INA203AIDGSR [TI]

带双路比较器的 -16V 至 80V、500kHz 电流感应放大器 | DGS | 10 | -40 to 125;
INA203AIDGSR
型号: INA203AIDGSR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

带双路比较器的 -16V 至 80V、500kHz 电流感应放大器 | DGS | 10 | -40 to 125

放大器 PC 光电二极管 比较器
文件: 总39页 (文件大小:2148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
INA20x –16-V 80-V500-kHz 电流感测放大器,带双比较器  
1 特性  
3 说明  
• 完整的电流检测解决方案  
• 有三种增益可供选择:  
INA203INA204 INA205 是一系列单向电流分流监  
控器有电压输出、两个比较器和电压基准。  
INA203INA204 INA205 能够在 -16V 80V 范围  
内的共模电压下检测分流器两端的压降。INA203、  
INA204 INA205 提供三种输出电压级别:  
20V/V50V/V 100V/V带宽高500kHz。  
INA203 = 20V/V  
INA204 = 50V/V  
INA205 = 100V/V  
• 两个比较器:  
– 具有锁存功能的比较1  
– 带可选延迟的比较2  
• 共模范围-16V 80V  
• 高准确度过温条件下3.5%最大值)  
• 带宽500kHz  
• 静态电流1.8mA  
• 封装SO-14TSSOP-14VSSOP-10  
INA203INA204 INA205 还整合了两个带 0.6V 内  
部基准的开漏比较器。14 引脚版本的比较器基准可用  
外部输入覆盖。比较器 1 具有锁存功能而比较器 2  
的延迟可由用户通过编程设定。此外14 引脚版本还  
1.2V 基准输出。  
INA203INA204 INA205 2.7V 18V 单电源供  
电。它们的额定工作温度范围-40°C 125°C。  
2 应用  
器件信息(1)  
• 笔记本电脑  
• 手机  
• 电信设备  
• 汽车  
• 电源管理  
• 电池充电器  
• 焊接设备  
封装尺寸标称值)  
器件型号  
INA203、  
INA204、  
INA205  
封装  
SOIC (14)  
8.65mm × 3.91mm  
3.00mm × 3.00mm  
5.00mm × 4.40mm  
VSSOP (10)  
TSSOP (14)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VIN+  
VS  
OUT  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VIN-  
1.2V REF  
1.2V REF OUT  
CMP1 OUT  
CMP2 OUT  
CMP2 DELAY  
CMP1 RESET  
CMP1 IN-/0.6V REF  
CMP1 IN+  
CMP2 IN+  
CMP2 IN-/0.6V REF  
GND  
8
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS393  
 
 
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................18  
8 Application and Implementation..................................22  
8.1 Application Information............................................. 22  
8.2 Typical Application.................................................... 22  
9 Power Supply Recommendations................................23  
10 Layout...........................................................................24  
10.1 Layout Guidelines................................................... 24  
10.2 Layout Example...................................................... 24  
11 Device and Documentation Support..........................25  
11.1 Related Links.......................................................... 25  
11.2 接收文档更新通知................................................... 25  
11.3 支持资源..................................................................25  
11.4 Trademarks............................................................. 25  
11.5 Electrostatic Discharge Caution..............................25  
11.6 术语表..................................................................... 25  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics: Current-Shunt Monitor.......6  
6.6 Electrical Characteristics: Comparator........................7  
6.7 Electrical Characteristics: Reference..........................9  
6.8 Electrical Characteristics: General..............................9  
6.9 Typical Characteristics..............................................10  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagrams....................................... 14  
Information.................................................................... 25  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision E (November 2015) to Revision F (June 2021)  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Changed maximum input voltage for accurate measurements from: (VSHUNT 0.25) / Gain to: (VOUT  
0.25) / Gain.......................................................................................................................................................15  
Page  
Changes from Revision D (May 2009) to Revision E (November 2015)  
Page  
• 添加ESD 表、特性说部分、器件功能模式应用和实部分、电源相关建部分、部分、器  
件和文档支部分以及机械、封装和可订购信部分.......................................................................................1  
Moved thermal values from Electrical Characteristics: General to Thermal Information table. Removed  
duplicate storage temperature parameter...........................................................................................................9  
Changes from Revision C (October 2007) to Revision D (May 2009)  
Page  
Changed 6-1 ................................................................................................................................................. 7  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: INA203 INA204 INA205  
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
Device Comparison  
5-1. Device Gain  
DEVICE  
INA203  
INA204  
INA205  
GAIN  
20 V/V  
50 V/V  
100 V/V  
5-2. Related Products  
FEATURES  
PRODUCT  
Variant of INA203INA205 Comparator 2 polarity  
Current-shunt monitor with single Comparator and VREF  
Current-shunt monitor only  
INA206INA208  
INA200INA202  
INA193INA198  
INA270INA271  
Current-shunt monitor with split stages for filter options  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: INA203 INA204 INA205  
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
VIN+  
VS  
OUT  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VIN-  
1.2V REF  
1.2V REF OUT  
CMP1 OUT  
CMP2 OUT  
CMP2 DELAY  
CMP1 RESET  
CMP1 IN-/0.6V REF  
CMP1 IN+  
CMP2 IN+  
CMP2 IN-/0.6V REF  
GND  
8
5-1. D and PW Packages 14-Pin SOIC and TSSOP Top View  
VIN+  
VS  
OUT  
1
2
3
4
5
10  
9
VIN-  
CMP1 OUT  
CMP2 OUT  
CMP1 RESET  
CMP1 IN+  
CMP2 IN+  
GND  
8
7
6
0.6V REF  
5-2. DGS Package 10-Pin VSSOP Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VS  
SOIC, TSSOP  
VSSOP  
1
2
1
2
I
Power Supply  
Output voltage  
OUT  
O
Comparator 1 negative input, can be used to override the internal 0.6-  
V reference  
CMP1 IN-/0.6-V Ref  
3
I
CMP1 IN+  
CMP2 IN+  
CMP2 IN–  
4
5
3
I
I
I
Comparator 1 positive input  
Comparator 2 positive input  
Comparator 2 negative input  
4
Comparator 2 negative input, can be used to override the internal 0.6-  
V reference  
6
I
CMP2 IN/0.6-V Ref  
GND  
7
5
6
I
I
Ground  
CMP1 RESET  
CMP2 DELAY  
CMP2 OUT  
CMP1 OUT  
1.2-V REF OUT  
VIN–  
8
Comparator 1 output reset, active low  
Connect an optional capacitor to adjust comparator 2 delay  
Comparator 2 output  
9
I
7
10  
11  
12  
13  
14  
O
O
O
I
8
Comparator 1 output  
1.2-V reference output  
9
Connect to shunt low side  
Connect to shunt high side  
VIN+  
10  
I
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: INA203 INA204 INA205  
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
See (1)  
MIN  
MAX  
UNIT  
V
Supply Voltage, VS  
18  
18  
V
Differential (VIN+) (VIN–  
Common-Mode  
)
18  
Current-Shunt Monitor Analog  
Inputs, VIN+ and VIN–  
80  
V
16  
Comparator Analog Input and Reset Pins  
Analog Output, Out Pin  
(VS) + 0.3  
(VS) + 0.3  
18  
V
GND 0.3  
GND 0.3  
GND 0.3  
GND 0.3  
V
Comparator Output, Out Pin  
VREF and CMP2 Delay Pin  
Input Current Into Any Pin  
Operating Temperature  
V
10  
V
5
mA  
°C  
°C  
°C  
150  
55  
65  
65  
Junction Temperature  
150  
Storage temperature, Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins (2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
16  
2.7  
NOM  
12  
MAX  
80  
UNIT  
V
VCM  
VS  
Common-mode input voltage  
Operating supply voltage  
12  
18  
V
TA  
Operating free-air temperature  
25  
125  
°C  
40  
6.4 Thermal Information  
INA20x  
DGS (VSSOP) PW (TSSOP)  
THERMAL METRIC (1)  
D (SOIC)  
14 PINS  
84.9  
UNIT  
10 PINS  
161.3  
36.8  
14 PINS  
112.6  
37.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
44  
39.4  
82.3  
55.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
10.3  
1.3  
2.7  
ψJT  
39.1  
80.8  
54.7  
ψJB  
RθJC(bot)  
150  
200  
150  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: INA203 INA204 INA205  
 
 
 
 
 
 
 
 
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
6.5 Electrical Characteristics: Current-Shunt Monitor  
At TA = 25°C, VS = 12 V, VCM = 12 V, VSENSE = 100 mV, RL = 10 kto GND, Rpullup = 5.1 keach connected from CMP1  
OUT and CMP2 OUT to VS, and CMP1 IN+ = 1 V and CMP2 IN= GND, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT  
Full-Scale Sense Input  
Voltage  
(VS 0.25)/  
VSENSE  
0.15  
V
V
VSENSE = VIN+ VIN–  
Gain  
Common-Mode Input  
Range  
VCM  
80  
TA = 40°C to 125°C  
VCM = 16 V to 80 V  
VCM = 12 V to 80 V  
16  
80  
Common-Mode Rejection  
Ratio  
CMRR  
100  
dB  
dB  
TA = 40°C to  
CMRR over Temperature  
100  
123  
125°C  
±0.5  
±2.5  
±3  
mV  
mV  
mV  
Offset Voltage, RTI (1)  
25°C to 125°C  
VOS  
±3.5  
40°C to 25°C  
Offset Voltage, RTI (1) vs.  
Temperature  
TA = 40°C to  
125°C  
dVOS/dT  
PSR  
IB  
TMIN to TMAX  
5
2.5  
±9  
μV/°C  
μV/V  
μA  
Offset Voltage, RTI (1) vs.  
Power Supply  
VOUT = 2 V,  
VCM = 18 V, 2.7 V  
TA = 40°C to  
125°C  
100  
±16  
Input Bias Current,  
VINPin  
TA = 40°C to 125°C  
OUTPUT (VSENSE 20 mV)  
INA203  
INA204  
INA205  
20  
50  
V/V  
V/V  
V/V  
G
Gain  
100  
Gain Error  
VSENSE = 20 mV to 100 mV  
±0.2%  
±1%  
±2%  
Gain Error over  
Temperature  
VSENSE = 20 mV to  
100 mV  
TA = 40°C to  
125°C  
VSENSE = 120 mV,  
VS = 16 V  
Total Output Error (2)  
±0.75%  
±2.2%  
±3.5%  
Total Output Error (2) over  
Temperature  
VSENSE = 120 mV,  
VS = 16 V  
TA = 40°C to  
125°C  
Nonlinearity Error (3)  
VSENSE = 20 mV to 100 mV  
±0.002%  
1.5  
RO  
Output Impedance, Pin 2  
Maximum Capacitive Load No Sustained Oscillation  
OUTPUT (VSENSE < 20 mV) (4)  
INA203, INA204, INA205  
10  
nF  
300  
mV  
16 V VCM < 0 V  
output  
INA203 output  
INA204 output  
INA205 output  
0.4  
1
V
V
V
0 V VCM VS, VS = 5 V  
0 V VCM VS, VS = 5 V  
0 V VCM VS, VS = 5 V  
2
INA203, INA204, INA205  
output  
300  
mV  
VS < VCM 80 V  
VOLTAGE OUTPUT (5)  
Output Swing to the  
Positive Rail  
VIN= 11 V,  
VIN+ = 12 V  
TA = 40°C to  
125°C  
V
V
(Vs) 0.15  
(Vs) 0.25  
VIN= 0 V,  
VIN+ = 0.5 V  
TA = 40°C to  
125°C  
Output Swing to GND (6)  
(VGND) + 0.004 (VGND) + 0.05  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: INA203 INA204 INA205  
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
At TA = 25°C, VS = 12 V, VCM = 12 V, VSENSE = 100 mV, RL = 10 kto GND, Rpullup = 5.1 keach connected from CMP1  
OUT and CMP2 OUT to VS, and CMP1 IN+ = 1 V and CMP2 IN= GND, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
FREQUENCY RESPONSE  
INA203; CLOAD = 5 pF  
500  
300  
200  
40  
kHz  
kHz  
kHz  
BW  
Bandwidth  
INA204; CLOAD = 5 pF  
INA205; CLOAD = 5 pF  
CLOAD < 10 nF  
Phase Margin  
Slew Rate  
SR  
1
V/μs  
μs  
VSENSE = 10 mVPP to 100 mVPP  
CLOAD = 5 pF  
,
Settling Time (1%)  
2
NOISE, RTI  
Output Voltage Noise  
Density  
nV/√  
Hz  
40  
(1) Offset is extrapolated from measurements of the output at 20 mV and 100 mV VSENSE  
.
(2) Total output error includes effects of gain error and VOS  
(3) Linearity is best fit to a straight line.  
.
(4) For details on this region of operation, see the Accuracy Variations as a Result Of VSENSE and Common-Mode Voltage section in the  
Application and Implementation.  
(5) See Typical Characteristic curve Positive Output Voltage Swing vs. Output Current (6-8).  
(6) Specified by design; not production tested.  
6.6 Electrical Characteristics: Comparator  
At TA = 25°C, VS = 12 V, VCM = 12 V, VSENSE = 100 mV, RL = 10 kto GND, and Rpullup = 5.1 keach connected from CMP1  
OUT and CMP2 OUT to VS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
Comparator Common-Mode Voltage =  
Threshold Voltage  
Offset Voltage  
2
mV  
Offset Voltage Drift,  
Comparator 1  
±2  
TA = 40°C to 125°C  
μV/°C  
Offset Voltage Drift,  
Comparator 2  
5.4  
TA = 40°C to 125°C  
TA = 25°C  
μV/°C  
mV  
Threshold  
590  
586  
608  
620  
625  
Threshold over  
Temperature  
mV  
TA = 40°C to 125°C  
Hysteresis (1), CMP1  
Hysteresis (1), CMP2  
mV  
mV  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
8  
8
INPUT BIAS CURRENT (2)  
CMP1 IN+, CMP2 IN+  
0.005  
10  
15  
nA  
nA  
CMP1 IN+, CMP2 IN+ vs.  
Temperature  
TA = 40°C to 125°C  
INPUT IMPEDANCE  
Pins 3 and 6 (14-pin  
packages only)  
10  
kΩ  
INPUT RANGE  
CMP1 IN+ and CMP2  
IN+  
V
V
0 V to VS 1.5 V  
0 V to VS 1.5 V  
Pins 3 and 6 (14-pin  
packages only) (3)  
OUTPUT  
Large-Signal Differential  
Voltage Gain  
CMP VOUT 1 V to 4 V, RL 15 kΩ  
Connected to 5 V  
200  
V/mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: INA203 INA204 INA205  
 
 
 
 
 
 
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
At TA = 25°C, VS = 12 V, VCM = 12 V, VSENSE = 100 mV, RL = 10 kto GND, and Rpullup = 5.1 keach connected from CMP1  
OUT and CMP2 OUT to VS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.0001  
220  
MAX  
1
UNIT  
μA  
mV  
High-Level Output  
Current  
VID = 0.4 V, VOH = VS  
Low-Level Output Voltage  
300  
VID = 0.6 V, IOL = 2.35 mA  
RESPONSE TIME (4)  
RL to 5 V, CL = 15 pF, 100-mV Input Step  
with 5-mV Overdrive  
Comparator 1  
Comparator 2  
1.3  
1.3  
μs  
μs  
RL to 5 V, CL = 15 pF, 100-mV Input Step  
with 5-mV Overdrive, CDELAY Pin Open  
RESET  
RESET Threshold (5)  
Logic Input Impedance  
1.1  
2
V
MΩ  
Minimum RESET Pulse  
Width  
1.5  
3
μs  
μs  
RESET Propagation  
Delay  
Comparator 2 Delay  
Equation (6)  
CDELAY = tD/5  
0.5  
μF  
tD  
Comparator 2 Delay  
s
CDELAY = 0.1 μF  
(1) Hysteresis refers to the threshold (the threshold specification applies to a rising edge of a noninverting input) of a falling edge on the  
noninverting input of the comparator; refer to 6-1.  
(2) Specified by design; not production tested.  
(3) See the Comparator Maximum Input Voltage Range section in the Application and Implementation.  
(4) The comparator response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.  
(5) The CMP1 RESET input has an internal 2-M(typical) pulldown. Leaving the CMP1 RESET open results in a LOW state, with  
transparent comparator operation.  
(6) The Comparator 2 delay applies to both rising and falling edges of the comparator output.  
VTHRESHOLD  
0.592 0.6  
VTHRESHOLD  
0.6 0.608  
Input Voltage  
Input Voltage  
Hysteresis = VTHRESHOLD - 8mV  
a) CMP1  
Hysteresis = VTHRESHOLD - 8mV  
b) CMP2  
6-1. Comparator Hysteresis  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: INA203 INA204 INA205  
 
 
 
 
 
 
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
6.7 Electrical Characteristics: Reference  
At TA = 25°C, VS = 12 V, VCM = 12 V, VSENSE = 100 mV, RL = 10 kto GND, and Rpullup = 5.1 keach connected from CMP1  
OUT and CMP2 OUT to VS, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
REFERENCE VOLTAGE  
1.2-VREFOUT Output  
Voltage  
1.188  
1.2  
1.212  
100  
V
40  
dVOUT/dT  
Reference Drift  
ppm/°C  
v
TA = 40°C to 85°C  
0.6-VREF Output  
Voltage  
0.6  
Pins 3 and 6 of 14-pin packages only  
40  
100  
2
dVOUT/dT  
Reference Drift  
ppm/°C  
TA = 40°C to 85°C  
LOAD REGULATION  
Sourcing  
dVOUT/dILOAD  
0mA < ISOURCE < 0.5mA  
0mA < ISINK < 0.5mA  
0.4  
0.4  
1
mV/mA  
mV/mA  
mA  
Sinking  
ILOAD  
Load Current  
Line Regulation  
30  
dVOUT/dVS  
2.7 V < VS < 18 V  
μV/V  
CAPACITIVE LOAD  
Reference Output  
10  
10  
Maximum Capacitive No Sustained Oscillations  
Load  
nF  
OUTPUT IMPEDANCE  
Output Impedance  
Pins 3 and 6 of 14-Pin Packages Only  
kΩ  
6.8 Electrical Characteristics: General  
All specifications at TA = 25°C, VS = 12 V, VCM = 12 V, VSENSE = 100 mV, RL = 10 kto GND, Rpullup = 5.1 keach  
connected from CMP1 OUT and CMP2 OUT to VS, and CMP1 IN+ = 1 V and CMP2 IN= GND, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VS  
IQ  
Operating power supply  
Quiescent current  
2.7  
18  
V
TA = 40°C to 125°C  
VOUT = 2 V  
1.8  
2.2  
mA  
Quiescent current over  
temperature  
VSENSE = 0 mV  
2.8  
mA  
V
Comparator power-on  
reset threshold (1)  
1.5  
TEMPERATURE  
Specified temperature  
Operating temperature  
125  
150  
°C  
°C  
40  
55  
(1) The INA203, INA204, and INA205 are designed to power-up with the comparator in a defined reset state as long as CMP1 RESET is  
open or grounded. The comparator will be in reset as long as the power supply is below the voltage shown here. The comparator  
assumes a state based on the comparator input above this supply voltage. If CMP1 RESET is high at power-up, the comparator output  
comes up high and requires a reset to assume a low state, if appropriate.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: INA203 INA204 INA205  
 
 
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
6.9 Typical Characteristics  
All specifications at TA = 25°C, VS = 12 V, VCM = 12 V, and VSENSE = 100 mV, unless otherwise noted.  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
CLOAD = 1000pF  
G = 100  
G = 50  
G = 100  
G = 50  
G = 20  
G = 20  
10k  
100k  
1M  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
6-2. Gain vs. Frequency  
6-3. Gain vs. Frequency  
20  
18  
16  
14  
12  
10  
8
140  
130  
120  
110  
100  
90  
100V/V  
CMR  
50V/V  
PSR  
80  
20V/V  
70  
6
60  
4
50  
2
40  
0
10  
100  
1k  
10k  
100k  
20 100 200 300 400 500 600 700 800 900  
VDIFFERENTIAL (mV)  
Frequency (Hz)  
6-5. Common-Mode and Power-Supply  
6-4. Gain Plot  
Rejection vs. Frequency  
4.0  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
50  
100 150 200  
VSENSE (mV)  
250 300  
350 400 450  
500  
-8 -4  
0
16 20  
...  
76  
80  
-16 -12  
4
8
12  
Common-Mode Voltage (V)  
6-6. Total Output Error vs. VSENSE  
6-7. Total Output Error vs. Common-Mode  
Voltage  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: INA203 INA204 INA205  
 
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
12  
11  
VS = 12V  
Sourcing Current  
10  
9
8
7
6
5
4
3
2
1
0
+25°C  
-40°C  
+125°C  
VS = 3V  
Sourcing Current  
-40°C  
+25°C  
Output stage is designed  
to source current. Current  
sinking capability is  
approximately 400mA.  
+125°C  
5
10  
20  
25  
0
15  
30  
1
2
0
3
4
5
6
7
8
9
10  
Output Current (mA)  
Output Voltage (V)  
6-8. Positive Output Voltage Swing vs. Output  
6-9. Quiescent Current vs. Output Voltage  
Current  
2.00  
34  
VSENSE = 100mV  
-40°C  
30  
1.75  
+25°C  
VS = 2.7V  
VS = 12V  
26  
1.50  
1.25  
1.00  
0.75  
0.50  
+125°C  
22  
18  
14  
10  
VS = 12V  
VS = 2.7V  
VSENSE = 0mV  
6
-8 -4  
0
4
20 24 28 32  
36  
-16 -12  
8
12 16  
2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 17 18  
VCM (V)  
Supply Voltage (V)  
6-10. Quiescent Current vs. Common-Mode  
6-11. Output Short-Circuit Current vs. Supply  
Voltage  
Voltage  
G = 20  
G = 20  
VSENSE = 20mV to 30mV  
VSENSE = 20mV to 110mV  
Time (2ms/div)  
Time (2ms/div)  
6-12. Step Response  
6-13. Step Response  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: INA203 INA204 INA205  
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
G = 20  
G = 50  
G = 100  
G = 50  
VSENSE = 90mV to 100mV  
VSENSE = 20mV to 30mV  
Time (5ms/div)  
Time (2ms/div)  
6-15. Step Response  
6-14. Step Response  
G = 50  
VSENSE = 20mV to 110mV  
VSENSE = 90mV to 100mV  
Time (5ms/div)  
Time (5ms/div)  
6-16. Step Response  
6-17. Step Response  
600  
500  
400  
300  
200  
100  
0
VSENSE = 20mV to 110mV  
Time (10ms/div)  
0
1
2
3
4
5
6
.
ISINK (mA)  
6-18. Step Response  
6-19. Comparator VOL vs. ISINK  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: INA203 INA204 INA205  
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
600  
599  
598  
597  
596  
595  
594  
593  
592  
591  
602  
601  
600  
599  
598  
597  
596  
590  
2
4
6
8
10  
12  
14  
16  
-25  
0
25  
50  
18  
-50  
75  
100  
125  
Supply Voltage (V)  
Temperature (°C)  
6-20. Comparator Trip Point vs. Supply Voltage  
6-21. Comparator Trip Point vs. Temperature  
200  
1.2  
175  
150  
125  
100  
75  
1.0  
0.8  
0.6  
0.4  
0.2  
0
50  
0
20  
40  
60  
80 100 120 140 160 180 200  
2
4
6
8
10  
12  
14  
16  
18  
Overdrive Voltage (mV)  
Supply Voltage (V)  
6-22. Comparator 1 Propagation Delay vs.  
6-23. Comparator Reset Voltage vs. supply  
Overdrive Voltage  
Voltage  
300  
275  
250  
225  
200  
175  
150  
125  
Input  
200mV/div  
Output  
2V/div  
VOD = 5mV  
-50  
-25  
0
25  
50  
75  
100  
125  
2ms/div  
Temperature (°C)  
.
6-25. Comparator Propagation Delay  
6-24. Comparator Propagation Delay vs.  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: INA203 INA204 INA205  
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The INA203, INA204, and INA205 are a family of unidirectional current-shunt monitors with voltage output, dual  
comparators, and voltage reference. The INA203, INA204, and INA205 can sense drops across shunts at  
common-mode voltages from 16 V to 80 V. The INA203, INA204, and INA205 are available with three output  
voltage scales: 20 V/V, 50 V/V, and 100 V/V, with up to 500-kHz bandwidth. The INA203, INA204, and INA205  
also incorporate two open-drain comparators with internal 0.6-V references. On 14-pin versions, the comparator  
references can be overridden by external inputs. Comparator 1 includes a latching capability, and Comparator 2  
has a user-programmable delay. 14-pin versions also provide a 1.2-V reference output. The INA203, INA204,  
and INA205 operate from a single 2.7-V to 18-V supply. They are specified over the extended operating  
temperature range of 40°C to 125°C.  
7.2 Functional Block Diagrams  
VIN+  
VS  
OUT  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VIN-  
1.2V REF  
1.2V REF OUT  
CMP1 OUT  
CMP2 OUT  
CMP2 DELAY  
CMP1 RESET  
CMP1 IN-/0.6V REF  
CMP1 IN+  
CMP2 IN+  
CMP2 IN-/0.6V REF  
GND  
8
7-1. SO-14, TSSOP-14 Functional Block Diagram  
VIN+  
VS  
OUT  
1
2
3
4
5
10  
9
VIN-  
CMP1 OUT  
CMP2 OUT  
CMP1 RESET  
CMP1 IN+  
CMP2 IN+  
GND  
8
7
6
0.6V REF  
7-2. VSSOP-10 Functional Block Diagram  
7.3 Feature Description  
7.3.1 Basic Connections  
7-3 shows the basic connections of the INA203, INA204, and INA205. The input pins, VIN+ and VIN, should  
be connected as closely as possible to the shunt resistor to minimize any resistance in series with the shunt  
resistance.  
Power-supply bypass capacitors are required for stability. Applications with noisy or high-impedance power  
supplies may require additional decoupling capacitors to reject power-supply noise. Connect bypass capacitors  
close to the device pins.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: INA203 INA204 INA205  
 
 
 
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
RSHUNT  
3mW  
Load Supply  
-18V to +80V  
Load  
5V Supply  
VS  
VIN+  
VIN-  
INA203  
RPULL-UP  
4.7kW  
RPULL-UP  
4.7kW  
x20  
OUT  
Current Shunt  
Monitor Output  
1.2V REF  
CMP1 IN-/0.6 REF  
1.2V REF OUT  
CMP1 OUT  
CMP1 IN+  
CBYPASS  
CMP2 IN+  
CMP2 OUT  
0.01mF  
CMP2 IN-/0.6 REF  
CMP2 DELAY  
Optional Delay  
Capacitor  
0.2mF  
GND  
CMP1 RESET  
Transparent/Reset  
Latch  
7-3. INA20x Basic Connection  
7.3.2 Selecting RSHUNT  
The value chosen for the shunt resistor, RSHUNT, depends on the application and is a compromise between  
small-signal accuracy and maximum permissible voltage loss in the measurement line. High values of RSHUNT  
provide better accuracy at lower currents by minimizing the effects of offset, while low values of RSHUNT minimize  
voltage loss in the supply line. For most applications, best performance is attained with an RSHUNT value that  
provides a full-scale shunt voltage range of 50 mV to 100 mV. Maximum input voltage for accurate  
measurements is (VOUT 0.25) / Gain.  
7.3.3 Comparator  
The INA203, INA204, and INA205 devices incorporate two open-drain comparators. These comparators typically  
have 2 mV of offset and a 1.3-μs (typical) response time. The output of Comparator 1 latches and is reset  
through the CMP1 RESET pin, as shown in 7-5. This configuration applies to both the 10- and 14-pin  
versions. 7-4 illustrates the comparator delay.  
The 14-pin versions of the INA203, INA204, and INA205 devices include additional features for comparator  
functions. The comparator reference voltage of both Comparator 1 and Comparator 2 can be overridden by  
external inputs for increased design flexibility. Comparator 2 has a programmable delay.  
7.3.4 Comparator Delay (14-Pin Version Only)  
The Comparator 2 programmable delay is controlled by a capacitor connected to the CMP2 Delay Pin; see 图  
7-3. The capacitor value (in μF) is selected by using 方程1:  
tD  
CDELAY (in mF) =  
5
(1)  
A simplified version of the delay circuit for Comparator 2 is shown in 7-4. The delay comparator consists of  
two comparator stages with the delay between them. I1 and I2 cannot be turned on simultaneously; I1  
corresponds to a U1 low output and I2 corresponds to a U1 high output. Using an initial assumption that the U1  
output is low, I1 is on, then U2 +IN is zero. If U1 goes high, I2 supplies 120 nA to CDELAY. The voltage at U2 +IN  
begins to ramp toward a 0.6-V threshold. When the voltage crosses this threshold, the U2 output goes high while  
the voltage at U2 +IN continues to ramp up to a maximum of 1.2 V when given sufficient time (twice the value of  
the delay specified for CDELAY). This entire sequence is reversed when the comparator outputs go low, so that  
returning to low exhibits the same delay.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: INA203 INA204 INA205  
 
 
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
1.2V  
I2  
120nA  
U1  
U2  
I1  
120nA  
0.6V  
CDELAY  
7-4. Simplified Model of the Comparator 2 Delay Circuit  
0.6V  
VIN  
0V  
CMP Out  
RESET  
7-5. Comparator Latching Capability  
Take care to note what will happen if events occur more rapidly than the delay timeout; for example, when the  
U1 output goes high (turning on I2), but returns low (turning I1 back on) prior to reaching the 0.6-V transition for  
U2. The voltage at U2 +IN ramps back down at a rate determined by the value of CDELAY, and only returns to  
zero if given sufficient time.  
In essence, when analyzing Comparator 2 for behavior with events more rapid than its delay setting, use the  
model shown in 7-4.  
7.3.5 Comparator Maximum Input Voltage Range  
The maximum voltage at the comparator input for normal operation is up to (Vs) 1.5 V. There are special  
considerations when overdriving the reference inputs (pins 3 and 6). Driving either or both inputs high enough to  
drive 1 mA back into the reference introduces errors into the reference. 7-6 shows the basic input structure. A  
general guideline is to limit the voltage on both inputs to a total of 20 V. The exact limit depends on the available  
voltage and whether either or both inputs are subject to the large voltage. When making this determination,  
consider the 20 kfrom each input back to the comparator. 7-7 shows the maximum input voltage that avoids  
creating a reference error when driving both inputs (an equivalent resistance back into the reference of 10 k).  
£ 1mA  
1.2V  
20kW  
20kW  
CMP1 IN-  
CMP2 IN+  
7-6. Limit Current Into Reference 1 mA  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: INA203 INA204 INA205  
 
 
 
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
RSHUNT  
3mW  
Load Supply  
-18V to +80V  
Load  
5V Supply  
VS  
VIN+  
VIN-  
INA203  
RPULL-UP  
4.7kW  
RPULL-UP  
4.7kW  
x20  
OUT  
Current Shunt Monitor Output  
V < 11.2  
1.2V REF  
CMP1 IN-/0.6 REF  
1.2V REF OUT  
CMP1 OUT  
CMP1 IN+  
CBYPASS  
0.01mF  
CMP2 IN+  
CMP2 OUT  
CMP2 IN-  
CMP2 DELAY  
Optional Delay  
Capacitor  
0.2mF  
GND  
CMP1 RESET  
Transparent/Reset  
Latch  
7-7. Overdriving Comparator Inputs Without Generating a Reference Error  
Raychem  
Polyswitch  
Load  
< 18V  
+5V Supply  
Battery  
3.3kW  
VS+  
VIN+  
VIN-  
INA203  
Pull-Up  
x20  
OUT  
Resistors  
1.2V REF  
CMP1 IN-  
1.2V REF OUT  
CMP1 OUT  
CMP1 IN+  
Overlimit(1)  
Warning(1)  
CMP2 IN+  
CMP2 OUT  
CMP2 IN-  
CMP2 DELAY  
GND  
CMP1 RESET  
CBYPASS  
0.01mF  
Reset  
Latch  
Optional  
CDELAY  
0.01mF  
NOTE: (1) Warning at half current (with optional delay). Overlimit latches when Polyswitch opens.  
7-8. Polyswitch Warning and Fault Detection Circuit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: INA203 INA204 INA205  
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
RSHUNT  
0.02W  
Load  
Q2  
NDS8434A  
R1  
100kW  
+5V Supply  
R7  
1kW  
Q1  
2N3904  
VS+  
VIN+  
VIN-  
INA203  
x20  
OUT  
R2  
1kW  
1.2V REF  
CMP1 IN-  
1.2V REF OUT  
CMP1 OUT  
R5  
R3  
CMP1 IN+  
100kW  
14kW  
CMP2 IN+  
CMP2 OUT  
CMP2 IN-  
CMP2 DELAY  
R6  
R4  
GND  
CMP1 RESET  
Reset  
6.04kW  
6.04kW  
CBYPASS  
0.01mF  
Latch  
7-9. Lead-Acid Battery Protection Circuit  
7.4 Device Functional Modes  
7.4.1 Input Filtering  
An obvious and straightforward location for filtering is at the output of the INA203, INA204, and INA205 series;  
however, this location negates the advantage of the low output impedance of the internal buffer. The only other  
option for filtering is at the input pins of the INA203, INA204, and INA205, which is complicated by the internal 5  
k+ 30% input impedance; this configuration is illustrated in 7-10. Using the lowest possible resistor values  
minimizes both the initial shift in gain and effects of tolerance. Use 方程2 to calculate the effect on initial gain.  
5kW  
Gain Error % = 100 - 100 ´  
5kW + RFILT  
(2)  
Total effect on gain error can be calculated by replacing the 5-kterm with 5 k30%, (or 3.5 k) or 5 k+  
30% (or 6.5 k). The tolerance extremes of RFILT can also be inserted into the equation. If a pair of 100 1%  
resistors are used on the inputs, the initial gain error will be 1.96%. Worst-case tolerance conditions will always  
occur at the lower excursion of the internal 5-kresistor (3.5 k), and the higher excursion of RFILT 3% in this  
case.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: INA203 INA204 INA205  
 
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
RSHUNT << RFILTER  
3mW  
VSUPPLY  
Load  
RFILTER < 100W  
RFILTER <100W  
CFILTER  
INA203-INA205  
VIN+  
14  
VIN-  
VS  
OUT  
1
2
3
4
5
6
7
13  
1.2V REF  
1.2V REF OUT  
CMP1 IN-/0.6V REF  
CMP1 IN+  
12  
11  
10  
9
CMP1 OUT  
f-3dB  
CMP2 OUT  
CMP2 IN+  
1
f-3dB  
=
CMP2 DELAY  
CMP1 RESET  
2p(2RFILTER)CFILTER  
CMP2 IN-/0.6V REF  
GND  
8
SO-14, TSSOP-14  
7-10. Input Filter (Gain Error: 1.5% to 2.2%)  
The specified accuracy of the INA203, INA204, and INA205 must then be combined in addition to these  
tolerances. While this discussion treated accuracy worst-case conditions by combining the extremes of the  
resistor values, it is appropriate to use geometric mean or root sum square calculations to total the effects of  
accuracy variations.  
7.4.2 Accuracy Variations as a Result Of VSENSE and Common-Mode Voltage  
The accuracy of the INA203, INA204, and INA205 current shunt monitors is a function of two main variables:  
V
SENSE (VIN+ VIN) and common-mode voltage, VCM, relative to the supply voltage, VS. VCM is expressed as  
(VIN+ + VIN) / 2; however, in practice, VCM is seen as the voltage at VIN+ because the voltage drop across  
VSENSE is usually small.  
This section addresses the accuracy of these specific operating regions:  
Normal Case 1: VSENSE 20 mV, VCM VS  
Normal Case 2: VSENSE 20 mV, VCM < VS  
Low VSENSE Case 1: VSENSE < 20 mV, 16 V VCM < 0  
Low VSENSE Case 2: VSENSE < 20 mV, 0 V VCM VS  
Low VSENSE Case 3: VSENSE < 20 mV, VS < VCM 80 V  
7.4.2.1 Normal Case 1: VSENSE 20 mV, VCM VS  
This region of operation provides the highest accuracy. Here, the input offset voltage is characterized and  
measured using a two-step method. First, the gain is determined by 方程3.  
VOUT1 - VOUT2  
G =  
100mV - 20mV  
(3)  
where  
VOUT1 = Output Voltage with VSENSE = 100 mV.  
VOUT2 = Output Voltage with VSENSE = 20 mV.  
Then the offset voltage is measured at VSENSE = 100 mV and referred to the input (RTI) of the current shunt  
monitor, as shown in 方程4.  
VOUT1  
VOSRTI (Referred-To-Input) =  
- 100mV  
G
(4)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: INA203 INA204 INA205  
 
 
 
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
In the Typical Characteristics, 6-7 shows the highest accuracy for this region of operation. In this plot, VS = 12  
V; for VCM 12 V, the output error is at its minimum. This case is also used to create the VSENSE 20-mV  
output specifications in the Electrical Characteristics: Current-Shunt Monitor table.  
7.4.2.2 Normal Case 2: VSENSE 20 mV, VCM < VS  
This region of operation has slightly less accuracy than Normal Case 1 as a result of the common-mode  
operating area in which the part functions, as seen in 6-7. As noted, for this graph VS = 12 V; for VCM < 12 V,  
the Output Error increases as VCM becomes less than 12 V, with a typical maximum error of 0.005% at the most  
negative VCM = 16 V.  
7.4.2.3 Low VSENSE Case 1  
VSENSE < 20 mV, 16 V VCM< 0;  
Low VSENSE Case 3:  
VSENSE < 20 mV, VS < VCM 80 V  
Although the INA203 family of devices are not designed for accurate operation in either of these regions, some  
applications are exposed to these conditions; for example, when monitoring power supplies that are switched on  
and off while VS is still applied to the INA203, INA204, or INA205. Take care to know what the behavior of the  
devices will be in these regions.  
As VSENSE approaches 0 mV, in these VCM regions, the device output accuracy degrades. A larger-than-normal  
offset can appear at the current shunt monitor output with a typical maximum value of VOUT = 300 mV for VSENSE  
= 0 mV. As VSENSE approaches 20 mV, VOUT returns to the expected output value with accuracy as specified in  
the Electrical Characteristics: Current-Shunt Monitor. 7-11 illustrates this effect using the INA205 (Gain =  
100).  
2.0  
1.8  
1.6  
1.4  
1.2  
Actual  
1.0  
0.8  
Ideal  
0.6  
0.4  
0.2  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
VSENSE (mV)  
7-11. Example for Low VSENSE Cases 1 and 3 (INA205, Gain = 100)  
7.4.2.4 Low VSENSE Case 2: VSENSE < 20 mV, 0 V VCM VS  
This region of operation is the least accurate for the INA203 family. To achieve the wide input common-mode  
voltage range, these devices use two op amp front ends in parallel. One operational amplifier front end operates  
in the positive input common-mode voltage range, and the other in the negative input region. For this case,  
neither of these two internal amplifiers dominates and overall loop gain is very low. Within this region, VOUT  
approaches voltages close to linear operation levels for Normal Case 2. This deviation from linear operation  
becomes greatest the closer VSENSE approaches 0 V. Within this region, as VSENSE approaches 20 mV, device  
operation is closer to that described by Normal Case 2. 7-12 illustrates this behavior for the INA205. The  
VOUT maximum peak for this case is tested by maintaining a constant VS, setting VSENSE = 0 mV, and sweeping  
VCM from 0 V to VS. The exact VCM at which VOUT peaks during this test varies from part to part, but the VOUT  
maximum peak is tested to be less than the specified VOUT Tested Limit.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: INA203 INA204 INA205  
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
INA205 VOUT Tested Limit(1)  
VCM1  
Ideal  
VCM2  
VCM3  
VOUT Tested Limit at  
VCM4  
VSENSE = 0mV, 0 £ VCM1 £ VS  
.
VCM2, VCM3, and VCM4 illustrate the variance  
from part to part of the VCM that can cause  
maximum VOUT with VSENSE < 20mV.  
0
2
4
6
8
10 12 14 16 18 20 22 24  
VSENSE (mV)  
NOTE: (1) INA203 VOUT Tested Limit = 0.4V. INA204 VOUT Tested Limit = 1V.  
7-12. Example For Low VSENSE Case 2 (INA205, Gain = 100)  
7.4.3 Transient Protection  
The 16 V to 80 V common-mode range of the INA203, INA204, and INA205 is ideal for withstanding  
automotive fault conditions ranging from 12-V battery reversal up to 80-V transients, since no additional  
protective components are needed up to those levels. In the event that the INA203, INA204, and INA205 are  
exposed to transients on the inputs in excess of their ratings, then external transient absorption with  
semiconductor transient absorbers (Zeners or Transzorbs) are necessary. Use of metal oxide varistors (MOVs)  
or video disk recorders (VDRs) is not recommended except when they are used in addition to a semiconductor  
transient absorber. Select the transient absorber such that it will never allow the INA203, INA204, and INA205 to  
be exposed to transients greater than 80 V (that is, allow for transient absorber tolerance, as well as additional  
voltage because of transient absorber dynamic impedance). Despite the use of internal Zener-type ESD  
protection, the INA203, INA204, and INA205 do not lend themselves to using external resistors in series with the  
inputs because the internal gain resistors can vary up to ±30% but are closely matched. (If gain accuracy is not  
important, then resistors can be added in series with the INA203, INA204, and INA205 inputs with two equal  
resistors on each input.)  
7.4.4 Output Voltage Range  
The output of the INA203, INA204, and INA205 is accurate within the output voltage swing range set by the  
power-supply pin, VS. This performance is best illustrated when using the INA205 (a gain of 100 version), where  
a 100-mV full-scale input from the shunt resistor requires an output voltage swing of 10 V, and a power-supply  
voltage sufficient to achieve 10 V on the output.  
7.4.5 Reference  
The INA203, INA204, and INA205 include an internal voltage reference that has a load regulation of 0.4 mV/mA  
(typical), and not more than 100 ppm/°C of drift. Only the 14-pin package allows external access to reference  
voltages, where voltages of 1.2 V and 0.6 V are both available. Output current versus output voltage is illustrated  
in the Typical Characteristics section.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: INA203 INA204 INA205  
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The INA203, INA204, and INA205 series is designed to enable easy configuration for detecting overcurrent  
conditions and current monitoring in an application. This device is also incorporate two open-drain comparators  
with internal 0.6-V references. On 14-pin versions, the comparator references can be overridden by external  
inputs. Comparator 1 includes a latching capability, and Comparator 2 has a user-programmable delay. 14-pin  
versions also provide a 1.2-V reference output. This device can also be paired with minimum additional devices  
to create more sophisticated monitoring functional blocks.  
8.2 Typical Application  
Raychem  
Polyswitch  
Load  
< 18V  
+5V Supply  
Battery  
3.3kW  
VS+  
VIN+  
VIN-  
INA203  
Pull-Up  
x20  
OUT  
Resistors  
1.2V REF  
CMP1 IN-  
1.2V REF OUT  
CMP1 OUT  
CMP1 IN+  
Overlimit(1)  
Warning(1)  
CMP2 IN+  
CMP2 OUT  
CMP2 IN-  
CMP2 DELAY  
GND  
CMP1 RESET  
CBYPASS  
0.01mF  
Reset  
Latch  
Optional  
CDELAY  
0.01mF  
NOTE: (1) Warning at half current (with optional delay). Overlimit latches when Polyswitch opens.  
8-1. Polyswitch Warning and Fault Detection Circuit  
8.2.1 Design Requirements  
The device measures current through a resistive shunt with current flowing in one direction, thus enabling  
detection of an overlimit or warning event only when the differential input voltage exceeds the corresponding  
threshold limits. When the current reaches the warning limit of 0.6 V, the output of CMP2 will transition high  
indicating a warning condition. When the current further increases to or past the overlimit limit of 1.2 V, the  
output of CMP1 will transition high indicating an overlimit condition. Optional CDELAY can be sized to add delay to  
CMP1.  
8.2.2 Detailed Design Procedure  
8-1 shows the basic connections of the device. The input terminals, IN+ and IN, should be connected as  
closely as possible to the current-sensing resistor or polymeric switch to minimize any resistance in series with  
the shunt resistance. Additional resistance between the current-sensing resistor and input terminals can result in  
errors in the measurement. When input current flows through this external input resistance, the voltage  
developed across the shunt resistor can differ from the voltage reaching the input terminals.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: INA203 INA204 INA205  
 
 
 
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
8.2.3 Application Curves  
6
6
5.5  
5
RESET(V)  
COMP1(V)  
VOUT(V)  
COMP1(V)  
VOUT(V)  
COMP2_No_Delay(V)  
COMP2_Delay(V)  
5.5  
COMP2(V)  
5
4.5  
4
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-0.5  
0
100  
200  
300  
400  
500  
Time(mS)  
600  
700  
800  
900  
1000  
0
25  
50  
75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500  
Time(mS)  
8-2. Polyswitch Warning and Fault Detection  
8-3. Polyswitch Warning and Fault Detection  
Circuit Response  
Circuit With Delay Response  
9 Power Supply Recommendations  
The input circuitry of the INA203, INA204, and INA205 can accurately measure beyond the power-supply  
voltage, VS. For example, the VS power supply can be 5 V, whereas the load power-supply voltage is up to 80 V.  
The output voltage range of the OUT terminal, however, is limited by the voltages on the power-supply pin.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: INA203 INA204 INA205  
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique  
ensures that only the current-sensing resistor impedance is detected between the input pins. Poor routing of  
the current-sensing resistor commonly results in additional resistance present between the input pins. Given  
the very low ohmic value of the current resistor, any additional high-current carrying impedance can cause  
significant measurement errors.  
The power-supply bypass capacitor should be placed as closely as possible to the supply and ground pins.  
The recommended value of this bypass capacitor is 0.1 μF. Additional decoupling capacitance can be added  
to compensate for noisy or high-impedance power supplies.  
10.2 Layout Example  
Via to Power or Ground Plane  
Via to Internal Layer  
Supply Voltage  
VIN+  
Vs  
Shunt Resistor  
OUT  
VIN-  
Supply Bypass  
Capacitor  
CMP1 IN-  
/0.6V Ref  
1.2V REF  
OUT  
CMP1  
IN+  
CMP1 OUT  
CMP2 OUT  
CMP2  
IN+  
CMP2 IN-  
/0.6V Ref  
CMP2  
DELAY  
CMP1  
RESET  
GND  
Pull-ups  
10-1. Layout Recommendation  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: INA203 INA204 INA205  
 
 
 
INA203, INA204, INA205  
ZHCSFN6F MARCH 2007 REVISED JUNE 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
11-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
INA203  
INA204  
INA205  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: INA203 INA204 INA205  
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA203AID  
INA203AIDGSR  
INA203AIDGST  
INA203AIDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
VSSOP  
VSSOP  
SOIC  
D
DGS  
DGS  
D
14  
10  
10  
14  
14  
14  
14  
10  
10  
14  
14  
10  
10  
14  
14  
14  
50  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
INA203A  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
2500 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
2500 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
50 RoHS & Green  
BQN  
BQN  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
INA203A  
INA203A  
INA203A  
INA204A  
BQO  
INA203AIPW  
INA203AIPWR  
INA204AID  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
INA204AIDGSR  
INA204AIDGST  
INA204AIDR  
VSSOP  
VSSOP  
SOIC  
DGS  
DGS  
D
2500 RoHS & Green Call TI | NIPDAUAG  
250 RoHS & Green Call TI | NIPDAUAG  
2500 RoHS & Green  
50 RoHS & Green  
BQO  
NIPDAU  
NIPDAU  
INA204A  
INA205A  
BQP  
INA205AID  
SOIC  
D
INA205AIDGSR  
INA205AIDGST  
INA205AIDR  
VSSOP  
VSSOP  
SOIC  
DGS  
DGS  
D
2500 RoHS & Green Call TI | NIPDAUAG  
250  
2500 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
BQP  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
INA205A  
INA205A  
INA205A  
INA205AIPW  
INA205AIPWR  
TSSOP  
TSSOP  
PW  
PW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF INA203 :  
Automotive : INA203-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA203AIDGSR  
INA203AIDR  
VSSOP  
SOIC  
DGS  
D
10  
14  
14  
14  
10  
14  
14  
2500  
2500  
2000  
2500  
250  
330.0  
330.0  
330.0  
330.0  
180.0  
330.0  
330.0  
12.4  
16.4  
12.4  
16.4  
12.4  
16.4  
12.4  
5.3  
6.5  
6.9  
6.5  
5.3  
6.5  
6.9  
3.4  
9.0  
5.6  
9.0  
3.4  
9.0  
5.6  
1.4  
2.1  
1.6  
2.1  
1.4  
2.1  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
16.0  
12.0  
16.0  
12.0  
16.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
INA203AIPWR  
INA204AIDR  
TSSOP  
SOIC  
PW  
D
INA205AIDGST  
INA205AIDR  
VSSOP  
SOIC  
DGS  
D
2500  
2000  
INA205AIPWR  
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA203AIDGSR  
INA203AIDR  
VSSOP  
SOIC  
DGS  
D
10  
14  
14  
14  
10  
14  
14  
2500  
2500  
2000  
2500  
250  
367.0  
356.0  
367.0  
356.0  
210.0  
356.0  
367.0  
367.0  
356.0  
367.0  
356.0  
185.0  
356.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
INA203AIPWR  
INA204AIDR  
TSSOP  
SOIC  
PW  
D
INA205AIDGST  
INA205AIDR  
VSSOP  
SOIC  
DGS  
D
2500  
2000  
INA205AIPWR  
TSSOP  
PW  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Mar-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
INA203AID  
INA203AIPW  
INA204AID  
INA205AID  
INA205AIPW  
D
PW  
D
SOIC  
TSSOP  
SOIC  
14  
14  
14  
14  
14  
50  
90  
50  
50  
90  
506.6  
530  
8
10.2  
8
3940  
3600  
3940  
3940  
3600  
4.32  
3.5  
506.6  
506.6  
530  
4.32  
4.32  
3.5  
D
SOIC  
8
PW  
TSSOP  
10.2  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY