HD3SS215_V01 [TI]

HD3SS215 6.0 Gbps HDMI DisplayPort 2:1/1:2 Differential Switch;
HD3SS215_V01
型号: HD3SS215_V01
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HD3SS215 6.0 Gbps HDMI DisplayPort 2:1/1:2 Differential Switch

文件: 总39页 (文件大小:2809K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HD3SS215,HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
HD3SS215 6.0 Gbps HDMI DisplayPort 2:1/1:2 Differential Switch  
1 Features  
3 Description  
General purpose 2:1/1:2 differential switch  
HD3SS215 is a high-speed wide common mode  
passive switch capable of supporting DisplayPort  
HBR2 and high definition multimedia interface (HDMI)  
applications requiring 4k2k 60Hz refresh rates. The  
HD3SS215 can be configured to support two sources  
to one sink or one source to two sinks. To support  
these video standards the HD3SS215 also switches  
the display data channel (DDC) and hot plug detect  
(HPD) signals for HDMI or digital video interface (DVI)  
applications. It also switches the auxiliary (AUX) and  
hot plug detect (HPD) signals for DisplayPort  
applications. The flexibility the HD3SS215 provides by  
supporting both wide common mode and AC or DC  
coupled links makes it ideal for many applications.  
Compatible with displayport electrical standard  
Compatible with hdmi electrical standards  
2:1 and 1:2 switching supporting data rates up to 6  
Gbps  
Supports HPD switching  
Supports AUX and DDC switching  
Wide –3-dB differential bandwidth of 7 GHz  
Excellent dynamic characteristics (at 3 GHz)  
– Crosstalk = –35 dB  
– Isolation = –21 dB  
– Insertion Loss = –1.6 dB  
– Return Loss = –12 dB  
– Max Bit-Bit Skew = 5 ps  
Device Information (1)  
PART NUMBER  
PACKAGE  
nFBGA (50)  
QFN (56)  
BODY SIZE (NOM)  
5.00 mm x 5.00 mm  
8.00 mm × 8.00 mm  
VDD operating range 3.3 V ±10%  
Commercial temperature range: 0°C to 70°C  
(HD3SS215)  
HD3SS215,  
HD3SS215I  
Industrial temperature range: –40°C to 85°C  
(HD3SS215I)  
Package options:  
– 5 mm x 5 mm, 50-ball ZXH  
– 8 mm × 8 mm, 56-pin RTQ  
Output enable (OE) pin disables switch to save  
power  
Power consumption:  
– Active < 9 mW typical  
– Standby < 30 µW maximum (when OE = L)  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
DAx(p)  
DAx(n)  
4
4
DCx(p)  
DCx(n)  
4
4
AUXAx  
Source A  
2
2
DDCA  
HPDA  
DP/DP++  
HDMI sink  
DDCC  
2
2
AUXCx  
HPDC  
AUXBx  
2
2
DDCB  
HPDB  
OE  
Dx_SEL  
AUX_SEL  
Source B  
Control  
DBx(p)  
DBx(n)  
4
4
2 Applications  
HD3SS215 2:1  
Desktop and Notebook Applications:  
– PCI Express Gen 1, Gen 2 Switching  
– DP Switching  
DAx(p)  
4
4
DCx(p)  
DCx(n)  
4
4
DAx(n)  
DP/DP++  
HDMI Sink A  
AUXAx  
2
– HDMI Switching  
– LVDS Switching  
DDCA  
HPDA  
2
Source  
DDCC  
2
AUXCx  
2
Connected peripherals & printers  
Home theater & entertainment  
TV  
Gaming  
Pro audio, video & signage  
AUXBx  
HPDC  
2
2
DDCB  
HPDB  
OE  
DP/DP++  
HDMI Sink B  
Dx_SEL  
AUX_SEL  
Control  
DBx(p)  
DBx(n)  
4
4
HD3SS215 1:2  
Application Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Description (continued).................................................. 4  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 9  
7.1 Absolute Maximum Ratings (1) (2) ...............................9  
7.2 ESD Ratings............................................................... 9  
7.3 Recommended Operating Conditions.........................9  
7.4 Thermal Information....................................................9  
7.5 Electrical Characteristics...........................................10  
7.6 Electrical Characteristics, Device Parameters (1) .....11  
7.7 Switching Characteristics..........................................11  
7.8 Timing Diagrams....................................................... 11  
8 Detailed Description......................................................13  
8.1 Overview...................................................................13  
8.2 Functional Block Diagram.........................................14  
8.3 Feature Description...................................................15  
8.4 Device Functional Modes..........................................15  
9 Applications and Implementation................................16  
9.1 Application Information............................................. 16  
9.2 Typical Applications.................................................. 16  
10 Layout...........................................................................21  
10.1 Layout Guidelines................................................... 21  
10.2 Layout Example...................................................... 22  
11 Device and Documentation Support..........................24  
11.1 Community Resources............................................24  
11.2 Trademarks............................................................. 24  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 24  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision D (September 2015) to Revision E (December 2020)  
Page  
NOTE: The device in the MicroStar Jr. BGA packaging were redesigned using a laminate nFBGA package.  
This nFBGA package offers datasheet-equivalent electrical performance. It is also footprint equivalent to the  
MicroStar Jr. BGA. The new package designator in place of the discontinued package designator will be  
updated throughout the datasheet......................................................................................................................1  
Changed u*jr ZQE to nFBGA ZXH..................................................................................................................... 1  
Changed u*jr ZQE to nFBGA ZXH..................................................................................................................... 4  
Changed u*jr ZQE to nFBGA ZXH..................................................................................................................... 4  
Changed u*jr ZQE to nFBGA ZXH..................................................................................................................... 4  
Changed u*jr ZQE to nFBGA ZXH..................................................................................................................... 7  
Changed u*jr ZQE to nFBGA ZXH. Updated thermal data.................................................................................9  
Changed u*jr ZQE to nFBGA ZXH....................................................................................................................11  
Changed u*jr ZQE to nFBGA ZXH................................................................................................................... 16  
Changes from Revision C (August 2015) to Revision D (September 2015)  
Page  
Changed Section 3 text string from "....DisplayPort 1.2a..." to "...DisplayPort HBR2..." and from "..HDMI2.0.."  
to "...HDMI..." .....................................................................................................................................................1  
Deleted RθJC(bot) spec from Thermal Information table as N/A...........................................................................9  
Deleted "Operating free air temperature" spec from Electrical Characteristics table....................................... 10  
Changed Figure 9-5 .........................................................................................................................................20  
Changed Section Power Supply Recommendations text string from "Decoupling capacitors may be used to  
reduce noise and improve power supply integrity" to "Decoupling capacitors must be used to reduce power  
supply noise"...................................................................................................................................................0  
Changes from Revision B (July 2015) to Revision C (July 2015)  
Page  
Added ton(OE_L-H), toff(OE_H-L), and tSWITCH_OVER to the Section 7.7 ..................................................................11  
Changes from Revision A (May 2014) to Revision B (July 2015)  
Page  
Changed the title From: "2.0/DisplayPort 1.2A" To: "DisplayPort"...................................................................... 1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: HD3SS215 HD3SS215I  
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
Changed Section 1 list item From: Compatible With DisplayPort 1.2a Electrical Standard To: Compatible With  
DisplayPort Electrical Standard.......................................................................................................................... 1  
Changed Section 1 list item From: Compatible With HDMI 1.4b and HDMI 2.0 Electrical Standards To:  
Compatible With HDMI Electrical Standards...................................................................................................... 1  
Added Section 1 item: Commercial Temperature Range: –40°C to 70°C (HD3SS215)..................................... 1  
Added Section 1 item: Inductrial Temperature Range: –40°C to 85°C (HD3SS215I).........................................1  
Added Section 1, Package Options: 8 mm × 8 mm, 56-Pin RTQ.......................................................................1  
Changed the Section 2 list item From: TV and Monitors To: UHDTV, HDTV and Monitors................................1  
Added Section 5 paragraph. ..............................................................................................................................4  
Added the 56-Pin QFN image.............................................................................................................................4  
Added RTQ column to the Pin Functions table ..................................................................................................4  
Added RTQ column to the Pin Functions table ..................................................................................................7  
Moved Tstg From: Section 7.2 To: Section 7.1 ...................................................................................................9  
Changed the Handling Ratings table to Section 7.2 table ................................................................................. 9  
Added HD3SS2151I, Operating free-air temperature Section 7.3 .....................................................................9  
Added RTQ 56 PIN values to the Section 7.4 ....................................................................................................9  
Added table Note " This pin can be driven.." to the Section 7.5 table.............................................................. 10  
Changed the Section 7.6 table to include ZQE and RTQ package values....................................................... 11  
Added the Section 7.7 table .............................................................................................................................11  
Added section: Section 9.2.4 ...........................................................................................................................20  
Added Figure 10-3 ...........................................................................................................................................22  
Changes from Revision * (May 2014) to Revision A (May 2014)  
Page  
Changed Section 3 section ................................................................................................................................1  
Changed Figure 9-1 .........................................................................................................................................16  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: HD3SS215 HD3SS215I  
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
5 Description (continued)  
One typical application would be a mother board that includes two GPUs that need to drive one DisplayPort sink.  
The GPU is selected by the Dx_SEL pin. Another application is when one source needs to switch between one  
of two sinks, such as a side connector an a docking station connector. The switching is controlled using the  
Dx_SEL and AUX_SEL pins. The HD3SS215I operates from a single supply voltage of 3.3 V, over full industrial  
temperature range –40°C to 85°C, in the ZXH package and 56 pin RTQ package.  
6 Pin Configuration and Functions  
1
2
3
4
5
6
7
8
9
Dx_SEL  
VDD  
DA0(n)  
DA1(n)  
DA2(n)  
DA3(p)  
DA3(n)  
A
B
C
D
E
F
DC0(n)  
DC0(p)  
AUX_SEL  
DC1(p)  
GND  
DA0(p)  
DA1(p)  
DA2(p)  
OE  
DB0(p)  
GND  
DB0(n)  
DC1(n)  
DC2(n)  
DC3(n)  
DB1(p)  
DB2(p)  
DB3(p)  
DB1(n)  
DB2(n)  
DB3(n)  
DC2(p)  
DC3(p)  
GND  
AUXC(p)  
HPDA  
GND  
G
H
AUXC(n)  
HPDC  
HPDB  
GND  
VDD  
DDCCLK_B AUXB(p)  
GND  
DDCCLK_A AUXA(p)  
DDCCLK_C  
DDCDAT_B AUXB(n) DDCDAT_C DDCDAT_A AUXA(n)  
J
Figure 6-1. 50-Pin µBGA ZXH Package (Top View)  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: HD3SS215 HD3SS215I  
 
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
NC  
AUX_SEL  
1
2
DB0(P)  
DB0(N)  
DC0(P)  
DC0(N)  
3
GND  
GND  
DC1(P)  
DC1(N)  
4
DB1(P)  
DB1(N)  
5
6
HD3SS215 RTQ  
GND  
GND  
DC2(P)  
DC2(N)  
7
DB2(P)  
DB2(N)  
8
GND  
9
GND  
GND  
DC3(P)  
DC3(N)  
10  
11  
12  
DB3(P)  
DB3(N)  
AUXA(P)  
AUXA(N)  
30  
29  
AUXC(P)  
AUXC(N)  
13  
14  
Figure 6-2. 56-Pin QFN RTQ Package (Top View)  
Table 6-1. Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION(1)  
NAME  
ZXH  
RTQ  
56  
1
Dx_SEL  
AUX_SEL  
DA0(p)  
DA0(n)  
DA1(p)  
DA1(n)  
DA2(p)  
DA2(n)  
A1  
C2  
B4  
A4  
B5  
A5  
B6  
A6  
2 Level Control I  
3 Level Control I  
High Speed Port Selection Control Pins  
AUX/DDC Selection Control Pin in Conjunction with Dx_SEL Pin  
Port A, Channel 0, High Speed Positive Signal  
Port A, Channel 0, High Speed Negative Signal  
Port A, Channel 1, High Speed Positive Signal  
Port A, Channel 1, High Speed Negative Signal  
Port A, Channel 2, High Speed Positive Signal  
Port A, Channel 2, High Speed Negative Signal  
54  
53  
51  
50  
48  
47  
I/O  
I/O  
I/O  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: HD3SS215 HD3SS215I  
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
Table 6-1. Pin Functions (continued)  
PIN  
NO.  
I/O  
DESCRIPTION(1)  
NAME  
ZXH  
A8  
RTQ  
45  
44  
41  
40  
38  
37  
35  
34  
32  
31  
2
DA3(p)  
DA3(n)  
Port A, Channel 3, High Speed Positive Signal  
Port A, Channel 3, High Speed Negative Signal  
Port B, Channel 0, High Speed Positive Signal  
Port B, Channel 0, High Speed Negative Signal  
Port B, Channel 1, High Speed Positive Signal  
Port B, Channel 1, High Speed Negative Signal  
Port B, Channel 2, High Speed Positive Signal  
Port B, Channel 2, High Speed Negative Signal  
Port B, Channel 3, High Speed Positive Signal  
Port B, Channel 3, High Speed Negative Signal  
Port C, Channel 0, High Speed Positive Signal  
Port C, Channel 0, High Speed Negative Signal  
Port C, Channel 1, High Speed Positive Signal  
Port C, Channel 1, High Speed Negative Signal  
Port C, Channel 2, High Speed Positive Signal  
Port C, Channel 2, High Speed Negative Signal  
Port C, Channel 3, High Speed Positive Signal  
Port C, Channel 3, High Speed Negative Signal  
Port A AUX Positive Signal  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A9  
DB0(p)  
B8  
DB0(n)  
B9  
DB1(p)  
D8  
D9  
E8  
DB1(n)  
DB2(p)  
DB2(n)  
E9  
DB3(p)  
F8  
DB3(n)  
F9  
DC0(p)  
B2  
DC0(n)  
B1  
3
DC1(p)  
D2  
D1  
E2  
5
DC1(n)  
6
DC2(p)  
8
DC2(n)  
E1  
9
DC3(p)  
F2  
11  
DC3(n)  
F1  
12  
30  
29  
24  
25  
13  
14  
27  
28  
22  
23  
18  
26  
16, 17, 15  
AUXA(p)  
AUXA(n)  
AUXB(p)  
AUXB(n)  
AUXC(p)  
AUXC(n)  
DDCCLK_A  
DDCDAT_A  
DDCCLK_B  
DDCDAT_B  
DDCCLK_C  
DDCDAT_C  
HPDA/B/C  
H9  
J9  
Port A AUX Negative Signal  
H6  
J6  
Port B AUX Positive Signal  
Port B AUX Negative Signal  
H2  
H1  
H8  
J8  
Port C AUX Positive Signal  
Port C AUX Negative Signal  
Port A DDC Clock Signal  
Port A DDC Data Signal  
H5  
J5  
Port B DDC Clock Signal  
Port B DDC Data Signal  
J3  
Port C DDC Clock Signal  
I/O  
I/O  
J7  
Port C DDC Data Signal  
J2, H3, J1  
Port A/B/C Hot Plug Detect  
Output Enable:  
OE  
B7  
43  
I
OE = VIH: Normal Operation  
OE = VIL: Standby Mode  
VDD  
GND  
A2, J4  
19, 55  
Supply  
Supply  
3.3 V Positive power supply voltage  
4, 7, 10, 33,  
36, 39, 46,  
49, 52  
B3, C8, G2,  
G8 H4, H7  
Ground  
NC  
20, 21, 42  
Not connected  
Supply Ground  
Thermal Pad  
GND  
(1) Only the high speed data DAz/DBz ports incorporate 20kΩ pull down resistors that are switched in when a port is not selected and  
switched out when the port is selected.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: HD3SS215 HD3SS215I  
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION(1)  
NAME  
ZXH  
A1  
C2  
B4  
A4  
B5  
A5  
B6  
A6  
A8  
A9  
B8  
B9  
D8  
D9  
E8  
E9  
F8  
RTQ  
56  
1
Dx_SEL  
AUX_SEL  
DA0(p)  
2 Level Control I  
3 Level Control I  
High Speed Port Selection Control Pins  
AUX/DDC Selection Control Pin in Conjunction with Dx_SEL Pin  
Port A, Channel 0, High Speed Positive Signal  
Port A, Channel 0, High Speed Negative Signal  
Port A, Channel 1, High Speed Positive Signal  
Port A, Channel 1, High Speed Negative Signal  
Port A, Channel 2, High Speed Positive Signal  
Port A, Channel 2, High Speed Negative Signal  
Port A, Channel 3, High Speed Positive Signal  
Port A, Channel 3, High Speed Negative Signal  
Port B, Channel 0, High Speed Positive Signal  
Port B, Channel 0, High Speed Negative Signal  
Port B, Channel 1, High Speed Positive Signal  
Port B, Channel 1, High Speed Negative Signal  
Port B, Channel 2, High Speed Positive Signal  
Port B, Channel 2, High Speed Negative Signal  
Port B, Channel 3, High Speed Positive Signal  
Port B, Channel 3, High Speed Negative Signal  
Port C, Channel 0, High Speed Positive Signal  
Port C, Channel 0, High Speed Negative Signal  
Port C, Channel 1, High Speed Positive Signal  
Port C, Channel 1, High Speed Negative Signal  
Port C, Channel 2, High Speed Positive Signal  
Port C, Channel 2, High Speed Negative Signal  
Port C, Channel 3, High Speed Positive Signal  
Port C, Channel 3, High Speed Negative Signal  
Port A AUX Positive Signal  
54  
53  
51  
50  
48  
47  
45  
44  
41  
40  
38  
37  
35  
34  
32  
31  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DA0(n)  
DA1(p)  
DA1(n)  
DA2(p)  
DA2(n)  
DA3(p)  
DA3(n)  
DB0(p)  
DB0(n)  
DB1(p)  
DB1(n)  
DB2(p)  
DB2(n)  
DB3(p)  
DB3(n)  
F9  
DC0(p)  
B2  
B1  
D2  
D1  
E2  
E1  
F2  
DC0(n)  
3
DC1(p)  
5
DC1(n)  
6
DC2(p)  
8
DC2(n)  
9
DC3(p)  
11  
DC3(n)  
F1  
12  
30  
29  
24  
25  
13  
14  
27  
28  
22  
23  
18  
26  
16, 17, 15  
AUXA(p)  
AUXA(n)  
AUXB(p)  
AUXB(n)  
AUXC(p)  
AUXC(n)  
DDCCLK_A  
DDCDAT_A  
DDCCLK_B  
DDCDAT_B  
DDCCLK_C  
DDCDAT_C  
HPDA/B/C  
H9  
J9  
Port A AUX Negative Signal  
H6  
J6  
Port B AUX Positive Signal  
Port B AUX Negative Signal  
H2  
H1  
H8  
J8  
Port C AUX Positive Signal  
Port C AUX Negative Signal  
Port A DDC Clock Signal  
Port A DDC Data Signal  
H5  
J5  
Port B DDC Clock Signal  
Port B DDC Data Signal  
J3  
Port C DDC Clock Signal  
I/O  
I/O  
J7  
Port C DDC Data Signal  
J2, H3, J1  
Port A/B/C Hot Plug Detect  
Output Enable:  
OE  
VDD  
GND  
NC  
B7  
43  
I
OE = VIH: Normal Operation  
OE = VIL: Standby Mode  
A2, J4  
19, 55  
Supply  
Supply  
3.3 V Positive power supply voltage  
4, 7, 10, 33,  
36, 39, 46,  
49, 52  
B3, C8, G2,  
G8 H4, H7  
Ground  
20, 21, 42  
Not connected  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: HD3SS215 HD3SS215I  
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
PIN  
NO.  
I/O  
DESCRIPTION(1)  
NAME  
ZXH  
RTQ  
Thermal Pad  
GND  
Supply Ground  
(1) Only the high speed data DAz/DBz ports incorporate 20kΩ pull down resistors that are switched in when a port is not selected and  
switched out when the port is selected.  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: HD3SS215 HD3SS215I  
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings (1) (2)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–65  
MAX  
Supply voltage VDD  
Differential I/O  
4
4
V
V
Voltage  
AUX_SEL, Dx_SEL  
4
HPDx, DDCCLK_X, DDCDAT_X  
Storage temperature  
6
Tstg  
150  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to network ground pin.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±1500  
V
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
±1250  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
3.6  
70  
UNIT  
V
VDD  
TA  
Main power supply  
3.3  
HD3SS215  
HD3SS215I  
0
°C  
Operating free-air temperature  
AC coupling capacitor  
–40  
75  
85  
°C  
CAC  
100  
200  
nF  
7.4 Thermal Information  
HD3SS215  
THERMAL METRIC(1)  
UNIT  
RTQ (56 PIN)  
90.5  
ZXH (50 PIN)  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
69.9  
35.1  
40.4  
1.6  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
41.9  
53.9  
1.8  
ψJB  
Junction-to-board characterization parameter  
53.4  
40.2  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: HD3SS215 HD3SS215I  
 
 
 
 
 
 
 
 
 
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
7.5 Electrical Characteristics  
Typical values for all parameters are at VDD = 3.3 V and TA = 25°C. All temperature limits are specified by design.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VDD  
Supply voltage  
3
3.3  
3.6  
VDD  
5.5  
V
Control Pins, Signal Pins  
(Dx_SEL, AUX_SEL, OE)  
2
2
VIH  
Input high voltage  
V
HPD and DDC  
VDD/2  
– 300mV  
VDD/2  
+ 300mV  
VIM  
VIL  
Input mid level voltage  
Input low voltage  
AUX_SEL Pin (1)  
VDD/2  
V
V
Control Pins, Signal Pins  
(Dx_SEL, AUX_SEL, OE)  
–0.1  
0.8  
VI/O_Diff  
VCM  
Differential voltage (Dx, AUXx)  
Common voltage (Dx, AUXx)  
Switch I/O diff voltage  
0
0
1.8  
3.3  
Vpp  
V
Switch common mode voltage  
Input high current (Dx_SEL,  
AUX_SEL)  
IIH  
IIM  
IIL  
VDD = 3.6 V, VIN = VDD  
VDD = 3.6 V, VIN = VDD/2  
VDD = 3.6 V, VIN = GND  
1
1
1
Input mid current (AUX_SEL)  
Input low current (Dx_SEL,  
AUX_SEL)  
0.01  
VDD = 3.6 V, VIN = 2 V, OE = 3.3 V  
VDD = 3.6 V, VIN = 2 V, OE = 0 V  
0.01  
0.01  
2
2
Leakage current  
(Dx_SEL, AUX_SEL)  
µA  
VDD = 3.6 V, VIN = 2 V, OE = 0 V;  
Dx_SEL = 3.3 V  
ILK  
0.01  
0.01  
5
Leakage current (HPDx/DDCx)  
VDD = 3.6 V, VIN = 2 V, OE = 3.3 V;  
Dx_SEL = GND  
5
8
IOFF  
IDD  
Device shut down current  
Supply current  
VDD = 3.6 V, OE = GND  
VDD = 3.6 V,  
Dx_SEL= VDD; AUX_SEL = GND;  
Outputs Floating  
2.5  
8
3.2  
mA  
DA, DB, DC HIGH SPEED SIGNAL PATH  
VCM = 0 V–3.3 V,  
IO = –1mA  
RON  
ON resistance  
14  
Ω
Ω
Ω
On resistance match between pairs of VCM = 0 V–3. 3V,  
ΔRON  
1.5  
the same channel  
IO = –1 mA  
On resistance flatness (RON(MAX)  
RFLAT_ON  
VCM = 0 V–3.3 V  
1.3  
RON(MAIN)  
)
AUXx, DDC, SIGNAL PATH  
VCM = 0 V–3.3 V,  
IO = –8 mA  
RON(AUX)  
ON resistance on AUX channel  
5
8
Ω
Ω
RON(DDC) ON resistance on DDC channel  
VCM = 0.4 V, IO = -3 mA  
30  
40  
(1) This pin can be driven to the specified level or 10 kΩ. Pull up and pull downs can be used. It cannot be left floating.  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: HD3SS215 HD3SS215I  
 
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
7.6 Electrical Characteristics, Device Parameters (1)  
Under recommended operating conditions; RLOAD, RSC = 50 Ω (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
–15  
–12  
–17  
–13  
–35  
–35  
–21  
–16  
–1.2  
–1.6  
–2  
MAX UNIT  
1.35 GHz  
ZXH package  
RTQ package  
3 GHz  
RL  
Dx Differential return loss  
dB  
1.35 GHz  
3 GHz  
ZXH package  
RTQ package  
ZXH package  
RTQ package  
XTALK  
Dx Differential crosstalk  
2.7 GHz  
3 GHz  
dB  
dB  
dB  
dB  
OIRR  
Dx Differential off-isolation  
f = 1.35 GHz  
f = 3 GHz  
ZXH package  
RTQ package  
IL  
Dx Differential insertion loss  
f = 1.35 GHz  
f = 3 GHz  
–2.4  
7
ZXH package  
RTQ package  
BWDx  
Dx Differential -3-dB bandwidth  
AUX –3-dB bandwidth  
GHz  
MHz  
5
BWAUX  
720  
(1) For Return Loss, Crosstalk, Off-Isolation, and Insertion Loss values the data was collected on a Rogers material board with minimum  
length traces on the input and output of the device under test.  
7.7 Switching Characteristics  
Under recommended operating conditions; RLOAD, RSC = 50 Ω (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tPD  
Switch propagation delay  
RSC and RLOAD = 50 Ω,  
200  
ps  
See Figure 7-2  
ton(OE_L-H)  
toff(OE_H-L)  
tSWITCH_OVER  
Time from OE toggling High and valid data at the RSC and RLOAD = 50 Ω,  
1
15  
2
50  
1
µs  
µs  
outputs  
VCM = 3 V - 3.3 V  
Time from OE toggling Low and outputs are in Z-  
state  
Time to switch between ports when DX_SEL or  
AUX_SEL state is changed for Data, AUX, DDC  
signals  
RSC and RLOAD = 50 Ω,  
See Figure 7-1  
0.7  
ton  
Dx_SEL/AUX_SEL-to-Switch ton (HPD)  
Dx_SEL/AUX_SEL-to-Switch toff (HPD)  
Inter-Pair output skew (CH-CH)  
RLOAD = 125k Ω, See Figure 7-1  
0.7  
0.7  
1
20  
30  
5
µs  
ps  
toff  
tSK(O)  
tSK(b-b)  
RSC and RLOAD = 50 Ω,  
See Figure 7-2  
Intra-Pair output skew (bit-bit)  
1
7.8 Timing Diagrams  
50%  
Dx_SEL  
90%  
10%  
VOUT  
Ton  
Toff  
Figure 7-1. Select to Switch ton and toff  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: HD3SS215 HD3SS215I  
 
 
 
 
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
Vcc  
Rsc = 50 Ω  
DAx/DBx(p)  
DCx(p)  
RLoad = 50 Ω  
Rsc = 50 Ω  
DAx/DBx(n)  
DCx(n)  
RLoad = 50 Ω  
SEL  
DAx/DBx(p)  
50%  
50%  
DAx/DBx(n)  
DCx(p)  
50%  
50%  
DCx(n)  
tP1  
t2  
tP2  
t4  
t1  
t3  
DCx(p)  
50%  
DCx(n)  
DCy(p)  
t
SK(O)  
DCy(n)  
tPD = Max(tp1, tp2  
)
tSK(O) = Difference between tPD for any  
two pairs of outputs  
tSK(b-b) = 0.5 X |(t4 – t3) + (t1 – t2)|  
Figure 7-2. Propagation Delay and Skew  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: HD3SS215 HD3SS215I  
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The HD3SS215 is a generic analog, differential passive switch that can work for any high speed interface  
applications, as long as it is biased at a common mode voltage range of 0 V to 3.3 V and has differential  
signaling with differential amplitude up to 1800 mVpp. It employs adaptive tracking that maintains the high speed  
channel impedance over the entire common mode voltage range. In high-speed applications and data paths,  
signal integrity is an important concern. The switch offers excellent dynamic performance such as high isolation,  
crosstalk immunity, and minimal bit-bit skew. These characteristics allow the device to function seamlessly in the  
system without compromising signal integrity. The 2:1/1:2, mux/de-mux device operates with ports A or B  
switched to port C, or port C switched to either port A or B. This flexibility allows an application to select between  
one of two Sources on ports A and B and send the output to the sink on port C. Similarly, a Source on port C can  
select between one of two Sink devices on ports A and B to send the data. To comply with DisplayPort, DP++  
and HDMI applications, the HD3SS215 also switches AUX, HPD, and DDC along with the high-speed differential  
signals. The HPD and data signals are both switched through the Dx_SEL pin. AUX and DDC are controlled with  
AUX_SEL and Dx_SEL. The Functional Modes section contains information on how to set the control pins.  
With an OE control pin, the HD3SS215 is operational, with low active current, when this pin is high. When OE is  
pulled lowed, the device goes into standby mode and draws very little current in order to save power  
consumption in the application.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: HD3SS215 HD3SS215I  
 
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
8.2 Functional Block Diagram  
VDD  
4
4
DAz(p)  
DAz(n)  
SEL=0  
4
4
DCz(p)  
DCz(n)  
(z = 0, 1, 2 or 3)  
4
4
DBz(p)  
DBz(n)  
SEL=1  
SEL  
Dx_SEL  
SEL  
HPDA  
HPDB  
SEL=0  
SEL=1  
HPDC  
AUX_SEL  
SEL2  
AUXA(p)  
AUXA(n)  
SEL  
AUXx(P) or DDCCLK_x  
AUXx(n) or DDCDAT_  
AUXB(p)  
AUXB(n)  
AUXC(p)  
x
AUXC(n)  
DDCCLK_C  
DDCDAT_C  
DDCCLK_A  
DDCDAT_A  
DDCCLK_B  
DDCDAT_B  
OE  
HD3SS215  
GND  
The high speed data ports incorporate 20kΩ pull down resistors that are switched in when a port is not selected and switched out when  
the port is selected.  
Figure 8-1. Functional Block Diagram  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: HD3SS215 HD3SS215I  
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
8.3 Feature Description  
8.3.1 High Speed Switching  
The HD3SS215 supports switching of 6 Gbps data rates. The wide common mode of the device enables it to  
support TMDS signal levels and DisplayPort signals. The high speed muxing is designed with a wide –3dB  
differential bandwidth of 7 GHz and industry leading dynamic characteristics. All of these attributes help maintain  
signal integrity in the application. Each high speed port incorporates 20kΩ pull down resistors that are switched  
in when the port is not selected and switched out when the port is selected.  
8.3.2 HPD, AUX, and DDC Switching  
HPD, AUX and DDC switching is supported through the HD3SS215. This enables the device to work in multiple  
application scenarios within multiple electrical standards. The AUXA/B and DDCA/B lines can both be switched  
to the AUXC port. This feature supports DP++ or AUX only adapters. For HDMI applications, the DDC channels  
are switched to the DDC_C port only and the AUX channel can remain active or the end user can make it float.  
8.3.3 Output Enable and Power Savings  
The HD3SS215 has two power modes, active/normal operating mode, and standby mode. During standby mode,  
the device consumes very little current to save the maximum power. To enter standby mode, the OE control pin  
is pulled low and must remain low. For active/normal operation, the OE control pin should be pulled high to VDD  
through a resistor.  
8.4 Device Functional Modes  
8.4.1 Switch Control Modes  
Refer to the Section 8.2.  
The HD3SS215 behaves as a two to one or one to two differential switch using high bandwidth pass gates. The  
input ports are selected using the AUX_SEL pin and Dx_SEL pin which are shown in Table 8-1.  
Table 8-1. Switch Control Logic (1) (2) (3)  
CONTROL LINES(4)  
AUX_SEL Dx_SEL  
SWITCHED I/O PINS  
DCz(p) Pin  
DCz(n) Pin  
z = 0, 1, 2 or 3 z = 0, 1, 2 or 3  
HPDC Pin  
AUXA  
AUXB  
AUXC  
DDCA  
DDCB  
DDCC  
L
L
L
H
L
DAz(p)  
DBz(p)  
DAz(p)  
DBz(p)  
DAz(p)  
DBz(p)  
DAz(n)  
DBz(n)  
DAz(n)  
DBz(n)  
DAz(n)  
DBz(n)  
HPDA  
To/From  
AUXC  
Z
To/From  
AUXA  
Z
Z
Z
Z
Z
Z
HPDB  
HPDA  
HPDB  
HPDA  
HPDB  
Z
Z
Z
To/From  
AUXC  
To/From  
AUXB  
Z
Z
Z
H
Z
To/From  
DDCA  
To/From  
AUXC  
H
H
L
Z
Z
To/From  
DDCB  
Z
To/From  
AUXC  
M(4)  
M(4)  
To/From  
AUXC  
To/From  
AUXA  
To/From  
DDCC  
Z
To/From  
DDCA  
H
Z
To/From  
AUXC  
To/From  
AUXB  
Z
To/From  
DDCC  
To/From  
DDCB  
(1) Z = High Impedance  
(2) OE pin - For normal operation, drive OE high. Driving the OE pin low will disable the switch.  
(3) The ports which are not selected by the control lines will be in high impedance status.  
(4) For HDMI application, keep the AUX_SEL at middle level voltage. The AUX channel is still active, and the end user can make the lines  
float.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: HD3SS215 HD3SS215I  
 
 
 
 
 
 
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
9 Applications and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The HD3SS215 can be used in a variety of applications. This section shows the typical applications for  
DisplayPort , DP++, and HDMI. The example diagrams illustrate using the HD3SS215 in a two source to one  
sink application and a one source to two sinks application. All schematics are using the ZXH pin-out.  
9.2 Typical Applications  
9.2.1 DisplayPort and Dual Mode Adapter with Two Sources  
The application schematic below shows the HD3SS215 in the 2:1 configuration for DisplayPort switching. The  
HD3SS215 receives inputs from DP Source A and DP Source B. The control pins of the device can be set to  
select Source A/B inputs and transfer them to port C through the Dx_SEL control pin. The schematic also shows  
the CONFIG1 and AUX_SEL settings to configure the HD3SS215 to work with DP++ Type 2 and Type1  
adapters. For this specific schematic, the AC capacitors needed on the MainLink signal lines are shown on the  
Sink side of the HD3SS215. This is done to decrease the BOM. If desired the AC capacitors maybe placed in the  
signal path on the Source A/B side of HD3SS215. Additional diagrams are provided to show the configuration of  
the AUX channel for 2:1 and 1:2 DisplayPort only applications.  
Figure 9-1. HD3SS215 Application Diagram for DisplayPort or Dual Mode Adapter Configuration  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: HD3SS215 HD3SS215I  
 
 
 
 
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
Figure 9-2. HD3SS215 AUX Channel in 2:1 DisplayPort Application  
Figure 9-3. HD3SS215 AUX Channel in 1:2 DisplayPort Application  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: HD3SS215 HD3SS215I  
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
9.2.1.1 Design Requirements  
Table 9-1. Design Parameters  
DESIGN PARAMETER  
VDD  
EXAMPLE VALUE  
3.3 V  
Decoupling Capacitors  
0.1 µF  
AC Capacitors  
75 nF to 200 nF (100 nF shown)  
10 kΩ to105 kΩ (100 kΩ shown)  
10 kΩ  
AUX Pull-Up/Pull-Down Resistors  
Pull-Up/Pull-Down Resistors for Control Pins  
CONFIG1/CONFIG2 Pull-Down Resistors  
1 MΩ and 5 MΩ  
9.2.1.2 Detailed Design Procedure  
The HD3SS215 is designed to operate with a 3.3 V power supply. Levels above those listed in the Absolute  
Ratings table should not be used. If using a higher voltage system power supply, a voltage regulator can be used  
to step down to 3.3 V. Decoupling capacitors may be used to reduce noise and improve power supply integrity.  
AC capacitors must be placed on the MainLink lines. Additionally, AC capacitors are placed on the AUXC lines.  
After the blocking capacitors, the AUXCp line must be pulled down weakly through a resistor to ground, and the  
AUXCn line must be pulled up weakly through a resistor to VDD. The voltage level of the control pins, AUX_SEL  
and Dx_SEL should be set according to the application and muxing desired. For a DisplayPort connector, the  
CONFIG1 and CONFIG2 pins should be pulled to ground through resistors. For Dual Mode adapter  
implementation, the CONFIG1 line may be used to perform cable adapter detection. The CONFIG2 line can be  
configured for an HDMI adaptor or left as a no connect for a DVI adapter. The CONFIG2 pin on the connector  
should be pulled up or left floating accordingly for Dual Mode adapter configuration.  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: HD3SS215 HD3SS215I  
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
9.2.2 HDMI Application with Two Sinks  
The HD3SS215 can be placed in applications needing to switch between two sinks. In this example, the HDMI  
source selects between Sink A or Sink B in the 1:2 configuration.  
Figure 9-4. Application Diagram for a 1:2 Configuration with HDMI Source and Connectors  
9.2.2.1 Design Requirements  
Table 9-2. Design Parameters  
DESIGN PARAMETER  
VDD  
EXAMPLE VALUE  
3.3 V  
Decoupling Capacitors  
0.1 µF  
DDC Pull-Up Resistors  
1.5 kΩ to 2 kΩ to 5 V (2 kΩ shown)  
Pull-Up/Pull-Down Resistors for Control Pins  
HPD Pull-Down Resistor  
10 kΩ  
100 kΩ  
9.2.2.2 Detailed Design Procedure  
The HD3SS215 is designed to operate with a 3.3 V power supply. Levels above those listed in the Absolute  
Ratings table should not be used. If using a higher voltage system power supply, a voltage regulator can be used  
to step down to 3.3 V. Decoupling capacitors may be used to reduce noise and improve power supply integrity.  
Pull-up resistors to 5 V must be placed on the source side DDC clock and data lines according to the HDMI2.0  
Standard. A weak pull down resistor should be placed on the source side HPD line. This is to ensure the source  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: HD3SS215 HD3SS215I  
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
can differentiate between when HPD is disconnected or at a high voltage level. The AUX_SEL and Dx_SEL  
control pins should be set according to the application and desired muxing.  
9.2.3  
9.2.4 HDMI 2:1 Sink Application Using the RTQ Package  
The HD3SS215 can be placed in applications needing to switch between two HDMI connectors and one Generic  
HDMI sink.  
3.3V  
0.1uF  
0.1uF  
5V  
Source A  
D0p  
D0n  
DA0p  
DA0n  
5V  
GND1  
D1p  
D1n  
DA1p  
DA1n  
Sink  
47kΩ  
47kΩ  
GND2  
D2p  
D2n  
DA2p  
DA2n  
GND3  
5V  
DC0p  
DC0n  
D0p  
D0n  
GND4  
D3p  
D3n  
DA3p  
DA3n  
GND1  
GND2  
Utility  
DC1p  
DC1n  
D1p  
D1n  
DDC_SCL  
DDC_SDA  
AUXAp  
AUXAn  
DDC_GND  
DC2p  
DC2n  
D2p  
D2n  
HPD  
DDCCLK_A  
DDCDAT_A  
GND3  
GND4  
DC3p  
DC3n  
D3p  
D3n  
HPDA  
HDMI Connector  
Utility  
AUXCp  
AUXCn  
DDC_SCL  
DDC_SDA  
100kΩ  
DDC_GND  
Source B  
DDCCLK_C  
DDCDAT_C  
HPD  
D0p  
D0n  
DB0p  
DB0n  
GND1  
HPDC  
D1p  
D1n  
DB1p  
DB1n  
HDMI SINK Device  
GND2  
3.3V  
5V  
D2p  
D2n  
DB2p  
DB2n  
GND3  
10kΩ  
GND4  
D3p  
D3n  
DB3p  
DB3n  
OE  
AUX_SEL  
Dx_SEL  
Utility  
DDC_SCL  
DDC_SDA  
AUXBp  
AUXBn  
DDC_GND  
10kΩ  
HPD  
DDCCLK_B  
DDCDAT_B  
10kΩ  
HPDB  
HDMI Connector  
100kΩ  
HD3SS215  
AUX_SEL and Dx_SEL configured for A to C  
Figure 9-5. HDMI 2:1 Sink Application Using the RTQ Package  
Note  
According to the HDMI specification the DDC 2-kΩ pullup resistors can be replaced by  
47-kΩ pullups. Figure 9-5 schematic and Figure 10-3 PCB layout example shows 47-kΩ pullup  
resistors.  
Power Supply Recommendations  
The HD3SS215 is designed to operate with a 3.3-V power supply. Levels above those listed in the Absolute  
Ratings table should not be used. If using a higher voltage system power supply, a voltage regulator can be used  
to step down to 3.3 V. Decoupling capacitors must be used to reduce power supply noise.  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: HD3SS215 HD3SS215I  
 
 
 
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
The ESD and EMI protection devices (if used) should be placed as close as possible to the connector.  
Place voltage regulators as far away as possible from the high-speed differential pairs.  
It is recommended that small decoupling capacitors for the HD3SS215 power rail be placed close to the  
device.  
The high-speed differential signal traces should be routed on the top layer to avoid the use of vias and allow  
clean interconnects to the mux.  
The high speed differential signal traces should be routed parallel to each other as much as possible. It is  
recommended the traces be symmetrical.  
In order to control impedance for transmission lines, a solid ground plane should be placed next to the high-  
speed signal layer. This also provides an excellent low-inductance path for the return current flow.  
The power plane should be placed next to the ground plane to create additional high-frequency bypass  
capacitance.  
Adding test points will cause impedance discontinuity and will therefore negatively impact signal  
performance. If test points are used, they should be placed in series and symmetrically. They must not be  
placed in a manner that causes stubs on the differential pair.  
Avoid 90 degree turns in traces. The use of bends in differential traces should be kept to a minimum. When  
bends are used, the number of left and right bends should be as equal as possible and the angle of the bend  
should be ≥135 degrees. This will minimize any length mismatch caused by the bends and therefore  
minimize the impact bends have on EMI.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: HD3SS215 HD3SS215I  
 
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
10.2 Layout Example  
An example layout for the HD3SS215 shows the device implemented on a 4-layer board. The layout figures  
follow the DisplayPort application schematic above. The top layer layout view shows the signal routing for two  
sources and one sink. The bottom layer layout view shows the remaining signal routing and a copper pour  
implemented for the decoupling capacitors.  
Figure 10-1. Top Layer Layout View  
Figure 10-2. Bottom Layer Layout View  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: HD3SS215 HD3SS215I  
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
Figure 10-3. RTQ Layout for 2:1 HDMI Sink Application  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: HD3SS215 HD3SS215I  
 
HD3SS215, HD3SS215I  
SLAS971E – MAY 2014 – REVISED DECEMBER 2020  
www.ti.com  
11 Device and Documentation Support  
11.1 Community Resources  
11.2 Trademarks  
All trademarks are the property of their respective owners.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: HD3SS215 HD3SS215I  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Mar-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
HD3SS215IRTQR  
HD3SS215IRTQT  
HD3SS215IZQER  
ACTIVE  
ACTIVE  
LIFEBUY  
QFN  
QFN  
RTQ  
RTQ  
ZQE  
56  
56  
50  
2000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
Call TI | NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
HD3SS215I  
NIPDAU  
HD3SS215I  
HD3SS215I  
BGA  
SNAGCU  
MICROSTAR  
JUNIOR  
HD3SS215IZQET  
LIFEBUY  
BGA  
ZQE  
50  
250  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
HD3SS215I  
MICROSTAR  
JUNIOR  
HD3SS215IZXHR  
HD3SS215IZXHT  
HD3SS215RTQR  
HD3SS215RTQT  
HD3SS215ZQER  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LIFEBUY  
NFBGA  
NFBGA  
QFN  
ZXH  
ZXH  
RTQ  
RTQ  
ZQE  
50  
50  
56  
56  
50  
2500 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
HD3SS215I  
HD3SS215I  
HD3SS215  
HD3SS215  
HD3SS215  
0 to 70  
0 to 70  
0 to 70  
QFN  
BGA  
2500 RoHS & Green  
MICROSTAR  
JUNIOR  
HD3SS215ZXHR  
ACTIVE  
NFBGA  
ZXH  
50  
2500 RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
HD3SS215  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Mar-2021  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Mar-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
HD3SS215IRTQR  
HD3SS215IRTQT  
HD3SS215IZQER  
QFN  
QFN  
RTQ  
RTQ  
ZQE  
56  
56  
50  
2000  
250  
330.0  
180.0  
330.0  
16.4  
16.4  
12.4  
8.3  
8.3  
5.3  
8.3  
8.3  
5.3  
1.1  
1.1  
1.5  
12.0  
12.0  
8.0  
16.0  
16.0  
12.0  
Q2  
Q2  
Q1  
BGA MI  
CROSTA  
R JUNI  
OR  
2500  
HD3SS215IZQET  
BGA MI  
CROSTA  
R JUNI  
OR  
ZQE  
50  
250  
330.0  
12.4  
5.3  
5.3  
1.5  
8.0  
12.0  
Q1  
HD3SS215IZXHR  
HD3SS215IZXHT  
HD3SS215RTQR  
HD3SS215RTQT  
HD3SS215ZQER  
NFBGA  
NFBGA  
QFN  
ZXH  
ZXH  
RTQ  
RTQ  
ZQE  
50  
50  
56  
56  
50  
2500  
250  
330.0  
330.0  
330.0  
180.0  
330.0  
12.4  
12.4  
16.4  
16.4  
12.4  
5.3  
5.3  
8.3  
8.3  
5.3  
5.3  
5.3  
8.3  
8.3  
5.3  
1.5  
1.5  
1.1  
1.1  
1.5  
8.0  
8.0  
12.0  
12.0  
16.0  
16.0  
12.0  
Q1  
Q1  
Q2  
Q2  
Q1  
2000  
250  
12.0  
12.0  
8.0  
QFN  
BGA MI  
CROSTA  
R JUNI  
OR  
2500  
HD3SS215ZXHR  
NFBGA  
ZXH  
50  
2500  
330.0  
12.4  
5.3  
5.3  
1.5  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Mar-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
HD3SS215IRTQR  
HD3SS215IRTQT  
HD3SS215IZQER  
QFN  
QFN  
RTQ  
RTQ  
ZQE  
56  
56  
50  
2000  
250  
367.0  
210.0  
336.6  
367.0  
185.0  
336.6  
38.0  
35.0  
31.8  
BGA MICROSTAR  
JUNIOR  
2500  
HD3SS215IZQET  
BGA MICROSTAR  
JUNIOR  
ZQE  
50  
250  
336.6  
336.6  
31.8  
HD3SS215IZXHR  
HD3SS215IZXHT  
HD3SS215RTQR  
HD3SS215RTQT  
HD3SS215ZQER  
NFBGA  
NFBGA  
QFN  
ZXH  
ZXH  
RTQ  
RTQ  
ZQE  
50  
50  
56  
56  
50  
2500  
250  
336.6  
336.6  
367.0  
210.0  
336.6  
336.6  
336.6  
367.0  
185.0  
336.6  
31.8  
31.8  
38.0  
35.0  
31.8  
2000  
250  
QFN  
BGA MICROSTAR  
JUNIOR  
2500  
HD3SS215ZXHR  
NFBGA  
ZXH  
50  
2500  
336.6  
336.6  
31.8  
Pack Materials-Page 2  
PACKAGE OUTLINE  
TM  
ZQE0050A  
BGA MicroStar Jr - 1 mm max height  
SCALE 2.500  
PLASTIC BALL GRID ARRAY  
5.1  
4.9  
B
A
BALL A1 CORNER  
INDEX AREA  
5.1  
4.9  
(0.74)  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.25  
TYP  
0.15  
BALL TYP  
4 TYP  
SYMM  
(0.5) TYP  
J
H
G
F
(0.5) TYP  
SYMM  
4
E
D
C
TYP  
0.35  
50X  
0.25  
0.15  
0.05  
C A  
C
B
B
A
0.5 TYP  
1
2
3
4
5
6
7
8
9
0.5 TYP  
4221625/A 02/2015  
MicroStar Junior is trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration MO-225.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
TM  
ZQE0050A  
BGA MicroStar Jr - 1 mm max height  
PLASTIC BALL GRID ARRAY  
50X ( 0.28)  
(0.5) TYP  
3
4
5
6
7
8
9
1
2
A
B
C
(0.5) TYP  
D
E
F
G
H
J
SYMM  
SYMM  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.28)  
METAL  
(
0.28)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221625/A 02/2015  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SSYZ015 (www.ti.com/lit/ssyz015).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
ZQE0050A  
BGA MicroStar Jr - 1 mm max height  
PLASTIC BALL GRID ARRAY  
50X ( 0.28)  
(R0.05) TYP  
(0.5) TYP  
A
1
2
4
5
6
8
9
3
7
(0.5) TYP  
B
C
D
E
F
G
H
J
METAL  
TYP  
SYMM  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:20X  
4221625/A 02/2015  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZXH0050A  
A
5.1  
4.9  
B
BALL A1 CORNER  
5.1  
4.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.25  
0.15  
BALL TYP  
(0.5) TYP  
4 TYP  
J
(0.5) TYP  
H
G
F
SYMM  
4
TYP  
E
D
C
0.35  
50X Ø  
B
A
0.25  
0.15  
0.05  
C A B  
C
0.5 TYP  
1
2
3
4
5
6
7
8
9
0.5 TYP  
SYMM  
4225134/A 08/2019  
NOTES:  
NanoFree is a trademark of Texas Instruments.  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZXH0050A  
(0.5) TYP  
3
1
2
4
5
6
7
8
9
A
B
(0.5) TYP  
C
D
E
F
SYMM  
50X (Ø0.25)  
G
H
J
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
(Ø 0.25)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
(Ø 0.25)  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON- SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225134/A 08/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments  
Literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZXH0050A  
(0.5) TYP  
3
1
2
4
5
6
7
8
9
A
B
(0.5) TYP  
C
D
E
F
METAL  
TYP  
SYMM  
(R0.05) TYP  
G
H
J
50X ( 0.25)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.100 mm THICK STENCIL  
SCALE: 20X  
4225134/A 08/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
GENERIC PACKAGE VIEW  
RTQ 56  
8 x 8, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224653/A  
www.ti.com  
PACKAGE OUTLINE  
RTQ0056B  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
8.15  
7.85  
A
B
PIN 1 INDEX AREA  
8.15  
7.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 6.5  
4.5 0.1  
SYMM  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
28  
15  
14  
29  
SYMM  
57  
2X 6.5  
5.2 0.1  
1
42  
52X 0.5  
PIN 1 ID  
0.30  
0.18  
56  
43  
56X  
0.5  
0.3  
0.1  
C A B  
56X  
0.05  
4219130/B 11/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTQ0056B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(4.5)  
(0.73) TYP  
(1.27) TYP  
SEE SOLDER MASK  
56X (0.6)  
56X (0.24)  
DETAIL  
56  
43  
1
42  
52X (0.5)  
(1.08) TYP  
(R0.05) TYP  
(1.27) TYP  
(7.8)  
57  
SYMM  
(5.2)  
(
0.2) TYP  
VIA  
14  
29  
28  
15  
SYMM  
(7.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219130/B 11/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTQ0056B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.46) TYP  
56X (0.6)  
56X (0.24)  
43  
56  
1
42  
52X (0.5)  
(R0.05) TYP  
(1.27) TYP  
57  
(0.635) TYP  
(7.8)  
SYMM  
12X (1.07)  
METAL  
TYP  
14  
29  
15  
28  
SYMM  
12X (1.26)  
(7.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 57  
69% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219130/B 11/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY