INA2126UA/2K5 [TI]

双路 36V 微功耗 (175µA)、250µV 失调电压、精密仪表放大器 | D | 16 | -40 to 85;
INA2126UA/2K5
型号: INA2126UA/2K5
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路 36V 微功耗 (175µA)、250µV 失调电压、精密仪表放大器 | D | 16 | -40 to 85

放大器 仪表 光电二极管 仪表放大器
文件: 总37页 (文件大小:2285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
INAx126 MicroPower 仪表放大器  
1 特性  
3 说明  
• 低静态电流175 μA/channel  
• 宽电源电压范围±1.35V ±18 V  
• 低失调电压250µA最大值)  
• 低温漂3μV/°C最大值)  
• 低噪声35nV/Hz  
• 低输入偏置电流25nA最大值)  
• 温度范围40°C +85°C  
• 多种封装选项:  
INA126 INA2126 (INAx126) 是用于精确、低噪声、  
差分信号采集的精密仪表放大器。这些器件均采用双运  
算放大器设计具有低静态电流175μA/通道),可  
提供出色的瞬态性能。由于这些特性再加上 ±1.35V 至  
±18V 的宽工作电压范围INAx126 非常适合便携  
式仪表和数据采集系统。  
可通过单个外部电阻器在 5V/V 10000V/V 范围内设  
置增益。精密输入电路提供低失调电压250μV最  
大值、低失调电压漂移3μV/°C最大值和出色  
的共模抑制。  
– 单通道:  
INA126P/PA 8 PDIP (P)  
INA126U/UA 8 SOIC (D)  
INA126E/EA 8 VSSOP (DGK)  
– 双通道:  
所有版本的额定工作温度范围均为 –40°C +85°C  
工业温度范围。  
器件信息  
封装(1)  
INA2126P/PA 16 PDIP (N)  
INA2126U/UA 16 SOIC (D)  
INA2126E/EA 16 SSOP (DBQ)  
封装尺寸标称值)  
6.35mm × 9.81mm  
3.91mm × 4.90mm  
3.00mm × 3.00mm  
6.35mm × 19.30mm  
3.91mm × 9.90mm  
3.90mm x 4.90mm  
器件型号  
PDIP (8)  
INA126  
SOIC (8)  
2 应用  
VSSOP (8)  
PDIP (16)  
SOIC (16)  
SSOP (16)  
液位变送器  
流量变送器  
多参数患者监护仪  
混合模块AIAODIDO)  
交流充电站  
输液泵  
INA2126  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
心电(ECG)  
V+  
V+  
INA2126  
7
9
2
3
+
VIN  
INA126  
6
7
+
3
8
+
V
O = (VIN – VIN) G  
VIN  
6
+
VO = (VIN – VIN) G  
80kΩ  
G = 5 +  
RG  
40kΩ  
80kΩ  
40kΩ  
10kΩ  
G = 5 +  
10kΩ  
RG  
RG  
10kΩ  
RG  
4
1
10kΩ  
40kΩ  
VIN  
1
2
5
15  
14  
+
VIN  
VIN  
11  
+
40kΩ  
V
O = (VIN – VIN) G  
5
40kΩ  
80kΩ  
G = 5 +  
RG  
4
10kΩ  
10  
V–  
RG  
简化版原理图INA126  
13  
10kΩ  
40kΩ  
16  
8
VIN  
12  
V–  
简化版原理图INA2126  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS062  
 
 
 
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
Table of Contents  
8 Application and Implementation..................................13  
8.1 Application Information............................................. 13  
8.2 Typical Application.................................................... 13  
9 Power Supply Recommendations................................17  
9.1 Low-Voltage Operation............................................. 17  
10 Layout...........................................................................18  
10.1 Layout Guidelines................................................... 18  
10.2 Layout Example...................................................... 19  
11 Device and Documentation Support..........................20  
11.1 Device Support........................................................20  
11.2 接收文档更新通知................................................... 20  
11.3 支持资源..................................................................20  
11.4 Trademarks............................................................. 20  
11.5 Electrostatic Discharge Caution..............................20  
11.6 术语表..................................................................... 20  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information: INA126......................................6  
6.5 Thermal Information: INA2126....................................6  
6.6 Electrical Characteristics.............................................7  
6.7 Typical Characteristics................................................9  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................12  
7.4 Device Functional Modes..........................................12  
Information.................................................................... 20  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (December 2015) to Revision C (December 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Added dual supply specification to Absolute Maximum Ratings ........................................................................5  
Deleted redundant operating temperature and input common mode voltage specifications in Recommended  
Operating Conditions .........................................................................................................................................5  
Added dual supply and specified temperature specifications in Recommended Operating Conditions ............5  
Added proper signs for PSRR and input bias current specifications in Electrical Characteristics .....................7  
Deleted VO = 0 V test condition of common-mode voltage specification in Electrical Characteristics ...............7  
Changed common-mode voltage specification from ±11.25 V minimum, to 11.25 V minimum and 11.25 V  
maximum, in Electrical Characteristics ..............................................................................................................7  
Changed minimum CMRR specification for INA126U/E, INA2126E from 83 dB to 80 dB in Electrical  
Characteristics ...................................................................................................................................................7  
Added typical input bias current specification of ±10 nA for INA126PA/UA/EA and INA2126PA/UA/EA in  
Electrical Characteristics ................................................................................................................................... 7  
Changed current noise specifications in Electrical Characteristics from 60 fA/Hz to 160 fA/Hz for f = 1  
kHz, and from 2 pApp to 7.3 pApp for f = 0.1 Hz to 10 Hz..................................................................................7  
Changed test condition for short-circuit current specification in Electrical Characteristics from "Short circuit to  
ground" to "Continuous to VS / 2" for clarity........................................................................................................7  
Changed short-circuit current specification in Electrical Characteristics from +10/-5 mA to ±5 mA................... 7  
Deleted redundant voltage range, operating temperature range, and specification temperature range  
specifications from Electrical Characteristics .....................................................................................................7  
Changed Figures 6-7, 6-10, 6-13, 6-14, 6-15, 6-16, 6-17 ..................................................................................9  
Added Figure 6-11.............................................................................................................................................. 9  
Changes from Revision A (August 2005) to Revision B (December 2015)  
Page  
• 添加ESD 表、特性说部分、器件功能模式应用和实部分、电源相关建部分、部分、器  
件和文档支部分以及机械、封装和可订购信部分.......................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: INA126 INA2126  
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
RG  
1
2
3
4
8
7
6
5
RG  
V+  
VO  
Ref  
V–  
V+  
IN  
IN  
V–  
5-1. INA126: P (8-Pin PDIP), D (8-Pin SOIC), and DGK (8-Pin VSSOP) Packages, Top View  
5-1. Pin Functions: INA126  
PIN  
I/O  
DESCRIPTION  
NO.  
1, 8  
2
NAME  
RG  
Gain setting pin. For gains greater than 5 place a gain resistor between pin 1 and pin 8.  
I
I
Negative input  
VIN  
V+IN  
V–  
Ref  
3
Positive input  
4
Negative supply  
I
5
Reference input. This pin must be driven by a low impedance or connected to ground.  
6
VO  
O
Output  
7
V+  
Positive supply  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: INA126 INA2126  
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
VINA  
VI+NA  
1
2
3
4
5
6
7
8
16 VINB  
15 VI+NB  
14 RGB  
13 RGB  
RGA  
RGA  
12  
11  
RefB  
VOB  
RefA  
VOA  
SenseA  
V–  
10 SenseB  
V+  
9
5-2. INA2126: N (16-Pin PDIP), D (16-Pin SOIC), and DBQ (16-Pin SSOP) Packages, Top View  
5-2. Pin Functions: INA2126  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
VINA  
V+INA  
I
I
Negative input for amplifier A  
Positive input for amplifier A  
2
Gain setting pin for amplifier A. For gains greater than 5 place a gain resistor between pin 3 and  
pin 4.  
3, 4  
5
RGA  
Reference input for amplifier A. This pin must be driven by a low impedance or connected to  
ground.  
RefA  
I
6
VOA  
SenseA  
V–  
O
I
Output of amplifier A  
7
Feedback for amplifier A. Connect to VOA, amplifier A output.  
Negative supply  
8
9
V+  
Positive supply  
I
10  
11  
SenseB  
VOB  
Feedback for amplifier B. Connect to VOB, amplifier B output.  
Output of amplifier B  
O
Reference input for amplifier B. This pin must be driven by a low impedance or connected to  
ground.  
12  
RefB  
RGB  
I
Gain setting pin for amplifier B. For gains greater than 5 place a gain resistor between pin 13 and  
pin 14.  
13, 14  
15  
16  
V+INB  
I
I
Positive input for amplifier B  
Negative input for amplifier B  
VINB  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: INA126 INA2126  
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
±18  
UNIT  
Supply voltage dual supply, VS = (V+) (V)  
VS  
V
36  
Supply voltage single supply, VS = (V+) (V)  
Input signal voltage(2)  
Input signal current(2)  
Output short-circuit(3)  
(V+) + 0.7  
10  
V
(V) 0.7  
mA  
Continuous  
TA  
Operating Temperature  
125  
300  
125  
°C  
°C  
°C  
55  
Lead temperature (soldering, 10 s)  
Storage Temperature  
Tstg  
55  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Input signal voltage is limited by internal diodes connected to power supplies. See Input Protection.  
(3) Short-circuit to VS / 2.  
6.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
TYP  
30  
MAX  
36  
UNIT  
Single-supply  
Dual-supply  
VS  
TA  
Supply voltage  
V
±1.35  
40  
±15  
±18  
85  
Specified temperature  
°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: INA126 INA2126  
 
 
 
 
 
 
 
 
 
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
6.4 Thermal Information: INA126  
INA126  
SOIC  
8 PINS  
116.4  
62.4  
THERMAL METRIC(1)  
PDIP  
8 PINS  
52.2  
VSSOP  
8 PINS  
167.8  
60.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
41.6  
29.4  
57.7  
88.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
18.9  
10.0  
7.3  
ψJT  
29.2  
57.1  
87.3  
ψJB  
RθJC(bot)  
N/A  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: INA2126  
INA2126  
THERMAL METRIC(1)  
PDIP  
16 PINS  
39.3  
SOIC  
16 PINS  
76.2  
SSOP  
16 PINS  
115.8  
67.0  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
26.2  
37.8  
20.1  
33.5  
58.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
10.7  
7.5  
19.9  
ψJT  
19.9  
33.3  
57.9  
ψJB  
RθJC(bot)  
N/A  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: INA126 INA2126  
 
 
 
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
6.6 Electrical Characteristics  
at TA = 25°C, VS = ±15 V, RL = 25 k, VREF = 0 V, and VCM = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
INA126P/U/E  
INA2126P/U/E  
±100  
±150  
±0.5  
±0.5  
±5  
±250  
±500  
±3  
VOS  
Offset voltage (RTI)  
µV  
INA126PA/UA/EA  
INA2126PA/UA/EA  
INA126P/U/E  
INA2126P/U/E  
Offset voltage drift (RTI)  
µV/°C  
uV/V  
TA = 40°C to +85°C  
INA126PA/UA/EA  
INA2126PA/UA/EA  
±5  
INA126P/U/E  
INA2126P/U/E  
±15  
±50  
Power-supply rejection ratio  
(RTI)  
PSRR  
VS = ±1.35 V to ±18 V  
INA126PA/UA/EA  
INA2126PA/UA/EA  
±5  
Input impedance  
Safe input voltage  
1 || 4  
G|| pF  
(V+) + 0.5  
(V+) + 10  
11.25  
RS = 0 Ω  
(V) 0.5  
(V) 10  
11.25  
V
RS = 1 kΩ  
VCM  
Common-mode voltage(1)  
Channel seperation (dual)  
±11.5  
130  
V
G = 5, dc  
dB  
INA126P  
INA2126P  
83  
80  
74  
94  
94  
83  
INA126U/E  
INA2126U/E  
CMRR  
Common-mode rejection ratio  
dB  
RS = 0 Ω, VCM = ±11.25 V  
INA126PA/UA/EA  
INA2126PA/UA/EA  
INPUT BIAS CURRENT  
INA126P/U/E  
INA2126P/U/E  
±10  
±25  
±50  
IB  
Input bias current  
nA  
INA126PA/UA/EA  
INA2126PA/UA/EA  
±10  
±30  
Input bias current drift  
Input offset current  
TA = 40°C to +85°C  
pA/℃  
INA126P/U/E  
INA2126P/U/E  
±0.5  
±2  
±5  
nA  
IOS  
INA126PA/UA/EA  
INA2126PA/UA/EA  
±0.5  
±10  
nA  
Input offset current drift  
TA = 40°C to +85°C  
pA/℃  
GAIN  
Gain equation  
Gain  
V/V  
V/V  
5 + (80 k/ RG)  
G
5
10000  
±0.1  
INA126P/U/E  
INA2126P/U/E  
±0.02  
±0.02  
±0.2  
G = 5 , VO = ±14 V  
INA126PA/UA/EA  
INA2126PA/UA/EA  
±0.18  
±0.5  
±1  
GE  
Gain error  
%
INA126P/U/E  
INA2126P/U/E  
G = 100, VO = ±12 V  
INA126PA/UA/EA  
INA2126PA/UA/EA  
±0.2  
G = 5  
±2  
±25  
±10  
±100  
Gain drift(2)  
ppm/°C  
%
TA = 40°C to +85°C  
G = 100  
Gain nonlinearity  
G = 100, VO = ±14 V  
±0.002  
±0.012  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: INA126 INA2126  
 
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
6.6 Electrical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 25 k, VREF = 0 V, and VCM = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
NOISE  
f = 1 kHz  
35  
35  
f = 100 Hz  
nV/Hz  
eN  
Voltage noise  
fB = 10 Hz  
45  
fB = 0.1 Hz to 10 Hz  
f = 1 kHz  
0.7  
160  
7.3  
µVPP  
fA/Hz  
pAPP  
In  
Current noise  
fB = 0.1Hz to 10Hz  
OUTPUT  
(V+) –  
0.75  
Positive output voltage swing  
V
(V+) 0.9  
Negative output voltage swing  
Short-circuit current  
V
(V) + 0.95 (V) + 0.8  
ISC  
CL  
Continuous to VS / 2  
Stable operation  
±5  
mA  
pF  
Load capacitance  
1000  
FREQUENCY RESPONSE  
G = 5  
200  
9
BW  
SR  
tS  
G = 100  
kHz  
V/µs  
µs  
Bandwidth, 3 dB  
Slew rate  
G = 500  
1.8  
0.4  
30  
G = 5, VO = ±10 V  
G = 5  
Settling time  
To 0.01%, VSTEP = 10 V  
50% input overload  
G = 100  
G = 500  
160  
1500  
4
Overload recovery  
µs  
POWER SUPPLY  
Quiescent current (per  
IQ  
IO = 0 mA  
±175  
±200  
µA  
channel)  
(1) Input voltage range of the instrumentation amplifier input stage. The input range depends on the common-mode voltage, differential  
voltage, gain, and reference voltage. See Typical Characteristic curves.  
(2) The values specified for G > 5 do not include the effects of the external gain-setting resistor, RG.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: INA126 INA2126  
 
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
at TA = 25°C, VS = ±15 V (unless otherwise noted)  
70  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
G = 1000  
60  
50  
G = 100  
40  
G = 1000  
G = 100  
G = 5  
30  
20  
10  
0
G = 20  
G = 5  
–10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
6-1. Gain vs Frequency  
6-2. Common-Mode Rejection vs Frequency  
120  
100  
80  
60  
40  
20  
0
120  
G = 1000  
100  
80  
60  
40  
20  
0
G = 100  
G = 1000  
G = 100  
G = 5  
G = 5  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
6-3. Positive Power Supply Rejection vs Frequency  
6-4. Negative Power Supply Rejection vs Frequency  
15  
5
4
3
10  
VS  
=
5V  
2
1
5
VS = +5V/0V  
VREF = 2.5V  
+15V  
+
VD/2  
VO  
0
–5  
+
0
VD/2  
Ref  
+
–1  
–2  
–3  
–4  
–5  
VCM  
–15V  
–10  
–15  
–15  
–10  
–5  
0
5
10  
15  
–5  
–4 –3  
–2  
–1  
0
1
2
3
4
5
Output Voltage (V)  
Output Voltage (V)  
VS = ±15 V  
VS = ±5 V  
6-5. Input Common-Mode Voltage Range  
6-6. Input Common-Mode Voltage Range  
vs Output Voltage  
vs Output Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: INA126 INA2126  
 
 
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V (unless otherwise noted)  
100  
1000  
1000  
100  
10  
Voltage Noise  
Current Noise  
80  
70  
60  
800  
700  
600  
0.01%  
50  
40  
500  
0.1%  
400  
300  
30  
20  
200  
10  
100  
1
10  
100  
1k  
1
10  
100  
1k  
10k  
Frequency (Hz)  
Gain (V/V)  
6-7. Input-Referred Noise vs Frequency  
6-8. Settling Time vs Gain  
250  
200  
150  
100  
50  
10  
8
6
4
2
(Noise)  
0
–2  
–4  
–6  
–8  
–10  
Vs =  1.35 V  
Vs =  15 V  
Vs =  18 V  
0
-75  
0
1
2
3
4
5
6
7
8
9
10  
-50  
-25  
0
25  
50  
75  
100 125 150  
Time After Turn-On (ms)  
Temperature (C)  
6-10. Quiescent Current vs Temperature  
6-9. Input-Referred Offset Voltage WarmUp  
1.2  
1
1
Rising, Unit 1  
Rising, Unit 2  
Falling, Unit 1  
Falling, Unit 2  
0.8  
0.6  
0.4  
0.2  
0
0.1  
RL = 10kΩ  
0.01  
0.001  
-0.2  
-0.4  
-0.6  
-0.8  
RL = 100kΩ  
G = 5  
10  
100  
1k  
10k  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
Frequency (Hz)  
6-11. Slew Rate vs Temperature  
6-12. Total Harmonic Distortion + Noise vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: INA126 INA2126  
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V (unless otherwise noted)  
15  
-12.5  
-13  
40  
30  
Sourcing, Unit 1  
Sourcing, Unit 2  
Sinking, Unit 1  
14.5  
Sinking, Unit 2  
20  
10  
14  
-13.5  
-14  
0
13.5  
13  
-10  
-20  
-30  
-40  
-14.5  
-15  
12.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
40  
80  
120  
Time (s)  
160  
200  
240  
280  
Output Current (mA)  
G = 5  
6-14. Small-Signal Response  
6-13. Output Voltage Swing vs Output Current  
40  
15  
10  
5
30  
20  
10  
0
0
-10  
-20  
-30  
-40  
-5  
-10  
-15  
0
40  
80  
120  
160  
200  
240  
280  
0
40  
80  
120  
160  
200  
240  
280  
Time (s)  
Time (s)  
G = 100  
G = 5  
6-15. Small-Signal Response  
6-16. Large-Signal Response  
1
160  
150  
140  
130  
120  
110  
100  
90  
G = 1000  
0.5  
0
G = 100  
G = 5  
RL = 25kΩ  
Measurement limited  
by amplifier or  
measurement noise.  
80  
-0.5  
-1  
70  
60  
100  
1k  
10k  
100k  
1M  
Time (1 s/div)  
Frequency (Hz)  
6-17. 0.1-Hz to 10-Hz Voltage Noise  
6-18. Channel Separation vs Frequency, RTI (Dual Version)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: INA126 INA2126  
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The INAx126 use only two, rather than three, operational amplifiers, providing savings in power consumption. In  
addition, the input resistance is high and balanced, thus permitting the signal source to have an unbalanced  
output impedance.  
A minimum circuit gain of 5 permits an adequate dc common-mode input range, as well as sufficient bandwidth  
for most applications.  
7.2 Functional Block Diagram  
RG (Optional)  
REF  
OUT  
–IN  
+
+
+IN  
7.3 Feature Description  
The INAx126 are low-power, general-purpose instrumentation amplifiers offering excellent accuracy. The  
versatile two-operational-amplifier design and small size make the amplifiers an excellent choice for a wide  
range of applications. The two-op-amp topology reduces power consumption. A single external resistor sets any  
gain from 5 to 10,000. These devices operate with power supplies as low as ±1.35 V, and a quiescent current of  
200 μA maximum.  
7.4 Device Functional Modes  
7.4.1 Single-Supply Operation  
The INAx126 can be used on single power supplies from 2.7 V to 36 V. Use the output REF pin to level shift the  
internal output voltage into a linear operating condition. Ideally, connect the REF pin to a potential that is  
midsupply to avoid saturating the output of the amplifiers. See 8.1 for information on how to adequately drive  
the reference pin.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: INA126 INA2126  
 
 
 
 
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The INAx126 measures small differential voltage with high common-mode voltage developed between the  
noninverting and inverting input. The high input impedance make the INAx126 an excellent choice for a wide  
range of applications. The INAx126 can adjust the functionality of the output signals by setting the reference pin,  
giving additional flexibility that is practical for multiple configurations.  
8.2 Typical Application  
8-1 shows the basic connections required for operation of the INA126. Applications with noisy or high  
impedance power supplies may require decoupling capacitors close to the device pins as shown.  
The output is referred to the output reference (Ref) pin, which is normally grounded. This connection must be  
low-impedance to maintain good common-mode rejection. A resistance of 8 Ω in series with the Ref pin causes  
a typical device to degrade to approximately 80-dB CMR.  
8-4 depicts a desired differential signal from a sensor at 1 kHz and 5 mVPP superimposed on top of a 1-VPP  
,
60-Hz common-mode signal (the 1-kHz signal can not be resolved in this scope trace). The FFT trace in 8-5  
shows the two signals. 8-6 shows the clearly recovered differential signal at the output of the INA126  
operating at a gain of 250. The FFT of 8-7 shows the 60-Hz common-mode is no longer visible.  
The dual version INA2126 has feedback-sense connections, SenseA and SenseB, that must be connected to the  
respective output pins for proper operation. The sense connection can sense the output voltage directly at the  
load for best accuracy.  
V+  
0.1µF  
Pin numbers are  
for single version  
DESIRED GAIN  
(V/V)  
RG  
NEAREST 1%  
RG VALUE  
7
()  
INA126  
3
8
+
5
10  
NC  
16k  
NC  
15.8k  
5360  
1780  
845  
VIN  
6
A1  
80kΩ  
RG  
20  
5333  
1779  
842  
410  
162  
80.4  
40.1  
16.0  
8.0  
G = 5 +  
50  
40kΩ  
+
!
100  
200  
500  
1000  
2000  
5000  
10000  
VO = (VIN – VIN) G  
412  
10kΩ  
162  
+
RG  
80.6  
40.2  
15.8  
7.87  
10kΩ  
Load  
VO  
1
2
NC: No Connection.  
A2  
VIN  
40kΩ  
0.1µF  
5
Also drawn in simplified form:  
Ref  
+
VIN  
4
VO  
INA126  
RG  
!
VIN  
V–  
Ref  
!Dual version has  
external sense connection.  
8-1. Basic Connections  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: INA126 INA2126  
 
 
 
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
8.2.1 Design Requirements  
For the traces shown in 8-2 and 8-3:  
Common-mode rejection of at least 80 dB  
Gain of 250  
8.2.2 Detailed Design Procedure  
8.2.2.1 Setting the Gain  
Gain is set by connecting an external resistor, RG:  
g = 5 + 80 kΩ/ RG  
(1)  
Commonly used gains and RG resistor values are shown in 8-1.  
The 80-kΩ term in 方程式 1 comes from the internal metal-film resistors, which are laser-trimmed to accurate  
absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy  
and drift specifications.  
The stability and temperature drift of the external gain setting resistor, RG, also affects gain. The RG contribution  
to gain accuracy and drift can be directly inferred from 方程式 1. Low resistor values required for high gain can  
make wiring resistance important. Sockets add to the wiring resistance, which contributes additional gain error in  
gains of approximately 100 or greater.  
8.2.2.2 Offset Trimming  
The INAx126 family features low offset voltage and offset voltage drift. Most applications require no external  
offset adjustment. 8-2 shows an optional circuit for trimming the output offset voltage. The voltage applied to  
the Ref pin is added to the output signal. An operational amplifier buffer provides low impedance at the Ref pin to  
preserve good common-mode rejection.  
mIN  
mO  
RG  
INA126  
Ref  
m+  
!
+
mIN  
100µA  
1/2 REF200  
100Ω  
100Ω  
10kΩ  
OPA237  
10ꢀm  
Adjustꢀent Range  
100µA  
1/2 REF200  
! Dual version has  
external sense connection.  
m–  
8-2. Optional Trimming of Output Offset Voltage  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: INA126 INA2126  
 
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
8.2.2.3 Input Bias Current Return  
The input impedance of the INAx126 is extremely high at approximately 109 Ω. However, a path must be  
provided for the input bias current of both inputs. This input bias current is typically 10 nA (current flows out of  
the input pins). High input impedance means that this input bias current changes very little with varying input  
voltage.  
Input circuitry must provide a path for this input bias current for proper operation. 8-3 shows various  
provisions for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds  
the common-mode range, and the input amplifiers will saturate.  
If the differential source resistance is low, the bias current return path can be connected to one input (see the  
thermocouple example in 8-3). With higher source impedance, using two equal resistors provides a balanced  
input with the advantages of lower input offset voltage due to bias current and better high-frequency common-  
mode rejection.  
Microphone,  
Hydrophone  
etc.  
INA126  
47kΩ  
47kΩ  
Thermocouple  
INA126  
10kΩ  
INA126  
Center-tap provides  
bias current return.  
8-3. Providing an Input Common-Mode Current Path  
8.2.2.4 Input Common-Mode Range  
The input common-mode range of the INAx126 is shown in 6.7. The common-mode range is limited on the  
negative side by the output voltage swing of A2, an internal circuit node that cannot be measured on an external  
pin. The output voltage of A2 can be expressed as shown in 方程2:  
VO2 = 1.25 VIN (V+ IN VIN) (10 kΩ/RG)  
(2)  
where  
Voltages referred to Ref, pin 5  
The internal op amp A2 is identical to A1, with an output swing typically limited to 0.7 V from the supply rails.  
When the input common-mode range is exceeded (A2 output is saturated), A1 can still be in linear operation and  
respond to changes in the noninverting input voltage. The output voltage, however, will be invalid.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: INA126 INA2126  
 
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
8.2.2.5 Input Protection  
The inputs are protected with internal diodes connected to the power-supply rails. These diodes clamp the  
applied signal to prevent the signal from exceeding the power supplies by more than approximately 0.7 V. If the  
signal-source voltage can exceed the power supplies, the source current should be limited to less than 10 mA.  
This limiting can generally be done with a series resistor. Some signal sources are inherently current-limited, and  
do not require limiting resistors.  
8.2.2.6 Channel CrosstalkDual Version  
The two channels of the INA2126 are completely independent, including all bias circuitry. At dc and low  
frequency, there is virtually no signal coupling between channels. Crosstalk increases with frequency and  
depends on circuit gain, source impedance, and signal characteristics.  
As source impedance increases, careful circuit layout can help achieve lowest channel crosstalk. Most crosstalk  
is produced by capacitive coupling of signals from one channel to the input section of the other channel. To  
minimize coupling, separate the input traces as far as practical from any signals associated with the opposite  
channel. A grounded guard trace surrounding the inputs helps reduce stray coupling between channels.  
Carefully balance the stray capacitance of each input to ground, and run the differential inputs of each channel  
parallel to each other, or directly adjacent on top and bottom side of a circuit board. Stray coupling then tends to  
produce a common-mode signal that is rejected by the IA input.  
8.2.3 Application Curves  
space  
Differential signal is too small to be seen  
8-5. FFT of Signal in Previous Figure Shows  
Both the 60-Hz Common-mode Along With 5-kHz  
Differential Signal  
8-4. Common-mode Signal at INA126 Input  
8-6. Recovered Differential Signal at the Output  
8-7. FFT of the INA126 Output Shows that the  
of the INA126 With a Gain of 250  
60-Hz Common-mode Signal is Rejected  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: INA126 INA2126  
 
 
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
9.1 Low-Voltage Operation  
The INAx126 can be operated on power supplies as low as ±1.35 V. Performance remains excellent with power  
supplies ranging from ±1.35 V to ±18 V. Most parameters vary only slightly throughout this supply voltage range  
(see 6.7). Operation at low supply voltage requires careful attention to make sure that the common-mode  
voltage remains within the linear range (see 6-5 and 6-6).  
The INAx126 operates from a single power supply with careful attention to input common-mode range, output  
voltage swing of both op amps, and the voltage applied to the Ref pin. 9-1 shows a bridge amplifier circuit  
operated from a single 5-V power supply. The bridge provides an input common-mode voltage near 2.5 V, with a  
relatively small differential voltage.  
The ADS7817s VREF input current is proportional to conversion rate. A  
conversion rate of 10kS/s or slower assures enough current to turn on the  
reference diode. Converter input range is 1.2V. Output swing limitation of  
+5V  
INA126 limits the A/D converter to somewhat greater than 11 bits of range.  
7
R1, C1, R2:  
340Hz LP  
INA126 and ADS7817  
are available in fine-pitch  
MSOP-8 package  
INA126  
2.5V + V  
3
8
6
A1  
8
R1  
40kΩ  
!
1kΩ  
2
6
5
7
Serial  
Data  
+IN  
D
CS  
Ck  
10kΩ  
Bridge  
Sensor  
RG  
C1  
0.47µF  
10kΩ  
ADS7817  
12-Bit  
A/D  
3
1
Chip  
IN  
Select  
R2  
1
2
1kΩ  
A2  
2.5V – ∆V  
VREF  
Clock  
40kΩ  
5
1.2V  
33µA  
4
6
8
4
4
REF1004C-1.2  
A similar instrumentation amplifier, INA125, provides  
an internal reference voltage for sensor excitation  
and/or A/D converter reference.  
!Dual version has external  
sense connection. Pin numbers  
shown are for single version.  
9-1. Bridge Signal Acquisition, Single 5-V Supply  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: INA126 INA2126  
 
 
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Attention to good layout practices is always recommended. For best operational performance of the device, use  
good printed circuit board (PCB) layout practices, including:  
Make sure that both input paths are well-matched for source impedance and capacitance to avoid converting  
common-mode signals into differential signals. In addition, parasitic capacitance at the gain-setting pins can  
also affect CMRR over frequency. For example, in applications that implement gain switching using switches  
or PhotoMOS® relays to change the value of RG, select the component so that the switch capacitance is as  
small as possible.  
Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of the circuitry is one of the simplest and most effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds, paying attention to the flow of the ground current. For more detailed information, see  
PCB Design Guidelines For Reduced EMI.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better  
than in parallel with the noisy trace.  
Place the external components as close to the device as possible. As illustrated in 10-1, keep RG close to  
the pins to minimize parasitic capacitance.  
Keep the traces as short as possible  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: INA126 INA2126  
 
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
10.2 Layout Example  
Gain Resistor  
Bypass  
Capacitor  
RG  
V-IN  
V+IN  
V-  
RG  
V+  
VO  
V+  
-
VIN  
VOUT  
GND  
VIN  
+
Ref  
Bypass  
Capacitor  
V-  
GND  
10-1. INA126 Layout Example  
-
-
V-INA  
V+INA  
RGA  
V-INB  
V+INB  
RGB  
VIN  
VIN  
VIN  
VIN  
+
+
RGA  
RGB  
REFA  
VOA  
REFB  
VOB  
Gain Resistor  
Gain Resistor  
VOUT  
VOUT  
SENSEA  
V-  
SENSEB  
V+  
V-  
V+  
Bypass  
Capacitor  
Bypass  
Capacitor  
GND  
10-2. INA2126 Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: INA126 INA2126  
 
 
INA126, INA2126  
ZHCSO32C SEPTEMBER 2000 REVISED JANUARY 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 PSpice® for TI  
PSpice® for TI is a design and simulation environment that helps evaluate performance of analog circuits. Create  
subsystem designs and prototype solutions before committing to layout and fabrication, reducing development  
cost and time to market.  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
PhotoMOS® is a registered trademark of Panasonic Corporation.  
PSpice® is a registered trademark of Cadence Design Systems, Inc.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: INA126 INA2126  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
250  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA126E/250  
INA126E/250G4  
INA126E/2K5  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
DGK  
8
8
8
RoHS & Green  
RoHS & Green  
Call TI | NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 125  
-55 to 125  
A26  
BB  
Samples  
LIFEBUY  
ACTIVE  
DGK  
NIPDAU  
A26  
BB  
DGK  
2500 RoHS & Green  
250 RoHS & Green  
Call TI | NIPDAU  
A26  
BB  
Samples  
INA126EA/250  
INA126EA/2K5  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
Call TI | NIPDAU  
Call TI | NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
A26  
A26  
A26  
Samples  
Samples  
2500 RoHS & Green  
2500 RoHS & Green  
INA126EA/2K5G4  
INA126U  
LIFEBUY  
ACTIVE  
VSSOP  
SOIC  
DGK  
D
8
8
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
75  
2500 RoHS & Green  
75 RoHS & Green  
RoHS & Green  
INA  
126U  
Samples  
Samples  
Samples  
INA126U/2K5  
INA126UA  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
INA  
126U  
INA  
126U  
A
INA126UA/2K5  
INA2126E/250  
INA2126E/2K5  
INA2126EA/250  
INA2126EA/2K5  
INA2126U  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SSOP  
SSOP  
SSOP  
SSOP  
SOIC  
D
8
2500 RoHS & Green  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
INA  
126U  
A
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
DBQ  
DBQ  
DBQ  
DBQ  
D
16  
16  
16  
16  
16  
250  
RoHS & Green  
INA  
2126E  
A
2500 RoHS & Green  
Call TI | NIPDAU  
Call TI | NIPDAU  
NIPDAU  
INA  
2126E  
A
250  
RoHS & Green  
INA  
2126E  
A
2500 RoHS & Green  
INA  
2126E  
A
40  
RoHS & Green  
NIPDAU  
INA2126U  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jun-2023  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA2126UA  
INA2126UA/2K5  
INA2126UE4  
ACTIVE  
SOIC  
SOIC  
SOIC  
D
D
D
16  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
INA2126U  
A
Samples  
Samples  
ACTIVE  
2500 RoHS & Green  
40 RoHS & Green  
NIPDAU  
NIPDAU  
INA2126U  
A
LIFEBUY  
INA2126U  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jun-2023  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA126E/250  
INA126E/250  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
D
8
8
250  
250  
180.0  
180.0  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
6.5  
3.4  
3.4  
3.4  
3.4  
3.4  
3.4  
3.4  
3.4  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
10.3  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
INA126E/2K5  
INA126E/2K5  
INA126EA/250  
INA126EA/250  
INA126EA/2K5  
INA126EA/2K5  
INA126U/2K5  
INA126UA/2K5  
INA2126E/250  
INA2126E/2K5  
INA2126E/2K5  
INA2126EA/250  
INA2126EA/2K5  
INA2126UA/2K5  
8
2500  
2500  
250  
8
8
8
250  
8
2500  
2500  
2500  
2500  
250  
8
8
SOIC  
D
8
SSOP  
SSOP  
SSOP  
SSOP  
SSOP  
SOIC  
DBQ  
DBQ  
DBQ  
DBQ  
DBQ  
D
16  
16  
16  
16  
16  
16  
2500  
2500  
250  
2500  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Mar-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA2126UA/2K5  
SOIC  
D
16  
2500  
330.0  
16.4  
6.5  
10.3  
2.1  
8.0  
16.0  
Q1  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA126E/250  
INA126E/250  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
D
8
8
250  
250  
210.0  
210.0  
356.0  
356.0  
210.0  
210.0  
356.0  
367.0  
356.0  
356.0  
210.0  
356.0  
356.0  
210.0  
356.0  
356.0  
356.0  
185.0  
185.0  
356.0  
356.0  
185.0  
185.0  
356.0  
367.0  
356.0  
356.0  
185.0  
356.0  
356.0  
185.0  
356.0  
356.0  
356.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
INA126E/2K5  
INA126E/2K5  
INA126EA/250  
INA126EA/250  
INA126EA/2K5  
INA126EA/2K5  
INA126U/2K5  
INA126UA/2K5  
INA2126E/250  
INA2126E/2K5  
INA2126E/2K5  
INA2126EA/250  
INA2126EA/2K5  
INA2126UA/2K5  
INA2126UA/2K5  
8
2500  
2500  
250  
8
8
8
250  
8
2500  
2500  
2500  
2500  
250  
8
8
SOIC  
D
8
SSOP  
SSOP  
SSOP  
SSOP  
SSOP  
SOIC  
DBQ  
DBQ  
DBQ  
DBQ  
DBQ  
D
16  
16  
16  
16  
16  
16  
16  
2500  
2500  
250  
2500  
2500  
2500  
SOIC  
D
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Mar-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
INA126U  
INA126UA  
INA2126U  
D
D
D
D
D
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
8
75  
75  
40  
40  
40  
506.6  
506.6  
506.6  
506.6  
506.6  
8
8
8
8
8
3940  
3940  
3940  
3940  
3940  
4.32  
4.32  
4.32  
4.32  
4.32  
8
16  
16  
16  
INA2126UA  
INA2126UE4  
Pack Materials-Page 4  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SEE  
DETAILS  
SYMM  
1
16  
16X (.016 )  
[0.41]  
14X (.0250 )  
[0.635]  
8
9
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.002 MAX  
[0.05]  
ALL AROUND  
.002 MIN  
[0.05]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214846/A 03/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY