HD3SS3411TRWARQ1 [TI]

3.3V 汽车级 PCI Express 3.0 单通道模拟差动开关 | RWA | 14 | -40 to 105;
HD3SS3411TRWARQ1
型号: HD3SS3411TRWARQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3V 汽车级 PCI Express 3.0 单通道模拟差动开关 | RWA | 14 | -40 to 105

开关 PC
文件: 总23页 (文件大小:1119K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
HD3SS3411-Q1  
ZHCSE09A JUNE 2015REVISED JULY 2015  
HD3SS3411-Q1 单通道差分 2:1 复用器/解复用器  
1 特性  
3 说明  
1
符合汽车级 Q100 标准  
HD3SS3411-Q1 是一款高速双向无源开关,可采用复  
用器或解复用器两种配置。 该器件可通过控制引脚  
SEL 在两个差分通道(端口 B 到端口 A,或者端口 C  
到端口 A)间切换。  
兼容多种接口标准,包括 FPD-LinkLVDSPCIE  
II 代和第 III 代、XAUI 以及 USB3.1  
运行速率高达 10Gbps  
-3dB 差分带宽宽达 7.5GHz 左右  
出色动态特性(4GHz 时)  
HD3SS3411-Q1 是一款通用模拟差动无源开关,只要  
0V 2V 的共模电压范围内偏置,并且具有差分幅  
值高达 1800mVpp 的差分信令,即可用于任何高速接  
口应用。 该器件采用自适应跟踪,可确保信道在整个  
共模电压范围内保持不变。  
插入损耗 = -1.1dB  
回波损耗 = -11.3dB  
断开隔离 = –19dB  
双向复用/解复用差分开关  
支持 0V 2V 共模电压  
该器件具有出色的动态特性,可在信号眼图衰减最小的  
情况下实现高速转换,并且附加抖动极少。 该器件在  
工作模式下的功耗 < 2mW;在关断模式下的功耗  
< 2µW(可通过 OEn 引脚切换模式)。  
单电源电压 VCC3.3V±10%  
-40°C 105°C 的工业温度范围  
2 应用  
器件信息(1)  
车用信息娱乐  
器件型号  
HD3SS3411-Q1  
HD3SS3411I  
HD3SS3411  
封装  
封装尺寸(标称值)  
工业数据交换  
台式机和笔记本个人电脑 (PC)  
服务器/储存区网络  
PCI EXPress 背板  
共享 I/O 端口  
WQFN (14)  
3.50mm x 3.50mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 简化电路原理图  
VCC  
Bp  
Bn  
Ap  
An  
Cp  
Cn  
SEL  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASE82  
 
 
 
 
HD3SS3411-Q1  
ZHCSE09A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 5  
7.7 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
8.1 Overview ................................................................... 7  
8.2 Functional Block Diagram ......................................... 7  
8.3 Feature Description................................................... 7  
8.4 Device Functional Modes.......................................... 8  
9
Application Information and Implementation ..... 9  
9.1 Application Information.............................................. 9  
9.2 Typical Application .................................................... 9  
9.3 Design Requirements.............................................. 10  
9.4 Detailed Design Procedure ..................................... 10  
9.5 Application Curves .................................................. 12  
10 Power Supply Recommendations ..................... 12  
11 Layout................................................................... 13  
11.1 Layout Guidelines ................................................. 13  
11.2 Layout Example .................................................... 14  
12 器件和文档支持 ..................................................... 15  
12.1 文档支持 ............................................................... 15  
12.2 社区资源................................................................ 15  
12.3 ....................................................................... 15  
12.4 静电放电警告......................................................... 15  
12.5 出口管制提示......................................................... 15  
12.6 Glossary................................................................ 15  
13 机械、封装和可订购信息....................................... 15  
8
5 修订历史记录  
Changes from Original (June 2015) to Revision A  
Page  
Changed the "Operating free-air Temperature" MAX value From: 85°C To: 105°C in Recommended Operating  
Conditions .............................................................................................................................................................................. 4  
Changed the MAX value of R(FLAT_ON) From: 0.5 Ω To: 1 Ω in the Electrical Characteristics ............................................... 5  
2
Copyright © 2015, Texas Instruments Incorporated  
 
HD3SS3411-Q1  
www.ti.com.cn  
ZHCSE09A JUNE 2015REVISED JULY 2015  
6 Pin Configuration and Functions  
RWA Package  
Top View  
OEn  
GND  
14  
1
2
3
4
5
6
Ap  
An  
13 Bp  
12 Bn  
11 GND  
VCC  
GND  
RSVD  
10 Cp  
Cn  
9
7
8
SEL  
GND  
Pin Functions  
NAME  
Ap  
NO  
2
TYPE  
I/O  
DESCRIPTION  
Port A, High Speed Positive Signal  
Port A, High Speed Negative Signal  
Port B, High Speed Positive Signal  
Port B, High Speed Negative Signal  
Port C, High Speed Positive Signal  
Port C, High Speed Negative Signal  
An  
3
I/O  
Bp  
13  
12  
10  
9
I/O  
Bn  
I/O  
Cp  
I/O  
Cn  
I/O  
5,8,11,14,  
Pad  
GND  
G
Ground  
Active Low Chip Enable  
L: Normal operation  
H: Shutdown  
OEn  
RSVD  
SEL  
1
6
7
4
I
I/O  
I
Reserved Pin – connect or pull-down to GND  
Port select pin  
L: Port A to Port B  
H: Port A to Port C  
VCC  
P
3.3 V power  
Copyright © 2015, Texas Instruments Incorporated  
3
HD3SS3411-Q1  
ZHCSE09A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
UNIT  
Supply voltage range (VCC  
)
Absolute minimum/maximum supply voltage range  
4
V
Differential I/O  
Control pin  
2.5  
Voltage range  
V
VDD + 0.5  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions  
is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
3.6  
VCC  
0.8  
1.8  
2
UNIT  
V
VCC  
VIH  
VIL  
Supply voltage  
Input high voltage (SEL, OEn Pin)  
Input low voltage (SEL OEn Pin)  
High speed signal pins differential voltage  
Common mode voltage (differential pins)  
Operating free-air temperature  
2
V
–0.1  
0
V
VDiff  
VCM  
TA  
VPP  
V
0
–40  
105  
°C  
7.4 Thermal Information  
RWA  
14 PINS  
50.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
63.1  
26.4  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.2  
ψJB  
26.5  
RθJC(bot)  
7.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
HD3SS3411-Q1  
www.ti.com.cn  
ZHCSE09A JUNE 2015REVISED JULY 2015  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.6  
0.3  
0.6  
MAX  
0.8  
UNITS  
mA  
ICC  
Device active Current  
Device shutdown Current  
Outputs ON Capacitance  
VCC = 3.3 V, OEn = 0  
VCC = 3.3 V, OEn = 0  
ISTDN  
CON  
0.6  
µA  
pF  
VCC = 3.3 V; VCM = 0 V to 2 V ;  
IO = –8 mA  
RON  
Output ON resistance  
5
8
0.5  
1
Ω
Ω
On resistance match between pairs of  
the same channel  
VCC = 3.3 V ; –0.35 V VIN 2.35 V;  
IO = –8 mA  
ΔRON  
On resistance flatness  
(RON(MAX) – RON(MAIN)  
R(FLAT_ON)  
IIH(CTRL)  
IIL(CTRL)  
VDD = 3.3 V; –0.35 V VIN 2.35 V  
Ω
Input high current, control pins  
(SEL, OEn)  
1
µA  
µA  
Input low current, control pins  
(SEL, OEn)  
1
[A/B/C][p/n] VIN = 2 V for selected port,  
A and B with SEL= 0, and A and C with  
SEL = VCC  
1
µA  
[A/B/C][p/n] VIN = 2 V for non-selected  
port, C with SEL= 0, and B with  
SEL = VCC  
(Note there is a 20 KΩ pull-down in non-  
selected port)  
IIH(HS)  
Input high current, high speed pins  
Input low current, high speed pins  
100  
140  
1
µA  
µA  
IIL(HS)  
[A/B/C][p/n]  
High Speed Performance  
f = 0.3 MHz  
f = 2.5 GHz  
f = 4 GHz  
–0.5  
–0.7  
–1.1  
7.5  
IL  
Differential Insertion Loss  
dB  
GHz  
dB  
BW  
RL  
-3 dB Bandwidth  
f = 0.3 MHz  
f = 2.5 GHz  
f = 4 GHz  
–26.4  
–16.6  
–11.3  
–75  
Differential return loss  
f = 0.3 MHz  
f = 2.5 GHz  
f = 4 GHz  
OI  
Differential OFF isolation  
Differential Crosstalk  
–22  
dB  
dB  
–19  
Xtalk  
f = 4 GHz  
–35  
7.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
ps  
tPD  
Switch propagation delay  
Switching time  
80  
0.5  
5
tSW  
ns  
tSK_INTRA  
Intra-pair output skew  
ps  
Copyright © 2015, Texas Instruments Incorporated  
5
HD3SS3411-Q1  
ZHCSE09A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
7.7 Typical Characteristics  
0
-5  
2
0
-2  
-10  
-15  
-20  
-25  
-30  
-4  
-6  
-8  
-10  
-12  
0
2
4
6
8
10  
0
2
4
6
8
10  
Frequency (GHz)  
Frequency (GHz)  
D001  
D002  
Figure 1. Return Loss vs Frequency  
Figure 2. Insertion Loss vs Frequency  
6
Copyright © 2015, Texas Instruments Incorporated  
HD3SS3411-Q1  
www.ti.com.cn  
ZHCSE09A JUNE 2015REVISED JULY 2015  
8 Detailed Description  
8.1 Overview  
The HD3SS3411-Q1 is a high-speed bi-directional passive switch in mux or demux configurations. Based on  
control pin SEL, the device switches one differential channels between Port B or Port C to Port A.  
The HD3SS3411-Q1 is a generic analog differential passive switch that can work for any high speed interface  
applications as long as it is biased at a common mode voltage range of 0 V to 2 V and has differential signaling  
with differential amplitude up to 1800 mVpp. The device employs an adaptive tracking that ensures the channel  
remains unchanged for entire common mode voltage range.  
Table 1. MUX Pin Connections(1)  
PORT B OR PORT C CHANNEL CONNECTED TO PORT A  
CHANNEL  
PORT A CHANNEL  
SEL = L  
Bp  
SEL = H  
Cp  
Ap  
An  
Bn  
Cn  
(1) The HD3SS3411-Q1 can tolerate polarity inversions for all differential signals on Ports A, B and C.  
Care should be taken to ensure the same polarity is maintained on Port A vs. Port B/C.  
8.2 Functional Block Diagram  
VCC  
Bp  
Bn  
Ap  
An  
Cp  
Cn  
SEL  
GND  
8.3 Feature Description  
8.3.1 Output Enable and Power Savings  
The HD3SS3411-Q1 has two power modes, normal operating mode and shutdown mode. During shutdown  
mode, the device consumes very-little current to save the maximum power. The OEn control pin is used to toggle  
between the two modes.  
HD3SS3411-Q1 consumes < 2 mW of power when operational and has a shutdown mode exercisable by the  
OEn pin resulting < 20 µW.  
Copyright © 2015, Texas Instruments Incorporated  
7
HD3SS3411-Q1  
ZHCSE09A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
8.4 Device Functional Modes  
The OEn control pin selects the functional mode of HD3SS3411-Q1. To enter standby/shutdown mode, the OEn  
control pin is pulled high through a resistor and must remain high. For active/normal operation, the OEn control  
pin should be pulled low to GND or dynamically controlled to switch between H or L.  
Table 2. Device Power Modes  
OEn  
L
Device State  
Normal  
Signal Pins  
Normal  
H
Shutdown  
Tri-stated  
8
Copyright © 2015, Texas Instruments Incorporated  
HD3SS3411-Q1  
www.ti.com.cn  
ZHCSE09A JUNE 2015REVISED JULY 2015  
9 Application Information and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
HD3SS3411-Q1 mux channels have independent adaptive common mode tracking allowing RX and TX paths to  
have different common mode voltage simplifying system implementation and avoiding inter-operational issues.  
HD3SS3411-Q1 mux does not provide common mode biasing for the channel. Therefore, it is required that the  
device is biased from either side for all active channels.  
The HD3SS3411 supports several high-speed data protocols with a differential amplitude of < 1800 mVpp and a  
common mode voltage of < 2 V, as with USB 3.1 and DisplayPort 1.3. The one select input (SEL) pin can be  
controlled by an available GPIO pin within a system or from a microcontroller.  
9.2 Typical Application  
Serializer A  
Camera A  
VDD33  
(3.3V) (1.8V or 3.3V)  
VDDIO  
DATA  
PCLK  
Image  
Sensor  
R(7;0)  
G(7;0)  
B(7;0)  
HS  
VS  
DE  
RGB Display  
720p  
24-bit color  
depth  
FSYNC  
RIN+  
RIN-  
I2C  
100 ohm STP Cable  
PCLK  
PDB  
OSS_SEL  
OEN  
LOCK  
PASS  
I2S AUDIO  
(STEREO)  
MCLK  
Deserializer  
DATA  
PCLK  
MODE_SEL  
INTB_IN  
Video  
Source  
SCL  
SDA  
IDX  
DAP  
I2C  
Serializer B  
Figure 3. FPD Link III Application  
Copyright © 2015, Texas Instruments Incorporated  
9
HD3SS3411-Q1  
ZHCSE09A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
9.3 Design Requirements  
For this design example, use the values shown in Table 3.  
Table 3. Design Paramerters  
PARAMETER  
VALUE  
3.3 V  
VCC voltage  
Ap/n, Bp/n, Cp/n CM input voltage  
SEL/OEn pin max voltage for low  
SEL/OEn pin min voltage for high  
0 V to 2 V  
0 V  
3.3 V  
9.4 Detailed Design Procedure  
9.4.1 AC Coupling Capacitors  
Many interfaces require AC coupling between the transmitter and receiver. The 0402 capacitors are the preferred  
option to provide AC coupling, and the 0603 size capacitors will also work. The 0805 size capacitors and C-  
packs should be avoided. When placing AC coupling capacitors symmetric placement is best. A capacitor value  
of 0.1 µF is best and the value should be match for the ± signal pair. The placement should be along the TX  
pairs on the system board, which are usually routed on the top layer of the board.  
There are several placement options for the AC coupling capacitors. Because the switch requires a bias voltage,  
the capacitors must only be placed on one side of the switch. If they are placed on both sides of the switch, a  
biasing voltage should be provided. A few placement options are shown below. In Figure 4, the coupling  
capacitors are placed between the switch and endpoint. In this situation, the switch is biased by the system/host  
controller.  
Figure 4. AC Coupling Capacitors Between Switch TX and Endpoint TX  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
 
HD3SS3411-Q1  
www.ti.com.cn  
ZHCSE09A JUNE 2015REVISED JULY 2015  
Detailed Design Procedure (continued)  
In Figure 5, the coupling capacitors are placed on the host transmit pair and endpoint transmit pair. In this  
situation, the switch on the top is biased by the endpoint and the lower switch is biased by the host controller.  
Figure 5. AC Coupling Capacitors on Host TX and Endpoint TX  
If the common mode voltage in the system is higher than 2 V, the coupling capacitors are placed on both sides of  
the switch (shown in Figure 6). A biasing voltage of less than 2 V is required in this case.  
Figure 6. AC Coupling Capacitors on Both Sides of Switch  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
 
HD3SS3411-Q1  
ZHCSE09A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
9.5 Application Curves  
Figure 7. 6 Gbps Source Eye Diagram  
Figure 8. 6 Gbps Output Eye Diagram  
10 Power Supply Recommendations  
There is no power supply sequence required for HD3SS3411-Q1. However, it is recommended that OEn is  
asserted low after device supply VCC is stable and in specifications. It is also recommended that ample  
decoupling capacitors are placed at the device VCC near the pin.  
12  
Copyright © 2015, Texas Instruments Incorporated  
HD3SS3411-Q1  
www.ti.com.cn  
ZHCSE09A JUNE 2015REVISED JULY 2015  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Critical Routes  
The high speed differential signals must be routed with great care to minimize signal quality degradation  
between the connector and the source or sink of the high speed signals by following the guidelines provided  
in this document. Depending on the configuration schemes, the speed of each differential pair can reach a  
maximum speed of 10 Gbps. These signals are to be routed first before other signals with highest priority.  
Each differential pair should be routed together with controlled differential impedance of 85-Ω to 90-Ω and 50-  
Ω common mode impedance. Keep away from other high speed signals. The number of vias should be kept  
to minimum. Each pair should be separated from adjacent pairs by at least 3 times the signal trace width.  
Route all differential pairs on the same group of layers (Outer layers or inner layers) if not on the same layer.  
No 90 degree turns on any of the differential pairs. If bends are used on high speed differential pairs, the  
angle of the bend should be greater than 135 degrees.  
Length matching:  
Keep high speed differential pairs lengths within 5 mil of each other to keep the intra-pair skew minimum.  
The inter-pair matching of the differential pairs is not as critical as intra-pair matching.  
Keep high speed differential pair traces adjacent to ground plane.  
Do not route differential pairs over any plane split.  
ESD components on the high speed differential lanes should be placed nearest to the connector in a pass  
through manner without stubs on the differential path.  
For ease of routing, the P and N connection of the USB3.1 differential pairs to the HD3SS3411-Q1 pins can  
be swapped.  
11.1.2 General Routing/Placement Rules  
Follow 20H rule (H is the distance to ref-plane) for separation of the high speed trace from the edge of the  
plane.  
Minimize parallelism of high speed clocks and other periodic signal traces to high speed lines.  
All differential pairs should be routed on the top or bottom layer (microstrip traces) if possible or on the same  
group of layers. Vias should only be used in the breakout region of the device to route from the top to bottom  
layer when necessary. Avoid using vias in the main region of the board at all cost. Use a ground reference via  
next to signal via. Distance between ground reference via and signal need to be calculated to have similar  
impedance as traces.  
All differential signals should not be routed over plane split. Changing signal layers is preferable to crossing  
plane splits.  
Use of and proper placement of stitching caps when split plane crossing is unavoidable to account for high  
frequency return current path.  
Route differential traces over a continuous plane with no interruptions.  
Do not route differential traces under power connectors or other interface connectors, crystals, oscillators, or  
any magnetic source.  
Route traces away from etching areas like pads, vias, and other signal traces. Try to maintain a 20 mil keep  
out distance where possible.  
Decoupling caps should be placed next to each power terminal on the HD3SS3411-Q1. Care should be taken  
to minimize the stub length of the trace connecting the capacitor to the power pin.  
Avoid sharing vias between multiple decoupling caps.  
Place vias as close as possible to the decoupling cap solder pad.  
Widen VCC/GND planes to reduce effect of static and dynamic IR drop.  
Copyright © 2015, Texas Instruments Incorporated  
13  
HD3SS3411-Q1  
ZHCSE09A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
11.2 Layout Example  
OEn and SEL can be controlled  
by µC. OEn can also be tied  
to Vcc with resistor  
Match High Speed traces  
length as close as possible to  
minimize Skew  
Match High Speed traces  
length as close as possible to  
minimize Skew  
OEn  
100nF  
100nF  
Ap  
An  
Bp  
Bn  
VCC  
GND  
Place VCC decoupling caps as  
close to VCC pins as possible  
Cp  
Cn  
GND  
RSVD  
GND  
Figure 9. Layout  
14  
版权 © 2015, Texas Instruments Incorporated  
HD3SS3411-Q1  
www.ti.com.cn  
ZHCSE09A JUNE 2015REVISED JULY 2015  
12 器件和文档支持  
12.1 文档支持  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 出口管制提示  
接收方同意:如果美国或其他适用法律限制或禁止将通过非披露义务的披露方获得的任何产品或技术数据(其中包  
括软件)(见美国、欧盟和其他出口管理条例之定义)、或者其他适用国家条例限制的任何受管制产品或此项技术  
的任何直接产品出口或再出口至任何目的地,那么在没有事先获得美国商务部和其他相关政府机构授权的情况下,  
接收方不得在知情的情况下,以直接或间接的方式将其出口。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
15  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
HD3SS3411RWARQ1  
HD3SS3411TRWARQ1  
PREVIEW  
ACTIVE  
WQFN  
WQFN  
RWA  
RWA  
14  
14  
3000  
TBD  
Call TI  
NIPDAU  
Call TI  
-40 to 105  
-40 to 105  
3000 RoHS & Green  
Level-2-260C-1 YEAR  
3411Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
OTHER QUALIFIED VERSIONS OF HD3SS3411-Q1 :  
Catalog : HD3SS3411  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
HD3SS3411TRWARQ1  
WQFN  
RWA  
14  
3000  
330.0  
12.4  
3.75  
3.75  
1.15  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WQFN RWA 14  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 33.0  
HD3SS3411TRWARQ1  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RWA0014A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.65  
3.35  
B
A
PIN 1 INDEX AREA  
3.65  
3.35  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
2.05 0.1  
2X 1.5  
(0.2) TYP  
7
8
6
9
2X  
2
8X 0.5  
2
13  
0.30  
0.18  
14X  
1
14  
0.1  
C A  
B
PIN 1 ID  
(OPTIONAL)  
0.05  
0.5  
0.3  
14X  
4221612/B 02/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RWA0014A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.05)  
2X (1.5)  
SYMM  
1
14  
14X (0.6)  
2
13  
14X (0.24)  
SYMM  
(3.3)  
(0.775)  
8X (0.5)  
9
6
(
0.2) VIA  
TYP  
7
8
(0.775)  
(R0.05) TYP  
(3.3)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221612/B 02/2015  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RWA0014A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (1.5)  
4X ( 0.92)  
1
14  
14X (0.6)  
2
13  
14X (0.24)  
(3.3)  
SYMM  
(0.56)  
8X (0.5)  
9
6
METAL  
TYP  
7
SYMM  
(3.3)  
8
(R0.05) TYP  
(0.56)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4221612/B 02/2015  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY