsequent channel is:  
Channel Switch Delay = 692 ns + 5 / fref  
(6)  
The deterministic conversion time of the FDC allows data polling at a fixed interval. For example, if the  
programmed RCOUNT setting is 512 FREF cycles and SETTLECOUNT is 128 FREF cycles, then one conversion  
takes 1.8ms (sensor-activation time) + 3.2ms (conversion time) + 0.75ms (channel-switch delay) = 16.75ms per  
channel. If the FDC is configured for dual-channel operation by setting AUTOSCAN_EN = 1 and  
RR_SEQUENCE = 00, then one full set of conversion results will be available from the data registers every  
33.5ms.  
A data ready flag (DRDY) is also available for interrupt driven system designs (see the STATUS register  
description in Register Maps).  
9.3.2.1 Gain and Offset (FDC2112, FDC2114 only)  
The FDC2112 and FDC2114 have internal 16-bit data converters, but the standard conversion output word width  
is only 12 bits; therefore only 12 of the 16 bits are available from the data registers. By default, the gain feature is  
disabled and the DATA registers contain the 12 MSBs of the 16-bit word. However, it is possible to shift the data  
output by up to 4 bits. Figure 15 illustrates the segment of the 16-bit sample that is reported for each possible  
gain setting.  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
MSB  
LSB  
Conversion result  
Output_gain = 0x3  
Output_gain = 0x2  
Output_gain = 0x1  
15  
12  
11  
11  
11  
8
7
4
3
0
0
0
11  
0
Output_gain = 0x0  
(default)  
11  
0
11  
0
Data available in DATA_MSB_CHx.DATA_CHx [11:0]  
Figure 15. Conversion Data Output Gain  
For systems in which the sensor signal variation is less than 25% of the full-scale range, the FDC can report  
conversion results with higher resolution by setting the Output Gain. The Output Gain is applied to all device  
channels. An output gain can be used to apply a 2-bit, 3-bit, or 4-bit shift to the output code for all channels,  
allowing access to the 4 LSBs of the original 16-bit result. The MSBs of the sample are shifted out when a gain is  
applied. Do not use the output gain if the MSBs of any active channel are toggling, as the MSBs for that channel  
will be lost when gain is applied.  
Example: If the conversion result for a channel is 0x07A3, with OUTPUT_GAIN=0x0, the reported output code is  
0x07A. If OUTPUT_GAIN is set to 0x3 in the same condition, then the reported output code is 0x7A3. The  
original 4 MSBs (0x0) are no longer accessible.  
Table 7. Output Gain Register (FDC2112 and FDC2114 only)  
EFFECTIVE  
RESOLUTION (BITS)  
CHANNEL(1)  
REGISTER  
FIELD [ BIT(S) ]  
VALUES  
OUTPUT RANGE  
00 (default): Gain =1 (0 bits  
shift)  
12  
100% full scale  
01: Gain = 4 (2 bits left  
shift)  
14  
15  
16  
25% full scale  
12.5% full scale  
6.25% full scale  
RESET_DEV, addr  
0x1C  
OUTPUT_GAIN [  
10:9 ]  
All  
10: Gain = 8 (3 bits left  
shift)  
11 : Gain = 16 (4 bits left  
shift)  
(1) Channels 2 and 3 are available for FDC2114 only.  
An offset value may be subtracted from each DATA value to compensate for a frequency offset or maximize the  
dynamic range of the sample data. The offset values should be < fSENSORx_MIN / fREFx. Otherwise, the offset might  
be so large that it masks the LSBs which are changing.  
18  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
Table 8. Frequency Offset Registers  
CHANNEL(  
REGISTER  
FIELD [ BIT(S) ]  
VALUE  
1)  
0
1
2
3
OFFSET_CH0, addr 0x0C  
OFFSET_CH1, addr 0x0D  
OFFSET_CH2, addr 0x0E  
OFFSET_CH3, addr 0x0F  
CH0_OFFSET [ 15:0 ]  
fOFFSET0 = CH0_OFFSET * (fREF0/216  
fOFFSET1 = CH1_OFFSET * (fREF1/216  
fOFFSET2 = CH2_OFFSET * (fREF2/216  
fOFFSET3 = CH3_OFFSET * (fREF3/216  
)
)
)
)
CH1_OFFSET [ 15:0 ]  
CH2_OFFSET [ 15:0 ]  
CH3_OFFSET [ 15:0 ]  
(1) Channels 2 and 3 are only available for FDC2114 and FDC2214.  
The sensor capacitance CSENSE of a differential sensor configuration can be determined by:  
1
CSENSOR  
=
- C  
2
L *(2p* ƒSENSORx  
)
where  
C = parallel sensor capacitance (see Figure 55)  
(7)  
The FDC2112 and FDC2114 sensor frequency fSENSORx can be determined by:  
CHxOFFSET  
216  
DATAx  
2(12+OUTPUT_GAIN)  
ƒSENSORx = CHx_FIN_SEL*ƒREFx  
*
+
«
÷
where  
DATAx = Conversion result from the DATA_CHx register  
CHx_OFFSET = Offset value set in the OFFSET_CHx register  
OUTPUT_GAIN = output multiplication factor set in the RESET_DEVICE.OUTPUT_GAIN register  
(8)  
(9)  
The FDC2212 and FDC2214 sensor frequency fSENSORx can be determined by:  
CHx_FIN_SEL * ƒREFx *DATAx  
ƒSENSORx  
=
228  
(FDC2212, FDC2214)  
where  
DATAx = Conversion result from the DATA_CHx register  
9.3.3 Current Drive Control Registers  
The registers listed in Table 9 are used to control the sensor drive current. The recommendations listed in the  
last column of the table should be followed.  
Table 9. Current Drive Control Registers  
CHANNEL(1)  
REGISTER  
CONFIG, addr 0x1A  
FIELD [ BIT(S) ]  
VALUE  
SENSOR_ACTIVATE_SEL [11]  
Sets current drive for sensor activation.  
Recommended value is b0 (Full Current  
mode).  
All  
CONFIG, addr 0x1A  
HIGH_CURRENT_DRV [6]  
b0 = normal current drive (1.5 mA)  
b1 = Increased current drive (> 1.5 mA)  
for Ch 0 in single channel mode only.  
Cannot be used in multi-channel mode.  
0
0
1
DRIVE_CURRENT_CH0, addr 0x1E CH0_IDRIVE [15:11]  
DRIVE_CURRENT_CH1, addr 0x1F CH1_IDRIVE [15:11]  
Drive current used during the settling and  
conversion time for Ch. 0. Set such that  
1.2V sensor oscillation amplitude (pk) ≤  
1.8V  
Drive current used during the settling and  
conversion time for Ch. 1. Set such that  
1.2V sensor oscillation amplitude (pk) ≤  
1.8V  
(1) Channels 2 and 3 are available for FDC2114 and FDC2214 only.  
Copyright © 2015, Texas Instruments Incorporated  
19  
 
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Table 9. Current Drive Control Registers (continued)  
CHANNEL(1)  
REGISTER  
FIELD [ BIT(S) ]  
VALUE  
DRIVE_CURRENT_CH2, addr 0x20 CH2_IDRIVE [15:11]  
Drive current used during the settling and  
conversion time for Ch. 2. Set such that  
1.2V sensor oscillation amplitude (pk) ≤  
1.8V  
2
DRIVE_CURRENT_CH3, addr 0x21 CH3_IDRIVE [15:11]  
Drive current used during the settling and  
conversion time for Ch. 3 . Set such that  
1.2V sensor oscillation amplitude (pk) ≤  
1.8V  
3
The CHx_IDRIVE field should be programmed such that the sensor oscillates at an amplitude between 1.2Vpk  
(VSENSORMIN) and 1.8Vpk (VSENSORMAX). An IDRIVE value of 00000 corresponds to 16 µA, and IDRIVE = b11111  
corresponds to 1563 µA.  
A high sensor current drive mode can be enabled to drive sensor coils with > 1.5mA on channel 0, only in single  
channel mode. This feature can be used when the sensor minimum recommended oscillation amplitude of 1.2V  
cannot be achieved with the highest IDRIVE setting. Set the HIGH_CURRENT_DRV register bit to b1 to enable  
this mode.  
9.3.4 Device Status Registers  
The registers listed in Table 10 may be used to read device status.  
Table 10. Status Registers  
CHANNEL(1)  
REGISTER  
FIELDS [ BIT(S) ]  
VALUES  
Refer to Register Maps section  
for a description of the individual  
status bits.  
12 fields are available that  
contain various status bits [ 15:0 ]  
All  
STATUS, addr 0x18  
12 fields are available that are  
Refer to Register Maps section  
All  
STATUS_CONFIG, addr 0x19  
used to configure status reporting for a description of the individual  
[ 15:0 ] error configuration bits.  
(1) Channels 2 and 3 are available for FDC2114 and FDC2114 only.  
See the STATUS and STATUS_CONFIG register description in the Register Map section. These registers can  
be configured to trigger an interrupt on the INTB pin for certain events. The following conditions must be met:  
1. The error or status register must be unmasked by enabling the appropriate register bit in the  
STATUS_CONFIG register  
2. The INTB function must be enabled by setting CONFIG.INTB_DIS to 0  
When a bit field in the STATUS register is set, the entire STATUS register content is held until read or until the  
DATA_CHx register is read. Reading also de-asserts INTB.  
Interrupts are cleared by one of the following events:  
1. Entering Sleep Mode  
2. Power-on reset (POR)  
3. Device enters Shutdown Mode (SD is asserted)  
4. S/W reset  
5. I2C read of the STATUS register: Reading the STATUS register will clear any error status bit set in STATUS  
along with the ERR_CHAN field and de-assert INTB  
Setting register CONFIG.INTB_DIS to b1 disables the INTB function and holds the INTB pin high.  
9.3.5 Input Deglitch Filter  
The input deglitch filter suppresses EMI and ringing above the sensor frequency. It does not impact the  
conversion result as long as its bandwidth is configured to be above the maximum sensor frequency. The input  
deglitch filter can be configured in MUX_CONFIG.DEGLITCH register field as shown in Table 11. For optimal  
performance, it is recommended to select the lowest setting that exceeds the sensor oscillation frequency. For  
example, if the maximum sensor frequency is 2.0 MHz, choose MUX_CONFIG.DEGLITCH = b100 (3.3 MHz).  
20  
Copyright © 2015, Texas Instruments Incorporated  
 
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
Table 11. Input Deglitch Filter Register  
MUX_CONFIG.DEGLITCH (addr 0x1B) REGISTER  
VALUE  
CHANNEL(1)  
DEGLITCH FREQUENCY  
ALL  
ALL  
ALL  
ALL  
001  
100  
101  
011  
1 MHz  
3.3 MHz  
10 MHz  
33 MHz  
(1) Channels 2 and 3 are available for FDC2114 / FDC2214 only.  
9.4 Device Functional Modes  
9.4.1 Start-up Mode  
When the FDC powers up, it enters into Sleep Mode and will wait for configuration. Once the device is  
configured, exit Sleep Mode by setting CONFIG.SLEEP_MODE_EN to b0.  
It is recommended to configure the FDC while in Sleep Mode. If a setting on the FDC needs to be changed,  
return the device to Sleep Mode, change the appropriate register, and then exit Sleep Mode.  
9.4.2 Normal (Conversion) Mode  
When operating in the normal (conversion) mode, the FDC is periodically sampling the frequency of the  
sensor(s) and generating sample outputs for the active channel(s).  
9.4.3 Sleep Mode  
Sleep Mode is entered by setting the CONFIG.SLEEP_MODE_EN register field to 1. While in this mode, the  
register contents are maintained. To exit Sleep Mode, set the CONFIG.SLEEP_MODE_EN register field to 0.  
After setting CONFIG.SLEEP_MODE_EN to b0, sensor activation for the first conversion will begin after 16,384  
fINT clock cycles. While in Sleep Mode the I2C interface is functional so that register reads and writes can be  
performed. While in Sleep Mode, no conversions are performed. In addition, entering Sleep Mode will clear any  
error condition and de-assert the INTB pin.  
9.4.4 Shutdown Mode  
When the SD pin is set to high, the FDC will enter Shutdown Mode. Shutdown Mode is the lowest power state.  
To exit Shutdown Mode, set the SD pin to low. Entering Shutdown Mode will return all registers to their default  
state.  
While in Shutdown Mode, no conversions are performed. In addition, entering Shutdown Mode will clear any  
error condition and de-assert the INTB pin. While the device is in Shutdown Mode, is not possible to read to or  
write from the device via the I2C interface.  
9.4.4.1 Reset  
The FDC can be reset by writing to RESET_DEV.RESET_DEV. Conversion will stop and all register values will  
return to their default value. This register bit will always return 0b when read.  
9.5 Programming  
The FDC device uses an I2C interface to access control and data registers.  
9.5.1 I2C Interface Specifications  
The FDC uses an extended start sequence with I2C for register access. The maximum speed of the I2C  
interface is 400 kbit/s. This sequence follows the standard I2C 7-bit slave address followed by an 8-bit pointer  
register byte to set the register address. When the ADDR pin is set low, the FDC I2C address is 0x2A; when the  
ADDR pin is set high, the FDC I2C address is 0x2B. The ADDR pin must not change state after the FDC exits  
Shutdown Mode.  
Copyright © 2015, Texas Instruments Incorporated  
21  
 
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Programming (continued)  
1
9
1
9
SCL  
SDA  
A6 A5 A4 A3 A2 A1 A0 R/W  
R7 R6 R5 R4 R3 R2 R1 R0  
Start by  
Master  
Ack by  
Slave  
Ack by  
Slave  
Frame 1  
Serial Bus Address Byte  
from Master  
Frame 2  
Slave Register  
Address  
1
9
1
9
SCL  
SDA  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
Ack by  
Slave  
Ack by Stop by  
Slave  
Master  
Frame 3  
Data MSB from  
Master  
Frame 4  
Data LSB from  
Master  
Figure 16. I2C Write Register Sequence  
1
9
1
9
SCL  
SDA  
A6 A5 A4 A3 A2 A1 A0 R/W  
R7 R6 R5 R4 R3 R2 R1 R0  
Start by  
Master  
Ack by  
Slave  
Ack by  
Slave  
Frame 1  
Serial Bus Address Byte  
from Master  
Frame 2  
Slave Register  
Address  
1
9
1
9
1
9
SCL  
SDA  
A6 A5 A4 A3 A2 A1 A0 R/W  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
Start by  
Master  
Ack by  
Slave  
Ack by  
Master  
Nack by Stop by  
Master Master  
Frame 3  
Serial Bus Address Byte  
from Master  
Frame 4  
Data MSB from  
Slave  
Frame 5  
Data LSB from  
Slave  
Figure 17. I2C Read Register Sequence  
9.6 Register Maps  
9.6.1 Register List  
Fields indicated with Reserved must be written only with indicated values. Improper device operation may occur  
otherwise. The R/W column indicates the Read-Write status of the corresponding field. A ‘R/W’ entry indicates  
read and write capability, a ‘R’ indicates read-only, and a ‘W’ indicates write-only.  
Figure 18. Register List  
ADDRESS  
NAME  
DATA_CH0  
DEFAULT VALUE  
0x0000  
DESCRIPTION  
0x00  
Channel 0 Conversion Result and status (FDC2112 / FDC2114 only)  
Channel 0 MSB Conversion Result and status (FDC2212 / FDC2214 only)  
0x0000  
0x01  
0x02  
DATA_LSB_CH0  
DATA_CH1  
0x0000  
Channel 0 LSB Conversion Result. Must be read after Register address  
0x00 (FDC2212 / FDC2214 only)  
0x0000  
0x0000  
0x0000  
Channel 1 Conversion Result and status (FDC2112 / FDC2114 only)  
Channel 1 MSB Conversion Result and status (FDC2212 / FDC2214 only)  
0x03  
0x04  
DATA_LSB_CH1  
DATA_CH2  
Channel 1 LSB Conversion Result. Must be read after Register address  
0x02 (FDC2212 / FDC2214 only)  
0x0000  
0x0000  
0x0000  
Channel 2 Conversion Result and status (FDC2114 only)  
Channel 2 MSB Conversion Result and status (FDC2214 only)  
0x05  
DATA_LSB_CH2  
Channel 2 LSB Conversion Result. Must be read after Register address  
0x04 (FDC2214 only)  
22  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
ADDRESS  
NAME  
DATA_CH3  
DEFAULT VALUE  
0x0000  
DESCRIPTION  
0x06  
Channel 3 Conversion Result and status (FDC2114 only)  
0x0000  
Channel 3 MSB Conversion Result and status (FDC2214 only)  
0x07  
DATA_LSB_CH3  
0x0000  
Channel 3 LSB Conversion Result. Must be read after Register address  
0x06 (FDC2214 only)  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1E  
0x1F  
0x20  
0x21  
0x7E  
0x7F  
RCOUNT_CH0  
0x0080  
0x0080  
0x0080  
0x0080  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x2801  
0x020F  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x5449  
0x3054  
0x3055  
Reference Count setting for Channel 0  
RCOUNT_CH1  
Reference Count setting for Channel 1  
RCOUNT_CH2  
Reference Count setting for Channel 2 (FDC2114 / FDC2214 only)  
Reference Count setting for Channel 3 (FDC2114 / FDC2214 only)  
Offset value for Channel 0 (FDC2112 / FDC2114 only)  
Offset value for Channel 1 (FDC2112 / FDC2114 only)  
Offset value for Channel 2 (FDC2114 only)  
Offset value for Channel 3 (FDC2114 only)  
Channel 0 Settling Reference Count  
RCOUNT_CH3  
OFFSET_CH0  
OFFSET_CH1  
OFFSET_CH2  
OFFSET_CH3  
SETTLECOUNT_CH0  
SETTLECOUNT_CH1  
SETTLECOUNT_CH2  
SETTLECOUNT_CH3  
CLOCK_DIVIDERS_CH0  
CLOCK_DIVIDERS_CH1  
CLOCK_DIVIDERS_CH2  
CLOCK_DIVIDERS_CH3  
STATUS  
Channel 1 Settling Reference Count  
Channel 2 Settling Reference Count (FDC2114 / FDC2214 only)  
Channel 3 Settling Reference Count (FDC2114 / FDC2214 only)  
Reference divider settings for Channel 0  
Reference divider settings for Channel 1  
Reference divider settings for Channel 2 (FDC2114 / FDC2214 only)  
Reference divider settings for Channel 3 (FDC2114 / FDC2214 only)  
Device Status Reporting  
STATUS_CONFIG  
CONFIG  
Device Status Reporting Configuration  
Conversion Configuration  
MUX_CONFIG  
Channel Multiplexing Configuration  
RESET_DEV  
Reset Device  
DRIVE_CURRENT_CH0  
DRIVE_CURRENT_CH1  
DRIVE_CURRENT_CH2  
DRIVE_CURRENT_CH3  
MANUFACTURER_ID  
DEVICE_ID  
Channel 0 sensor current drive configuration  
Channel 1 sensor current drive configuration  
Channel 2 sensor current drive configuration (FDC2114 / FDC2214 only)  
Channel 3 sensor current drive configuration (FDC2114 / FDC2214 only)  
Manufacturer ID  
Device ID (FDC2112, FDC2114 only)  
Device ID (FDC2212, FDC2214 only)  
9.6.2 Address 0x00, DATA_CH0  
Figure 19. Address 0x00, DATA_CH0  
15  
7
14  
6
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
CH0_ERR_WD CH0_ERR_AW  
DATA0  
5
4
3
DATA0  
Table 12. Address 0x00, DATA_CH0 Field Descriptions  
Bit  
Field  
Type  
R
Reset  
00  
Description  
15:14  
13  
RESERVED  
Reserved.  
CH0_ERR_WD  
R
0
Channel 0 Conversion Watchdog Timeout Error Flag. Cleared by  
reading the bit.  
12  
CH0_ERR_AW  
R
R
0
Channel 0 Amplitude Warning. Cleared by reading the bit.  
11:0  
DATA0 (FDC2112 / FDC2114 only)  
0000 0000 Channel 0 Conversion Result  
0000  
DATA0[27:16] (FDC2212 /  
FDC2214 only)  
Copyright © 2015, Texas Instruments Incorporated  
23  
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
9.6.3 Address 0x01, DATA_LSB_CH0 (FDC2212 / FDC2214 only)  
Figure 20. Address 0x01, DATA_LSB_CH0  
15  
14  
13  
12  
11  
10  
9
1
8
0
DATA0  
7
6
5
4
3
2
DATA0  
Table 13. Address 0x01, DATA_CH0 Field Descriptions  
Bit  
15:0  
Field  
DATA0[15:0]  
Type  
Reset  
Description  
R
0000 0000 Channel 0 Conversion Result  
0000  
9.6.4 Address 0x02, DATA_CH1  
Figure 21. Address 0x02, DATA_CH1  
15  
7
14  
6
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
CH1_ERR_WD CH1_ERR_AW  
DATA1  
5
4
3
DATA1  
Table 14. Address 0x02, DATA_CH1 Field Descriptions  
Bit  
Field  
Type  
R
Reset  
00  
Description  
15:14  
13  
RESERVED  
Reserved.  
CH1_ERR_WD  
R
0
Channel 1 Conversion Watchdog Timeout Error Flag. Cleared by  
reading the bit.  
12  
CH1_ERR_AW  
R
R
0
Channel 1 Amplitude Warning. Cleared by reading the bit.  
11:0  
DATA1 (FDC2112 / FDC2114 only)  
0000 0000 Channel 1 Conversion Result  
0000  
DATA1[27:16] (FDC2212 /  
FDC2214 only)  
9.6.5 Address 0x03, DATA_LSB_CH1 (FDC2212 / FDC2214 only)  
Figure 22. Address 0x03, DATA_LSB_CH1  
15  
14  
13  
12  
11  
10  
9
1
8
0
DATA1  
DATA1  
7
6
5
4
3
2
Table 15. Address 0x03, DATA_CH1 Field Descriptions  
Bit  
15:0  
Field  
DATA1[15:0]  
Type  
Reset  
Description  
R
0000 0000 Channel 1 Conversion Result  
0000  
9.6.6 Address 0x04, DATA_CH2 (FDC2114, FDC2214 only)  
Figure 23. Address 0x04, DATA_CH2  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
CH2_ERR_WD CH2_ERR_AW  
DATA2  
7
6
5
4
3
DATA2  
24  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
Table 16. Address 0x04, DATA_CH2 Field Descriptions  
Bit  
15:14  
13  
Field  
Type  
R
Reset  
00  
Description  
RESERVED  
Reserved.  
CH2_ERR_WD  
R
0
Channel 2 Conversion Watchdog Timeout Error Flag. Cleared by  
reading the bit.  
12  
CH2_ERR_AW  
R
R
0
Channel 2 Amplitude Warning. Cleared by reading the bit.  
11:0  
DATA2 (FDC2112 / FDC2114 only)  
0000 0000 Channel 2 Conversion Result  
0000  
DATA2[27:16] (FDC2212 /  
FDC2214 only)  
9.6.7 Address 0x05, DATA_LSB_CH2 (FDC2214 only)  
Figure 24. Address 0x05, DATA_LSB_CH2  
15  
14  
13  
12  
11  
10  
9
1
8
0
DATA2  
DATA2  
7
6
5
4
3
2
Table 17. Address 0x05, DATA_CH2 Field Descriptions  
Bit  
15:0  
Field  
DATA2[15:0]  
Type  
Reset  
Description  
R
0000 0000 Channel 2 Conversion Result  
0000  
9.6.8 Address 0x06, DATA_CH3 (FDC2114, FDC2214 only)  
Figure 25. Address 0x06, DATA_CH3  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
CH3_ERR_WD CH3_ERR_AW  
DATA3  
7
6
5
4
3
DATA3  
Table 18. Address 0x06, DATA_CH3 Field Descriptions  
Bit  
Field  
Type  
R
Reset  
00  
Description  
15:14  
13  
RESERVED  
Reserved.  
CH3_ERR_WD  
R
0
Channel 3 Conversion Watchdog Timeout Error Flag. Cleared by  
reading the bit.  
12  
CH3_ERR_AW  
R
R
0
Channel 3 Amplitude Warning. Cleared by reading the bit.  
11:0  
DATA3 (FDC2112 / FDC2114 only)  
0000 0000 Channel 3 Conversion Result  
0000  
DATA3[27:16] (FDC2212 /  
FDC2214 only)  
9.6.9 Address 0x07, DATA_LSB_CH3 (FDC2214 only)  
Figure 26. Address 0x07, DATA_LSB_CH3  
15  
14  
13  
12  
11  
10  
9
1
8
0
DATA3  
DATA3  
7
6
5
4
3
2
Copyright © 2015, Texas Instruments Incorporated  
25  
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Table 19. Address 0x07, DATA_CH3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
DATA3[15:0]  
R
0000 0000 Channel 3 Conversion Result  
0000  
9.6.10 Address 0x08, RCOUNT_CH0  
Figure 27. Address 0x08, RCOUNT_CH0  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH0_RCOUNT  
CH0_RCOUNT  
7
6
5
4
3
2
Table 20. Address 0x08, RCOUNT_CH0 Field Descriptions  
Bit  
15:0  
Field  
CH0_RCOUNT  
Type  
Reset  
Description  
R/W  
0000 0000  
1000 0000  
Channel 0 Reference Count Conversion Interval Time  
0x0000-0x00FF: Reserved  
0x0100-0xFFFF: Conversion Time (tC0) =  
(CH0_RCOUNTˣ16)/fREF0  
9.6.11 Address 0x09, RCOUNT_CH1  
Figure 28. Address 0x09, RCOUNT_CH1  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH1_RCOUNT  
CH1_RCOUNT  
7
6
5
4
3
2
Table 21. Address 0x09, RCOUNT_CH1 Field Descriptions  
Bit  
15:0  
Field  
CH1_RCOUNT  
Type  
Reset  
Description  
R/W  
0000 0000  
1000 0000  
Channel 1 Reference Count Conversion Interval Time  
0x0000-0x00FF: Reserved  
0x0100-0xFFFF: Conversion Time (tC1)=  
(CH1_RCOUNTˣ16)/fREF1  
9.6.12 Address 0x0A, RCOUNT_CH2 (FDC2114, FDC2214 only)  
Figure 29. Address 0x0A, RCOUNT_CH2  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH2_RCOUNT  
CH2_RCOUNT  
7
6
5
4
3
2
Table 22. Address 0x0A, RCOUNT_CH2 Field Descriptions  
Bit  
15:0  
Field  
CH2_RCOUNT  
Type  
Reset  
Description  
R/W  
0000 0000  
1000 0000  
Channel 2 Reference Count Conversion Interval Time  
0x0000-0x00FF: Reserved  
0x0100-0xFFFF: Conversion Time (tC2)=  
(CH2_RCOUNTˣ16)/fREF2  
26  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
9.6.13 Address 0x0B, RCOUNT_CH3 (FDC2114, FDC2214 only)  
Figure 30. Address 0x0B, RCOUNT_CH3  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
CH3_RCOUNT  
5
4
3
2
CH3_RCOUNT  
Table 23. Address 0x0B, RCOUNT_CH3 Field Descriptions  
Bit  
15:0  
Field  
CH3_RCOUNT  
Type  
Reset  
Description  
R/W  
0000 0000  
1000 0000  
Channel 3 Reference Count Conversion Interval Time  
0x0000-0x00FF: Reserved  
0x0100-0xFFFF: Conversion Time (tC3)=  
(CH3_RCOUNTˣ16)/fREF3  
9.6.14 Address 0x0C, OFFSET_CH0 (FDC21112 / FDC2114 only)  
Figure 31. Address 0x0C, CH0_OFFSET  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH0_OFFSET  
CH0_OFFSET  
7
6
5
4
3
2
Table 24. CH0_OFFSET Field Descriptions  
Bit  
15:0  
Field  
CH0_OFFSET  
Type  
Reset  
Description  
R/W  
0000 0000  
0000 0000  
Channel 0 Conversion Offset. fOFFSET_0  
(CH0_OFFSET/216)*fREF0  
=
9.6.15 Address 0x0D, OFFSET_CH1 (FDC21112 / FDC2114 only)  
Figure 32. Address 0x0D, OFFSET_CH1  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH1_OFFSET  
CH1_OFFSET  
7
6
5
4
3
2
Table 25. Address 0x0D, OFFSET_CH1 Field Descriptions  
Bit  
15:0  
Field  
CH1_OFFSET  
Type  
Reset  
Description  
R/W  
0000 0000  
0000 0000  
Channel 1 Conversion Offset. fOFFSET_1  
(CH1_OFFSET/216)*fREF1  
=
9.6.16 Address 0x0E, OFFSET_CH2 (FDC2114 only)  
Figure 33. Address 0x0E, OFFSET_CH2  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH2_OFFSET  
CH2_OFFSET  
7
6
5
4
3
2
Copyright © 2015, Texas Instruments Incorporated  
27  
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Table 26. Address 0x0E, OFFSET_CH2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
CH2_OFFSET  
R/W  
0000 0000  
0000 0000  
Channel 2 Conversion Offset. fOFFSET_2  
(CH2_OFFSET/216)*fREF2  
=
9.6.17 Address 0x0F, OFFSET_CH3 (FDC2114 only)  
Figure 34. Address 0x0F, OFFSET_CH3  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH3_OFFSET  
CH3_OFFSET  
7
6
5
4
3
2
Table 27. Address 0x0F, OFFSET_CH3 Field Descriptions  
Bit  
15:0  
Field  
CH3_OFFSET  
Type  
Reset  
Description  
R/W  
0000 0000 Channel 3 Conversion Offset. fOFFSET_3  
0000 0000 (CH3_OFFSET/216)*fREF3  
=
9.6.18 Address 0x10, SETTLECOUNT_CH0  
Figure 35. Address 0x10, SETTLECOUNT_CH0  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH0_SETTLECOUNT  
7
6
5
4
3
2
CH0_SETTLECOUNT  
Table 28. Address 0x11, SETTLECOUNT_CH0 Field Descriptions  
Bit  
15:0  
Field  
CH0_SETTLECOUNT  
Type  
Reset  
Description  
R/W  
0000 0000 Channel 0 Conversion Settling  
0000 0000 The FDC will use this settling time to allow the LC sensor to  
stabilize before initiation of a conversion on Channel 0.  
If the amplitude has not settled prior to the conversion start, an  
Amplitude warning will be generated if reporting of this type of  
warning is enabled.  
b0000 0000 0000 0000: Settle Time (tS0)= 32 ÷ fREF0  
b0000 0000 0000 0001: Settle Time (tS0)= 32 ÷ fREF0  
b0000 0000 0000 0010 - b1111 1111 1111 1111: Settle Time  
(tS0)= (CH0_SETTLECOUNTˣ16) ÷ fREF0  
9.6.19 Address 0x11, SETTLECOUNT_CH1  
Figure 36. Address 0x11, SETTLECOUNT_CH1  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH1_SETTLECOUNT  
7
6
5
4
3
2
CH1_SETTLECOUNT  
28  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
Table 29. Address 0x12, SETTLECOUNT_CH1 Field Descriptions  
Bit  
Field  
CH1_SETTLECOUNT  
Type  
Reset  
Description  
15:0  
R/W  
0000 0000 Channel 1 Conversion Settling  
0000 0000 The FDC will use this settling time to allow the LC sensor to  
stabilize before initiation of a conversion on a Channel 1.  
If the amplitude has not settled prior to the conversion start, an  
Amplitude warning will be generated if reporting of this type of  
warning is enabled.  
b0000 0000 0000 0000: Settle Time (tS1)= 32 ÷ fREF1  
b0000 0000 0000 0001: Settle Time (tS1)= 32 ÷ fREF1  
b0000 0000 0000 0010 - b1111 1111 1111 1111: Settle Time  
(tS1)= (CH1_SETTLECOUNTˣ16) ÷ fREF1  
9.6.20 Address 0x12, SETTLECOUNT_CH2 (FDC2114, FDC2214 only)  
Figure 37. Address 0x12, SETTLECOUNT_CH2  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH2_SETTLECOUNT  
7
6
5
4
3
2
CH2_SETTLECOUNT  
Table 30. Address 0x12, SETTLECOUNT_CH2 Field Descriptions  
Bit  
15:0  
Field  
CH2_SETTLECOUNT  
Type  
Reset  
Description  
R/W  
0000 0000 Channel 2 Conversion Settling  
0000 0000 The FDC will use this settling time to allow the LC sensor to  
stabilize before initiation of a conversion on Channel 2.  
If the amplitude has not settled prior to the conversion start, an  
Amplitude warning will be generated if reporting of this type of  
warning is enabled.  
b0000 0000 0000 0000: Settle Time (tS2)= 32 ÷ fREF2  
b0000 0000 0000 0001: Settle Time (tS2)= 32 ÷ fREF2  
b0000 0000 0000 0010 - b1111 1111 1111 1111: Settle Time  
(tS2)= (CH2_SETTLECOUNTˣ16) ÷ fREF2  
9.6.21 Address 0x13, SETTLECOUNT_CH3 (FDC2114, FDC2214 only)  
Figure 38. Address 0x13, SETTLECOUNT_CH3  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH3_SETTLECOUNT  
7
6
5
4
3
2
CH3_SETTLECOUNT  
Table 31. Address 0x13, SETTLECOUNT_CH3 Field Descriptions  
Bit  
15:0  
Field  
CH3_SETTLECOUNT  
Type  
Reset  
Description  
R/W  
0000 0000 Channel 3 Conversion Settling  
0000 0000 The FDC will use this settling time to allow the LC sensor to  
stabilize before initiation of a conversion on Channel 3.  
If the amplitude has not settled prior to the conversion start, an  
Amplitude warning will be generated if reporting of this type of  
warning is enabled  
b0000 0000 0000 0000: Settle Time (tS3)= 32 ÷ fREF3  
b0000 0000 0000 0001: Settle Time (tS3)= 32 ÷ fREF3  
b0000 0000 0000 0010 - b1111 1111 1111 1111: Settle Time  
(tS3)= (CH3_SETTLECOUNTˣ16) ÷ fREF3  
Copyright © 2015, Texas Instruments Incorporated  
29  
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
9.6.22 Address 0x14, CLOCK_DIVIDERS_CH0  
Figure 39. Address 0x14, CLOCK_DIVIDERS_CH0  
15  
7
14  
6
13  
12  
11  
10  
9
8
RESERVED  
CH0_FIN_SEL  
RESERVED  
CH0_FREF_DIVIDER  
5
4
3
2
1
0
CH0_FREF_DIVIDER  
Table 32. Address 0x14, CLOCK_DIVIDERS_CH0 Field Descriptions  
Bit  
Field  
Type  
Reset  
00  
Description  
15:14  
RESERVED  
R/W  
Reserved. Set to b00.  
00  
Channel 0 Sensor frequency select  
for differential sensor configuration:  
b01: divide by 1. Choose for sensor frequencies between  
0.01MHz and 8.75MHz  
13:12  
CH0_FIN_SEL  
R/W  
b10: divide by 2. Choose for sensor frequencies between 5MHz  
and 10MHz  
for single-ended sensor configuration:  
b10: divide by 2. Choose for sensor frequencies between  
0.01MHz and 10MHz  
11:10  
9:0  
RESERVED  
R/W  
R/W  
00  
Reserved. Set to b00.  
00 0000  
0000  
Channel 0 Reference Divider Sets the divider for Channel 0  
reference. Use this to scale the maximum conversion frequency.  
b00’0000’0000: Reserved. Do not use.  
CH0_FREF_DIVIDER  
CH0_FREF_DIVIDERb00’0000’0001: fREF0  
=
fCLK/CH0_FREF_DIVIDER  
9.6.23 Address 0x15, CLOCK_DIVIDERS_CH1  
Figure 40. Address 0x15, CLOCK_DIVIDERS_CH1  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
CH1_FIN_SEL  
RESERVED  
CH1_FREF_DIVIDER  
7
6
5
4
3
2
1
0
CH1_FREF_DIVIDER  
Table 33. Address 0x15, CLOCK_DIVIDERS_CH1 Field Descriptions  
Bit  
Field  
Type  
Reset  
00  
Description  
15:14  
RESERVED  
R/W  
Reserved. Set to b00.  
0000  
Channel 1 Sensor frequency select  
for differential sensor configuration:  
b01: divide by 1. Choose for sensor frequencies between  
0.01MHz and 8.75MHz  
13:12  
CH1_FIN_SEL  
R/W  
b10: divide by 2. Choose for sensor frequencies between 5MHz  
and 10MHz  
for single-ended sensor configuration:  
b10: divide by 2. Choose for sensor frequencies between  
0.01MHz and 10MHz  
11:10  
9:0  
RESERVED  
R/W  
R/W  
00  
Reserved. Set to b00.  
00 0000  
0000  
Channel 1 Reference Divider Sets the divider for Channel 1  
reference. Use this to scale the maximum conversion frequency.  
b00’0000’0000: Reserved. Do not use.  
CH1_FREF_DIVIDER  
CH1_FREF_DIVIDERb00’0000’0001: fREF1  
=
fCLK/CH1_FREF_DIVIDER  
30  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
9.6.24 Address 0x16, CLOCK_DIVIDERS_CH2 (FDC2114, FDC2214 only)  
Figure 41. Address 0x16, CLOCK_DIVIDERS_CH2  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
CH2_FIN_SEL  
RESERVED  
CH2_FREF_DIVIDER  
7
6
5
4
3
2
1
0
CH2_FREF_DIVIDER  
Table 34. Address 0x16, CLOCK_DIVIDERS_CH2 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
00  
Description  
15:14  
13:12  
RESERVED  
CH2_FIN_SEL  
Reserved. Set to b00.  
0000  
Channel 2 Sensor frequency select  
for differential sensor configuration:  
b01: divide by 1. Choose for sensor frequencies between  
0.01MHz and 8.75MHz  
b10: divide by 2. Choose for sensor frequencies between 5MHz  
and 10MHz  
for single-ended sensor configuration:  
b10: divide by 2. Choose for sensor frequencies between  
0.01MHz and 10MHz  
11:10  
9:0  
RESERVED  
R/W  
R/W  
00  
Reserved. Set to b00.  
CH2_FREF_DIVIDER  
00 0000  
0000  
Channel 2 Reference Divider Sets the divider for Channel 2  
reference. Use this to scale the maximum conversion frequency.  
b00’0000’0000: Reserved. Do not use.  
CH2_FREF_DIVIDER b00’0000’0001: fREF2  
=
fCLK/CH2_FREF_DIVIDER  
9.6.25 Address 0x17, CLOCK_DIVIDERS_CH3 (FDC2114, FDC2214 only)  
Figure 42. Address 0x17, CLOCK_DIVIDERS_CH3  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
CH3_FIN_SEL  
RESERVED  
CH3_FREF_DIVIDER  
7
6
5
4
3
2
1
0
CH3_FREF_DIVIDER  
Table 35. Address 0x17, CLOCK_DIVIDERS_CH3  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
00  
Description  
15:14  
13:12  
RESERVED  
Reserved. Set to b00.  
CH3_FIN_SEL  
0000  
Channel 3 Sensor frequency select  
for differential sensor configuration:  
b01: divide by 1. Choose for sensor frequencies between  
0.01MHz and 8.75MHz  
b10: divide by 2. Choose for sensor frequencies between 5MHz  
and 10MHz  
for single-ended sensor configuration:  
b10: divide by 2. Choose for sensor frequencies between  
0.01MHz and 10MHz  
11:10  
9:0  
RESERVED  
R/W  
R/W  
00  
Reserved. Set to b00.  
CH3_FREF_DIVIDER  
00 0000  
0000  
Channel 3 Reference Divider Sets the divider for Channel 3  
reference. Use this to scale the maximum conversion frequency.  
b00’0000’0000: reserved  
CH3_FREF_DIVIDER b00’0000’0001: fREF3  
=
fCLK/CH3_FREF_DIVIDER  
Copyright © 2015, Texas Instruments Incorporated  
31  
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
9.6.26 Address 0x18, STATUS  
Figure 43. Address 0x18, STATUS  
15  
7
14  
13  
5
12  
11  
10  
9
8
ERR_CHAN  
RESERVED  
RESERVED  
ERR_WD  
RESERVED  
6
4
3
2
1
0
RESERVED  
DRDY  
CH0_UNREA  
DCONV  
CH1_  
CH2_  
CH3_  
UNREADCONV UNREADCONV UNREADCONV  
Table 36. Address 0x18, STATUS Field Descriptions  
Bit  
Field  
ERR_CHAN  
Type  
Reset  
Description  
15:14  
R
00  
Error Channel  
Indicates which channel has generated a Flag or Error. Once  
flagged, any reported error is latched and maintained until either  
the STATUS register or the DATA_CHx register corresponding  
to the Error Channel is read.  
b00: Channel 0 is source of flag or error.  
b01: Channel 1 is source of flag or error.  
b10: Channel 2 is source of flag or error (FDC2114, FDC2214  
only).  
b11: Channel 3 is source of flag or error (FDC2114, FDC2214  
only).  
13:12  
11  
RESERVED  
ERR_WD  
R
R
00  
0
Reserved  
Watchdog Timeout Error  
b0: No Watchdog Timeout error was recorded since the last  
read of the STATUS register.  
b1: An active channel has generated a Watchdog Timeout error.  
Refer to STATUS.ERR_CHAN field to determine which channel  
is the source of this error.  
10  
ERR_AHW  
ERR_ALW  
R
R
0
0
Amplitude High Warning  
b0: No Amplitude High warning was recorded since the last read  
of the STATUS register.  
b1: An active channel has generated an Amplitude High  
warning. Refer to STATUS.ERR_CHAN field to determine which  
channel is the source of this warning.  
9
Amplitude Low Warning  
b0: No Amplitude Low warning was recorded since the last read  
of the STATUS register.  
b1: An active channel has generated an Amplitude Low warning.  
Refer to STATUS.ERR_CHAN field to determine which channel  
is the source of this warning.  
8:7  
6
RESERVED  
DRDY  
R
R
00  
0
Reserved  
Data Ready Flag.  
b0: No new conversion result was recorded in the STATUS  
register.  
b1: A new conversion result is ready. When in Single Channel  
Conversion, this indicates a single conversion is available. When  
in sequential mode, this indicates that a new conversion result  
for all active channels is now available.  
3
2
1
CH0_UNREADCONV  
CH1_ UNREADCONV  
CH2_ UNREADCONV  
R
R
R
0
0
0
Channel 0 Unread Conversion b0: No unread conversion is  
present for Channel 0.  
b1: An unread conversion is present for Channel 0.  
Read Register DATA_CH0 to retrieve conversion results.  
Channel 1 Unread Conversion b0: No unread conversion is  
present for Channel 1.  
b1: An unread conversion is present for Channel 1.  
Read Register DATA_CH1 to retrieve conversion results.  
Channel 2 Unread Conversion b0: No unread conversion is  
present for Channel 2.  
b1: An unread conversion is present for Channel 2.  
Read Register DATA_CH2 to retrieve conversion results  
(FDC2114, FDC2214 only)  
32  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
Table 36. Address 0x18, STATUS Field Descriptions (continued)  
Bit  
Field  
CH3_ UNREADCONV  
Type  
Reset  
Description  
0
R
0
Channel 3 Unread Conversion  
b0: No unread conversion is present for Channel 3.  
b1: An unread conversion is present for Channel 3.  
Read Register DATA_CH3 to retrieve conversion results  
(FDC2114, FDC2214 only)  
9.6.27 Address 0x19, ERROR_CONFIG  
Figure 44. Address 0x19, ERROR_CONFIG  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
RESERVED  
WD_  
ERR2OUT  
AH_WARN2OU AL_WARN2OU  
RESERVED  
T
4
T
3
7
6
5
2
1
0
WD_ERR2INT  
RESERVED  
DRDY_2INT  
Table 37. Address 0x19, ERROR_CONFIG  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
00  
Description  
15:14  
13  
RESERVED  
Reserved (set to b000)  
WD_ ERR2OUT  
0
Watchdog Timeout Error to Output Register  
b0: Do not report Watchdog Timeout errors in the DATA_CHx  
registers.  
b1: Report Watchdog Timeout errors in the  
DATA_CHx.CHx_ERR_WD register field corresponding to the  
channel that generated the error.  
12  
11  
AH_WARN2OUT  
AL_WARN2OUT  
R/W  
R/W  
0
0
Amplitude High Warning to Output Register  
b0:Do not report Amplitude High warnings in the DATA_CHx  
registers.  
b1: Report Amplitude High warnings in the  
DATA_CHx.CHx_ERR_AW register field corresponding to the  
channel that generated the warning.  
Amplitude Low Warning to Output Register  
b0: Do not report Amplitude Low warnings in the DATA_CHx  
registers.  
b1: Report Amplitude High warnings in the  
DATA_CHx.CHx_ERR_AW register field corresponding to the  
channel that generated the warning.  
10:6  
5
RESERVED  
R/W  
R/W  
0 0000  
0
Reserved (set to b0 0000)  
WD_ERR2INT  
Watchdog Timeout Error to INTB b0: Do not report Under-range  
errors by asserting INTB pin and STATUS register.  
b1: Report Watchdog Timeout errors by asserting INTB pin and  
updating STATUS.ERR_WD register field.  
4:1  
0
Reserved  
R/W  
R/W  
0000  
0
Reserved (set to b000)  
DRDY_2INT  
Data Ready Flag to INTB b0: Do not report Data Ready Flag by  
asserting INTB pin and STATUS register.  
b1: Report Data Ready Flag by asserting INTB pin and updating  
STATUS. DRDY register field.  
9.6.28 Address 0x1A, CONFIG  
Figure 45. Address 0x1A, CONFIG  
15  
14  
6
13  
12  
11  
10  
9
8
ACTIVE_CHAN  
SLEEP_MODE  
_EN  
RESERVED  
SENSOR_ACTI  
VATE_SEL  
RESERVED  
REF_CLK_SR  
C
RESERVED  
7
5
4
3
2
1
0
Copyright © 2015, Texas Instruments Incorporated  
33  
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
INTB_DIS  
HIGH_CURRE  
NT_DRV  
RESERVED  
Table 38. Address 0x1A, CONFIG Field Descriptions  
Bit  
Field  
ACTIVE_CHAN  
Type  
Reset  
Description  
15:14  
R/W  
00  
Active Channel Selection  
Selects channel for continuous conversions when  
MUX_CONFIG.SEQUENTIAL is 0.  
b00: Perform continuous conversions on Channel 0  
b01: Perform continuous conversions on Channel 1  
b10: Perform continuous conversions on Channel 2 (FDC2114,  
FDC2214 only)  
b11: Perform continuous conversions on Channel 3 (FDC2114,  
FDC2214 only)  
13  
SLEEP_MODE_EN  
R/W  
1
Sleep Mode Enable  
Enter or exit low power Sleep Mode.  
b0: Device is active.  
b1: Device is in Sleep Mode.  
12  
11  
RESERVED  
R/W  
R/W  
0
1
Reserved. Set to b1.  
SENSOR_ACTIVATE_SEL  
Sensor Activation Mode Selection.  
Set the mode for sensor initialization.  
b0: Full Current Activation Mode – the FDC will drive maximum  
sensor current for a shorter sensor activation time.  
b1: Low Power Activation Mode – the FDC uses the value  
programmed in DRIVE_CURRENT_CHx during sensor  
activation to minimize power consumption.  
10  
9
RESERVED  
R/W  
R/W  
0
0
Reserved. Set to b1.  
REF_CLK_SRC  
Select Reference Frequency Source  
b0: Use Internal oscillator as reference frequency  
b1: Reference frequency is provided from CLKIN pin.  
8
7
RESERVED  
INTB_DIS  
R/W  
R/W  
0
0
Reserved. Set to b0.  
INTB Disable  
b0: INTB pin will be asserted when status register updates.  
b1: INTB pin will not be asserted when status register updates  
6
HIGH_CURRENT_DRV  
R/W  
0
High Current Sensor Drive  
b0: The FDC will drive all channels with normal sensor current  
(1.5mA max).  
b1: The FDC will drive channel 0 with current >1.5mA.  
This mode is not supported if AUTOSCAN_EN = b1 (multi-  
channel mode)  
5:0  
RESERVED  
R/W  
00 0001  
Reserved Set to b00’0001  
9.6.29 Address 0x1B, MUX_CONFIG  
Figure 46. Address 0x1B, MUX_CONFIG  
15  
14  
13  
12  
11  
10  
9
8
0
AUTOSCAN_E  
N
RR_SEQUENCE  
RESERVED  
7
6
5
4
3
2
1
RESERVED  
DEGLITCH  
Table 39. Address 0x1B, MUX_CONFIG Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
AUTOSCAN_EN  
R/W  
0
Auto-Scan Mode Enable  
b0: Continuous conversion on the single channel selected by  
CONFIG.ACTIVE_CHAN register field.  
b1: Auto-Scan conversions as selected by  
MUX_CONFIG.RR_SEQUENCE register field.  
34  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
Table 39. Address 0x1B, MUX_CONFIG Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
14:13  
RR_SEQUENCE  
R/W  
00  
Auto-Scan Sequence Configuration Configure multiplexing  
channel sequence. The FDC will perform a single conversion on  
each channel in the sequence selected, and then restart the  
sequence continuously.  
b00: Ch0, Ch1  
b01: Ch0, Ch1, Ch2 (FDC2114, FDC2214 only)  
b10: Ch0, Ch1, Ch2, Ch3 (FDC2114, FDC2214 only)  
b11: Ch0, Ch1  
12:3  
2:0  
RESERVED  
DEGLITCH  
R/W  
R/W  
00 0100  
0001  
Reserved. Must be set to 00 0100 0001  
111  
Input deglitch filter bandwidth.  
Select the lowest setting that exceeds the oscillation tank  
oscillation frequency.  
b001: 1MHz  
b100: 3.3MHz  
b101: 10MHz  
b111: 33MHz  
9.6.30 Address 0x1C, RESET_DEV  
Figure 47. Address 0x1C, RESET_DEV  
15  
14  
13  
12  
11  
10  
OUTPUT_GAIN  
9
1
8
RESET_DEV  
RESERVED  
RESERVED  
7
6
5
4
3
2
0
RESERVED  
Table 40. Address 0x1C, RESET_DEV Field Descriptions  
Bit  
Field  
RESET_DEV  
Type  
Reset  
Description  
15  
R/W  
0
Device Reset  
Write b1 to reset the device. Will always readback 0.  
14:11  
10:9  
RESERVED  
R/W  
R/W  
0000  
00  
Reserved. Set to b0000  
OUTPUT_GAIN  
Output gain control (FDC2112, FDC2114 only)  
00: Gain =1 (0 bits shift)  
01: Gain = 4 (2 bits shift)  
10: Gain = 8 (3 bits shift)  
11: Gain = 16 (4 bits shift)  
8:0  
RESERVED  
R/W  
0 0000  
0000  
Reserved, Set to b0 0000 0000  
9.6.31 Address 0x1E, DRIVE_CURRENT_CH0  
Figure 48. Address 0x1E, DRIVE_CURRENT_CH0  
15  
14  
13  
12  
11  
10  
9
8
0
CH0_IDRIVE  
RESERVED  
7
6
5
4
3
2
1
RESERVED  
Copyright © 2015, Texas Instruments Incorporated  
35  
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Table 41. Address 0x1E, DRIVE_CURRENT_CH0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
CH0_IDRIVE  
R/W  
0000 0  
Channel 0 Sensor drive current  
This field defines the Drive Current used during the settling +  
conversion time of Channel 0 sensor clock. Set such that 1.2V ≤  
sensor oscillation amplitude (pk) 1.8V  
00000: 0.016mA  
00001: 0.018mA  
00010: 0.021mA  
00011: 0.025mA  
00100: 0.028mA  
00101: 0.033mA  
00110: 0.038mA  
00111: 0.044mA  
01000: 0.052mA  
01001: 0.060mA  
01010: 0.069mA  
01011: 0.081mA  
01100: 0.093mA  
01101: 0.108mA  
01110: 0.126mA  
01111: 0.146mA  
10000: 0.169mA  
10001: 0.196mA  
10010: 0.228mA  
10011: 0.264mA  
10100: 0.307mA  
10101: 0.356mA  
10110: 0.413mA  
10111: 0.479mA  
11000: 0.555mA  
11001: 0.644mA  
11010: 0.747mA  
11011: 0.867mA  
11100: 1.006mA  
11101: 1.167mA  
11110: 1.354mA  
11111: 1.571mA  
10:0  
RESERVED  
000 0000 Reserved  
0000  
9.6.32 Address 0x1F, DRIVE_CURRENT_CH1  
Figure 49. Address 0x1F, DRIVE_CURRENT_CH1  
15  
14  
13  
12  
11  
10  
9
8
0
CH1_IDRIVE  
RESERVED  
7
6
5
4
3
2
1
RESERVED  
Table 42. Address 0x1F, DRIVE_CURRENT_CH1 Field Descriptions  
Bit  
15:11  
Field  
Type  
Reset  
Description  
CH1_IDRIVE  
R/W  
0000 0  
Channel 1 Sensor drive current  
This field defines the Drive Current used during the settling +  
conversion time of Channel 1 sensor clock. Set such that 1.2V ≤  
sensor oscillation amplitude (pk) 1.8V  
00000: 0.016mA  
00001: 0.018mA  
00010: 0.021mA  
...  
11111: 1.571mA  
10:0  
RESERVED  
-
000 0000 Reserved  
0000  
36  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
9.6.33 Address 0x20, DRIVE_CURRENT_CH2 (FDC2114 / FDC2214 only)  
Figure 50. Address 0x20, DRIVE_CURRENT_CH2  
15  
14  
13  
12  
11  
10  
9
8
0
CH2_IDRIVE  
RESERVED  
7
6
5
4
3
2
1
RESERVED  
Table 43. Address 0x20, DRIVE_CURRENT_CH2 Field Descriptions  
Bit  
15:11  
Field  
Type  
Reset  
Description  
CH2_IDRIVE  
R/W  
0000 0  
Channel 2 Sensor drive current  
This field defines the Drive Current to be used during the settling  
+ conversion time of Channel 2 sensor clock. Set such that 1.2V  
sensor oscillation amplitude (pk) 1.8V  
00000: 0.016mA  
00001: 0.018mA  
00010: 0.021mA  
...  
11111: 1.571mA  
10:0  
RESERVED  
000 0000 Reserved  
0000  
9.6.34 Address 0x21, DRIVE_CURRENT_CH3 (FDC2114 / FDC2214 only)  
Figure 51. Address 0x21, DRIVE_CURRENT_CH3  
15  
14  
13  
12  
11  
10  
9
8
0
CH3_IDRIVE  
RESERVED  
7
6
5
4
3
2
1
RESERVED  
Table 44. DRIVE_CURRENT_CH3 Field Descriptions  
Bit  
15:11  
Field  
CH3_IDRIVE  
Type  
Reset  
Description  
R/W  
0000 0  
Channel 3 Sensor drive current  
This field defines the Drive Current to be used during the settling  
+ conversion time of Channel 3 sensor clock. Set such that 1.2V  
sensor oscillation amplitude (pk) 1.8V  
00000: 0.016mA  
00001: 0.018mA  
00010: 0.021mA  
...  
11111: 1.571mA  
10:0  
RESERVED  
000 0000 Reserved  
0000  
9.6.35 Address 0x7E, MANUFACTURER_ID  
Figure 52. Address 0x7E, MANUFACTURER_ID  
15  
14  
13  
12  
11  
10  
9
1
8
0
MANUFACTURER_ID  
7
6
5
4
3
2
MANUFACTURER_ID  
Copyright © 2015, Texas Instruments Incorporated  
37  
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Table 45. Address 0x7E, MANUFACTURER_ID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
MANUFACTURER_ID  
R
0101 0100 Manufacturer ID = 0x5449  
0100 1001  
9.6.36 Address 0x7F, DEVICE_ID  
Figure 53. Address 0x7F, DEVICE_ID  
7
6
5
4
3
2
1
0
DEVICE_ID  
Table 46. Address 0x7F, DEVICE_ID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
DEVICE_ID  
R
0011 0000 Device ID  
0101 0100 0x3054 (FDC2112, FDC2114 only)  
0x3055 (FDC2212, FDC2214 only)  
38  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 Sensor Configuration  
The FDC supports two sensor configurations. Both configurations use an LC tank to set the frequency of  
oscillation. A typical choice is an 18 μH shielded SMD inductor in parallel with a 33 pF capacitor, which result in a  
6.5 MHz oscillation frequency. In the single-ended configuration in Figure 54, a conductive plate is connected  
IN0A. Together with a target object, the conductive plate forms a variable capacitor.  
Target object  
Sensor plate  
FDC211x / FDC221x  
IN0A  
L
C
18 H  
33 pF  
IN0B  
Copyright © 2016, Texas Instruments Incorporated  
Figure 54. Single-ended Sensor Configuration  
In the differential sensor configuration in Figure 55, one conductive plate is connected to IN0A, and a second  
conductive plate is connected to IN0B. Together, they form a variable capacitor. When using an single-ended  
sensor configuration, set CHx_FIN_SEL to b10 (divide by 2).  
Target object  
FDC211x / FDC221x  
Sensor plate (1)  
IN0A  
L
C
18 H  
33 pF  
IN0B  
Sensor plate (2)  
Copyright © 2016, Texas Instruments Incorporated  
Figure 55. Differential Sensor Configuration  
The single-ended configuration allows higher sensing range than the differential configuration for a given total  
sensor plate area. In applications in which high sensitivity at close proximity is desired, the differential  
configuration performs better than the single-ended configuration.  
10.1.2 Shield  
in order to minimize interference from external objects, some applications require an additional plate which acts  
as a shield. The shield can either be:  
actively driven shield: The shield is a buffered signal of the INxA pin. The signal is buffered by an external  
amplifier with a gain of 1.  
Copyright © 2015, Texas Instruments Incorporated  
39  
 
 
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Application Information (continued)  
passive shield: The shield is connected to GND. Adding a passive shield decreases sensitivity of the sensor,  
but is dependent on the distance between the distance between the sensing plate and the shield. The  
distance between the sensing plate and the shield should be adjusted to achieve the required sensitivity  
10.2 Typical Application  
The FDC can be used to measure liquid level in non-conductive containers. Due to its very high excitation rate  
capability, it is able to measure soapy water, ink, soap, and other conductive liquids. Capacitive sensors can be  
attached to the outside of the container or be located remotely from the container, allowing for contactless  
measurements.  
The working principle is based on a ratiometric measurement; Figure 56 shows a possible system  
implementation which uses three electrodes. The Level electrode provides a capacitance value proportional to  
the liquid level. The Reference Environmental electrode and the Reference Liquid electrode are used as  
references. The Reference Liquid electrode accounts for the liquid dielectric constant and its variation, while the  
Reference Environmental electrode is used to compensate for any other environmental variations that are not  
due to the liquid itself. Note that the Reference Environmental electrode and the Reference Liquid electrode are  
the same physical size (hREF).  
For this application, single-ended measurements on the active channels are appropriate, as the tank is  
grounded. Use to determine the liquid level from the measured capacitances:  
CLev - CLev (0)  
CRL - CRE  
Level = href  
where  
CRE is the capacitance of the Reference Environmental electrode,  
CRL is the capacitance of the Reference Liquid electrode,  
CLev is the current value of the capacitance measured at the Level electrode sensor,  
CLev(0) is the capacitance of the Level electrode when the container is empty, and  
hREF is the height in the desired units of the Container or Liquid Reference electrodes.  
The ratio between the capacitance of the level and the reference electrodes allows simple calculation of the liquid  
level inside the container itself. Very high sensitivity values (that is, many LSB/mm) can be obtained due to the  
high resolution of the FDC2x1x, even when the sensors are located remotely from the container. Note that this  
approach assumes that the container has a uniform cross section from top to bottom, so that each incremental  
increase or decrease in the liquid represents a change in volume that is directly related to the height of the liquid.  
40  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
Typical Application (continued)  
10.2.1 Schematic  
3.3 V  
3.3 V  
FDC2114 / FDC2214  
VDD  
CLKIN  
VDD  
40 MHz  
0.1 F 1 F  
GND  
Int. Osc.  
IN0A  
IN0B  
SD  
Resonant  
circuit driver  
LEVEL  
SENSOR  
GPIO  
INTB  
L
C
ENVIRONMENTAL  
SENSOR  
GPIO  
MCU  
3.3 V  
Cap  
Sensor 0  
Core  
I2C  
GND  
ADDR  
SDA  
IN1A  
IN1B  
I2C  
peripheral  
Resonant  
circuit driver  
LIQUID  
SENSOR  
L
C
SCL  
Cap  
Sensor 1  
IN2A  
IN2B  
Resonant  
circuit driver  
L
C
Cap  
Sensor 2  
IN3A  
IN3B  
Resonant  
circuit driver  
Copyright © 2016, Texas Instruments Incorporated  
Figure 56. FDC (Liquid Level Measurement)  
10.2.2 Design Requirements  
The liquid level measurement should be independent of the liquid, which can be achieved using the 3-electrode  
design described above. Moreover, the sensor should be isolated from environmental interferers such as a  
human body, other objects, or EMI.  
10.2.3 Detailed Design Procedure  
In capacitive sensing systems, the design of the sensor plays an important role in determining system  
performance and capabilities. In most cases the sensor is simply a metal plate that can be designed on the PCB.  
The sensor used in this example is implemented with a two-layer PCB. On the top layer, which faces the tank,  
there are the 3 electrodes (Reference Environmental, Reference Liquid, and Level) with a ground plane  
surrounding the electrodes.  
Depending on the shape of the container, the FDC can be located on the sensor PCB to minimize the length of  
the traces between the input channels and the sensors. In case the shape of the container or other mechanical  
constraints do not allow having the sensors and the FDC on the same PCB, the traces which connect the  
channels to the sensor need to be shielded with the appropriate shield.  
10.2.3.1 Application Performance Plot  
A liquid level sensor with 3 electrodes like the one shown in the schematic was connected to the EVM. The plot  
shows the capacitance measured by Level sensor at different levels of liquid in the tank. The capacitance of the  
Reference Liquid and Reference Environmental sensors have a steady value because they experience  
consistent exposure to liquid and air, while the capacitance of the level sensor (Level) increases linearly with the  
height of the liquid in the tank.  
Copyright © 2015, Texas Instruments Incorporated  
41  
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Typical Application (continued)  
4.7  
4.65  
4.6  
4.55  
4.5  
4.45  
4.4  
4.35  
4.3  
4.25  
4.2  
4.15  
4.1  
10  
15  
20  
25  
30  
35  
40  
Level (mm)  
D031  
Figure 57. Electrodes' Capacitance vs. Liquid Level  
10.2.3.2 Recommended Initial Register Configuration Values  
The application requires 100SPS ( TSAMPLE = 10 ms). A sensor with an 18µH inductor and a 33pF capacitor  
is used. Additional pin, trace, and wire capacitance accounts for 20pF, so the total capacitance is 53pF.  
Using L and C, fSENSOR = 1/2π(LC) = 1/2π(18*10-6 * 50*10-12) = 5.15 MHz. This represents the maximum  
sensor frequency. When the sensor capacitance is added, the frequency will decrease.  
Using a system master clock of 40 MHz applied to the CLKIN pin allows flexibility for setting the internal  
clock frequencies. The sensor coils are connected to channel 0 (IN0A and IN0B pins), channel 1 (IN1A and  
IN1B pins), and channel 2 (IN2A and IN2B pins).  
After powering on the FDC, it will be in Sleep Mode. Program the registers as follows (example sets registers  
for channel 0 only; channel 1 and channel 2 registers can use equivalent configuration):  
1. Set the dividers for channel 0.  
(a) Because the sensor is in an single-ended configuration, the sensor frequency select register should be  
set to 2, which means setting field CH0_FIN_SELto b10.  
(b) The design constraint for fREF0 is > 4 × fSENSOR. To satisfy this constraint, fREF0 must be greater than 20.6  
MHz, so the reference divider should be set to 1. This is done by setting the CH0_FREF_DIVIDER field  
to 0x01.  
(c) The combined value for Chan. 0 divider register (0x14) is 0x2001.  
2. Sensor drive current: to ensure that the oscillation amplitude is between 1.2V and 1.8V, measure the  
oscillation amplitude on an oscilloscope and adjust the IDRIVE value, or use the integrated FDC GUI feature  
to determine the optimal setting. In this case the IDRIVE value should be set to 15 (decimal), which results in  
an oscillation amplitude of 1.68 V(pk). The INIT_DRIVE current field should be set to 0x00. The combined  
value for the DRIVE_CURRENT_CH0 register (addr 0x1E) is 0x7C00.  
3. Program the settling time for Channel 0 (see Multi-Channel and Single-Channel Operation).  
(a) CHx_SETTLECOUNT > Vpk × fREFx × C × π2 / (32 × IDRIVEX) 7.5, rounded up to 8. To provide margin  
to account for system tolerances, a higher value of 10 is chosen.  
(b) Register 0x10 should be programmed to a minimum of 10.  
(c) The settle time is: (10 x 16)/40,000,000 = 4 µs  
(d) The value for Chan. 0 SETTLECOUNT register (0x10) is 0x000A.  
4. The channel switching delay is ~1μs for fREF = 40 MHz (see Multi-Channel and Single-Channel Operation)  
5. Set the conversion time by the programming the reference count for Channel 0. The budget for the  
conversion time is : 1/N * (TSAMPLE – settling time – channel switching delay) = 1/3 (10,000 – 4 – 1) = 3.33  
ms  
(a) To determine the conversion time register value, use the following equation and solve for  
CH0_RCOUNT: Conversion Time (tC0)= (CH0_RCOUNTˣ16)/fREF0  
.
(b) This results in CH0_RCOUNT having a value of 8329 decimal (rounded down). Note that this yields an  
ENOB > 13 bits.  
42  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
Typical Application (continued)  
(c) Set the CH0_RCOUNT register (0x08) to 0x2089.  
6. Use the default values for the ERROR_CONFIG register (address 0x19). By default, no interrupts are  
enabled  
7. Program the MUX_CONFIG register  
(a) Set the AUTOSCAN_EN to b1 bit to enable sequential mode  
(b) Set RR_SEQUENCE to b10 to enable data conversion on three channels (channel 0, channel 1, channel  
2)  
(c) Set DEGLITCH to b101 to set the input deglitch filter bandwidth to 10MHz, the lowest setting that  
exceeds the oscillation tank frequency.  
(d) The combined value for the MUX_CONFIG register (address 0x1B) is 0xC20D  
8. Finally, program the CONFIG register as follows:  
(a) Set the ACTIVE_CHAN field to b00 to select channel 0.  
(b) Set SLEEP_MODE_EN field to b0 to enable conversion.  
(c) Set SENSOR_ACTIVATE_SEL = b0, for full current drive during sensor activation  
(d) Set the REF_CLK_SRC field to b1 to use the external clock source.  
(e) Set the other fields to their default values.  
(f) The combined value for the CONFIG register (address 0x1A) is 0x1601.  
We then read the conversion results for channel 0 to channel 2 every 10ms from register addresses 0x00 to  
0x05.  
Based on the example configuration above, the following register write sequence is recommended:  
Table 47. Recommended Initial Register Configuration Values (Multi-channel Operation)  
ADDRESS  
VALUE  
REGISTER NAME  
COMMENTS  
0x08  
0x8329  
RCOUNT_CH0  
Reference count calculated from timing requirements (100 SPS) and  
resolution requirements  
0x09  
0x0A  
0x8329  
0x8329  
RCOUNT_CH1  
RCOUNT_CH2  
Reference count calculated from timing requirements (100 SPS) and  
resolution requirements  
Reference count calculated from timing requirements (100 SPS) and  
resolution requirements  
0x10  
0x11  
0x12  
0x14  
0x15  
0x16  
0x19  
0x1B  
0x000A  
0x000A  
0x000A  
0x2002  
0x2002  
0x2002  
0x0000  
0xC20D  
SETTLECOUNT_CH0  
SETTLECOUNT_CH1  
SETTLECOUNT_CH2  
Minimum settling time for chosen sensor  
Minimum settling time for chosen sensor  
Minimum settling time for chosen sensor  
CLOCK_DIVIDER_CH0 CH0_FIN_DIVIDER = 1, CH0_FREF_DIVIDER = 2  
CLOCK_DIVIDER_CH1 CH1_FIN_DIVIDER = 1, CH1_FREF_DIVIDER = 2  
CLOCK_DIVIDER_CH2 CH1_FIN_DIVIDER = 1, CH1_FREF_DIVIDER = 2  
ERROR_CONFIG  
MUX_CONFIG  
Can be changed from default to report status and error conditions  
Enable Ch 0 , Ch 1, and Ch 2 (sequential mode), set Input deglitch  
bandwidth to 10MHz  
0x1E  
0x1F  
0x20  
0x1A  
0x7C00  
0x7C00  
0x7C00  
0x1601  
DRIVE_CURRENT_CH0 Sets sensor drive current on ch 0  
DRIVE_CURRENT_CH1 Sets sensor drive current on ch 1  
DRIVE_CURRENT_CH2 Sets sensor drive current on ch 2  
CONFIG  
enable full current drive during sensor activation, select external clock  
source, wake up device to start conversion. This register write must occur  
last because device configuration is not permitted while the FDC is in active  
mode.  
10.2.3.3 Inductor Self-Resonant Frequency  
Every inductor has a distributed parasitic capacitance, which is dependent on construction and geometry. At the  
Self-Resonant Frequency (SRF), the reactance of the inductor cancels the reactance of the parasitic  
capacitance. Above the SRF, the inductor will electrically appear to be a capacitor. Because the parasitic  
capacitance is not well-controlled or stable, it is recommended that: fSENSOR < 0.8 × fSR  
.
Copyright © 2015, Texas Instruments Incorporated  
43  
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
175.0  
150.0  
125.0  
100.0  
75.0  
50.0  
25.0  
0.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
Frequency (MHz)  
Figure 58. Example Coil Inductance vs. Frequency  
The example inductor in Figure 58, has a SRF at 6.38 MHz; therefore the inductor should not be operated above  
0.8×6.38 MHz, or 5.1 MHz.  
44  
Copyright © 2015, Texas Instruments Incorporated  
 
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
10.2.4 Application Curves  
Common test conditions (unless specified otherwise): Sensor capacitor: 1 layer, 20.9 x 13.9 mm, Bourns  
CMH322522-180KL sensor inductor with L=18 µH and 33 pF 1% COG/NP0 Target: Grounded aluminum plate  
(176 x 123 mm), Channel = Channel 0 (continuous mode) CLKIN = 40 MHz, CHx_FIN_SEL = b10,  
CHx_FREF_DIVIDER = b00 0000 0001 CH0_RCOUNT = 0xFFFF, SETTLECOUNT_CH0 = 0x0100,  
DRIVE_CURRENT_CH0 = 0x7800  
25  
20  
15  
10  
5
0.14  
0.12  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
Target Distance (mm) with 20.9 x 13.9 mm Sensor  
Target Distance (mm) with 20.9 x 13.9 mm Sensor  
D028  
D029  
Figure 59. FDC2212 / FDC2214: Capacitance vs. Target  
Distance (0 to 20mm)  
Figure 60. FDC2112 / FDC2114: Capacitance vs. Target  
Distance (20 to 40mm)  
0.035  
10  
4.08 ksps  
610 sps  
38 sps  
9
8
7
6
5
4
3
2
1
0
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
0
20  
40  
60  
80  
100  
Target Distance (mm) with 20.9 x 13.9 mm Sensor  
Target Distance (mm) with 20.9 x 13.9 mm Sensor  
D030  
D032  
Figure 61. FDC2212 / FDC2214: Capacitance vs. Target  
Distance (40 to 60mm)  
Figure 62. Measurement precision in Distance vs. Target  
Distance (0 to 60mm)  
10.2.5 Power-Cycled Applications  
For applications which do not require high sample rates or maximum conversion resolution, the total active  
conversion time of the FDC can be minimized to reduce power consumption. This can be done by either by using  
sleep mode or shutdown mode during times in which conversions are not required (see Device Functional  
Modes).  
As an example, for an application which only needs 10 samples per second with a resolution of 16 bits can utilize  
the low-power modes. The sensor requires SETTLECOUNT = 16 and IDRIVE of 01111b (0.146 mA). Given  
FREF = 40 MHz and RCOUNT = 4096 will provide the resolution required. This corresponds to 4096 * 16 * 10 /  
40 MHz 16.4 ms of active conversion time per second. Start-up time and channel switch delay account for an  
additional 0.34 ms. For the remainder of the time, the device can be in sleep mode: Therefore, the average  
current is 19.4 ms * 3.6 mA active current + 980.6 ms of 35 µA of sleep current, which is approximately 104.6 µA  
of average supply current. Sleep mode retains register settings and therefore requires less I2C writes to wake up  
the FDC than shutdown mode.  
Copyright © 2015, Texas Instruments Incorporated  
45  
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Greater current savings can be realized by use of shutdown mode during inactive periods. In shutdown mode,  
device configuration is not retained, and so the device must be configured for each sample. For this example,  
configuring each sample takes approximately 1.2 ms (13 registers * 92.5 µs per register). The total active time is  
20.6 ms. The average current is 20 ms * 3.6 mA active current + 980 ms * 2 µA of shutdown current, which is  
approximately 75 µA of average supply current.  
10.3 Do's and Don'ts  
Do leave a small gap between sensor plates in differential configurations. 2-3mm minimum separation is  
recommended.  
The FDC does not support hot-swapping of the sensors. Do not hot-swap sensors, for example by using  
external multiplexers.  
11 Power Supply Recommendations  
The FDC requires a voltage supply within 2.7 V and 3.6 V. Multilayer ceramic bypass X7R capacitors of 0.1 μF  
and 1 μF between the VDD and GND pins are recommended. If the supply is located more than a few inches  
from the FDC, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An  
electrolytic capacitor with a value of 10 μF is a typical choice.  
The optimum placement is closest to the VDD and GND pins of the device. Care should be taken to minimize the  
loop area formed by the bypass capacitor connection, the VDD pin, and the GND pin of the device. See  
Figure 63 and Figure 63 for a layout example.  
12 Layout  
12.1 Layout Guidelines  
Avoid long traces to connect the sensor to the FDC. Short traces reduce parasitic capacitances between  
sensor inductor and offer higher system performance.  
Systems that require matched channel response need to have matched trace length on all active channels.  
12.2 Layout Example  
Figure 63 to Figure 66 show the FDC2114 / FDC2214 evaluation module (EVM) layout.  
46  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
Layout Example (continued)  
Figure 63. Example PCB Layout: Top Layer (Signal)  
Copyright © 2015, Texas Instruments Incorporated  
47  
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Layout Example (continued)  
Figure 64. Example PCB Layout: Mid-layer 1 (GND)  
48  
Copyright © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
Layout Example (continued)  
Figure 65. Example PCB Layout: Mid-layer 2 (Power)  
Copyright © 2015, Texas Instruments Incorporated  
49  
FDC2212, FDC2214, FDC2112, FDC2114  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Layout Example (continued)  
Figure 66. Example PCB Layout: Bottom Layer (Signal)  
50  
版权 © 2015, Texas Instruments Incorporated  
FDC2212, FDC2214, FDC2112, FDC2114  
www.ti.com.cn  
ZHCSDX2A JUNE 2015REVISED JUNE 2015  
13 器件和文档支持  
13.1 器件支持  
13.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
13.2 相关链接  
48 列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,以及样片或购买的快速访问。  
48. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
FDC2212  
FDC2214  
FDC2112  
FDC2114  
13.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
51  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
FDC2112DNTR  
FDC2112DNTT  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
DNT  
DNT  
DNT  
12  
12  
12  
4500 RoHS & Green  
250 RoHS & Green  
4500 RoHS & Green  
250 RoHS & Green  
4500 RoHS & Green  
250 RoHS & Green  
4500 RoHS & Green  
250 RoHS & Green  
4500 RoHS & Green  
250 RoHS & Green  
4500 RoHS & Green  
250 RoHS & Green  
4500 RoHS & Green  
250 RoHS & Green  
4500 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
FDC2112  
SN  
SN  
FDC2112  
FDC2112QDNTRQ1  
FDC2112  
Q1  
FDC2112QDNTTQ1  
ACTIVE  
WSON  
DNT  
12  
SN  
Level-3-260C-168 HR  
-40 to 125  
FDC2112  
Q1  
FDC2114QRGHRQ1  
FDC2114QRGHTQ1  
FDC2114RGHR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WSON  
WSON  
WSON  
RGH  
RGH  
RGH  
RGH  
DNT  
DNT  
DNT  
16  
16  
16  
16  
12  
12  
12  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
FC2114Q  
FC2114Q  
FDC2114  
FDC2114  
FDC2212  
FDC2212  
FDC2114RGHT  
FDC2212DNTR  
FDC2212DNTT  
FDC2212QDNTRQ1  
FDC2212  
Q1  
FDC2212QDNTTQ1  
ACTIVE  
WSON  
DNT  
12  
SN  
Level-3-260C-168 HR  
-40 to 125  
FDC2212  
Q1  
FDC2214QRGHRQ1  
FDC2214QRGHTQ1  
FDC2214RGHR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RGH  
RGH  
RGH  
RGH  
16  
16  
16  
16  
SN  
SN  
SN  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
FC2214Q  
FC2214Q  
FDC2214  
FDC2214  
FDC2214RGHT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
FDC2112DNTR  
FDC2112DNTT  
WSON  
WSON  
WSON  
WSON  
WQFN  
WQFN  
WQFN  
WQFN  
WSON  
WSON  
WSON  
WSON  
WQFN  
WQFN  
WQFN  
WQFN  
DNT  
DNT  
DNT  
DNT  
RGH  
RGH  
RGH  
RGH  
DNT  
DNT  
DNT  
DNT  
RGH  
RGH  
RGH  
RGH  
12  
12  
12  
12  
16  
16  
16  
16  
12  
12  
12  
12  
16  
16  
16  
16  
4500  
250  
330.0  
178.0  
330.0  
178.0  
330.0  
178.0  
330.0  
178.0  
330.0  
178.0  
330.0  
178.0  
330.0  
178.0  
330.0  
178.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
FDC2112QDNTRQ1  
FDC2112QDNTTQ1  
FDC2114QRGHRQ1  
FDC2114QRGHTQ1  
FDC2114RGHR  
4500  
250  
4500  
250  
4500  
250  
FDC2114RGHT  
FDC2212DNTR  
4500  
250  
FDC2212DNTT  
FDC2212QDNTRQ1  
FDC2212QDNTTQ1  
FDC2214QRGHRQ1  
FDC2214QRGHTQ1  
FDC2214RGHR  
4500  
250  
4500  
250  
4500  
250  
FDC2214RGHT  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
FDC2112DNTR  
FDC2112DNTT  
WSON  
WSON  
WSON  
WSON  
WQFN  
WQFN  
WQFN  
WQFN  
WSON  
WSON  
WSON  
WSON  
WQFN  
WQFN  
WQFN  
WQFN  
DNT  
DNT  
DNT  
DNT  
RGH  
RGH  
RGH  
RGH  
DNT  
DNT  
DNT  
DNT  
RGH  
RGH  
RGH  
RGH  
12  
12  
12  
12  
16  
16  
16  
16  
12  
12  
12  
12  
16  
16  
16  
16  
4500  
250  
367.0  
210.0  
356.0  
367.0  
356.0  
208.0  
367.0  
210.0  
367.0  
210.0  
356.0  
367.0  
356.0  
208.0  
367.0  
210.0  
367.0  
185.0  
356.0  
367.0  
356.0  
191.0  
367.0  
185.0  
367.0  
185.0  
356.0  
367.0  
356.0  
191.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
FDC2112QDNTRQ1  
FDC2112QDNTTQ1  
FDC2114QRGHRQ1  
FDC2114QRGHTQ1  
FDC2114RGHR  
4500  
250  
4500  
250  
4500  
250  
FDC2114RGHT  
FDC2212DNTR  
4500  
250  
FDC2212DNTT  
FDC2212QDNTRQ1  
FDC2212QDNTTQ1  
FDC2214QRGHRQ1  
FDC2214QRGHTQ1  
FDC2214RGHR  
4500  
250  
4500  
250  
4500  
250  
FDC2214RGHT  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DNT0012B  
WSON - 0.8 mm max height  
SCALE 3.000  
PLASTIC SMALL OUTLINE - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.1  
3.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
(0.1) TYP  
2.6 0.1  
6
7
2X  
2.5  
3
0.1  
10X 0.5  
12  
1
0.3  
0.2  
12X  
0.1  
C A B  
C
0.5  
0.3  
PIN 1 ID  
(45 X 0.25)  
12X  
0.05  
4214928/C 10/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DNT0012B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(2.6)  
SYMM  
12X (0.6)  
1
12  
12X (0.25)  
(1.25)  
SYMM  
(3)  
10X (0.5)  
7
6
(R0.05) TYP  
(
0.2) VIA  
TYP  
(1.05)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214928/C 10/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DNT0012B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
(0.68)  
12X (0.6)  
1
12  
12X (0.25)  
(0.76)  
SYMM  
10X (0.5)  
4X  
(1.31)  
(R0.05) TYP  
6
7
4X (1.15)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
77% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4214928/C 10/2021  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY