INA185A2IDRLT [TI]

采用超小型 (SOT-563) 封装的 26V、350kHz、双向高精度电流感应放大器 | DRL | 6 | -40 to 125;
INA185A2IDRLT
型号: INA185A2IDRLT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用超小型 (SOT-563) 封装的 26V、350kHz、双向高精度电流感应放大器 | DRL | 6 | -40 to 125

放大器
文件: 总31页 (文件大小:1689K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
INA185  
ZHCSJH3 MARCH 2019  
SOT-563 中的 INA185 超小型、双向、精密低侧和高侧电压输出  
电流检测放大器  
1 特性  
3 说明  
1
SOT-563 封装 (1.6mm × 1.6mm)  
INA185 电流检测放大器专为成本敏感、空间受限的 应  
用而设计。此器件是一个双向电流检测放大器(也称为  
电流分流监控器),可在独立于电源电压的 –0.2V 至  
+26V 范围内的共模电压中感测电流检测电阻器上的压  
降。INA185 以四个固定增益器件选项集成匹配电阻器  
增益网络:20V/V50V/V100V/V 200V/V。该  
匹配增益电阻器网络可最大限度地减小增益误差并降低  
温度漂移。  
尺寸比 SC70 39%  
0.55mm 封装高度  
共模范围 (VCM)–0.2V +26V  
高带宽:350kHzA1 器件)  
失调电压:  
±55µV(最大值),VCM = 0V  
±100µV(最大值),VCM = 12VA4 器件)  
输出压摆率:2V/µs  
双向电流检测功能  
精度:  
INA185 2.7V 5.5V 单电源供电。它消耗的最大电  
源电流为 260µA, 拥有 高压摆率和带宽,因此是许多  
电源和电机控制 解决方案的理想选择。  
最大增益误差:±0.2%A1A2A3)  
最大温漂:0.5-µV/°C  
INA185 采用 6 引脚 SOT-563 封装,包括器件引脚在  
内的外形面积仅为 2.56 mm2。所有器件选项都具有  
–40°C +125°C 的扩展额定工作温度范围。  
增益选项:  
20V/VA1 器件)  
器件信息(1)  
50V/VA2 器件)  
100V/VA3 器件)  
200V/VA4 器件)  
器件型号  
INA185  
封装  
封装尺寸(标称值)  
1.60mm × 1.60mm  
(包括引脚)  
SOT-563 (6)  
瞬态电流:260µA(最大值)  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
2 应用  
电机控制  
电池监控  
电源管理  
照明控制  
过流检测  
光伏逆变器  
典型应用电路  
Bus Voltage, VCM  
Up To 26 V  
Power Supply, VS  
2.7 V to 5.5 V  
RSENSE  
Load  
INA185  
VS  
Microcontroller  
INœ  
œ
OUT  
ADC  
+
IN+  
REF  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS378  
 
 
 
INA185  
ZHCSJH3 MARCH 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation ........................ 17  
8.1 Application Information............................................ 17  
8.2 Typical Application .................................................. 21  
Power Supply Recommendations...................... 23  
9.1 Common-Mode Transients Greater Than 26 V ...... 23  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagrams ..................................... 12  
7.3 Feature Description................................................. 12  
7.4 Device Functional Modes........................................ 14  
10 Layout................................................................... 24  
10.1 Layout Guidelines ................................................. 24  
10.2 Layout Example .................................................... 24  
11 器件和文档支持 ..................................................... 25  
11.1 器件支持................................................................ 25  
11.2 文档支持................................................................ 25  
11.3 接收文档更新通知 ................................................. 25  
11.4 社区资源................................................................ 25  
11.5 ....................................................................... 25  
11.6 静电放电警告......................................................... 25  
11.7 术语表 ................................................................... 25  
12 机械、封装和可订购信息....................................... 25  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2019 3 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
INA185  
www.ti.com.cn  
ZHCSJH3 MARCH 2019  
5 Pin Configuration and Functions  
INA185: DRL Package  
6-Pin SOT-563  
Top View  
OUT  
GND  
IN+  
1
2
3
6
5
4
VS  
REF  
INœ  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
GND  
2
Analog  
Ground  
Current-sense amplifier negative input. For high-side applications, connect to load  
side of sense resistor. For low-side applications, connect to ground side of sense  
resistor.  
IN–  
IN+  
4
3
Analog input  
Current-sense amplifier positive input. For high-side applications, connect to bus-  
voltage side of sense resistor. For low-side applications, connect to load side of  
sense resistor.  
Analog input  
OUT  
REF  
VS  
1
5
6
Analog output  
Analog input  
Analog  
Output voltage  
Reference input  
Power supply, 2.7 V to 5.5 V  
Copyright © 2019, Texas Instruments Incorporated  
3
INA185  
ZHCSJH3 MARCH 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
6
UNIT  
VS  
Supply voltage  
V
Differential (VIN+) – (VIN–  
Common-mode(3)  
)
–26  
GND – 0.3  
GND – 0.3  
GND – 0.3  
–55  
26  
Analog inputs, IN+, IN–(2)  
V
26  
VREF  
VOUT  
TA  
Reference voltage  
Output voltage(3)  
VS + 0.3  
VS + 0.3  
150  
V
V
Operating temperature  
Junction temperature  
Storage temperature  
°C  
°C  
°C  
TJ  
150  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) VIN+ and VIN– are the voltages at the IN+ and IN– pins, respectively.  
(3) Input voltage at any pin can exceed the voltage shown if the current at that pin is limited to 5 mA.  
6.2 ESD Ratings  
VALUE  
±3000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
-0.2  
2.7  
NOM  
12  
MAX  
26  
UNIT  
VCM  
VS  
Common-mode input voltage  
Operating supply voltage  
V
V
5
5.5  
TA  
Operating free-air temperature  
–40  
125  
°C  
6.4 Thermal Information  
INA185  
THERMAL METRIC(1)  
DRL (SOT-563)  
6 PINS  
230.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
94.1  
Junction-to-board thermal resistance  
112.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.8  
ψJB  
112.1  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
INA185  
www.ti.com.cn  
ZHCSJH3 MARCH 2019  
6.5 Electrical Characteristics  
at TA = 25°C, VSENSE = VIN+ – VIN–, VS = 5 V, VREF = VS / 2, and VIN+ = 12 V (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
A1 device  
86  
96  
100  
100  
120  
±25  
VIN+ = 0 V to 26 V, VSENSE = 0 mV,  
TA = –40°C to +125°C  
Common-mode rejection  
ratio, RTI  
CMRR  
A2, A3 devices  
A4 devices  
A1 devices  
dB  
(1)  
106  
±135  
±55  
VSENSE = 0 mV, VIN+ = 0 V  
A2, A3, A4  
devices  
±5  
VOS  
Offset voltage, RTI  
Offset drift, RTI  
μV  
A1 devices  
A2, A3 devices  
A4 device  
±100  
±25  
±25  
0.2  
±450  
±130  
±100  
0.5  
VSENSE = 0 mV, VIN+ = 12 V  
dVOS/dT  
PSRR  
VSENSE = 0 mV, TA = –40°C to +125°C  
μV/°C  
μV/V  
Power supply rejection ratio,  
RTI  
VS = 2.7 V to 5.5 V, VIN+ = 12 V, VSENSE = 0 mV  
±8  
±30  
VSENSE = 0 mV, VCM = 0 V  
VSENSE = 0 mV  
-6  
75  
IIB  
Input bias current  
Input offset current  
μA  
μA  
IIO  
VSENSE = 0 mV  
±0.05  
OUTPUT  
A1 devices  
A2 devices  
A3 devices  
A4 devices  
A1, A2, A3  
20  
50  
G
Gain  
V/V  
100  
200  
±0.05%  
±0.2%  
VOUT = 0.5 V to VS – 0.5 V,  
devices  
EG  
Gain error  
TA = –40°C to +125°C  
A4 device  
±0.07%  
1.5  
±0.25%  
8
Gain error drift  
TA = –40°C to +125°C  
VOUT = 0.5 V to VS – 0.5 V  
No sustained oscillation  
ppm/°C  
nF  
Nonlinearity error  
±0.01%  
1
Maximum capacitive load  
(2)  
VOLTAGE OUTPUT  
VSP  
Swing to VS  
RL = 10 kto GND, TA = –40°C to +125°C  
(V+) – 0.02 (V+) – 0.026  
V
V
RL = 10 kto GND, VIN+ – VIN– = –10mV,  
TA = –40°C to +125°C  
(VGND) +  
0.0005  
(VGND) +  
0.0035  
VSN  
Swing to GND  
(VGND) +  
0.0005  
(VGND) +  
0.006  
A1 devices  
RL = Open, VIN+ – VIN– = 0mV,  
VREF = 0 V, TA = –40°C to +125°C  
VSG  
Zero current swing to GND  
V
A2, A3, A4  
devices  
(VGND) +  
0.0005  
(VGND) +  
0.012  
FREQUENCY RESPONSE  
A1 devices  
A2 devices  
A3 devices  
A4 devices  
350  
210  
150  
105  
2
BW  
Bandwidth  
CLOAD = 10 pF  
kHz  
SR  
Slew rate  
V/μs  
(1)  
NOISE, RTI  
Voltage noise density  
40  
nV/Hz  
POWER SUPPLY  
VSENSE = 0 mV  
200  
260  
300  
IQ  
Quiescent current  
μA  
VSENSE = 0 mV, TA = –40°C to +125°C  
(1) RTI = referred-to-input.  
(2) See Typical Characteristic curve, Output Voltage Swing vs Output Current (19).  
版权 © 2019, Texas Instruments Incorporated  
5
 
INA185  
ZHCSJH3 MARCH 2019  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = 25°C, VS = 5 V, VREF = VS / 2, and VIN+ = 12 V (unless otherwise noted)  
D002  
D001  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
1. Input Offset Voltage Production Distribution A1  
2. Input Offset Voltage Production Distribution A2  
D003  
D004  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
3. Input Offset Voltage Production Distribution A3  
4. Input Offset Voltage Production Distribution A4  
100  
A1  
A2  
A3  
A4  
50  
0
-50  
-100  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
D005  
D006  
Common-Mode Rejection Ratio (mV/V)  
6. Common-Mode Rejection Production Distribution A1  
版权 © 2019, Texas Instruments Incorporated  
5. Offset Voltage vs Temperature  
6
INA185  
www.ti.com.cn  
ZHCSJH3 MARCH 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, VREF = VS / 2, and VIN+ = 12 V (unless otherwise noted)  
D007  
D008  
Common-Mode Rejection Ratio (mV/V)  
Common-Mode Rejection Ratio (mV/V)  
7. Common-Mode Rejection Production Distribution A2  
8. Common-Mode Rejection Production Distribution A3  
10  
A1  
A2  
8
A3  
A4  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
D010  
D009  
Common-Mode Rejection Ratio (mV/V)  
9. Common-Mode Rejection Production Distribution A4  
10. Common-Mode Rejection Ratio vs Temperature  
D011  
D012  
Gain Error (%)  
Gain Error (%)  
11. Gain Error Production Distribution A1  
版权 © 2019, Texas Instruments Incorporated  
12. Gain Error Production Distribution A2  
7
INA185  
ZHCSJH3 MARCH 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, VREF = VS / 2, and VIN+ = 12 V (unless otherwise noted)  
D013  
D014  
Gain Error (%)  
Gain Error (%)  
13. Gain Error Production Distribution A3  
14. Gain Error Production Distribution A4  
50  
40  
30  
20  
10  
0
0.4  
0.3  
0.2  
0.1  
0
A1  
A1  
A2  
A3  
A4  
A2  
A3  
A4  
-0.1  
-0.2  
-0.3  
-0.4  
-10  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
10  
100  
1k  
10k  
100k  
1M  
10M  
Temperature (èC)  
Frequency (Hz)  
D015  
D016  
15. Gain Error vs Temperature  
16. Gain vs Frequency  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
A1  
A2  
A3  
A4  
60  
40  
20  
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
D017  
D018  
17. Power-Supply Rejection Ratio vs Frequency  
18. Common-Mode Rejection Ratio vs Frequency  
8
版权 © 2019, Texas Instruments Incorporated  
INA185  
www.ti.com.cn  
ZHCSJH3 MARCH 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, VREF = VS / 2, and VIN+ = 12 V (unless otherwise noted)  
VS  
VS – 1  
VS – 2  
120  
100  
80  
60  
40  
20  
0
–40°C  
25°C  
125°C  
GND + 2  
GND + 1  
GND  
-20  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Output Current (mA)  
-5  
0
5
10  
15  
20  
25  
30  
Common-Mode Voltage (V)  
D019  
D020  
Supply voltage = 5 V  
19. Output Voltage Swing vs Output Current  
20. Input Bias Current vs Common-Mode Voltage  
120  
100  
80  
60  
40  
20  
0
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
-20  
-5  
0
5
10  
15  
20  
25  
30  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Common-Mode Voltage (V)  
Temperature (èC)  
D021  
D022  
Supply voltage = 0 V  
21. Input Bias Current vs Common-Mode Voltage (Both  
22. Input Bias Current vs Temperature  
Inputs, Shutdown)  
210  
205  
200  
195  
190  
185  
180  
400  
350  
300  
250  
200  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-5  
0
5
10  
15  
20  
25  
30  
Temperature (èC)  
Common-Mode Voltage (V)  
D023  
D031  
23. Quiescent Current vs Temperature  
24. IQ vs Common-Mode Voltage  
版权 © 2019, Texas Instruments Incorporated  
9
INA185  
ZHCSJH3 MARCH 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, VREF = VS / 2, and VIN+ = 12 V (unless otherwise noted)  
100  
80  
70  
60  
50  
40  
30  
20  
10  
10  
Time (1 s/div)  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
D025  
D024  
26. 0.1-Hz to 10-Hz Voltage Noise (Referred-to-Input)  
25. Input-Referred Voltage Noise vs Frequency  
(A3 Devices)  
VCM  
VOUT  
Time (10 ms/div)  
Time (25 ms/div)  
D026  
D027  
80-mVPP input step  
27. Step Response  
28. Common-Mode Voltage Transient Response  
Inverting Input  
Output  
Noninverting Input  
Output  
0 V  
0 V  
Time (250 ms/div)  
Time (250 ms/div)  
D028  
D029  
29. Inverting Differential Input Overload  
30. Noninverting Differential Input Overload  
10  
版权 © 2019, Texas Instruments Incorporated  
INA185  
www.ti.com.cn  
ZHCSJH3 MARCH 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, VREF = VS / 2, and VIN+ = 12 V (unless otherwise noted)  
Supply Voltage  
Output Voltage  
Supply Voltage  
Output Voltage  
0 V  
0 V  
Time (10  
ms/div)  
Time (100 ms/div)  
D030  
D032  
31. Start-Up Response  
32. Brownout Recovery  
1000  
500  
A1  
A2  
A3  
A4  
200  
100  
50  
20  
10  
5
2
1
0.5  
0.2  
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
D033  
33. Output Impedance vs Frequency  
版权 © 2019, Texas Instruments Incorporated  
11  
INA185  
ZHCSJH3 MARCH 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The INA185 is a 26-V common-mode current-sensing amplifier used in both low-side and high-side  
configurations. This specially-designed, current-sensing amplifier accurately measures voltages developed  
across current-sensing resistors on common-mode voltages that far exceed the supply voltage powering the  
device. Current can be measured on input voltage rails as high as 26 V, and the device can be powered from  
supply voltages as low as 2.7 V.  
7.2 Functional Block Diagrams  
VS  
INA185  
INœ  
œ
OUT  
+
IN+  
REF  
GND  
7.3 Feature Description  
7.3.1 High Bandwidth and Slew Rate  
The INA185 supports small-signal bandwidths as high as 350 kHz, and large-signal slew rates of 2 V/µs. The  
ability to detect rapid changes in the sensed current, as well as the ability to quickly slew the output, make the  
INA185 a good choice for applications that require a quick response to input current changes. One application  
that requires high bandwidth and slew rate is low-side motor control, where the ability to follow rapid changing  
current in the motor allows for more accurate control over a wider operating range. Another application that  
requires higher bandwidth and slew rates is system fault detection, where the INA185 is used with an external  
comparator and a reference to quickly detect when the sensed current is out of range.  
7.3.2 Bidirectional Current Monitoring  
The INA185 senses current flow through a sense resistor in both directions. The bidirectional current-sensing  
capability is achieved by applying a voltage at the REF pin to offset the output voltage. A positive differential  
voltage sensed at the inputs results in an output voltage that is greater than the applied reference voltage.  
Likewise, a negative differential voltage at the inputs results in output voltage that is less than the applied  
reference voltage. The output voltage of the current-sense amplifier is shown in 公式 1.  
VOUT = ILOADì RSENSE ìGAIN + V  
(
)
REF  
where  
ILOAD is the load current to be monitored.  
RSENSE is the current-sense resistor.  
GAIN is the gain option of the selected device.  
VREF is the voltage applied to the REF pin.  
(1)  
12  
版权 © 2019, Texas Instruments Incorporated  
 
INA185  
www.ti.com.cn  
ZHCSJH3 MARCH 2019  
Feature Description (接下页)  
7.3.3 Wide Input Common-Mode Voltage Range  
The INA185 supports input common-mode voltages from –0.2 V to +26 V. Because of the internal topology, the  
common-mode range is not restricted by the power-supply voltage (VS) as long as VS stays within the operational  
range of 2.7 V to 5.5 V. The ability to operate with common-mode voltages greater or less than VS allows the  
INA185 to be used in high-side, as well as low-side, current-sensing applications, as shown in 34.  
Bus Supply  
œ0.2 V to +26 V  
Direction of Positive  
IN+  
Current Flow  
High-Side Sensing  
RSENSE  
Common-mode voltage (VCM  
is bus-voltage dependent.  
)
INœ  
LOAD  
Direction of Positive  
Current Flow  
IN+  
Low-Side Sensing  
Common-mode voltage (VCM  
is always near ground and is  
)
RSENSE  
isolated from bus-voltage spikes.  
INœ  
34. High-Side and Low-Side Sensing Connections  
7.3.4 Precise Low-Side Current Sensing  
When used in low-side current sensing applications, the offset voltage of the INA185 is within ±55 µV for A2, A3  
and A4 devices. The low offset performance of the INA185 has two main benefits. First, the low offset allows  
these devices to be used in applications that must measure current over a wide dynamic range. In this case, the  
low offset improves the accuracy when the sensed currents are on the low end of the measurement range. The  
other advantage of low offset is the ability to sense lower voltage drop across the sense resistor accurately, thus  
allowing a lower-value shunt resistor. Lower-value shunt resistors reduce power loss in the current sense circuit,  
and help improve the power efficiency of the end application.  
The gain error of the INA185 is specified to be within 0.2% of the actual value for A1, A2, and A3 devices. As the  
sensed voltage becomes much larger than the offset voltage, this voltage becomes the dominant source of error  
in the current sense measurement.  
7.3.5 Rail-to-Rail Output Swing  
The INA185 allows linear current sensing operation with the output close to the supply rail and GND. The  
maximum specified output swing to the positive rail is 25 mV, and the maximum specified output swing to GND is  
only 3.5 mV. In order to compare the output swing of the INA185 to an equivalent operational amplifier (op amp),  
the inputs are overdriven to approximate the open-loop condition specified in many op amp data sheets. The  
current-sense amplifier is a closed-loop system; therefore, the output swing to GND can be limited by the offset  
voltage and amplifier gain during unidirectional operation (VREF = 0 V) when there is zero current flowing through  
the sense resistor. To define the maximum output voltage under the zero current condition, the INA185 Electrical  
Characteristics table specifies a maximum output voltage of 6 mV for the A1 device, and 12 mV for all other  
devices.  
版权 © 2019, Texas Instruments Incorporated  
13  
 
 
INA185  
ZHCSJH3 MARCH 2019  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Normal Mode  
The INA185 is in normal operation when the following conditions are met:  
The power supply voltage (VS) is between 2.7 V and 5.5 V.  
The common-mode voltage (VCM) is within the specified range of –0.2 V to +26 V.  
The maximum differential input signal times gain plus VREF is less than VS minus the output voltage swing to  
VS.  
The minimum differential input signal times gain plus VREF is greater than the swing to GND (see the Rail-to-  
Rail Output Swing section).  
During normal operation, these devices produce an output voltage that is the gained-up representation of the  
difference voltage from IN+ to IN– plus the reference voltage at VREF  
.
7.4.2 Unidirectional Mode  
This device is capable of monitoring current flowing in one direction (unidirectional) or in both directions  
(bidirectional) depending on how the REF pin is configured. The most common case is unidirectional, where the  
output is set to ground when no current is flowing by connecting the REF pin to ground, as shown in 35. When  
the current flows from the bus supply to the load, the input signal across IN+ to IN– increases, and causes the  
output voltage at the OUT pin to increase.  
Bus Voltage  
Power Supply, VS  
2.7 V to 5.5 V  
œ0.2 V to +26 V  
CBYPASS  
0.1 µF  
RSENSE  
Load  
INA185  
VS  
INœ  
OUT  
œ
Output  
+
IN+  
REF  
GND  
35. Unidirectional Application  
The linear range of the output stage is limited by how close the output voltage can approach ground under zero  
input conditions. In unidirectional applications where measuring very low input currents is desirable, bias the REF  
pin to a convenient value above 50 mV to get the output into the linear range of the device. To limit common-  
mode rejection errors, buffer the reference voltage connected to the REF pin.  
A less-frequently used output biasing method is to connect the REF pin to the power-supply voltage, VS. This  
method results in the output voltage saturating at 25 mV less than the supply voltage when no differential input  
signal is present. This method is similar to the output saturated low condition with no input signal when the REF  
pin is connected to ground. The output voltage in this configuration only responds to negative currents that  
develop negative differential input voltage relative to the device IN– pin. Under these conditions, when the  
differential input signal increases negatively, the output voltage moves downward from the saturated supply  
voltage. The voltage applied to the REF pin must not exceed VS.  
14  
版权 © 2019, Texas Instruments Incorporated  
 
INA185  
www.ti.com.cn  
ZHCSJH3 MARCH 2019  
Device Functional Modes (接下页)  
7.4.3 Bidirectional Mode  
The INA185 is a bidirectional current-sense amplifier capable of measuring currents through a resistive shunt in  
two directions. This bidirectional monitoring is common in applications that include charging and discharging  
operations where the current flowing through the resistor can change directions.  
Bus Voltage  
œ0.2 V to +26 V  
Power Supply, VS  
2.7 V to 5.5 V  
CBYPASS  
0.1 µF  
RSENSE  
Load  
VS  
INA185  
Reference  
Voltage  
INœ  
œ
OUT  
REF  
Output  
+
IN+  
+
œ
GND  
36. Bidirectional Application  
The ability to measure this current flowing in both directions is enabled by applying a voltage to the REF pin, as  
shown in 36. The voltage applied to REF (VREF) sets the output state that corresponds to the zero-input level  
state. The output then responds by increasing above VREF for positive differential signals (relative to the IN– pin)  
and responds by decreasing below VREF for negative differential signals. This reference voltage applied to the  
REF pin can be set anywhere between 0 V to VS. For bidirectional applications, VREF is typically set at mid-scale  
for equal signal range in both current directions. In some cases, however, VREF is set at a voltage other than  
midscale when the bidirectional current and corresponding output signal do not need to be symmetrical.  
7.4.4 Input Differential Overload  
If the differential input voltage (VIN+ – VIN–) times gain plus the reference voltage exceeds the voltage swing  
specification, the INA185 drives the output as close as possible to the positive supply or ground, and does not  
provide accurate measurement of the differential input voltage. If this input overload occurs during normal circuit  
operation, then reduce the value of the shunt resistor or use a lower-gain version with the chosen sense resistor  
to avoid this mode of operation. If a differential overload occurs in a fault event, then the output of the INA185  
returns to the expected value approximately 20 µs after the fault condition is removed.  
版权 © 2019, Texas Instruments Incorporated  
15  
 
INA185  
ZHCSJH3 MARCH 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
7.4.5 Shutdown Mode  
Although the INA185 does not have a shutdown pin, the low power consumption of these devices allows the  
output of a logic gate or transistor switch to power the INA185. This gate or switch turns on and off the INA185  
power-supply quiescent current.  
However, in current shunt monitoring applications, there is also a concern for how much current is drained from  
the shunt circuit in shutdown conditions. Evaluating this current drain involves considering the simplified  
schematic of the INA185 in shutdown mode, as shown in 37.  
VS  
2.7 V to 5.5 V  
RPULL-UP  
10 k  
Bus Voltage  
œ0.2 V to +26 V  
Shutdown  
RSENSE  
Load  
CBYPASS  
0.1 µF  
VS  
INA185  
INœ  
OUT  
REF  
œ
Output  
+
IN+  
GND  
37. Basic Circuit to Shut Down the INA185 With a Grounded Reference  
There is typically more than 500 kof impedance (from the combination of 500-kfeedback and  
input gain set resistors) from each input of the INA185 to the OUT pin and to the REF pin. The amount of current  
flowing through these pins depends on the voltage at the connection. For example, if the REF pin is grounded,  
the calculation of the effect of the 500 kimpedance from the shunt to ground is straightforward. However, if the  
reference is powered while the INA185 is in shutdown mode, instead of assuming 500 kto ground, assume  
500 kto the reference voltage.  
Regarding the 500-kpath to the output pin, the output stage of a disabled INA185 does constitute a good path  
to ground. Consequently, this current is directly proportional to a shunt common-mode voltage present across a  
500-kresistor.  
As a final note, as long as the shunt common-mode voltage is greater than VS when the device is powered up,  
there is an additional and well-matched 55-µA typical current that flows in each of the inputs. If less than VS, the  
common-mode input currents are negligible, and the only current effects are the result of the 500-kresistors.  
16  
版权 © 2019, Texas Instruments Incorporated  
 
INA185  
www.ti.com.cn  
ZHCSJH3 MARCH 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The INA185 amplifies the voltage developed across a current-sensing resistor as current flows through the  
resistor to the load or ground. The ability to drive the reference pin to adjust the functionality of the output signal  
offers multiple configurations, as discussed in previous sections.  
8.1.1 Basic Connections  
38 shows the basic connections of the INA185. Connect the input pins (IN+ and IN–) as closely as possible to  
the shunt resistor to minimize any resistance in series with the shunt resistor.  
Bus Voltage  
œ0.2 V to +26 V  
Power Supply, VS  
2.7 V to 5.5 V  
CBYPASS  
0.1 µF  
RSENSE  
Load  
VS  
INA185  
INœ  
Microcontroller  
OUT  
œ
ADC  
+
IN+  
REF  
GND  
NOTE: To help eliminate ground offset errors between the device and the analog-to-digital converter (ADC), connect  
the REF pin to the ADC reference input and then to ground. For best performance, use an RC filter between the  
output of the INA185 and the ADC. See the Closed-Loop Analysis of Load-Induced Amplifier Stability Issues Using  
ZOUT section for more details.  
38. Basic Connections for the INA185  
A power-supply bypass capacitor of at least 0.1 µF is required for proper operation. Applications with noisy or  
high-impedance power supplies may require additional decoupling capacitors to reject power-supply noise.  
Connect bypass capacitors close to the device pins.  
版权 © 2019, Texas Instruments Incorporated  
17  
 
INA185  
ZHCSJH3 MARCH 2019  
www.ti.com.cn  
Application Information (接下页)  
8.1.2 RSENSE and Device Gain Selection  
Maximize the accuracy of the INA185 by choosing a current-sense resistor that is as large as possible. A large  
sense resistor maximizes the differential input signal for a given amount of current flow and reduces the error  
contribution of the offset voltage. However, there are practical limits as to how large the current-sense resistor  
can be in a given application. The INA185 has a typical input bias current of 75 µA for each input when operated  
at a 12-V common-mode voltage input. When large current-sense resistors are used, these bias currents cause  
increased offset error and reduced common-mode rejection. Therefore, using current-sense resistors larger than  
a few ohms is generally not recommended for applications that require current-monitoring accuracy. Another  
common restriction on the value of the current-sense resistor is the maximum allowable power dissipation that is  
budgeted for the resistor. 公式 2 gives the maximum value for the current sense resistor for a given power  
dissipation budget:  
PDMAX  
RSENSE  
<
2
IMAX  
where:  
PDMAX is the maximum allowable power dissipation in RSENSE  
.
IMAX is the maximum current that will flow through RSENSE  
.
(2)  
An additional limitation on the size of the current-sense resistor and device gain is due to the power-supply  
voltage, VS, and device swing to rail limitations. In order to make sure that the current-sense signal is properly  
passed to the output, both positive and negative output swing limitations must be examined. 公式 3 provides the  
maximum values of RSENSE and GAIN to keep the device from hitting the positive swing limitation.  
IMAX ìRSENSE ìGAIN < VSP - VREF  
where:  
IMAX is the maximum current that will flow through RSENSE  
.
GAIN is the gain of the current sense-amplifier.  
VSP is the positive output swing as specified in the data sheet.  
VREF is the externally applied voltage on the REF pin.  
(3)  
To avoid positive output swing limitations when selecting the value of RSENSE, there is always a trade-off between  
the value of the sense resistor and the gain of the device under consideration. If the sense resistor selected for  
the maximum power dissipation is too large, then it is possible to select a lower-gain device in order to avoid  
positive swing limitations.  
The negative swing limitation places a limit on how small of a sense resistor can be used in a given application.  
公式 4 provides the limit on the minimum size of the sense resistor.  
IMIN ìRSENSE ìGAIN > VSN - VREF  
where:  
IMIN is the minimum current that will flow through RSENSE  
.
GAIN is the gain of the current sense amplifier.  
VSN is the negative output swing of the device (see Rail-to-Rail Output Swing).  
VREF is the externally applied voltage on the REF pin.  
(4)  
In addition to adjusting the offset and gain, the voltage applied to the REF pin can be slightly increased to avoid  
negative swing limitations.  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
INA185  
www.ti.com.cn  
ZHCSJH3 MARCH 2019  
Application Information (接下页)  
8.1.3 Signal Filtering  
Provided that the INA185 output is connected to a high impedance input, the best location to filter is at the device  
output using a simple RC network from OUT to GND. Filtering at the output attenuates high-frequency  
disturbances in the common-mode voltage, differential input signal, and INA185 power-supply voltage. If filtering  
at the output is not possible, or filtering of only the differential input signal is required, then apply a filter at the  
input pins of the device. 39 provides an example of how a filter can be used on the input pins of the device.  
Bus Voltage  
œ0.2 V to +26 V  
RSENSE  
Load  
VS  
2.7 V to 5.5 V  
1
VS  
INA185  
f-3dB  
=
2p(RF + RF )CF  
RF < 10  
RINT  
INœ  
fœ3dB  
VOUT  
CF  
œ
OUT  
REF  
Bias  
+
RF < 10 ꢀ  
RINT  
VREF  
IN+  
39. Filter at Input Pins  
The addition of external series resistance creates an additional error in the measurement; therefore, the value of  
these series resistors must be kept to 10 Ω (or less, if possible) to reduce impact to accuracy. The internal bias  
network shown in 39 present at the input pins creates a mismatch in input bias currents when a differential  
voltage is applied between the input pins. If additional external series filter resistors are added to the circuit, the  
mismatch in bias currents results in a mismatch of voltage drops across the filter resistors. This mismatch  
creates a differential error voltage that subtracts from the voltage developed across the shunt resistor. This error  
results in a voltage at the device input pins that is different than the voltage developed across the shunt resistor.  
Without the additional series resistance, the mismatch in input bias currents has little effect on device operation.  
The amount of error these external filter resistors add to the measurement can be calculated using 公式 6, where  
the gain error factor is calculated using 公式 5.  
The amount of variance in the differential voltage present at the device input relative to the voltage developed at  
the shunt resistor is based both on the external series resistance (RF) value as well as the internal input resistor  
RINT, as shown in 39. The reduction of the shunt voltage reaching the device input pins appears as a gain  
error when comparing the output voltage relative to the voltage across the shunt resistor. A factor can be  
calculated to determine the amount of gain error that is introduced by the addition of external series resistance.  
Calculate the expected deviation from the shunt voltage to what is measured at the device input pins is given  
using 公式 5:  
1250ìRINT  
(1250ìRF ) + (1250ìRINT ) + (RF ìRINT  
Gain Error Factor =  
)
where:  
RINT is the internal input resistor.  
RF is the external series resistance.  
(5)  
版权 © 2019, Texas Instruments Incorporated  
19  
 
 
 
INA185  
ZHCSJH3 MARCH 2019  
www.ti.com.cn  
Application Information (接下页)  
With the adjustment factor from 公式 5, including the device internal input resistance, this factor varies with each  
gain version, as shown in 1. Each individual device gain error factor is shown in 2.  
1. Input Resistance  
PRODUCT  
INA185A1  
INA185A2  
INA185A3  
INA185A4  
GAIN  
20  
RINT (kΩ)  
25  
10  
5
50  
100  
200  
2.5  
2. Device Gain Error Factor  
PRODUCT  
SIMPLIFIED GAIN ERROR FACTOR  
25000  
INA185A1  
(21ìRF ) + 25000  
10000  
INA185A2  
INA185A3  
INA185A4  
(9ìRF ) +10000  
1000  
RF +1000  
2500  
(3ìRF ) + 2500  
The gain error that can be expected from the addition of the external series resistors can then be calculated  
based on 公式 6:  
Gain Error (%) = 100 - (100 ´ Gain Error Factor)  
(6)  
For example, using an INA185A2 and the corresponding gain error equation from 2, a series resistance of  
10 Ω results in a gain error factor of 0.991. The corresponding gain error is then calculated using 公式 6,  
resulting in an additional gain error of approximately 0.89% solely because of the external 10-Ω series resistors.  
20  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
INA185  
www.ti.com.cn  
ZHCSJH3 MARCH 2019  
8.2 Typical Application  
One application for the INA185 is to monitor bidirectional currents. Bidirectional currents are present in systems  
that have to monitor currents in both directions; common examples are monitoring the charging and discharging  
of batteries and bidirectional current monitoring in motor control. The device configuration for bidirectional current  
monitoring is shown in 40. Applying stable REF pin voltage closer to the middle of device supply voltage  
allows both positive- and negative-current monitoring, as shown in this configuration. Configure the INA185 to  
monitor unidirectional currents by grounding the REF pin.  
Bus Voltage  
œ0.2 V to +26 V  
Power Supply, VS  
2.7 V to 5.5 V  
CBYPASS  
0.1 µF  
RSENSE  
Load  
VS  
INA185  
Reference  
Voltage  
INœ  
œ
OUT  
REF  
Output  
+
IN+  
+
œ
GND  
40. Measuring Bidirectional Current  
8.2.1 Design Requirements  
The design requirements for the circuit shown in 40, are listed in 3  
3. Design Parameters  
DESIGN PARAMETER  
Power-supply voltage, VS  
Bus supply rail, VCM  
EXAMPLE VALUE  
5 V  
12 V  
RSENSE power loss  
< 450 mW  
±20 A  
Maximum sense current, IMAX  
Current sensing error  
Less than 1% at maximum current, TJ = 25°C  
> 100 kHz  
Small-signal bandwidth  
8.2.2 Detailed Design Procedure  
The maximum value of the current sense resistor is calculated based on the maximum power loss requirement.  
By applying 公式 2, the maximum value of the current-sense resistor is calculated to be 1.125 mΩ. This is the  
maximum value for sense resistor RSENSE; therefore, select RSENSE to be 1 mΩ because it is the closest standard  
resistor value that meets the power-loss requirement.  
The next step is to select the appropriate gain and reduce RSENSE, if needed, to keep the output signal swing  
within the VS range. The design requirements call for bidirectional current monitoring; therefore, a voltage  
between 0 and VS must be applied to the REF pin. The bidirectional currents monitored are symmetric around 0  
(that is, ±20 A); therefore, the ideal voltage to apply to VREF is VS / 2 or 2.5 V. If the positive current is greater  
than the negative current, using a lower voltage on VREF has the benefit of maximizing the output swing for the  
given range of expected currents. Using 公式 3, and given that IMAX = 20 A , RSENSE = 1 mΩ, and VREF = 2.5 V,  
版权 © 2019, Texas Instruments Incorporated  
21  
 
 
INA185  
ZHCSJH3 MARCH 2019  
www.ti.com.cn  
the maximum current-sense gain calculated to avoid the positive swing-to-rail limitations on the output is 122.5.  
Likewise, using 公式 4 for the negative-swing limitation results in a maximum gain of 124.75. Selecting the gain-  
of-100 device maximizes the output range while staying within the output swing range. If the maximum calculated  
gains are slightly less than 100, the value of the current-sense resistor can be reduced to keep the output from  
hitting the output-swing limitations.  
To calculate the accuracy at peak current, the two factors that must be determined are the gain error and the  
offset error. The gain error of the INA185A3 is specified to be a maximum of 0.2%. The error due to the offset is  
constant, and is specified to be 130 µV (maximum) for the conditions where VCM = 12 V and VS = 5 V. Using 公  
7, the percentage error contribution of the offset voltage is calculated to be 0.65%, with total offset error = 130  
µV, RSENSE = 1 mΩ, and ISENSE = 20 A.  
Total Offset Error (V)  
Total Offset Error (%) =  
ì100%  
ISENSE ìRSENSE  
(7)  
One method of calculating the total error is to add the gain error to the percentage contribution of the offset error.  
However, in this case, the gain error and the offset error do not have an influence or correlation to each other. A  
more statistically accurate method of calculating the total error is to use the RSS sum of the errors, as shown in  
公式 8:  
Total Error (%) = Total Gain Error (%)2 + Total Offset Error (%)2  
(8)  
After applying 公式 8, the total current sense error at maximum current is calculated to be 0.68%, which is less  
than the design example requirement of 1%.  
The INA185A3 (gain = 100) also has a bandwidth of 150 kHz that meets the small-signal bandwidth requirement  
of 100 kHz. If higher bandwidth is required, lower-gain devices can be used at the expense of either reduced  
output voltage range or an increased value of RSENSE  
.
8.2.3 Application Curve  
An example output response of a bidirectional configuration is shown in 41. With the REF pin connected to a  
reference voltage (2.5 V in this case), the output voltage is biased upwards by this reference level. The output  
rises above the reference voltage for positive differential input signals, and falls below the reference voltage for  
negative differential input signals.  
VOUT  
VREF  
0V  
Time (500 µs/div)  
C002  
41. Bidirectional Application Output Response  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
INA185  
www.ti.com.cn  
ZHCSJH3 MARCH 2019  
9 Power Supply Recommendations  
The input circuitry of the INA185 allows for accurate measurements beyond the power-supply voltage, VS. For  
example, VS can be 5 V, whereas the bus supply voltage at IN+ and IN– can be as high as 26 V. However, the  
output voltage range of the OUT pin is limited by the voltages on the VS pin. The INA185 also withstands the full  
differential input signal range up to 26 V at the IN+ and IN– input pins, regardless of whether or not the device  
has power applied at the VS pin.  
9.1 Common-Mode Transients Greater Than 26 V  
With a small amount of additional circuitry, the INA185 can be used in circuits subject to transients higher than  
26 V, such as automotive applications. Use only Zener diodes or Zener-type transient absorbers (sometimes  
referred to as transzorbs)—any other type of transient absorber has an unacceptable time delay. Start by adding  
a pair of resistors as a working impedance for the Zener diode; see 42. Keep these resistors as small as  
possible; most often, around 10 . Larger values can be used with an effect on gain that is discussed in the  
Signal Filtering section. This circuit limits only short-term transients; therefore, many applications are satisfied  
with a 10-resistor along with conventional Zener diodes of the lowest acceptable power rating. This  
combination uses the least amount of board space. These diodes can be found in packages as small as SOT-  
523 or SOD-523.  
VS  
2.7 V to 5.5 V  
CBYPASS  
0.1 µF  
Bus Supply  
œ0.2 V to +26 V  
RSENSE  
Load  
INA185  
VS  
INœ  
œ
OUT  
RPROTECT  
< 10  
Output  
+
REF  
IN+  
GND  
42. Transient Protection Using Dual Zener Diodes  
In the event that low-power Zener diodes do not have sufficient transient absorption capability, a higher-power  
transzorb must be used. The most package-efficient solution involves using a single transzorb and back-to-back  
diodes between the device inputs, as shown in 43. The most space-efficient solutions are dual, series-  
connected diodes in a single SOT-523 or SOD-523 package. In either of the examples shown in 42 and 43,  
the total board area required by the INA185 with all protective components is less than that of an SO-8 package,  
and only slightly greater than that of an MSOP-8 package.  
VS  
CBYPASS  
0.1 µF  
2.7 V to 5.5 V  
Bus Supply  
œ0.2 V to +26 V  
RSENSE  
Load  
VS  
INA185  
< 10  
INœ  
œ
OUT  
Transorb  
Output  
+
< 10 ꢀ  
REF  
IN+  
GND  
43. Transient Protection Using a Single Transzorb and Input Clamps  
For more information, see Current Shunt Monitor With Transient Robustness Reference Design.  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
INA185  
ZHCSJH3 MARCH 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique  
makes sure that only the current-sensing resistor impedance is detected between the input pins. Poor routing  
of the current-sensing resistor commonly results in additional resistance present between the input pins.  
Given the very low ohmic value of the current resistor, any additional high-current carrying impedance can  
cause significant measurement errors.  
Place the power-supply bypass capacitor as close as possible to the device power supply and ground pins.  
The recommended value of this bypass capacitor is 0.1 µF. Additional decoupling capacitance can be added  
to compensate for noisy or high-impedance power supplies.  
When routing the connections from the current sense resistor to the device, keep the trace lengths as close  
as possible in order to minimize any impedance mismatch..  
10.2 Layout Example  
Direction of Positive  
Current Flow  
Bus Voltage:  
œ0.2V to +26 V  
RSHUNT  
4
5
6
3
2
IN+  
INœ  
REF  
VS  
Connect REF to low  
impedance voltage reference  
or to GND pin if not used.  
GND  
Current  
Sense  
1
OUT  
VIA to Ground  
Plane  
CBYPASS  
Power-Supply, VS  
2.7 V to 5.5 V  
44. Recommended Layout  
24  
版权 © 2019, Texas Instruments Incorporated  
INA185  
www.ti.com.cn  
ZHCSJH3 MARCH 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
《具有瞬态稳定性的电流分流监控器参考设计》  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:德州仪器 (TI)INA185EVM 用户指南》  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
25  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Mar-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA185A1IDRLR  
INA185A1IDRLT  
INA185A2IDRLR  
INA185A2IDRLT  
INA185A3IDRLR  
INA185A3IDRLT  
INA185A4IDRLR  
INA185A4IDRLT  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
DRL  
DRL  
DRL  
DRL  
DRL  
6
6
6
6
6
6
6
6
4000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.98  
1.98  
1.98  
1.98  
1.98  
1.98  
1.98  
1.98  
1.78  
1.78  
1.78  
1.78  
1.78  
1.78  
1.78  
1.78  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
4000  
250  
4000  
250  
4000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Mar-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA185A1IDRLR  
INA185A1IDRLT  
INA185A2IDRLR  
INA185A2IDRLT  
INA185A3IDRLR  
INA185A3IDRLT  
INA185A4IDRLR  
INA185A4IDRLT  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
DRL  
DRL  
DRL  
DRL  
DRL  
6
6
6
6
6
6
6
6
4000  
250  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
4000  
250  
4000  
250  
4000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRL0006A  
SOT - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.7  
1.5  
PIN 1  
ID AREA  
A
1
6
4X 0.5  
1.7  
1.5  
2X 1  
NOTE 3  
4
3
1.3  
1.1  
0.3  
6X  
0.05  
TYP  
0.00  
B
0.1  
0.6 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.08  
6X  
SYMM  
SYMM  
0.27  
0.15  
6X  
0.1  
0.05  
C A B  
0.4  
0.2  
6X  
4223266/C 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-293 Variation UAAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4223266/C 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223266/C 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY