INA188IDR [TI]

36V、零漂移、轨到轨输出仪表放大器 | D | 8 | -40 to 125;
INA188IDR
型号: INA188IDR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

36V、零漂移、轨到轨输出仪表放大器 | D | 8 | -40 to 125

放大器 仪表 仪表放大器
文件: 总42页 (文件大小:1901K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
INA188  
ZHCSE92 SEPTEMBER 2015  
INA188  
精密零漂移、轨到轨输出、高压仪表放大器  
1 特性  
3 说明  
1
出色的直流性能:  
INA188 是一款精密的仪表放大器,其采用德州仪器  
(TI) 专有的自动归零技术,可实现低偏移电压、近零偏  
移和增益漂移、出色的线性度以及向下扩展至直流的超  
低噪声密度 (12nV/Hz)。  
低输入偏移电压:55μV(最大值)  
低输入偏移漂移:0.2μV/°C(最大值)  
高共模抑制比 (CMRR)104dB,增益 10  
(最小值)  
INA188 经优化可提供超过 104dB 的出色共模抑制比  
(G 10)。 出色的共模和电源抑制性能可为高分辨率  
的精密测量应用提供支持。 这种通用型三运放设计可  
提供轨到轨输出、由 4V 单电源或高达 ±18V 的双电源  
供电的低电压运行以及一个高阻抗的宽输入范围。 这  
些规范值使得该器件成为通用信号测量和传感器调节应  
用(如温度或桥式应用)的理想选择。  
低输入噪声:  
1kHz 时为 12nV/Hz  
0.25 μVPP0.1Hz 10Hz)  
宽电源范围:  
单电源:4V 36V  
双电源:±2V ±18V  
通过单个外部电阻设置增益:  
可通过单个外部电阻在 1 1000 范围内设置增益。  
INA188 设计为采用符合行业标准的增益公式: G = 1  
+ (50kΩ / RG)。 基准引脚可用于单电源运行过程中的  
电平转换或者用于偏移校准。  
增益公式:G = 1 + (50kΩ / RG)  
增益误差:0.007%G = 1  
增益漂移:5ppm/°C(最大值),G = 1  
输入电压:(V–) + 0.1V (V+) – 1.5V  
已过滤射频干扰 (RFI) 的输入  
轨到轨输出  
INA188 的额定运行温度范围为 -40°C +125°C。  
器件信息  
低静态电流:1.4mA  
订货编号  
INA188  
INA188  
封装  
SOIC (8)  
WSON (8)(2)  
封装尺寸  
工作温度范围:-55°C +150°C  
4.90mm x 3.91mm  
4.00mm x 4.00mm  
小外形尺寸集成电路 (SOIC)-8 和双边扁平无引线  
(DFN)-8 封装  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
(2) DRJ 封装 (WSON-8) 是一款预览器件。  
2 应用范围  
桥式放大器  
简化电路原理图  
心电图 (ECG) 放大器  
V+  
压力传感器  
RFI Filter Inputs  
20 k  
20 kꢀ  
VIN-  
+
医疗仪表  
A1  
RFI Filtered Inputs  
便携式仪表  
25 kꢀ  
衡器  
A3  
VOUT  
热电偶放大器  
RG  
25 kꢀ  
+
电阻式温度检测器 (RTD) 传感器放大器  
数据采集  
20 kꢀ  
20 kꢀ  
RFI Filtered Inputs  
A2  
REF  
RFI Filtered Inputs  
VIN+  
+
V-  
50 kW  
RG  
G =1+  
VOUT = VIN+ - V  
ìG+ V  
REF  
(
)
IN-  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
English Data Sheet: SBOS632  
 
 
 
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 18  
7.4 Device Functional Modes........................................ 21  
Application and Implementation ........................ 27  
8.1 Application Information............................................ 27  
8.2 Typical Application .................................................. 27  
Power Supply Recommendations...................... 29  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
8
9
10 Layout................................................................... 29  
10.1 Layout Guidelines ................................................. 29  
10.2 Layout Example .................................................... 30  
11 器件和文档支持 ..................................................... 31  
11.1 器件支持 ............................................................... 31  
11.2 文档支持................................................................ 31  
11.3 社区资源................................................................ 31  
11.4 ....................................................................... 31  
11.5 静电放电警告......................................................... 31  
11.6 Glossary................................................................ 31  
12 机械、封装和可订购信息....................................... 32  
6.5 Electrical Characteristics: VS = ±4 V to ±18 V (VS  
8 V to 36 V)................................................................ 5  
6.6 Electrical Characteristics: VS = ±2 V to < ±4 V (VS  
=
=
4 V to < 8 V)............................................................... 7  
6.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 17  
7.1 Overview ................................................................. 17  
7.2 Functional Block Diagram ....................................... 17  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 9 月  
*
最初发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
INA188  
www.ti.com.cn  
ZHCSE92 SEPTEMBER 2015  
5 Pin Configuration and Functions  
D Package  
SOIC-8  
Top View  
DRJ Package  
WSON-8  
Top View  
RG  
8
7
6
RG  
VIN-  
VIN+  
V-  
1
2
3
1
8
7
6
RG  
VIN-  
VIN+  
V-  
RG  
V+  
Exposed  
Thermal  
Die Pad on  
Underside  
2
3
4
V+  
VOUT  
VOUT  
REF  
4
5
5
REF  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
REF  
RG  
5
1, 8  
4
I
Reference input. This pin must be driven by low impedance or connected to ground.  
I
Gain setting pin. For gains greater than 1, place a gain resistor between pin 1 and pin 8.  
V–  
Negative supply  
Positive supply  
Negative input  
Positive input  
Output  
V+  
7
VIN–  
VIN+  
2
3
I
VOUT  
6
O
Copyright © 2015, Texas Instruments Incorporated  
3
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
±20  
UNIT  
Supply  
V
40 (single supply)  
±10  
Voltage  
Current  
Analog input range(2)  
mA  
V
(V–) – 0.5  
–55  
(V+) + 0.5  
Output short-circuit(3)  
Continuous  
Operating range, TA  
150  
150  
150  
Temperature  
Junction, TJ  
°C  
Storage temperature, Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails must be  
current limited to 10 mA or less.  
(3) Short-circuit to ground.  
6.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4 (±2)  
-40  
NOM  
MAX  
UNIT  
VS  
Supply voltage  
36 (±18)  
125  
V
Specified temperature  
°C  
6.4 Thermal Information  
INA188  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
125  
DRG (WSON)  
UNIT  
8 PINS  
145  
75  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
80  
68  
39  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
32  
14  
ψJB  
68  
105  
N/A  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
INA188  
www.ti.com.cn  
ZHCSE92 SEPTEMBER 2015  
6.5 Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V)  
At TA = 25°C, RL = 10 k, VREF = VS / 2, and G = 1, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT(1)  
At RTI(2)  
±25  
±0.08  
±60  
±55  
±0.2  
μV  
μV/°C  
μV  
VOSI  
Input stage offset voltage  
Output stage offset voltage  
Offset voltage  
At RTI, TA = –40°C to +125°C  
At RTI  
±170  
±0.35  
VOSO  
At RTI, TA = –40°C to +125°C  
At RTI  
±0.2  
μV/°C  
μV  
±25 ±60 / G ±55 ±170 / G  
±0.2 ±0.35 / G  
VOS  
At RTI, TA = –40°C to +125°C  
G = 1, VS = 4 V to 36 V, VCM = VS / 2  
G = 10, VS = 4 V to 36 V, VCM = VS / 2  
G = 100, VS = 4 V to 36 V, VCM = VS / 2  
G = 1000, VS = 4 V to 36 V, VCM = VS / 2  
μV/°C  
±0.7  
±0.6  
±0.45  
±0.3  
1(3)  
±2.25  
PSRR  
Power-supply rejection ratio  
µV/V  
µV  
±0.8  
Long-term stability  
Turn-on time to specified VOSI  
Differential input impedance  
Common-mode input impedance  
See the Typical Characteristics  
zid  
zic  
100 || 6  
GΩ || pF  
100 || 9.5  
The input signal common-mode range can be  
calculated with this tool  
VCM  
Common-mode voltage range  
(V–) + 0.1  
84  
(V+) – 1.5  
V
G = 1, at dc to 60 Hz, VCM = (V–) + 1.0 V to  
(V+) – 2.5 V  
90  
110  
130  
130  
G = 10, at dc to 60 Hz, VCM = (V–) + 1.0 V to  
(V+) – 2.5 V  
104  
CMRR  
Common-mode rejection ratio  
dB  
G = 100, at dc to 60 Hz, VCM = (V–) + 1.0 V to  
(V+) – 2.5 V  
118  
G = 1000, at dc to 60 Hz, VCM = (V–) + 1.0 V to  
(V+) – 2.5 V  
118  
INPUT BIAS CURRENT  
±850  
See Figure 10  
±850  
±2500  
±2500  
pA  
pA/°C  
pA  
IIB  
Input bias current  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
IOS  
Input offset current  
See Figure 11  
pA/°C  
INPUT VOLTAGE NOISE  
f = 1 kHz, G = 100, RS = 0 Ω  
f = 0.1 Hz to 10 Hz, G = 100, RS = 0 Ω  
f = 1 kHz, G = 100, RS = 0 Ω  
f = 0.1 Hz to 10 Hz, G = 100, RS = 0 Ω  
f = 1 kHz  
12.5  
0.25  
118  
2.5  
nV/Hz  
μVPP  
eNI  
eNO  
iN  
Input voltage noise  
nV/Hz  
μVPP  
Output voltage noise  
Input current noise  
440  
10  
fA/Hz  
pAPP  
f = 0.1 Hz to 10 Hz  
GAIN  
G
Gain equation  
Gain range  
1 + (50 kΩ / RG)  
V/V  
V/V  
1
1000  
±0.025%  
±0.20%  
±0.20%  
±0.50%  
5
G = 1, (V–) + 0.5 V VO (V+) – 1.5 V  
G = 10, (V–) + 0.5 V VO (V+) – 1.5 V  
G = 100, (V–) + 0.5 V VO (V+) – 1.5 V  
G = 1000, (V–) + 0.5 V VO (V+) – 1.5 V  
G = 1, TA = –40°C to +125°C  
±0.007%  
±0.05%  
±0.06%  
±0.2%  
1
EG  
Gain error  
Gain versus temperature  
Gain nonlinearity  
ppm/°C  
ppm  
G > 1(4) , TA = –40°C to +125°C  
15  
50  
G = 1, VO = –10 V to +10 V  
3
8
G > 1, VO = –10 V to +10 V  
See Figure 42 to Figure 45  
(1) Total VOS, referred-to-input = (VOSI) + (VOSO / G).  
(2) RTI = Referred-to-input.  
(3) 300-hour life test at 150°C demonstrated a randomly distributed variation of approximately 1 μV.  
(4) Does not include effects of external resistor RG.  
Copyright © 2015, Texas Instruments Incorporated  
5
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V) (continued)  
At TA = 25°C, RL = 10 k, VREF = VS / 2, and G = 1, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
Output voltage swing from rail(5)  
Capacitive load drive  
RL = 10 kΩ(5)  
220  
1
250  
mV  
nF  
ISC  
Short-circuit current  
Continuous to common  
±18  
mA  
FREQUENCY RESPONSE  
G = 1  
600  
95  
G = 10  
BW  
SR  
tS  
Bandwidth, –3 dB  
Slew rate  
kHz  
G = 100  
15  
G = 1000  
1.5  
0.9  
0.17  
50  
G = 1, VS = ±18 V, VO = 10-V step  
G = 100, VS = ±18 V, VO = 10-V step  
G = 1, VS = ±18 V, VSTEP = 10 V  
G = 100, VS = ±18 V, VSTEP = 10 V  
G = 1, VS = ±18 V, VSTEP = 10 V  
G = 100, VS = ±18 V, VSTEP = 10 V  
50% overdrive  
V/μs  
μs  
To 0.1%  
400  
60  
Settling time  
To 0.01%  
μs  
μs  
500  
75  
Overload recovery  
REFERENCE INPUT  
RIN Input impedance  
Voltage range  
POWER SUPPLY  
40  
kΩ  
V–  
V+  
V
Single  
Dual  
4
36  
±18  
1.6  
1.8  
Voltage range  
V
±2  
VIN = VS / 2  
1.4  
IQ  
Quiescent current  
mA  
TA = –40°C to +125°C  
TEMPERATURE RANGE  
Specified temperature range  
Operating temperature range  
–40  
–55  
125  
150  
°C  
°C  
(5) See Typical Characteristics curves, Output Voltage Swing vs Output Current (Figure 19 to Figure 22).  
6
Copyright © 2015, Texas Instruments Incorporated  
INA188  
www.ti.com.cn  
ZHCSE92 SEPTEMBER 2015  
6.6 Electrical Characteristics: VS = ±2 V to < ±4 V (VS = 4 V to < 8 V)  
At TA = 25°C, RL = 10 k, VREF = VS / 2, and G = 1, unless otherwise noted. Specifications not shown are identical to the  
Electrical Characteristics table for VS = ±2 V to ±18 V (VS = 8 V to 36 V).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT(1)  
At RTI(2)  
±25  
±0.08  
±60  
±55  
±0.2  
μV  
μV/°C  
μV  
VOSI  
Input stage offset voltage  
Output stage offset voltage  
At RTI, TA = –40°C to +125°C  
At RTI  
±170  
±0.35  
VOSO  
At RTI, TA = –40°C to +125°C  
±0.2  
μV/°C  
±55 ±170 /  
G
At RTI  
±25 ±60 / G  
μV  
VOS  
Offset voltage  
At RTI, TA = –40°C to +125°C  
±0.2 ±0.35 / G  
μV/°C  
Long-term stability  
1(3)  
µV  
Turn-on time to specified VOSI  
Differential input impedance  
Common-mode input impedance  
See the Typical Characteristics  
zid  
zic  
100 || 6  
GΩ || pF  
100 || 9.5  
VO = 0 V, the input signal common-mode range can  
be calculated with this tool  
VCM  
Common-mode voltage range  
(V–)  
80  
(V+) – 1.5  
V
G = 1, at dc to 60 Hz, VCM = (V–) + 1.0 V to  
(V+) – 2.5 V  
90  
110  
120  
120  
G = 10, at dc to 60 Hz, VCM = (V–) + 1.0 V to  
(V+) – 2.5 V  
94  
CMRR  
Common-mode rejection ratio  
dB  
G = 100, at dc to 60 Hz, VCM = (V–) + 1.0 V to  
(V+) – 2.5 V  
102  
102  
G = 1000, at dc to 60 Hz, VCM = (V–) + 1.0 V to  
(V+) – 2.5 V  
INPUT BIAS CURRENT  
±850  
See Figure 10  
±850  
±2500  
±2500  
pA  
pA/°C  
pA  
IIB  
Input bias current  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
IOS  
Input offset current  
See Figure 11  
pA/°C  
INPUT VOLTAGE NOISE  
f = 1 kHz, G = 100, RS = 0 Ω  
f = 0.1 Hz to 10 Hz, G = 100, RS = 0 Ω  
f = 1 kHz, G = 100, RS = 0 Ω  
f = 0.1 Hz to 10 Hz, G = 100, RS = 0 Ω  
f = 1 kHz  
12.5  
0.25  
118  
2.5  
nV/Hz  
μVPP  
eNI  
eNO  
iN  
Input voltage noise  
nV/Hz  
μVPP  
Output voltage noise  
Input current noise  
430  
10  
fA/Hz  
pAPP  
f = 0.1 Hz to 10 Hz  
GAIN  
G
Gain equation  
Gain range  
1 + (50 kΩ / RG)  
V/V  
V/V  
1
1000  
±0.05%  
±0.2%  
±0.2%  
±0.5%  
5
G = 1, (V–) + 0.5 V VO (V+) – 1.5 V  
G = 10, (V–) + 0.5 V VO (V+) – 1.5 V  
G = 100, (V–) + 0.5 V VO (V+) – 1.5 V  
G = 1000, (V–) + 0.5 V VO (V+) – 1.5 V  
G = 1, TA = –40°C to +125°C  
±0.007%  
±0.07%  
±0.07%  
±0.25%  
1
EG  
Gain error  
Gain versus temperature  
Gain nonlinearity  
ppm/°C  
ppm  
G > 1(4), TA = –40°C to +125°C  
15  
50  
G = 1, VO = (V–) + 0.5 V VO (V+) – 1.5 V  
3
8
(1) Total VOS, referred-to-input = (VOSI) + (VOSO / G).  
(2) RTI = Referred-to-input.  
(3) 300-hour life test at 150°C demonstrated randomly distributed variation of approximately 1 μV.  
(4) Does not include effects of external resistor RG.  
Copyright © 2015, Texas Instruments Incorporated  
7
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
Electrical Characteristics: VS = ±2 V to < ±4 V (VS = 4 V to < 8 V) (continued)  
At TA = 25°C, RL = 10 k, VREF = VS / 2, and G = 1, unless otherwise noted. Specifications not shown are identical to the  
Electrical Characteristics table for VS = ±2 V to ±18 V (VS = 8 V to 36 V).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
Output voltage swing from rail(5)  
Capacitive load drive  
RL = 10 kΩ  
220  
1
250  
mV  
nF  
ISC  
Short-circuit current  
Continuous to common  
±18  
mA  
FREQUENCY RESPONSE  
G = 1  
600  
95  
G = 10  
BW  
SR  
tS  
Bandwidth, –3 dB  
Slew rate  
kHz  
G = 100  
15  
G = 1000  
1.5  
0.9  
0.17  
50  
G = 1, VS = 5 V, VO = 4-V step  
G = 100, VS = 5 V, VO = 4-V step  
G = 1, VS = 5 V, VSTEP = 4 V  
G = 100, VS = 5 V, VSTEP = 4 V  
G = 1, VS = 5 V, VSTEP = 4 V  
G = 100, VS = 5 V, VSTEP = 4 V  
50% overdrive  
V/μs  
μs  
To 0.1%  
400  
60  
Settling time  
To 0.01%  
μs  
μs  
500  
75  
Overload recovery  
REFERENCE INPUT  
RIN Input impedance  
Voltage range  
POWER SUPPLY  
40  
kΩ  
V–  
V+  
V
Single  
Dual  
4
36  
±18  
1.6  
1.8  
Voltage range  
V
±2  
VIN = VS / 2  
1.4  
IQ  
Quiescent current  
mA  
TA = –40°C to +125°C  
TEMPERATURE RANGE  
Specified temperature range  
Operating temperature range  
–40  
–55  
125  
150  
°C  
°C  
(5) See Typical Characteristics curves, Output Voltage Swing vs Output Current (Figure 19 to Figure 22).  
8
Copyright © 2015, Texas Instruments Incorporated  
INA188  
www.ti.com.cn  
ZHCSE92 SEPTEMBER 2015  
6.7 Typical Characteristics  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = midsupply, and G = 1, unless otherwise noted.  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
VOSI (µV)  
D001  
Input Voltage Offset Drift (µV/°C)  
–40°C to +125°C  
Figure 1. Input Voltage Offset Distribution  
Figure 2. Input Voltage Offset Drift Distribution  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
45  
40  
35  
30  
25  
20  
15  
10  
5
0
VOSO (µV)  
D001  
VOSO (µV/°C)  
–40°C to +125°C  
Figure 3. Output Voltage Offset Distribution  
Figure 4. Output Voltage Offset Drift Distribution  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
Input Bias Current (nA)  
IOS (nA)  
Figure 5. Input Bias Current Distribution  
Figure 6. Input Offset Current Distribution  
Copyright © 2015, Texas Instruments Incorporated  
9
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = midsupply, and G = 1, unless otherwise noted.  
27.5  
25  
45  
40  
35  
30  
25  
20  
15  
10  
5
22.5  
20  
17.5  
15  
12.5  
10  
7.5  
5
2.5  
0
0
Common-Mode Rejection (µV/V)  
Common-Mode Rejection (µV/V)  
G = 1  
G = 100  
Figure 7. CMRR Distribution  
Figure 8. CMRR Distribution  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
0.95  
0.9  
0.85  
0.8  
0.75  
0.7  
0.65  
0.6  
0.55  
0.5  
0.45  
0.4  
IIB ±2 V  
IIB ±15 V  
0.35  
0.3  
-2000  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
-15 -12  
-9  
-6  
-3  
0
3
6
9
12  
15  
Temperature (°C)  
Common-Mode Voltage (V)  
D001  
Figure 9. Input Bias Current vs Common-Mode Voltage  
Figure 10. Input Bias Current vs Temperature  
6
4
700  
650  
600  
550  
500  
450  
400  
350  
300  
2
0
-2  
-4  
-6  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Temperature (°C)  
Time (s)  
D001  
D001  
Figure 11. Input Offset Current vs Temperature  
Figure 12. Change in Input Offset Voltage vs Warm-Up Time  
10  
Copyright © 2015, Texas Instruments Incorporated  
INA188  
www.ti.com.cn  
ZHCSE92 SEPTEMBER 2015  
Typical Characteristics (continued)  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = midsupply, and G = 1, unless otherwise noted.  
150  
130  
110  
90  
150  
130  
110  
90  
G = 1  
G = 1  
G = 10  
G = 100  
G = 1000  
G = 10  
G = 100  
G = 1000  
70  
70  
50  
50  
30  
30  
10  
10  
-10  
-10  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
At RTI  
Figure 13. Positive PSRR vs Frequency  
Figure 14. Negative PSRR vs Frequency  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
160  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
G=1  
G=10  
G=100  
G=1000  
40  
30  
G=1  
G=10  
G=100  
G=1000  
0
-5  
20  
10  
-10  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
D001  
D001  
At RTI  
At RTI  
Figure 15. Gain vs Frequency  
Figure 16. CMRR vs Frequency  
160  
150  
140  
130  
120  
110  
100  
90  
50  
40  
G = 1  
G > 1  
30  
20  
10  
80  
0
70  
60  
50  
40  
30  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
G=1  
G=10  
G=100  
G=1000  
10  
100  
1k  
10k  
100k  
-75  
-45  
-15  
15  
45  
75  
105  
135  
Frequency (Hz)  
Temperature (ºC)  
D001  
D001  
At RTI, 1-kΩ Source Imbalance  
Figure 17. CMRR vs Frequency  
Figure 18. Common-Mode Rejection Ratio vs Temperature  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = midsupply, and G = 1, unless otherwise noted.  
18  
16  
14  
12  
10  
8
0
-40°C  
125°C  
25°C  
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
6
4
2
-40°C  
125°C  
25°C  
0
-2  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Current (mA)  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
Output Current (mA)  
D001  
D001  
VS = ±18 V  
VS = ±18 V  
Figure 19. Positive Output Voltage Swing vs  
Output Current  
Figure 20. Negative Output Voltage Swing vs  
Output Current  
2
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-40°C  
125°C  
25°C  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-1.2  
-1.4  
-1.6  
-1.8  
-2  
-40°C  
125°C  
25°C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2.5  
5
7.5  
10 12.5  
15 17.5  
20 22.5  
Output Current (mA)  
Output Current (mA)  
D001  
D001  
VS = ±2 V  
VS = ±2 V  
Figure 21. Positive Output Voltage Swing vs  
Output Current  
Figure 22. Negative Output Voltage Swing vs  
Output Current  
2
100  
50  
1.6  
1.2  
0.8  
0.4  
0
20  
10  
5
2
1
-0.4  
-0.8  
-1.2  
-1.6  
-2  
0.5  
0.2  
0.1  
G = 1  
G = 10  
G = 100  
G = 1000  
0.05  
0.02  
1
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (Hz)  
Time (s/div)  
G = 1  
Figure 23. Voltage Noise Spectral Density vs Frequency  
Figure 24. 0.1-Hz to 10-Hz RTI Voltage Noise  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
 
INA188  
www.ti.com.cn  
ZHCSE92 SEPTEMBER 2015  
Typical Characteristics (continued)  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = midsupply, and G = 1, unless otherwise noted.  
200  
160  
120  
80  
700  
680  
660  
640  
620  
600  
580  
560  
540  
520  
500  
480  
460  
440  
420  
400  
G = 1  
G = 10  
G = 100  
G = 1000  
40  
0
-40  
-80  
-120  
-160  
-200  
0
1
2
3
4
5
6
7
8
9
10  
10  
100  
1k  
10k  
100k  
Time (s/div)  
Frequency (Hz)  
G = 1000  
Figure 25. 0.1-Hz to 10-Hz RTI Voltage Noise  
Figure 26. Current Noise Spectral Density vs Frequency  
35  
10  
8
VS = 30 V  
VS = 4 V  
32.5  
30  
6
27.5  
25  
4
22.5  
20  
2
0
17.5  
15  
-2  
-4  
-6  
-8  
-10  
12.5  
10  
7.5  
5
2.5  
0
0
1
2
3
4
5
6
7
8
9
10  
10  
100  
1k  
10k  
100k  
Time (s/div)  
Frequency (Hz)  
D001  
Figure 27. 0.1-Hz to 10-Hz RTI Current Noise  
Figure 28. Large-Signal Response vs Frequency  
6
4
6
4
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Time (µs)  
Time (µs)  
D001  
D001  
RL = 10 kΩ, CL = 100 pF, G = 1  
Figure 29. Large-Signal Pulse Response  
RL = 10 kΩ, CL = 100 pF, G = 10  
Figure 30. Large-Signal Pulse Response  
Copyright © 2015, Texas Instruments Incorporated  
13  
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = midsupply, and G = 1, unless otherwise noted.  
6
6
4
4
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Time (µs)  
Time (µs)  
D001  
D001  
RL = 10 kΩ, CL = 100 pF, G = 100  
Figure 31. Large-Signal Pulse Response  
RL = 10 kΩ, CL = 100 pF, G = 1000  
Figure 32. Large-Signal Pulse Response  
100  
75  
60  
40  
50  
20  
25  
0
0
-25  
-50  
-75  
-100  
-20  
-40  
-60  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Time (µs)  
Time (µs)  
D001  
D001  
RL = 10 kΩ, CL = 100 pF, G = 1  
Figure 33. Small-Signal Pulse Response  
RL = 10 kΩ, CL = 100 pF, G = 10  
Figure 34. Small-Signal Pulse Response  
60  
40  
60  
40  
20  
20  
0
0
-20  
-40  
-60  
-20  
-40  
-60  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Time (µs)  
Time (µs)  
D001  
D001  
RL = 10 kΩ, CL = 100 pF, G = 100  
Figure 35. Small-Signal Pulse Response  
RL = 10 kΩ, CL = 100 pF, G = 1000  
Figure 36. Small-Signal Pulse Response  
14  
Copyright © 2015, Texas Instruments Incorporated  
INA188  
www.ti.com.cn  
ZHCSE92 SEPTEMBER 2015  
Typical Characteristics (continued)  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = midsupply, and G = 1, unless otherwise noted.  
150  
100  
50  
1
0 pF  
G = 1, 1-Vrms out, 2-kW load  
G = 10, 1-Vrms out, 2-kW load  
0.5  
100 pF  
220 pF  
500 pF  
1000 pF  
0.3  
0.2  
0.1  
0.05  
0.03  
0.02  
0
0.01  
0.005  
-50  
-100  
0.003  
0.002  
0.001  
0
20  
40  
60  
80  
100  
120  
100  
1k  
10k  
Time (µs)  
Frequency (Hz)  
G = 1  
Figure 37. Small-Signal Response vs Capacitive Load  
Figure 38. Total Harmonic Distortion + Noise vs Frequency  
1.5  
1.38  
1.36  
1.34  
1.32  
1.3  
1.45  
1.4  
1.35  
1.3  
1.28  
1.26  
1.24  
1.22  
1.2  
1.25  
1.2  
1.15  
1.1  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
Temperature (°C)  
Supply Voltage (V)  
D001  
D001  
Figure 39. Supply Current vs Temperature  
Figure 40. Supply Current vs Supply Voltage  
10k  
4
3.2  
2.4  
1.6  
0.8  
0
1k  
100  
10  
-0.8  
-1.6  
-2.4  
-3.2  
-4  
1
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
Frequency (Hz)  
Output Voltage (V)  
D001  
G = 1  
Figure 41. Open-Loop Output Impedance  
Figure 42. Gain Nonlinearity  
Copyright © 2015, Texas Instruments Incorporated  
15  
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VS = ±15 V, RL = 10 k, VREF = midsupply, and G = 1, unless otherwise noted.  
4
3.2  
2.4  
1.6  
0.8  
0
15  
12  
9
6
3
0
-0.8  
-1.6  
-2.4  
-3.2  
-4  
-3  
-6  
-9  
-12  
-15  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
Output Voltage (V)  
Output Voltage (V)  
D001  
D001  
G = 10  
G = 100  
Figure 43. Gain Nonlinearity  
Figure 44. Gain Nonlinearity  
180  
160  
140  
120  
100  
80  
10  
8
Single-Ended Input  
Common-Mode Input  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
60  
40  
20  
0
10M  
100M  
Frequency (Hz)  
1G  
10G  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
Output Voltage (V)  
D001  
D001  
G = 1000  
Figure 46. EMIRR  
Figure 45. Gain Nonlinearity  
16  
Copyright © 2015, Texas Instruments Incorporated  
INA188  
www.ti.com.cn  
ZHCSE92 SEPTEMBER 2015  
7 Detailed Description  
7.1 Overview  
The INA188 is a monolithic instrumentation amplifier (INA) based on the 36-V, precision zero-drift OPA188  
(operational amplifier) core. The INA188 also integrates laser-trimmed resistors to ensure excellent common-  
mode rejection and low gain error. The combination of the zero-drift amplifier core and the precision resistors  
allows this device to achieve outstanding dc precision and makes the INA188 ideal for many high-voltage  
industrial applications.  
7.2 Functional Block Diagram  
V1 = VCM œ G1 (VDIFF / 2)  
V+  
VIN- = VCM œ VDIFF / 2  
V+  
VDIFF / 2  
RFI Filter  
VIN-  
A1  
+
Zero-Drift  
Amp  
-
V+  
20 k  
V-  
V+  
RFI Filter  
RFI Filter  
25 kꢀ  
25 kꢀ  
20 kꢀ  
20 kꢀ  
A3  
VOUT  
-
V+  
Zero-Drift  
Amp  
+
RG  
V-  
+
VCM  
œ
+
V-  
VO = G1 x G2 (VIN+ - VIN-  
)
RLOAD  
V+  
-
V+  
20 kꢀ  
V-  
-
A2  
Zero-Drift  
Amp  
VIN+  
+
REF  
RFI Filter  
VDIFF / 2  
G1 = 1 + 2RF / RG  
G2 = R2 / R1  
V-  
V-  
V-  
VIN+ = VCM + VDIFF / 2  
V2 = VCM + G1 (VDIFF / 2)  
VIN-  
INA188  
Simplified  
Form  
VOUT  
RG  
+
VIN+  
REF  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Inside the INA188  
The Functional Block Diagram section provides a detailed diagram for the INA188, including the ESD protection  
and radio frequency interference (RFI) filtering. Instrumentation amplifiers are commonly represented in a  
simplified form, as shown in Figure 47.  
VIN-  
INA188  
Simplified  
Form  
VOUT  
RG  
+
VIN+  
REF  
Figure 47. INA Simplified Form  
A brief description of the internal operation is as follows:  
The differential input voltage applied across RG causes a signal current to flow through the RG resistor and both  
RF resistors. The output difference amplifier (A3) removes the common-mode component of the input signal and  
refers the output signal to the REF pin.  
The equations shown in the Functional Block Diagram section describe the output voltages of A1 and A2.  
Understanding the internal node voltages is useful to avoid saturating the device and to ensure proper device  
operation.  
7.3.2 Setting the Gain  
The gain of the INA188 is set by a single external resistor, RG, connected between pins 1 and 8. The value of RG  
is selected according to Equation 1:  
50 kW  
RG  
G =1+  
(1)  
Table 1 lists several commonly-used gains and resistor values. The 50-kterm in Equation 1 comes from the  
sum of the two internal 25-kΩ feedback resistors. These on-chip resistors are laser-trimmed to accurate absolute  
values. The accuracy and temperature coefficients of these resistors are included in the gain accuracy and drift  
specifications of the INA188.  
Table 1. Commonly-Used Gains and Resistor Values  
DESIRED GAIN  
RG ()  
NC(1)  
50k  
NEAREST 1% RG ()  
1
2
NC  
49.9k  
12.4k  
5.49k  
2.61k  
1.02k  
511  
5
12.5k  
5.556k  
2.632k  
1.02k  
505.1  
251.3  
100.2  
50.05  
10  
20  
50  
100  
200  
500  
1000  
249  
100  
49.9  
(1) NC denotes no connection. When using the SPICE model, the simulation does not converge unless a resistor is connected to the RG  
pins; use a very large resistor value.  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
INA188  
www.ti.com.cn  
ZHCSE92 SEPTEMBER 2015  
7.3.2.1 Gain Drift  
The stability and temperature drift of the external gain setting resistor, RG, also affects gain. The contribution of  
RG to gain accuracy and drift can be determined from Equation 1.  
The best gain drift of 5 ppm/can be achieved when the INA188 uses G = 1 without RG connected. In this case,  
gain drift is limited only by the slight mismatch of the temperature coefficient of the integrated 20-kΩ resistors in  
the differential amplifier (A3). At gains greater than 1, gain drift increases as a result of the individual drift of the  
25-kΩ resistors in the feedback of A1 and A2, relative to the drift of the external gain resistor RG. The low  
temperature coefficient of the internal feedback resistors significantly improves the overall temperature stability of  
applications using gains greater than 1 V/V over competing alternate solutions.  
Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring  
resistance and contribute additional gain error (such as a possible unstable gain error) at gains of approximately  
100 or greater. To ensure stability, avoid parasitic capacitance of more than a few picofarads at RG connections.  
Careful matching of any parasitics on both RG pins maintains optimal CMRR over frequency; see Typical  
Characteristics curve, Figure 17.  
7.3.3 Zero Drift Topology  
7.3.3.1 Internal Offset Correction  
Figure 48 shows a simple representation of the proprietary zero-drift architecture for one of the three amplifiers  
that comprise the INA188. These high-precision input amplifiers enable very low dc error and drift as a result of a  
modern chopper technology with an embedded synchronous filter that removes nearly all chopping noise. The  
chopping frequency is approximately 750 kHz. This amplifier is zero-corrected every 3 μs using a proprietary  
technique. This design has no aliasing.  
C2  
Zero-Drift Amplifier Inside the INA188  
Notch  
Filter  
GM1  
CHOP1  
CHOP2  
GM2  
GM3  
+
-
+
+
-
OUT  
+IN  
-IN  
-
+
-
C1  
GM_FF  
+
-
Figure 48. Zero-Drift Amplifier Functional Block Diagram  
7.3.3.2 Noise Performance  
This zero-drift architecture reduces flicker (1/f) noise to a minimum, and therefore enables the precise  
measurement of small dc-signals with high resolution, accuracy, and repeatability. The auto-calibration technique  
used by the INA188 results in reduced low-frequency noise, typically only 12 nV/Hz (at G = 100). The spectral  
noise density is detailed in Figure 53. Low-frequency noise of the INA188 is approximately 0.25 μVPP measured  
from 0.1 Hz to 10 Hz (at G = 100).  
Copyright © 2015, Texas Instruments Incorporated  
19  
 
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
7.3.3.3 Input Bias Current Clock Feedthrough  
Zero-drift amplifiers, such as the INA188, use switching on their inputs to correct for the intrinsic offset and drift of  
the amplifier. Charge injection from the integrated switches on the inputs can introduce very short transients in  
the input bias current of the amplifier. The extremely short duration of these pulses prevents them from being  
amplified; however, the pulses can be coupled to the output of the amplifier through the feedback network. The  
most effective method to prevent transients in the input bias current from producing additional noise at the  
amplifier output is to use a low-pass filter (such as an RC network).  
7.3.4 EMI Rejection  
The INA188 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources (such as wireless communications) and densely-populated boards with a mix of analog signal-chain and  
digital components. The INA188 is specifically designed to minimize susceptibility to EMI by incorporating an  
internal low-pass filter. Depending on the end-system requirements, additional EMI filters may be required near  
the signal inputs of the system, as well as incorporating known good practices such as using short traces, low-  
pass filters, and damping resistors combined with parallel and shielded signal routing. Texas Instruments  
developed a method to accurately measure the immunity of an amplifier over a broad frequency spectrum,  
extending from 10 MHz to 6 GHz. This method uses an EMI rejection ratio (EMIRR) to quantify the INA188 ability  
to reject EMI. Figure 49 and Figure 50 show the INA188 EMIRR graph for both differential and common-mode  
EMI rejection across this frequency range. Table 2 shows the EMIRR values for the INA188 at frequencies  
commonly encountered in real-world applications. Applications listed in Table 2 can be centered on or operated  
near the particular frequency shown.  
180  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
10M  
100M  
Frequency (Hz)  
1G  
10G  
10M  
100M  
Frequency (Hz)  
1G  
10G  
C035  
C036  
Figure 49. Common Mode EMIRR Testing  
Figure 50. Differential Mode (VIN+) EMIRR Testing  
Table 2. INA188 EMIRR for Frequencies of Interest  
DIFFERENTIAL COMMON-MODE  
FREQUENCY  
APPLICATION OR ALLOCATION  
(IN-P) EMIRR  
EMIRR  
Mobile radio, mobile satellite, space operation, weather, radar, ultrahigh-  
frequency (UHF) applications  
400 MHz  
83 dB  
101 dB  
Global system for mobile communications (GSM) applications, radio  
communication, navigation, GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF  
applications  
900 MHz  
1.8 GHz  
2.4 GHz  
103 dB  
112 dB  
114 dB  
118 dB  
125 dB  
123 dB  
GSM applications, mobile personal communications, broadband, satellite,  
L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications,  
industrial, scientific and medical (ISM) radio band, amateur radio and satellite,  
S-band (2 GHz to 4 GHz)  
3.6 GHz  
5.0 GHz  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
110 dB  
119 dB  
121 dB  
123 dB  
802.11a, 802.11n, aero communication and navigation, mobile communication,  
space and satellite operation, C-band (4 GHz to 8 GHz)  
20  
Copyright © 2015, Texas Instruments Incorporated  
 
 
INA188  
www.ti.com.cn  
ZHCSE92 SEPTEMBER 2015  
7.3.5 Input Protection and Electrical Overstress  
Designers often ask questions about the capability of an amplifier to withstand electrical overstress. These  
questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output pin. Each  
of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics  
of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal  
ESD protection is built into these circuits to protect them from accidental ESD events both before and during  
product assembly.  
Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is  
helpful. The Functional Block Diagram section illustrates the ESD circuits contained in the INA188. The ESD  
protection circuitry involves several current-steering diodes connected from the input and output pins and routed  
back to the internal power-supply lines. This protection circuitry is intended to remain inactive during normal  
circuit operation.  
The input pins of the INA188 are protected with internal diodes connected to the power-supply rails. These  
diodes clamp the applied signal to prevent the input circuitry from being damaged. If the input signal voltage can  
exceed the power supplies by more than 0.3 V, limit the input signal current to less than 10 mA to protect the  
internal clamp diodes. This current limiting can generally be done with a series input resistor. Some signal  
sources are inherently current-limited and do not require limiting resistors.  
7.3.6 Input Common-Mode Range  
The linear input voltage range of the INA188 input circuitry extends from 100 mV inside the negative supply  
voltage to 1.5 V below the positive supply, and maintains 84-dB (minimum) common-mode rejection throughout  
this range. The common-mode range for most common operating conditions is best calculated using the INA  
common-mode range calculating tool. The INA188 can operate over a wide range of power supplies and VREF  
configurations, thus providing a comprehensive guide to common-mode range limits for all possible conditions is  
impractical.  
The most commonly overlooked overload condition occurs when a circuit exceeds the output swing of A1 and A2,  
which are internal circuit nodes that cannot be measured. Calculating the expected voltages at the output of A1  
and A2 (see the Functional Block Diagram section) provides a check for the most common overload conditions.  
The designs of A1 and A2 are identical and the outputs can swing to within approximately 250 mV of the power-  
supply rails. For example, when the A2 output is saturated, A1 can continue to be in linear operation, responding  
to changes in the noninverting input voltage. This difference can give the appearance of linear operation but the  
output voltage is invalid.  
7.4 Device Functional Modes  
7.4.1 Single-Supply Operation  
The INA188 can be used on single power supplies of 4 V to 36 V. Use the output REF pin to level shift the  
internal output voltage into a linear operating condition. Ideally, connecting the REF oin to a potential that is mid-  
supply avoids saturating the output of the input amplifiers (A1 and A2). Actual output voltage swing is limited to  
250 mV above ground when the load is referred to ground. The typical characteristic curves, Output Voltage  
Swing vs Output Current (Figure 19 to Figure 22) illustrates how the output voltage swing varies with output  
current. See the Driving the Reference Pin section for information on how to adequately drive the reference pin.  
With single-supply operation, VIN+ and VIN– must both be 0.1 V above ground for linear operation. For instance,  
the inverting input cannot be connected to ground to measure a voltage connected to the noninverting input.  
Copyright © 2015, Texas Instruments Incorporated  
21  
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
7.4.2 Offset Trimming  
Most applications require no external offset adjustment; however, if necessary, adjustments can be made by  
applying a voltage to the REF pin. Figure 51 shows an optional circuit for trimming the output offset voltage. The  
voltage applied to the REF pin is summed at the output. The op amp buffer provides low impedance at the REF  
pin to preserve good common-mode rejection.  
VIN-  
-
V+  
RG  
INA188  
REF  
100 µA  
½ REF200  
VIN+  
+
100  
OPA333  
+
10 kꢀ  
±10 mV Adjustment  
Range  
100 ꢀ  
100 µA  
½ REF200  
V-  
Figure 51. Optional Trimming of the Output Offset Voltage  
22  
Copyright © 2015, Texas Instruments Incorporated  
 
INA188  
www.ti.com.cn  
ZHCSE92 SEPTEMBER 2015  
Device Functional Modes (continued)  
7.4.3 Input Bias Current Return Path  
The input impedance of the INA188 is extremely high—approximately 20 G. However, a path must be provided  
for the input bias current of both inputs. This input bias current is typically 750 pA. High input impedance means  
that this input bias current changes very little with varying input voltage.  
Input circuitry must provide a path for this input bias current for proper operation. Figure 52 shows various  
provisions for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds  
the common-mode range of the INA188, and the input amplifiers saturate. If the differential source resistance is  
low, the bias current return path can be connected to one input (as shown in the thermocouple example in  
Figure 52). With a higher source impedance, using two equal resistors provides a balanced input with possible  
advantages of a lower input offset voltage as a result of bias current and better high-frequency common-mode  
rejection.  
-
Microphone,  
hydrophone,  
and so forth.  
RG  
RG  
RG  
INA188  
INA188  
INA188  
+
47 k  
47 kꢀ  
-
Thermocouple  
+
10 kꢀ  
-
+
Center tap provides  
bias current return.  
Figure 52. Providing an Input Common-Mode Current Path  
Copyright © 2015, Texas Instruments Incorporated  
23  
 
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
7.4.4 Driving the Reference Pin  
The output voltage of the INA188 is developed with respect to the voltage on the reference pin. Often, the  
reference pin (pin 5) is connected to the low-impedance system ground in dual-supply operation. In single-supply  
operation, offsetting the output signal to a precise mid-supply level (for example, 2.5 V in a 5-V supply  
environment) can be useful. To accomplish this, a voltage source can be tied to the REF pin to level-shift the  
output so that the INA188 can drive a single-supply analog-to-digital converter (ADC).  
For best performance, keep the source impedance to the REF pin below 5 Ω. As illustrated in the Functional  
Block Diagram section, the reference pin is internally connected to a 20-kΩ resistor. Additional impedance at the  
REF pin adds to this 20-kΩ resistor. The imbalance in the resistor ratios results in degraded common-mode  
rejection ratio (CMRR).  
Figure 53 shows two different methods of driving the reference pin with low impedance. The OPA330 is a low-  
power, chopper-stabilized amplifier, and therefore offers excellent stability over temperature. The OPA330 is  
available in a space-saving SC70 and an even smaller chip-scale package. The REF3225 is a precision  
reference in a small SOT23-6 package.  
5 V  
5 V  
VIN-  
VIN-  
VOUT  
VOUT  
RG  
RG  
INA188  
INA188  
REF  
REF  
VIN+  
VIN+  
+
+
5 V  
5 V  
2.5 V  
REF3225  
+
a) Level shifting using the OPA330 as a low-impedance buffer.  
b) Level shifting using the low-impedance output of the REF3225.  
Figure 53. Options for Low-Impedance Level Shifting  
24  
Copyright © 2015, Texas Instruments Incorporated  
 
INA188  
www.ti.com.cn  
ZHCSE92 SEPTEMBER 2015  
Device Functional Modes (continued)  
7.4.5 Error Sources Example  
Most modern signal-conditioning systems calibrate errors at room temperature. However, calibration of errors  
that result from a change in temperature is normally difficult and costly. Therefore, minimizing these errors is  
important and can be done by choosing high-precision components (such as the INA188 that has improved  
specifications in critical areas that impact the precision of the overall system). Figure 54 shows an example  
application.  
15 V  
10 k  
-
+
RG  
5.49 kꢀ  
VDIFF = 1 V  
INA188  
VOUT  
-
10 kꢀ  
REF  
+
VCM = 10 V  
Signal Bandwidth = 5 kHz  
-15 V  
Figure 54. Example Application with G = 10 V/V and a 1-V Differential Voltage  
Resistor-adjustable INAs such as the INA188 show the lowest gain error in G = 1 because of the inherently well-  
matched drift of the internal resistors of the differential amplifier. At gains greater than 1 (for instance, G = 10 V/V  
or G = 100 V/V) the gain error becomes a significant error source because of the contribution of the resistor drift  
of the 25-kΩ feedback resistors in conjunction with the external gain resistor. Except for very high-gain  
applications, gain drift is by far the largest error contributor compared to other drift errors, such as offset drift. The  
INA188 offers the lowest gain error over temperature in the marketplace for both G > 1 and G = 1 (no external  
gain resistor). Table 3 summarizes the major error sources in common INA applications and compares the two  
cases of G = 1 (no external resistor) and G = 10 (5.49-kΩ external resistor). As explained in Table 3, although  
the static errors (absolute accuracy errors) in G = 1 are almost twice as great as compared to G = 10, there are  
much fewer drift errors because of the much lower gain error drift. In most applications, these static errors can  
readily be removed during calibration in production. All calculations refer the error to the input for easy  
comparison and system evaluation.  
Copyright © 2015, Texas Instruments Incorporated  
25  
 
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
Table 3. Error Calculation  
G = 10 ERROR  
(ppm)  
G = 1 ERROR  
(ppm)  
SPECIFICATION  
ERROR SOURCE  
ABSOLUTE ACCURACY AT 25°C  
Input offset voltage  
ERROR CALCULATION  
VOSI / VDIFF  
VOSO / (G × VDIFF  
IOS × maximum (RS+, RS–) / VDIFF  
65 μV  
180 μV  
5 nA  
65  
18  
50  
65  
180  
50  
Output offset voltage  
)
Input offset current  
104 dB (G = 10),  
84 dB (G = 1)  
VCM / (10CMRR/20 × VDIFF  
)
Common-mode rejection ratio  
20  
501  
796  
Total absolute accuracy error (ppm)  
153  
DRIFT TO 105°C  
35 ppm/°C (G = 10),  
1 ppm/°C (G = 1)  
Gain drift  
GTC × (TA – 25)  
2800  
80  
Input offset voltage drift  
Output offset voltage drift  
(VOSI_TC / VDIFF) × (TA – 25)  
0.15 μV/°C  
0.85 μV/°C  
12  
12  
68  
[VOSO_TC / ( G × VDIFF)] × (TA – 25)  
6.8  
IOS_TC × maximum (RS+, RS–) ×  
(TA – 25) / VDIFF  
Offset current drift  
60 pA/°C  
48  
48  
Total drift error (ppm)  
RESOLUTION  
2867  
208  
Gain nonlinearity  
5 ppm of FS  
5
9
5
2
eNO  
6
eNI = 18,  
eNO = 110  
2
(eNI  
+
´
´
BW  
Voltage noise (1 kHz)  
47  
G
VDIFF  
Total resolution error (ppm)  
TOTAL ERROR  
14  
52  
Total error (ppm)  
Total error = sum of all error sources  
3034  
1056  
26  
Copyright © 2015, Texas Instruments Incorporated  
INA188  
www.ti.com.cn  
ZHCSE92 SEPTEMBER 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The INA188 measures a small differential voltage with a high common-mode voltage developed between the  
noninverting and inverting input. The low offset drift in conjunction with no 1/f noise makes the INA188 suitable  
for a wide range of applications. The ability to set the reference pin to adjust the functionality of the output signal  
offers additional flexibility that is practical for multiple configurations.  
8.2 Typical Application  
Figure 55 shows the basic connections required for operating the INA188. Applications with noisy or high-  
impedance power supplies may require decoupling capacitors close to the device pins. The output is referred to  
the output reference (REF) pin that is normally grounded. The reference pin must be a low-impedance  
connection to assure good common-mode rejection.  
15 V  
±10 V  
100 k  
-
RG  
12.4 kꢀ  
4.87 kꢀ  
20 ꢀ  
VOUT = 2.5 V ± 2.3 V  
INA188  
4 mA to 20 mA  
±20 mA  
+
REF  
2.5 V  
REF3225  
5 V  
-15 V  
10 F  
Figure 55. PLC Input (±10 V, 4 mA to 20 mA)  
8.2.1 Design Requirements  
For this application, the design requirements are:  
4-mA to 20-mA input with less than 20-burden  
±20-mA input with less than 20-burden  
±10-V input with impedance of approximately 100 kΩ  
Maximum 4-mA to 20-mA or ±20mA burden voltage equal to ±0.4 V  
Output range within 0 V to 5 V  
Copyright © 2015, Texas Instruments Incorporated  
27  
 
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
Typical Application (continued)  
8.2.2 Detailed Design Procedure  
The following steps must be applied for proper device functionality:  
For a 4-mA to 20-mA input, the maximum burden of 0.4 V must have a burden resistor equal to 0.4 / 0.02 =  
20 .  
To center the output within the 0-V to 5-V range, VREF must equal 2.5 V.  
To keep the ±20-mA input linear within 0 V to 5 V, the gain resistor (RG) must be 12.4 kΩ.  
To keep the ±10-V input within the 0-V to 5-V range, attenuation must be greater than 0.05.  
A 100-kΩ resistor in series with a 4.87-kΩ resistor provides 0.0466 attenuation of ±10 V, well within the ±2.5-  
V linear limits.  
8.2.3 Application Curve  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
Input (V)  
D001  
Figure 56. Plot of PLC Input Transfer Function  
28  
Copyright © 2015, Texas Instruments Incorporated  
INA188  
www.ti.com.cn  
ZHCSE92 SEPTEMBER 2015  
9 Power Supply Recommendations  
The minimum power-supply voltage for the INA188 is ±2 V and the maximum power-supply voltage is ±18 V.  
This minimum and maximum range covers a wide range of power supplies. However, for optimum performance,  
±15 V is recommended. A 0.1-µF bypass capacitor is recommended to be added at the input to compensate for  
the layout and power-supply source impedance.  
10 Layout  
10.1 Layout Guidelines  
Attention to good layout practices is always recommended. For best operational performance of the device, use  
good printed circuit board (PCB) layout practices, including:  
Care must be taken to ensure that both input paths are well-matched for source impedance and capacitance  
to avoid converting common-mode signals into differential signals. In addition, parasitic capacitance at the  
gain-setting pins can also affect CMRR over frequency. For example, in applications that implement gain  
switching using switches or PhotoMOS® relays to change the value of RG, select the component so that the  
switch capacitance is as small as possible.  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of the device  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources  
local to the analog circuitry.  
Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of the circuitry is one of the simplest and most effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds, paying attention to the flow of the ground current. For more detailed information, see  
SLOA089, Circuit Board Layout Techniques.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better  
than in parallel with the noisy trace.  
Place the external components as close to the device as possible. As illustrated in Figure 57, keeping RG  
close to the pins minimizes parasitic capacitance.  
Keep the traces as short as possible.  
版权 © 2015, Texas Instruments Incorporated  
29  
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
10.2 Layout Example  
Gain Resistor  
Bypass  
Capacitor  
R6  
V–IH  
V+IH  
V–  
R6  
V+  
V+  
VIN  
VIN  
VO  
VOUT  
GND  
+
REF  
Bypass  
Capacitor  
V–  
GND  
Figure 57. PCB Layout Example  
30  
版权 © 2015, Texas Instruments Incorporated  
INA188  
www.ti.com.cn  
ZHCSE92 SEPTEMBER 2015  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
4. 1.设计套件与评估模块  
名称  
部件号  
类型  
DIP 适配器评估模块  
DIP-ADAPTER-EVM  
评估模块和评估板  
评估模块和评估板  
通用仪表放大器评估模块  
INAEVM  
5. 2.开发工具  
名称  
部件号  
类型  
计算仪表放大器的输入共模范围  
基于 SPICE 的模拟仿真程序  
INA-CMV-CALC  
TINA-TI  
计算工具  
电路设计和仿真  
11.2 文档支持  
11.2.1 相关文档ꢀ  
OPA188 数据表》,SBOS642  
OPA330 数据表》,SBOS432  
REF3225 数据表》,SBVS058  
《电路板布局布线技巧》SLOA089  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
PhotoMOS is a registered trademark of Panasonic Electric Works Europe AG.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2015, Texas Instruments Incorporated  
31  
INA188  
ZHCSE92 SEPTEMBER 2015  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA188ID  
INA188IDR  
INA188IDRJR  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SON  
D
D
8
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
INA188  
2500 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
INA188  
INA188  
DRJ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY