INA293A4IDBVT [TI]

-4V 至 110V、1.3MHz 超精密电流感应放大器 | DBV | 5 | -40 to 125;
INA293A4IDBVT
型号: INA293A4IDBVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

-4V 至 110V、1.3MHz 超精密电流感应放大器 | DBV | 5 | -40 to 125

放大器
文件: 总31页 (文件大小:1651K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INA293  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
INA293 –4V 110V1.3MHz 超精密电流检测放大器  
1 特性  
3 说明  
• 宽共模电压  
INA293 是一款超精密电流检测放大器可在 –4V 至  
110V 的宽共模范围内测量分流电阻器上的压降。负共  
模电压允许器件的工作电压低于接地电压从而可在半  
桥应用中精确测量再循环电流。低失调电压、小增益误  
差和高直流 CMRR 的组合可实现高精度的电流测量。  
INA293 不仅适用于直流电流测量还适用于高速应用  
例如快速过流保护),此类应用具1.3MHz 的高带  
85dB CMRR50kHz 。  
– 工作电压-4 V +110 V  
– 可承受电压-20 V +120 V  
• 出色的共模抑制(CMRR):  
160dB CMRR  
85dB CMRR50kHz )  
• 精度:  
– 增益:  
INA293 2.7V 20V 的单电源供电电源电流为  
1.5mAINA293 提供五个增益选项20V/V50V/V、  
100V/V200V/V 500V/V。这些增益选项可以满足  
宽动态范围电流检测应用。  
• 增益误差±0.15%最大值)  
• 增益漂移±10ppm/°C最大值)  
– 失调电压:  
• 失调电压±15µV典型值)  
• 温漂±0.05µV/°C典型值)  
• 可用增益:  
INA293 的额定工作温度范围为 -40 °C +125 °C并  
且采用节省空间且配备两种引脚型号SOT-23 封装。  
INA293A1INA293B120V/V  
INA293A2INA293B250V/V  
INA293A3INA293B3100V/V  
INA293A4INA293B4200V/V  
INA293A5INA293B5500V/V  
• 高带宽1.3 MHz  
器件信息(1)  
封装尺寸标称值)  
器件型号  
INA293  
封装  
SOT-23 (5)  
2.90mm × 1.60mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
VS  
VCM  
• 压摆率2.5 V/µs  
• 静态电流1.5mA  
ISENSE  
R1  
2 应用  
IN+  
+
Current  
RSENSE  
Bias  
有源天线系mMIMO (AAS)  
宏远程无线电单(RRU)  
48V 机架式服务器  
Feedback  
R1  
OUT  
-
INœ  
Buffer  
Load  
RL  
48V 商用网络和服务器电(PSU)  
48V 电池管理系(BMS)  
GND  
功能方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS470  
 
 
 
 
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
Table of Contents  
7.4 Device Functional Modes..........................................15  
8 Application and Implementation..................................16  
8.1 Application Information............................................. 16  
8.2 Typical Application.................................................... 18  
8.3 Power Supply Recommendations.............................19  
8.4 Layout....................................................................... 19  
9 Device and Documentation Support............................21  
9.1 Documentation Support............................................ 21  
9.2 接收文档更新通知..................................................... 21  
9.3 支持资源....................................................................21  
9.4 Trademarks...............................................................21  
9.5 Electrostatic Discharge Caution................................21  
9.6 术语表....................................................................... 21  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics ............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................13  
7.3 Feature Description...................................................13  
Information.................................................................... 21  
4 Revision History  
Changes from Revision A (June 2021) to Revision B (August 2022)  
Page  
Changed 方程5 ........................................................................................................................................... 17  
Moved the Power Supply Recommendations and Layout sections to the Application and Implementation  
section.............................................................................................................................................................. 19  
Changes from Revision * (December 2019) to Revision A (June 2021)  
Page  
• 将数据表标题从“INA293 4V 110V 1MHz 高精度电流检测放大器”更改INA293 4-V 110-V1.3-  
MHz、高精密电流感测放大器.............................................................................................................................1  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 在部分中将“高精度”更改为“超精密”...................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: INA293  
 
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
5 Pin Configuration and Functions  
OUT  
GND  
IN+  
1
2
3
5
Vs  
OUT  
GND  
Vs  
1
2
3
5
INœ  
4
INœ  
4
IN+  
Not to scale  
Not to scale  
5-1. INA293A: DBV Package 5-Pin SOT-23 Top  
5-2. INA293B: DBV Package 5-Pin SOT-23 Top  
View  
View  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
GND  
OUT  
Vs  
INA293A  
INA293B  
2
1
5
3
4
2
1
3
4
5
Ground Ground  
Output Output voltage  
Power Power supply  
IN+  
Input  
Input  
Shunt resistor positive sense input  
Shunt resistor negative sense input  
IN–  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: INA293  
 
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply Voltage  
(Vs)  
22  
V
0.3  
6
12  
Differential (VIN+) (VIN), INA293A5, INA293B5  
6  
12  
Analog Inputs,  
VIN+, VIN–  
V
Differential (VIN+) (VIN), All others  
(2)  
Common - mode  
Output  
120  
20  
Vs + 0.3  
150  
V
GND 0.3  
55  
TA  
Operating temperature  
Junction temperature  
Storage temperature  
°C  
°C  
°C  
TJ  
150  
Tstg  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) VIN+ and VINare the voltages at the IN+ and INpins, respectively.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: INA293  
 
 
 
 
 
 
 
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4  
2.7  
NOM  
48  
MAX  
110  
UNIT  
V
VCM  
VS  
Common-mode input range  
Operating supply range  
Differential sense input range  
Ambient temperature  
5
20  
V
VSENSE  
TA  
0
VS / G  
125  
V
°C  
40  
6.4 Thermal Information  
INA293  
THERMAL METRIC(1)  
DBV (SOT-23)  
5 PINS  
184.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
105.6  
47.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
21.5  
ΨJT  
46.9  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
at TA = 25 °C, VS = 5 V, VSENSE = VIN+ - VIN- = 0.5 V / Gain, VCM = VIN- = 48 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
VCM  
Common-mode input range(1)  
TA = -40°C to +125°C  
110  
V
4  
-4 V VCM 110 V, TA = -40°C to  
+125°C  
140  
160  
dB  
dB  
Common-mode rejection ratio, input  
referred  
CMRR  
f = 50 kHz  
INA293x1  
INA293x2  
INA293x3  
INA293x4  
INA293x5  
85  
±30  
±15  
±10  
±5  
±150  
±80  
±50  
±30  
±20  
Vos  
Offset voltage, input referred  
µV  
±2  
TA = -40to +125, INA293x1,  
INA293x2, INA293x3  
±0.05  
±0.025  
±1  
±0.5  
±0.25  
±8  
dVos/dT Offset voltage drift  
µV/℃  
µV/V  
TA = -40to +125, INA293x4,  
INA293x5  
INA293x1, 2.7 V VS 20 V,  
TA = -40°C to +125°C  
Power supply rejection ratio, input  
INA293x2, INA293x3, 2.7 V VS 20  
V, TA = -40°C to +125°C  
PSRR  
±0.3  
±3  
referred  
INA293x4, INA293x5, 2.7 V VS 20  
V, TA = -40°C to +125°C  
±0.1  
±1  
IB+, VSENSE = 0 V  
IB-, VSENSE = 0 V  
10  
10  
20  
20  
30  
30  
uA  
uA  
IB  
Input bias current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: INA293  
 
 
 
 
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
6.5 Electrical Characteristics (continued)  
at TA = 25 °C, VS = 5 V, VSENSE = VIN+ - VIN- = 0.5 V / Gain, VCM = VIN- = 48 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
INA293x1  
INA293x2  
INA293x3  
INA293x4  
INA293x5  
20  
50  
V/V  
V/V  
V/V  
V/V  
V/V  
%
G
Gain  
100  
200  
500  
±0.02  
±1  
±0.15  
GND + 50 mV VOUT VS 200 mV  
GERR  
Gain error  
TA = -40°C to +125°C  
±10 ppm/°C  
%
NLERR  
Nonlinearity error  
0.01  
No sustained oscillations, no isolation  
resistor  
Maximum capacitive load  
500  
pF  
VOLTAGE OUTPUT  
Swing to Vs (Power supply rail)  
Vs –  
0.07  
Vs –  
0.15  
V
V
RLOAD = 10 kΩ, TA = -40°C to +125°C  
RLOAD = 10 kΩ, VSENSE = 0 V, TA = -40°C  
to +125°C  
Swing to ground  
0.005  
0.02  
FREQUENCY RESPONSE  
INA293x1, CLOAD = 5 pF,  
VSENSE = 200 mV  
1300  
1300  
1000  
900  
INA293x2, CLOAD = 5 pF,  
VSENSE = 80 mV  
INA293x3, CLOAD = 5 pF,  
VSENSE = 40 mV  
BW  
SR  
Bandwidth  
kHz  
INA293x4, CLOAD = 5 pF,  
VSENSE = 20 mV  
INA293x5, CLOAD = 5 pF,  
VSENSE = 8 mV  
900  
2.5  
10  
Slew rate  
Rising edge  
V/µs  
µs  
VOUT = 4 V ± 0.1 V step, Output settles to  
0.5%  
VOUT = 4 V ± 0.1 V step, Output settles to  
1%  
Settling time  
5
1
VOUT = 4 V ± 0.1 V step, Output settles to  
5%  
NOISE  
Ven  
Voltage noise density  
50  
nV/Hz  
POWER SUPPLY  
Vs  
Supply voltage  
2.7  
20  
2
V
TA = 40°C to +125°C  
1.5  
mA  
mA  
IQ  
Quiescent current  
TA = -40°C to +125°C  
2.25  
(1) Common-mode voltage at both VIN+ and VIN- must not exceed the specified common-mode input range.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: INA293  
 
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
6.6 Typical Characteristics  
All specifications at TA = 25 °C, VS = 5 V, VSENSE = VIN+ VIN- = 0.5 V / Gain, VCM = VIN= 48 V, unless otherwise noted.  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
6-2. INA293x2 Input Offset Production Distribution  
6-1. INA293x1 Input Offset Production Distribution  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
6-3. INA293x3 Input Offset Production Distribution  
6-4. INA293x4 Input Offset Production Distribution  
16  
8
0
G = 20  
G = 50  
-8  
G = 100  
G = 200  
G = 500  
-16  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
Input Offset Voltage (mV)  
6-6. Input Offset Voltage vs Temperature  
6-5. INA293x5 Input Offset Production Distribution  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: INA293  
 
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
6.6 Typical Characteristics (continued)  
All specifications at TA = 25 °C, VS = 5 V, VSENSE = VIN+ VIN- = 0.5 V / Gain, VCM = VIN= 48 V, unless otherwise noted.  
20  
10  
0
180  
160  
140  
120  
100  
80  
G = 20  
G = 50  
60  
-10  
G = 100  
G = 200  
G = 500  
40  
20  
-20  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
6-8. Common-Mode Rejection Ratio vs Frequency  
6-7. Common-Mode Rejection Ratio vs Temperature  
60  
0.10  
G = 20  
G = 50  
G = 100  
G = 200  
G = 500  
50  
40  
30  
20  
0.05  
0.00  
G = 20  
G = 50  
G = 100  
G = 200  
G = 500  
10  
0
-0.05  
-10  
-0.10  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
6-9. Gain vs Frequency  
6-10. Gain Error vs Temperature  
1.0  
0.8  
140  
120  
100  
80  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
60  
G = 20  
G = 50  
G = 100  
G = 200  
G = 500  
40  
20  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
6-12. Power-Supply Rejection Ratio vs Frequency  
6-11. Power-Supply Rejection Ratio vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: INA293  
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
6.6 Typical Characteristics (continued)  
All specifications at TA = 25 °C, VS = 5 V, VSENSE = VIN+ VIN- = 0.5 V / Gain, VCM = VIN= 48 V, unless otherwise noted.  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
VS = 2.7 to 20V, VCM = 48V  
VS = 2.7 to 20V, VCM = 120V  
VS = 2.7 to 20V, VCM = -4V  
VS = 0V, VCM = 120V  
VS = 5V  
VS = 20V  
VS = 2.7V  
VS = 0V  
VS = 0V, VCM = -4V  
0
0
VS = 0V and 20V, VCM = -20V  
-5  
-5  
-10  
-10  
-20  
0
20  
40  
60  
Common-Mode Voltage (V)  
80  
100  
120  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
6-14. Input Bias Current vs Temperature  
VSENSE = 0 V  
6-13. Input Bias Current vs Common-Mode Voltage  
240  
140  
120  
100  
80  
IB+  
IB-  
IB+  
IB-  
200  
IB+, VS = 0V  
160  
IB-, VS = 0V  
120  
IB+, VS = 0V  
IB-, VS = 0V  
60  
80  
40  
40  
20  
0
0
-40  
-80  
-120  
-160  
-20  
-40  
-60  
-80  
0
200  
400  
VSENSE (mV)  
600  
800  
1000  
0
100  
200  
VSENSE (mV)  
300  
400  
6-15. INA293x1 Input Bias Current vs VSENSE  
6-16. INA293x2, INA293x3 Input Bias Current vs VSENSE  
100  
80  
60  
40  
20  
0
VS  
IB+, G=200  
IB+, G=500  
IB-  
IB+, VS = 0V  
IB-, VS = 0V  
25èC  
125èC  
-40èC  
VS - 1  
VS - 2  
GND + 2  
GND + 1  
GND  
-20  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
Output Current (mA)  
30  
35  
40  
VSENSE (mV)  
6-17. INA293x4, INA293x5 Input Bias Current vs VSENSE  
VS = 2.7 V  
6-18. Output Voltage vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: INA293  
 
 
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
6.6 Typical Characteristics (continued)  
All specifications at TA = 25 °C, VS = 5 V, VSENSE = VIN+ VIN- = 0.5 V / Gain, VCM = VIN= 48 V, unless otherwise noted.  
VS  
VS - 1  
VS - 2  
VS - 3  
VS  
VS - 1  
VS - 2  
VS - 3  
25èC  
125èC  
-40èC  
25èC  
125èC  
-40èC  
GND + 3  
GND + 2  
GND + 1  
GND  
GND + 3  
GND + 2  
GND + 1  
GND  
0
5
10  
15  
Output Current (mA)  
20  
25  
30  
35  
40  
0
5
10  
15  
Output Current (mA)  
20  
25  
30  
35  
40  
VS = 5 V  
VS = 20 V  
6-19. Output Voltage vs Output Current  
6-20. Output Voltage vs Output Current  
1000  
500  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
200  
100  
50  
20  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
VS = 5V  
VS = 20V  
VS = 2.7V  
0.02  
0.01  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
6-21. Output Impedance vs Frequency  
6-22. Swing to Supply vs Temperature  
0.020  
0.015  
0.010  
0.005  
0.000  
100  
VS = 5V  
VS = 20V  
VS = 2.7V  
G = 20  
G = 500  
80  
70  
60  
50  
40  
30  
20  
10  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
6-24. Input Referred Noise vs Frequency  
6-23. Swing to GND vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: INA293  
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
6.6 Typical Characteristics (continued)  
All specifications at TA = 25 °C, VS = 5 V, VSENSE = VIN+ VIN- = 0.5 V / Gain, VCM = VIN= 48 V, unless otherwise noted.  
2
1.8  
1.6  
VS = 20V  
1.4  
VS = 5V  
1.2  
1
G = 20 to 50  
VS = 2.7V  
G = 100 to 500  
0.8  
0
2.5  
5
7.5  
10  
12.5  
Output Voltage (V)  
15  
17.5  
20  
Time (1 s/div)  
6-25. Input Referred Noise  
6-26. Quiescent Current vs Output Voltage  
2
1.8  
1.6  
1.4  
1.2  
1
50  
40  
30  
20  
10  
0
VS = 5V  
VS = 20V  
VS = 2.7V  
VS = 5V, Sourcing  
VS = 5V, Sinking  
VS = 20V, Sourcing  
VS = 20V, Sinking  
VS = 2.7V, Sourcing  
VS = 2.7V, Sinking  
0.8  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
Temperature (èC)  
6-27. Quiescent Current vs Temperature  
6-28. Short-Circuit Current vs Temperature  
2
2
1.8  
1.6  
1.4  
1.2  
1
VS = 5V  
VS = 20V  
VS = 2.7V  
1.8  
1.6  
1.4  
1.2  
1
25èC  
125èC  
-40èC  
0.8  
0.8  
0
2
4
6
8
Supply Voltage (V)  
10  
12  
14  
16  
18  
20  
-20  
0
20  
40  
Common-Mode Voltage (V)  
60  
80  
100  
120  
6-29. Quiescent Current vs Supply Voltage  
6-30. Quiescent Current vs Common-Mode Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: INA293  
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
6.6 Typical Characteristics (continued)  
All specifications at TA = 25 °C, VS = 5 V, VSENSE = VIN+ VIN- = 0.5 V / Gain, VCM = VIN= 48 V, unless otherwise noted.  
VCM  
VOUT  
0V  
0V  
0V  
0V  
Time (10 ms/div)  
Time (12.5ms/div)  
6-32. INA293x3 Step Response  
6-31. Common-Mode Voltage Fast Transient Pulse  
Supply Voltage  
Output Voltage  
Supply Voltage  
Output Voltage  
0V  
0V  
Time (5 ms/div)  
Time (50 ms/div)  
6-34. Supply Transient Response  
6-33. Start-Up Response  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: INA293  
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
7 Detailed Description  
7.1 Overview  
The INA293 is a high- or low-side current-sense amplifier that offers a wide common-mode range, precision  
zero-drift topology, excellent common-mode rejection ratio (CMRR), high bandwidth and fast slew rate. Different  
gain versions are available to optimize the output dynamic range based on the application. The INA293 is  
designed using a transconductance architecture with a current-feedback amplifier that enables low bias currents  
of 20 μA with a common-mode voltage of 110 V.  
7.2 Functional Block Diagram  
VS  
Load  
Supply  
ISENSE  
R1  
IN+  
+
Current  
RSENSE  
Bias  
Feedback  
R1  
OUT  
-
INœ  
Buffer  
Load  
RL  
GND  
7.3 Feature Description  
7.3.1 Amplifier Input Common-Mode Signal  
The INA293 supports large input common-mode voltages from 4 V to +110 V. Because of the internal  
topology, the common-mode range is not restricted by the power-supply voltage (VS). This allows for the INA293  
to be used for both low and high side current-sensing applications.  
7.3.1.1 Input-Signal Bandwidth  
The INA293 3-dB bandwidth is gain dependent, with several gain options of 20 V/V, 50 V/V, 100 V/V, 200 V/V,  
and 500 V/V. The unique multistage design enables the amplifier to achieve high bandwidth at all gains. This  
high bandwidth provides the throughput and fast response that is required for the rapid detection and processing  
of overcurrent events.  
The bandwidth of the device also depends on the applied VSENSE voltage. 7-1 shows the bandwidth  
performance profile of the device over frequency as output voltage increases for each gain variation. As shown  
in 7-1, the device exhibits the highest bandwidth with higher VSENSE voltages, and the bandwidth is higher  
with lower device gain options. Individual requirements determine the acceptable limits of error for high  
frequency current-sensing applications. Testing and evaluation in the end application or circuit is required to  
determine the acceptance criteria, and to validate that the performance levels meet the system specifications.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: INA293  
 
 
 
 
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
1400  
1200  
1000  
800  
600  
INA293A1  
INA293A2  
INA293A3  
INA293A4  
INA293A5  
400  
200  
0
1
2
3
Output Voltage (V)  
7-1. Bandwidth vs Output Voltage  
7.3.1.2 Low Input Bias Current  
The INA293 inputs draw a 20-µA (typical) bias current at a common-mode voltage as high as 110 V, which  
enables precision current sensing on applications that require lower current leakage.  
7.3.1.3 Low VSENSE Operation  
The INA293 operates with high performance across the entire valid VSENSE range. The zero-drift input  
architecture of the INA293 provides the low offset voltage and low offset drift needed to measure low VSENSE  
levels accurately across the wide operating temperature of 40 °C to +125 °C. Low VSENSE operation is  
particularly beneficial when using low ohmic shunts for low current measurements, as power losses across the  
shunt are significantly reduced.  
7.3.1.4 Wide Fixed Gain Output  
The INA293 gain error is < 0.15% at room temperature, with a maximum drift of 10 ppm/°C over the full  
temperature range of 40°C to +125°C. The INA293 is available in multiple gain options of 20 V/V, 50 V/V, 100  
V/V, 200 V/V, and 500 V/V, which the system designer should select based on their desired signal-to-noise ratio  
and other system requirements.  
The INA293 closed-loop gain is set by a precision, low drift internal resistor network. The ratio of these resistors  
are excellently matched, while the absolute values may vary significantly. Adding additional resistance around  
the INA293 to change the effective gain is not recommended, however, because of this variation. The typical  
values of the gain resistors are described in 7-1.  
7-1. Fixed Gain Resistor  
GAIN  
R1  
RL  
20 (V/V)  
50 (V/V)  
100 (V/V)  
200 (V/V)  
500 (V/V)  
25 kΩ  
10 kΩ  
10 kΩ  
5 kΩ  
500 kΩ  
500 kΩ  
1000 kΩ  
1000 kΩ  
1000 kΩ  
2 kΩ  
7.3.1.5 Wide Supply Range  
The INA293 operates with a wide supply range from 2.7 V to 20 V. The output stage supports a wide output  
range while INA293x1 (gain of 20 V/V) at a supply voltage of 20 V allows a maximum acceptable differential  
input of 1 V. When paired with the small input offset voltage of the INA293, systems with very wide dynamic  
range of current measurement can be supported.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: INA293  
 
 
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
7.4 Device Functional Modes  
7.4.1 Unidirectional Operation  
The INA293 measures the differential voltage developed by current flowing through a resistor, commonly  
referred to as a current-sensing resistor or a current-shunt resistor. The INA293 operates in unidirectional mode  
only, meaning it only senses current sourced from a power supply to a system load as shown in 7-2.  
5 V  
48-V  
Supply  
ISENSE  
R1  
IN+  
+
Current  
Feedback  
RSENSE  
Bias  
R1  
OUT  
-
INœ  
Buffer  
RL  
Load  
GND  
7-2. Unidirectional Application  
The linear range of the output stage is limited to how close the output voltage can approach ground under zero-  
input conditions. The zero current output voltage of the INA293 is very small, with a maximum of GND + 20 mV.  
Make sure to apply a differential input voltage of (20 mV / Gain) or greater to keep the INA293 output in the  
linear region of operation.  
7.4.2 High Signal Throughput  
With a bandwidth of 1.3 MHz at a gain of 20 V/V and a slew rate of 2.5 V/µs, the INA293 is specifically designed  
for detecting and protecting applications from fast inrush currents. As shown in 7-2, the INA293 responds in  
less than 2 µs for a system measuring a 75-A threshold on a 2-mΩshunt.  
7-2. Response Time  
INA293  
PARAMETER  
Gain  
EQUATION  
AT VS = 5 V  
20 V/V  
100 A  
75 A  
G
IMAX  
Maximum current  
IThreshold  
RSENSE  
VOUT_MAX  
VOUT_THR  
SR  
Threshold current  
Current sense resistor value  
Output voltage at maximum current  
Output voltage at threshold current  
Slew rate  
2 mΩ  
4 V  
VOUT_MAX = IMAX × RSENSE × G  
VOUT_THR = ITHR × RSENSE × G  
3 V  
2.5 V/µs  
< 2 µs  
Output response time  
Tresponse= VOUT_THR / SR  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: INA293  
 
 
 
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The INA293 amplifies the voltage developed across a current-sensing resistor as current flows through the  
resistor to the load. The wide input common-mode voltage range and high common-mode rejection of the  
INA293 make it usable over a wide range of voltage rails while still maintaining an accurate current  
measurement.  
8.1.1 RSENSE and Device Gain Selection  
The accuracy of any current-sense amplifier is maximized by choosing the current-sense resistor to be as large  
as possible. A large sense resistor maximizes the differential input signal for a given amount of current flow and  
reduces the error contribution of the offset voltage. However, there are practical limits as to how large the  
current-sense resistor can be in a given application because of the resistor size and maximum allowable power  
dissipation. 方程式 1 gives the maximum value for the current-sense resistor for a given power dissipation  
budget:  
PDMAX  
RSENSE  
<
2
IMAX  
(1)  
where:  
PDMAX is the maximum allowable power dissipation in RSENSE  
IMAX is the maximum current that will flow through RSENSE  
.
.
An additional limitation on the size of the current-sense resistor and device gain is due to the power-supply  
voltage, VS, and device swing-to-rail limitations. To make sure that the current-sense signal is properly passed to  
the output, both positive and negative output swing limitations must be examined. 程式 2 provides the  
maximum values of RSENSE and GAIN to keep the device from exceeding the positive swing limitation.  
IMAX ª RSENSE ª GAIN < VSP  
(2)  
where:  
IMAX is the maximum current that will flow through RSENSE  
GAIN is the gain of the current-sense amplifier.  
.
VSP is the positive output swing as specified in the data sheet.  
To avoid positive output swing limitations when selecting the value of RSENSE, there is always a trade-off  
between the value of the sense resistor and the gain of the device under consideration. If the sense resistor  
selected for the maximum power dissipation is too large, then it is possible to select a lower-gain device in order  
to avoid positive swing limitations.  
The negative swing limitation places a limit on how small the sense resistor value can be for a given application.  
方程3 provides the limit on the minimum value of the sense resistor.  
IMIN ª RSENSE ª GAIN > VSN  
(3)  
where:  
IMIN is the minimum current that will flow through RSENSE  
GAIN is the gain of the current-sense amplifier.  
.
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: INA293  
 
 
 
 
 
 
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
VSN is the negative output swing of the device.  
8-1 shows an example of the different results obtained from using five different gain versions of the INA293.  
From the table data, the highest gain device allows a smaller current-shunt resistor and decreased power  
dissipation in the element.  
8-1. RSENSE Selection and Power Dissipation(1)  
RESULTS AT VS = 5 V  
PARAMETER  
EQUATION  
A1, B1  
A2, B2  
A3, B3  
A4, B4  
A5, B5  
DEVICES  
DEVICES  
DEVICES  
DEVICES  
DEVICES  
G
Gain  
20 V/V  
250 mV  
25 mΩ  
2.5 W  
50 V/V  
100 mV  
10 mΩ  
1 W  
100 V/V  
50 mV  
5 mΩ  
0.5W  
200 V/V  
25 mV  
500 V/V  
10 mV  
1 mΩ  
0.1 W  
VDIFF  
RSENSE  
PSENSE  
Ideal differential input voltage  
VDIFF = VOUT / G  
Current sense resistor value  
RSENSE = VDIFF / IMAX  
2.5 mΩ  
0.25 W  
Current-sense resistor power dissipation  
RSENSE × IMAX2  
(1) Design example with 10-A full-scale current with maximum output voltage set to 5 V.  
8.1.2 Input Filtering  
备注  
Input filters are not required for accurate measurements using the INA293, and use of filters in this  
location is not recommended. If filter components are used on the input of the amplifier, follow the  
guidelines in this section to minimize the effects on performance.  
Based strictly on user design requirements, external filtering of the current signal may be desired. The initial  
location that can be considered for the filter is at the output of the current sense amplifier. Although placing the  
filter at the output satisfies the filtering requirements, this location changes the low output impedance measured  
by any circuitry connected to the output voltage pin. The other location for filter placement is at the current sense  
amplifier input pins. This location satisfies the filtering requirement also, however the components must be  
carefully selected to minimally impact device performance. 8-1 shows a filter placed at the input pins.  
VS  
VCM  
ISENSE  
RIN  
R1  
R1  
IN+  
+
CIN  
Current  
RSENSE  
Bias  
Feedback  
RIN  
OUT  
-
INœ  
Buffer  
Load  
RL  
GND  
8-1. Filter at Input Pins  
External series resistance provides a source of additional measurement error, so keep the value of these series  
resistors to 10 Ω or less to reduce loss of accuracy. The internal bias network shown in 8-1 creates a  
mismatch in input bias currents (see 6-15, 6-16 and 6-17) when a differential voltage is applied between  
the input pins. If additional external series filter resistors are added to the circuit, a mismatch is created in the  
voltage drop across the filter resistors. This voltage is a differential error voltage in the shunt resistor voltage. In  
addition to the absolute resistor value, mismatch resulting from resistor tolerance can significantly impact the  
error because this value is calculated based on the actual measured resistance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: INA293  
 
 
 
 
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
The measurement error expected from the additional external filter resistors can be calculated using 方程式 4,  
where the gain error factor is calculated using 方程5.  
Gain Error (%) = 100 - (100 ´ Gain Error Factor)  
(4)  
The gain error factor, shown in 方程式 4, can be calculated to determine the gain error introduced by the  
additional external series resistance. 方程式 4 calculates the deviation of the shunt voltage, resulting from the  
attenuation and imbalance created by the added external filter resistance. 8-2 provides the gain error factor  
and gain error for several resistor values.  
RB × R1  
Gain Error Factor =  
(RB × R1) + (RB × RIN) + (2 × RIN × R1)  
(5)  
Where:  
RIN is the external filter resistance value.  
R1 is the INA293 input resistance value specified in 7-1.  
RB in the internal bias resistance, which is 6600 Ω± 20%.  
8-2. Example Gain Error Factor and Gain Error for 10-ΩExternal Filter Input Resistors  
DEVICE (GAIN)  
INA293x1 (20)  
INA293x2 (50)  
INA293x3 (100)  
INA293x4 (200)  
INA293x5 (500)  
GAIN ERROR FACTOR  
GAIN ERROR (%)  
-0.289161432  
-0.348779273  
-0.348779273  
-0.447984072  
-0.744416873  
0.997108386  
0.996512207  
0.996512207  
0.995520159  
0.992555831  
8.2 Typical Application  
The INA293 is a unidirectional, current-sense amplifier capable of measuring currents through a resistive shunt  
with shunt common-mode voltages from 4 V to +110 V.  
24 V  
Solenoid  
RSENSE  
ISENSE  
MCU  
+
œ
ADC  
INA  
5 V  
GND  
8-2. Current Sensing in a Solenoid Application  
8.2.1 Design Requirements  
In this example application, the common-mode voltage ranges from 0 V to 24 V. The maximum sense current is  
1.5 A, and a 5-V supply is available for the INA293. Following the design guidelines from the RSENSE and Device  
Gain Selection section, a RSENSE of 50 mΩ and a gain of 50 V/V are selected to provide good output dynamic  
range. 8-3 lists the design setup for this application.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: INA293  
 
 
 
 
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
8-3. Design Parameters  
DESIGN PARAMETERS  
EXAMPLE VALUE  
Power supply voltage  
Common-mode voltage range  
Maximum sense current  
RSENSE resistor  
5 V  
0 V to 24 V  
1.5 A  
50 mΩ  
Gain option  
50 V/V  
8.2.2 Detailed Design Procedure  
The INA293 is designed to measure current in a typical solenoid application. The INA293 measures current  
across the 50-mΩ shunt that is placed at the output of the half-bridge. The INA293 measures the differential  
voltage across the shunt resistor, and the signal is internally amplified with a gain of 50 V/V. The output of the  
INA293 is connected to the analog-to-digital converter (ADC) of an MCU to digitize the current measurements.  
Solenoid loads are highly inductive and are often prone to failure. Solenoids are often used for position control,  
precise fluid control, and fluid regulation. Measuring real-time current on the solenoid continuously can indicate  
premature failure of the solenoid which can lead to a faulty control loop in the system. Measuring high-side  
current also indicates if there are any ground faults on the solenoid or the FETs that can be damaged in an  
application. The INA293, with high bandwidth and slew rate, can be used to detect fast overcurrent conditions to  
prevent the solenoid damage from short-to-ground faults.  
8.2.2.1 Overload Recovery With Negative VSENSE  
The INA293 is a unidirectional current sense amplifier that is meant to operate with a positive differential input  
voltage (VSENSE). If negative VSENSE is applied, the device is placed in an overload condition and requires time to  
recover once VSENSE returns positive. The required overload recovery time increases with more negative  
VSENSE  
.
8.2.3 Application Curve  
8-3 shows the output response of a solenoid.  
6
4
2
0
VCM  
VOUT  
40  
30  
20  
10  
0
Time (50 ms/div)  
8-3. Solenoid Control Current Response  
8.3 Power Supply Recommendations  
The INA293 power supply can be 5 V, whereas the input common-mode voltage can vary between 4 V to 110  
V. The output voltage range of the OUT pin, however, is limited by the voltage on the power-supply pin.  
8.4 Layout  
8.4.1 Layout Guidelines  
Attention to good layout practices is always recommended.  
Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique  
makes sure that only the current-sensing resistor impedance is detected between the input pins. Poor routing  
of the current-sensing resistor commonly results in additional resistance present between the input pins.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: INA293  
 
 
 
 
 
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
Given the very low ohmic value of the current resistor, any additional high-current carrying impedance can  
cause significant measurement errors.  
Place the power-supply bypass capacitor as close as possible to the device power supply and ground pins.  
The recommended value of this bypass capacitor is 0.1 µF. Additional decoupling capacitance can be added  
to compensate for noisy or high-impedance power supplies.  
8.4.2 Layout Example  
Supply  
Voltage  
OUT  
GND  
IN +  
Vs  
Bypass  
Cap  
Via to GND Plane  
Ground Plane  
IN -  
8-4. INA293A Recommended Layout  
OUT  
GND  
Vs  
IN -  
Via to GND Plane  
Supply  
Voltage  
IN +  
Bypass  
Cap  
Ground Plane  
8-5. INA293B Recommended Layout  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: INA293  
INA293  
www.ti.com.cn  
ZHCSKJ8B DECEMBER 2019 REVISED AUGUST 2022  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
For related documentation see the following: Texas Instruments, INA293EVM user's guide.  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: INA293  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA293A1IDBVR  
INA293A1IDBVT  
INA293A2IDBVR  
INA293A2IDBVT  
INA293A3IDBVR  
INA293A3IDBVT  
INA293A4IDBVR  
INA293A4IDBVT  
INA293A5IDBVR  
INA293A5IDBVT  
INA293B1IDBVR  
INA293B1IDBVT  
INA293B2IDBVR  
INA293B2IDBVT  
INA293B3IDBVR  
INA293B3IDBVT  
INA293B4IDBVR  
INA293B4IDBVT  
INA293B5IDBVR  
INA293B5IDBVT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1XWC  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
1XWC  
1XXC  
1XXC  
1XZC  
1XZC  
1Z1C  
1Z1C  
1Z7C  
1Z7C  
1Z2C  
1Z2C  
1Z3C  
1Z3C  
1Z4C  
1Z4C  
1Z5C  
1Z5C  
1Z6C  
1Z6C  
250  
RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Aug-2022  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF INA293 :  
Automotive : INA293-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA293A1IDBVR  
INA293A1IDBVT  
INA293A2IDBVR  
INA293A2IDBVT  
INA293A3IDBVR  
INA293A3IDBVT  
INA293A4IDBVR  
INA293A4IDBVT  
INA293A5IDBVR  
INA293A5IDBVT  
INA293B1IDBVR  
INA293B1IDBVT  
INA293B2IDBVR  
INA293B2IDBVT  
INA293B3IDBVR  
INA293B3IDBVT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Aug-2022  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA293B4IDBVR  
INA293B4IDBVT  
INA293B5IDBVR  
INA293B5IDBVT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
3.23  
3.23  
3.23  
3.23  
3.17  
3.17  
3.17  
3.17  
1.37  
1.37  
1.37  
1.37  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
3000  
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA293A1IDBVR  
INA293A1IDBVT  
INA293A2IDBVR  
INA293A2IDBVT  
INA293A3IDBVR  
INA293A3IDBVT  
INA293A4IDBVR  
INA293A4IDBVT  
INA293A5IDBVR  
INA293A5IDBVT  
INA293B1IDBVR  
INA293B1IDBVT  
INA293B2IDBVR  
INA293B2IDBVT  
INA293B3IDBVR  
INA293B3IDBVT  
INA293B4IDBVR  
INA293B4IDBVT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3000  
250  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Aug-2022  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA293B5IDBVR  
INA293B5IDBVT  
SOT-23  
SOT-23  
DBV  
DBV  
5
5
3000  
250  
183.0  
183.0  
183.0  
183.0  
20.0  
20.0  
Pack Materials-Page 4  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY