INA125UA [TI]

具有精密电压参考的仪表放大器 | D | 16;
INA125UA
型号: INA125UA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有精密电压参考的仪表放大器 | D | 16

放大器 仪表 光电二极管 仪表放大器
文件: 总19页 (文件大小:369K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INA125  
®
INA125  
INA125  
INSTRUMENTATION AMPLIFIER  
With Precision Voltage Reference  
FEATURES  
APPLICATIONS  
LOW QUIESCENT CURRENT: 460µA  
PRESSURE AND TEMPERATURE BRIDGE  
AMPLIFIERS  
PRECISION VOLTAGE REFERENCE:  
1.24V, 2.5V, 5V or 10V  
INDUSTRIAL PROCESS CONTROL  
FACTORY AUTOMATION  
SLEEP MODE  
LOW OFFSET VOLTAGE: 250µV max  
LOW OFFSET DRIFT: 2µV/°C max  
LOW INPUT BIAS CURRENT: 20nA max  
HIGH CMR: 100dB min  
MULTI-CHANNEL DATA ACQUISITION  
BATTERY OPERATED SYSTEMS  
GENERAL PURPOSE INSTRUMENTATION  
SLEEP  
2
V+  
LOW NOISE: 38nV/Hz at f = 1kHz  
INPUT PROTECTION TO ±40V  
1
INA125  
V
REFCOM  
12  
13  
14  
WIDE SUPPLY RANGE  
Single Supply: 2.7V to 36V  
Dual Supply: ±1.35V to ±18V  
R
V
REFBG  
16-PIN DIP AND SO-16 SOIC PACKAGES  
R
VREF2.5  
2R  
DESCRIPTION  
15  
VREF  
5
The INA125 is a low power, high accuracy instrumen-  
tation amplifier with a precision voltage reference. It  
provides complete bridge excitation and precision dif-  
ferential-input amplification on a single integrated  
circuit.  
4R  
VREF10 16  
4
Ref  
Amp  
Bandgap  
VREF  
VREFOut  
10V  
A single external resistor sets any gain from 4 to  
10,000. The INA125 is laser-trimmed for low offset  
voltage (250µV), low offset drift (2µV/°C), and high  
common-mode rejection (100dB at G = 100). It oper-  
ates on single (+2.7V to +36V) or dual (±1.35V to  
±18V) supplies.  
+
VIN  
10  
6
9
A1  
VO  
30kΩ  
11  
Sense  
10kΩ  
RG  
The voltage reference is externally adjustable with pin-  
selectable voltages of 2.5V, 5V, or 10V, allowing use  
with a variety of transducers. The reference voltage is  
accurate to ±0.5% (max) with ±35ppm/°C drift (max).  
Sleep mode allows shutdown and duty cycle operation  
to save power.  
10kΩ  
+
VO = (VIN – VIN) G  
8
7
G = 4 + 60kΩ  
RG  
A2  
VIN  
30kΩ  
IAREF  
5
The INA125 is available in 16-pin plastic DIP and  
SO-16 surface-mount packages and is specified for  
the –40°C to +85°C industrial temperature range.  
3
V–  
International Airport Industrial Park  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
FAXLine: (800) 548-6133 (US/Canada Only)  
Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706  
Tel: (520) 746-1111  
Twx: 910-952-1111  
Internet: http://www.burr-brown.com/  
Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132  
©1997 Burr-Brown Corporation  
PDS-1361B  
Printed in U.S.A., February, 1998  
SBOS060  
SPECIFICATIONS: VS = ±15V  
At TA = +25°C, VS = ±15V, IA common = 0V, VREF common = 0V, and RL = 10k, unless otherwise noted.  
INA125P, U  
INA125PA, UA  
TYP  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
INPUT  
Offset Voltage, RTI  
Initial  
vs Temperature  
vs Power Supply  
Long-Term Stability  
Impedance, Differential  
±50  
±0.25  
±3  
±0.2  
1011 || 2  
1011 || 9  
±250  
±2  
±20  
±500  
±5  
±50  
µV  
µV/°C  
µV/V  
µV/mo  
|| pF  
|| pF  
V
VS = ±1.35V to ±18V, G = 4  
Common-Mode  
Safe Input Voltage  
±40  
Input Voltage Range  
Common-Mode Rejection  
See Text  
VCM = –10.7V to +10.2V  
G = 4  
78  
86  
100  
100  
84  
94  
114  
114  
72  
80  
90  
90  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 500  
BIAS CURRENT  
vs Temperature  
Offset Current  
VCM = 0V  
10  
25  
50  
nA  
pA/°C  
nA  
±60  
±0.5  
±0.5  
±2.5  
±5  
vs Temperature  
pA/°C  
NOISE, RTI  
RS = 0Ω  
Voltage Noise, f = 10Hz  
f = 100Hz  
f = 1kHz  
f = 0.1Hz to 10Hz  
Current Noise, f = 10Hz  
f = 1kHz  
40  
38  
38  
0.8  
170  
56  
5
nV/Hz  
nV/Hz  
nV/Hz  
µVp-p  
fA/Hz  
fA/Hz  
pAp-p  
f = 0.1Hz to 10Hz  
GAIN  
Gain Equation  
Range of Gain  
Gain Error  
4 + 60k/RG  
V/V  
V/V  
4
10,000  
VO = –14V to +13.3V  
G = 4  
±0.01  
±0.03  
±0.05  
±0.1  
±0.075  
±0.3  
±0.5  
±0.1  
±0.5  
±1  
%
%
%
%
G = 10  
G = 100  
G = 500  
Gain vs Temperature  
Nonlinearity  
G = 4  
G > 4(1)  
VO = –14V to +13.3V  
G = 4  
±1  
±25  
±15  
±100  
ppm/°C  
ppm/°C  
±0.0004  
±0.0004  
±0.001  
±0.002  
±0.002  
±0.002  
±0.01  
±0.004  
±0.004  
% of FS  
% of FS  
% of FS  
% of FS  
G = 10  
G = 100  
G = 500  
OUTPUT  
Voltage: Positive  
Negative  
Load Capacitance Stability  
Short-Circuit Current  
(V+)–1.7 (V+)–0.9  
V
V
pF  
mA  
(V–)+1  
(V–)+0.4  
1000  
–9/+12  
VOLTAGE REFERENCE  
Accuracy  
vs Temperature  
vs Power Supply, V+  
vs Load  
Dropout Voltage, (V+) – VREF  
Bandgap Voltage Reference  
Accuracy  
VREF = +2.5V, +5V, +10V  
IL = 0  
±0.15  
±18  
±20  
3
±0.5  
±35  
±50  
75  
±1  
±100  
±100  
%
ppm/°C  
ppm/V  
ppm/mA  
V
V
%
ppm/°C  
IL = 0  
V+ = (VREF + 1.25V) to +36V  
IL = 0 to 5mA  
(2)  
Ref Load = 2kΩ  
1.25  
1
1.24  
±0.5  
±18  
IL = 0  
IL = 0  
vs Temperature  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
2
INA125  
SPECIFICATIONS: VS = ±15V (CONT)  
At TA = +25°C, VS = ±15V, IA common = 0V, VREF common = 0V, and RL = 10k, unless otherwise noted.  
INA125P, U  
INA125PA, UA  
TYP  
PARAMETER CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
FREQUENCY RESPONSE  
Bandwidth, –3dB  
G = 4  
G = 10  
G = 100  
G = 500  
150  
45  
4.5  
0.9  
0.2  
60  
kHz  
kHz  
kHz  
kHz  
V/µs  
µs  
µs  
µs  
µs  
µs  
Slew Rate  
Settling Time, 0.01%  
G = 4, 10V Step  
G = 4, 10V Step  
G = 10, 10V Step  
G = 100, 10V Step  
G = 500, 10V Step  
50% Overdrive  
83  
375  
1700  
5
Overload Recovery  
POWER SUPPLY  
Specified Operating Voltage  
Specified Voltage Range  
Quiescent Current, Positive  
Negative  
Reference Ground Current(3)  
Sleep Current (VSLEEP 100mV)  
±15  
V
V
µA  
µA  
µA  
µA  
±1.35  
±18  
525  
–325  
IO = IREF = 0mA  
IO = IREF = 0mA  
460  
–280  
180  
±1  
RL = 10k, Ref Load = 2kΩ  
±25  
SLEEP MODE PIN(4)  
VIH (Logic high input voltage)  
VIL (Logic low input voltage)  
+2.7  
0
V+  
+0.1  
V
V
I
IH (Logic high input current)  
15  
0
150  
µA  
µA  
µs  
IIL (Logic low input current)  
Wake-up Time(5)  
TEMPERATURE RANGE  
Specification Range  
Operation Range  
–40  
–55  
–55  
+85  
+125  
+125  
°C  
°C  
°C  
Storage Range  
Thermal Resistance, θJA  
16-Pin DIP  
SO-16 Surface-Mount  
80  
100  
°C/W  
°C/W  
Specification same as INA125P, U.  
NOTES: (1) Temperature coefficient of the "Internal Resistor" in the gain equation. Does not include TCR of gain-setting resistor, RG. (2) Dropout voltage is the  
positive supply voltage minus the reference voltage that produces a 1% decrease in reference voltage. (3) VREFCOM pin. (4) Voltage measured with respect to  
Reference Common. Logic low input selects Sleep mode. (5) IA and Reference, see Typical Performance Curves.  
SPECIFICATIONS: VS = +5V  
At TA = +25°C, VS = +5V, IA common at VS/2, VREF common = VS /2, VCM = VS/2, and RL = 10kto VS/2, unless otherwise noted.  
INA125P, U  
TYP  
INA125PA, UA  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
INPUT  
Offset Voltage, RTI  
Initial  
vs Temperature  
vs Power Supply  
Input Voltage Range  
Common-Mode Rejection  
±75  
±0.25  
3
±500  
±750  
µV  
µV/°C  
µV/V  
VS = +2.7V to +36V  
20  
50  
See Text  
V
CM = +1.1V to +3.6V  
G = 4  
78  
86  
100  
100  
84  
94  
114  
114  
72  
80  
90  
90  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 500  
GAIN  
Gain Error  
VO = +0.3V to +3.8V  
G = 4  
±0.01  
%
OUTPUT  
Voltage, Positive  
Negative  
(V+)–1.2 (V+)–0.8  
(V–)+0.3 (V–)+0.15  
V
V
POWER SUPPLY  
Specified Operating Voltage  
Operating Voltage Range  
Quiescent Current  
+5  
V
V
µA  
µA  
+2.7  
460  
±1  
+36  
525  
±25  
IO = IREF = 0mA  
RL = 10k, Ref Load = 2kΩ  
Sleep Current (VSLEEP 100mV)  
Specification same as INA125P, U.  
®
3
INA125  
PIN CONFIGURATION  
ABSOLUTE MAXIMUM RATINGS(1)  
Top View  
16-Pin DIP, SO-16  
Power Supply Voltage, V+ to V– ........................................................ 36V  
Input Signal Voltage .......................................................................... ±40V  
Output Short Circuit ................................................................. Continuous  
Operating Temperature ................................................. –55°C to +125°C  
Storage Temperature..................................................... –55°C to +125°C  
Lead Temperature (soldering, 10s) ............................................... +300°C  
V+  
SLEEP  
V–  
1
2
3
4
5
6
7
8
16 VREF10  
15 VREF  
5
NOTE: Stresses above these ratings may cause permanent damage.  
14 VREF2.5  
13 VREFBG  
VREFOUT  
IAREF  
PACKAGE INFORMATION  
VREFCOM  
Sense  
VO  
12  
11  
10  
9
PACKAGE DRAWING  
+
VIN  
PRODUCT  
PACKAGE  
NUMBER(1)  
VIN  
INA125PA  
INA125P  
16-Pin Plastic DIP  
16-Pin Plastic DIP  
180  
180  
RG  
RG  
INA125UA  
INA125U  
SO-16 Surface-Mount  
SO-16 Surface-Mount  
265  
265  
NOTES: (1) For detailed drawing and dimension table, please see end of data  
sheet, or Appendix C of Burr-Brown IC Data Book.  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with ap-  
propriate precautions. Failure to observe proper handling and  
installation procedures can cause damage.  
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
®
4
INA125  
TYPICAL PERFORMANCE CURVES  
At TA = +25°C and VS = ±15V, unless otherwise noted.  
GAIN vs FREQUENCY  
COMMON-MODE REJECTION vs FREQUENCY  
G = 100, 500  
60  
120  
100  
80  
60  
40  
20  
0
G = 500  
50  
G = 100  
40  
G = 10  
30  
G = 500  
G = 4  
G = 10  
20  
G = 100  
G = 4  
10  
0
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
POSITIVE POWER SUPPLY REJECTION  
vs FREQUENCY  
NEGATIVE POWER SUPPLY REJECTION  
vs FREQUENCY  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
G = 500  
G = 100  
G = 100  
G = 500  
G = 4  
60  
G = 10  
G = 10  
40  
G = 4  
20  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
INPUT COMMON-MODE VOLTAGE  
vs OUTPUT VOLTAGE, VS = ±15V  
INPUT COMMON-MODE VOLTAGE  
vs OUTPUT VOLTAGE, VS = ±5V  
15  
10  
5
5
IAREF = 0V  
4
3
2
VS = +5V  
+15V  
+
VD/2  
1
VO  
+
0
0
VD/2  
IAREF  
+
–1  
–2  
–3  
–4  
–5  
VCM  
–5  
–10  
–15  
–15V  
VS = ±5V  
–15  
–10  
–5  
0
5
10  
15  
–5  
–4 –3  
–2  
–1  
0
1
2
3
4
5
Output Voltage (V)  
Output Voltage (V)  
®
5
INA125  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C and VS = ±15V, unless otherwise noted.  
INPUT-REFERRED VOLTAGE AND CURRENT NOISE  
vs FREQUENCY  
SETTLING TIME vs GAIN  
10k  
1k  
1k  
100  
10  
1k  
100  
10  
1
Current Noise  
0.01%  
0.1%  
Voltage Noise  
100  
10  
1
1
10  
100  
1k  
1
10  
100  
1k  
10k  
100k  
Gain (V/V)  
Frequency (Hz)  
INPUT-REFERRED OFFSET VOLTAGE  
vs SLEEP TURN-ON TIME  
QUIESCENT CURRENT AND SLEEP CURRENT  
vs TEMPERATURE  
100  
80  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
60  
G = 100  
+IQ  
40  
20  
0
±ISLEEP  
–IQ  
–20  
–40  
–60  
–80  
–100  
VSLEEP = 100mV  
+ISLEEP  
V
SLEEP = 0V  
0
–ISLEEP  
100 125  
–50  
0
50  
100  
150  
200  
250  
–75  
–50  
–25  
0
25  
50  
75  
Time From Turn-On (µs)  
Temperature (°C)  
INPUT BIAS AND OFFSET CURRENT  
vs TEMPERATURE  
SLEW RATE vs TEMPERATURE  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
16  
14  
12  
10  
8
IB  
6
4
IOS  
2
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
®
6
INA125  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C and VS = ±15V, unless otherwise noted.  
LARGE-SIGNAL RESPONSE  
SMALL-SIGNAL RESPONSE  
G = 4  
G = 4  
G = 100  
G = 100  
100µs/div  
100µs/div  
INPUT BIAS CURRENT  
INPUT-REFERRED NOISE, 0.1Hz to 10Hz  
vs INPUT OVERLOAD VOLTAGE  
200  
160  
120  
80  
All Gains  
40  
0
–40  
–80  
–120  
–160  
–200  
–40  
0
40  
1µs/div  
Overload Voltage (V)  
OUTPUT VOLTAGE SWING  
vs OUTPUT CURRENT  
DELTA VOS vs REFERENCE CURRENT  
V+  
(V+)–1  
(V+)–2  
(V+)–3  
(V+)–4  
(V+)–5  
25  
20  
15  
10  
5
+75°C  
+25°C  
+125°C  
Sinking  
–55°C  
(V–)+5  
(V–)+4  
(V–)+3  
(V–)+2  
(V–)+1  
V–  
+75°C  
Sourcing  
–55°C  
0
+125°C  
+25°C  
–5  
0
±2  
±4  
±6  
±8  
±10  
–8  
–6  
–4  
–2  
0
2
4
6
8
Output Current (mA)  
Reference Current (mA)  
®
7
INA125  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C and VS = ±15V, unless otherwise noted.  
INPUT-REFERRED OFFSET VOLTAGE  
PRODUCTION DISTRIBUTION, VS = ±15V  
INPUT-REFERRED OFFSET VOLTAGE  
PRODUCTION DISTRIBUTION, VS = +5V  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
Typical production  
distribution of  
packaged units.  
Typical production  
distribution of  
packaged units.  
0.1%  
0.1%  
0.02%  
0.02%  
0.1%  
0.1%  
0.05%  
0.02%  
0
0
Input-Referred Offset Voltage (µV)  
Input-Referred Offset Voltage (µV)  
VOLTAGE REFERENCE DRIFT  
PRODUCTION DISTRIBUTION  
INPUT-REFERRED OFFSET VOLTAGE DRIFT  
PRODUCTION DISTRIBUTION  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Typical production  
distribution of packaged units.  
Typical production  
distribution of packaged units.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VS = ±15V or +5V  
0.3%  
0.2%  
0.05%  
Voltage Reference Drift (ppm/°C)  
Input-Referred Offset Voltage Drift (µV/°C)  
REFERENCE TURN-ON SETTLING TIME  
REFERENCE VOLTAGE DEVIATION  
vs TEMPERATURE  
15  
12  
9
50  
VREF = VBG, 2.5V, 5V, or 10V  
0
–50  
6
4
0
–3  
–6  
–9  
–100  
–150  
–200  
VREF = 10V  
VREF = 5V  
–12  
–15  
VREF = 2.5V  
0
10  
20  
30  
40  
50  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
Time From Power Supply Turn-On (µs)  
Temperature (°C)  
®
8
INA125  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C and VS = ±15V, unless otherwise noted.  
0.1Hz to 10Hz REFERENCE NOISE  
VREF = 2.5V, CL = 100pF  
REFERENCE TRANSIENT RESPONSE  
VREF = 2.5V, CL = 100pF  
+1mA  
0mA  
–1mA  
1µs/div  
10µs/div  
NEGATIVE REFERENCE AC LINE REJECTION  
vs FREQUENCY  
POSITIVE REFERENCE AC LINE REJECTION  
vs FREQUENCY  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
VREF = 2.5V  
VREF = 2.5V  
VREF = 5V  
VREF = 5V  
VREF = 10V  
VREF = 10V  
C = 0.01µF  
C = 0.1µF  
Capacitor connected between  
VREFOUT and VREFCOM.  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
®
9
INA125  
For example, in Figure 1 VREFOUT is connected to VREF10  
thus supplying 10V to the bridge. It is recommended that  
VREFOUT be connected to one of the reference voltage pins  
even when the reference is not being utilized to avoid  
saturating the reference amplifier. Driving the SLEEP pin  
LOW puts the INA125 in a shutdown mode.  
APPLICATION INFORMATION  
Figure 1 shows the basic connections required for operation  
of the INA125. Applications with noisy or high impedance  
power supplies may require decoupling capacitors close to  
the device pins as shown.  
The output is referred to the instrumentation amplifier refer-  
ence (IAREF) terminal which is normally grounded. This  
must be a low impedance connection to assure good com-  
mon-mode rejection. A resistance of 12in series with the  
IAREF pin will cause a typical device to degrade to approxi-  
mately 80dB CMR (G = 4).  
SETTING THE GAIN  
Gain of the INA125 is set by connecting a single external  
resistor, RG, between pins 8 and 9:  
(1)  
60kΩ  
G = 4 +  
RG  
Connecting VREFOUT (pin 4) to one of the four available  
reference voltage pins (VREFBG, VREF2.5, VREF5, or VREF10)  
provides an accurate voltage source for bridge applications.  
Commonly used gains and RG resistor values are shown in  
Figure 1.  
V+  
SLEEP(1)  
0.1µF  
1
2
INA125  
V
REFCOM  
12  
13  
14  
DESIRED GAIN  
(V/V)  
RG  
()  
NEAREST 1%  
RG VALUE ()  
R(2)  
4
5
10  
20  
50  
100  
200  
500  
1000  
2000  
10000  
NC  
60k  
10k  
3750  
1304  
625  
306  
121  
60  
NC  
60.4k  
10k  
3740  
1300  
619  
309  
121  
60.4  
30.1  
6.04  
V
REFBG  
R
VREF2.5  
2R  
15  
V
REF5  
30  
6
4R  
VREF10  
16  
4
NC: No Connection.  
Ref  
Amp  
Bandgap  
VREF  
+
V
REFOut  
VO = (VIN – VIN) G  
10V  
G = 4 + 60kΩ  
RG  
+
VIN  
10  
6
9
A1  
30kΩ  
11  
Sense  
+
10kΩ  
RG  
10kΩ  
Load  
VO  
8
7
A2  
VIN  
30kΩ  
IAREF  
5
3
NOTE: (1) SLEEP pin should be connected  
to V+ if shutdown function is not being used.  
(2) Nominal value of R is 21k, ±25%.  
0.1µF  
V–  
FIGURE 1. Basic Connections.  
®
10  
INA125  
The 60kterm in equation 1 comes from the internal metal  
film resistors which are laser trimmed to accurate absolute  
values. The accuracy and temperature coefficient of these  
resistors are included in the gain accuracy and drift specifi-  
cations of the INA125.  
INPUT COMMON-MODE RANGE  
The input common-mode range of the INA125 is shown in  
the typical performance curves. The common-mode range is  
limited on the negative side by the output voltage swing of  
A2, an internal circuit node that cannot be measured on an  
external pin. The output voltage of A2 can be expressed as:  
The stability and temperature drift of the external gain  
setting resistor, RG, also affects gain. RG’s contribution to  
gain accuracy and drift can be directly inferred from the gain  
equation (1). Low resistor values required for high gain can  
make wiring resistance important. Sockets add to the wiring  
resistance, which will contribute additional gain error (pos-  
sibly an unstable gain error) in gains of approximately 100  
or greater.  
+
V02 = 1.3VIN – (VIN – VIN) (10k/RG)  
(voltages referred to IAREF terminal, pin 5)  
The internal op amp A2 is identical to A1. Its output swing  
is limited to approximately 0.8V from the positive supply  
and 0.25V from the negative supply. When the input com-  
mon-mode range is exceeded (A2’s output is saturated), A1  
can still be in linear operation, responding to changes in the  
non-inverting input voltage. The output voltage, however,  
will be invalid.  
OFFSET TRIMMING  
The INA125 is laser trimmed for low offset voltage and  
offset voltage drift. Most applications require no external  
offset adjustment. Figure 2 shows an optional circuit for  
trimming the output offset voltage. The voltage applied to  
the IAREF terminal is added to the output signal. The op amp  
buffer is used to provide low impedance at the IAREF  
terminal to preserve good common-mode rejection.  
PRECISION VOLTAGE REFERENCE  
The on-board precision voltage reference provides an accu-  
rate voltage source for bridge and other transducer applica-  
tions or ratiometric conversion with analog-to-digital con-  
verters. A reference output of 2.5V, 5V or 10V is available  
by connecting VREFOUT (pin 4) to one of the VREF pins  
(VREF2.5, VREF5, or VREF10). Reference voltages are laser-  
trimmed for low inital error and low temperature drift.  
Connecting VREFOUT to VREFBG (pin 13) produces the  
bandgap reference voltage (1.24V ±0.5%) at the reference  
output.  
VIN  
V+  
VO  
RG  
INA125  
100µA  
IAREF  
1/2 REF200  
+
VIN  
Positive supply voltage must be 1.25V above the desired  
reference voltage. For example, with V+ = 2.7V, only the  
1.24V reference (VREFBG) can be used. If using dual sup-  
plies VREFCOM can be connected to V–, increasing the  
100Ω  
100Ω  
10kΩ  
OPA237  
±10mV  
Adjustment Range  
100µA  
Microphone,  
1/2 REF200  
Hydrophone  
etc.  
INA125  
V–  
FIGURE 2. Optional Trimming of Output Offset Voltage.  
47kΩ  
47kΩ  
INPUT BIAS CURRENT RETURN  
The input impedance of the INA125 is extremely high—  
approximately 1011. However, a path must be provided for  
the input bias current of both inputs. This input bias current  
flows out of the device and is approximately 10nA. High  
input impedance means that this input bias current changes  
very little with varying input voltage.  
Thermocouple  
INA125  
10kΩ  
Input circuitry must provide a path for this input bias current  
for proper operation. Figure 3 shows various provisions for  
an input bias current path. Without a bias current path, the  
inputs will float to a potential which exceeds the common-  
mode range, and the input amplifiers will saturate.  
INA125  
If the differential source resistance is low, the bias current  
return path can be connected to one input (see the thermo-  
couple example in Figure 3). With higher source impedance,  
using two equal resistors provides a balanced input with  
possible advantages of lower input offset voltage due to bias  
current and better high frequency common-mode rejection.  
Center-tap provides  
bias current return.  
FIGURE 3. Providing an Input Common-Mode Current Path.  
®
11  
INA125  
amount of supply voltage headroom available to the refer-  
ence. Approximately 180µA flows out of the VREFCOM  
terminal, therefore, it is recommended that it be connected  
through a low impedance path to sensor common to avoid  
possible ground loop problems.  
A transition region exists when VSLEEP is between 400mV  
and 2.7V (with respect to VREFCOM) where the output is  
unpredictable. Operation in this region is not recommended.  
The INA125 achieves high accuracy quickly following wake-  
up (VSLEEP 2.7V). See the typical performance curve  
“Input-Referred Offset Voltage vs Sleep Turn-on Time.” If  
shutdown is not being used, connect the SLEEP pin to V+.  
Reference noise is proportional to the reference voltage  
selected. With VREF = 2.5V, 0.1Hz to 10Hz peak-to-peak  
noise is approximately 9µVp-p. Noise increases to 36µVp-p  
for the 10V reference. Output drive capability of the voltage  
reference is improved by connecting a transistor as shown in  
Figure 4. The external transistor also serves to remove power  
from the INA125.  
LOW VOLTAGE OPERATION  
The INA125 can be operated on power supplies as low as  
±1.35V. Performance remains excellent with power sup-  
plies ranging from ±1.35V to ±18V. Most parameters vary  
only slightly throughout this supply voltage range—see  
typical performance curves. Operation at very low supply  
voltage requires careful attention to ensure that the com-  
mon-mode voltage remains within its linear range. See  
“Input Common-Mode Voltage Range.” As previously men-  
tioned, when using the on-board reference with low supply  
voltages, it may be necessary to connect VREFCOM to V– to  
ensure VS – VREF 1.25V.  
Internal resistors that set the voltage reference output are  
ratio-trimmed for accurate output voltages (±0.5% max). The  
absolute resistance values, however, may vary ±25%. Adjust-  
ment of the reference output voltage with an external resistor  
is not recommended because the required resistor value is  
uncertain.  
INA125  
V
REFCOM  
SINGLE SUPPLY OPERATION  
12  
13  
14  
The INA125 can be used on single power supplies of +2.7V  
to +36V. Figure 5 shows a basic single supply circuit. The  
IAREF, VREFCOM, and V– terminals are connected to ground.  
Zero differential input voltage will demand an output volt-  
age of 0V (ground). When the load is referred to ground as  
shown, actual output voltage swing is limited to approxi-  
mately 150mV above ground. The typical performance curve  
“Output Voltage Swing vs Output Current” shows how the  
output swing varies with output current.  
V
REFBG  
VREF2.5  
15  
16  
VREF  
5
With single supply operation, careful attention should be  
paid to input common-mode range, output voltage swing of  
both op amps, and the voltage applied to the IAREF terminal.  
VIN+ and VIN– must both be 1V above ground for linear  
operation. You cannot, for instance, connect the inverting  
input to ground and measure a voltage connected to the non-  
inverting input.  
VREF10  
V+  
4
Ref  
Amp  
TIP29C  
Bandgap  
VREF  
VREFOut  
10V  
to load  
(transducer)  
+3V  
+3V  
FIGURE 4. Reference Current Boost.  
1.5V – V  
SHUTDOWN  
VO  
RG  
INA125  
1000Ω  
12  
The INA125 has a shutdown option. When the SLEEP pin  
is LOW (100mV or less), the supply current drops to  
approximately 1µA and output impedance becomes approxi-  
mately 80k. Best performance is achieved with CMOS  
logic. To maintain low sleep current at high temperatures,  
5
3
RL  
1.5V + V  
V
SLEEP should be as close to 0V as possible. This should not  
be a problem if using CMOS logic unless the CMOS gate is  
driving other currents. Refer to the typical performance  
curve, “Sleep Current vs Temperature.”  
FIGURE 5. Single Supply Bridge Amplifier.  
®
12  
INA125  
INPUT PROTECTION  
The inputs of the INA125 are individually protected for  
voltage up to ±40V. For example, a condition of –40V on  
one input and +40V on the other input will not cause  
damage. Internal circuitry on each input provides low series  
impedance under normal signal conditions. To provide  
equivalent protection, series input resistors would contribute  
excessive noise. If the input is overloaded, the protection  
circuitry limits the input current to a safe value of approxi-  
mately 120µA to 190µA. The typical performance curve  
“Input Bias Current vs Input Overload Voltage” shows this  
input current limit behavior. The inputs are protected even if  
the power supplies are disconnected or turned off.  
+5V  
1
SLEEP  
2
INA125  
V
REFCOM  
12  
13  
14  
V
REFBG  
V
REF2.5  
15  
16  
4
V
REF5  
VREF10  
Ref  
Amp  
Bandgap  
VREF  
2.5V  
+
VIN  
10  
11  
6
9
A1  
30kΩ  
+
Sense  
10kΩ  
RG  
10kΩ  
60kΩ  
Load  
VO = +2.5V +  
[
(
VI+N – VIN) (4 +  
)]  
RG  
8
7
A2  
VIN  
30kΩ  
IAREF  
5
3
2.5V(1)  
(Psuedoground)  
NOTE: (1) “Psuedoground” is at +2.5V above actual ground.  
This provides a precision reference voltage for succeeding  
single-supply op amp stages.  
FIGURE 6. Psuedoground Bridge Measurement, 5V Single Supply.  
®
13  
INA125  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA125P  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
N
N
16  
16  
25  
25  
RoHS & Green  
RoHS & Green  
Call TI  
N / A for Pkg Type  
N / A for Pkg Type  
-40 to 85  
INA125P  
INA125PA  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
INA125P  
A
INA125PAG4  
INA125U  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
N
D
D
D
D
16  
16  
16  
16  
16  
25  
40  
RoHS & Green  
RoHS & Green  
N / A for Pkg Type  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
INA125P  
A
INA125U  
A
INA125U/2K5  
INA125UA  
2500 RoHS & Green  
40 RoHS & Green  
2500 RoHS & Green  
INA125U  
A
INA125U  
A
INA125UA/2K5  
INA125U  
A
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA125U/2K5  
SOIC  
SOIC  
D
D
16  
16  
2500  
2500  
330.0  
330.0  
16.4  
16.4  
6.5  
6.5  
10.3  
10.3  
2.1  
2.1  
8.0  
8.0  
16.0  
16.0  
Q1  
Q1  
INA125UA/2K5  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA125U/2K5  
SOIC  
SOIC  
D
D
16  
16  
2500  
2500  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
INA125UA/2K5  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
INA125P  
INA125PA  
INA125PAG4  
INA125U  
N
N
N
D
D
PDIP  
PDIP  
PDIP  
SOIC  
SOIC  
16  
16  
16  
16  
16  
25  
25  
25  
40  
40  
506  
506  
13.97  
13.97  
13.97  
8
11230  
11230  
11230  
3940  
4.32  
4.32  
4.32  
4.32  
4.32  
506  
506.6  
506.6  
INA125UA  
8
3940  
Pack Materials-Page 3  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY