GC6016IZEV [TI]

Wideband Transmit-Receive Digital Signal Processors;
GC6016IZEV
型号: GC6016IZEV
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Wideband Transmit-Receive Digital Signal Processors

文件: 总46页 (文件大小:510K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
Wideband Transmit-Receive Digital Signal Processors  
Check for Samples: GC6016  
1
FEATURES  
APPLICATIONS  
Multi-Standard Base Stations  
3GPP (LTE, W-CDMA, TDS-CDMA)  
MC-GSM  
WiMAX and WiBro (OFDMA)  
Multi-Carrier Power Amplifiers (MCPAs)  
Wireless Infrastructure Repeaters  
Integrated Transmit and Receive Digital IF  
Solution  
Up to 4 TX, 8 RX  
TX-Transmit Includes DUC, CFR, TX Equalizer,  
and Bulk Upconverter  
CFR: 6-dB PAR for WCDMA, 7-db LTE Signals  
With EVM Meeting 3GPP Specs; Configurable  
for All Major Wireless Infrastructure Standards  
Digital Radio Instrumentation and Test  
Equipment  
DESCRIPTION  
RX-Receive Includes DC-Offset Cancellation,  
Front-End and Back-End AGC, Bulk  
Downconverter, RX Equalizer, I/Q Imbalance  
Correction, DDC  
The GC6016 is a wideband transmit and receive  
signal processor that includes digital downconverter /  
upconverter (DDUC), transmit, receive, and capture  
buffer blocks. The transmit path includes crest factor  
reduction (CFR), complex equalization, and bulk  
upconversion.  
4 DDUCs, 112 Channels per DDUC, Each  
DDUC Can Be Programmed to TX or RX, at a  
Common Resampler Rate Multimode  
Support  
The GC6016 is a related product to the GC5330, with  
the DPD block not functional. The GC6016 has an  
identical package and footprint with the GC5330.The  
receive path includes wideband and narrowband  
automatic gain control (AGC), bulk downconversion,  
complex equalization, and I/Q imbalance correction.  
Seamless Interface to TI High-Speed Data  
Converters  
4 TX Aggregate Output to DACs up to  
930 MSPS Complex  
The DDUC section consists of four identical DDUC  
blocks, each supporting up to 12 channels. Each  
channel has independent fractional resamplers and  
NCOs to enable flexible carrier configurations.  
Multi-mode/multi-standard  
supported by configuring the individual DDUC blocks  
to different filtering and oversampling scenarios.  
8 RX Aggregate Input From ADCs up to  
1.24 GSPS Real  
16-Tap (Complex) RX Equalizers  
Two 4K Complex Word Capture Buffers for  
Signal Analysis, and Adaptive Filtering  
operation  
can  
be  
1.1-V Core, 3.3-V I/O CMOS, 1.8-V I/O LVDS  
Power Consumption, 3.5 W Typical  
DAC3484  
TRF3703/3720  
I/Q Mod  
C6748  
DSP  
Complex  
TX  
PA  
PA  
PA  
PA  
484-Ball TE-PBGA Package, 23 mm × 23 mm  
DAC  
I/Q  
I/Q Mod  
I/Q Mod  
I/Q Mod  
DAC  
I/Q  
FB  
ADS61B49  
ADC  
Subsampled  
Feedback  
SW  
Mixer/BPF  
Baseband  
Data  
GC6016  
DUC-CFR  
DDC  
ADS62P49  
ADC  
RX  
RX  
Mixer/BPF  
Mixer/BPF  
LNA  
Real  
RX  
ADC  
LNA  
ADS62P49  
ADC  
RX  
RX  
Mixer/BPF  
Mixer/BPF  
LNA  
LNA  
Real  
RX  
ADC  
B0441-02  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 20102011, Texas Instruments Incorporated  
 
 
 
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
DESCRIPTION (Continued)  
The CFR block reduces the peak-to-average ratio (PAR) of the digital transmit signals, such as those used in  
third-generation (3G) code division multiple access (CDMA) and orthogonal frequency-division multiple-access  
(OFDMA) applications.  
By reducing the PAR of the digital signal and the PA nonlinearity, the operational efficiency of follow-on power  
amplifiers can be substantially improved.  
In Table 1, feedback is normally associated with a DPD system. The GC6016 can use the feedback input as a  
calibration antenna input to the capture buffer. Several architectures that provide performance and cost  
optimization are listed in Table 1  
Table 1. Sample Configurations for GC6016  
Figure  
TX Antenna  
RX Antenna  
Other  
2 typical at 250 Msps, up to 4 at  
250 Msps  
Figure 1  
2-62 MHz  
Lower-cost 2-antenna solution  
2 at 250Msps, 4 with lower-rate  
RX ADC  
Figure 2  
Figure 3  
Figure 4  
2-62 MHz  
2-62 MHz  
4-31 MHz  
2-antenna solution with full-rate real feedback  
2 at 250Msps, 4 with lower-rate  
RX ADC  
2-antenna solution with complex feedback, lower  
subsampling ratio  
4 at 250Msps, 8 with lower-rate  
RX ADC  
Lower-cost 4 antenna solution  
ANTENNA MODE EXAMPLE DIAGRAMS  
C6748  
DSP  
DAC3283/3482  
TRF3703/3720  
Complex  
TX  
I/Q  
I/Q  
I/Q Mod  
DAC  
DAC  
PA  
PA  
I/Q Mod  
Baseband  
Data  
ADS41B49  
ADC  
FB  
GC6016  
DUC-CFR  
DDC  
Subsampled  
Feedback  
Mixer/BPF  
SW  
ADS62P49  
ADC  
RX  
RX  
Mixer/BPF  
Mixer/BPF  
LNA  
Real  
RX  
ADC  
LNA  
B0442-02  
Figure 1. Two-Antenna-Mode Subsampled-Feedback Diagram  
2
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
 
 
 
 
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
C6748  
DSP  
DAC3283/3482  
DAC  
TRF3703/3720  
Complex  
TX  
I/Q  
I/Q  
I/Q Mod  
PA  
PA  
I/Q Mod  
DAC  
Baseband  
Data  
ADS5474  
ADC  
RX  
GC6016  
DUC-CFR  
DDC  
Real  
Feedback  
Mixer/BPF  
SW  
ADS62P49  
ADC  
RX  
RX  
Mixer/BPF  
Mixer/BPF  
LNA  
Real  
RX  
ADC  
LNA  
B0443-02  
Figure 2. Two-Antenna-Mode Full-Rate Real-Feedback Diagram  
C6748  
DSP  
DAC3283/3482  
DAC  
TRF3703/3720  
I/Q Mod  
Complex  
TX  
I/Q  
I/Q  
PA  
PA  
I/Q Mod  
DAC  
ADS62P49  
ADC  
RX  
RX  
Baseband  
Data  
Complex  
Feedback  
I/Q Demod  
SW  
GC6016  
DUC-CFR  
DDC  
ADC  
ADS62P49  
ADC  
RX  
RX  
Mixer/BPF  
Mixer/BPF  
LNA  
Real  
RX  
ADC  
LNA  
B0435-02  
Figure 3. Two-Antenna-Mode Complex-Feedback Diagram  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): GC6016  
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
DAC3484  
DAC  
TRF3703/3720  
I/Q Mod  
C6748  
DSP  
Complex  
TX  
PA  
PA  
PA  
PA  
I/Q  
I/Q Mod  
I/Q Mod  
I/Q Mod  
DAC  
I/Q  
FB  
ADS61B49  
ADC  
Subsampled  
Feedback  
SW  
Mixer/BPF  
Baseband  
Data  
GC6016  
DUC-CFR  
DDC  
ADS62P49  
ADC  
RX  
RX  
Mixer/BPF  
Mixer/BPF  
LNA  
Real  
RX  
ADC  
LNA  
ADS62P49  
ADC  
RX  
RX  
Mixer/BPF  
Mixer/BPF  
LNA  
LNA  
Real  
RX  
ADC  
B0441-02  
Figure 4. Four-Antenna-Mode Subsampled Real-Feedback Example Diagram  
GENERAL DESCRIPTION  
The GC6016 is  
a
wideband transmit and receive signal processor that includes digital  
downconverter/upconverter (DDUC), transmit, receive, and capture buffer blocks. The transmit path includes  
crest factor reduction (CFR), complex equalization, and bulk upconversion. The receive path includes wideband  
and narrowband automatic gain control (AGC), bulk downconversion, complex equalization, and I/Q imbalance  
correction.  
The architecture supports different RX, TX, and feedback modes of operation. This provides for many  
configurations to optimize performance and cost.  
RX real or complex input  
TX real, complex, complex with envelope tracking  
The RX path can be configured for one or two multichannel ADC input ports. The RX block provides each ADC  
channel with a front-end AGC, IQ demodulation correction, real-to-complex conversion, complex mixing,  
decimation, and complex equalization. The RX block output is input to the DDUC block. The output of the DDUC  
block goes through gain and back-end AGC and is formatted for the baseband output.  
4
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
There are four DDUC blocks. Each can be used for the RX DDC downconversion or TX DUC upconversion, one  
at a time. The DDUC has a complex mixer, cascade integrator comb filter, resampler, and a programmable FIR  
filter. Each DDUC can support 1 to 12 channels.  
The TX path can be configured for one, two, or four antenna streams. In addition, with one or two antenna  
streams, an envelope modulator output is available. The DAC and envelope modulator share the same output  
ports. The TX input is from the baseband input, through the DDUC to create complex antenna streams. The CFR  
block provides for gain adjustment, peak reduction, and peak limiting. Additional interpolation stages after CFR  
expand the antenna stream bandwidth.  
Specialized capture logic collects the RX input, feedback input, RX output, CFR output, and DPD output for the  
DSP processor to support built-in test. The capture logic can also be used for performance monitoring and power  
measurement.  
AVAILABLE OPTIONS  
PART NUMBER  
TC  
PACKAGE  
THERMAL PROPERTIES  
GC6016IZEV  
40°C to 85°C  
484 ball 23-mm × 23-mm PBGA  
Heat transfer through package top  
GC6016  
40 LVDS (1.8V)  
TX  
1–2 Streams  
1–12 Channel DDUC Block  
(config as TX or RX, showing TX)  
ET  
NCO  
X
Baseband  
Interface  
TX  
Format  
and  
DAC  
Interface  
24 LVDS (1.8V)  
40 LVDS (1.8V)  
Mux  
and  
Sum  
(TX)  
or  
TX  
IF  
Mux  
and  
Sum  
FIR  
TX  
Eq  
X
Farrow  
1–1024´  
CIC  
1–3´  
UC  
1/2´  
24 LVDS (1.8V)  
1´,  
2´  
CFR  
BUC  
Power  
Meter,  
per  
1–4 TX Streams  
Up to 8 DACs  
(2 40-Pin Ports)  
IF NCO  
2´  
Dist  
(RX)  
Channel  
Includes  
interp  
40% BW,  
90 dB stop  
1/2/3/4´  
80% BW,  
90 dB stop;  
90% BW,  
80 dB stop  
before or  
after CFR,  
80% BW,  
90 dB stop  
beAGC  
(RX  
Only)  
per  
Channel  
DVGA  
Format/  
GPIO  
16 CMOS (3.3V)  
Capture Buffer A  
Capture Buffer B  
ADC  
inter-  
face  
(port  
AB)  
TX  
Interval Based Power Meter  
Running Avg Power Meter  
60 LVDS (1.8V)  
Complex  
Gain per  
Channel  
RX 1/2/4 Streams  
Up to 8 ADCs  
(2 30-Pin Ports)  
Eq  
(16  
I/Q  
Imbal  
DC  
Offset  
Cancel  
IF  
NCO  
fe-  
AGC  
BDC  
Switch  
R2C  
ADC  
inter-  
face  
Taps)  
Correction  
16 LVDS (1.8V)  
1/2/4/8/16´  
1 ADC  
(1 16-Pin Port)  
(port C)  
When I/Q correction  
enabled, IF NCO is disabled  
2 LVDS  
4 LVDS  
2 LVDS  
DPD clk  
High-  
Sync A, B in  
Sync out  
Speed  
Sync,  
Clocks  
Control and Sync CMOS (3.3 V)  
JTAG CMOS (3.3 V)  
LVDS  
showing  
the number  
of pins;  
16  
8
4
2
2
4
each signal  
is a diff. pair  
uP data uP addr uP ctrl  
INT  
TESTMOD, SPI en, SPIDIO SPIDO  
RESET  
SPI clk (SPARE)  
JTAG  
B0445-02  
NOTE: UC1 and UC2 are for CFR interpolation; UC2 can only be used if UC1 is also used.  
Figure 5. GC6016 Block Diagram  
GC6016 Introduction  
The GC6016 is a flexible transmit and receive digital signal processor that includes receiver and transmitter  
blocks, digital downconverter / upconverter (DDUC) blocks, crest factor reduction (CFR) engine, flexible LVDS  
data converter and baseband interfaces, and capture buffers for adaptive filtering algorithms.  
Each of the four DDUC blocks can be configured as either a digital downconverter (DDC) or a digital upconverter  
(DUC). Typically, a system can be implemented as both TX and RX, with both DDC and DUC functions. The  
DDUC blocks provide programmable FIR filters with flexible numbers of taps, depending on signal bandwidth and  
number of channels, as well as fractional resamplers, CIC filters, and complex mixers. The DDUC complex  
mixers support static or hopping tuning functions.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): GC6016  
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
beAGC after the DDC is part of the baseband interface. Static gain is applied in the BB block for both the DDC  
output and DUC input.  
The receiver block provides dc offset correction, front-end AGC, real-to-complex conversion, complex mixing,  
decimating filters, a complex equalizer, and a blind RX IQ imbalance correction function.  
The CFR block reduces the peak-to-average ratio (PAR) of complex, arbitrary TX signals. Reducing the PAR of  
the TX signal allows wireless-infrastructure (WI) base stations and repeaters to use smaller and lower-cost  
multi-carrier power amplifiers (MCPAs).  
In WI applications, the GC6016 meets multi-carrier 3G and 4G performance standards (PCDE, composite EVM,  
and ACLR) at PAR levels down to 6 dB for WCDMA and 7 dB for LTE. The GC6016 integrates easily into the  
transmit/receive signal chain between Texas Instrumentshigh-performance data converters and baseband  
processors such as the TI TMS320C64xx family. In wireless repeater applications, the GC6016 can provide  
seamless interfaces to TI data converters, along with receive and transmit filtering, DDC, and DUC functions.  
The GC6016 is extremely flexible and can be used in system architectures with different signal types and  
TX-by-RX antenna configurations such as 2×2, 2×4, 4×4, and 4×8.  
The GC6016 EVM system provides an example sector transmit-receive signal chain solution, from the  
multi-carrier baseband to the RF antenna.  
ABSOLUTE MAXIMUM RATINGS  
over recommended operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.5  
20  
MAX UNIT  
VDD  
Core supply voltage  
1.32  
V
V
VDDA  
VDDS  
VDDSHV  
VIN  
PLL analog voltage  
2
Digital supply voltage for TX  
Digital supply voltage  
2
V
3.6  
VDDSHV + 0.5  
20  
V
Input voltage (under/overshoot)  
Clamp current for an input/output  
Storage temperature  
V
mA  
°C  
Tstg  
65  
140  
ESD classification  
Moisture sensitivity  
Class 2 (2.5 kV HBM, 500 V CDM, 150 V MM)  
Moisture sensitivity Class 3 (1 week floor life at 30°C / 60% H)  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
RECOMMENDED OPERATING CONDITIONS  
MIN  
1.05  
1.71  
1.71  
3.15  
40  
TYP MAX UNIT  
(1)(2)(3)  
VDD  
Core supply voltage  
310 MHz, 5.7 A max.  
60 mA max. (each)(1)  
700 mA max.(1)  
1.1 1.15  
1.8 1.89  
1.8 1.89  
3.3 3.45  
V
V
VDDA  
VDDS  
Analog supply for PLLs  
Digital supply voltage for LVDS I/O  
V
VDDSHV Digital supply voltage CMOS I/O  
PC board design dependent  
V
TC  
TJ  
Case temperature  
30  
90  
°C  
°C  
(4)  
Junction temperature  
See  
105  
(1) Chip specifications are production tested to 90°C case temperature. QA tests are performed at 85°C.  
(2) Production tested hot using checksum at 310 MHz and maximum supplies. Power scales linearly with frequency with a dc consumption  
around 350 mA typical, 700 mA worst case.  
(3) Power consumption is a strong function of the configuration. A calculator is available to estimate power for a specific configuration.  
(4) Reliability calculations presume junction temperature 105°C or below. Operation above 105°C junction temperature reduces product  
lifetime.  
THERMAL INFORMATION  
GC6016  
THERMAL METRIC  
ZEV  
484 PINS  
15.4  
2.1  
UNIT  
θJA  
Junction-to-ambient thermal resistance(1)  
Junction-to-case (top) thermal resistance(2)  
Junction-to-board thermal resistance(3)  
Junction-to-top characterization parameter(4)  
Junction-to-board characterization parameter(5)  
Junction-to-case (bottom) thermal resistance(6)  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJCtop  
θJB  
7.6  
ψJT  
0.5  
ψJB  
7.5  
θJCbot  
N/A  
(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific  
JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(4) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(5) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): GC6016  
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Pin Assignment and Descriptions (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
SYNC  
OUTN  
SYNC  
OUTP  
A
B
C
D
E
F
NC  
BBIN5P BBIN4P BBIN3P BBIN1P SPIDENB SPICLK  
CEB  
UPA5  
UPA2  
UPD15 UPD12 UPD8  
UPD5  
UPD1 VSSA2 SYNCBN  
TXA1N TXA2P  
NC  
A
B
C
D
E
BBIN7N BBIN7P BBIN5N BBIN4N BBIN3N BBIN1N SPIDIO INTERRPT UPA6  
BBIN8N BBIN8P BBIN6P BBIN6N VSSA1 BBIN2P BBIN0P EMIFENA UPA7  
UPA3  
UPA4  
VSS  
WEB  
UPA0  
UPA1  
VDD  
UPD13 UPD9  
UPD6  
UPD2  
UPD0 VDDA2 SYNCBP TXA0N TXA1P TXA2N TXA5N  
UPD14 UPD10 UPD7  
UPD3 SYNCAPDPDCLKP TXA0P TXA3P TXA4P TXA4N TXA5P  
NC  
BBIN9N BBIN9P  
NC  
VDDA1 BBIN2N BBIN0N  
VSS  
VDD  
OEB  
VDD  
VSS  
VDD  
UPD11  
VDD  
VSS  
VDD  
UPD4 SYNCAN DPDCLKN TXA3N TXA6N TXA7N TXA8N TXA9P  
BBOUT0P BBIN10P BBIN10N BBIN11P BBIN11N VDD  
VDD  
VDD  
VDD  
VDD  
VDDS1  
VSS  
NC  
NC  
NC  
TXA6P TXA7P TXA8P TXA9N  
TXA11N TXA11P TXA10N TXA10P  
BBOUT0N BBOUT2N BBOUT2P BBOUT1N BBOUT1P  
BBOUT4N BBOUT4P BBOUT3N BBOUT3P VDDS2  
BBOUT6N BBOUT6P BBOUT5N BBOUT5P VDD  
BBOUT8N BBOUT8P BBOUT7N BBOUT7P VDD  
BBOUT10NBBOUT10P BBOUT9N BBOUT9P VDDS2  
NC  
VDDS2 VDDSHV1 VDD VDDSHV1 VDD VDDSHV1 VDD VDDSHV1 VDD  
VDD  
F
G
H
J
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDS2  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
TMS  
TDI  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VDD TXA13P TXA13N TXA12P TXA12N  
VDDS1 TXA15P TXA15N TXA14N TXA14P  
VDD TXA17P TXA17N TXA16N TXA16P  
VDDS1 TXA19N TXA19P TXA18N TXA18P  
G
H
J
VSS  
VSS  
K
L
VSS  
K
L
RXA13P RXA14N RXA14P BBOUT11P BBOUT11N VSS  
VSS  
VDD  
TXB1P TXB1N TXB0P TXB0N  
M
N
P
R
T
RXA13N RXA12P RXA11N RXA11P VDDS2  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
VDDS1 TXB3P TXB3N TXB2P TXB2N  
M
N
P
RXA12N RXA10P RXA9N RXA9P  
VDD  
VSS  
VDD  
VDD  
TXB5P TXB5N TXB4P TXB4N  
TXB7P TXB7N TXB6P TXB6N  
RXA10N RXA8N RXA8P RXA7N RXA7P  
VSS  
RXA6N RXA6P RXA5N RXA5P  
VDD  
VSS  
VDDS1 TXB9P TXB9N TXB8P TXB8N  
R
T
RXA4N RXA3N RXA3P RXA2N RXA2P  
VSS  
VDD  
TXB11P TXB11N TXB10P TXB10N  
U
V
W
Y
RXA4P RXA1P RXA0N RXA0P  
RXA1N RXB14N RXB10N RXB10P  
VDD  
NC  
VDD VDDSHV2 VDD VDDSHV2 VDD VDDSHV2 VDD  
VDDS1  
VDD  
VDD TXB13P TXB13N TXB12P TXB12N  
U
V
NC  
VDD  
VPP  
VDD  
VSS  
VDD  
VPP  
VDD  
VSS  
VDD  
VDD  
VSS  
VDD  
TDO  
NC  
NC  
NC  
TXB15P TXB15N TXB14N TXB14P  
TXB17P TXB17N TXB16P TXB16N  
RXB14P RXB13P  
NC  
RXB6P RXB6N RXB4P RXB2P  
DVGA6  
RXC6N RXC4N  
W
Y
RXB13N RXB12N RXB8N RXB8P RXB5P RXB4N RXB2N VDDMON RESETB DVGA13 DVGA10 DVGA7 DVGA3 DVGA0  
RXC6P RXC5N RXC4P TXB19N TXB19P TXB18N TXB18P  
SPIDO  
(SPARE)  
AA RXB12P RXB11P RXB9P RXB7N RXB5N RXB3P RXB1N VSSMON  
DVGA14 DVGA11 DVGA8 DVGA4 DVGA1 TRSTB RXC7N RXC5P RXC3P RXC2N RXC2P RXC0N  
NC  
AA  
AB  
AB  
NC  
RXB11N RXB9N RXB7P  
NC  
RXB3N RXB1P RXB0P RXB0N TESTMOD DVGA15 DVGA12 DVGA9 DVGA5 DVGA2  
TCK  
RXC7P RXC3N RXC1N RXC1P RXC0P  
NC  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
= 1.1 V  
= 1.8 V, 3.3 V  
= GND  
P0131-01  
Figure 6. GC6016 Pinout (Top View)  
8
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
Pin Functions  
NAME  
NUMBER  
TYPE  
DESCRIPTION  
POWER AND BIASING  
VDD  
E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, F9,  
F11, F13, F15, F18, G18, H5, J5, J18, L18, N5, N18, P18,  
R5, T18, U5, U8, U10, U12, U14, U15, U18, V7, V8, V9,  
V10, V11, V12, V13, V14, V15, V16  
PWR 1.1-V power supply  
VDDSHV2  
VDDSHV1  
VDDS1  
VDDS2  
VPP  
U9, U11, U13  
PWR 3.3-V power supply for CMOS I/O  
PWR 3.3-V power supply for CMOS I/O  
PWR 1.8-V power supply for LVDS I/O  
PWR 1.8-V power supply for LVDS I/O  
PWR 1.1-V E-fuse supply, connect to VDD  
F8, F10, F12, F14  
F16, H18, K18, M18, R18, U16,  
F7, G5, K5, M5, U7  
W8, W10  
Y8  
VDDMON  
VSSMON  
VDDA2  
VDDA1  
VSSA2  
VSSA1  
VSS  
NC  
NC  
Do not connect, internal monitor point  
Do not connect, internal monitor point  
AA8  
B17  
D5  
PWR 1.8-V power for PLL (requires filtering)  
PWR 1.8-V power for PLL (requires filtering)  
PWR Ground for PLL (requires filtering)  
PWR Ground for PLL (requires filtering)  
PWR Ground  
A16  
C5  
D8, D10, D12, D14, G6, G7. G8, G9, G10, G11, G12, G13,  
G14, G15, G16, G17, H6, H7, H8, H9, H10, H11, H12, H13,  
H14, H15, H16, H17, J6, J7, J8, J9,J10, J11, J12, J13, J14,  
J15, J16, J17, K6, K7, K8, K9, K10, K11, K12, K13, K14,  
K15, K16, K17, L6, L7, L8, L9, L10, L11, L12, L13, L14,  
L15, L16, L17, M6, M7, M8, M9, M10, M11, M12, M13, M14,  
M15, M16, M17, N6, N7, N8, N9, N10, N11, N12, N13, N14,  
N15, N16, N17, P6, P7, P8, P9, P10, P11, P12, P13, P14,  
P15, P16, P17, R6, R7, R8, R9, R10, R11, R12, R13, R14,  
R15, R16, R17, T6, T7, T8, T9, T10, T11, T12, T13, T14,  
T15, T16, T17,W9, W11, W13  
NC  
NC  
E17, E18, F6, F17, U6, U17, V5, V6, V17, V18  
NC  
NC  
No connection. Recommend connecting to ground  
No connection  
A1, A22, D1, D4, W3, W18, AA22, AB1, AB5, AB22,  
BASEBAND INPUT/OUTPUT  
BBIN[11:0]P  
E4, E2, D3, C2, B2, C3, A2, A3, A4, C6, A5, C7  
I
Baseband input LVDS positive  
Baseband input LVDS negative  
Baseband output LVDS positive  
Baseband output LVDS negative  
BBIN[11:0]N  
BBOUT[11:0]P  
BBOUT[11:0]N  
E5, E3, D2, C1, B1, C4, B3, B4, B5, D6, B6, D7  
L4, K2, K4, J2, J4, H2, H4, G2, G4, F3, F5, E1  
L5, K1, K3, J1, J3, H1, H3, G1, G3, F2, F4, F1  
I
O
O
TX DAC INTERFACE  
TXA[19:0]P  
TXA[19:0]N  
TXB[19:0]P  
TXB[19:0]N  
K20, K22, J19, J22, H19, H22, G19, G21, F20, F22, D22,  
E21, E20, E19, C22, C20, C19, A21, B20, C18  
O
O
O
O
DAC TX port A LVDS positive  
DAC TX port A LVDS negative  
DAC TX port B LVDS positive  
DAC TX port B LVDS negative  
K19, K21, J20, J21, H20, H21, G20, G22, F19, F21, E22,  
D21, D20, D19, B22, C21, D18, B21, A20, B19  
Y20, Y22, W19, W21, V19, V22, U19, U21, T19, T21, R19,  
R21, P19, P21, N19, N21, M19, M21, L19, L21  
Y19, Y21, W20, W22, V20, V21, U20, U22, T20, T22, R20,  
R22, P20, P22, N20, N22, M20, M22, L20, L22  
RX and FB ADC INTERFACE  
RXA[14:0]P  
RXA[14:0]N  
RXB[14:0]P  
L3, L1, M2, M4, N2, N4, P3, P5, R2, R4, U1, T3, T5, U2, U4  
I
I
I
ADC receive port A LVDS positive  
ADC receive port A LVDS negative  
ADC receive port B LVDS positive  
L2, M1, N1, M3, P1, N3, P2, P4, R1, R3, T1, T2, T4, V1, U3  
W1, W2, AA1, AA2, V4, AA3, Y4, AB4, W4, Y5, W6, AA6,  
W7, AB7, AB8  
RXB[14:0]N  
V2, Y1, Y2, AB2, V3, AB3, Y3, AA4, W5, AA5, Y6, AB6, Y7,  
AA7, AB9  
I
ADC receive port B LVDS negative  
RXC[7:0]P  
RXC[7:0]N  
AB17, Y16, AA17, Y18, AA18, AA20, AB20, AB21  
AA16, W16, Y17, W17, AB18, AA19, AB19, AA21  
I
I
ADC receive port C LVDS positive  
ADC receive port C LVDS negative  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): GC6016  
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Pin Functions (continued)  
NAME  
NUMBER  
TYPE  
DESCRIPTION  
DVGA INTERFACE  
DVGA[15:0]  
AB11, AA10, Y10, AB12, AA11, Y11, AB13, AA12, Y12,  
W12, AB14, AA13, Y13, AB15, AA14, Y14  
O
MPU INTERFACE  
UPD[15:0]  
A11, C12, B12, A12, D13, C13, B13, A13, C14, B14, A14,  
D15, C15, B15, A15, B16  
I/O  
UPA[7:0]  
WEB  
C9, B9, A9, C10, B10, A10, D11, C11  
I
I
I
B11  
C8  
Write enable, active-low  
EMIFENA  
EMIFENA switches between address/data µP  
access and SPI access. Its value may be changed  
at any time, but both address/data access and SPI  
access must be idle during the change. Logic 1 =  
EMIF, logic 0 = SPI pin has internal pullup.  
OEB  
CEB  
D9  
A8  
I
I
Read and output enable, active-low  
Chip enable, active-low  
JTAG INTERFACE  
TRSTB  
AA15  
I
JTAG reset (active-low); pull down if JTAG is not  
used.  
TMS  
W15  
W14  
Y15  
I
O
I
JTAG mode select  
JTAG data out  
JTAG data in  
JTAG clock  
TDO  
TDI  
TCK  
AB16  
I
SPI INTERFACE  
SPIDENB  
SPICLK  
SPIDIO  
A6  
A7  
B7  
I
I
Serial interface enable  
Serial interface clock  
I/O  
O
Serial interface data  
SPIDO(SPARE) AA9  
Serial interface data out in four-wire SPI mode  
MISCELLANEOUS  
TESTMOD  
RESETB  
AB10  
Y9  
I
I
Test mode for GC6016, typically grounded  
Chip reset required active-low  
Output interrupt  
INTERRPT  
DPDCLKP  
DPDCLKN  
SYNCOUTP  
SYNCOUTN  
SYNCAP  
B8  
O
I
C17  
D17  
A19  
A18  
C16  
D16  
B18  
A17  
DPD CLK input LVDS positive  
DPD CLK input LVDS negative  
Sync output LVDS positive  
Sync output LVDS negative  
Sync input A LVDS positive  
Sync input A LVDS negative  
Sync input B LVDS positive  
Sync input B LVDS negative  
I
O
O
I
SYNCAN  
I
SYNCBP  
I
SYNCBN  
I
Ferrite Bead  
50 Ω  
R = 0 Ω  
R = 0 Ω  
1.8V  
GND  
VDDA1 or VDDA2  
C = 0.01 μF  
C = 0.1 μF  
50 Ω  
VSSA1 or VSSA2  
Ferrite Bead  
S0510-01  
NOTE: 0-Ω R0603 resistor is used to accommodate series resistor if needed.  
Figure 7. GC6016 PLL Filtering  
10  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
 
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
The two GC6016 PLLs require a filtered power supply. The supply can be generated by filtering the digital supply  
(VDDS1, VSSA1, VDDS2, and VSSA2). A representative filter is shown in Figure 7. The two PLLs should have  
separate filters that are located as close as is reasonable to their respective pins (especially the bypass  
capacitors). The ferrite beads should be series 50R (similar to Murata P/N: BLM31P500SPT, Description: IND FB  
BLM31P500SPT 50R 1206).  
Sub-Chip Descriptions  
Figure 8 shows the TX functional block diagram, and Figure 9 shows the RX functional block diagram. Note that  
each figure shows up to four DUC or DDC blocks in the TX or RX paths, and there are a total of four DDUC  
blocks that may be configured as either DUC or DDC each.  
TX Block  
1–12 Channel DUC Block  
NCO  
1–2 Streams  
FIR  
1´, 2´  
Farrow  
1–1024´  
CIC  
1–3´  
X
UC  
1/2´  
UC  
1/2/4´  
Mux  
and  
CFR  
TxEQ  
IF  
NCO  
IF  
Sum  
TX BB  
BUC  
1 to 4 TX  
Streams  
Sum  
80% BW,  
90 dBstop  
40% BW, Includes  
90 dBstop 16-tap Eq  
1/2/3/4´  
80% BW,  
90 dBstop;  
90% BW,  
80% dB stop  
B0446-02  
Figure 8. TX Functional Block Diagram  
RX Block  
1–12 Channel DDC Block  
1/2/4 Streams  
NCO  
1 to 9  
ADC  
Inputs  
X
RX  
Equalizer  
16 Taps  
I/Q  
Imbalance  
Correction  
BDC  
FIR  
1´, 2x  
Farrow  
1–1024´  
CIC  
1–3´  
X
R2C;  
Format;  
feAGC;  
DC Offset  
Correction  
IF  
Mux  
RX BB  
IF NCO  
X
Mux  
1/2/4/8/16´  
When I/Q  
correction  
enabled,  
IF NCO  
DVGA Outputs  
B0447-01  
is disabled  
IF NCO  
Figure 9. RX Functional Block Diagram  
TX Baseband Input Formatter  
The TX baseband (BB) input-formatter block accepts TX baseband inputs from the FPGA or baseband processor  
and formats them for the DUC blocks. There are 12 unidirectional LVDS pairs for the TX input formatter, and  
their function depends on the operational mode. There are three operational modes for the TX BB input  
formatter: byte mode (B, 8 or 9 bits), nibble mode (N, 4 bits), and serial mode (S, 2 bits) to allow multiple BB  
input rates. The GC6016 can accept up to three different BB input data rates. Table 2 and Table 3 summarize  
each mode and the pin assignments. In Table 3, BBIN[X] is the BBIN differential pair (assumed positive and  
negative connections), and BB0, BB1, and BB2 represent three different TX baseband ports at arbitrary rates.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): GC6016  
 
 
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 2. TX BB Formatter Modes  
Maximum Complex Interface Rate per Channel  
N is the number of channels.  
MODE  
1B  
DESCRIPTION  
Total Number of Interface Pins  
Byte mode, 1 interface rate  
10 or 11 = 8 or 9 data + 1 clk + 1  
sync  
(Clk × 4/4)/N; maximum 192.31 MSPS total (for all  
channels)  
1N  
Nibble mode, 1 interface rate  
6 = 4 data + 1 clk + 1 sync  
(Clk × 4/8)/N; maximum 125 (Nibble 0), 96.15 (Nibble  
1) MSPS total  
1S  
2N  
Serial mode, 1 interface rate  
Nibble mode, 2 interface rates  
4 = 2 data + 1 clk + 1 sync  
(Clk × 4/16)/N; maximum 48.07 MSPS total  
(Clk × 4/8)/N × 2; maximum 221.15 MSPS total  
12 = 4 data + 1 clk + 1 sync + 4  
data + 1 clk + 1 sync  
2N(1)  
Nibble + byte mode, 2 interface  
rates,  
RX-ADC input pins used for  
byte-mode port.  
16 = 4 data + 1 clk + 1 sync + 8  
data + 1 clk + 1 sync  
Nibble port: (Clk × 4/8)/N; maximum 125 MSPS total  
Byte port: (Clk × 2/4)/N; maximum 125, 250 MSPS  
total  
2S  
3S  
Serial mode, 2 interface rates  
8 = 2 data + 1 clk + 1 sync + 2 data (Clk × 4/16)/N; maximum 96.15 MSPS total  
+ 1 clk + 1 sync  
Serial mode, 3 interface rates  
12 = 2 data + 1 clk+1 sync + 2 data (Clk × 4/16)/N; maximum 144.23 MSPS total  
+ 1 clk + 1 sync + 2 data + 1 clk + 1  
sync  
(1) 2Nis the only configuration that allows a special mode to re-use RX input port A as baseband TX inputs  
Table 3. TX BB Pin Assignments  
LVDS PAIR BBI[11:0]  
BBIN[0] pos. and neg.  
BYTE MODE  
BB0_DATA_0  
BB0_DATA_1  
BB0_DATA_2  
Spare  
NIBBLE MODE  
BB0_DATA_0  
BB0_DATA_1  
BB0_SYNC  
BB0_CLOCK  
BB0_DATA_2  
BB0_DATA_3  
BB1_SYNC  
BB1_CLOCK  
BB1_DATA_0  
BB1_DATA_1  
BB1_DATA_2  
BB1_DATA_3  
2
SERIAL MODE  
BB0_DATA_0  
BB0_DATA_1  
BB0_SYNC  
BB0_CLOCK  
BB1_DATA_0  
BB1_DATA_1  
BB1_SYNC  
BB1_CLOCK  
BB2_DATA_0  
BB2_DATA_1  
BB2_SYNC  
BB2_CLOCK  
3
BBIN[1] pos. and neg.  
BBIN[2] pos. and neg.  
BBIN[3] pos. and neg.  
BBIN[4] pos. and neg.  
BB0_DATA_3  
BB0_DATA_4  
BB0_SYNC  
BB0_CLOCK  
BB0_DATA_5  
BB0_DATA_6  
BB0_DATA_7  
BB0_DATA_8  
1
BBIN[5] pos. and neg.  
BBIN[6] pos. and neg.  
BBIN[7] pos. and neg.  
BBIN[8] pos. and neg.  
BBIN[9] pos. and neg.  
BBIN[10] pos. and neg.  
BBIN[11] pos. and neg.  
Number of BBdata streams  
Number of DDR clocks to transfer 1 complex sample  
2
4
8
The actual data transfer rate in nibble mode is 2 times higher than the byte mode for the same total throughput. If  
two ports are required (e.g., to support two different sample rates), and a lower speed on the interface is desired,  
the GC6016 can re-use the RX ADC input port A as a baseband TX input bus. RX ADC port A has 15 pairs of  
LVDS input pins and supports one set of baseband input data in byte mode. When RX port A is used as a  
baseband TX input, it cannot be also used as an RX input port.  
The baseband interface supports a full-clock or gated-clock format. These formats are shown in Figure 10  
The mapping for the RX port A pins when in BB TX input mode is:  
RXA14: clock  
RXA13: sync  
RXA125: BB0_DATA70  
12  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
BBIN Clk 0  
BBIN Sync 0  
BBIN Data 0  
Mode 1B  
I0-O  
I0-E  
Q0-O  
Q0-E  
I1-O  
I1-E  
Q1-O  
Q1-E  
In-O  
In-E  
Qn-O  
Qn-E  
00  
I0-O  
I0-E  
Q0-O  
Q0-E  
‘n’ can be up to 47, ‘O’ is odd numbered bits (1, 3, 5, ...), ‘E’ is even numbered bits (0, 2, 4, ...)  
BBIN Clk 0  
BBIN Sync 0  
BBIN Data 0  
I0-A  
I0-B  
I0-C  
I0-D  
Q0-A  
Q0-B  
Q0-C  
Q0-D  
In-A  
In-B  
In-C  
In-D  
Qn-A  
Qn-B  
Qn-C  
Qn-D  
00  
I0-A  
Mode 1N (1 Rate)  
Mode 2N (2 Rates)  
BBIN Clk 1  
BBIN Sync 1  
I0-A  
I0-B  
I0-C  
I0-D  
Q0-A  
Q0-B  
Q0-C  
Q0-D  
In-A  
In-B  
In-C  
In-D  
Qn-A  
Qn-B  
Qn-C  
Qn-D  
00  
I0-A  
BBIN Data 1  
‘n’ can be up to 47, ‘A’ is 4 MSBs, ‘B’ is next 4 bits, ‘C’ is next 4 bits and ‘D’ is 4 LSBs  
BBIN Clk 0  
BBIN Sync 0  
I0-A  
I0-A  
I0-A  
I0-B  
I0-B  
I0-B  
I0-C  
I0-C  
I0-C  
I0-D  
I0-D  
I0-D  
I0-E  
I0-E  
I0-E  
I0-F  
I0-F  
I0-F  
I0-G  
I0-G  
I0-G  
I0-H  
I0-H  
I0-H  
Qn-A  
Qn-A  
Qn-A  
Qn-B  
Qn-B  
Qn-B  
Qn-C  
Qn-C  
Qn-C  
Qn-D  
Qn-D  
Qn-D  
Qn-E  
Qn-E  
Qn-E  
Qn-F  
Qn-F  
Qn-F  
Qn-G  
Qn-G  
Qn-G  
Qn-H  
Qn-H  
Qn-H  
00  
00  
00  
I0-A  
I0-A  
I0-A  
BBIN Data 0  
BBIN Clk 1  
Mode 1S (1 Rate)  
Mode 2S (2 Rates)  
Mode 3S (3 Rates)  
BBIN Sync 1  
BBIN Data 1  
BBIN Clk 2  
BBIN Sync 2  
BBIN Data 2  
‘n’ can be up to 47, ‘A’ is 2 MSBs, ‘B’ is next 2 bits, ‘C’ is next 2 bits, ... and ‘H’ is 2 LSBs  
T0504-01  
Figure 10. TX BB Formats  
The TX formatter block includes a per-channel TX gain adjust via a 16-bit complex digital word which can be set  
to have gain between –∞ and 9 dB.  
Digital Down- and Upconverters (DDUCs)  
The GC6016 has four identical and independent DDUC blocks that can be configured as either DDC or DUC.  
Each DDUC can support up to 12 channels with scalable bandwidth.  
The only difference between the DUC and DDC configurations is the interpolate (DUC) versus decimate (DDC)  
functions and the data path direction as shown in Figure 11. Both DDC and DUC are described in this section.  
Note that each DDUC block must be configured statically as a DUC or DDC and cannot switch modes  
dynamically in TDD applications.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): GC6016  
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
1–12 Channel DUC Block  
NCO  
From BB  
Interface  
Block  
FIR  
1´, 2´  
Farrow  
1–1024´  
CIC  
1–3´  
To Mux and  
Sum Block  
X
Mixer  
All 3 Blocks Interpolate  
DUC Configuration  
1–12 Channel DDC Block  
NCO  
To BB  
Interface  
Block  
From  
Distributor  
Block  
FIR  
1´, 2´  
Farrow  
1–1024´  
CIC  
1–3´  
X
Mixer  
All 3 Blocks Decimate  
DDC Configuration  
B0448-01  
Figure 11. DUC and DDC Functional Block Diagram  
In combination with the follow-on mux and sum block, the DUC block interpolates, filters, mixes each carrier, and  
combines multiple channels into one to four wideband, composite TX signal streams. Any input channel can be  
mapped to any TX stream in the mux and sum block.  
The DDC configuration accepts an RX stream from the distributor block and provides mixing, decimation filtering,  
fractional resampling, and filtering to RX channels. The RX block outputs are mapped to the mixer CIC stream  
via the distributor block.  
Each DDUC block contains a finite impulse response (FIR) filter, a fractional resampler (Farrow filter), a  
cascaded integrator-comb (CIC) filter, a complex mixer and NCO for channel placement in the composite stream,  
and a programmable frequency hopper (see Figure 11).  
The number of taps available in the FIR filter depends on various parameters such as the BBclk rate (derived  
from DPDCLK) , input sample rate, interpolate and decimate settings, and number of channels. Different tap  
values may be used for each channel (however, that reduces the number of filter taps available).  
Note that the input sample rate is the input from the TX BB input formatter for the DUC configuration and the  
input from the distributor block for DDC configuration. The number of taps for various wireless standards and  
configurations is shown in Table 4.  
The Farrow filter supports one real channel or 112 complex channels and can be configured for any resampling  
ratio from 1 to 1024 with 32-bit resolution. A different delay value for each channel is supported. The Farrow filter  
is used to resample different TX BB input sample rates to a common CFR rate, and it provides 95-dB rejection at  
±0.25 output fS (sample rate), 83-dB rejection at ±0.375 output fS, and 56-dB rejection at ±0.4 output fS.  
The CIC interpolates or decimates by a factor of 1, 2, or 3. If each DDUC must support more than eight carriers,  
the CIC must interpolate/decimate by 3. If each DDUC must support between four and eight carriers, the CIC can  
interpolate/decimate by 2 or 3. If each DDUC must support fewer than four carriers, the CIC can interpolate by 1,  
2, or 3.  
14  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
 
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
The NCO contains a 48-bit frequency word and 48-bit accumulator, and operates at the DUC output sample rate.  
The minimum resolution is the DUC output sample rate or DDC input sample rate divided by 248, or about  
0.2 μHz for a 61.44-MSPS DUC output rate. The mixer and NCO can be used for frequency planning or fine  
frequency control.  
Per-channel phase can be adjusted in the mixer/NCO block with a 16-bit phase word, while per channel  
fractional delay can be adjusted in the Farrow block.  
Table 4. Number of FIR Filter Taps for Example Signal Types  
Input  
Sample  
Rate  
DUC Mode  
Interp.  
DDC Mode  
Decim.  
BBclk  
Filter Type  
No. of  
Name  
Max. Taps  
Channels  
Sym or  
Un-Sym  
MHz  
MSPS  
1 or 2  
1 or 2  
lte20_1  
245.76  
245.76  
245.76  
245.76  
245.76  
245.76  
245.76  
246.4  
246.4  
246.4  
246.4  
246.4  
246.4  
246.4  
246.4  
246.4  
246.4  
246.4  
246.4  
246.4  
246.4  
246.4  
246.4  
245.76  
245.76  
245.76  
245.76  
245.76  
245.76  
245.76  
245.76  
243.8  
243.8  
250  
30.72  
30.72  
15.36  
15.36  
15.36  
7.68  
7.68  
44.8  
22.4  
44.8  
22.4  
44.8  
22.4  
22.4  
11.2  
22.4  
11.2  
22.4  
11.2  
11.2  
5.6  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
U
S
S
S
S
S
S
1
1
1
1
1
1
1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
1
1
2
1
1
1
1
1
1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
159  
79  
lte20_2  
lte10_2  
2
159  
99  
lte10_3  
3
lte10_4  
4
79  
lte5_4  
4
159  
79  
lte5_8  
8
wimax20_r3  
wimax20_t3  
wimax20_r2  
wimax20_t2  
wimax20_r1  
wimax20_t1  
wimax10_r2  
wimax10_t2  
wimax10_r3  
wimax10_t3  
wimax10_r4  
wimax10_t4  
wimax5_r4  
wimax5_t4  
wimax5_r8  
wimax5_t8  
wbcdma_r4  
wbcdma_t4  
wbcdma_r8  
wbcdma_t8  
cdma_r12  
cdma_t12  
tdscdma_r12  
tdscdma_t12  
gsm_12  
3
59  
3
39  
2
99  
2
79  
1
219  
199  
219  
199  
139  
119  
99  
1
2
2
3
3
4
4
79  
4
219  
199  
99  
4
11.2  
5.6  
8
8
79  
7.68  
3.84  
7.68  
3.84  
2.4576  
1.2288  
2.56  
1.28  
0.5417  
1.625  
75  
4
159  
319  
79  
4
8
8
159  
99  
12  
12  
12  
12  
12  
12  
1
100  
99  
199  
99  
eedge_12  
99  
wideband_60MHz_r  
wideband_60MHz_t  
59  
250  
75  
1
39  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): GC6016  
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
MUX and SUM (TX Direction)  
The MUX and SUM block maps any channel from the DUC to any TX stream for subsequent per-stream  
processing.  
Crest Factor Reduction (CFR)  
The CFR blocks include the CFR function and two interpolate-by-2 filters (referred to here as UC1 and UC2).  
The two CFR blocks together can support 1, 2, or 4 TX streams. The CFR function selectively reduces the  
peak-to-average ratio (PAR) of wideband digital signals provided in quadrature (I and Q) format, such as those  
used in 3G and 4G wireless applications. For example, the CFR function can reduce the PAR of WCDMA Test  
Model 1 signals to 5.7 dB, while still meeting all 3GPP requirements for ACLR, composite EVM, and peak code  
domain error (PCDE).  
The CFR blocks can be configured in eleven different modes, depending on the number of TX streams, and the  
signal sample rates. Relative to previous TI CFR products, the GC6016 CFR has enhanced features such as:  
Constant PAR mode  
Constant input-to-output power mode  
Dynamic PAR target levels for different portions of the time-domain signal  
Up to 25% less latency for certain configurations  
Enhanced CFR performance for narrowband signals  
Automatic (i.e., no host interaction required) CFR coefficient generation for frequency-hopping signals  
The UC1 and UC2 blocks can be set to 1× or 2× interpolation and may be used to provide optimum selection of  
signal oversampling ratio at CFR. UC1 may be positioned before or after the CFR function, while UC2 is always  
at the output of CFR. Since UC2 has only a 40% bandwidth image rejection (90 dB) filter, it is only used if  
preceded by UC1, which has an 80% bandwidth image-rejection (90 dB) filter.  
TX IF Sub-Chip  
The TX IF sub-chip includes a bulk upconverter (BUC), four IF mixer/NCO blocks, and TX stream MUX and  
SUM.  
The BUC block has interpolations of 1×, 1.5×, 2×, 3×, and 4×.  
NOTE  
BUC 1.5× is a combination of the BUC 3× interpolation and output-format decimation of 2.  
There are four parallel NCO/MIX blocks to allow frequency translation of each composite TX stream. The NCO is  
48 bits and is referenced to the TX output rate. The NCO/MIX block (change) can be used to modify the stream  
IF frequency.  
The TX stream MUX and SUM block allows summing of TX streams to create composite TX streams.  
TX DAC Formatter  
The DAC output consists of two 20-pair LVDS blocks that can be configured by the DAC formatter block for  
several TI DACs and system configurations. The formatter can support up to 8 DACs for 4 TX streams in  
complex mode. The DAC formatter block supports the TI DAC5682, DAC328x, and DAC348x families. Table 5  
illustrates the pin connections the different DAC and envelope [ET] modulator types.  
16  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
Table 5. GC6016 DAC Interface Pin Map  
GC6016  
328x (ET)  
P1-d7  
3482 Byte  
P1-d7  
5682  
P1-sync  
P1-d15  
P1-d14  
P1-d13  
P1-d12  
P1-d11  
P1-d10  
P1-d9  
P1-d8  
P1-dataclk  
NA  
3484  
P1-sync  
P1-d15  
P1-d14  
P1-d13  
P1-d12  
P1-d11  
P1-d10  
P1-d9  
3482 Word  
P1-sync  
P1-d15  
P1-d14  
P1-d13  
P1-d12  
P1-d11  
P1-d10  
P1-d9  
TXA0  
TXA1  
P1-d6  
P1-d6  
TXA2  
P1-d5  
P1-d5  
TXA3  
P1-d4  
P1-d4  
TXA4  
P1-dataclk  
P1-frame  
P1-d3  
P1-dataclk  
P1-frame  
P1-d3  
TXA5  
TXA6  
TXA7  
P1-d2  
P1-d2  
TXA8  
P1-d1  
P1-d1  
P1-d8  
P1-d8  
TXA9  
P1-d0  
P1-d0  
P1-dataclk  
P1-frame  
P1-d7  
P1-dataclk  
NA  
TXA10  
TXA11  
TXA12  
TXA13  
TXA14  
TXA15  
TXA16  
TXA17  
TXA18  
TXA19  
TXB0  
P2-d7  
P2-d7  
P2-d6  
P2-d6  
P1-d7  
P1-d6  
P1-d5  
P1-d4  
P1-d3  
P1-d2  
P1-d1  
P1-d0  
NA  
P1-d7  
P2-d5  
P2-d5  
P1-d6  
P1-d6  
P2-d4  
P2-d4  
P1-d5  
P1-d5  
P2-dataclk  
P2-frame  
P2-d3  
P2-dataclk  
P2-frame  
P2-d3  
P1-d4  
P1-d4  
P1-d3  
P1-d3  
P1-d2  
P1-d2  
P2-d2  
P2-d2  
P1-d1  
P1-d1  
P2-d1  
P2-d1  
P1-d0  
P1-d0  
P2-d0  
P2-d0  
P1-parity  
P2-sync  
P2-d15  
P2-d14  
P2-d13  
P2-d12  
P2-d11  
P2-d10  
P2-d9  
P1-parity  
P2-sync  
P2-d15  
P2-d14  
P2-d13  
P2-d12  
P2-d11  
P2-d10  
P2-d9  
P3-d7  
P3-d7  
P2- sync  
P2-d15  
P2-d14  
P2-d13  
P2-d12  
P2-d11  
P2-d10  
P2-d9  
P2-d8  
P2-dataclk  
NA  
TXB1  
P3-d6  
P3-d6  
TXB2  
P3-d5  
P3-d5  
TXB3  
P3-d4  
P3-d4  
TXB4  
P3-dataclk  
P3-frame  
P3-d3  
P3-dataclk  
P3-frame  
P3-d3  
TXB5  
TXB6  
TXB7  
P3-d2  
P3-d2  
TXB8  
P3-d1  
P3-d1  
P2-d8  
P2-d8  
TXB9  
P3-d0  
P3-d0  
P2-dataclk  
P2-frame  
P2-d7  
P2-dataclk  
NA  
TXB10  
TXB11  
TXB12  
TXB13  
TXB14  
TXB15  
TXB16  
TXB17  
TXB18  
TXB19  
P4-d7  
P4-d7  
P4-d6  
P4-d6  
P2-d7  
P2-d6  
P2-d5  
P2-d4  
P2-d3  
P2-d2  
P2-d1  
P2-d0  
NA  
P2-d7  
P4-d5  
P4-d5  
P2-d6  
P2-d6  
P4-d4  
P4-d4  
P2-d5  
P2-d5  
P4-dataclk  
P4-frame  
P4-d3  
P4-dataclk  
P4-frame  
P4-d3  
P2-d4  
P2-d4  
P2-d3  
P2-d3  
P2-d2  
P2-d2  
P4-d2  
P4-d2  
P2-d1  
P2-d1  
P4-d1  
P4-d1  
P2-d0  
P2-d0  
P4-d0  
P4-d0  
P2-parity  
P2-parity  
Note: P1, P2, P3, and P4 are used to identify a specific DAC port. Different ports have different timing.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): GC6016  
 
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
RX ADC Formatter  
There are three ADC input ports: two 15-pair LVDS ports (referred to as ports A and B) and one 8-pair LVDS  
port (referred to as port C and typically used for the DPD feedback path). Depending on the ADCs selected,  
these three ports can accommodate up to 17 ADCs (e.g., using two octals and a single). The formatter block can  
route any port to either the capture buffer block or the RX signal processing blocks. The pin connections for the  
ADCs are shown in Table 6.  
The GC6016 works seamlessly with the following TI ADCs.  
Single: 5400, 12-bit, 1 GSPS, may need special routing on the PCB.  
5463, 12-bit, 500 MSPS, may need clock-to-data-skew special routing on the PCB.  
54RF63, 12-bit, 550 MSPS, may need clock-to-data-skew special routing on the PCB.  
5474, 14-bit, 400 MSPS, may need clock clock-to-data-skew special routing on the PCB.  
5493, 16-bit, 130 MSPS  
548x, 16-bit, 80-200 MSPS  
612x, 12-bit, 65250 MSPS  
614x, 14-bit, 65-250 MSPS  
58B18, 11-bit, 200 MSPS  
414x, 14-bit, 160250 MSPS  
412x, 12-bit, 160250 MSPS  
552x, 12-bit, 170210 MSPS  
554x, 14-bit, 170210 MSPS  
5517, 11-bit, 200 MSPS  
Dual:  
62c15, 11-bit, 125 MSPS  
62c17, 11-bit, 200 MSPS  
58c28, 11-bit, 200 MSPS  
62p4x, 14-bit, 65-250 MSPS  
62p2x, 12-bit, 65-250 MSPS  
624x, 14-bit, 65-125 MSPS  
622x, 12-bit, 65-125 MSPS  
Quad:  
642x, 12-bit, 65125 MSPS  
644x, 14-bit, 65125 MSPS  
Octal:  
527x, 12-bit, 65 MSPS  
528x, 12-bit, 65 MSPS  
18  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
Table 6. GC6016 ADC Interface Pin Map  
58c48 42x9  
64p4x  
62p4x  
58b18 5517  
4149 61B49 548x 6145  
5547  
GC6016  
Pin Name  
5463 5444  
5474  
5400L  
5400R  
642x 644x  
527x 528x  
Two 624x  
62c15  
RXA0  
RXA1  
RXA2  
RXA3  
RXA4  
RXA5  
RXA6  
RXA7  
RXA8  
RXA9  
RXA10  
RXA11  
RXA12  
RXA13  
RXA14  
RXB0  
RXB1  
RXB2  
RXB3  
RXB4  
RXB5  
RXB6  
RXB7  
RXB8  
RXB9  
RXB10  
RXB11  
RXB12  
RXB13  
RXB14  
RXC0  
RXC1  
RXC2  
RXC3  
RXC4  
RXC5  
RXC6  
RXC7  
0
2
4
0
2
0
1
[12](1)  
syncout  
[istrobe]  
11  
0
4
2
10  
1
d1  
d0  
b1  
b0  
f
6
8
0
2
6
3
9
2
8
4
8
3
c1  
10  
12  
clk  
[14]  
4
10  
12  
clk  
0
5
7
4
c0  
c0  
c1  
clk  
c2  
c3  
c4  
c5  
c6  
c7  
fr  
a1  
a0  
clk  
6
6
6
5
frame  
clk  
b1  
clk  
8
7
clk  
clk  
8
5
6
10  
12  
14  
2
9
4
7
b0  
b1  
b0  
f
4
10  
11  
12  
13  
clk  
0
3
8
a1  
6
2
9
a0  
8
1
10  
a1  
a0  
clk  
10  
12  
0
0
11  
[istrobe]  
[istrobe]  
syncout  
[12]  
0
2
[12]  
syncout  
2
1
11  
0
1
4
4
2
10  
6
0
2
6
3
9
2
8
8
4
8
3
10  
12  
clk  
[14]  
4
10  
12  
clk  
0
5
7
4
6
6
6
5
clk  
8
7
clk  
clk  
6
8
5
10  
12  
14  
2
9
4
7
4
10  
11  
12  
13  
clk  
3
8
6
2
9
8
1
0
10  
11  
[12]  
10  
12  
[istrobe]  
[istrobe]  
syncout  
0
2
4
6
8
10  
12  
clk  
(1) [ ] indicates assignment if pins available  
Feedback Processing  
The feedback path is input to RXC as a real ADC. This is captured in the capture buffer and sent to the DSP. In  
cases where a higher-rate real ADC (>250 Msps) or a complex feedback path is desired, for better feedback  
performance, one of the RX ADC inputs can be used for the feedback path, and one RX ADC input is used for  
the RX path. Note: both RX downconverters can still be used for the RX path, or one can be used for feedback.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): GC6016  
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
The widest-band feedback is seen directly from the ADC interface to the capture buffer.  
RX Sub-Chips  
Each of two RX sub-chips consists of the following blocks (each block may be optionally bypassed), which  
operate on a per-stream basis:  
DC offset cancellation  
Front-end automatic gain control (feAGC)  
Real-to-Complex (R2C) conversion  
Switch for replicating or moving streams across the four paths (per sub-chip)  
IF NCO for complex mixing (frequency translation)  
Bulk downconverter (BDC)  
Equalizer  
IQ imbalance correction  
DC offset cancellation  
The dc offset canceller can be programmed to integrate a number of input samples automatically, divide by a  
power of 2, and subtract the mean offset or a programmed offset from the input. The input can be real or  
complex. Each input ADC has a separate cancellation for each RX block channel.  
Front-end AGC  
The feAGC block is used to control the RX ADC input level by controlling an external DVGA.  
The feAGC has multiple channels in each RX block:  
1 real stream up to 4 × DPD clock rate (only use one block)  
2 real (using both blocks) or 1 complex stream (only use one block) up to 2 × DPD clock rate each  
4 real or 2 complex streams up to DPD clock rate each (uses both blocks)  
8 real or 4 complex streams up to 1/2 DPD clock rate each (uses both blocks)  
The feAGC has both threshold comparison and an integrated power measurement. The feAGC has an error  
accumulation. The error accumulation can be mapped to a specific ADC desired operating point. The integral  
controller outputs the DVGA value to control the ADC input. DVGA controls are mapped to the specific DVGA  
outputs, supporting multiple DVGA types. Multipliers in the data path can be used to compensate for external  
DVGA gain changes (from the feAGC output control word). A delay block aligns the gain value applied to the  
internal multiplier with the point in time on the data samples where the external gain change was applied. Use of  
this multiplier minimizes gain steps that would cause transients in the downstream digital filters and allows  
relative power measurements on the digital signals.  
The AGC operation may be suspended during certain conditions. The internal controlled-delay AGC update and  
special clock gating can be used to suspend the AGC operation.  
The control word outputs from the feAGC blocks are applied to external DVGA parts via the DVGA pins. There  
are 16 DVGA pins (3.3-V CMOS) which may be individually configured as DVGA output signals or GPIO (input or  
output) signals. When used as DVGA control signals, there are two modes:  
Transparent mode parallel output words are connected directly to DVGAs that are being used in a mode  
without a clock or latch signal to clock-in the gain word. This is the minimum latency mode. There can be two  
ports of 8 bits each, three ports of 5 bits each, four ports of 4 bits each, or five ports of 3 bits each.  
Clocked mode eight latch enable (LE) signals and one 8-bit output word. This mode allows up to eight  
control signals, up to 8 bits each, but with increased latency. The LE signal may be a positive or negative  
pulse, with programmable width.  
R2C  
In the real-to-complex conversion block, real signal inputs are up- or downconverted by fS/4, filtered to isolate the  
selected sideband, and decimated by a factor of 2. Real-to-complex conversion is bypassed for complex inputs.  
The rejection of the R2C decimation filter is:  
For 90% bandwidth signal, 68 dB, stop band  
For 80% bandwidth signal, 106 dB, stop band  
Switch  
20  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
Any of the up to eight complex RX antenna/signal inputs across both sub-chips may be switched to one or more  
of the up to 4 output streams of each sub-chip.  
IF NCO  
The NCO/mixer block generates in-phase and quadrature sinusoidal signals (cos/sin) and mixes them with the  
switched antenna streams to frequency-translate the RX signals. The NCO contains a 48-bit frequency word and  
48-bit accumulator.  
BDC  
The BDC supports the following modes and sample rates at its input (across both sub-chips):  
Single 4 × DPD clock rate real, 2× DPD clock rate complex  
Dual 2 × DPD clock rate real, DPD clock rate complex  
Quad DPD clock rate real, 1/2 DPD clock rate complex  
Octal 1/2 DPD clock rate real  
Total decimation factors may be 1, 2, 4, 8, or 16. The decimation filtering is achieved with the cascade of the  
real-to-complex filter (R2C), a fixed filter F1, and a fixed filter F2. The rejection of the F1 and F2 filters is:  
Filter F1 (decimate by 1 or 2)  
If used, always followed by filter F2, so relaxed requirements  
45% bandwidth, 107 dB stopband  
Filter F2  
Recirculated 13 times to provide 2, 4, or 8× decimation factor  
90% bandwidth, 75 dB, stop band  
80% bandwidth, 106 dB, stop band  
Equalizer  
The receive equalizer is full-complex 16-tap filter that performs the following signal-processing functions:  
Programmable spectral inversion at the input  
Equalization of analog signal paths  
Channel equalization for repeater applications  
Gain/phase/fractional delay adjust (MIMO/smart antenna support)  
Fixed dc offset compensation at the output  
Independent complex coefficients for real and imaginary signal data allow full flexibility for independent  
equalization of the direct- and cross-IQ signal components, as well as frequency-dependent IQ gain and phase  
imbalance compensation. The programmable 16-bit coefficient sets (i.e., Cii, Cqq, Ciq and Cqi, for each tap) can be  
updated on the fly.  
IQ imbalance correction  
Automatic correction of IQ imbalance is provided with a 1-tap blind adaptive algorithm. The correction coefficients  
also may be programmed to fixed values. This block supports programmable integration intervals and flexible  
gating of loop operation.  
RX Distributor  
The outputs from the RX sub-chips are routed to the RX distributor block, which enables arbitrary assignment of  
RX streams to DDC channels and blocks.  
RX Baseband Output Formatter  
The RX baseband (BB) output formatter block accepts data from the DDC and formats the data for output on the  
BB LVDS pins. A back-end AGC (beAGC) function is included that optionally adjusts the gain of each channel  
and provides multiple format options. There are 12 unidirectional LVDS pairs for the RX BB interface.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): GC6016  
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Back-end AGC  
The beAGC function is available for receive channels from DDUC3 and DDUC2 (DDUC1 and DDUC0 may also  
be used for receivewith the formats as described followingbut without the beAGC function). When the  
floating-point format is selected (described following), the beAGC is not used. For the fixed-point formats, the  
beAGC may be on or off. There are separate beAGC blocks associated with DDUC3 and DDUC2, and each  
block can process up to 12 channels. Within a block, there are two sets of control parameters. This provides  
support for two different signal types sharing the same DDUC block. Each channel may have a  
programmable-gain starting point or a fixed gain, and there is a per-channel flexible gating signal to control  
freeze/operate intervals for TDD signal types. The beAGC has approximately a 100 dB dynamic range. The  
beAGC algorithm adjusts the gain to drive the median magnitude of gain-loop output data to a target threshold  
value. There are four step-sizes used (two for above and two for below the threshold), depending on distance  
from the threshold value.  
Output formatter  
There are three operational modes for the RX BB output formatter: byte mode (B, 9 bits), nibble mode (N, 4 bits),  
and serial mode (S, 2 bits). The nibble and serial modes allow multiple BB output rates and the use of fewer pins  
on the interface. The GC6016 can provide up to three different BB output data rates. Table 7 and Table 8  
summarize the different modes and pin assignments for the byte, nibble, and serial modes. As can be seen in  
Table 8, there are two data formats supported:  
Floating point (indicated with an F in the mode label; 14- or 16-bit mantissa, 4-bit exponent)  
Fixed point without gain word (16- or 18-bit options)  
In Table 8, BBOUT[X] is the BBOUT differential pair (assumed positive and negative connections), and BB0,  
BB1, and BB2 represent three different RX differential baseband input signals that can be at arbitrary rates.  
Figure 12 shows the BB output formats. The maximum-data-rate configurations have the DDR clock out  
transitioning synchronously with the data (referred to as DDR Mode 0 in the table). At half the maximum possible  
data rate (referred to as DDR Mode 1 in the table) and a quarter of the maximum possible data rate (referred to  
as DDR Mode 2 in the table), the DDR clock out transitions in the middle of the data-steady time .  
Table 7. RX BB Formatter Modes  
Total Number of Interface  
Pins  
Maximum Complex Interface Rate per Channel  
N is the number of channels  
MODE  
Description  
1B  
1 interface rate (up to 18 bits)  
11 = 9 data + 1 clk + 1 sync  
10 = 8 data + 1 clk + 1 sync  
(Clk4/4)/N/2; maximum 125 MSPS total (for all channels)  
(Clk4/4)/N/2; maximum 125 MSPS total (for all channels)  
1BF  
1 interface rate (up to 16 bits) + exponent (4  
bits)  
1N  
1NF  
1S  
1 interface rate (16 bits)  
6 = 4 data + 1 clk + 1 sync  
6 = 4 data + 1 clk + 1 sync  
4 = 2 data + 1 clk + 1 sync  
4 = 2 data + 1 clk + 1 sync  
(Clk4/8)/N; maximum 96.15 (Nibble0), 125 (Nibble1) MSPS total  
(Clk4/8)/N; maximum 96.15 (Nibble0), 125 (Nibble1) MSPS total  
(Clk4/16)/N; maximum 48.07 MSPS total  
1 interface rate (14 bits) + exponent (4 bits)  
1 interface rate (16 bits)  
1SF  
2N  
1 interface rate (14 bits) + exponent (4 bits)  
2 interface rates (16 bits)  
(Clk4/16)/N; maximum 48.07 MSPS total  
12 = 4 data + 1 clk + 1 sync + (Clk4/8)/N; maximum 221.15 MSPS total  
4 data + 1 clk + 1 sync  
2NF  
2S  
2 interface rates (14 bits) + exponent (4 bits)  
2 interface rates (16 bits)  
12 = 4 data + 1 clk + 1 sync + (Clk4/8)/N; maximum 221.15 MSPS total  
4 data + 1 clk + 1 sync  
8 = 2 data + 1 clk + 1 sync +  
2 data + 1 clk + 1 sync  
(Clk4/16)/N; maximum 96.15 MSPS total  
2SF  
3S  
2 interface rates (14 bits)+ exponent (4 bits)  
3 interface rates (16 bits)  
8 = 2 data + 1 clk + 1 sync +  
2 data + 1 clk + 1 sync  
(Clk4/16)/N; maximum 96.15 MSPS total  
12 = 2 data + 1 clk + 1 sync + (Clk4/16)/N; maximum 144.23 MSPS total  
2 data + 1 clk + 1 sync +  
2 data + 1 clk + 1 sync  
3SF  
3 interface rates (14 bits)+ exponent (4 bits)  
12 = 2 data + 1 clk + 1 sync + (Clk4/16)/N; maximum 144.23 MSPS total  
2 data + 1 clk + 1 sync +  
2 data + 1 clk + 1sync  
22  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
 
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
Table 8. RX BB Pin Assignments  
LVDS Pair BBI[11:0]  
Byte Mode  
BB0_DATA_0  
BB0_DATA_1  
BB0_DATA_2  
Spare  
Nibble Mode  
BB0_DATA_0  
BB0_DATA_1  
BB0_SYNC  
BB0_CLOCK  
BB0_DATA_2  
BB0_DATA_3  
BB1_SYNC  
BB1_CLOCK  
BB1_DATA_0  
BB1_DATA_1  
BB1_DATA_2  
BB1_DATA_3  
2
Serial Mode  
BB0_DATA_0  
BB0_DATA_1  
BB0_SYNC  
BB0_CLOCK  
BB1_DATA_0  
BB1_DATA_1  
BB1_SYNC  
BB1_CLOCK  
BB2_DATA_0  
BB2_DATA_1  
BB2_SYNC  
BB2_CLOCK  
3
BBOUT[0] pos. and neg.  
BBOUT[1] pos. and neg.  
BBOUT[2] pos. and neg.  
BBOUT[3] pos. and neg.  
BBOUT[4] pos. and neg.  
BBOUT[5] pos. and neg.  
BBOUT[6] pos. and neg.  
BBOUT[7] pos. and neg.  
BBOUT[8] pos. and neg.  
BBOUT[9] pos. and neg.  
BBOUT[10] pos. and neg.  
BBOUT[11] pos. and neg.  
Number of BBdata streams  
Number of DDR clocks to transfer 1 complex sample  
BB0_DATA_3  
BB0_DATA_4  
BB0_SYNC  
BB0_CLOCK  
BB0_DATA_5  
BB0_DATA_6  
BB0_DATA_7  
BB0_DATA_8  
1
2
4
8
BBOUT Clk 0  
(if DDR Mode 0)  
Mode 1B  
18 bit I/Q Data  
9I, 9I, 9Q, 9Q  
BBOUT Clk 0  
(if DDR Mode 1 or 2)  
BBOUT Sync 0  
BBOUT Data 0  
Mode 1BF  
16 bit I/Q Data + 4 bits gain  
8I +1G, 8I + 1G, 8Q + 1G, 8Q + 1G  
I0-O  
I0-E  
Q0-O  
Q0-E  
I1-O  
I1-E  
Q1-O  
Q1-E  
In-O  
In-E  
Qn-O  
Qn-E  
I0-O  
I0-E  
Q0-O  
Q0-E  
‘n’ can be up to 47, ‘O’ is 8 (or 9) odd numbered bits (1, 3, 5, ...), ‘E’ is 8 (or 9) even numbered bits (0, 2, 4, ...), with 0 being the LSB  
BBOUT Clk 0  
(if DDR Mode 0)  
BBOUT Clk 0  
(if DDR Mode 1 or 2)  
BBOUT Sync 0  
BBOUT Data 0  
Modes 1N, 2N  
16 bit I/Q Data  
4I, 4I, 4I, 4I, 4Q, 4Q, 4Q, 4Q  
I0-A  
I0-B  
I0-C  
I0-D  
Q0-A  
Q0-B  
Q0-C  
Q0-D  
In-A  
In-B  
In-C  
In-D  
Qn-A  
Qn-B  
Qn-C  
Qn-D  
BBOUT Clk 1  
(if DDR Mode 0)  
Modes 1NF, 2NF  
14 bit I/Q Data + 4 bits gain  
4I, 4I, 4I, 2I +2Q, 4Q, 4Q, 4Q, 4G  
BBOUT Clk 1  
(if DDR Mode 1 or 2)  
BBOUT Sync 1  
BBOUT Data 1  
I0-A  
I0-B  
I0-C  
I0-D  
Q0-A  
Q0-B  
Q0-C  
Q0-D  
In-A  
In-B  
In-C  
In-D  
Qn-A  
Qn-B  
Qn-C  
Qn-D  
‘n’ can be up to 47, ‘A’ is 4 MSBs, ‘B’ is next 4 bits, ‘C’ is next 4 bits and ‘D’ is 4 LSBs  
BBOUT ClkOUT 0  
(if DDR Mode 0)  
BBOUT Clk 0  
(if DDR Mode 1 or 2)  
BBOUT Sync 0  
BBOUT Data 0  
I0-A  
I0-A  
I0-A  
I0-B  
I0-B  
I0-B  
I0-C  
I0-C  
I0-C  
I0-D  
I0-D  
I0-D  
I0-E  
I0-E  
I0-E  
I0-F  
I0-F  
I0-F  
I0-G  
I0-G  
I0-G  
I0-H  
I0-H  
I0-H  
Qn-A  
Qn-A  
Qn-A  
Qn-B  
Qn-B  
Qn-B  
Qn-C  
Qn-C  
Qn-C  
Qn-D  
Qn-D  
Qn-D  
Qn-E  
Qn-E  
Qn-E  
Qn-F  
Qn-F  
Qn-F  
Qn-G  
Qn-G  
Qn-G  
Qn-H  
Qn-H  
Qn-H  
BBOUT Clk 1  
(if DDR Mode 0)  
Modes 1S, 2S, 3S  
16 bit I/Q Data  
4I, 4I, 4I, 4I, 4Q, 4Q, 4Q, 4Q  
BBOUT Clk 1  
(if DDR Mode 1 or 2)  
BBOUT Sync 1  
BBOUT Data 1  
Modes 1SF, 2SF, 3SF  
14 bit I/Q Data + 4 bits gain  
4I, 4I, 4I, 2I +2Q, 4Q, 4Q, 4Q, 4G  
BBOUT Clk 2  
(if DDR Mode 0)  
BBOUT Clk 2  
(if DDR Mode 1 or 2)  
BBOUT Sync 2  
BBOUT Data 2  
‘n’ can be up to 47, ‘A’ is 2 MSBs, ‘B’ is next 2 bits, ‘C’ is next 2 bits, ... and ‘H’ is 2 LSBs  
T0505-01  
Figure 12. RX BB Formats  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): GC6016  
 
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Capture Buffers  
The GC6016 has two capture buffers, each 4096 complex words (18-bits I, 18-bits Q) deep, which are  
periodically read by the external coefficient update controller (DSP). The capture buffers can be configured to  
sample data signals at the following points in the GC6016:  
CFR output  
(Referred to as node A)  
(Node B)  
TX equalizer output  
Not used for GC6016  
Not used for GC6016  
RX AB input  
(Node C)  
(Node D)  
(Node E)  
RX path 0/1 output  
RX C (feedback) input  
Testbus  
(Node F)  
(Node G)  
The capture buffers can be triggered via an external sync signal, through a software trigger, or when the  
monitored signal exceeds the user-configurable thresholds. The capture buffers can be programmed to monitor  
the signal statistics continuously and only capture data when certain requirements are met, as well as to  
generate an interrupt when a qualified buffer is captured. The capture buffers can be read by the DSP via the  
MPU interface.  
The capture buffers also allow synchronized multi-chip data capture. In systems with multiple GC5330s and  
GC6016s, the sync input can be used to capture the selected input node; the capture is the pre-trigger event.  
The SYNCOUT signal can be used to daisy-chain (e.g., connecting to SYNCA on the next chip) across the  
GC6016 devices in the system. The SYNCOUT signal indicates the end of the data capture and can be used as  
a capture trigger in all chips.  
Microprocessor (MPU) Interface  
The MPU interface is designed to interface with external memory interface (EMIF) ports on TI DSPs operating in  
asynchronous mode. It consists of a 16-bit bidirectional data bus, an 8-bit address bus, and WEB, OEB, CEB,  
and EMIFENA control signals. The interface supports the TI C6748 as an EMIF asynchronous interface. The  
MPU interface has two address spaces: a paged address space and an auto-increment address space.  
To enable the EMIF interface, pin EMIFENA must be set to logic high.  
In an MPU write cycle, a GC6016 internal MPUCLK signal is generated by NORing CEB and WEB. The  
MPUCLK signal goes high when both CEB and WEB are asserted and goes low as soon as either CEB or WEB  
is de-asserted. The MPU data is latched on the rising edge of the MPUCLK signal. For the auto-increment  
address spaces, the auto-increment address increments on the falling edge of the MPUCLK signal.  
In an MPU read cycle, a GC6016 internal MPUCLK signal is generated by NORing CEB and OEB. The MPUCLK  
signal goes high when both CEB and OEB are asserted and goes low as soon as either CEB or OEB is  
de-asserted. The MPU readback data is available soon after the rising edge of the MPUCLK signal. For the  
auto-increment address spaces, the auto-increment address increments on the failing edge of the MPUCLK  
signal.  
Figure 13 shows the MPU interface timing diagram. The timing specifications are provided in Table 26 and  
Table 27.  
24  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
Write Cycle  
Read Cycle  
CEB  
Addr  
OEB  
WEB  
Data  
T0506-01  
Figure 13. MPU Interface Format  
Serial Peripheral Interface (SPI)  
The MPU and SPI interfaces can be only enabled one at a time. EMIFENA must be set to logic low to enable the  
SPI interface. A three- or four-wire SPI interface is supported in the GC6016. It consists of SPIDENB, SPICLK ,  
SPIDIO, and SPIDO-(SPARE) (output in four-wire mode) signals. See Table 25 and Figure 24.  
JTAG Interface  
The GC6016 includes a five-pin JTAG interface that supports boundary scan for all CMOS pads in the chip,  
aside from the TESTMOD pin. The BBIN, BBOUT, RX, TX, and SYNC pins are all LVDS and do not get JTAG  
boundary scan. IMPORTANT NOTE: if not using JTAG, the TRSTB signal should be grounded (or pulled to  
ground through R 1 kΩ); otherwise, the JTAG port may take control of the pins. See Table 24 and Figure 23.  
A BSDL file is available on the GC6016 Web page.  
Input and Output Syncs  
The GC6016 features two LVDS input syncs (SYNCA and SYNCB) and one LVDS output (SYNCOUT)  
user-programmable sync. These are typically used as trigger/synchronization mechanisms to activate features  
within the device. The input syncs can be used to trigger events such as:  
Power measurements  
DUC channel delay, mixer phase and dither  
Initializing/loading filter coefficients  
Capturing and sourcing of data in the capture buffers  
Controlling gating intervals for AGC and other adaptive loops  
Frequency NCO changes, or hopping synchronization  
The SYNCA signal is used for device startup. The SYNCB signal can be used for shared feedback  
synchronization between multiple GC6016 devices. The sync signal is active-high. The width (number of positive  
edges of the DPD clock) of the sync signal depends on the configuration. See the GC6016 sync and MPU  
application note to determine the proper sync duration. A typical sync-pulse duration is four DPD clocks. The  
sync must be periodic, and usually starts at the beginning of the TX frame.  
The output sync can be programmed to reflect triggering of specific events within the GC6016, and is primarily  
used to output the capture-buffer sync out signal.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): GC6016  
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Programmable Power Meters  
Interval-Based Power Meter  
There are three interval-based power meters which compute magnitude-squared sample values during  
programmable time intervals and provide the following results:  
Integrated magnitude-squared power  
Peak power  
Number of magnitude-squared values above a first threshold  
Number of magnitude-squared values above a second threshold  
An interrupt bit is set when new measurement results are available. For its input, each power meter can  
independently select from the same set of internal node sources as the capture buffers.  
Running-Average Power Meter for PA Protection  
The running-average power meter monitors up to four signal streams on a single node, which is selectable from  
the same set of internal sources as the capture buffers. For each signal stream, it measures running-average  
power and counts instantaneous power values above a threshold (referred to as peaks). It can be used in  
conjunction with hardware alarms for monitoring power levels for PA protection.  
The running-average power meter has the following features:  
Running average mode, with programmable forgetting factor exponent, u (0 < u < 15)  
AAA y(k+1) = (1 2-u) × y(k) + 2-u × |x(k)|2,  
AAA where x(k) is the signal sample and y(k) is the power meter output.  
AAA Typically, one must set u = 11 to get 0.5-dB accuracy, u = 14 to get 0.1-dB accuracy.  
Peak count mode: counts the number of power values, |x(k)|2, above a threshold in a specified number of  
samples (window). The number of power values, threshold, and window are all programmable.  
Flexible gating of the operation interval  
Alarms  
The output, y(k), from the running-average power meter can be compared on an ongoing basis to programmable  
high and low thresholds (always positive). There are two alarms, alarm0 and alarm1. Each alarm is triggered (if it  
is enabled) based on the programmed mode:  
(0) Disabled  
(1) Average power alarm. The alarm is triggered based on the following conditions:  
If alarm polarity = 0 (see the alm_polarity register), y(k) > high_threshold  
If alarm polarity = 1, y(k) < low_threshold  
If alarm polarity = 2, y(k) > high_threshold or y(k) < low_threshold  
(2) Peak power alarm. The alarm is triggered based on the following conditions:  
If the count of power values |x(k)|2 > peak_threshold exceeds the programmed number of  
samples, peak_samples, in a programmed window, peak_window  
(3) The alarm is triggered if either (1) or (2) occurs.  
Alarm checks are computed on a per-antenna-stream basis. Each antenna stream y(k) result is compared to  
per-stream programmable thresholds.  
Once an alarm has been triggered, the output INTERRPT pin is asserted and the appropriate (alarm0 or alarm1)  
alarm interrupt bit is set and, for alarm1, a programmable action takes place. The programmable action is the  
same for all antenna streams, but the alarm triggering is independent for each antenna stream.  
26  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
Programmable trigger actions for alarm1:  
(0) No action  
(1) Reduce gain of CFR output by programmable scale factor (programmed with  
stream[n].gain_reduce), only if alarm caused by y(k) > high_threshold and alm_polarit = 0 or 2.  
The gain reduction is applied at the CFR input. A control signal from the capture buffer block is  
used to select the programmed gain value for the multiplier at the CFR input. When the host  
resets this alarm by writing to the appropriate register, the control signal returns to 0 (state that is  
not selecting the programmed gain value).  
GENERAL SPECIFICATIONS  
General Electrical Characteristics  
This section describes the electrical characteristics for the CMOS interfaces (DVGA, MPU, JTAG, SPI,  
TESTMOD, RESETB and INTERRPT) and LVDS interfaces (BBIN, BBOUT, TXA, TXB, RXA, RXB, RXC, SYNC,  
DPDCLK) over recommended operating conditions (unless otherwise noted).  
Table 9. General Electrical Characteristics, CMOS Interface  
PARAMETER  
Voltage input low  
Voltage input high  
Voltage output low  
Voltage output high  
Pullup current  
TEST CONDITIONS  
MIN NOM  
MAX UNIT  
(1)  
(1)  
VIL  
See  
See  
0.8  
VDDSHV  
0.5  
V
V
VIH  
VOL  
VOH  
2
IOL = 2 mA(1)  
IOH = 2 mA(1)  
VIN = 0 V(1)  
V
2.4  
VDDSHV  
250  
V
|IPU  
|
|
30 100  
30 100  
µA  
µA  
µA  
(1)  
|IPD  
Pulldown current  
Leakage current  
VIN = VDDSHV  
VIN = 0 or VDDSHV  
250  
(1)(2)  
|IIN  
|
20  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
(2) For inputs with no pullup or pulldown, inputs with pullup and VIN = VDDSHV, inputs with pulldown and VIN = 0, and bidirectionals in input  
mode in either state.  
Table 10. General Electrical Characteristics, LVDS Interfaces  
PARAMETER  
TEST CONDITIONS  
(1)  
MIN NOM  
700  
MAX  
1500  
700  
UNIT  
mV  
mV  
VICM  
Input common mode voltage (VP VN)/2  
Input differential voltage  
See  
See  
See  
See  
See  
(1)  
(1)  
(2)  
(1)  
|VP VN|  
RIN  
150  
Input differential impedance  
Output common-mode voltage  
Ouput differential voltage  
80  
1125  
250  
92  
120  
VCOM  
VOD  
1200  
1275  
500  
mV  
mV  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
(2) Characteristics are determined by design.  
General Switching Characteristics  
The baseband interface TX has a single DDR interface input mode. The customer logic and trace routing must  
meet the listed tsu and th input timing.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): GC6016  
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 11. General Switching Characteristics, TX BB LVDS Input  
PARAMETER  
BASEBAND INTERFACE DDR LVDS  
fCLK(BB-Serial)  
TEST CONDITIONS  
MIN NOM MAX UNIT  
384  
500(Nibble0)  
MHz  
(1)  
fCLK(BB-Nibble)  
Baseband input clock frequency  
See  
384(Nibble1)  
fCLK(BB-Byte)  
fCLK(RXA)  
tsu(BBS0)  
thi(BBS0)  
tsu(BBS1)  
thi(BBS1)  
tsu(BBS2)  
thi(BBS2)  
tsu(BBN0)  
th(BBN0)  
tsu(BBN1)  
th(BBN1)  
tsu(BB)  
384  
(1)  
Baseband input clock frequency, using RXA  
BBIN3 Clk, BBIN1:0 Data, BBIN2 Sync  
BBIN3 Clk, BBIN1:0 Data, BBIN2 Sync  
BBIN7 Clk, BBIN5:4 Data, BBIN6 Sync  
BBIN7 Clk, BBIN5:4 Data, BBIN6 Sync  
BBIN11 Clk, BBIN9:8 Data, BBIN10 Sync  
BBIN11 Clk, BBIN9:8 Data, BBIN10 Sync  
BBIN3 Clk, BBIN5,4,1,0 Data, BBIN2 Sync  
BBIN3 Clk, BBIN5,4,1,0 Data, BBIN2 Sync  
BBIN7 Clk, BBIN11:8 Data, BBIN6 Sync  
BBIN7 Clk, BBIN11:8 Data, BBIN6 Sync  
BBIN7 Clk, BBIN11:8,5:4,2:0 Data, BBIN6 Sync  
BBIN7 Clk, BBIN11:8,5:4,2:0 Data, BBIN6 Sync  
See  
See  
See  
See  
See  
See  
See  
See  
See  
See  
See  
See  
See  
250  
MHz  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
250  
200  
210  
250  
240  
190  
250  
220  
250  
220  
280  
250  
th(BB)  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
(2) Setup and hold times are measured from differential data crossing zero to differential clock crossing zero.  
BBIN Clk  
BBIN Data, BBIN Sync  
tsu  
th  
th  
tsu  
T0507-01  
Figure 14. TX Baseband LVDS Input Timing Specifications  
The BB LVDS RX outputs have three different output timing modes, DDR0, DDR1 and DDR2. DDR1 and DDR2  
modes output data, and the BBclk output is centered over the data. In DDR0 mode, the data and clock are  
edge-aligned. Different BBOUT pins are used for clock, frame, and data pins depending on the byte, nibble, and  
serial modes. The DDR1 and DDR2 modes are shown in Table 12 and Figure 15. The DDR0 mode is shown in  
Table 13 and Figure 16. Table 12 and Figure 15. DDR1 mode is used upto a BBclk frequency of 310 MHz.  
DDR2 mode is used upto a BBclk frequency of 155 MHz. When the data rate is higher than 500 MHz, BBclk  
above 250 MHz, the operating mode is DDR0. In this mode, the clock is aligned with the output data transition. In  
DDR0 mode, the customer must delay the clock to meet the tsu and thi target for the baseband input. The tskw  
time is measured as the relative skew for the data and frame to the clock output. This is shown in Figure 12 and  
Table 17.  
In receive (uplink) mode, the GC6016 outputs data using the LVDS pins BBOUT. The BBOUT port may be  
operated in three modes, DDR0, DDR1, and DDR2.  
28  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
The lowest-rate outputs use DDR2 mode, where the output clock changes on one rising edge of the internal  
clock and the output data changes on the subsequent rising edge. In DDR2 mode, the output bit rate (per LVDS  
pair) is half of the internal clock. Middle-rate outputs use DDR1 mode, where the output clock changes on the  
falling edge of the internal clock and the output data changes on the rising edge of the internal clock, which  
results in an output bit rate equal to the internal clock rate. Both DDR1 and DDR2 result in the output clock edge  
occurring in the middle of output data-stable time. The DDR1 and DDR2 modes are shown in Table 12 and  
Figure 15.  
The highest-rate outputs use DDR0 mode, where both the output clock and output data change with both the  
rising and falling edges of the internal clock. The DDR0 output bit rate is twice the internal clock rate. DDR0  
results in the clock and data changing at the same time, and typically requires extra trace length on the PC board  
for the clockout signal to provide the required setup time for the receiving chip. The DDR0 mode is shown in  
Table 13 and Figure 16.  
Table 12. General Switching Characteristics, RX BB LVDS Output DDR1, DDR2  
PARAMETER  
BASEBAND INTERFACE DDR LVDS  
fCLK(BB-DDR2)  
TEST CONDITIONS  
MIN NOM  
MAX UNIT  
See (1). Applies to BBOUT byte,  
nibble, or serial  
155  
MHz  
310  
Baseband output clock frequency  
fCLK(BB-DDR1)  
tskmin(BB)Serial0  
tskmax (BB)Serial0 BBOUT3 Clk, BBOUT1:0 Data, BBOUT2 Sync  
tskmin(BB)Serial1 BBOUT7 Clk, BBOUT5:4 Data, BBOUT6 Sync  
tskmax (BB)Serial1 BBOUT7 Clk, BBOUT5:4 Data, BBOUT6 Sync  
(2)(3)  
BBOUT3 Clk, BBOUT1:0 Data, BBOUT2 Sync  
See  
20  
350  
15  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
(2)(3)  
See  
(2)(3)  
See  
(2)(3)  
See  
310  
60  
(2)(3)  
tskmin(BB)Serial2  
tskmin(BB)Serial2  
BBOUT11 Clk, BBOUT9:8 Data, BBOUT10 Sync  
BBOUT11 Clk, BBOUT9:8 Data, BBOUT10 Sync  
See  
(2)(3)  
See  
300  
170  
340  
55  
(2)(3)  
tskmax(BB)Nibble0 BBOUT3 Clk, BBOUT5,4,1,0 Data, BBOUT2 Sync  
tskmax(BB)Nibble0 BBOUT3 Clk, BBOUT5,4,1,0 Data, BBOUT2 Sync  
tskmin(BB)Nibble1 BBOUT7 Clk, BBOUT11:8 Data, BBOUT6 Sync  
tskmax(BB)Nibble1 BBOUT7 Clk, BBOUT11:8 Data, BBOUT6 Sync  
See  
(2)(3)  
See  
(2)(3)  
See  
(2)(3)  
See  
305  
BBOUT7 Clk, BBOUT11:8,5:4,2:0 Data, BBOUT6  
Sync  
(2)(3)  
tskmin(BB)Byte  
tskmax(BB)Byte  
See  
250  
255  
ps  
ps  
BBOUT7 Clk, BBOUT11:8,5:4,2:0 Data, BBOUT6  
Sync  
(2)(3)  
See  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
(2) Skew measured for RX BBOUT data and frame signals, relative to the BBclk signal at zero crossing. BBclk is measured at threshold  
crossing. Lab measurement +signal 50 Ω → Vcommon 50 Ω → –signal. Vcommon has a 0.01-µF filter capacitor to GND.  
Differential probe used for measurement.  
(3) tsu calculation: 1/4 BBclk period tskmin; th calculation: 1/4 BBclk period tskmax  
BBOUT Clk  
BBOUT Sync  
BBOUT Data  
tsu  
th  
T0508-01  
Figure 15. RX Baseband LVDS DDR1, DDR2 Output Timing Specifications  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): GC6016  
 
 
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 13. General Switching Characteristics, RX BB LVDS Output DDR0  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX UNIT  
BASEBAND INTERFACE DDR LVDS  
fCLK(Byte)  
Baseband output clock frequency  
See(1)  
384  
384  
500  
384  
MHz  
MHz  
MHz  
MHz  
ps  
fCLK(Nibble0)  
fCLK(Nibble1)  
fCLK(Serial)  
tskmax(BB)Serial0  
BBOUT3 Clk, BBOUT1:0 Data, BBOUT2  
Sync  
See(2)(3)  
60  
400  
130  
500  
45  
425  
0
tskmin(BB)Serial0  
tskmax(BB)Serial1  
tskmin(BB)Serial1  
tskmax(BB)Serial2  
tskmin(BB)Serial2  
tskmax(BB)Nibble0  
tskmin(BB)Nibble0  
tskmax(BB)Nibble1  
tskmin(BB)Nibble1  
tskmax(BB)Byte  
BBOUT3 Clk, BBOUT1:0 Data, BBOUT2  
Sync  
See(2)(3)(4)  
See(2)(3)  
See(2)(3)(4)  
See(5)(6)  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
BBOUT3 Ck, BBOUT1:0 Data, BBOUT2  
Sync  
BBOUT3 Clk, BBOUT1:0 Data, BBOUT2  
Sync  
BBOUT7 Clk, BBOUT5:4 Data, BBOUT6  
Sync  
BBOUT7 Clk, BBOUT5:4 Data, BBOUT6  
Sync  
BBOUT3 Clk, BBOUT5,4,1,0 Data, BBOUT2 See(5)(6)  
Sync  
BBOUT3 Clk, BBOUT5,4,1,0 Data, BBOUT2 See(5)(6)(7)  
Sync  
See(5)(6)(7)  
400  
10  
BBOUT7 Clk, BBOUT11:8 Data, BBOUT6  
Sync  
See(5)(6)  
BBOUT7 Clk, BBOUT11:8 Data, BBOUT6  
Sync  
See(5)(6)(7)  
See(5)(6)  
460  
0
BBOUT7 Clk, BBOUT11:8,5:4,2:0 Data,  
BBOUT6 Sync  
tskmin(BB)Byte  
BBOUT7 Clk, BBOUT11:8,5:4,2:0 Data,  
BBOUT6 Sync  
See(5)(6)(7)  
480  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
(2) Skew measured for RX BBOUT data and frame signals, relative to the BBclk signal at zero crossing. BBclk is measured at threshold  
crossing. Lab measurement +signal 50 Ω → Vcommon 50 Ω → –signal. Vcommon has a 0.01-µF filter capacitor to GND.  
Differential probe used for measurement.  
(3) The customer interface design modifies the trace lengths based on the desired receiver timing and clock delays.  
(4) tsu = tskmax; thold = 1/4 BBclk period tskmin  
.
(5) Skew measured for RX BBOUT data and frame signals, relative to the BBclk signal at zero crossing. BBclk is measured at threshold  
crossing. Lab measurement +signal 50 Ω → Vcommon 50 Ω → –signal. Vcommon has a 0.01-µF filter capacitor to GND.  
Differential probe used for measurement.  
(6) The customer interface design modifies the trace lengths based on the desired receiver timing and clock delays.  
(7) tsu = tskmax; thold = 1/4 BBclk period tskmin  
.
30  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
BBOUT Data, BBOUT Sync  
BBOUT Clk  
tskmax  
tskmin  
tskmax  
tskmin  
Ideal  
Data  
Placement  
Ideal  
Data  
Placement  
T0509-01  
Figure 16. RX Baseband LVDS DDR0 Output Timing Specifications  
The DAC TX interface has a 40-signal output bus. The DAC TX bus can provide 4-byte-wide or 2-word-wide  
interfaces. Table 5 shows the different DAC devices that can be connected to the TX output ports. The DAC TX  
interface has two styles of clock output, one where the DDR clock is centered over the output data-stable time,  
and one where the clock transition is aligned with the data transition. If the output clock rate is greater than  
500 MHz, the GC6016 must be configured for clock transition aligned with the data transition. Depending on the  
DAC type selected, the clock, frame, and data for the DAC may require a trace routing delay for proper  
alignment. See Table 14, Table 15, and Table 16.  
Table 14. TX DAC and Envelope Modulator Characteristics  
DAC or Envelope Modulator  
Timing Model  
Clock centered over data  
DAC Data Rate Table Number Figure Number  
Type  
DAC3282, 3283 byte-envelope  
modulator  
<1000 Mbyte/s  
Table 15  
Figure 17  
DAC3282, 3283 byte-envelope  
modulator  
Clock aligned with data at GC6016, routing  
provides timing skew for clock centered over data  
1000 Mbyted/s  
<1000 Mword/s  
1000 Mword/s  
Table 16  
Table 15  
Table 16  
Figure 18  
Figure 17  
Figure 18  
DAC3484, 3482 word  
Clock centered over data  
Clock aligned with data at GC6016, routing  
provides timing skew for clock centered over data  
DAC3484, 3482 word  
Clock aligned with data at GC6016. PC board  
routing may be required to provide some timing  
skew for optimum performance.  
DAC5682  
All  
Table 16  
Figure 18  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): GC6016  
 
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 15. TX DAC Clock Centered Over Data Switching Characteristics (See Table 5 for Connections)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
DDR LVDS  
fCLK(DAC)  
DAC output clock frequency  
See(1)  
620  
MHz  
MIN  
SKEW  
MAX  
SKEW  
CLOCK  
DATA  
TEST CONDITIONS  
UNIT  
(2)(3)  
TXA4  
TXA14  
TXA9  
TXB4  
TXB14  
TXB9  
TXA9:5, 3:0  
See  
See  
See  
See  
See  
See  
190  
241  
200  
169  
198  
145  
139  
205  
155  
238  
146  
235  
ps  
ps  
ps  
ps  
ps  
ps  
(2)(3)  
(2)(3)  
(2)(3)  
(2)(3)  
(2)(3)  
TXA19:15, 13:10  
TXA19:10, 8:0  
TXB9:5, 3:0  
TXB19:15, 13:10  
TXB19:10, 8:0  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
(2) Skew measured from DAC DATA desired P/N crossing to DATA P/N crossing. A negative skew is when the data arrives prior to the  
clock.  
(3) tsu = 1/4 DAC clock period Max. Skew, th = 1/4 DAC clock period + Min. Skew  
Table 16. TX DAC Clock Aligned With Data Switching Characteristics (See Table 5 for Connections)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
DDR LVDS  
fCLK(DAC)  
(1)  
DAC output clock frequency  
See  
620  
MHz  
MIN  
SKEW  
MAX  
SKEW  
CLOCK  
DATA  
TEST CONDITIONS  
UNIT  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
TXA4  
TXA14  
TXA9  
TXB4  
TXB14  
TXB9  
TXA9:5, 3:0  
See  
See  
See  
See  
See  
See  
190  
241  
200  
169  
198  
145  
139  
205  
155  
238  
146  
235  
ps  
ps  
ps  
ps  
ps  
ps  
TXA19:15, 13:10  
TXA19:10, 8:0  
TXB9:5, 3:0  
TXB19:15, 13:10  
TXB19:10, 8:0  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
(2) Skew measured from DAC DATA desired P/N crossing to DATA P/N crossing. A negative skew is when the data arrives prior to the  
clock.  
DAC Data, DAC Frame  
DAC Data Clock  
Min  
Skew  
Max  
Skew  
Max  
Skew  
Min  
Skew  
Ideal Data Placement  
T0510-01  
Figure 17. TX LVDS Timing Specifications (TXA and TXB) (DACCLK Centered Over Data)  
32  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
DAC Data, DAC Frame  
DAC Data Clock  
Min  
Skew  
Max  
Skew  
Min  
Skew  
Max  
Skew  
Ideal  
Data  
Placement  
Ideal  
Data  
Placement  
T0511-01  
Figure 18. TX LVDS Timing Specifications (TXA and TXB) (DACCLK Aligned With Data)  
The ADC output interface has two types of timing, based on the clock centered over the data, or clock  
edge-aligned with the data. The GC6016 only processes clock centered over the data. Each ADC type is  
characterized by the data and clock alignment, in Table 17, from which the proper table and timing diagram can  
be determined as follows: ADC W7 in Table 18 and Figure 19; ADC W14 in Table 19 and Figure 20; and ADC  
B7 in Table 20 and Figure 19. Note: The general ADC routing is to align the clock and data traces with a  
common routing delay. For the ADS5463 and ADS5474 the clock trace must be adjusted in length to meet the  
system timing design.  
Note: when RXA is used as a baseband interface, the specification is shown in table Table 17. The table shows  
a sampling of ADCs released at publication time. If the clock is not centered, the pc board may require added  
routing delay to the clock out to satisfy the setup time requirements. See (*) in Table 17.  
W7 word-wide ADC interface, clock on bit 7  
W14 word-wide ADC interface, clock on bit 14  
B7 byte-wide ADC interface, clock on bit 7  
B14 byte-wide ADC interface, clock on bit 14  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): GC6016  
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 17. General LVDS ADC Interface Table  
Clock  
Centered  
ADC Type  
ADS5400  
Bits per Rail  
ADC Format  
ADC Input Timing Table  
ADC Figure  
1
1
1
1
Yes  
No  
No  
No  
W7  
Table 18  
Table 19  
Table 19  
Table 19  
Figure 19  
Figure 19  
Figure 19  
Figure 19  
ADS54RF63 (*)  
ADS5463 (*)  
ADS5474 (*)  
W14  
W14  
W14  
RXA as baseband  
TX input  
2
2
Yes  
Yes  
Baseband format W14  
Table 21  
Table 20  
Figure 19  
Figure 19  
ADS61xx, ADS41xx,  
ADS62pxx  
B7  
ADS55xx  
2
2
Yes  
Yes  
B7, W7  
B7, W7  
Table 20Table 18  
Table 20Table 18  
Figure 19  
Figure 19  
ADS58B18  
ADS58B28,  
ADS62c1x  
2
Yes  
B7, W7  
Table 20Table 18  
Figure 19  
ADS64xx  
ADS52xx  
6 or 7  
Yes  
Yes  
W7  
W7  
Table 18  
Table 18  
Figure 20  
Figure 20  
12 or 14  
Table 18. RX ADC-W7 Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX UNIT  
(1)  
fCLK(ADC)  
tsu(ADC,A)  
RX input clock frequency, ADCA7 Clk  
See  
See  
620  
MHz  
Input data setup time on port A before ADCA7  
Clk transition  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
260  
170  
260  
140  
ps  
Input data hold time on port A after ADCA7 Clk  
transition  
th(ADC,A)  
tsu(ADC,B)  
th(ADC,B)  
See  
See  
See  
ps  
ps  
ps  
Input data setup time on port B before ADCB7  
Clk transition  
Input data hold time on port B after ADCB7 Clk  
transition  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
(2) Setup and hold times apply to data and appropriate ADC Clk, respectively. Timing is measured from ADC Clk threshold crossing.  
ADC Clock  
ADC Data  
tsu  
th  
th  
tsu  
T0512-01  
Figure 19. RX ADC LVDS Timing Specifications (RXA and RXB)  
34  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
 
 
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
Table 19. RX ADC-W14 Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX UNIT  
RX input clock frequency ADCA14 Clk,  
ADCB14 Clk  
(1)  
fCLK(ADC)  
tsu(ADC,A)  
See  
See  
620  
MHz  
ps  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
Input data setup time on port A before  
ADCA14 Clk transition  
160  
200  
180  
220  
th(ADC,A)  
tsu(ADC,B)  
th(ADC,B)  
Input data hold time on port A after  
ADCA14 Clk transition  
See  
See  
See  
ps  
ps  
ps  
Input data setup time on port B before  
ADCB14 Clk transition  
Input data hold time on port B after  
ADCB14 Clk transition  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
(2) Setup and hold times apply to data and appropriate ADC Clk, respectively. Timing is measured from ADC Clk threshold crossing.  
Table 20. RX ADC-B7, B14 Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX UNIT  
(1)  
fCLK(ADC-AB) RX input clock frequency, ADCA7 Clk,  
ADCB7 Clk  
See  
620  
MHz  
(1)  
fCLK(ADC-C)  
RX input clock frequency, ADCC7 Clk  
See  
See  
620  
MHz  
ps  
Input data setup time on port A before  
ADCA7 Clk transition  
(1)(2)  
tsu(ADC,A)  
260  
160  
170  
140  
290  
150  
130  
200  
170  
240  
Input data hold time on port A after  
ADCA7 Clk transition  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
(1)(2)  
th(ADC,A)  
tsu(ADC,B)  
th(ADC,B)  
tsu(ADC,C)  
th(ADC,C)  
tsu(ADC,A)  
th(ADC,A)  
tsu(ADC,B)  
th(ADC,B)  
See  
See  
See  
See  
See  
See  
See  
See  
See  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Input data setup time on port B before  
ADCB7 Clk transition  
Input data hold time on port B after  
ADCB7 Clk transition  
Input data setup time on port C before  
ADCC7 Clk transition  
Input data hold time on port C after  
ADCC7 Clk transition  
Input data setup time on port A before  
ADCA14 Clk transition  
Input data hold time on port A after  
ADCA14 Clk transition  
Input data setup time on port B before  
ADCB14 Clk transition  
Input data hold time on port B after  
ADCB14 Clk transition  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
(2) Setup and hold times apply to data and appropriate ADC Clk, respectively. Timing is measured from ADC Clk threshold crossing.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): GC6016  
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
ADC Clock  
ADC Frame Clock  
ADC Data  
tsu  
th  
th  
tsu  
T0513-01  
Figure 20. RX ADC LVDS Timing Specifications (RXA and RXB)  
Table 21. RXA-BB Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX UNIT  
(1)  
fCLK(BB-A)  
tsu(BB-A)  
RX input clock frequency  
See  
See  
250  
MHz  
Input data setup time on port A before  
ADCA Clk transition  
(1)(2)  
(1)(2)  
160  
200  
ps  
Input data hold time on port A after  
ADCA Clk transition  
th(BB-A)  
See  
ps  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
(2) Setup and hold times apply to data and appropriate ADC Clk, respectively. Timing is measured from ADC Clk threshold crossing.  
Table 22. DPD Clock and Sync A,B Switching Characteristics(1)  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX UNIT  
(2)  
fCLK(DPD)  
fCLK(BB)  
DPD input clock frequency  
BB internal clock frequency  
DPD input clock duty cycle  
See  
See  
See  
See  
See  
See  
See  
See  
310  
250  
MHz  
MHz  
(1)  
(3)  
(3)  
(2)  
(2)  
(2)  
(2)  
tDUTY-CYCLE  
40%  
60%  
2.5%  
fCLK (JITTERRMS-DPD) DPD clock input jitter  
tsu(SYNCA)  
th(SYNCA)  
tsu(SYNCB)  
th(SYNCB)  
Input data setup time before fCLK  
Input data hold time after fCLK  
Input data setup time before fCLK  
Input data hold time after fCLK  
0.25  
0.1  
ns  
ns  
ns  
ns  
0.35  
0.05  
(1) The PLL output ranges are 4001000 MHz. These are configuration dependent but related to the DPDCLK frequency. The cmd5330  
software automatically checks these limits when compiling a configuration.  
(2) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
(3) Specification is from the PLL specification and is not production tested.  
36  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
DPD Clock  
SYNCA, SYNCB  
tsu  
th  
T0514-01  
4 cycles, min.  
Figure 21. SYNCA, SYNCB Timing to DPD Clock  
Table 23. DPD Clock and Sync Out Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX UNIT  
(1)  
td(SYNCOut)  
Data valid after DPD clock  
See  
See  
0.95  
ns  
ns  
(1)  
tHO(SYNCOut) Data held valid after next DPD clock  
0.3  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
Sync Out  
DPD Clock  
td  
tHO  
T0515-01  
Figure 22. Sync Out Timing to DPD Clock  
The JTAG test connections are used with the CMOS signals for board interconnection tests. The TRSTB pin  
must be toggled low, or low initially. If JTAG is not used, the TRSTB signal should be GROUNDed or tied to  
GND through < 1 kΩ resistance. TRSTB should be 0 for normal operation.  
Table 24. JTAG Switching Characteristics  
PARAMETER  
JTAG clock frequency  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
MHz  
ns  
fTCK  
50  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
tTCKL  
JTAG clock low period  
See  
See  
See  
See  
See  
See  
10  
10  
tTCKH  
JTAG clock high period  
ns  
tsu(TDI,TMS)  
tH(TDI,TMS)  
td  
Input data setup time before fTCK  
7
ns  
Input data hold time after fTCK  
Output data delay from fTCK  
Previous data valid from fTCK  
1.5  
10  
2
ns  
ns  
tOHD(TDO)  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): GC6016  
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
t
TCK  
TDI  
tSU  
tH  
TDO  
td  
tOH  
T0289-02  
Figure 23. JTAG Timing Specifications  
The SPI programming interface is active only when EMIFENA is 0. There are both three-wire and four-wire SPI  
interfaces; the SPIDO(SPARE) is the fourth wire for SPI data output.  
Table 25. SPI Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
Valid for SPIDENB, see(1)  
Valid for SPIDIO, see(1)  
Valid for SPIDIO, see(1)  
Valid for SPIDIO, see(2)  
Valid for SPIDO(SPARE), see(2)  
See(1)  
MIN NOM  
MAX UNIT  
tsu(DENB)  
tsu(DI)  
Enable setup time before SPI CLK↑  
Data setup time before SPI CLK↑  
Input data hold time after CLK↑  
5
5
ns  
ns  
ns  
th(DI)  
0.6  
td(DO)  
Output data delay from fTCK  
Output data delay from fTCK  
SPI clock frequency  
8
8
ns  
ns  
td(DO1)  
fclk SPI  
50  
MHz  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
(2) The SPI data output in three-wire mode comes from SPIDIO; in four-wire mode the output is from SPIDO(SPARE).  
SPI Clock  
tsu(DENB)  
th(DI)  
SPIENB  
tsu(DI)  
SPIDIO-In  
SPIDO(SPARE)  
td(DO1)  
th(DO)  
T0516-01  
Figure 24. SPI Timing Specifications  
38  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
Table 26. MPU Switching Characteristics (READ)  
PARAMETER  
TEST CONDITIONS  
MIN MAX UNIT  
tsu(RD)  
tdly(RD)  
th(RD)  
CEB and ADDR setup time to OEB  
Data valid time after OEB  
See(1)  
See(1)  
See(1)  
See(1)  
See(2)  
See(1)  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
15  
CEB and ADDR hold time to OEB  
Time OEB must remain HIGH between READs  
Data goes to high-impedance state after OEB or CEB  
Time between READs  
2.5  
6
tHIGH(RD)  
tz(RD)  
tcycle(RD)  
toh(RD)  
5
21  
(2)  
Time after OEBthat data is valid  
See  
TBD  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
(2) Bench tested for output start changing after releasing strobe with a 50-Ω load on the output  
CEB  
tsu(RD)  
th(RD)  
Addr  
WEB  
OEB  
Data  
tsu(RD)  
th(RD)  
tz(RD)  
tdly(RD)  
toh(RD)  
T0517-01  
Figure 25. MPU READ Timing Specifications  
Table 27. MPU Switching Characteristics (WRITE)  
PARAMETER  
TEST CONDITIONS  
MIN MAX UNIT  
tsu(WR)  
CEB, DATA, and ADDR setup time to WEB  
CEB, DATA, and ADDR hold time after WEB  
Time WEB and CEB must remain simultaneously LOW  
Time CEB or WRB must remain HIGH between WRITEs  
Time between WRITEs  
See(1)  
See(1)  
See(1)  
See(1)  
See(1)  
1.4  
3
ns  
ns  
ns  
ns  
ns  
th(WR)  
tlow(WR)  
thigh(WR)  
tcycle(WR)  
4
7
11  
(1) Chip specifications are production tested at 90°C case temperature for the given specification. Early production lots are sample tested  
at 40°C.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): GC6016  
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
CEB  
tsu(WR)  
th(WR)  
Addr  
tsu(WR)  
th(WR)  
OEB  
tlow(WR)  
thigh(WR)  
WEB  
tsu(WR)  
th(WR)  
Data  
T0518-01  
Figure 26. MPU WRITE Timing Specifications  
Power Sequencing Guideline  
TI ASIC I/O design allows either the core supply (VDD) or the I/O supply (VDDS) to be powered up(2) for an  
indefinite period of time while the other power supply is not powered up, if all of these constraints are met:  
Chip is within all maximum ratings and recommended operating conditions.  
Have followed all warnings about exposure to maximum rated and recommended conditions, particularly  
junction temperature. These apply to power transitions as well as normal operation.  
Bus contention while VDDS is powered up must be limited to 100 hours over the projected lifetime of the  
device.  
Bus contention while VDDS is powered down may violate the absolute maximum ratings.  
However, it is generally good practice to power up VDD, VDDSHV, and VDDS all within 1 second of each other.  
Application Information  
The GC5330/GC6016 evaluation module includes the following additional transmit/receive signal chain  
components:  
TMS320C6748 digital signal processor (DSP)  
DAC3283 16-bit 800-MSPS, dac348X, or DAC5682 16-bit, 1-GSPS DAC (transmit path)  
CDCE72010 clock generator  
TRF3720 300-MHz to 4.8-GHz quadrature modulator with integrated wideband PLL/VCO  
TRF370317 0.4-GHz to 4-GHz quadrature modulator  
ADS41B49 14-bit, 250-MSPS ADC (and other options; feedback path)  
AMC7823 analog monitoring and control circuit with GPIO and SPI  
PGA870 wideband programmable gain amplifier  
ADS42b49 14-bit dual 250-MSPS receive or complex feedback ADC (and other options; RX path)  
(2) A supply bus is powered up when the voltage is within the recommended operating range. It is powered down when it is below that  
range, either stable or in transition.  
40  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
MPU Interface Guidelines  
The following section describes the hardware interface between the recommended microprocessor and the  
GC6016. The GC6016 interface is an EMIF asynchronous interface.  
The TMS320C674x/OMAP-L1x Processor Peripherals Overview referencde guide (SPRUFK9) illustrates the  
connections to the TMS320C6748 peripherals. The TMS320C674x/OMAP-L1x Processor External Memory  
Interface A (EMIFA) user's guide (SPRUFL6) illustrates the connections to the EMIF A interface, and DSP timing.  
It is recommended that if more than one EMIF-A load is connected to the DSP, buffering is used for the control  
bus WE, RD, address bus, and data bus.  
Related Material and Documents  
The following documents are available through your TI Field Application Engineer (FAE):  
GC5330/GC6016 EVM schematic diagram  
GC5330/GC6016 EVM layout diagram  
GC5330/GC6016 Baseband Application Note  
GC5330/GC6016 Baseband beAGC Application Note  
GC5330/GC6016 DDUC Application Note  
GC5330/GC6016 CFR Application Note  
GC5330/GC6016 TX (BUC, DAC Interface) Application Note  
GC5330/GC6016 RX Application Note  
GC5330 feAGC Application Note  
GC5330 Sync, MPU Application Note  
GC5330/GC6016 Software Application Guide  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): GC6016  
GC6016  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
APPENDIX  
Glossary of Terms  
3G  
Third generation (refers to next-generation wideband cellular systems that use CDMA)  
Third Generation Partnership Project (W-CDMA specification, www.3gpp.org)  
Third Generation Partnership Project 2 (cdma2000 specification, www.3gpp2.org)  
Adjacent-channel leakage ratio (measure of out-of-band energy from one CDMA carrier)  
Adjacent-channel power ratio  
3GPP  
3GPP2  
ACLR  
ACPR  
ADC  
BBclk  
BW  
Analog-to-digital converter  
Clock-to-baseband section of GC6016  
Bandwidth  
CCDF  
CDMA  
CEVM  
CFR  
Complementary cumulative distribution function  
Code division multiple access (spread spectrum)  
Composite error vector magnitude  
Crest factor reduction  
DPD_CLK  
CIC  
Clock-to-DPD section of GC6016  
Cascaded integrator comb (type of digital filter)  
Complementary metal-oxide semiconductor  
Digital-to-analog converter  
CMOS  
DAC  
dB  
Decibels  
dBm  
Decibels relative to 1 mW (30 dBm = 1 W)  
Dual data rate (ADC output format)  
DDR  
DPD  
DSP  
Digital pre-distortion  
Digital signal processing or digital signal processor  
Digital upconverter (usually provides the GC6016 input)  
Error vector magnitude  
DUC  
EVM  
FIR  
Finite impulse response (type of digital filter)  
High-performance DPD mode of the GC6016  
High-speed DPD mode of the GC6016  
In-phase and quadrature (signal representation)  
Intermediate frequency  
HP-DPD  
HS-DPD  
I/Q  
IF  
IIR  
Infinite impulse response (type of digital filter)  
Joint Test Action Group (chip debug and test standard 1149.1)  
Local oscillator  
JTAG  
LO  
LSB  
Least-significant bit  
MSB  
MSPS  
PA  
Most-significant bit  
Megasamples per second (1 × 106 samples/s)  
Power amplifier  
PAR  
Peak-to-average ratio  
PCDE  
PDC  
PDF  
Peak code domain error  
Peak detection and cancellation (stage)  
Probability density function  
RF  
Radio frequency  
RMS  
SDR  
SEM  
SNR  
UMTS  
W-CDMA  
Root-mean-square (method to quantify error)  
Single data rate (ADC output format)  
Spectrum emission mask  
Signal-to-noise ratio (usually measured in dB or dBm)  
Universal mobile telephone service  
Wideband code division multiple access (synonymous with 3GPP)  
42  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): GC6016  
GC6016  
www.ti.com  
SLWS227A NOVEMBER 2010REVISED MARCH 2011  
WiBro  
Wireless Broadband (Korean initiative IEEE 802.16e)  
WiMAX  
Worldwide Interoperability of Microwave Access (IEEE 802.16e)  
AA  
AA  
AA  
REVISION HISTORY  
Changes from Revision Original (November 2010) to Revision A  
Page  
Added/deleted/modified items in FEATURES list ................................................................................................................. 1  
Added/deleted/modified items in APPLICATIONS list .......................................................................................................... 1  
Changed and expanded DESCRIPTION section ................................................................................................................. 1  
Inserted new front-page diagram .......................................................................................................................................... 1  
Added a table for several sample configurations; added several antenna mode diagrams; relocated Available  
Options table and GC6016 block diagram further back in the data sheet ............................................................................ 2  
Appended another 42 pages ................................................................................................................................................ 2  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): GC6016  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Apr-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
GC6016IZEV  
ACTIVE  
BGA  
ZEV  
484  
60  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY