INA190A5IDCKT [TI]

具有皮安级 IB 和 ENABLE 引脚的 40V 双向超精密电流检测放大器 | DCK | 6 | -40 to 125;
INA190A5IDCKT
型号: INA190A5IDCKT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有皮安级 IB 和 ENABLE 引脚的 40V 双向超精密电流检测放大器 | DCK | 6 | -40 to 125

放大器
文件: 总46页 (文件大小:1710K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
具有使能端的 INA190 双向、低功耗、零漂移、宽动态范围  
精密电流检测放大器  
1 特性  
3 说明  
1
低输入偏置电流:500pA(典型值)  
(支持微安级电流测量)  
INA190 是一款低功耗、电压输出、电流分流监控器  
(也称为电流检测放大器)。此器件常用于过流保护、  
针对系统优化的精密电流测量或闭环反馈电路。  
INA190 可在独立于电源电压的 –0.2V +40V 的共模  
电压下检测分流器上的压降。  
低功耗:  
低电源电压 VS1.7V 5.5V  
低关断电流:100nA(最大值)  
低静态电流:25°C 下为 50μA(典型值)  
该器件的低输入偏置电流允许使用较大的电流检测电阻  
器,从而能够提供微安级的精确电流测量。零漂移架构  
的低失调电压扩展了电流测量的动态范围。此功能可支  
持较小的感应电阻器在具有较低功率损耗的同时,仍提  
供精确的电流测量。  
精度:  
共模抑制比:132dB(最小值)  
增益误差:±0.2%A1 器件)  
增益漂移:7ppm/°C(最大值)  
失调电压 VOS±15μV(最大值)  
温漂:80nV/°C(最大值)  
INA190 1.7V 5.5V 的单电源供电,在启用时消耗  
的最大电源电流为 65µA;而在禁用时仅为 0.1µA。提  
供五个固定增益选项:25V/V50V/V100V/V、  
200V/V 500V/V。该器件的额定工作温度范围为  
–40°C +125°C,并采用 UQFNSC70 SOT-23  
封装。  
宽共模电压:–0.2V +40V  
双向电流检测功能  
增益选项:  
INA190A125V/V  
INA190A250V/V  
INA190A3100V/V  
INA190A4200V/V  
INA190A5500V/V  
器件信息(1)  
器件型号  
封装  
SC70 (6)  
封装尺寸(标称值)  
2.00mm x 1.25mm  
1.60mm × 2.90mm  
1.80mm x 1.40mm  
INA190  
SOT-23 (8)  
UQFN (10)  
2 应用  
标准笔记本电脑  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
智能手机  
消费类电池充电器  
基带单元 (BBU)  
商用网络和服务器 PSU  
电池测试  
典型应用  
Supply Voltage  
1.7 V to 5.5 V  
RSENSE  
Bus Voltage  
œ0.2 V to +40 V  
LOAD  
0.1 F  
0.5 nA  
(typ)  
0.5 nA  
(typ)  
ENABLE(1)  
VS  
INœ  
OUT  
ADC  
Microcontroller  
INA190  
IN+  
REF  
GND  
(1) The ENABLE pin is available only  
in the DDF and RSW packages.  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS863  
 
 
 
 
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 20  
8.1 Application Information............................................ 20  
8.2 Typical Applications ................................................ 25  
Power Supply Recommendations...................... 26  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 14  
8
9
10 Layout................................................................... 27  
10.1 Layout Guidelines ................................................. 27  
10.2 Layout Examples................................................... 27  
11 器件和文档支持 ..................................................... 30  
11.1 文档支持................................................................ 30  
11.2 接收文档更新通知 ................................................. 30  
11.3 支持资源................................................................ 30  
11.4 ....................................................................... 30  
11.5 静电放电警告......................................................... 30  
11.6 Glossary................................................................ 30  
12 机械、封装和可订购信息....................................... 30  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (April 2019) to Revision D  
Page  
已添加 向数据表添加了 DDF (SOT-23-8) 封装和相关内容..................................................................................................... 1  
已更改 更改了增益漂移和温漂精度项目符号,以匹配电气特征 表中的数值........................................................................... 1  
Changes from Revision B (September 2018) to Revision C  
Page  
已添加 向数据表添加了 DCK (SC70) 封装 ............................................................................................................................. 1  
已更改 为清楚起见,更改了首页 ............................................................................................................................................ 1  
已更改 为保持一致,将所有 VVS 示例更改为 VS..................................................................................................................... 1  
已更改 section title from Output Signal Conditioning to Signal Conditioning and reworded section for clarity ................... 22  
已更改 Figure 41, Differential Input Impedance vs Temperature, to reflect improved device performance......................... 22  
已更改 location of Common-Mode Voltage Transients section from Power Supply Recommendations to Application  
and Implementation .............................................................................................................................................................. 24  
Changes from Revision A (June 2018) to Revision B  
Page  
已更改 将器件状态从预告信息更改为生产数据.................................................................................................................. 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
INA190  
www.ti.com.cn  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
5 Pin Configuration and Functions  
DCK Package  
6-Pin SC70  
Top View  
DDF Package  
8-Pin Thin SOT-23  
Top View  
REF  
GND  
VS  
1
2
3
6
5
4
OUT  
INœ  
VS  
ENABLE  
REF  
1
2
3
4
8
7
6
5
INœ  
IN+  
NC  
IN+  
GND  
OUT  
Not to scale  
Not to scale  
RSW Package  
10-Pin Thin UQFN  
Top View  
NC  
NC  
1
2
7
6
ENABLE  
VS  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
DCK  
DDF  
RSW  
Enable pin. When this pin is driven to VS, the device is on and functions as a  
current sense amplifier. When this pin is driven to GND, the device is off, the  
supply current is reduced, and the output is placed in a high-impedance state.  
This pin must be driven externally, or connected to VS if not used. DDF and RSW  
packages only.  
Digital  
input  
ENABLE  
2
7
GND  
IN–  
2
5
4
8
9
4
Analog Ground  
Current-sense amplifier negative input. For high-side applications, connect to load  
Analog  
input  
side of sense resistor. For low-side applications, connect to ground side of sense  
resistor.  
Current-sense amplifier positive input. For high-side applications, connect to bus  
voltage side of sense resistor. For low-side applications, connect to load side of  
sense resistor.  
Analog  
input  
IN+  
NC  
4
6
7
6
5
3
Not internally connected. Either float these pins or connect to any voltage  
between GND and VS.  
1, 2, 5  
10  
OUT pin. This pin provides an analog voltage output that is the gained up voltage  
difference from the IN+ to the IN– pins, and is offset by the voltage applied to the  
REF pin.  
Analog  
output  
OUT  
Analog Reference input. Enables bidirectional current sensing with an externally applied  
input voltage.  
REF  
VS  
1
3
3
1
8
6
Analog Power supply, 1.7 V to 5.5 V  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VS  
Supply voltage  
6
V
(2)  
Differential (VIN+) – (VIN–  
)
–42  
GND – 0.3  
GND – 0.3  
GND – 0.3  
42  
VIN+, VIN– Analog inputs  
V
VIN+, VIN–, with respect to GND(3)  
42  
VENABLE  
ENABLE  
REF, OUT(3)  
6
(VS) + 0.3  
5
V
V
Input current into any pin(3)  
Operating temperature  
Junction temperature  
Storage temperature  
mA  
°C  
°C  
°C  
TA  
–55  
150  
TJ  
150  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) VIN+ and VIN– are the voltages at the IN+ and IN– pins, respectively.  
(3) Input voltage at any pin may exceed the voltage shown if the current at that pin is limited to 5 mA.  
6.2 ESD Ratings  
VALUE  
±3000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
GND – 0.2  
GND – 0.2  
1.7  
NOM  
MAX  
UNIT  
V
VCM  
Common-mode input range  
Input pin voltage range  
40  
40  
VIN+, VIN–  
VS  
V
Operating supply voltage  
Reference pin voltage range  
Operating free-air temperature  
5.5  
VS  
V
VREF  
TA  
GND  
V
–40  
125  
°C  
6.4 Thermal Information  
INA190  
THERMAL METRIC(1)  
DCK (SC70)  
6 PINS  
137.2  
38.4  
DDF (SOT23)  
8 PINS  
170.7  
132.7  
65.3  
RSW (UQFN)  
10 PINS  
163.8  
78.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
57.1  
93.3  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
5.1  
45.7  
4.1  
ΨJB  
56.6  
65.2  
92.8  
RθJC(bot)  
N/A  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
INA190  
www.ti.com.cn  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
6.5 Electrical Characteristics  
at TA = 25°C, VSENSE = VIN+ – VIN–, VS = 1.8 V to 5.0 V, VIN+ = 12 V, VREF = VS / 2, and VENABLE = VS (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
Common-mode  
rejection ratio  
CMRR  
VSENSE = 0 mV, VIN+ = –0.1 V to 40 V, TA = –40°C to +125°C  
132  
150  
dB  
VOS  
Offset voltage, RTI(1) VS = 1.8 V, VSENSE = 0 mV  
–3  
10  
±15  
80  
µV  
dVOS/dT  
Offset drift, RTI  
VSENSE = 0 mV, TA = –40°C to +125°C  
nV/°C  
Power-supply  
rejection ratio, RTI  
PSRR  
VSENSE = 0 mV, VS = 1.7 V to 5.5 V  
–1  
±5  
3
µV/V  
IIB  
Input bias current  
Input offset current  
VSENSE = 0 mV  
VSENSE = 0 mV  
0.5  
nA  
nA  
IIO  
±0.07  
OUTPUT  
A1 devices  
A2 devices  
A3 devices  
A4 devices  
A5 devices  
25  
50  
G
Gain  
100  
V/V  
200  
500  
A1 devices  
–0.04%  
±0.2%  
±0.3%  
A2, A3, A4  
devices  
EG  
Gain error  
VOUT = 0.1 V to VS – 0.1 V  
–0.06%  
A5 devices  
–0.08%  
2
±0.4%  
7
Gain error drift  
TA = –40°C to +125°C  
ppm/°C  
Nonlinearity error  
VOUT = 0.1 V to VS – 0.1 V  
±0.01%  
±2  
A1 devices  
A2 devices  
A3 devices  
±10  
±6  
±1  
Reference voltage  
rejection ratio  
VREF = 100 mV to VS – 100 mV,  
TA = –40°C to +125°C  
RVRR  
µV/V  
nF  
±0.5  
±4  
A4, A5  
devices  
±0.25  
1
±3  
Maximum capacitive  
load  
No sustained oscillation  
VOLTAGE OUTPUT  
Swing to VS power-  
supply rail  
VSP  
VSN  
VS = 1.8 V, RL = 10 kto GND, TA = –40°C to +125°C  
(VS) – 20  
(VGND) + 0.05  
(VGND) + 1  
(VS) – 40  
(VGND) + 1  
(VGND) + 3  
mV  
mV  
mV  
VS = 1.8 V, RL = 10 kto GND, TA = –40°C to +125°C,  
VSENSE = –10 mV, VREF = 0 V  
Swing to GND  
A1, A2, A3  
devices  
VS = 1.8 V, RL = 10 kto GND,  
TA = –40°C to +125°C, VSENSE = 0 mV,  
VREF = 0 V  
Zero current output  
voltage  
VZL  
A4 devices  
A5 devices  
(VGND) + 2  
(VGND) + 3  
(VGND) + 4  
(VGND) + 9  
mV  
mV  
FREQUENCY RESPONSE  
A1 devices, CLOAD = 10 pF  
45  
37  
35  
33  
27  
0.3  
30  
A2 devices, CLOAD = 10 pF  
BW  
Bandwidth  
A3 devices, CLOAD = 10 pF  
kHz  
A4 devices, CLOAD = 10 pF  
A5 devices, CLOAD = 10 pF  
SR  
tS  
Slew rate  
VS = 5.0 V, VOUT = 0.5 V to 4.5 V  
From current step to within 1% of final value  
V/µs  
µs  
Settling time  
(1) RTI = referred-to-input.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = 25°C, VSENSE = VIN+ – VIN–, VS = 1.8 V to 5.0 V, VIN+ = 12 V, VREF = VS / 2, and VENABLE = VS (unless otherwise noted)  
PARAMETER  
NOISE, RTI(1)  
CONDITIONS  
MIN  
TYP  
75  
1
MAX  
UNIT  
Voltage noise density  
nV/Hz  
ENABLE  
IEN  
Leakage input current 0 V VENABLE VS  
100  
6
nA  
V
High-level input  
voltage  
VIH  
0.7 × VS  
0
Low-level input  
voltage  
VIL  
0.3 × VS  
V
VHYS  
Hysteresis  
300  
1
mV  
µA  
Output leakage  
disabled  
IODIS  
VS = 5.0 V, VOUT = 0 V to 5.0 V, VENABLE = 0 V  
5
POWER SUPPLY  
VS = 1.8 V, VSENSE = 0 mV  
48  
10  
65  
90  
µA  
µA  
IQ  
Quiescent current  
VS = 1.8 V, VSENSE = 0 mV, TA = –40°C to +125°C  
Quiescent current  
disabled  
IQDIS  
VENABLE = 0 V, VSENSE = 0 mV  
100  
nA  
6
版权 © 2018–2019, Texas Instruments Incorporated  
INA190  
www.ti.com.cn  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
6.6 Typical Characteristics  
at TA = 25°C, VS = 1.8 V, VIN+ = 12 V, VREF = VS / 2, VENABLE = VS, and for all gain options (unless otherwise noted)  
15  
10  
5
0
-5  
-10  
-15  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Input Offset Voltage (mV)  
D001  
Temperature (èC)  
D006  
1. Input Offset Voltage Production Distribution  
2. Offset Voltage vs Temperature  
0.1  
0.08  
0.06  
0.04  
0.02  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
D007  
Temperature (èC)  
Common-Mode Rejection Ratio (mV/V)  
D012  
4. Common-Mode Rejection Ratio vs Temperature  
3. Common-Mode Rejection Production Distribution  
D013  
D014  
Gain Error (%)  
Gain Error (%)  
A1 devices  
A2, A3, and A4 devices  
5. Gain Error Production Distribution  
6. Gain Error Production Distribution  
版权 © 2018–2019, Texas Instruments Incorporated  
7
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 1.8 V, VIN+ = 12 V, VREF = VS / 2, VENABLE = VS, and for all gain options (unless otherwise noted)  
0.2  
0.16  
0.12  
0.08  
0.04  
0
-0.04  
-0.08  
-0.12  
-0.16  
-0.2  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
D017  
Temperature (èC)  
D018  
Gain Error (%)  
A5 devices  
7. Gain Error Production Distribution  
8. Gain Error vs Temperature  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
60  
40  
20  
0
A1  
A2  
A3  
A4  
A5  
-10  
-20  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
D019  
D020  
VS = 5 V  
VS = 5 V  
9. Gain vs Frequency  
10. Power-Supply Rejection Ratio vs Frequency  
Vs  
160  
140  
120  
100  
80  
-40°C  
25°C  
125°C  
Vs-0.4  
Vs-0.8  
GND+0.8  
GND+0.4  
GND  
60  
40  
0
1
2
3
4
5
6
7
Output Current (mA)  
8
9
10 11  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
D010  
D021  
VS = 1.8 V  
A3 devices  
12. Output Voltage Swing vs Output Current  
11. Common-Mode Rejection Ratio vs Frequency  
8
版权 © 2018–2019, Texas Instruments Incorporated  
INA190  
www.ti.com.cn  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 1.8 V, VIN+ = 12 V, VREF = VS / 2, VENABLE = VS, and for all gain options (unless otherwise noted)  
Vs  
0.25  
-40°C  
25°C  
125°C  
0.2  
Vs-1  
0.15  
0.1  
Vs-2  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
GND+2  
GND+1  
GND  
0
5
10  
15 20  
Output Current (mA)  
25  
30  
35  
0
5
10  
15  
20  
25  
Common-Mode Voltage (V)  
30  
35  
40  
D009  
D024  
VS = 5.0 V  
VS = 5.0 V  
13. Output Voltage Swing vs Output Current  
14. Input Bias Current vs Common-Mode Voltage  
7
6
0.25  
0.2  
0.15  
0.1  
5
4
0.05  
0
3
-0.05  
-0.1  
-0.15  
-0.2  
2
1
0
-1  
-50  
-0.25  
0
-25  
0
25  
50  
75  
100  
125  
150  
5
10  
15  
20  
25  
Common-Mode Voltage (V)  
30  
35  
40  
Temperature (èC)  
D026  
D025  
VENABLE = 0 V  
16. Input Bias Current vs Temperature  
15. Input Bias Current vs Common-Mode Voltage  
(Shutdown)  
240  
210  
180  
150  
120  
90  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
VS = 1.8 V  
VS = 3.3 V  
VS = 5.0 V  
VS = 1.8 V  
VS = 3.3 V  
VS = 5 V  
60  
30  
0
-30  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
D002  
Temperature (èC)  
D027  
VENABLE = 0 V  
18. Quiescent Current vs Temperature (Disabled)  
17. Quiescent Current vs Temperature (Enabled)  
版权 © 2018–2019, Texas Instruments Incorporated  
9
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 1.8 V, VIN+ = 12 V, VREF = VS / 2, VENABLE = VS, and for all gain options (unless otherwise noted)  
100  
70  
65  
60  
55  
50  
45  
40  
VS = 1.8 V  
VS = 5 V  
80  
70  
60  
50  
40  
30  
20  
10  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
-5  
0
5
10  
15  
20  
25  
Common-Mode Voltage (V)  
30  
35  
40  
D030  
D029  
A3 devices  
VS = 5.0 V  
20. Input-Referred Voltage Noise vs Frequency  
19. Quiescent Current vs Common Mode Voltage  
Time (1 s/div)  
Time (20 ms/div)  
D031  
D032  
A3 devices  
VS = 5.0 V, A3 devices  
21. 0.1-Hz to 10-Hz Voltage Noise (Referred-To-Input)  
22. Step Response (10-mVPP Input Step)  
VCM  
VOUT  
Inverting Input  
Output  
0 V  
Time (250 ms/div)  
Time (250 ms/div)  
D033  
D034  
A3 devices  
A3 devices  
24. Inverting Differential Input Overload  
23. Common-Mode Voltage Transient Response  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
INA190  
www.ti.com.cn  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 1.8 V, VIN+ = 12 V, VREF = VS / 2, VENABLE = VS, and for all gain options (unless otherwise noted)  
Non-inverting Input  
Output  
Supply Voltage  
Output Voltage  
0 V  
0 V  
Time (250 ms/div)  
Time (10 ms/div)  
D035  
D036  
VS = 5.0 V, A3 devices  
VS = 5.0 V, A3 devices  
25. Noninverting Differential Input Overload  
26. Start-Up Response  
Enable  
Output  
Supply Voltage  
Output Voltage  
0 V  
0 V  
Time (100 ms/div)  
Time (250 ms/div)  
D037  
D038  
VS = 5.0 V, A3 devices  
VS = 5.0 V, A3 devices  
28. Enable and Disable Response  
27. Brownout Recovery  
100  
25  
IBP  
IBN  
IBP  
IBN  
80  
60  
15  
5
40  
20  
0
-20  
-40  
-60  
-80  
-100  
-5  
-15  
-25  
-110 -90 -70 -50 -30 -10 10 30 50 70 90 110  
Differential Input Voltage (mV)  
-60  
-40  
-20  
0
20  
Differential Input Voltage (mV)  
40  
60  
D039  
D047  
VS = 5.0 V, VREF = 2.5 V, A1 devices  
VS = 5.0 V, VREF = 2.5 V, A2, A3, A4, A5 devices  
30. IB+ and IB– vs Differential Input Voltage  
29. IB+ and IB– vs Differential Input Voltage  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 1.8 V, VIN+ = 12 V, VREF = VS / 2, VENABLE = VS, and for all gain options (unless otherwise noted)  
1.25  
3
2.5  
2
-40èC  
25èC  
125èC  
25èC  
-40èC  
125èC  
1
0.75  
0.5  
1.5  
1
0.25  
0
0.5  
0
-0.5  
-1  
-0.25  
-0.5  
-0.75  
-1  
-1.5  
-2  
-2.5  
0
0.5  
1
1.5  
2
Output Voltage (V)  
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
Output Voltage (V)  
2.5  
3
3.5  
4
4.5  
5
D040  
D048  
VS = 5.0 V, VENABLE = 0 V, VREF = 2.5 V  
VS = 5.0 V, VENABLE = 0 V, VREF = 2.5 V  
31. Output Leakage vs Output Voltage  
32. Output Leakage vs Output Voltage  
(A1, A2, and A3 Devices)  
(A4 and A5 Devices)  
5000  
1000  
A5  
A1  
A4  
A2  
A3  
100  
10  
1
Gain Variants  
A1  
A2  
A3  
A4  
A5  
0.1  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
D050  
VS = 5.0 V, VCM = 0 V  
33. Output Impedance vs Frequency  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
 
INA190  
www.ti.com.cn  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
7 Detailed Description  
7.1 Overview  
The INA190 is a low bias current, low offset, 40-V common-mode, current-sensing amplifier. The DDF SOT-23  
and RSW UQFN packages also feature an enable pin. The INA190 is a specially designed, current-sensing  
amplifier that accurately measures voltages developed across current-sensing resistors on common-mode  
voltages that far exceed the supply voltage. Current is measured on input voltage rails as high as 40 V at VIN+  
and VIN–, with a supply voltage, VS, as low as 1.7 V. When disabled, the output goes to a high-impedance state,  
and the supply current draw is reduced to less than 0.1 µA. The INA190 is intended for use in both low-side and  
high-side current-sensing configurations where high accuracy and low current consumption are required.  
7.2 Functional Block Diagram  
ENABLE(1)  
VS  
INA190  
IN+  
œ
œ
+
OUT  
REF  
œ
+
+
INœ  
GND  
(1) The ENABLE pin is available only in the DDF and RSW packages.  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Precision Current Measurement  
The INA190 allows for accurate current measurements over a wide dynamic range. The high accuracy of the  
device is attributable to the low gain error and offset specifications. The offset voltage of the INA190 is less than  
15 µV. In this case, the low offset improves the accuracy at light loads when VIN+ approaches VIN–. Another  
advantage of low offset is the ability to use a lower-value shunt resistor that reduces the power loss in the  
current-sense circuit, and improves the power efficiency of the end application.  
The maximum gain error of the INA190 is specified between 0.2% and 0.4% of the actual value, depending on  
the gain option. As the sensed voltage becomes much larger than the offset voltage, the gain error becomes the  
dominant source of error in the current-sense measurement. When the device monitors currents near the full-  
scale output range, the total measurement error approaches the value of the gain error.  
7.3.2 Low Input Bias Current  
The INA190 is different from many current-sense amplifiers because this device offers very low input bias  
current. The low input bias current of the INA190 has three primary benefits.  
The first benefit is the reduction of the current consumed by the device in both the enabled and disabled states.  
Classical current-sense amplifier topologies typically consume tens of microamps of current at the inputs. For  
these amplifiers, the input current is the result of the resistor network that sets the gain and additional current to  
bias the input amplifier. To reduce the bias current to near zero, the INA190 uses a capacitively coupled amplifier  
on the input stage, followed by a difference amplifier on the output stage.  
The second benefit of low bias current is the ability to use input filters to reject high-frequency noise before the  
signal is amplified. In a traditional current-sense amplifier, the addition of input filters comes at the cost of  
reduced accuracy. However, as a result of the low bias currents, input filters have little effect on the  
measurement accuracy of the INA190.  
The third benefit of low bias current is the ability to use a larger current-sense resistor. This ability allows the  
device to accurately monitor currents as low as 1 µA.  
7.3.3 Low Quiescent Current With Output Enable  
The device features low quiescent current (IQ), while still providing sufficient small-signal bandwidth to be usable  
in most applications. The quiescent current of the INA190 is only 48 µA (typ), while providing a small-signal  
bandwidth of 35 kHz in a gain of 100. The low IQ and good bandwidth allow the device to be used in many  
portable electronic systems without excessive drain on the battery. Because many applications only need to  
periodically monitor current, the INA190 features an enable pin that turns off the device until needed. When in  
the disabled state, the INA190 typically draws 10 nA of total supply current.  
7.3.4 Bidirectional Current Monitoring  
INA190 devices can sense current flow through a sense resistor in both directions. The bidirectional current-  
sensing capability is achieved by applying a voltage at the REF pin to offset the output voltage. A positive  
differential voltage sensed at the inputs results in an output voltage that is greater than the applied reference  
voltage. Likewise, a negative differential voltage at the inputs results in output voltage that is less than the  
applied reference voltage. The output voltage of the current-sense amplifier is shown in 公式 1.  
VOUT = ILOADì RSENSE ìGAIN + V  
(
)
REF  
where  
ILOAD is the load current to be monitored.  
RSENSE is the current-sense resistor.  
GAIN is the gain option of the selected device.  
VREF is the voltage applied to the REF pin.  
(1)  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
 
INA190  
www.ti.com.cn  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
Feature Description (接下页)  
7.3.5 High-Side and Low-Side Current Sensing  
The INA190 supports input common-mode voltages from –0.2 V to +40 V. Because of the internal topology, the  
common-mode range is not restricted by the power-supply voltage (VS). The ability to operate with common-  
mode voltages greater or less than VS allows the INA190 to be used in high-side and low-side current-sensing  
applications, as shown in 34.  
Bus Supply  
up to +40 V  
IN+  
High-Side Sensing  
RSENSE  
Common-mode voltage (VCM  
is bus-voltage dependent.  
)
INœ  
LOAD  
IN+  
Low-Side Sensing  
Common-mode voltage (VCM  
is always near ground and is  
)
RSENSE  
isolated from bus-voltage spikes.  
INœ  
34. High-Side and Low-Side Sensing Connections  
7.3.6 High Common-Mode Rejection  
The INA190 uses a capacitively coupled amplifier on the front end. Therefore, dc common-mode voltages are  
blocked from downstream circuits, resulting in very high common-mode rejection. Typically, the common-mode  
rejection of the INA190 is approximately 150 dB. The ability to reject changes in the dc common-mode voltage  
allows the INA190 to monitor both high- and low-voltage rail currents with very little change in the offset voltage.  
7.3.7 Rail-to-Rail Output Swing  
The INA190 allows linear current-sensing operation with the output close to the supply rail and ground. The  
maximum specified output swing to the positive rail is VS – 40 mV, and the maximum specified output swing to  
GND is only GND + 1 mV. The close-to-rail output swing is useful to maximize the usable output range,  
particularly when operating the device from a 1.8-V supply.  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
 
 
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
The INA190 is in normal operation when the following conditions are met:  
The power-supply voltage (VS) is between 1.7 V and 5.5 V.  
The common-mode voltage (VCM) is within the specified range of –0.2 V to +40 V.  
The maximum differential input signal times the gain plus VREF is less than the positive swing voltage VSP  
The ENABLE pin is driven or connected to VS.  
The minimum differential input signal times the gain plus VREF is greater than the zero load swing to GND, VZL  
(see the Rail-to-Rail Output Swing section).  
.
During normal operation, this device produces an output voltage that is the amplified representation of the  
difference voltage from IN+ to IN– plus the voltage applied to the REF pin.  
7.4.2 Unidirectional Mode  
This device can be configured to monitor current flowing in one direction (unidirectional) or in both directions  
(bidirectional) depending on how the REF pin is connected. The most common case is unidirectional where the  
output is set to ground when no current is flowing by connecting the REF pin to ground, as shown in 35. When  
the current flows from the bus supply to the load, the input voltage from IN+ to IN– increases and causes the  
output voltage at the OUT pin to increase.  
Bus Voltage  
up to 40 V  
RSENSE  
VS  
1.7 V to 5.5 V  
CBYPASS  
0.1 µF  
Load  
ISENSE  
VS  
ENABLE  
INA190  
INœ  
Capacitively  
Coupled  
Amplifier  
œ
OUT  
REF  
VOUT  
+
IN+  
GND  
35. Typical Unidirectional Application  
The linear range of the output stage is limited by how close the output voltage can approach ground under zero  
input conditions. The zero current output voltage of the INA190 is very small and for most unidirectional  
applications the REF pin is simply grounded. However, if the measured current multiplied by the current sense  
resistor and device gain is less than the zero current output voltage then bias the REF pin to a convenient value  
above the zero current output voltage to get the output into the linear range of the device. To limit common-mode  
rejection errors, buffer the reference voltage connected to the REF pin.  
A less-frequently used output biasing method is to connect the REF pin to the power-supply voltage, VS. This  
method results in the output voltage saturating at 40 mV less than the supply voltage when no differential input  
voltage is present. This method is similar to the output saturated low condition with no differential input voltage  
when the REF pin is connected to ground. The output voltage in this configuration only responds to currents that  
develop negative differential input voltage relative to the device IN– pin. Under these conditions, when the  
negative differential input signal increases, the output voltage moves downward from the saturated supply  
voltage. The voltage applied to the REF pin must not exceed VS.  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
 
INA190  
www.ti.com.cn  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
Device Functional Modes (接下页)  
Another use for the REF pin in unidirectional operation is to level shift the output voltage. 36 shows an  
application where the device ground is set to a negative voltage so currents biased to negative supplies, as seen  
in optical networking cards, can be measured. The GND of the INA190 can be set to negative voltages, as long  
as the inputs do not violate the common-mode range specification and the voltage difference between VS and  
GND does not exceed 5.5 V. In this example, the output of the INA190 is fed into a positive-biased ADC. By  
grounding the REF pin, the voltages at the output will be positive and not damage the ADC. To make sure the  
output voltage never goes negative, the supply sequencing must be the positive supply first, followed by the  
negative supply.  
+ 1.8 V  
-3.3 V  
CBYPASS  
0.1 µF  
RSENSE  
Load  
VS  
ENABLE  
INA190  
IN-  
Capacitively  
Coupled  
Amplifier  
œ
OUT  
ADC  
+
REF  
IN+  
GND  
- 3.3 V  
36. Using the REF Pin to Level-Shift Output Voltage  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
 
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
7.4.3 Bidirectional Mode  
The INA190 devices are bidirectional current-sense amplifiers capable of measuring currents through a resistive  
shunt in two directions. This bidirectional monitoring is common in applications that include charging and  
discharging operations where the current flowing through the resistor can change directions.  
Bus Voltage  
up to 40 V  
RSENSE  
VS  
1.7 V to 5.5 V  
CBYPASS  
0.1 µF  
Load  
ISENSE  
VS  
ENABLE  
INA190  
INœ  
Reference  
Voltage  
Capacitively  
Coupled  
Amplifier  
œ
OUT  
REF  
VOUT  
+
+
IN+  
œ
GND  
37. Bidirectional Application  
The ability to measure this current flowing in both directions is achieved by applying a voltage to the REF pin, as  
shown in 37. The voltage applied to REF (VREF) sets the output state that corresponds to the zero-input level  
state. The output then responds by increasing above VREF for positive differential signals (relative to the IN– pin)  
and responds by decreasing below VREF for negative differential signals. This reference voltage applied to the  
REF pin can be set anywhere between 0 V to VS. For bidirectional applications, VREF is typically set at VS/2 for  
equal signal range in both current directions. In some cases, VREF is set at a voltage other than VS/2; for  
example, when the bidirectional current and corresponding output signal do not need to be symmetrical.  
7.4.4 Input Differential Overload  
If the differential input voltage (VIN+ – VIN–) times gain exceeds the voltage swing specification, the INA190 drives  
its output as close as possible to the positive supply or ground, and does not provide accurate measurement of  
the differential input voltage. If this input overload occurs during normal circuit operation, then reduce the value of  
the shunt resistor or use a lower-gain version with the chosen sense resistor to avoid this mode of operation. If a  
differential overload occurs in a time-limited fault event, then the output of the INA190 returns to the expected  
value approximately 80 µs after the fault condition is removed.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
INA190  
www.ti.com.cn  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
Device Functional Modes (接下页)  
7.4.5 Shutdown  
The INA190 features an active-high ENABLE pin that shuts down the device when pulled to ground. When the  
device is shut down, the quiescent current is reduced to 10 nA (typ), and the output goes to a high-impedance  
state. In a battery-powered application, the low quiescent current extends the battery lifetime when the current  
measurement is not needed. When the ENABLE pin is driven to the supply voltage, the device turns back on.  
The typical output settling time when enabled is 130 µs.  
The output of the INA190 goes to a high-impedance state when disabled. Therefore, you can connect multiple  
outputs of the INA190 together to a single ADC or measurement device, as shown in 38.  
When connected in this way, enable only one INA190 at a time, and make sure all devices have the same supply  
voltage.  
RSENSE  
Bus Voltage1  
upto to +40 V  
Supply Voltage  
1.7 V to 5.5 V  
LOAD  
0.1 F  
GPIO1  
ENABLE  
VS  
INœ  
Microcontroller  
ADC  
OUT  
INA190  
IN+  
GPIO2  
REF  
GND  
RSENS E  
Bus Voltage2  
upto to +40 V  
Supply Voltage  
1.7 V to 5.5 V  
LOAD  
0.1 F  
ENABLE  
VS  
INœ  
OUT  
INA190  
IN+  
REF  
GND  
38. Multiplexing Multiple Devices With the ENABLE Pin  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
 
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The INA190 amplifies the voltage developed across a current-sensing resistor as current flows through the  
resistor to the load or ground. The high common-mode rejection of the INA190 make it usable over a wide range  
of voltage rails while still maintaining an accurate current measurement.  
8.1.1 Basic Connections  
39 shows the basic connections of the INA190. Place the device as close as possible to the current sense  
resistor and connect the input pins (IN+ and IN–) to the current sense resistor through kelvin connections.If  
present, the ENABLE pin must be controlled externally or connected to VS if not used.  
Supply Voltage  
1.7 V to 5.5 V  
RSENSE  
Bus Voltage  
œ0.2 V to +40 V  
LOAD  
0.1 F  
0.5 nA  
(typ)  
0.5 nA  
(typ)  
ENABLE(1)  
VS  
INœ  
OUT  
ADC  
Microcontroller  
INA190  
IN+  
REF  
GND  
(1) The ENABLE pin is available only in the DDF and RSW packages.  
NOTE: To help eliminate ground offset errors between the device and the analog-to-digital converter (ADC), connect  
the REF pin to the ADC reference input. When driving SAR ADCs, filter or buffer the output of the INA190 before  
connecting directly to the ADC.  
39. Basic Connections for the INA190  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
INA190  
www.ti.com.cn  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
Application Information (接下页)  
8.1.2 RSENSE and Device Gain Selection  
The accuracy of any current-sense amplifier is maximized by choosing the current-sense resistor to be as large  
as possible. A large sense resistor maximizes the differential input signal for a given amount of current flow and  
reduces the error contribution of the offset voltage. However, there are practical limits as to how large the  
current-sense resistor can be in a given application because of the resistor size and maximum allowable power  
dissipation. 公式 2 gives the maximum value for the current-sense resistor for a given power dissipation budget:  
PDMAX  
RSENSE  
<
2
IMAX  
where:  
PDMAX is the maximum allowable power dissipation in RSENSE  
.
IMAX is the maximum current that will flow through RSENSE  
.
(2)  
An additional limitation on the size of the current-sense resistor and device gain is due to the power-supply  
voltage, VS, and device swing-to-rail limitations. In order to make sure that the current-sense signal is properly  
passed to the output, both positive and negative output swing limitations must be examined. 公式 3 provides the  
maximum values of RSENSE and GAIN to keep the device from exceeding the positive swing limitation.  
IMAX ìRSENSE ìGAIN < VSP - VREF  
where:  
IMAX is the maximum current that will flow through RSENSE  
.
GAIN is the gain of the current-sense amplifier.  
VSP is the positive output swing as specified in the data sheet.  
VREF is the externally applied voltage on the REF pin.  
(3)  
To avoid positive output swing limitations when selecting the value of RSENSE, there is always a trade-off between  
the value of the sense resistor and the gain of the device under consideration. If the sense resistor selected for  
the maximum power dissipation is too large, then it is possible to select a lower-gain device in order to avoid  
positive swing limitations.  
The negative swing limitation places a limit on how small the sense resistor value can be for a given application.  
公式 4 provides the limit on the minimum value of the sense resistor.  
IMIN ìRSENSE ìGAIN > VSN - VREF  
where:  
IMIN is the minimum current that will flow through RSENSE  
.
GAIN is the gain of the current-sense amplifier.  
VSN is the negative output swing of the device (see Rail-to-Rail Output Swing).  
VREF is the externally applied voltage on the REF pin.  
(4)  
In addition to adjusting RSENSE and the device gain, the voltage applied to the REF pin can be slightly increased  
above GND to avoid negative swing limitations.  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
 
 
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
Application Information (接下页)  
8.1.3 Signal Conditioning  
When performing accurate current measurements in noisy environments, the current-sensing signal is often  
filtered. The INA190 features low input bias currents. Therefore, adding a differential mode filter to the input  
without sacrificing the current-sense accuracy is possible. Filtering at the input is advantageous because this  
action attenuates differential noise before the signal is amplified. 40 provides an example of how to use a filter  
on the input pins of the device.  
Bus Voltage  
up to 40 V  
VS  
1.7 V to 5.5 V  
CBYPASS  
0.1 µF  
RSENSE  
Load  
VS  
Capacitively Coupled  
Amplifier  
ENABLE  
INA190  
RF  
INœ  
1
CF  
œ
f3dB  
=
OUT  
REF  
VOUT  
RDIFF  
4pRFCF  
+
RF  
IN+  
GND  
40. Filter at the Input Pins  
The differential input impedance (RDIFF) shown in 40 limits the maximum value for RF. The value of RDIFF is a  
function of the device temperature, as shown in 41.  
6
A1  
A2, A3, A4, A5  
5
4
3
2
1
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
D115  
41. Differential Input Impedance vs Temperature  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
INA190  
www.ti.com.cn  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
Application Information (接下页)  
As the voltage drop across the sense resistor (VSENSE) increases, the amount of voltage dropped across the input  
filter resistors (RF) also increases. The increased voltage drop results in additional gain error. The error caused  
by these resistors is calculated by the resistor divider equation shown in 公式 5.  
«
RDIFF  
Error(%) = 1-  
ì100  
÷
÷
RSENSE+ RDIFF + 2ìR  
(
)
F
where:  
RDIFF is the differential input impedance.  
RF is the added value of the series filter resistance.  
(5)  
The input stage of the INA190 uses a capacitive feedback amplifier topology in order to achieve high dc  
precision. As a result, periodic high-frequency shunt voltage (or current) transients of significant amplitude (10  
mV or greater) and duration (hundreds of nanoseconds or greater) may be amplified by the INA190, even though  
the transients are greater than the device bandwidth. Use a differential input filter in these applications to  
minimize disturbances at the INA190 output.  
The high input impedance and low bias current of the INA190 provide flexibility in the input filter design without  
impacting the accuracy of current measurement. For example, set RF = 100 and CF = 22 nF to achieve a low-  
pass filter corner frequency of 36.2 kHz. These filter values significantly attenuate most unwanted high-frequency  
signals at the input without severely impacting the current sensing bandwidth or precision. If a lower corner  
frequency is desired, increase the value of CF.  
Filtering the input filters out differential noise across the sense resistor. If high-frequency, common-mode noise is  
a concern, add an RC filter from the OUT pin to ground. The RC filter helps filter out both differential and  
common mode noise, as well as, internally generated noise from the device. The value for the resistance of the  
RC filter is limited by the impedance of the load. Any current drawn by the load manifests as an external voltage  
drop from the INA190 OUT pin to the load input. To select the optimal values for the output filter, use 33 and  
see the Closed-Loop Analysis of Load-Induced Amplifier Stability Issues Using ZOUT application report  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
Application Information (接下页)  
8.1.4 Common-Mode Voltage Transients  
With a small amount of additional circuitry, the INA190 can be used in circuits subject to transients that exceed  
the absolute maximum voltage ratings. The most simple way to protect the inputs from negative transients is to  
add resistors in series to the IN– and IN+ pins. Use resistors that are 1 kΩ or less, and limit the current in the  
ESD structures to less than 5 mA. For example, using 1-kΩ resistors in series with the INA190 allows voltages  
as low as –5 V, while limiting the ESD current to less than 5 mA. If protection from high-voltage or more-  
negative, common-voltage transients is needed, use the circuits shown in 42 and 43. When implementing  
these circuits, use only Zener diodes or Zener-type transient absorbers (sometimes referred to as transzorbs);  
any other type of transient absorber has an unacceptable time delay. Start by adding a pair of resistors as a  
working impedance for the Zener diode, as shown in 42. Keep these resistors as small as possible; most  
often, use around 100 . Larger values can be used with an effect on gain that is discussed in the Signal  
Conditioning section. This circuit limits only short-term transients; therefore, many applications are satisfied with  
a 100-resistor along with conventional Zener diodes of the lowest acceptable power rating. This combination  
uses the least amount of board space. These diodes can be found in packages as small as SOT-523 or SOD-  
523.  
Bus Voltage  
up to 40 V  
VS  
1.7 V to 5.5 V  
CBYPASS  
0.1 µF  
RSENSE  
Load  
VS  
ENABLE  
INA190  
INœ  
< 1 kW  
Capacitively  
Coupled  
Amplifier  
œ
OUT  
REF  
VOUT  
+
RPROTECT  
IN+  
< 1 kW  
GND  
42. Transient Protection Using Dual Zener Diodes  
In the event that low-power Zener diodes do not have sufficient transient absorption capability, a higher-power  
transzorb must be used. The most package-efficient solution involves using a single transzorb and back-to-back  
diodes between the device inputs, as shown in 43. The most space-efficient solutions are dual, series-  
connected diodes in a single SOT-523 or SOD-523 package. In either of the examples shown in 42 and 43,  
the total board area required by the INA190 with all protective components is less than that of an SO-8 package,  
and only slightly greater than that of an VSSOP-8 package.  
Bus Voltage  
up to 40 V  
VS  
1.7 V to 5.5 V  
CBYPASS  
0.1 µF  
RSENSE  
Load  
VS  
ENABLE  
INA190  
INœ  
< 1 kW  
Transorb  
Capacitively  
Coupled  
Amplifier  
œ
OUT  
REF  
VOUT  
+
RPROTECT  
IN+  
< 1 kW  
GND  
43. Transient Protection Using a Single Transzorb and Input Clamps  
For more information, see the Current Shunt Monitor With Transient Robustness reference design.  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
INA190  
www.ti.com.cn  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
8.2 Typical Applications  
The low input bias current of the INA190 allows accurate monitoring of small-value currents. To accurately  
monitor currents in the microamp range, increase the value of the sense resistor to increase the sense voltage  
so that the error introduced by the offset voltage is small. The circuit configuration for monitoring low-value  
currents is shown in 44. As a result of the differential input impedance of the INA190, limit the value of RSENSE  
to 1 kΩ or less for best accuracy.  
RSENSE 1 kO  
12 V  
LOAD  
5 V  
0.1 F  
ENABLE  
VS  
INœ  
OUT  
INA190  
IN+  
REF  
GND  
44. Microamp Current Measurement  
8.2.1 Design Requirements  
The design requirements for the circuit shown in 44 are listed in 1.  
1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Power-supply voltage (VS)  
5 V  
12 V  
Bus supply rail (VCM  
)
Minimum sense current (IMIN  
)
1 µA  
Maximum sense current (IMAX  
)
150 µA  
25 V/V  
0 V  
Device gain (GAIN)  
Reference voltage (VREF  
)
Amplifier current in sleep or disabled state  
< 1 µA  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
 
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
The maximum value of the current-sense resistor is calculated based choice of gain, value of the maximum  
current the be sensed (IMAX), and the power supply voltage(VS). When operating at the maximum current, the  
output voltage must not exceed the positive output swing specification, VSP. Using 公式 6, for the given design  
parameters the maximum value for RSENSE is calculated to be 1.321 kΩ.  
VSP  
RSENSE  
<
IMAX ìGAIN  
(6)  
However, because this value exceeds the maximum recommended value for RSENSE, a resistance value of 1 kΩ  
must be used. When operating at the minimum current value, IMIN the output voltage must be greater than the  
swing to GND (VSN), specification. For this example, the output voltage at the minimum current is calculated  
using 公式 7 to be 25 mV, which is greater than the value for VSN  
.
VOUTMIN = IMIN ìRSENSE ìGAIN  
(7)  
8.2.3 Application Curve  
45 shows the output of the device when disabled and enabled while measuring a 40-µA load current. When  
disabled, the current draw from the device supply and inputs is less than 106 nA.  
Enable  
Output  
0 V  
Time (250 ms/div)  
D030  
45. Output Disable and Enable Response  
9 Power Supply Recommendations  
The input circuitry of the INA190 accurately measures beyond the power-supply voltage, VS. For example, VS  
can be 5 V, whereas the bus supply voltage at IN+ and IN– can be as high as 40 V. However, the output voltage  
range of the OUT pin is limited by the voltage on the VS pin. The INA190 also withstands the full differential input  
signal range up to 40 V at the IN+ and IN– input pins, regardless of whether the device has power applied at the  
VS pin. There is no sequencing requirement for VS and VIN+ or VIN–  
.
26  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
INA190  
www.ti.com.cn  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
10 Layout  
10.1 Layout Guidelines  
Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique  
makes sure that only the current-sensing resistor impedance is detected between the input pins. Poor routing  
of the current-sensing resistor commonly results in additional resistance present between the input pins.  
Given the very low ohmic value of the current resistor, any additional high-current carrying impedance can  
cause significant measurement errors.  
Place the power-supply bypass capacitor as close as possible to the device power supply and ground pins.  
The recommended value of this bypass capacitor is 0.1 µF. Additional decoupling capacitance can be added  
to compensate for noisy or high-impedance power supplies.  
When routing the connections from the current-sense resistor to the device, keep the trace lengths as short  
as possible. The input filter capacitor CF should be placed as close as possible to the input pins of the device.  
10.2 Layout Examples  
Current Sense  
Output  
Connect REF to GND for  
Unidirectional Measurement  
or to External Reference for  
Bidirectional Measurement  
l in low  
Note: RF and CF are optiona  
noise/ripple environments  
RF  
CF  
1
2
3
6
5
4
OUT  
IN-  
REF  
GND  
VS  
INA190  
VIA to Ground Plane  
RSHUNT  
Supply Voltage  
(1.7 V to 5.5 V)  
IN+  
CBYPASS  
RF  
VIA to Ground Plane  
46. Recommended Layout for SC70 (DCK) Package  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
Layout Examples (接下页)  
l in low  
Note: RF and CF are optiona  
noise/ripple environments  
RF  
CF  
CBYPASS  
Supply Voltage  
(1.7 V to 5.5 V)  
VS  
1
2
3
4
8
7
6
5
IN-  
RSHUNT  
TI Device  
IN+  
ENABLE  
Connect to VS  
if not used  
N.C.  
OUT  
REF  
RF  
IN+  
GND  
VIA to Ground Plane  
Current Sense  
Output  
Connect REF to GND for  
Unidirectional Measurement  
or to External Reference for  
Bidirectional Measurement  
47. Recommended Layout for SOT23-8 (DDF) Package  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
INA190  
www.ti.com.cn  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
Layout Examples (接下页)  
RSHUNT  
RF  
RF  
Note: RF and CF are optional in low  
noise/ripple environments  
CF  
NC IN- IN+  
5
4
3
CBYPASS  
Connect to Supply  
(1.7 V to 5.5 V)  
6
7
2
1
NC  
NC  
VS  
ENABLE  
Connect to Control or VS  
(Do Not Float)  
8
9
10  
REF GND OUT  
Current  
Sense Output  
VIA to Ground  
Plane  
Connect REF to GND for  
Unidirectional Measurement  
or to External Reference for  
Bidirectional Measurement  
48. Recommended Layout for UQFN (RSW) Package  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
INA190  
ZHCSHW3D MARCH 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:德州仪器 (TI)INA190EVM 用户指南》  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA190A1IDCKR  
INA190A1IDCKT  
INA190A1IDDFR  
INA190A1IDDFT  
INA190A1IRSWR  
INA190A1IRSWT  
INA190A2IDCKR  
INA190A2IDCKT  
INA190A2IDDFR  
INA190A2IDDFT  
INA190A2IRSWR  
INA190A2IRSWT  
INA190A3IDCKR  
INA190A3IDCKT  
INA190A3IDDFR  
INA190A3IDDFT  
INA190A3IRSWR  
INA190A3IRSWT  
INA190A4IDCKR  
INA190A4IDCKT  
ACTIVE  
ACTIVE  
SC70  
SC70  
DCK  
DCK  
DDF  
DDF  
RSW  
RSW  
DCK  
DCK  
DDF  
DDF  
RSW  
RSW  
DCK  
DCK  
DDF  
DDF  
RSW  
RSW  
DCK  
DCK  
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1DP  
1DP  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
8
1ZGW  
1ZGW  
1AN  
8
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
UQFN  
UQFN  
SC70  
SC70  
10  
10  
6
1AN  
1DQ  
1DQ  
1ZHW  
1ZHW  
1AM  
1AM  
1DR  
6
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
8
8
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
UQFN  
UQFN  
SC70  
SC70  
10  
10  
6
6
1DR  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
8
1ZIW  
1ZIW  
1AO  
8
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
UQFN  
UQFN  
SC70  
SC70  
10  
10  
6
1AO  
1DS  
6
250  
RoHS & Green  
1DS  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA190A4IDDFR  
INA190A4IDDFT  
INA190A4IRSWR  
INA190A4IRSWT  
INA190A5IDCKR  
INA190A5IDCKT  
INA190A5IDDFR  
INA190A5IDDFT  
INA190A5IRSWR  
INA190A5IRSWT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDF  
DDF  
RSW  
RSW  
DCK  
DCK  
DDF  
DDF  
RSW  
RSW  
8
8
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1ZJW  
1ZJW  
1AP  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
UQFN  
UQFN  
SC70  
SC70  
10  
10  
6
1AP  
1DT  
6
1DT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
8
1ZKW  
1ZKW  
1AQ  
8
ACTIVE  
ACTIVE  
UQFN  
UQFN  
10  
10  
1AQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA190A1IDCKR  
INA190A1IDCKT  
INA190A1IDDFR  
SC70  
SC70  
DCK  
DCK  
DDF  
6
6
8
3000  
250  
178.0  
178.0  
180.0  
9.0  
9.0  
8.4  
2.4  
2.4  
3.2  
2.5  
2.5  
3.2  
1.2  
1.2  
1.4  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
SOT-23-  
THIN  
3000  
INA190A1IDDFT  
SOT-23-  
THIN  
DDF  
8
250  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
INA190A1IRSWR  
INA190A1IRSWT  
INA190A2IDCKR  
INA190A2IDCKT  
INA190A2IDDFR  
UQFN  
UQFN  
SC70  
SC70  
RSW  
RSW  
DCK  
DCK  
DDF  
10  
10  
6
3000  
250  
180.0  
180.0  
178.0  
178.0  
180.0  
9.5  
9.5  
9.0  
9.0  
8.4  
1.6  
1.6  
2.4  
2.4  
3.2  
2.0  
2.0  
2.5  
2.5  
3.2  
0.8  
0.8  
1.2  
1.2  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q3  
Q3  
Q3  
3000  
250  
6
SOT-23-  
THIN  
8
3000  
INA190A2IDDFT  
SOT-23-  
THIN  
DDF  
8
250  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
INA190A2IRSWR  
INA190A2IRSWT  
INA190A3IDCKR  
UQFN  
UQFN  
SC70  
RSW  
RSW  
DCK  
10  
10  
6
3000  
250  
180.0  
180.0  
178.0  
9.5  
9.5  
9.0  
1.6  
1.6  
2.4  
2.0  
2.0  
2.5  
0.8  
0.8  
1.2  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q3  
3000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA190A3IDCKT  
INA190A3IDDFR  
SC70  
DCK  
DDF  
6
8
250  
178.0  
180.0  
9.0  
8.4  
2.4  
3.2  
2.5  
3.2  
1.2  
1.4  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
SOT-23-  
THIN  
3000  
INA190A3IDDFT  
SOT-23-  
THIN  
DDF  
8
250  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
INA190A3IRSWR  
INA190A3IRSWT  
INA190A4IDCKR  
INA190A4IDCKT  
INA190A4IDDFR  
UQFN  
UQFN  
SC70  
SC70  
RSW  
RSW  
DCK  
DCK  
DDF  
10  
10  
6
3000  
250  
180.0  
180.0  
178.0  
178.0  
180.0  
9.5  
9.5  
9.0  
9.0  
8.4  
1.6  
1.6  
2.4  
2.4  
3.2  
2.0  
2.0  
2.5  
2.5  
3.2  
0.8  
0.8  
1.2  
1.2  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q3  
Q3  
Q3  
3000  
250  
6
SOT-23-  
THIN  
8
3000  
INA190A4IDDFT  
SOT-23-  
THIN  
DDF  
8
250  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
INA190A4IRSWR  
INA190A4IRSWT  
INA190A5IDCKR  
INA190A5IDCKT  
INA190A5IDDFR  
UQFN  
UQFN  
SC70  
SC70  
RSW  
RSW  
DCK  
DCK  
DDF  
10  
10  
6
3000  
250  
180.0  
180.0  
178.0  
178.0  
180.0  
9.5  
9.5  
9.0  
9.0  
8.4  
1.6  
1.6  
2.4  
2.4  
3.2  
2.0  
2.0  
2.5  
2.5  
3.2  
0.8  
0.8  
1.2  
1.2  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q3  
Q3  
Q3  
3000  
250  
6
SOT-23-  
THIN  
8
3000  
INA190A5IDDFT  
SOT-23-  
THIN  
DDF  
8
250  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
INA190A5IRSWR  
INA190A5IRSWT  
UQFN  
UQFN  
RSW  
RSW  
10  
10  
3000  
250  
180.0  
180.0  
9.5  
9.5  
1.6  
1.6  
2.0  
2.0  
0.8  
0.8  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA190A1IDCKR  
INA190A1IDCKT  
INA190A1IDDFR  
INA190A1IDDFT  
INA190A1IRSWR  
INA190A1IRSWT  
INA190A2IDCKR  
INA190A2IDCKT  
INA190A2IDDFR  
INA190A2IDDFT  
INA190A2IRSWR  
INA190A2IRSWT  
INA190A3IDCKR  
INA190A3IDCKT  
INA190A3IDDFR  
INA190A3IDDFT  
INA190A3IRSWR  
INA190A3IRSWT  
SC70  
SC70  
DCK  
DCK  
DDF  
DDF  
RSW  
RSW  
DCK  
DCK  
DDF  
DDF  
RSW  
RSW  
DCK  
DCK  
DDF  
DDF  
RSW  
RSW  
6
6
3000  
250  
180.0  
180.0  
210.0  
210.0  
189.0  
189.0  
180.0  
180.0  
210.0  
210.0  
189.0  
189.0  
180.0  
180.0  
210.0  
210.0  
189.0  
189.0  
180.0  
180.0  
185.0  
185.0  
185.0  
185.0  
180.0  
180.0  
185.0  
185.0  
185.0  
185.0  
180.0  
180.0  
185.0  
185.0  
185.0  
185.0  
18.0  
18.0  
35.0  
35.0  
36.0  
36.0  
18.0  
18.0  
35.0  
35.0  
36.0  
36.0  
18.0  
18.0  
35.0  
35.0  
36.0  
36.0  
SOT-23-THIN  
SOT-23-THIN  
UQFN  
8
3000  
250  
8
10  
10  
6
3000  
250  
UQFN  
SC70  
3000  
250  
SC70  
6
SOT-23-THIN  
SOT-23-THIN  
UQFN  
8
3000  
250  
8
10  
10  
6
3000  
250  
UQFN  
SC70  
3000  
250  
SC70  
6
SOT-23-THIN  
SOT-23-THIN  
UQFN  
8
3000  
250  
8
10  
10  
3000  
250  
UQFN  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA190A4IDCKR  
INA190A4IDCKT  
INA190A4IDDFR  
INA190A4IDDFT  
INA190A4IRSWR  
INA190A4IRSWT  
INA190A5IDCKR  
INA190A5IDCKT  
INA190A5IDDFR  
INA190A5IDDFT  
INA190A5IRSWR  
INA190A5IRSWT  
SC70  
SC70  
DCK  
DCK  
DDF  
DDF  
RSW  
RSW  
DCK  
DCK  
DDF  
DDF  
RSW  
RSW  
6
6
3000  
250  
180.0  
180.0  
210.0  
210.0  
189.0  
189.0  
180.0  
180.0  
210.0  
210.0  
189.0  
189.0  
180.0  
180.0  
185.0  
185.0  
185.0  
185.0  
180.0  
180.0  
185.0  
185.0  
185.0  
185.0  
18.0  
18.0  
35.0  
35.0  
36.0  
36.0  
18.0  
18.0  
35.0  
35.0  
36.0  
36.0  
SOT-23-THIN  
SOT-23-THIN  
UQFN  
8
3000  
250  
8
10  
10  
6
3000  
250  
UQFN  
SC70  
3000  
250  
SC70  
6
SOT-23-THIN  
SOT-23-THIN  
UQFN  
8
3000  
250  
8
10  
10  
3000  
250  
UQFN  
Pack Materials-Page 4  
PACKAGE OUTLINE  
RSW0010A  
UQFN - 0.55 mm max height  
S
C
A
L
E
7
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
1.45  
1.35  
A
B
PIN 1 INDEX AREA  
1.85  
1.75  
0.55  
0.45  
C
NOTE 3  
SEATING PLANE  
0.05 C  
0.05  
0.00  
2X 0.8  
SYMM  
(0.13) TYP  
3
5
0.45  
0.35  
9X  
2
6
7
SYMM  
6X 0.4  
1
0.25  
10X  
0.15  
0.07  
0.05  
C A B  
10  
8
0.55  
0.45  
PIN 1 ID  
4224897/A 03/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This package complies to JEDEC MO-288 variation UDEE, except minimum package height.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSW0010A  
UQFN - 0.55 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
8
10  
SEE SOLDER MASK  
DETAIL  
10X (0.2)  
(0.7)  
1
7
SYMM  
6X (0.4)  
(1.6)  
6
2
(R0.05) TYP  
9X (0.6)  
3
5
(1.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 30X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224897/A 03/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSW0010A  
UQFN - 0.55 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
8
10  
10X (0.2)  
6X (0.4)  
(0.7)  
1
7
SYMM  
(1.6)  
6
2
(R0.05) TYP  
9X (0.6)  
3
5
(1.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 30X  
4224897/A 03/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.38  
0.22  
8X  
0.1  
C A B  
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/C 10/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/C 10/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/C 10/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY