INA190A1QDCKRQ1 [TI]

符合 AEC-Q100 标准且具有皮安级输入偏置电流和 ENABLE 引脚的 40V 双向超精密电流检测放大器 | DCK | 6 | -40 to 125;
INA190A1QDCKRQ1
型号: INA190A1QDCKRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

符合 AEC-Q100 标准且具有皮安级输入偏置电流和 ENABLE 引脚的 40V 双向超精密电流检测放大器 | DCK | 6 | -40 to 125

放大器
文件: 总39页 (文件大小:1949K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
INA190-Q1 AEC-Q100 标准且具有皮安IB 和使能引脚40V、双向、超  
精密电流感测放大器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准:  
– 温度等140°C +125°CTA  
提供功能安全  
INA190-Q1 是一款汽车类、低功耗电压输出电流分流  
监控器也被称为电流感测放大器。此器件常用于监  
控直接连接到汽车12V 电池的系统INA190-Q1 可  
在独立于电源电压的 –0.2V +40V 共模电压下感测  
分流器上的压降。此外输入引脚还具有 42V 的绝对  
最大电压。  
有助于进行功能安全系统设计的文档  
• 低输入偏置电流500 pA典型值)  
支持微安级电流测量)  
• 低功耗:  
该器件的低输入偏置电流允许使用较大的电流感测电阻  
从而能够提供微安级的精确电流测量。零漂移架构  
的低失调电压扩展了电流测量的动态范围。此功能可支  
持较小的感应电阻器在具有较低功率损耗的同时仍提  
供精确的电流测量。  
– 低电源电VS1.7V 5.5V  
– 低关断电流100 nA最大值)  
– 低静态电流25°C 50 μA典型值)  
• 精度:  
– 共模抑制比132 dB最小值)  
– 增益误差±0.2%A1 器件)  
– 增益漂移7 ppm/°C最大值)  
– 失调电VOS±15 μV最大值)  
– 失调漂移80 nV/°C最大值)  
• 宽共模电压0.2V +40V可承受高42V 的  
电压  
INA190-Q1 1.7V 5.5V 单电源供电在启用时消  
耗的最大电源电流为 65 µA在禁用时仅为 0.1  
µA提供了五种固定增益选项25V/V50V/V、  
100V/V200V/V 500V/V。该器件的额定工作温度  
范围为 –40°C +125°C且采用 SC70 和  
SOT-23 封装。  
器件信息(1)  
• 双向电流感测功能  
• 增益选项:  
封装尺寸标称值)  
器件型号  
INA190-Q1  
封装  
SC70 (6)  
SOT-23 (8)  
2.00mm x 1.25mm  
1.60mm × 2.90mm  
INA190A1-Q125 V/V  
INA190A2-Q150V/V  
INA190A3-Q1100V/V  
INA190A4-Q1200V/V  
INA190A5-Q1500V/V  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
2 应用  
车身控制模(BCM)  
远程信息处理控制单元  
紧急呼(eCall)  
电池管理系(BMS)  
汽车音响主机  
Supply Voltage  
1.7 V to 5.5 V  
RSENSE  
Bus Voltage  
œ0.2 V to +40 V  
LOAD  
CBYPASS  
0.1 F  
0.5 nA  
(typ)  
0.5 nA  
(typ)  
ENABLE(1)  
VS  
INœ  
OUT  
ADC  
Microcontroller  
INA190-Q1  
IN+  
REF  
GND  
(1) The ENABLE pin is available  
only in the DDF package.  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS871  
 
 
 
 
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
Table of Contents  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Applications.................................................. 25  
9 Power Supply Recommendations................................26  
10 Layout...........................................................................27  
10.1 Layout Guidelines................................................... 27  
10.2 Layout Examples.................................................... 27  
11 Device and Documentation Support..........................29  
11.1 Documentation Support.......................................... 29  
11.2 接收文档更新通知................................................... 29  
11.3 支持资源..................................................................29  
11.4 Trademarks............................................................. 29  
11.5 Electrostatic Discharge Caution..............................29  
11.6 术语表..................................................................... 29  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................13  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................16  
Information.................................................................... 29  
4 Revision History  
Changes from Revision * (May 2019) to Revision A (March 2022)  
Page  
• 将数据表标题从“INA190-Q1 汽车类、40V、高精度、低偏置电流、低功耗电流感测放大器”更改为  
INA190-Q1 AEC-Q100 标准且具有皮安IB 和使能引脚40V、双向、超精密电流感测放大器”..... 1  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 向部分添加了功能安全信息........................................................................................................................ 1  
• 向部分添加了项目符号低关断电流100nA最大值..........................................................................1  
• 向部分添加了项目符号共模抑制比132 dB最小值.........................................................................1  
• 将中的最大增益漂移5 ppm/°C 更改7 ppm/°C以便与电气特表中的值相匹配.............................1  
• 将中的最大温漂0.13 µV/°C 更改80 nV/°C以便与电气特表中的值相匹配.................................. 1  
• 更改了部分..................................................................................................................................................1  
• 添加DDF 8 SOT-23 封装........................................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: INA190-Q1  
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
REF  
GND  
VS  
1
2
3
6
5
4
OUT  
INœ  
IN+  
Not to scale  
5-1. DCK Package 6-Pin SC70 Top View  
VS  
ENABLE  
REF  
1
2
3
4
8
7
6
5
INœ  
IN+  
NC  
GND  
OUT  
Not to scale  
5-2. DDF Package 8-Pin Thin SOT-23 Top View  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
DCK  
DDF  
Enable pin. When this pin is driven to VS, the device is on and functions as a  
current sense amplifier. When this pin is driven to GND, the device is off, the supply  
ENABLE  
2
Digital input current is reduced, and the output is placed in a high-impedance state. This pin  
must be driven externally, or connected to vs. if not used. Available in DDF package  
only.  
GND  
2
5
4
8
Analog  
Ground  
Current-sense amplifier negative input. For high-side applications, connect to load  
Analog input side of sense resistor. For low-side applications, connect to ground side of sense  
resistor.  
IN–  
Current-sense amplifier positive input. For high-side applications, connect to bus  
Analog input voltage side of sense resistor. For low-side applications, connect to load side of  
sense resistor.  
IN+  
NC  
4
7
6
5
Not internally connected. Either float these pins or connect to any voltage between  
GND and VS.  
OUT pin. This pin provides an analog voltage output that is the gained up voltage  
OUT  
6
Analog output  
difference from the IN+ to the INpins, and is offset by the voltage applied to the  
REF pin.  
Reference input. Enables bidirectional current sensing with an externally applied  
voltage.  
REF  
VS  
1
3
3
1
Analog input  
Analog  
Power supply, 1.7 V to 5.5 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: INA190-Q1  
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VS  
Supply voltage  
Analog inputs  
6
V
(2)  
42  
Differential (VIN+) (VIN–  
)
42  
GND 0.3  
GND 0.3  
GND 0.3  
VIN+  
VIN–  
,
V
VIN+, VIN, with respect to GND(3)  
42  
VENABLE ENABLE  
REF, OUT(3)  
6
(VS) + 0.3  
5
V
V
Input current into any pin(3)  
Operating temperature  
Junction temperature  
Storage temperature  
mA  
°C  
°C  
°C  
TA  
150  
55  
65  
TJ  
150  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) VIN+ and VINare the voltages at the IN+ and INpins, respectively.  
(3) Input voltage at any pin may exceed the voltage shown if the current at that pin is limited to 5 mA.  
6.2 ESD Ratings  
VALUE  
±3000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1) HBM ESD Classification Level 2  
Charged-device model (CDM), per AEC Q100-011 CDM ESD Classification Level C6  
V(ESD) Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
GND 0.2  
GND 0.2  
1.7  
NOM  
MAX  
40  
UNIT  
V
VCM  
Common-mode input range  
VIN+, VINInput pin voltage range  
40  
V
VS  
Operating supply voltage  
5.5  
VS  
V
VREF  
TA  
Reference pin voltage range  
Operating free-air temperature  
GND  
V
125  
°C  
40  
6.4 Thermal Information  
INA190-Q1  
THERMAL METRIC(1)  
DCK (SC70)  
6 PINS  
170.7  
132.7  
65.3  
DDF (SOT-23)  
8 PINS  
164.6  
86.6  
UNIT  
RqJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RqJC(top)  
RqJB  
84.3  
YJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
45.7  
7.1  
YJB  
65.2  
83.8  
RqJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: INA190-Q1  
 
 
 
 
 
 
 
 
 
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
at TA = 25°C, VSENSE = VIN+ VIN, VS = 1.8 V to 5.0 V, VIN+ = 12 V, VREF = VS / 2, and VENABLE = VS (unless otherwise  
noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
Common-mode  
rejection ratio  
CMRR  
132  
150  
dB  
µV  
VSENSE = 0 mV, VIN+ = 0.1 V to 40 V, TA = 40°C to +125°C  
VOS  
Offset voltage, RTI(1)  
Offset drift, RTI  
VS = 1.8 V, VSENSE = 0 mV  
±15  
3  
dVOS/dT  
10  
80 nV/°C  
VSENSE = 0 mV, TA = 40°C to +125°C  
Power-supply rejection  
ratio, RTI  
PSRR  
VSENSE = 0 mV, VS = 1.7 V to 5.5 V  
±5  
3
µV/V  
1  
IIB  
Input bias current  
Input offset current  
VSENSE = 0 mV  
VSENSE = 0 mV  
0.5  
nA  
nA  
IIO  
±0.07  
OUTPUT  
A1 devices  
A2 devices  
A3 devices  
A4 devices  
A5 devices  
A1 devices  
25  
50  
G
Gain  
100  
V/V  
200  
500  
±0.2%  
±0.3%  
0.04%  
A2, A3, A4  
EG  
Gain error  
VOUT = 0.1 V to VS 0.1 V  
0.06%  
devices  
A5 devices  
±0.4%  
7
0.08%  
2
Gain error drift  
ppm/°C  
TA = 40°C to +125°C  
VOUT = 0.1 V to VS 0.1 V  
A1 devices  
Nonlinearity error  
±0.01%  
±2  
±10  
±6  
A2 devices  
±1  
Reference voltage  
rejection ratio  
VREF = 100 mV to VS 100 mV,  
TA = 40°C to +125°C  
RVRR  
µV/V  
nF  
A3 devices  
±0.5  
±4  
A4, A5  
devices  
±0.25  
1
±3  
Maximum capacitive  
load  
No sustained oscillation  
VOLTAGE OUTPUT  
Swing to VS power-  
supply rail  
VSP  
VSN  
mV  
mV  
mV  
VS = 1.8 V, RL = 10 kto GND, TA = 40°C to +125°C  
(VS) 20  
(VGND) + 0.05  
(VGND) + 1  
(VS) 40  
(VGND) + 1  
(VGND) + 3  
VS = 1.8 V, RL = 10 kto GND, TA = 40°C to +125°C,  
VSENSE = 10 mV, VREF = 0 V  
Swing to GND  
A1, A2, A3  
VS = 1.8 V, RL = 10 kto GND,  
TA = 40°C to +125°C, VSENSE = 0 mV,  
VREF = 0 V  
devices  
Zero current output  
voltage  
VZL  
A4 devices  
A5 devices  
(VGND) + 2  
(VGND) + 3  
(VGND) + 4  
(VGND) + 9  
mV  
mV  
FREQUENCY RESPONSE  
A1 devices, CLOAD = 10 pF  
45  
37  
35  
33  
27  
0.3  
30  
A2 devices, CLOAD = 10 pF  
BW  
Bandwidth  
A3 devices, CLOAD = 10 pF  
kHz  
A4 devices, CLOAD = 10 pF  
A5 devices, CLOAD = 10 pF  
SR  
tS  
Slew rate  
VS = 5.0 V, VOUT = 0.5 V to 4.5 V  
From current step to within 1% of final value  
V/µs  
µs  
Settling time  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: INA190-Q1  
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
at TA = 25°C, VSENSE = VIN+ VIN, VS = 1.8 V to 5.0 V, VIN+ = 12 V, VREF = VS / 2, and VENABLE = VS (unless otherwise  
noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
75  
1
MAX  
UNIT  
NOISE, RTI(1)  
Voltage noise density  
Leakage input current  
nV/Hz  
ENABLE  
IEN  
100  
6
nA  
V
0 V VENABLE VS  
High-level input  
voltage  
VIH  
0.7 × VS  
0
VIL  
Low-level input voltage  
Hysteresis  
0.3 × VS  
V
VHYS  
300  
1
mV  
Output leakage  
disabled  
IODIS  
VS = 5.0 V, VOUT = 0 V to 5.0 V, VENABLE = 0 V  
5
µA  
POWER SUPPLY  
VS = 1.8 V, VSENSE = 0 mV  
48  
10  
65  
90  
µA  
µA  
IQ  
Quiescent current  
VS = 1.8 V, VSENSE = 0 mV, TA = 40°C to +125°C  
Quiescent current  
disabled  
IQDIS  
VENABLE = 0 V, VSENSE = 0 mV  
100  
nA  
(1) RTI = referred-to-input.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: INA190-Q1  
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = 25°C, VS = 1.8 V, VIN+ = 12 V, VREF = VS / 2, VENABLE = VS(DDF), and for all gain options (unless otherwise noted)  
15  
10  
5
0
-5  
-10  
-15  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Input Offset Voltage (mV)  
D001  
Temperature (èC)  
D006  
6-1. Input Offset Voltage Production Distribution  
6-2. Offset Voltage vs. Temperature  
0.1  
0.08  
0.06  
0.04  
0.02  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
D007  
Temperature (èC)  
Common-Mode Rejection Ratio (mV/V)  
D012  
6-4. Common-Mode Rejection Ratio vs. Temperature  
6-3. Common-Mode Rejection Production Distribution  
D013  
D014  
Gain Error (%)  
Gain Error (%)  
A2, A3, and A4 devices  
A1 devices  
6-6. Gain Error Production Distribution  
6-5. Gain Error Production Distribution  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: INA190-Q1  
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = 1.8 V, VIN+ = 12 V, VREF = VS / 2, VENABLE = VS(DDF), and for all gain options (unless otherwise noted)  
0.2  
0.16  
0.12  
0.08  
0.04  
0
-0.04  
-0.08  
-0.12  
-0.16  
-0.2  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
D017  
Temperature (èC)  
Gain Error (%)  
D018  
A5 devices  
.
6-7. Gain Error Production Distribution  
6-8. Gain Error vs. Temperature  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
60  
A1  
A2  
A3  
A4  
A5  
40  
20  
-10  
-20  
0
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
D020  
D019  
VS = 5 V  
VS = 5 V  
6-9. Gain vs. Frequency  
6-10. Power-Supply Rejection Ratio vs. Frequency  
Vs  
160  
140  
120  
100  
80  
-40°C  
25°C  
125°C  
Vs-0.4  
Vs-0.8  
GND+0.8  
GND+0.4  
GND  
60  
40  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
0
1
2
3
4
5
6
7
Output Current (mA)  
8
9
10 11  
D021  
D010  
VS = 1.8 V  
A3 devices  
6-12. Output Voltage Swing vs. Output Current  
6-11. Common-Mode Rejection Ratio vs. Frequency  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: INA190-Q1  
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = 1.8 V, VIN+ = 12 V, VREF = VS / 2, VENABLE = VS(DDF), and for all gain options (unless otherwise noted)  
Vs  
0.25  
0.2  
-40°C  
25°C  
125°C  
Vs-1  
0.15  
0.1  
Vs-2  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
GND+2  
GND+1  
GND  
0
5
10  
15  
20  
25  
Common-Mode Voltage (V)  
30  
35  
40  
0
5
10  
15 20  
Output Current (mA)  
25  
30  
35  
D024  
D009  
VS = 5.0 V  
VS = 5.0 V  
6-13. Output Voltage Swing vs. Output Current  
6-14. Input Bias Current vs. Common-Mode Voltage  
7
0.25  
0.2  
0.15  
0.1  
6
5
4
0.05  
0
3
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
2
1
0
-1  
-50  
0
5
10  
15  
20  
25  
Common-Mode Voltage (V)  
30  
35  
40  
-25  
0
25  
50  
75  
100  
125  
150  
D025  
Temperature (èC)  
D026  
VENABLE = 0 V  
.
6-15. Input Bias Current vs. Common-Mode Voltage  
6-16. Input Bias Current vs. Temperature  
(Shutdown)  
240  
80  
VS = 1.8 V  
VS = 3.3 V  
VS = 5.0 V  
VS = 1.8 V  
VS = 3.3 V  
VS = 5 V  
210  
180  
150  
120  
90  
75  
70  
65  
60  
55  
50  
45  
40  
35  
60  
30  
0
-30  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
D002  
Temperature (èC)  
D027  
VENABLE = 0 V  
.
6-18. Quiescent Current vs. Temperature (Disabled)  
6-17. Quiescent Current vs. Temperature (Enabled)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: INA190-Q1  
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = 1.8 V, VIN+ = 12 V, VREF = VS / 2, VENABLE = VS(DDF), and for all gain options (unless otherwise noted)  
100  
70  
65  
60  
55  
50  
45  
40  
VS = 1.8 V  
VS = 5 V  
80  
70  
60  
50  
40  
30  
20  
10  
10  
-5  
0
5
10  
15  
20  
25  
Common-Mode Voltage (V)  
30  
35  
40  
100  
1k  
Frequency (Hz)  
10k  
100k  
D029  
D030  
VS = 5.0 V  
A3 devices  
6-19. Quiescent Current vs. Common Mode Voltage  
6-20. Input-Referred Voltage Noise vs. Frequency  
Time (20 ms/div)  
Time (1 s/div)  
D032  
D031  
VS = 5.0 V, A3 devices  
A3 devices  
6-22. Step Response (10-mVPP Input Step)  
6-21. 0.1-Hz to 10-Hz Voltage Noise (Referred-To-Input)  
Inverting Input  
Output  
VCM  
VOUT  
0 V  
Time (250 ms/div)  
Time (250 ms/div)  
D034  
D033  
A3 devices  
A3 devices  
6-24. Inverting Differential Input Overload  
6-23. Common-Mode Voltage Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: INA190-Q1  
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = 1.8 V, VIN+ = 12 V, VREF = VS / 2, VENABLE = VS(DDF), and for all gain options (unless otherwise noted)  
Non-inverting Input  
Output  
Supply Voltage  
Output Voltage  
0 V  
0 V  
Time (250 ms/div)  
Time (10 ms/div)  
D035  
D036  
VS = 5.0 V, A3 devices  
VS = 5.0 V, A3 devices  
6-25. Noninverting Differential Input Overload  
6-26. Start-Up Response  
Enable  
Output  
Supply Voltage  
Output Voltage  
0 V  
0 V  
Time (250 ms/div)  
Time (100 ms/div)  
D038  
D037  
VS = 5.0 V, A3 devices  
VS = 5.0 V, A3 devices  
6-28. Enable and Disable Response  
6-27. Brownout Recovery  
100  
25  
IBP  
IBN  
IBP  
IBN  
80  
60  
15  
5
40  
20  
0
-20  
-40  
-60  
-80  
-5  
-15  
-100  
-25  
-60  
-110 -90 -70 -50 -30 -10 10 30 50 70 90 110  
Differential Input Voltage (mV)  
-40  
-20  
0
20  
Differential Input Voltage (mV)  
40  
60  
D039  
D047  
VS = 5.0 V, VREF = 2.5 V, A1 devices  
VS = 5.0 V, VREF = 2.5 V, A2, A3, A4, A5 devices  
6-30. IB+ and IBvs. Differential Input Voltage  
6-29. IB+ and IBvs. Differential Input Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: INA190-Q1  
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = 1.8 V, VIN+ = 12 V, VREF = VS / 2, VENABLE = VS(DDF), and for all gain options (unless otherwise noted)  
1.25  
1
3
2.5  
2
-40èC  
25èC  
125èC  
25èC  
-40èC  
125èC  
0.75  
0.5  
1.5  
1
0.25  
0
0.5  
0
-0.5  
-1  
-0.25  
-0.5  
-0.75  
-1  
-1.5  
-2  
-2.5  
0
0.5  
1
1.5  
2
2.5  
3
Output Voltage (V)  
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
Output Voltage (V)  
3.5  
4
4.5  
5
D040  
D048  
VS = 5.0 V, VENABLE = 0 V, VREF = 2.5 V  
VS = 5.0 V, VENABLE = 0 V, VREF = 2.5 V  
6-31. Output Leakage vs. Output Voltage (A1, A2, and A3  
6-32. Output Leakage vs. Output Voltage (A4 and A5 Devices)  
Devices)  
5000  
A5  
A4  
A2  
A3  
1000  
A1  
100  
10  
1
Gain Variants  
A1  
A2  
A3  
A4  
A5  
0.1  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
D050  
VS = 5.0 V, VCM = 0 V  
6-33. Output Impedance vs. Frequency  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: INA190-Q1  
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The INA190-Q1 is a low bias current, low offset, 40-V common-mode, current-sensing amplifier. The DDF  
SOT-23 package also features an enable pin. The INA190-Q1 is a specially designed, current-sensing amplifier  
that accurately measures voltages developed across current-sensing resistors on common-mode voltages that  
far exceed the supply voltage. Current is measured on input voltage rails as high as 40 V at VIN+ and VIN, with  
a supply voltage, VS, as low as 1.7 V. When disabled, the output goes to a high-impedance state, and the supply  
current draw is reduced to less than 0.1 µA. The INA190-Q1 is intended for use in both low-side and high-side  
current-sensing configurations where high accuracy and low current consumption are required.  
7.2 Functional Block Diagram  
ENABLE(1)  
VS  
INA190-Q1  
IN+  
œ
œ
+
OUT  
REF  
œ
+
+
INœ  
GND  
1. The ENABLE pin is available only in the DDF package.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: INA190-Q1  
 
 
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Precision Current Measurement  
The INA190-Q1 allows for accurate current measurements over a wide dynamic range. The high accuracy of the  
device is attributable to the low gain error and offset specifications. The offset voltage of the INA190-Q1 is less  
than 15 µV. In this case, the low offset improves the accuracy at light loads when VIN+ approaches VIN. Another  
advantage of low offset is the ability to use a lower-value shunt resistor that reduces the power loss in the  
current-sense circuit, and improves the power efficiency of the end application.  
The maximum gain error of the INA190-Q1 is specified between 0.2% and 0.4% of the actual value, depending  
on the gain option. As the sensed voltage becomes much larger than the offset voltage, the gain error becomes  
the dominant source of error in the current-sense measurement. When the device monitors currents near the  
full-scale output range, the total measurement error approaches the value of the gain error.  
7.3.2 Low Input Bias Current  
The INA190-Q1 is different from many current-sense amplifiers because this device offers very low input bias  
current. The low input bias current of the INA190-Q1 has three primary benefits.  
The first benefit is the reduction of the current consumed by the device in both the enabled and disabled states.  
Classical current-sense amplifier topologies typically consume tens of microamps of current at the inputs. For  
these amplifiers, the input current is the result of the resistor network that sets the gain and additional current to  
bias the input amplifier. To reduce the bias current to near zero, the INA190-Q1 uses a capacitively coupled  
amplifier on the input stage, followed by a difference amplifier on the output stage.  
The second benefit of low bias current is the ability to use input filters to reject high-frequency noise before the  
signal is amplified. In a traditional current-sense amplifier, the addition of input filters comes at the cost of  
reduced accuracy. However, as a result of the low bias currents, input filters have little effect on the  
measurement accuracy of the INA190-Q1.  
The third benefit of low bias current is the ability to use a larger current-sense resistor. This ability allows the  
device to accurately monitor currents as low as 1 µA.  
7.3.3 Low Quiescent Current With Output Enable  
The device features low quiescent current (IQ), while still providing sufficient small-signal bandwidth to be usable  
in most applications. The quiescent current of the INA190-Q1 is only 48 µA (typ), while providing a small-signal  
bandwidth of 35 kHz in a gain of 100. The low IQ and good bandwidth allow the device to be used in many  
portable electronic systems without excessive drain on the battery. Because many applications only need to  
periodically monitor current, the INA190-Q1 features an enable pin that turns off the device until needed. When  
in the disabled state, the INA190-Q1 typically draws 10 nA of total supply current.  
7.3.4 Bidirectional Current Monitoring  
INA190-Q1 devices can sense current flow through a sense resistor in both directions. The bidirectional current-  
sensing capability is achieved by applying a voltage at the REF pin to offset the output voltage. A positive  
differential voltage sensed at the inputs results in an output voltage that is greater than the applied reference  
voltage. Likewise, a negative differential voltage at the inputs results in output voltage that is less than the  
applied reference voltage. Use 方程1 to calculate the output voltage of the current-sense amplifier.  
VOUT = ILOADì RSENSE ìGAIN + V  
(
)
REF  
(1)  
where  
ILOAD is the load current to be monitored.  
RSENSE is the current-sense resistor.  
GAIN is the gain option of the selected device.  
VREF is the voltage applied to the REF pin.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: INA190-Q1  
 
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
7.3.5 High-Side and Low-Side Current Sensing  
The INA190-Q1 supports input common-mode voltages from 0.2 V to +40 V. Because of the internal topology,  
the common-mode range is not restricted by the power-supply voltage (VS). The ability to operate with common-  
mode voltages greater or less than VS allows the INA190-Q1 to be used in high-side and low-side current-  
sensing applications (see 7-1).  
Bus Supply  
up to +40 V  
IN+  
High-Side Sensing  
RSENSE  
Common-mode voltage (VCM  
is bus-voltage dependent.  
)
INœ  
LOAD  
IN+  
Low-Side Sensing  
Common-mode voltage (VCM  
is always near ground and is  
)
RSENSE  
isolated from bus-voltage spikes.  
INœ  
7-1. High-Side and Low-Side Sensing Connections  
7.3.6 High Common-Mode Rejection  
The INA190-Q1 uses a capacitively coupled amplifier on the front end. Therefore, dc common-mode voltages  
are blocked from downstream circuits, resulting in very high common-mode rejection. Typically, the common-  
mode rejection of the INA190-Q1 is approximately 150 dB. The ability to reject changes in the dc common-mode  
voltage allows the INA190-Q1 to monitor both high- and low-voltage rail currents with very little change in the  
offset voltage.  
7.3.7 Rail-to-Rail Output Swing  
The INA190-Q1 allows linear current-sensing operation with the output close to the supply rail and ground. The  
maximum specified output swing to the positive rail is VS 40 mV, and the maximum specified output swing to  
GND is only GND + 1 mV. The close-to-rail output swing is useful to maximize the usable output range,  
particularly when operating the device from a 1.8-V supply.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: INA190-Q1  
 
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
The INA190-Q1 is in normal operation when the following conditions are met:  
The power-supply voltage (VS) is between 1.7 V and 5.5 V.  
The common-mode voltage (VCM) is within the specified range of 0.2 V to +40 V.  
The maximum differential input signal times the gain plus VREF is less than the positive swing voltage VSP  
The ENABLE pin is driven or connected to VS for package options that feature this pin.  
.
The minimum differential input signal times the gain plus VREF is greater than the zero load swing to GND,  
VZL (see the Rail-to-Rail Output Swing section).  
During normal operation, this device produces an output voltage that is the amplified representation of the  
difference voltage from IN+ to INplus the voltage applied to the REF pin.  
7.4.2 Unidirectional Mode  
This device can be configured to monitor current flowing in one direction (unidirectional) or in both directions  
(bidirectional) depending on how the REF pin is connected. 7-2 shows the device operating in unidirectional  
mode where the output is near ground when no current is flowing. When the current flows from the bus supply to  
the load, the input voltage from IN+ to INincreases and causes the output voltage at the OUT pin to increase.  
Bus Voltage  
up to 40 V  
VS  
1.7 V to 5.5 V  
RSENSE  
CBYPASS  
0.1 µF  
Load  
ISENSE  
VS  
INA190-Q1  
INœ  
Capacitively  
Coupled  
Amplifier  
œ
OUT  
REF  
VOUT  
+
IN+  
GND  
7-2. Typical Unidirectional Application  
The linear range of the output stage is limited by how close the output voltage can approach ground under zero  
input conditions. The zero current output voltage of the INA190-Q1 is very small and for most unidirectional  
applications the REF pin is simply grounded. However, if the measured current multiplied by the current sense  
resistor and device gain is less than the zero current output voltage then bias the REF pin to a convenient value  
above the zero current output voltage to get the output into the linear range of the device. To limit common-mode  
rejection errors, buffer the reference voltage connected to the REF pin.  
A less-frequently used output biasing method is to connect the REF pin to the power-supply voltage, VS. This  
method results in the output voltage saturating at 40 mV less than the supply voltage when no differential input  
voltage is present. This method is similar to the output saturated low condition with no differential input voltage  
when the REF pin is connected to ground. The output voltage in this configuration only responds to currents that  
develop negative differential input voltage relative to the device INpin. Under these conditions, when the  
negative differential input signal increases, the output voltage moves downward from the saturated supply  
voltage. The voltage applied to the REF pin must not exceed VS.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: INA190-Q1  
 
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
Another use for the REF pin in unidirectional operation is to level shift the output voltage. 7-3 shows an  
application where the device ground is set to a negative voltage so currents biased to negative supplies, as seen  
in optical networking cards, can be measured. The GND of the INA190-Q1 can be set to negative voltages, as  
long as the inputs do not violate the common-mode range specification and the voltage difference between vs.  
and GND does not exceed 5.5 V. In this example, the output of the INA190-Q1 is fed into a positive-biased ADC.  
By grounding the REF pin, the voltages at the output will be positive and not damage the ADC. To make sure the  
output voltage never goes negative, the supply sequencing must be the positive supply first, followed by the  
negative supply.  
+ 1.8 V  
-3.3 V  
CBYPASS  
0.1 µF  
RSENSE  
Load  
VS  
INA190-Q1  
IN-  
Capacitively  
Coupled  
Amplifier  
œ
OUT  
ADC  
+
REF  
IN+  
GND  
- 3.3 V  
7-3. Using the REF Pin to Level-Shift Output Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: INA190-Q1  
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
7.4.3 Bidirectional Mode  
The INA190-Q1 devices are bidirectional current-sense amplifiers capable of measuring currents through a  
resistive shunt in two directions. This bidirectional monitoring is common in applications that include charging  
and discharging operations where the current flowing through the resistor can change directions.  
Bus Voltage  
up to 40 V  
VS  
CBYPASS  
0.1 µF  
RSENSE  
1.7 V to 5.5 V  
Load  
ISENSE  
VS  
INA190-Q1  
INœ  
Reference  
Voltage  
Capacitively  
Coupled  
Amplifier  
œ
OUT  
REF  
VOUT  
+
+
IN+  
œ
GND  
7-4. Bidirectional Application  
The user can apply a voltage to the REF pin to measure this current flowing in both directions (see 7-4). The  
voltage applied to REF (VREF) sets the output state that corresponds to the zero-input level state. The output  
then responds by increasing above VREF for positive differential signals (relative to the INpin) and responds by  
decreasing below VREF for negative differential signals. This reference voltage applied to the REF pin can be set  
anywhere between 0 V to VS. For bidirectional applications, VREF is typically set at VS/2 for equal signal range in  
both current directions. In some cases, VREF is set at a voltage other than VS/2; for example, when the  
bidirectional current and corresponding output signal do not need to be symmetrical.  
7.4.4 Input Differential Overload  
If the differential input voltage (VIN+ VIN) times gain exceeds the voltage swing specification, the INA190-Q1  
drives its output as close as possible to the positive supply or ground, and does not provide accurate  
measurement of the differential input voltage. If this input overload occurs during normal circuit operation, then  
reduce the value of the shunt resistor or use a lower-gain version with the chosen sense resistor to avoid this  
mode of operation. If a differential overload occurs in a time-limited fault event, then the output of the INA190-Q1  
returns to the expected value approximately 80 µs after the fault condition is removed.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: INA190-Q1  
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
7.4.5 Shutdown  
Specific package options of the INA190-Q1 feature an active-high ENABLE pin that shuts down the device when  
pulled to ground. When the device is shut down, the quiescent current is reduced to 10 nA (typical), and the  
output goes to a high-impedance state. In a battery-powered application, the low quiescent current extends the  
battery lifetime when the current measurement is not needed. When the ENABLE pin is driven to the supply  
voltage, the device turns back on. The typical output settling time when enabled is 130 µs.  
The output of the INA190-Q1 goes to a high-impedance state when disabled. Therefore, you can connect  
multiple outputs of the INA190-Q1 together to a single ADC or measurement device (see 7-5).  
When connected in this way, enable only one INA190-Q1 at a time, and make sure all devices have the same  
supply voltage.  
RSENSE  
Bus Voltage1  
upto to +40 V  
Supply Voltage  
1.7 V to 5.5 V  
LOAD  
0.1 F  
ENABLE(1)  
GPIO1  
VS  
INœ  
Microcontroller  
ADC  
OUT  
REF  
INA190-Q1  
IN+  
GPIO2  
GND  
RSENSE  
Bus Voltage2  
upto to +40 V  
Supply Voltage  
1.7 V to 5.5 V  
LOAD  
0.1 F  
ENABLE(1)  
VS  
INœ  
OUT  
INA190-Q1  
IN+  
(1) The ENABLE pin is available  
only in the DDF package.  
REF  
GND  
7-5. Multiplexing Multiple Devices With the ENABLE Pin  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: INA190-Q1  
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The INA190-Q1 amplifies the voltage developed across a current-sensing resistor as current flows through the  
resistor to the load or ground. The high common-mode rejection of the INA190-Q1 make it usable over a wide  
range of voltage rails while still maintaining an accurate current measurement.  
8.1.1 Basic Connections  
8-1 shows the basic connections of the INA190-Q1. Place the device as close as possible to the current  
sense resistor and connect the input pins (IN+ and IN) to the current sense resistor through kelvin  
connections.If present, the ENABLE pin must be controlled externally or connected to VS if not used.  
Supply Voltage  
1.7 V to 5.5 V  
RSENSE  
Bus Voltage  
œ0.2 V to +40 V  
LOAD  
CBYPASS  
0.1 F  
0.5 nA  
(typ)  
0.5 nA  
(typ)  
ENABLE(1)  
VS  
INœ  
OUT  
ADC  
Microcontroller  
INA190-Q1  
IN+  
REF  
GND  
(1) The ENABLE pin is available  
only in the DDF package.  
NOTE: To help eliminate ground offset errors between the device and the analog-to-digital converter (ADC), connect the REF pin to the  
ADC reference input. When driving SAR ADCs, filter or buffer the output of the INA190-Q1 before connecting directly to the ADC.  
8-1. Basic Connections for the INA190-Q1  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: INA190-Q1  
 
 
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.1.2 RSENSE and Device Gain Selection  
The accuracy of any current-sense amplifier is maximized by choosing the current-sense resistor to be as large  
as possible. A large sense resistor maximizes the differential input signal for a given amount of current flow and  
reduces the error contribution of the offset voltage. However, there are practical limits as to how large the  
current-sense resistor can be in a given application because of the resistor size and maximum allowable power  
dissipation. 方程式 2 gives the maximum value for the current-sense resistor for a given power dissipation  
budget:  
PDMAX  
RSENSE  
<
2
IMAX  
(2)  
where:  
PDMAX is the maximum allowable power dissipation in RSENSE  
IMAX is the maximum current that will flow through RSENSE  
.
.
An additional limitation on the size of the current-sense resistor and device gain is due to the power-supply  
voltage, VS, and device swing-to-rail limitations. In order to make sure that the current-sense signal is properly  
passed to the output, both positive and negative output swing limitations must be examined. 方程式 3 provides  
the maximum values of RSENSE and GAIN to keep the device from exceeding the positive swing limitation.  
IMAX ìRSENSE ìGAIN < VSP - VREF  
where:  
(3)  
IMAX is the maximum current that will flow through RSENSE  
GAIN is the gain of the current-sense amplifier.  
.
VSP is the positive output swing as specified in the data sheet.  
VREF is the externally applied voltage on the REF pin.  
To avoid positive output swing limitations when selecting the value of RSENSE, there is always a trade-off  
between the value of the sense resistor and the gain of the device under consideration. If the sense resistor  
selected for the maximum power dissipation is too large, then it is possible to select a lower-gain device in order  
to avoid positive swing limitations.  
The negative swing limitation places a limit on how small the sense resistor value can be for a given application.  
方程4 provides the limit on the minimum value of the sense resistor.  
IMIN ìRSENSE ìGAIN > VSN - VREF  
where:  
(4)  
IMIN is the minimum current that will flow through RSENSE  
GAIN is the gain of the current-sense amplifier.  
.
VSN is the negative output swing of the device (see Rail-to-Rail Output Swing).  
VREF is the externally applied voltage on the REF pin.  
In addition to adjusting RSENSE and the device gain, the voltage applied to the REF pin can be slightly increased  
above GND to avoid negative swing limitations.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: INA190-Q1  
 
 
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.1.3 Signal Conditioning  
When performing accurate current measurements in noisy environments, the current-sensing signal is often  
filtered. The INA190-Q1 features low input bias currents. Therefore, adding a differential mode filter to the input  
without sacrificing the current-sense accuracy is possible. Filtering at the input is advantageous because this  
action attenuates differential noise before the signal is amplified. 8-2 provides an example of how to use a  
filter on the input pins of the device.  
Bus Voltage  
up to 40 V  
VS  
1.7 V to 5.5 V  
CBYPASS  
0.1 µF  
RSENSE  
Load  
VS  
Capacitively Coupled  
Amplifier  
INA190-Q1  
RF  
INœ  
1
CF  
œ
f3dB  
=
OUT  
REF  
VOUT  
RDIFF  
4pRFCF  
+
RF  
IN+  
GND  
8-2. Filter at the Input Pins  
8-3 shows the value of RDIFF as a function of the device temperature.  
6
A1  
A2, A3, A4, A5  
5
4
3
2
1
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
D115  
8-3. Differential Input Impedance vs. Temperature  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: INA190-Q1  
 
 
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
As the voltage drop across the sense resistor (VSENSE) increases, the amount of voltage dropped across the  
input filter resistors (RF) also increases. The increased voltage drop results in additional gain error. Use 方程式 5  
to calculate the error caused by these resistors.  
«
RDIFF  
Error(%) = 1-  
ì100  
÷
÷
RSENSE+ RDIFF + 2ìR  
(
)
F
(5)  
where:  
RDIFF is the differential input impedance.  
RF is the added value of the series filter resistance.  
The input stage of the INA190-Q1 uses a capacitive feedback amplifier topology in order to achieve high dc  
precision. As a result, periodic high-frequency shunt voltage (or current) transients of significant amplitude (10  
mV or greater) and duration (hundreds of nanoseconds or greater) may be amplified by the INA190-Q1, even  
though the transients are greater than the device bandwidth. Use a differential input filter in these applications to  
minimize disturbances at the INA190-Q1 output.  
The high input impedance and low bias current of the INA190-Q1 provide flexibility in the input filter design  
without impacting the accuracy of current measurement. For example, set RF = 100 and CF = 22 nF to achieve  
a low-pass filter corner frequency of 36.2 kHz. These filter values significantly attenuate most unwanted high-  
frequency signals at the input without severely impacting the current sensing bandwidth or precision. If a lower  
corner frequency is desired, increase the value of CF.  
Filtering the input filters out differential noise across the sense resistor. If high-frequency, common-mode noise is  
a concern, add an RC filter from the OUT pin to ground. The RC filter helps filter out both differential and  
common mode noise, as well as, internally generated noise from the device. The value for the resistance of the  
RC filter is limited by the impedance of the load. Any current drawn by the load manifests as an external voltage  
drop from the INA190-Q1 OUT pin to the load input. To select the optimal values for the output filter, use 6-33  
and see the Closed-Loop Analysis of Load-Induced Amplifier Stability Issues Using ZOUT application report  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: INA190-Q1  
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.1.4 Common-Mode Voltage Transients  
With a small amount of additional circuitry, the INA190-Q1 can be used in circuits subject to transients that  
exceed the absolute maximum voltage ratings. The most simple way to protect the inputs from negative  
transients is to add resistors in series to the INand IN+ pins. Use resistors that are 1 kΩ or less, and limit the  
current in the ESD structures to less than 5 mA. For example, using 1-kΩresistors in series with the INA190-Q1  
allows voltages as low as 5 V, while limiting the ESD current to less than 5 mA. If protection from high-voltage  
or more-negative, common-voltage transients is needed, use the circuits shown in 8-4 and 8-5. When  
implementing these circuits, use only Zener diodes or Zener-type transient absorbers (sometimes referred to as  
transzorbs); any other type of transient absorber has an unacceptable time delay. Start by adding a pair of  
resistors as a working impedance for the Zener diode (see 8-4). Keep these resistors as small as possible;  
most often, use around 100 . Larger values can be used with an effect on gain that is discussed in the Signal  
Conditioning section. This circuit limits only short-term transients; therefore, many applications are satisfied with  
a 100-resistor along with conventional Zener diodes of the lowest acceptable power rating. This combination  
uses the least amount of board space. These diodes can be found in packages as small as SOT-523 or  
SOD-523.  
Bus Voltage  
up to 40 V  
VS  
1.7 V to 5.5 V  
CBYPASS  
0.1 µF  
RSENSE  
Load  
VS  
INA190-Q1  
RPROTECT  
INœ  
< 1 kW  
Capacitively  
Coupled  
Amplifier  
œ
OUT  
REF  
VOUT  
+
RPROTECT  
IN+  
< 1 kW  
GND  
8-4. Transient Protection Using Dual Zener Diodes  
In the event that low-power Zener diodes do not have sufficient transient absorption capability, a higher-power  
transzorb must be used. The most package-efficient solution involves using a single transzorb and back-to-back  
diodes between the device inputs (see 8-5). The most space-efficient solutions are dual, series-connected  
diodes in a single SOT-523 or SOD-523 package. In either of the examples shown in 8-4 and 8-5, the total  
board area required by the INA190-Q1 with all protective components is less than that of an SO-8 package, and  
only slightly greater than that of an VSSOP-8 package.  
Bus Voltage  
up to 40 V  
VS  
1.7 V to 5.5 V  
CBYPASS  
0.1 µF  
RSENSE  
Load  
VS  
INA190-Q1  
RPROTECT  
INœ  
< 1 kW  
Capacitively  
Coupled  
Amplifier  
œ
OUT  
REF  
Transorb  
VOUT  
+
RPROTECT  
IN+  
< 1 kW  
GND  
8-5. Transient Protection Using a Single Transzorb and Input Clamps  
For more information, see the Current Shunt Monitor With Transient Robustness reference design.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: INA190-Q1  
 
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.2 Typical Applications  
The low input bias current of the INA190-Q1 allows accurate monitoring of small-value currents. To accurately  
monitor currents in the microamp range, increase the value of the sense resistor to increase the sense voltage  
so that the error introduced by the offset voltage is small. 8-6 shows the circuit configuration for monitoring  
low-value currents. As a result of the differential input impedance of the INA190-Q1, limit the value of RSENSE to  
1 kΩor less for best accuracy.  
RSENSE 1 kO  
5 V  
12 V  
LOAD  
0.1 F  
VS  
INœ  
OUT  
INA190-Q1  
IN+  
REF  
GND  
8-6. Microamp Current Measurement  
8.2.1 Design Requirements  
8-1 lists the design requirements for the circuit shown in 8-6.  
8-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Power-supply voltage (VS)  
5 V  
12 V  
Bus supply rail (VCM  
)
Minimum sense current (IMIN  
)
1 µA  
Maximum sense current (IMAX  
Device gain (GAIN)  
)
150 µA  
25 V/V  
0 V  
Reference voltage (VREF  
)
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: INA190-Q1  
 
 
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
The maximum value of the current-sense resistor is calculated based choice of gain, value of the maximum  
current the be sensed (IMAX), and the power supply voltage(VS). When operating at the maximum current, the  
output voltage must not exceed the positive output swing specification, VSP. For the given design parameters, 方  
6 determines that the maximum value for RSENSE is 1.321 kΩ.  
VSP  
RSENSE  
<
IMAX ìGAIN  
(6)  
However, because this value exceeds the maximum recommended value for RSENSE, a resistance value of 1 kΩ  
must be used. When operating at the minimum current value, IMIN the output voltage must be greater than the  
swing to GND (VSN), specification. For this example, 方程7 determines that the output voltage at the minimum  
current is 25 mV, which is greater than the value for VSN  
.
VOUTMIN = IMIN ìRSENSE ìGAIN  
(7)  
8.2.3 Application Curve  
8-7 shows the output of the device under the conditions given in 8-1 and with RSENSE = 1 kΩ.  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
25  
50  
75  
Input Current (µA)  
100  
125  
150  
D031  
8-7. Typical Application DC Transfer Function  
9 Power Supply Recommendations  
The input circuitry of the INA190-Q1 accurately measures beyond the power-supply voltage, VS. For example,  
VS can be 5 V, whereas the bus supply voltage at IN+ and INcan be as high as 40 V. However, the output  
voltage range of the OUT pin is limited by the voltage on the VS pin. The INA190-Q1 also withstands the full  
differential input signal range up to 40 V at the IN+ and INinput pins, regardless of whether the device has  
power applied at the VS pin. There is no sequencing requirement for VS and VIN+ or VIN–  
.
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: INA190-Q1  
 
 
 
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique  
makes sure that only the current-sensing resistor impedance is detected between the input pins. Poor routing  
of the current-sensing resistor commonly results in additional resistance present between the input pins.  
Given the very low ohmic value of the current resistor, any additional high-current carrying impedance can  
cause significant measurement errors.  
Place the power-supply bypass capacitor as close as possible to the device power supply and ground pins.  
The recommended value of this bypass capacitor is 0.1 µF. Additional decoupling capacitance can be added  
to compensate for noisy or high-impedance power supplies.  
When routing the connections from the current-sense resistor to the device, keep the trace lengths as short  
as possible. The input filter capacitor CF should be placed as close as possible to the input pins of the device.  
10.2 Layout Examples  
Current Sense  
Output  
Connect REF to GND for  
l in low  
Note: RF and CF are optiona  
noise/ripple environments  
Unidirectional Measurement  
or to External Reference for  
Bidirectional Measurement  
RF  
CF  
1
2
3
6
5
4
OUT  
IN-  
REF  
GND  
VS  
INA190-Q1  
VIA to Ground Plane  
RSHUNT  
Supply Voltage  
(1.7 V to 5.5 V)  
IN+  
CBYPASS  
RF  
VIA to Ground Plane  
10-1. Recommended Layout for SC70 (DCK) Package  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: INA190-Q1  
 
 
 
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
l in low  
Note: RF and CF are optiona  
noise/ripple environments  
RF  
CF  
CBYPASS  
Supply Voltage  
(1.7 V to 5.5 V)  
VS  
1
2
3
4
8
7
6
5
IN-  
RSHUNT  
TI Device  
IN+  
ENABLE  
Connect to VS  
if not used  
N.C.  
OUT  
REF  
RF  
IN+  
GND  
VIA to Ground Plane  
Current Sense  
Output  
Connect REF to GND for  
Unidirectional Measurement  
or to External Reference for  
Bidirectional Measurement  
10-2. Recommended Layout for SOT23-8 (DDF) Package  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: INA190-Q1  
INA190-Q1  
ZHCSJT2A MAY 2019 REVISED MARCH 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following: Texas Instruments, INA190EVM user's guide  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: INA190-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA190A1QDCKRQ1  
INA190A1QDDFRQ1  
INA190A2QDCKRQ1  
INA190A2QDDFRQ1  
INA190A3QDCKRQ1  
INA190A3QDDFRQ1  
INA190A4QDCKRQ1  
INA190A4QDDFRQ1  
INA190A5QDCKRQ1  
INA190A5QDDFRQ1  
ACTIVE  
SC70  
DCK  
DDF  
DCK  
DDF  
DCK  
DDF  
DCK  
DDF  
DCK  
DDF  
6
8
6
8
6
8
6
8
6
8
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1ES  
ACTIVE SOT-23-THIN  
ACTIVE SC70  
ACTIVE SOT-23-THIN  
ACTIVE SC70  
ACTIVE SOT-23-THIN  
ACTIVE SC70  
ACTIVE SOT-23-THIN  
ACTIVE SC70  
ACTIVE SOT-23-THIN  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
2C1W  
1ET  
2C2W  
1EU  
2C3W  
1EV  
2C4W  
1EW  
2C5W  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2022  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF INA190-Q1 :  
Catalog : INA190  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA190A1QDCKRQ1  
INA190A1QDDFRQ1  
SC70  
DCK  
DDF  
6
8
3000  
3000  
180.0  
180.0  
8.4  
8.4  
2.47  
3.2  
2.3  
3.2  
1.25  
1.4  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
SOT-23-  
THIN  
INA190A2QDCKRQ1  
INA190A2QDDFRQ1  
SC70  
DCK  
DDF  
6
8
3000  
3000  
180.0  
180.0  
8.4  
8.4  
2.47  
3.2  
2.3  
3.2  
1.25  
1.4  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
SOT-23-  
THIN  
INA190A3QDCKRQ1  
INA190A3QDDFRQ1  
SC70  
DCK  
DDF  
6
8
3000  
3000  
180.0  
180.0  
8.4  
8.4  
2.47  
3.2  
2.3  
3.2  
1.25  
1.4  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
SOT-23-  
THIN  
INA190A4QDCKRQ1  
INA190A4QDDFRQ1  
SC70  
DCK  
DDF  
6
8
3000  
3000  
180.0  
180.0  
8.4  
8.4  
2.47  
3.2  
2.3  
3.2  
1.25  
1.4  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
SOT-23-  
THIN  
INA190A5QDCKRQ1  
INA190A5QDDFRQ1  
SC70  
DCK  
DDF  
6
8
3000  
3000  
180.0  
180.0  
8.4  
8.4  
2.47  
3.2  
2.3  
3.2  
1.25  
1.4  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
SOT-23-  
THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA190A1QDCKRQ1  
INA190A1QDDFRQ1  
INA190A2QDCKRQ1  
INA190A2QDDFRQ1  
INA190A3QDCKRQ1  
INA190A3QDDFRQ1  
INA190A4QDCKRQ1  
INA190A4QDDFRQ1  
INA190A5QDCKRQ1  
INA190A5QDDFRQ1  
SC70  
SOT-23-THIN  
SC70  
DCK  
DDF  
DCK  
DDF  
DCK  
DDF  
DCK  
DDF  
DCK  
DDF  
6
8
6
8
6
8
6
8
6
8
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
213.0  
210.0  
213.0  
210.0  
213.0  
210.0  
213.0  
210.0  
213.0  
210.0  
191.0  
185.0  
191.0  
185.0  
191.0  
185.0  
191.0  
185.0  
191.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
SOT-23-THIN  
SC70  
SOT-23-THIN  
SC70  
SOT-23-THIN  
SC70  
SOT-23-THIN  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.38  
0.22  
8X  
0.1  
C A B  
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/C 10/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/C 10/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/C 10/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY