HD3SS213 [TI]

支持 DDC/AUX 开关的 5.4Gbps DisplayPort 1.2a 1:2/2:1 差动多路复用器;
HD3SS213
型号: HD3SS213
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

支持 DDC/AUX 开关的 5.4Gbps DisplayPort 1.2a 1:2/2:1 差动多路复用器

开关 复用器
文件: 总25页 (文件大小:1823K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HD3SS213  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
HD3SS213 5.4Gbps DisplayPort 1.2a 2:1 1:2 差动开关  
1 特性  
3 说明  
• 符DisplayPort 1.2 电气标准  
2:1 1:2 切换最高支5.4Gbps 的数据速率  
• 支HPD 切换  
• 支AUX DDC 切换  
• –3dB 差动带宽宽5.4GHz 以上  
• 出色的动态特性2.7GHz ):  
– 串= -50dB  
HD3SS213 器件是一款高速无源开关能够在一个应  
用中将两个完整 DisplayPort 4 通道端口从两个源之一  
切换到一个目标位置。它还将一个源切换到两个接收器  
之一。对于 DisplayPort 应用HD3SS213 支持 ZEQ  
封装中辅助 (AUX)、显示数据通道 (DDC) 和热插拔检  
(HPD) 信号的切换。  
一个典型应用是主板该主板包含两个需要驱动一个  
DisplayPort 接收器的 GPUGPU Dx_SEL 引脚选  
择。另一个应用是一个源需要在两个接收器之间切换,  
例如一个侧面连接器和一个扩展坞连接器。此切换操作  
Dx_SEL AUX_SEL 引脚控制。HD3SS213 在  
-40°C 105°C 的完全工业温度范围内由一个电压为  
3.3 V 的单电源供电运行。  
– 隔= -25dB  
– 插入损= -1.5dB  
– 回= -13dB  
– 最大位间偏= 5ps  
VDD 工作范围3.3V±10%  
• 封装选项:  
5mm × 5mm50 nFBGA  
• 输出使(OE) 引脚禁用开关以省电  
HD3SS213 < 10mW待机功< 30µW  
此时OE = L)  
器件信息(1)  
封装尺寸标称值)  
器件型号  
HD3SS213  
封装  
nFBGA (50)  
5.00mm x 5.00mm  
(1) 要了解所有可用封装请见数据表末尾的可订购产品附录。  
2 应用  
DAx(p)  
PC 和笔记本电脑  
平板电脑  
联网外设和打印机  
DCx(p)  
DAx(n)  
DCx(n)  
AUXAx  
Source A  
DDCA  
DDCC  
DP Sink  
HPDA  
AUXCx  
HPDC  
AUXBx  
DDCB  
HPDB  
OE  
Source B  
Dx_SEL  
AUX_SEL  
Control  
DBx(p)  
DBx(n)  
HD3SS213 2:1  
DAx(p)  
DAx(n)  
DCx(p)  
DCx(n)  
AUXAx  
DP Sink A  
DDCA  
HPDA  
DP Source  
DDCC  
AUXCx  
HPDC  
AUXBx  
DDCB  
HPDB  
OE  
DP Sink B  
Dx_SEL  
AUX_SEL  
Control  
DBx(p)  
DBx(n)  
HD3SS213 1:2  
Copyright © 2016, Texas Instruments Incorporated  
HD3SS213 应用方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLAS901  
 
 
 
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
Table of Contents  
7.3 Feature Description...................................................11  
7.4 Device Functional Modes..........................................11  
8 Application and Implementation..................................12  
8.1 Application Information............................................. 12  
8.2 Typical Applications.................................................. 13  
9 Layout.............................................................................16  
9.1 Layout Guidelines..................................................... 16  
9.2 Layout Example........................................................ 17  
10 Device and Documentation Support..........................18  
10.1 接收文档更新通知................................................... 18  
10.2 支持资源..................................................................18  
10.3 Trademarks.............................................................18  
10.4 静电放电警告.......................................................... 18  
10.5 术语表..................................................................... 18  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements..................................................7  
6.7 Typical Characteristics................................................9  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................10  
Information.................................................................... 18  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (December 2016) to Revision C (January 2021)  
Page  
• 注MicroStar Jr. BGA 封装的器件采用层nFBGA 封装进行了重新设计。这nFBGA 封装提供了类似  
于数据表中的电气性能。该封装占用空间也类似MicroStar Jr. BGA。将在整个数据表中更新全新封装标识符  
来代替已停止使用的封装标识符。......................................................................................................................1  
u*jr BGA 更改nFBGA.................................................................................................................................1  
Changed ZQE to ZXH.........................................................................................................................................3  
Changed u*jr ZQE to nFBGA ZXH. Updated thermal data.................................................................................6  
Changed u*jr BGA to nFBGA........................................................................................................................... 10  
Changes from Revision A (September 2013) to Revision B (December 2016)  
Page  
• 添加了器件信表、ESD 表、特性说部分、器件功能模部分、应用和实部分、电源相关建部  
分、部分、器件和文档支部分以及机械、封装和可订购信部分......................................................... 1  
Added A2 to J4 row in Pin Functions table.........................................................................................................3  
Changes from Revision * (September 2013) to Revision A (September 2013)  
Page  
Deleted Ordering Information............................................................................................................................. 3  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: HD3SS213  
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
5 Pin Configuration and Functions  
1
2
3
4
5
6
7
8
9
Dx_SEL  
VDD  
DA0(n)  
DA1(n)  
DA2(n)  
DA3(p)  
DA3(n)  
A
B
C
D
E
F
DC0(n)  
DC0(p)  
AUX_SEL  
DC1(p)  
GND  
DA0(p)  
DA1(p)  
DA2(p)  
OE  
DB0(p)  
GND  
DB0(n)  
DC1(n)  
DC2(n)  
DC3(n)  
DB1(p)  
DB2(p)  
DB3(p)  
DB1(n)  
DB2(n)  
DB3(n)  
DC2(p)  
DC3(p)  
GND  
AUXC(p)  
HPDA  
GND  
G
H
AUXC(n)  
HPDC  
HPDB  
GND  
VDD  
DDCCLK_B AUXB(p)  
GND  
DDCCLK_A AUXA(p)  
DDCCLK_C  
DDCDAT_B AUXB(n) DDCDAT_C DDCDAT_A AUXA(n)  
J
nFBGA 50-Pin ZXH Package Top View  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NO.  
NAME  
H9,  
J9  
AUXA(p),  
AUXA(n)  
Port A AUX positive signal  
Port A AUX negative signal  
I/O  
I/O  
H6,  
J6  
AUXB(p),  
AUXB(n)  
Port B AUX positive signal  
Port B AUX negative signal  
H2,  
H1  
AUXC(p),  
AUXC(n)  
Port C AUX positive signal  
Port C AUX negative signal  
I/O  
I
C2  
AUX_SEL  
AUX/DDC selection control pin in conjunction with Dx_SEL Pin  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: HD3SS213  
 
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NO.  
NAME  
NA  
CADA/B/C  
I/O  
I/O  
Port A/B/C cable activity detect  
B4,  
A4  
DA0(p),  
DA0(n)  
Port A, Channel 0, High speed positive signal  
Port A, Channel 0, High speed negative signal  
B5,  
A5  
DA1(p),  
DA1(n)  
Port A, Channel 1, High speed positive signal  
Port A, Channel 1, High speed negative signal  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
B6,  
A6  
DA2(p),  
DA2(n)  
Port A, Channel 2, High speed positive signal  
Port A, Channel 2, High speed negative signal  
A8,  
A9  
DA3(p),  
DA3(n)  
Port A, Channel 3, High speed positive signal  
Port A, Channel 3, High speed negative signal  
B8,  
B9  
DB0(p),  
DB0(n)  
Port B, Channel 0, High speed positive signal  
Port B, Channel 0, High speed negative signal  
D8,  
D9  
DB1(p),  
DB1(n)  
Port B, Channel 1, High speed positive signal  
Port B, Channel 1, High speed negative signal  
E8,  
E9  
DB2(p),  
DB2(n)  
Port B, Channel 2, High speed positive signal  
Port B, Channel 2, High speed negative signal  
F8,  
F9  
DB3(p),  
DB3(n)  
Port B, Channel 3, High speed positive signal  
Port B, Channel 3, High speed negative signal  
B2,  
B1  
DC0(p),  
DC0(n)  
Port C, Channel 0, High speed positive signal  
Port C, Channel 0, High speed negative signal  
D2,  
D1  
DC1(p),  
DC1(n)  
Port C, Channel 1, High speed positive signal  
Port C, Channel 1, High speed negative signal  
E2,  
E1  
DC2(p),  
DC2(n)  
Port C, Channel 2, High speed positive signal  
Port C, Channel 2, High speed negative signal  
F2,  
F1  
DC3(p),  
DC3(n)  
Port C, Channel 3, High speed positive signal  
Port C, Channel 3, High speed negative signal  
H8,  
J8  
DDCCLK_A,  
DDCDAT_A  
Port A DDC clock signal  
Port A DDC data signal  
H5,  
J5  
DDCCLK_B,  
DDCDAT_B  
Port B DDC clock signal  
Port B DDC data signal  
J3,  
J7  
DDCCLK_C,  
DDCDAT_C  
Port C DDC clock signal  
Port C DDC data signal  
I/O  
I
A1  
Dx_SEL  
GND  
High speed port selection control pins  
Ground  
B3, C8, G2,  
G8, H4, H7  
S
J2  
H3  
J1  
HPDA  
HPDB  
HPDC  
I/O  
I/O  
I/O  
Port A hot plug detect  
Port B hot plug detect  
Port C hot plug detect  
Output enable:  
B7  
OE  
I
OE = VIH: Normal operation  
OE = VIL: Standby mode  
A2,  
J4  
VDD  
S
3.3-V positive power supply voltage  
(1) I = Input, O = Output, S = Supply  
(2) The high speed data ports incorporate 20-kΩpulldown resistors that are switched in when a port is not selected and switched out  
when the port is selected.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: HD3SS213  
 
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.5  
0.5  
0.5  
MAX  
UNIT  
(2)  
Supply voltage, VDD  
4
4
V
Differential I/O  
Voltage  
V
Control pin  
VDD + 0.5  
Continuous power dissipation  
Operating free-air temperature, TA  
Storage temperature, Tstg  
See 6.4  
105  
150  
°C  
°C  
40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values, except differential voltages, are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD) Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Typical values for all parameters are at VCC = 3.3 V and TA = 25°C (unless otherwise noted). All temperature limits are  
specified by design.  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
VDD  
VIH  
Supply voltage  
3
3.3  
3.6  
V
V
Control pins and signal pins (Dx_SEL,  
AUX_SEL, OE, HPDx)  
Input high voltage  
Input mid level voltage  
Input low voltage  
2
VDD  
VDD/2  
300 mV  
VDD/2  
+ 300 mV  
VIM  
AUX_SEL pin  
VDD/2  
V
V
Control pins and signal pins (Dx_SEL,  
AUX_SEL, OE, HPDx)  
VIL  
0.8  
1.8  
2
0.1  
Differential voltage  
(Dx, AUXx)  
VI/O_Diff  
Switch I/O differential voltage  
Switch I/O common-mode voltage  
Switch I/O common-mode voltage  
VDD = 3.6 V, VIN = VDD  
0
0
0
VPP  
V
Dx switching I/O common-  
mode voltage  
VI/O_CM  
AUXx switching I/O common-  
mode voltage  
3.6  
1
V
Input high current  
(Dx_SEL, AUX_SEL)  
IIH  
IIM  
IIL  
µA  
µA  
µA  
µA  
Input mid level current  
(AUX_SEL)  
VDD = 3.6V, VIN = VDD/2  
1
Input low current  
(Dx_SEL, AUX_SEL)  
VDD = 3.6 V, VIN = GND  
1
Leakage current  
(Dx_SEL, AUX_SEL)  
VDD = 3.3 V, VI = 2 V, OE = 3.3 V  
1
VDD = 3.3 V, VI = 2 V, OE = 3.3 V,  
Dx_SEL = 3.3 V  
ILK  
1
Leakage current (HPDx)  
µA  
VDD = 3.3 V, VI = 2 V, OE = 3.3 V,  
Dx_SEL = GND  
1
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: HD3SS213  
 
 
 
 
 
 
 
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
Typical values for all parameters are at VCC = 3.3 V and TA = 25°C (unless otherwise noted). All temperature limits are  
specified by design.  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
Ioff  
Device shut down current  
VDD = 3.6 V, OE = GND  
2.5  
1
µA  
VDD = 3.6 V,  
Dx_SEL or AUX_SEL = VDD or GND  
IDD  
Supply current  
0.6  
mA  
DA, DB, DC HIGH SPEED SIGNAL PATH  
CON  
Outputs ON capacitance  
Outputs OFF capacitance  
VI = 0 V, outputs open, switch ON  
VI = 0 V, outputs open, switch OFF  
1.5  
1
pF  
pF  
COFF  
VDD = 3.3 V, VCM = 0.5 V to 1.5 V,  
IO = 40 mA  
RON  
ON resistance  
8
12  
Ω
Ω
Ω
ON resistance match between VDD = 3.3 V, 0.5 V VI 1.2V,  
1.5  
ΔRON  
RFLAT_ON  
pairs of the same channel  
IO = 40 mA  
ON resistance flatness,  
1.3  
VDD = 3.3 V, 0.5 V VI 1.2 V  
RON(max) RON(min)  
AUXx, DDC SIGNAL PATH  
CON  
Outputs ON capacitance  
Outputs OFF capacitance  
VI = 0 V, outputs open, switch ON  
VI = 0 V, outputs open, switch OFF  
9
3
pF  
pF  
COFF  
VDD = 3.3 V, VCM = 0 V VDD, IO = 8  
mA  
RON(AUX) ON resistance  
6
10  
30  
Ω
Ω
RON(DDC) ON resistance on DDC channel  
20  
VDD = 3.3 V, VCM = 0.4 V, IO = 3 mA  
6.4 Thermal Information  
HD3SS213  
nFBGA (ZXH)  
50 PIN  
72.9  
THERMAL METRIC  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
35.9  
43.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.6  
ψJT  
42.9  
ψJB  
RθJC(bot)  
6.5 Electrical Characteristics  
over recommended operating conditions; RL and RSC = 50 Ω(unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
17  
13  
50  
25  
1  
MAX UNIT  
1.35 GHz  
2.7 GHz  
RL  
Dx differential return loss  
dB  
XTALK  
OIRR  
Dx differential crosstalk  
2.7 GHz  
dB  
dB  
Dx differential off-isolation  
2.7 GHz  
f = 1.35 GHz  
f = 2.7 GHz  
IL  
Dx differential insertion loss  
dB  
1.5  
360  
MHz  
AUX 3-dB bandwidth  
(1) For return loss, crosstalk, off-isolation, and insertion loss values, the data was collected on a Rogers material board with minimum  
length traces on the input and output of the device under test.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: HD3SS213  
 
 
 
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
6.6 Timing Requirements  
over recommended operating conditions; RL and RSC = 50 Ω(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
tPD  
Ton  
Switch propagation delay  
100  
1
ps  
µs  
RSC and RL = 50 Ω, see 6-2  
Dx_SEL/AUX_SEL-to-switch Ton  
(Data, AUX and DDC)  
0.7  
0.7  
RSC and RL = 50 Ω, see 6-1  
RSC and RL = 50 Ω, see 6-1  
Dx_SEL/AUX_SEL-to-switch Toff  
(Data, AUX and DDC)  
Toff  
1
µs  
Ton  
Dx_SEL/AUX_SEL-to-switch Ton (HPD)  
Dx_SEL/AUX_SEL-to-switch Toff (HPD)  
Inter-pair output skew (CH-CH)  
0.7  
0.7  
1
1
µs  
µs  
ps  
ps  
RL = 50 Ω, see 6-1  
Toff  
RL = 50 Ω, see 6-1  
TSK(O)  
TSK(b-b)  
50  
5
RSC and RL = 1 kΩ, see 6-2  
RSC and RL = 1 kΩ, see 6-2  
Intra-pair output skew (bit-bit)  
1
50%  
Dx_SEL  
90%  
VOUT  
10%  
Toff  
Ton  
6-1. Select to Switch Ton and Toff  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: HD3SS213  
 
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
Vcc  
Rsc = 50  
DAx/DBx(p)  
DCx(p)  
RLoad = 50 ꢀ  
Rsc = 50 ꢀ  
DCx(n)  
DAx/DBx(n)  
RLoad = 50 ꢀ  
SEL  
DAx/DBx(p)  
50%  
50%  
DAx/DBx(n)  
DCx(p)  
50%  
50%  
DCx(n)  
tP1  
tP2  
t4  
t1  
t2  
t3  
DCx(p)  
50%  
DCx(n)  
DCy(p)  
tSK(O)  
DCy(n)  
tPD = Max(tp1, tp2  
)
tSK(O) = Difference between tPD for any two pairs of outputs  
tSK(b-b) = 0.5 X |(t4 œ t3) + (t1 œ t2)|  
Copyright © 2016, Texas Instruments Incorporated  
6-2. Propagation Delay and Skew  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: HD3SS213  
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
6.7 Typical Characteristics  
-3  
0.0145  
# 10  
7.8  
7.6  
7.4  
7.2  
7
0.014  
0.0135  
0.013  
0.0125  
0.012  
0.0115  
0.011  
6.8  
6.6  
6.4  
V = 3.6 V; AUXc to AUXa  
V = 3.0 V; AUXc to AUXa  
V = 3.6 V; AUXc to AUXb  
V = 3.0 V; AUXc to AUXb  
V = 3.6 V; AUXc to AUXa  
V = 3.0 V; AUXc to AUXa  
V = 3.6 V; AUXc to AUXb  
V = 3.0 V; AUXc to AUXb  
0.0105  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (ºC)  
Temperature (ºC)  
6-3. DxSEL to Switch Toff  
6-4. DxSEL to Switch Ton  
0.0135  
0.3  
0.28  
0.26  
0.24  
0.22  
0.2  
V = 3.6 V; AUXc to AUXa  
V = 3.0 V; AUXc to AUXa  
V = 3.6 V; AUXc to AUXb  
V = 3.0 V; AUXc to AUXb  
V = 3.6 V; AUXc to AUXa  
V = 3.0 V; AUXc to AUXa  
V = 3.6 V; AUXc to AUXb  
V = 3.0 V; AUXc to AUXb  
0.013  
0.0125  
0.012  
0.0115  
0.011  
0.0105  
0.01  
0.0095  
0.18  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (ºC)  
Temperature (ºC)  
6-5. OUTEN to Switch Toff  
6-6. OUTEN to Switch Ton  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: HD3SS213  
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
7 Detailed Description  
7.1 Overview  
The HD3SS213 device is a high-speed passive switch offered in an industry standard 50-pin nFBGA package.  
The device is specified to operate from a single supply voltage of 3.3 V over the industrial temperature range of  
40°C to 105°C. The HD3SS213 is a generic 4-CH high-speed mux/demux type of switch that can be used for  
routing high-speed signals between two different locations on a circuit board. The HD3SS213 also supports  
several other high speed data protocols with a differential amplitude of < 1800 mVPP and a common-mode  
voltage of < 2 V, as with USB 3.0 and DisplayPort 1.2. For display port applications, the HD3SS213 also  
supports switching of both the auxiliary and hot plug detect signals.  
The high speed port selection control inputs of the device, Dx_SEL and AUX_SEL pins can easily be controlled  
by available GPIO pins within a system.  
7.2 Functional Block Diagram  
VDD  
4
DAz(p)  
SEL=0  
4
DAz(n)  
4
DCz(p)  
(z = 0, 1, 2 or 3)  
4
DCz(n)  
4
DBz(p)  
SEL=1  
4
DBz(n)  
SEL  
Dx_SEL  
SEL  
SEL=0  
SEL=1  
HPDA  
HPDB  
HPDC  
AUX_SEL  
AUXA(p)  
AUXA(n)  
SEL2  
SEL  
AUXx(P) or DDCCLK_x  
AUXx(n) or DDCDAT_x  
AUXB(p)  
AUXB(n)  
AUXC(p)  
AUXC(n)  
DDCCLK_C  
DDCDAT_C  
DDCCLK_A  
DDCDAT_A  
DDCCLK_B  
DDCDAT_B  
OE  
HD3SS213  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: HD3SS213  
 
 
 
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
7.3 Feature Description  
The HD3SS213 behaves as a two to one or one to two using high bandwidth pass gates (see 7.2). The input  
ports are selected using the AUX_SEL and Dx_SEL pins which are shown in 7-1.  
7-1. AUX/DDC Switch Control Logic  
CONTROL LINES  
SWITCHED I/O PINS  
AUX_SEL  
Dx_SEL  
AUXA  
To/From AUXC  
AUXB  
AUXC  
DDCA  
DDCB  
DDCC  
L
L
L
H
L
Z
To/From AUXA  
Z
Z
Z
Z
Z
Z
Z
Z
Z
To/From AUXC  
To/From AUXB  
To/From DDCA  
To/From DDCB  
To/From AUXA  
To/From AUXB  
Z
H
H
M
M
Z
Z
To/From AUXC  
H
L
Z
Z
Z
To/From AUXC  
Z
To/From AUXC  
Z
Z
To/From DDCC  
Z
To/From DDCA  
To/From DDCB  
H
To/From AUXC  
To/From DDCC  
7.4 Device Functional Modes  
The HD3SS213 can be operated in normal operation mode or in shut down mode. In normal operation, the  
inputs ports of the HD3SS213 are routed to the output ports according to 7-1. In standby mode, the  
HD3SS213 is disabled to enable power savings with a typical current consumption of 2.5 µA. The functional  
mode is selected through the OE input pin with HIGH for normal operation and LOW for standby.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: HD3SS213  
 
 
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
Many interfaces require AC coupling between the source and sink. The 0402 capacitors are the preferred option  
to provide AC coupling, and the 0603 size capacitors also work. The 0805 size capacitors and C-packs must be  
avoided. When placing AC coupling capacitors symmetric placement is best. A capacitor value of 0.1 µF is best  
and the value must be match for the ± signal pair. There are several placement options for the AC coupling  
capacitors. Because the switch requires a bias voltage, the capacitors must only be placed on one side of the  
switch. If they are placed on both sides of the switch, a biasing voltage must be provided. A few placement  
options are shown below.  
In 8-1, the coupling capacitors are placed on the source pair. In this situation, the switch is biased by the sink.  
DAx(p)  
DCx(p)  
DAx(n)  
GPU/  
Source A  
DCx(n)  
Sink  
Dx_SEL  
Control  
AUX_SEL  
DBx(p)  
DBx(n)  
GPU/  
Source B  
HD3SS213  
Copyright © 2016, Texas Instruments Incorporated  
8-1. Source Biased by the Sink  
In 8-2, the coupling capacitors are placed between the switch and Sink. In this situation, the switch is biased  
by the Source  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: HD3SS213  
 
 
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
DAx(p)  
DAx(n)  
DCx(p)  
DCx(n)  
Sink  
Source  
Dx_SEL  
Control  
AUX_SEL  
DBx(n)  
Sink  
HD3SS213  
Copyright © 2016, Texas Instruments Incorporated  
8-2. Switch Biased by the Source  
8.2 Typical Applications  
8.2.1 HD3SS213 AUX Channel in 2:1 Application  
Vdd  
100 K  
Vbias  
50  
AUXa(n)  
AUXa(p)  
AUXc(n)  
AUXc(p)  
Source A  
50 Ω  
Vbias  
Sink connector  
100 K  
Vbias  
50 Ω  
AUXb(n)  
AUXb(p)  
Source B  
OE  
50 Ω  
Vbias  
Dx_SEL  
AUX_SEL  
Control  
HD3SS213 2:1  
Copyright © 2016, Texas Instruments Incorporated  
8-3. HD3SS213 AUX Channel in 2:1 Application Schematic  
8.2.1.1 Design Requirements  
8-1 lists the design parameters.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: HD3SS213  
 
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
8-1. Design Parameters  
PARAMETERS  
Input voltage  
VALUE  
3.3 V  
0.1 µF  
Decoupling capacitors  
AC capacitors(1)  
75 nF to 200 nF AC capacitors  
(1) DAx, AUXAx, AUXBx and DBx require AC capacitors. N lines require AC capacitors. Alternate  
mode signals may or may not require AC capacitors.  
8.2.1.2 Detailed Design Procedure  
Connect VDD and GND pins to the power and ground planes of the printed-circuit board with 0.1-µF bypass  
capacitor  
Use VDD/2 logic level at AUX_SEL pin  
Use 3.3-V TTL/CMOS logic level at Dx_SEL to connect DAx to DCx  
Use GND logic level at Dx_SEL to connect DBx to DCx  
Use controlled-impedance transmission media for all the differential signals  
Ensure the received complimentary signals are with a differential amplitude of <1800 mVPP and a common-  
mode voltage of <2 V  
8.2.1.3 Application Curves  
3.94  
3.92  
3.9  
3.54  
3.52  
3.5  
3.88  
3.86  
3.84  
3.82  
3.8  
3.48  
3.46  
3.44  
3.42  
3.4  
3.78  
3.76  
3.74  
V = 3 V  
V = 3 V  
V = 3.6 V  
V = 3.6 V  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (ºC)  
8-5. Intra-Pair Skew Ports C to B (µs)  
8-4. Intra-Pair Skew Ports C to A (µs)  
8
8
# 10  
# 10  
7.4  
7.3  
7.2  
7.1  
7
7.1  
7
V = 3.6 V  
V = 3 V  
V = 3.6 V  
V = 3 V  
6.9  
6.8  
6.7  
6.6  
6.5  
6.4  
6.3  
6.9  
6.8  
6.7  
6.6  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (ºC)  
Temperature (ºC)  
8-7. Bandwidth Ports AUXc to AUXb  
8-6. Bandwidth Ports AUXc to AUXa  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: HD3SS213  
 
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
8.2.2 HD3SS213 AUX Channel in 1:2 Application  
AUX channel is controlled by AUX_SEL. This pin configures the switch to route the incoming AUX signal to the  
outgoing AUX path, when AUX_SEL = 0 the AUXA channel is routed to AUXC, when AUX_SEL = 1 the AUXB  
channel is routed to AUXC.  
Vdd  
100 K  
AUXa(n)  
AUXc(n)  
AUXa(p)  
AUXc(p)  
Sink connector A  
100 K  
Source  
Vdd  
100 K  
AUXb(n)  
AUXb(p)  
Sink connector B  
OE  
100 K  
Dx_SEL  
AUX_SEL  
Control  
HD3SS213 1:2  
Copyright © 2016, Texas Instruments Incorporated  
8-8. HD3SS213 AUX Channel in 1:2 Application Schematic  
Power Supply Recommendations  
The HD3SS213 requires 3.3 V power sources. 3.3-V supply (VDD) must have 0.1-µF bypass capacitors to VSS  
(ground) for proper operation. TI recommends one capacitor for each power terminal. Place the capacitor as  
close as possible to the terminal on the device and keep trace length to a minimum. Smaller value capacitors like  
0.01 µF are also recommended on the supply terminals.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: HD3SS213  
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
9 Layout  
9.1 Layout Guidelines  
Routing the high-speed differential signal traces on the top layer avoids the use of vias (and the introduction  
of their inductances) and allows for clean interconnects from the DisplayPort connectors to the repeater  
inputs and from the repeater output to the subsequent receiver circuit.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Decoupling capacitors must be placed next to each power terminal on the HD3SS213. Take care to minimize  
the stub length of the race connecting the capacitor to the power pin.  
Avoid sharing vias between multiple decoupling capacitors.  
Place vias as close as possible to the decoupling capacitor solder pad.  
Widen VDD and/or GND planes to reduce effect if static and dynamic IR drop.  
9.1.1 Differential Traces  
Guidelines for routing PCB traces are necessary when trying to maintain signal integrity and lower EMI. Although  
there seems to be an endless number of precautions, this section provides only a few main recommendations as  
layout guidance.  
1. Reduce intra-pair skew in a differential trace by introducing small meandering corrections at the point of  
mismatch.  
2. Reduce inter-pair skew, caused by component placement and IC pinouts, by making larger meandering  
correction along the signal path. Use chamfered corners with a length-to-trace width ratio of between 3 and  
5. The distance between bends must be 8 to 10 times the trace width  
3. Use 45° bends instead of right-angle (90°) bends. Right-angle bends increase the effective trace width,  
which changes the differential trace impedance creating large discontinuities. A 45° bends is seen as a  
smaller discontinuity.  
4. When routing around an object, route both trace of a pair in parallel. Splitting the traces changes the line-to-  
line spacing, thus causing the differential impedance to change and discontinuities to occur  
5. Place passive components within the signal path, such as source-matching resistors or AC coupling  
capacitors, next to each other. Routing as in case a) creates wider trace spacing than in b). However, the  
resulting discontinuity is limited to a far narrower area.  
6. When routing traces next to a via or between an array of vias, make sure that the via clearance section does  
not interrupt the path of the return current on the ground plane below  
7. Avoid metal layers and traces underneath or between the pads off the DisplayPort connectors for better  
impedance matching. Otherwise, they cause the differential impedance to drop below 75 Ωand fail the  
board during TDR testing.  
8. Use the smallest size possible for signal trace vias and DisplayPort connector pads as they have less impact  
on the 100 Ωdifferential impedance. Large vias and pads can cause the impedance to drop below 85 Ω.  
9. Use solid power and ground planes for 100 Ωimpedance control and minimum power noise.  
10. For 100 Ωdifferential impedance use the smallest trace spacing possible, which is usually specified by the  
PCB vendor.  
11. Keep the trace length between the DisplayPort connector and the DisplayPort device as short as possible to  
minimize attenuation.  
12. Use good DisplayPort connectors whose impedances meet the specifications.  
13. Place bulk capacitors (for example, 10 µF) close to power sources, such as voltage regulators or where the  
power is supplied to the PCB.  
14. Place smaller 0.1-µF or 0.01-µF capacitors at the device.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: HD3SS213  
 
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
9.2 Layout Example  
Copyright © 2016, Texas Instruments Incorporated  
9-1. HD3SS213 Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: HD3SS213  
 
HD3SS213  
www.ti.com.cn  
ZHCSBL2C DECEMBER 2016 REVISED JANUARY 2021  
10 Device and Documentation Support  
10.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: HD3SS213  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
HD3SS213ZXHR  
ACTIVE  
NFBGA  
ZXH  
50  
2500 RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
-40 to 105  
HD3SS213  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
HD3SS213ZXHR  
NFBGA  
ZXH  
50  
2500  
330.0  
12.4  
5.3  
5.3  
1.5  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
NFBGA ZXH 50  
SPQ  
Length (mm) Width (mm) Height (mm)  
336.6 336.6 31.8  
HD3SS213ZXHR  
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZXH0050A  
A
5.1  
4.9  
B
BALL A1 CORNER  
5.1  
4.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.25  
0.15  
BALL TYP  
(0.5) TYP  
4 TYP  
J
(0.5) TYP  
H
G
F
SYMM  
4
TYP  
E
D
C
0.35  
50X Ø  
B
A
0.25  
0.15  
0.05  
C A B  
C
0.5 TYP  
1
2
3
4
5
6
7
8
9
0.5 TYP  
SYMM  
4225134/A 08/2019  
NOTES:  
NanoFree is a trademark of Texas Instruments.  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZXH0050A  
(0.5) TYP  
3
1
2
4
5
6
7
8
9
A
B
(0.5) TYP  
C
D
E
F
SYMM  
50X (Ø0.25)  
G
H
J
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
(Ø 0.25)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
(Ø 0.25)  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON- SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225134/A 08/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments  
Literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZXH0050A  
(0.5) TYP  
3
1
2
4
5
6
7
8
9
A
B
(0.5) TYP  
C
D
E
F
METAL  
TYP  
SYMM  
(R0.05) TYP  
G
H
J
50X ( 0.25)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.100 mm THICK STENCIL  
SCALE: 20X  
4225134/A 08/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

HD3SS213IZQET

5.4Gbps DisplayPort 1.2a 2:1/1:2 Differential Switch
TI

HD3SS213ZQER

5.4Gbps DisplayPort 1.2a 2:1/1:2 Differential Switch
TI

HD3SS213ZXHR

支持 DDC/AUX 开关的 5.4Gbps DisplayPort 1.2a 1:2/2:1 差动多路复用器 | ZXH | 50 | -40 to 105
TI

HD3SS214

支持 DDC/AUX 开关的 8.1 Gbps DisplayPort 1.4 1:2/2:1 差动多路复用器
TI

HD3SS214IZXHR

HD3SS214 8.1 Gbps DisplayPort 1.4 2:1/1:2 Differential Switch
TI

HD3SS214ZXHR

HD3SS214 8.1 Gbps DisplayPort 1.4 2:1/1:2 Differential Switch
TI

HD3SS214_V01

HD3SS214 8.1 Gbps DisplayPort 1.4 2:1/1:2 Differential Switch
TI

HD3SS215

支持 DDC/AUX 开关的 6Gbps HDMI 2.0/5.4Gbps DisplayPort 1.2a 1:2/2:1 差动多路复用器
TI

HD3SS215IRTQR

支持 DDC/AUX 开关的 6Gbps HDMI 2.0/5.4Gbps DisplayPort 1.2a 1:2/2:1 差动多路复用器 | RTQ | 56 | -40 to 85
TI

HD3SS215IRTQT

支持 DDC/AUX 开关的 6Gbps HDMI 2.0/5.4Gbps DisplayPort 1.2a 1:2/2:1 差动多路复用器 | RTQ | 56 | -40 to 85
TI

HD3SS215IZXHR

HD3SS215 6.0 Gbps HDMI DisplayPort 2:1/1:2 Differential Switch
TI

HD3SS215IZXHT

HD3SS215 6.0 Gbps HDMI DisplayPort 2:1/1:2 Differential Switch
TI