INA240PMPWPSEP [TI]

采用增强型航天塑料、具有增强的 PWM 抑制能力的 -4V 至 80V、超精密电流感应放大器 | PW | 8 | -55 to 125;
INA240PMPWPSEP
型号: INA240PMPWPSEP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用增强型航天塑料、具有增强的 PWM 抑制能力的 -4V 至 80V、超精密电流感应放大器 | PW | 8 | -55 to 125

放大器
文件: 总36页 (文件大小:1921K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
INA240-SEP  
ZHCSJ78 DECEMBER 2018  
采用增强型航天塑料的 INA240-SEP 宽共模范围高侧和低侧  
双向零漂移电流检测放大器  
1 特性  
2 应用  
1
VID V62/18615  
耐辐射  
支持近地球轨道空间 应用  
电源监控  
过流和欠流检测  
卫星遥测  
单粒子锁定 (SEL) 125°C 下的抗扰度可达  
43MeV-cm2/mg  
在高达 30krad(Si) 的条件下无 ELDRS  
电机控制环路  
每个晶圆批次的 RLAT 总电离剂量 (TID) 高达  
3 说明  
20krad(Si)  
增强型航天塑料  
INA240-SEP 器件是一款电压输出、电流检测放大器,  
具有增强型 PWM 抑制功能,可在独立于电源电压的  
–4V 80V 宽共模电压范围内检测分流电阻器上的压  
降。负共模电压允许器件的工作电压低于接地电压,从  
而适应典型螺线管应用 的反激周期。增强型 PWM 抑  
制功能可为使用脉宽调制 (PWM) 信号的系统(例如,  
电机驱动和螺线管控制系统)中的较大共模瞬变  
(ΔV/Δt) 提供高水平的抑制。凭借该功能,可精确测量  
电流,而不会使输出电压产生较大的瞬变及相应的恢复  
纹波。  
受控基线  
金线  
NiPdAu 铅涂层  
同一组装和测试场所  
同一制造场所  
支持军用(-55°C 125°C)温度范围  
延长的产品生命周期  
延长的产品变更通知  
产品可追溯性  
采用增强型模具化合物实现低释气  
该器件可由一个电压为 2.7V 5.5V 的单电源供电,  
最大电源电流为 2.4mA。固定增益为 20V/V。零漂移  
架构的低偏移使得该器件能够在分流器上的最大压降低  
10mV(满量程)的情况下进行电流检测。  
增强型 PWM 抑制  
出色的 CMRR132dB(典型值)  
宽共模范围:–4V 80V  
增益:20V/V:  
器件信息(1)  
增益误差:0.2%(最大值)  
器件型号  
封装  
封装尺寸(标称值)  
增益漂移:2.5ppm/°C(最大值)  
INA240PMPWTPSEP  
INA240PMPWPSEP  
失调电压:±25µV(最大值)  
温漂:250nV/°C(最大值)  
静态电流:2.4mA(最大值)  
TSSOP (8)  
3.00mm × 4.40mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
典型应用  
增强型 PWM 抑制  
270  
3.5  
3
Y1  
240  
Supply  
(2.7 V to 5.5 V)  
2.5  
2
210  
180  
150  
150  
1.5  
1
Common-Mode Step  
INA240-SEP OUT  
120  
90  
60  
30  
0
INœ  
0.5  
3.50  
Y1  
OUT  
+
IN+  
REF2  
3
2.5  
2
REF1  
1.5  
-30  
Time (2 µs/div)  
D004  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS956  
 
 
 
INA240-SEP  
ZHCSJ78 DECEMBER 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation ........................ 19  
8.1 Application Information............................................ 19  
8.2 Typical Applications ................................................ 21  
8.3 Do's and Don'ts ...................................................... 24  
Power Supply Recommendations...................... 24  
9.1 Power Supply Decoupling....................................... 24  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 13  
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 25  
11 器件和文档支持 ..................................................... 26  
11.1 接收文档更新通知 ................................................. 26  
11.2 社区资源................................................................ 26  
11.3 ....................................................................... 26  
11.4 静电放电警告......................................................... 26  
11.5 术语表 ................................................................... 26  
12 机械、封装和可订购信息....................................... 27  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2018 12 月  
*
初始发行版。  
2
Copyright © 2018, Texas Instruments Incorporated  
 
INA240-SEP  
www.ti.com.cn  
ZHCSJ78 DECEMBER 2018  
5 Pin Configuration and Functions  
INA240-SEP PW Package  
8-Pin TSSOP  
Top View  
NC- no internal connection  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
PW (TSSOP)  
GND  
4
Analog  
Ground.  
Analog  
input  
IN–  
3
Connect to load side of shunt resistor.  
Analog  
input  
IN+  
NC  
2
1
8
Connect to supply side of shunt resistor.  
Reserved. Connect to ground.  
Output voltage.  
Analog  
output  
OUT  
Analog  
input  
Reference 1 voltage. Connect to 0 V to VS; see the Adjusting the Output Midpoint With  
the Reference Pins section for connection options.  
REF1  
7
Analog  
input  
Reference 2 voltage. Connect to 0 V to VS; see the Adjusting the Output Midpoint With  
the Reference Pins section for connection options.  
REF2  
VS  
6
5
Power supply, 2.7 V to 5.5 V.  
Copyright © 2018, Texas Instruments Incorporated  
3
INA240-SEP  
ZHCSJ78 DECEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
6
UNIT  
Supply voltage  
V
Differential (VIN+) – (VIN–  
)
–80  
–6  
80  
(2)  
Analog inputs, VIN+, VIN–  
V
Common-mode  
90  
REF1, REF2, NC inputs  
Output  
GND – 0.3  
GND – 0.3  
–55  
VS + 0.3  
VS + 0.3  
150  
V
V
Operating free-air temperature, TA  
Junction temperature, TJ  
°C  
°C  
°C  
150  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) VIN+ and VIN– are the voltages at the IN+ and IN– pins, respectively.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–4  
NOM  
MAX  
80  
UNIT  
VCM  
VS  
Common-mode input voltage  
Operating supply voltage  
V
V
2.7  
–55  
5.5  
TA  
Operating free-air temperature  
125  
°C  
6.4 Thermal Information  
INA240-SEP  
THERMAL METRIC(1)  
PW (TSSOP)  
8 PINS  
149.1  
33.2  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
78.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.5  
ψJB  
76.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
INA240-SEP  
www.ti.com.cn  
ZHCSJ78 DECEMBER 2018  
6.5 Electrical Characteristics  
at TA = –55°C to 125°C, VS = 5 V, VSENSE = VIN+ – VIN–, VCM = 12 V, and VREF1 = VREF2 = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT  
VIN+ = –4 V to 80 V, VSENSE = 0 mV  
TA = –55°C to 125°C  
VCM  
Common-mode input range  
Common-mode rejection ratio  
–4  
80  
V
VIN+ = –4 V to 80 V, VSENSE = 0 mV  
TA = –55°C to 125°C  
120  
132  
CMRR  
dB  
µV  
f = 50 kHz  
93  
±5  
VOS  
Offset voltage, input-referred  
Offset voltage drift  
VSENSE = 0 mV  
±25  
dVOS/dT  
VSENSE = 0 mV, TA = –55°C to 125°C  
±50  
±250 nV/°C  
VS = 2.7 V to 5.5 V, VSENSE = 0 mV  
TA = –55°C to 125°C  
PSRR  
IB  
Power-supply rejection ratio  
±1  
90  
±10  
VS  
µV/V  
Input bias current  
IB+, IB–, VSENSE = 0 mV  
µA  
V
Reference input range  
0
OUTPUT  
G
Gain  
20  
±0.05%  
±0.5  
V/V  
GND + 50 mV VOUT VS – 200 mV  
TA = –55°C to 125°C  
±0.20%  
Gain error  
±2.5 ppm/°C  
0.1%  
Nonlinearity error  
GND + 10 mV VOUT VS – 200 mV  
±0.01%  
VOUT = | (VREF1 – VREF2) | / 2 at VSENSE  
0 mV, TA = –55°C to 125°C  
=
Reference divider accuracy  
0.02%  
Reference voltage rejection ratio  
(input-referred)  
RVRR  
20  
1
µV/V  
nF  
Maximum capacitive load  
No sustained oscillation  
VOLTAGE OUTPUT(1)  
RL = 10 kΩ to GND  
TA = –55°C to 125°C  
Swing to VS power-supply rail  
VS – 0.05  
VGND + 1  
VS – 0.2  
V
RL = 10 kΩ to GND, VSENSE = 0 mV  
VREF1 = VREF2 = 0 V  
TA = –55°C to 125°C  
Swing to GND  
VGND + 10  
mV  
FREQUENCY RESPONSE  
All gains, –3-dB bandwidth  
All gains, 2% THD+N(2)  
400  
100  
BW  
Bandwidth  
kHz  
Settling time - output settles to 0.5% of  
final value  
9.6  
2
µs  
SR  
Slew rate  
V/µs  
NOISE (INPUT REFERRED)  
Voltage noise density  
POWER SUPPLY  
40  
nV/Hz  
VS  
Operating voltage range  
TA = –55°C to 125°C  
VSENSE = 0 mV  
2.7  
5.5  
2.4  
V
1.8  
IQ  
Quiescent current  
mA  
IQ vs temperature,  
TA = –55°C to 125°C  
2.6  
TEMPERATURE RANGE  
Specified range  
–55  
125  
°C  
(1) See Figure 10.  
(2) See the Input Signal Bandwidth section for more details.  
Copyright © 2018, Texas Instruments Incorporated  
5
 
INA240-SEP  
ZHCSJ78 DECEMBER 2018  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = –55°C to 125°C, VS = 5 V, VCM = 12 V, and VREF = VS / 2 (unless otherwise noted)  
50  
40  
30  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
D022  
D001  
VOS (mV)  
Figure 1. Input Offset Voltage Production Distribution  
Figure 2. Offset Voltage vs Temperature  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
D004  
D003  
CMR (mV/V)  
Figure 4. Common-Mode Rejection Ratio vs Temperature  
Figure 3. Common-Mode Rejection Production Distribution  
100  
75  
50  
25  
0
-25  
-50  
-75  
-100  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
D600  
D501  
Gain Error (%)  
Figure 6. Gain Error vs Temperature  
Figure 5. Gain Error Production Distribution  
6
Copyright © 2018, Texas Instruments Incorporated  
INA240-SEP  
www.ti.com.cn  
ZHCSJ78 DECEMBER 2018  
Typical Characteristics (continued)  
at TA = –55°C to 125°C, VS = 5 V, VCM = 12 V, and VREF = VS / 2 (unless otherwise noted)  
140  
120  
100  
80  
60  
50  
40  
30  
20  
10  
0
60  
40  
-10  
1
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
D007  
VCM = 0 V  
VDIF = 10-mVPP sine  
Figure 8. Power-Supply Rejection Ratio vs Frequency  
Figure 7. Gain vs Frequency  
150  
VS  
25èC  
125èC  
-55èC  
135  
120  
105  
90  
VS - 1  
VS - 2  
GND + 3  
GND + 2  
GND + 1  
GND  
75  
60  
1
10  
100  
1k  
10k  
100k  
1M  
0
1
2
3
4
5
6
7
Frequency (Hz)  
Output Current (mA)  
D010  
Figure 9. Common-Mode Rejection Ratio vs Frequency  
240  
Figure 10. Output Voltage Swing vs Output Current  
200  
160  
120  
80  
200  
160  
120  
80  
40  
40  
0
0
-40  
-40  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
D011  
D012  
VS = 5 V  
VS = 0 V  
Figure 11. Input Bias Current vs Common-Mode Voltage  
Figure 12. Input Bias Current vs Common-Mode Voltage  
Copyright © 2018, Texas Instruments Incorporated  
7
INA240-SEP  
ZHCSJ78 DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = –55°C to 125°C, VS = 5 V, VCM = 12 V, and VREF = VS / 2 (unless otherwise noted)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
VS = 5 V  
VS = 3.3 V  
VS = 2.7 V  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
Temperature (èC)  
D013  
D014  
Figure 13. Input Bias Current vs Temperature  
Figure 14. Quiescent Current vs Temperature  
100  
10  
Time (1 s/div)  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
D016  
VS = ±2.5 V  
VCM = 0 V  
VDIF = 0 V  
VREF1 = VREF2 = 0 V  
Input referred  
Figure 15. Input-Referred Voltage Noise vs Frequency  
Figure 16. 0.1-Hz to 10-Hz Voltage Noise  
240  
3.5  
3
2-VPP Output Signal  
Y1  
240  
210  
2.5  
2
180  
150  
120  
90  
60  
30  
0
1.5  
3.5  
10-mVPP Input Signal  
Y1  
3
2.5  
2
1.5  
1
Common-Mode Input Signal  
INA240-SEP Output  
1
-30  
Time (10 ms/div)  
Time (0.25 ms/div)  
VREF1 = VREF2 = 0 V  
10-mVPP input step  
D021  
Rising edge  
Figure 17. Step Response  
Figure 18. Common-Mode Voltage Transient Response  
8
Copyright © 2018, Texas Instruments Incorporated  
INA240-SEP  
www.ti.com.cn  
ZHCSJ78 DECEMBER 2018  
Typical Characteristics (continued)  
at TA = –55°C to 125°C, VS = 5 V, VCM = 12 V, and VREF = VS / 2 (unless otherwise noted)  
240  
3.5  
3
Y1  
240  
210  
2.5  
2
0
180  
150  
120  
90  
60  
30  
0
1.5  
Common-Mode Input Signal  
INA240-SEP Output  
3.5  
Y1  
3
2.5  
2
0
1.5  
1
1
-30  
Time (2 ms/div)  
Time (0.25 ms/div)  
D019  
D022  
VREF1 = VREF2 = 0 V  
Falling edge  
Figure 19. Common-Mode Voltage Transient Response  
Figure 20. Start-Up Response  
Copyright © 2018, Texas Instruments Incorporated  
9
INA240-SEP  
ZHCSJ78 DECEMBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The INA240-SEP is a current-sense amplifier that offers a wide common-mode range, precision, zero-drift  
topology, excellent common-mode rejection ratio (CMRR), and features enhanced pulse width modulation (PWM)  
rejection. Enhanced PWM rejection reduces the effect of common-mode transients on the output signal that are  
associated with PWM signals.  
7.2 Functional Block Diagram  
VS  
INœ  
œ
PWM  
OUT  
Rejection  
IN+  
+
50 k  
50 kꢀ  
REF2  
REF1  
GND  
7.3 Feature Description  
7.3.1 Amplifier Input Signal  
The INA240-SEP is designed to handle large common-mode transients over a wide voltage range. Input signals  
from current measurement applications for linear and PWM applications can be connected to the amplifier to  
provide a highly accurate output, with minimal common-mode transient artifacts.  
7.3.1.1 Enhanced PWM Rejection Operation  
The enhanced PWM rejection feature of the INA240-SEP provides increased attenuation of large common-mode  
ΔV/Δt transients. Large ΔV/Δt common-mode transients associated with PWM signals are employed in  
applications such as motor or solenoid drive and switching power supplies. Traditionally, large ΔV/Δt common-  
mode transitions are handled strictly by increasing the amplifier signal bandwidth, which can increase chip size,  
complexity and ultimately cost. The INA240-SEP is designed with high common-mode rejection techniques to  
reduce large ΔV/Δt transients before the system is disturbed as a result of these large signals. The high AC  
CMRR, in conjunction with signal bandwidth, allows the INA240-SEP to provide minimal output transients and  
ringing compared with standard circuit approaches.  
7.3.1.2 Input Signal Bandwidth  
The INA240-SEP input signal, which represents the current being measured, is accurately measured with  
minimal disturbance from large ΔV/Δt common-mode transients as previously described. For PWM signals  
typically associated with motors, solenoids, and other switching applications, the current being monitored varies  
at a significantly slower rate than the faster PWM frequency.  
The INA240-SEP bandwidth is defined by the –3-dB bandwidth of the current-sense amplifier inside the device;  
see the Electrical Characteristics table. The device bandwidth provides fast throughput and fast response  
required for the rapid detection and processing of overcurrent events. Without the higher bandwidth, protection  
circuitry may not have adequate response time and damage may occur to the monitored application or circuit.  
10  
Copyright © 2018, Texas Instruments Incorporated  
INA240-SEP  
www.ti.com.cn  
ZHCSJ78 DECEMBER 2018  
Feature Description (continued)  
Figure 21 shows the performance profile of the device over frequency. Harmonic distortion increases at the  
upper end of the amplifier bandwidth with no adverse change in detection of overcurrent events. However,  
increased distortion at the highest frequencies must be considered when the measured current bandwidth begins  
to approach the INA240-SEP bandwidth.  
For applications requiring distortion sensitive signals, Figure 21 provides information to show that there is an  
optimal frequency performance range for the amplifier. The full amplifier bandwidth is always available for fast  
overcurrent events at the same time that the lower frequency signals are amplified at a low distortion level. The  
output signal accuracy is reduced for frequencies closer to the maximum bandwidth. Individual requirements  
determine the acceptable limits of distortion for high-frequency, current-sensing applications. Testing and  
evaluation in the end application or circuit is required to determine the acceptance criteria and to validate the  
performance levels meet the system specifications.  
10%  
1%  
0.1%  
90% FS Input  
100k 1M  
0.01%  
1
10  
100  
1k  
10k  
Frequency (Hz)  
D006  
Figure 21. Performance Over Frequency  
7.3.2 Selecting the Sense Resistor (RSENSE  
)
The INA240-SEP determines the current magnitude from measuring the differential voltage developed across a  
resistor. This resistor is referred to as a current-sensing resistor or a current-shunt resistor. The flexible design of  
the device allows a wide input signal range across this current-sensing resistor.  
The current-sensing resistor is ideally chosen solely based on the full-scale current to be measured, the full-scale  
input range of the circuitry following the device. The minimum current-sensing resistor is a design-based decision  
in order to maximize the input range of the signal chain circuitry. Full-scale output signals that are not maximized  
to the full input range of the system circuitry limit the ability of the system to exercise the full dynamic range of  
system control.  
Two important factors to consider when finalizing the current-sensing resistor value are: the required current  
measurement accuracy and the maximum power dissipation across the resistor. A larger resistor voltage  
provides for a more accurate measurement, but increases the power dissipation in the resistor. The increased  
power dissipation generates heat, which reduces the sense resistor accuracy because of the temperature  
coefficient. The voltage signal measurement uncertainty is reduced when the input signal gets larger because  
any fixed errors become a smaller percentage of the measured signal. The design trade-off to improve  
measurement accuracy increases the current-sensing resistor value. The increased resistance value results in an  
increased power dissipation in the system which can additionally decrease the overall system accuracy. Based  
on these relationships, the measurement accuracy is inversely proportional to both the resistance value and  
power dissipation contributed by the current-shunt selection.  
Table 1 shows an example of the different results obtained from using two different gain versions of the INA240-  
SEP. From the table data, the higher gain device allows a smaller current-shunt resistor and decreased power  
dissipation in the element. The Calculating Total Error section provides information on the error calculations that  
must be considered in addition to the gain and current-shunt value when designing with the INA240-SEP.  
Copyright © 2018, Texas Instruments Incorporated  
11  
 
INA240-SEP  
ZHCSJ78 DECEMBER 2018  
www.ti.com.cn  
Feature Description (continued)  
Table 1. RSENSE Selection and Power Dissipation(1)  
PARAMETER  
EQUATION  
RESULTS  
Gain  
20 V/V  
150 mV  
15 mΩ  
1.5 W  
VDIFF  
Ideal maximum differential input voltage  
Current-sense resistor value  
Current-sense resistor power dissipation  
VDIFF = VOUT / Gain  
RSENSE = VDIFF / IMAX  
RSENSE  
PRSENSE  
2
RSENSE × IMAX  
(1) Full-scale current = 10 A, and full-scale output voltage = 3 V.  
12  
Copyright © 2018, Texas Instruments Incorporated  
INA240-SEP  
www.ti.com.cn  
ZHCSJ78 DECEMBER 2018  
7.4 Device Functional Modes  
7.4.1 Adjusting the Output Midpoint With the Reference Pins  
Figure 22 shows a test circuit for reference-divider accuracy. The INA240-SEP output is configurable to allow for  
unidirectional or bidirectional operation.  
VS  
VS  
INœ  
œ
OUT  
+
IN+  
REF2  
REF1  
GND  
Figure 22. Test Circuit For Reference Divider Accuracy  
NOTE  
Do not connect the REF1 pin or the REF2 pin to any voltage source lower than GND or  
higher than VS.  
The output voltage is set by applying a voltage or voltages to the reference voltage inputs, REF1 and REF2. The  
reference inputs are connected to an internal gain network. There is no operational difference between the two  
reference pins.  
7.4.2 Reference Pin Connections for Unidirectional Current Measurements  
Unidirectional operation allows current measurements through a resistive shunt in one direction. For  
unidirectional operation, connect the device reference pins together and then to the negative rail (see the Ground  
Referenced Output section) or the positive rail (see the VS Referenced Output section). The required differential  
input polarity depends on the output voltage setting. The amplifier output moves away from the referenced rail  
proportional to the current passing through the external shunt resistor. If the amplifier reference pins are  
connected to the positive rail, then the input polarity must be negative to move the amplifier output down  
(towards ground). If the amplifier reference pins are connected at ground, then the input polarity must be positive  
to move the amplifier output up (towards supply).  
The following sections describe how to configure the output for unidirectional operation cases.  
7.4.2.1 Ground Referenced Output  
When using the INA240-SEP in a unidirectional mode with a ground referenced output, both reference inputs are  
connected to ground; this configuration takes the output to ground when there is a 0-V differential at the input (as  
Figure 23 shows).  
Copyright © 2018, Texas Instruments Incorporated  
13  
 
 
 
INA240-SEP  
ZHCSJ78 DECEMBER 2018  
www.ti.com.cn  
Device Functional Modes (continued)  
VS  
VS  
INœ  
œ
OUT  
REF2  
REF1  
+
IN+  
GND  
Figure 23. Ground Referenced Output  
7.4.2.2 VS Referenced Output  
Unidirectional mode with a VS referenced output is configured by connecting both reference pins to the positive  
supply. Use this configuration for circuits that require power-up and stabilization of the amplifier output signal and  
other control circuitry before power is applied to the load (as shown in Figure 24).  
VS  
VS  
INœ  
œ
OUT  
+
REF2  
REF1  
IN+  
GND  
Figure 24. VS Referenced Output  
7.4.3 Reference Pin Connections for Bidirectional Current Measurements  
Bidirectional operation allows the INA240-SEP to measure currents through a resistive shunt in two directions.  
For this operation case, the output voltage can be set anywhere within the reference input limits. A common  
configuration is to set the reference inputs at half-scale for equal range in both directions. However, the reference  
inputs can be set to a voltage other than half-scale when the bidirectional current is non-symmetrical.  
7.4.3.1 Output Set to External Reference Voltage  
Connecting both pins together and then to a reference voltage results in an output voltage equal to the reference  
voltage for the condition of shorted input pins or a 0-V differential input; this configuration is shown in Figure 25.  
The output voltage decreases below the reference voltage when the IN+ pin is negative relative to the IN– pin  
and increases when the IN+ pin is positive relative to the IN– pin. This technique is the most accurate way to  
bias the output to a precise voltage.  
14  
Copyright © 2018, Texas Instruments Incorporated  
 
INA240-SEP  
www.ti.com.cn  
ZHCSJ78 DECEMBER 2018  
Device Functional Modes (continued)  
VS  
VS  
INœ  
œ
OUT  
REF2  
REF1  
+
IN+  
2.5-V  
Reference  
GND  
Figure 25. External Reference Output  
7.4.3.2 Output Set to Midsupply Voltage  
By connecting one reference pin to VS and the other to the GND pin, the output is set at half of the supply when  
there is no differential input, as shown in Figure 26. This method creates a ratiometric offset to the supply  
voltage, where the output voltage remains at VS / 2 for 0 V applied to the inputs.  
VS  
VS  
INœ  
œ
OUT  
Output  
+
IN+  
REF2  
REF1  
GND  
Figure 26. Midsupply Voltage Output  
Copyright © 2018, Texas Instruments Incorporated  
15  
 
INA240-SEP  
ZHCSJ78 DECEMBER 2018  
www.ti.com.cn  
Device Functional Modes (continued)  
7.4.3.3 Output Set to Mid-External Reference  
In this case, an external reference is divided by two by connecting one REF pin to ground and the other REF pin  
to the reference, as shown in Figure 27.  
VS  
VS  
INœ  
œ
OUT  
+
IN+  
REF2  
REF1  
2.5-V  
Reference  
GND  
Figure 27. Mid-External Reference Output  
7.4.3.4 Output Set Using Resistor Divider  
The INA240-SEP REF1 and REF2 pins allow for the midpoint of the output voltage to be adjusted for system  
circuitry connections to analog to digital converters (ADCs) or other amplifiers. The REF pins are designed to be  
connected directly to supply, ground, or a low-impedance reference voltage. The REF pins can be connected  
together and biased using a resistor divider to achieve a custom output voltage. If the amplifier is used in this  
configuration, as shown in Figure 28, use the output as a differential signal with respect to the resistor divider  
voltage. Use of the amplifier output as a single-ended signal in this configuration is not recommended because  
the internal impedance shifts can adversely affect device performance specifications.  
VS  
VS  
R1  
INœ  
œ
OUT  
TO ADC+  
TO ADCœ  
+
IN+  
REF2  
REF1  
R2  
GND  
Figure 28. Setting the Reference Using a Resistor Divider  
7.4.4 Calculating Total Error  
The INA240-SEP electrical specifications (see the Electrical Characteristics table) include typical individual errors  
terms (such as gain error, offset error, and nonlinearity error). Total error, including all of these individual error  
components, is not specified in the Electrical Characteristics table. In order to accurately calculate the expected  
error of the device, the device operating conditions must first be known. Some current-shunt monitors specify a  
total error in the product data sheet. However, this total error term is accurate under only one particular set of  
operating conditions. Specifying the total error at this point has limited value because any deviation from these  
specific operating conditions no longer yields the same total error value. This section discusses the individual  
error sources and how the device total error value can be calculated from the combination of these errors for  
specific conditions.  
16  
Copyright © 2018, Texas Instruments Incorporated  
 
 
INA240-SEP  
www.ti.com.cn  
ZHCSJ78 DECEMBER 2018  
Device Functional Modes (continued)  
Two examples are provided in Table 2 and Table 3 that detail how different operating conditions can affect the  
total error calculations. Typical and maximum calculations are shown as well to provide the user more  
information on how much error variance is present from device to device.  
7.4.4.1 Error Sources  
The typical error sources that have the largest effect on the total error of the device are gain error, nonlinearity,  
common-mode rejection ratio, and input offset voltage error. For the INA240-SEP, an additional error source  
(referred to as the reference voltage rejection ratio) is also included in the total error value.  
Copyright © 2018, Texas Instruments Incorporated  
17  
INA240-SEP  
ZHCSJ78 DECEMBER 2018  
www.ti.com.cn  
Device Functional Modes (continued)  
7.4.4.2 Reference Voltage Rejection Ratio Error  
Reference voltage rejection ratio refers to the amount of error induced by applying a reference voltage to the  
INA240-SEP that deviates from the mid-point of the device supply voltage.  
7.4.4.2.1 Total Error Example 1  
Table 2. Total Error Calculation: Example 1(1)  
TERM  
SYMBOL  
EQUATION  
TYPICAL VALUE  
Initial input offset voltage  
VOS  
5 µV  
1
CMRR_dB  
Added input offset voltage  
because of common-  
mode voltage  
´ (VCM - 12V)  
(
VOS_CM  
0 µV  
(
20  
10  
Added input offset voltage  
because of reference  
voltage  
VOS_REF  
VOS_Total  
Error_VOS  
RVRR × |VS / 2 – VREF  
|
0 µV  
5 µV  
(VOS)2 + (VOS_CM)2 + (VOS_REF  
)
2
Total input offset voltage  
VOS_Total  
Error from input offset  
voltage  
0.05%  
´ 100  
VSENSE  
Gain error  
Error_Gain  
Error_Lin  
0.05%  
0.01%  
Nonlinearity error  
(Error_VOS)2 + (Error_Gain)2 + (Error_Lin)2  
Total error  
0.07%  
(1) The data for Table 2 was taken with the INA240-SEP, VS = 5 V, VCM = 12 V, VREF1 = VREF2 = VS / 2, and VSENSE = 10 mV.  
7.4.4.2.2 Total Error Example 2  
Table 3. Total Error Calculation: Example 2(1)  
TERM  
SYMBOL  
EQUATION  
TYPICAL VALUE  
Initial input offset voltage  
VOS  
5 µV  
1
CMRR_dB  
Added input offset voltage  
because of common-  
mode voltage  
´ (VCM - 12V)  
(
VOS_CM  
12.1 µV  
(
20  
10  
Added input offset voltage  
because of reference  
voltage  
VOS_REF  
VOS_Total  
Error_VOS  
RVRR × |VS / 2 – VREF  
|
5 µV  
14 µV  
0.14%  
(VOS)2 + (VOS_CM)2 + (VOS_REF  
)
2
Total input offset voltage  
VOS_Total  
Error from input offset  
voltage  
´ 100  
VSENSE  
Gain error  
Error_Gain  
Error_Lin  
0.05%  
0.01%  
Nonlinearity error  
(Error_VOS)2 + (Error_Gain)2 + (Error_Lin)2  
Total error  
0.15%  
(1) The data for Table 3 was taken with the INA240-SEP, VS = 5 V, VCM = 60 V, VREF1 = VREF2 = 0 V, and VSENSE = 10 mV.  
18  
Copyright © 2018, Texas Instruments Incorporated  
 
 
INA240-SEP  
www.ti.com.cn  
ZHCSJ78 DECEMBER 2018  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The INA240-SEP measures the voltage developed as current flows across the current-sensing resistor. The  
device provides reference pins to configure operation as either unidirectional or bidirectional output swing. When  
using the INA240-SEP for inline motor current sense, the device is commonly configured for bidirectional  
operation.  
8.1.1 Input Filtering  
NOTE  
Input filters are not required for accurate measurements using the INA240-SEP, and use  
of filters in this location is not recommended. If filter components are used on the input of  
the amplifier, follow the guidelines in this section to minimize the effects on performance.  
Based strictly on user design requirements, external filtering of the current signal may be desired. The initial  
location that can be considered for the filter is at the output of the current amplifier. Although placing the filter at  
the output satisfies the filtering requirements, this location changes the low output impedance measured by any  
circuitry connected to the output voltage pin. The other location for filter placement is at the current amplifier  
input pins. This location satisfies the filtering requirement also, however the components must be carefully  
selected to minimally impact device performance. Figure 29 shows a filter placed at the inputs pins.  
VS  
INœ  
RS  
t
Bias  
OUT  
R
+
RS  
REF2  
REF1  
IN+  
GND  
Figure 29. Filter at Input Pins  
External series resistance provide a source of additional measurement error, so keep the value of these series  
resistors to 10 Ω or less to reduce loss of accuracy. The internal bias network shown in Figure 29 creates a  
mismatch in input bias currents (see Figure 30) when a differential voltage is applied between the input pins. If  
additional external series filter resistors are added to the circuit, a mismatch is created in the voltage drop across  
the filter resistors. This voltage is a differential error voltage in the shunt resistor voltage. In addition to the  
absolute resistor value, mismatch resulting from resistor tolerance can significantly impact the error because this  
value is calculated based on the actual measured resistance.  
Copyright © 2018, Texas Instruments Incorporated  
19  
 
INA240-SEP  
ZHCSJ78 DECEMBER 2018  
www.ti.com.cn  
Application Information (continued)  
250  
200  
150  
100  
50  
IB+  
IB-  
0
-50  
-100  
0
0.2  
0.4  
0.6  
0.8  
1
Differential Input Voltage (V)  
Figure 30. Input Bias Current vs Differential Input Voltage  
The measurement error expected from the additional external filter resistors can be calculated using Equation 1,  
where the gain error factor is calculated using Equation 2.  
Gain Error (%) = 100 - (100 ´ Gain Error Factor)  
(1)  
The gain error factor, shown in Equation 1, can be calculated to determine the gain error introduced by the  
additional external series resistance. Equation 1 calculates the deviation of the shunt voltage resulting from the  
attenuation and imbalance created by the added external filter resistance. Table 4 provides the gain error factor  
and gain error for several resistor values.  
3000  
Gain Error Factor =  
RS + 3000  
Where:  
RS is the external filter resistance value  
(2)  
Table 4. Gain Error Factor and Gain Error For External Input Resistors  
EXTERNAL RESISTANCE (Ω)  
GAIN ERROR FACTOR  
GAIN ERROR (%)  
5
0.998  
0.997  
0.968  
0.17  
0.33  
3.23  
10  
100  
20  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
INA240-SEP  
www.ti.com.cn  
ZHCSJ78 DECEMBER 2018  
8.2 Typical Applications  
The INA240-SEP offers advantages for multiple applications including the following:  
High common-mode range and excellent CMRR enables direct inline sensing  
Ultra-low offset and drift eliminates the necessity of calibration  
Wide supply range enables a direct interface with most microprocessors  
Two specific applications are provided and include more detailed information.  
8.2.1 Inline Motor Current-Sense Application  
5 V  
VS  
40 V  
IN+  
OUT  
INA240-SEP  
GND  
REF2  
REF1  
INœ  
100 mΩ  
Figure 31. Inline Motor Application Circuit  
8.2.1.1 Design Requirements  
Inline current sensing has many advantages in motor control, from torque ripple reduction to real-time motor  
health monitoring. However, the full-scale PWM voltage requirements for inline current measurements provide  
challenges to accurately measure the current. Switching frequencies in the 50-kHz to 100-kHz range create  
higher ΔV/Δt signal transitions that must be addressed to obtain accurate inline current measurements.  
With a superior common-mode rejection capability, high precision, and a high common-mode specification, the  
INA240-SEP provides performance for a wide range of common-mode voltages.  
8.2.1.2 Detailed Design Procedure  
For this application, the INA240-SEP measures current in the drive circuitry of a 36-V, 4000-RPM motor.  
To demonstrate the performance of the device, the INA240-SEP with a gain of 20 V/V was selected for this  
design and powered from a 5-V supply.  
Using the information in the Adjusting the Output Midpoint With the Reference Pins section, the reference point is  
set to midscale by splitting the supply with REF1 connected to ground and REF2 connected to supply. This  
configuration allows for bipolar current measurements. Alternatively, the reference pins can be tied together and  
driven with an external precision reference.  
The current-sensing resistor is sized so that the output of the INA240-SEP is not saturated. A value of 100-mΩ  
was selected to maintain the analog input within the device limits.  
Copyright © 2018, Texas Instruments Incorporated  
21  
INA240-SEP  
ZHCSJ78 DECEMBER 2018  
www.ti.com.cn  
Typical Applications (continued)  
8.2.1.3 Application Curve  
120  
90  
3.5  
3
2.5  
2
1.5  
Input Signal  
INA240-SEP Output  
1
60  
30  
0
-30  
Time (25 µs/div)  
C005  
Figure 32. Inline Motor Current-Sense Input and Output Signals  
22  
Copyright © 2018, Texas Instruments Incorporated  
INA240-SEP  
www.ti.com.cn  
ZHCSJ78 DECEMBER 2018  
Typical Applications (continued)  
8.2.2 Solenoid Drive Current-Sense Application  
12 V  
5 V  
VS  
Control  
IN+  
OUT  
10 m  
INA240-SEP  
GND  
REF2  
REF1  
INœ  
Figure 33. Solenoid Drive Application Circuit  
8.2.2.1 Design Requirements  
Challenges exist in solenoid drive current sensing that are similar to those in motor inline current sensing. In  
certain topologies, the current-sensing amplifier is exposed to the full-scale PWM voltage between ground and  
supply. The INA240-SEP is well suited for this type of application.  
8.2.2.2 Detailed Design Procedure  
For this application, the INA240-SEP measures current in the driver circuit of a 24-V, 500-mA water valve.  
Using the information in the Adjusting the Output Midpoint With the Reference Pins section, the reference point is  
set to midscale by splitting the supply with REF1 connected to ground and REF2 connected to supply.  
Alternatively, the reference pins can be tied together and driven with an external precision reference.  
A value of 10 mΩ was selected to maintain the analog input within the device limits.  
8.2.2.3 Application Curve  
66  
6
2
Y
5
2
2
4
1
1
3
1
42  
2
36  
30  
24  
18  
12  
6
1
Common-Mode Input Signal  
INA240-SEP Output  
0
-1  
-2  
3.50  
3.50  
Y1  
3
2.5  
2
1.5  
0
-6  
Time (20 ms/div)  
D020  
Figure 34. Solenoid Drive Current Sense Input and Output Signals  
Copyright © 2018, Texas Instruments Incorporated  
23  
INA240-SEP  
ZHCSJ78 DECEMBER 2018  
www.ti.com.cn  
8.3 Do's and Don'ts  
8.3.1 High-Precision Applications  
For high-precision applications, verify accuracy and stability of the amplifier by:  
Providing a precision reference connected to REF1 and REF2  
Optimizing the layout of the power and sensing path of the sense resistor (see the Layout section)  
Providing adequate bypass capacitance on the supply pin (see the Power Supply Decoupling section)  
8.3.2 Kelvin Connection from the Current-Sense Resistor  
To provide accurate current measurements, verify the routing between the current-sense resistor and the  
amplifier uses a Kelvin connection. Use the information provided in Figure 35 and the Connection to the Current-  
Sense Resistor section during device layout.  
RSHUNT  
RSHUNT  
INA240-SEP  
INA240-SEP  
DO  
DON‘T  
Kelvin Connection from Shunt Resistor  
Non-Kelvin Connection from Shunt Resistor  
Figure 35. Shunt Connections to the INA240-SEP  
9 Power Supply Recommendations  
The INA240-SEP makes accurate measurements beyond the connected power-supply voltage (VS) because the  
inputs (IN+ and IN–) operate anywhere between –4 V and 80 V independent of VS. For example, the VS power  
supply equals 5 V and the common-mode voltage of the measured shunt can be as high as 80 V.  
Although the common-mode voltage of the input can be beyond the supply voltage, the output voltage range of  
the INA240-SEP series is constrained to the supply voltage.  
9.1 Power Supply Decoupling  
Place the power-supply bypass capacitor as close as possible to the supply and ground pins. TI recommends a  
bypass capacitor value of 0.1 μF. Additional decoupling capacitance can be added to compensate for noisy or  
high-impedance power supplies.  
24  
Copyright © 2018, Texas Instruments Incorporated  
 
 
INA240-SEP  
www.ti.com.cn  
ZHCSJ78 DECEMBER 2018  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Connection to the Current-Sense Resistor  
Poor routing of the current-sensing resistor can result in additional resistance between the input pins of the  
amplifier. Any additional high-current carrying impedance can cause significant measurement errors because the  
current resistor has a very-low-ohmic value. Use a Kelvin or 4-wire connection to connect to the device input  
pins. This connection technique ensures that only the current-sensing resistor impedance is detected between  
the input pins.  
10.2 Layout Example  
RSHUNT  
Power  
Supply  
Load  
VIA to  
Ground  
Plane  
VIA to  
Ground  
Plane  
GND  
INœ  
IN+  
NC  
CBYPASS  
INA240-SEP  
OUT  
VS  
REF2 REF1  
Output Voltage  
VIA to  
Ground  
Plane  
Supply  
Voltage  
Figure 36. Recommended TSSOP Package Layout  
版权 © 2018, Texas Instruments Incorporated  
25  
INA240-SEP  
ZHCSJ78 DECEMBER 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
26  
版权 © 2018, Texas Instruments Incorporated  
INA240-SEP  
www.ti.com.cn  
ZHCSJ78 DECEMBER 2018  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA240PMPWPSEP  
INA240PMPWTPSEP  
V62/18615-01XE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
8
8
8
8
150  
250  
250  
150  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
240SEP  
NIPDAU  
NIPDAU  
NIPDAU  
240SEP  
240SEP  
240SEP  
V62/18615-01XE-T  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF INA240-SEP :  
Automotive : INA240-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA240PMPWTPSEP  
TSSOP  
PW  
8
250  
180.0  
12.4  
7.0  
3.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
INA240PMPWTPSEP  
8
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
INA240PMPWPSEP  
V62/18615-01XE-T  
PW  
PW  
TSSOP  
TSSOP  
8
8
150  
150  
530  
530  
10.2  
10.2  
3600  
3600  
3.5  
3.5  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PW0008A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
8
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
A
0.1 C  
6X 0.65  
8
5
1
3.1  
2.9  
NOTE 3  
2X  
1.95  
4
0.30  
0.19  
8X  
4.5  
4.3  
1.2 MAX  
B
0.1  
C A  
B
NOTE 4  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
0 - 8  
DETAIL A  
TYPICAL  
4221848/A 02/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
8X (0.45)  
(R0.05)  
1
4
TYP  
8
SYMM  
6X (0.65)  
5
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221848/A 02/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
(R0.05) TYP  
8X (0.45)  
1
4
8
SYMM  
6X (0.65)  
5
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221848/A 02/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY