INA302A1IPW [TI]

具有双比较器的 36V、双向、550kHz、4V/µs 高精度电流感应放大器 | PW | 14 | -40 to 125;
INA302A1IPW
型号: INA302A1IPW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有双比较器的 36V、双向、550kHz、4V/µs 高精度电流感应放大器 | PW | 14 | -40 to 125

放大器 比较器
文件: 总41页 (文件大小:1271K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
具有双集成比较器的 INA30x 36V、过流保护、精密、  
电流监测放大器  
1 特性  
3 说明  
1
宽共模输入范围:–0.1V +36V  
双比较器输出:  
INA302 INA303 (INA30x) 器件具有一个高共模、双  
向、电流检测放大器和两个高速比较器,用于检测超出  
范围的电流状况。INA302 比较器配置为检测和响应过  
流状况。INA303 比较器在窗口配置中配置为响应过流  
和欠流状况。这些器件使用外部限位设置电阻器,对每  
个比较器设置都具有可调限位阈值范围。这些电流分流  
监控器可在独立于电源的 –0.1V 36V 共模电压范围  
内测量差动电压信号。  
INA302:两个独立的超限警报  
INA303:窗口比较器  
阈值电平单独设置  
比较器 1 警报响应:1µs  
比较器 2 可调延迟:2µs 10s  
具有独立锁存控制模式的开漏极输出  
高精度放大器:  
开漏极警报输出可配置为在透明模式(输出状态与输入  
状态保持一致)或锁存模式(警报输出在锁存复位时清  
除)下运行。比较器 1 的警报响应时间小于 1µs,而  
比较器 2 的警报响应时间通过外部电容器进行设置,  
范围介于 2µs 10s 之间。  
失调电压:30µV(最大值,A3 版本)  
失调电压漂移:0.5µV/°C(最大值)  
增益误差:0.15%(最大值,A3 版本)  
增益误差漂移:10ppm/°C  
可用放大器增益:  
这些器件由单个 2.7V 5.5V 电源供电,消耗的最大  
电源电流为 950μA。这些器件具有 –40°C +125°C  
的扩展额定工作温度范围,并且采用 14 引脚 TSSOP  
封装。  
INA302A1INA303A120V/V  
INA302A2INA303A250V/V  
INA302A3INA303A3100V/V  
2 应用  
器件信息  
过流保护  
器件型号  
INA302  
INA303  
封装  
封装尺寸(标称值)  
电机控制  
TSSOP (14)  
4.40mm × 5.00mm  
电源保护  
计算机和服务器  
电信设备  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
典型应用  
2.7 V to 5.5 V  
CBYPASS  
0.1 F  
RPULL-UP  
10 k  
VS  
INA30x  
RLIMIT1  
LIMIT1  
COMP1  
Microcontroller  
Supply  
(0 V to 36 V)  
+
ALERT1  
LATCH1  
GPIO  
GPIO  
IN+  
IN-  
+
OUT  
ADC  
COMP2  
(
)
+
-
ALERT2  
LATCH2  
GPIO  
GPIO  
Load  
(
)
-
+
DELAY  
LIMIT2  
CDELAY  
GND  
RLIMIT2  
Reference Voltage  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS775  
 
 
 
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 15  
7.4 Device Functional Modes........................................ 21  
8
9
Application and Implementation ........................ 23  
8.1 Application Information .......................................... 23  
8.2 Typical Application .................................................. 29  
Power Supply Recommendations...................... 31  
10 Layout................................................................... 31  
10.1 Layout Guidelines ................................................. 31  
10.2 Layout Example .................................................... 32  
11 器件和文档支持 ..................................................... 33  
11.1 文档支持 ............................................................... 33  
11.2 相关链接................................................................ 33  
11.3 接收文档更新通知 ................................................. 33  
11.4 社区资源................................................................ 33  
11.5 ....................................................................... 33  
11.6 静电放电警告......................................................... 33  
11.7 术语表 ................................................................... 33  
12 机械、封装和可订购信息....................................... 33  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (April 2017) to Revision C  
Page  
已更改 更改了一些部分的位置和文本,使之更清晰;无内容更.......................................................................................... 1  
Added MIN and MAX values to VCM and VS rows of Recommended Operating Conditions table......................................... 4  
Deleted VCM, VS, and temperature range rows from Electrical Characteristics table; same content listed in  
Recommended Operating Conditions table............................................................................................................................ 5  
Changes from Revision A (February 2017) to Revision B  
Page  
已更改 y-axis units from 0.5 V/div to 1 V/div and changed (INA30xA1) to (INA30x) in title of Comparator 1 Total  
Propagation Delay figure ...................................................................................................................................................... 12  
已更改 y-axis units from 0.5 V/div to 1 V/div and changed (INA303A1) to (INA303) in title of Comparator 2 Total  
Propagation Delay figure ...................................................................................................................................................... 12  
已删除 Comparator 1 Total Propagation Delay (INA30xA2), Comparator 1 Total Propagation Delay (INA30xA3),  
Comparator 2 Total Propagation Delay (INA303A2), and Comparator 2 Total Propagation Delay (INA303A3) figures ..... 12  
已更改 (INA303A1) to (INA303) in title of Comparator 2 Total Propagation Delay figure.................................................... 12  
已删除 Comparator 2 Total Propagation Delay (INA303A2) and Comparator 2 Total Propagation Delay (INA303A3)  
figures................................................................................................................................................................................... 12  
已添加 Comparator 2 Total Propagation Delay (INA302A1) and Comparator 2 Total Propagation Delay (INA302A1)  
figures................................................................................................................................................................................... 12  
Changes from Original (September 2016) to Revision A  
Page  
将已发布更改为生产 ............................................................................................................................................................... 1  
2
Copyright © 2016–2019, Texas Instruments Incorporated  
 
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
5 Pin Configuration and Functions  
PW Package  
14-Pin TSSOP  
Top View  
VS  
OUT  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
IN+  
INœ  
LIMIT1  
REF  
ALERT1  
ALERT2  
DELAY  
LIMIT2  
NC  
GND  
LATCH1  
LATCH2  
8
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
VS  
1
2
Analog  
Power supply, 2.7 V to 5.5 V  
Output voltage  
OUT  
Analog output  
ALERT1 threshold limit input; see the Setting Alert Thresholds section for details on  
setting the limit threshold  
3
LIMIT1  
Analog input  
4
5
6
7
8
REF  
Analog input  
Analog  
Reference voltage, 0 V to VS  
Ground  
GND  
LATCH1  
LATCH2  
NC  
Digital input  
Digital input  
Transparent or latch mode selection input  
Transparent or latch mode selection input  
No internal connection  
ALERT2 threshold limit input; see the Setting Alert Thresholds section for details on  
setting the limit threshold  
9
LIMIT2  
DELAY  
ALERT2  
Analog input  
Analog input  
Analog output  
Delay timing input; see the Alert Outputs section for details on setting the delayed  
alert response for comparator 2  
10  
11  
Open-drain output; active-low. This pin is an overlimit alert for the INA302 and an  
underlimit alert for the INA303.  
12  
13  
14  
ALERT1  
IN–  
Analog output  
Analog input  
Analog input  
Open-drain output, active-low overlimit alert  
Connect to load side of the current-sensing resistor  
Connect to supply side of the current-sensing resistor  
IN+  
Copyright © 2016–2019, Texas Instruments Incorporated  
3
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VS  
Supply voltage  
6
40  
V
(2)  
Differential (VIN+) – (VIN–  
Common-mode(3)  
)
–40  
GND – 0.3  
GND – 0.3  
GND – 0.3  
GND – 0.3  
GND – 0.3  
Analog inputs (IN+, IN–)  
V
40  
Analog input  
LIMIT1, LIMIT2, DELAY, REF  
OUT  
(VS) + 0.3  
(VS) + 0.3  
(VS) + 0.3  
6
V
V
Analog output  
Digital input  
LATCH1, LATCH2  
ALERT1, ALERT2  
V
Digital output  
V
TJ  
Junction temperature  
Storage temperature  
150  
°C  
°C  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) VIN+ and VIN– are the voltages at the IN+ and IN– pins, respectively.  
(3) Input voltage can exceed the voltage shown without causing damage to the device if the current at that pin is limited to 5 mA.  
6.2 ESD Ratings  
VALUE  
±3000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.1  
2.7  
NOM  
12  
MAX  
36  
UNIT  
VCM  
VS  
Common-mode input voltage  
Operating supply voltage  
V
V
5
5.5  
TA  
Operating free-air temperature  
–40  
125  
°C  
6.4 Thermal Information  
INA30x  
THERMAL METRIC(1)  
PW (TSSOP)  
14 PINS  
110.2  
35.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
53.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.3  
ψJB  
52.4  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016–2019, Texas Instruments Incorporated  
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
6.5 Electrical Characteristics  
at TA = 25°C, VSENSE = 0 V, VREF = VS / 2, VS = 5 V, VIN+ = 12 V, VLIMIT1 = 3 V, and VLIMIT2 = 3 V (INA302) or 2 V (INA303)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
VIN = VIN+ – VIN–, VREF = VS / 2,  
A1 versions  
0
0
±125  
±50  
VIN = VIN+ – VIN–, VREF = VS / 2,  
A2 versions  
VIN  
Differential input voltage range  
mV  
VIN = VIN+ – VIN–, VREF = VS / 2,  
A3 versions  
0
±25  
VIN+ = 0 V to 36 V,  
TA = –40ºC to +125ºC, A1 versions  
100  
106  
110  
114  
118  
120  
VIN+ = 0 V to 36 V, TA = –40ºC to +125ºC,  
A2 versions  
CMRR  
Common-mode rejection ratio  
Offset voltage, RTI(1)  
dB  
µV  
VIN+ = 0 V to 36 V,  
TA = –40ºC to +125ºC, A3 versions  
A1 versions  
±15  
±10  
±5  
±80  
±50  
±30  
0.25  
VOS  
A2 versions  
A3 versions  
dVOS/dT  
PSRR  
Offset voltage drift, RTI(1)  
Power-supply rejection ratio  
TA= –40ºC to +125ºC  
0.02  
µV/°C  
µV/V  
VS = 2.7 V to 5.5 V, VIN+ = 12 V,  
TA = –40ºC to +125ºC  
±0.3  
±5  
IB  
Input bias current  
Input offset current  
IB+, IB–  
115  
µA  
µA  
IOS  
VSENSE = 0 mV  
±0.01  
OUTPUT  
A1 versions  
20  
50  
G
Gain  
A2 versions  
V/V  
A3 versions  
100  
VOUT = 0.5 V to VS – 0.5 V, A1 versions  
VOUT = 0.5 V to VS – 0.5 V, A2 versions  
VOUT = 0.5 V to VS – 0.5 V, A3 versions  
TA= –40ºC to +125ºC  
±0.02%  
±0.05%  
±0.1%  
3
±0.075%  
±0.1%  
±0.15%  
10  
Gain error  
ppm/°C  
pF  
Nonlinearity error  
VOUT = 0.5 V to VS – 0.5 V  
No sustained oscillation  
±0.01%  
500  
Maximum capacitive load  
VOLTAGE OUTPUT  
RL = 10 kΩ to GND,  
TA = –40ºC to +125ºC  
Swing to VS power-supply rail  
VS – 0.05  
VGND + 15  
VS – 0.1  
V
RL = 10 kΩ to GND,  
TA = –40ºC to +125ºC  
Swing to GND  
VGND + 30  
mV  
FREQUENCY RESPONSE  
A1 versions, COUT = 500 pF  
A2 versions, COUT = 500 pF  
A3 versions, COUT = 500 pF  
550  
440  
400  
4
BW  
Bandwidth  
kHz  
V/µs  
SR  
Slew rate  
NOISE, RTI(1)  
Voltage noise density  
30  
nV/Hz  
(1) RTI = referred-to-input.  
Copyright © 2016–2019, Texas Instruments Incorporated  
5
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = 25°C, VSENSE = 0 V, VREF = VS / 2, VS = 5 V, VIN+ = 12 V, VLIMIT1 = 3 V, and VLIMIT2 = 3 V (INA302) or 2 V (INA303)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
COMPARATOR  
Comparator 1, input overdrive = 1 mV  
0.6  
1
2
tp  
Total alert propagation delay  
µs  
Comparator 2, input overdrive = 1 mV,  
delay = 100 kΩ to VS  
1.25  
Comparator 1, VOUT step = 0.5 V to 4.5 V,  
VLIMIT = 4 V  
1
1.5  
2.5  
Comparator 2 (INA302),  
VOUT step = 0.5 V to 4.5 V, VLIMIT = 4 V,  
delay = 100 kΩ to VS  
1.5  
Slew-rate-limited tp  
µs  
Comparator 2 (INA303),  
VOUT step = 4.5 V to 0.5 V, VLIMIT = 1 V,  
delay = 100 kΩ to VS  
1.5  
80  
2.5  
TA = 25ºC, VLIMIT1 < VS – 0.6 V  
79.2  
78.4  
79.7  
79.2  
80.8  
81.6  
80.4  
80.8  
Limit threshold output current,  
comparator 1  
ILIMIT1  
µA  
µA  
TA = –40ºC to +125ºC,  
VLIMIT1 < VS – 0.6 V  
TA = 25ºC, VLIMIT2 < VS – 0.6 V  
80  
Limit threshold output current,  
comparator 2  
ILIMIT2  
TA = –40ºC to +125ºC,  
VLIMIT2 < VS – 0.6 V  
A1 versions  
0.5  
0.5  
0.5  
100  
3.5  
3.5  
4.0  
VOS  
Offset voltage, both comparators  
A2 versions  
mV  
mV  
A3 versions  
HYS  
Hysteresis  
comparator 1, comparator 2  
TA = –40ºC to +125ºC  
TA = –40ºC to +125ºC  
TA = –40ºC to +125ºC, VDELAY = 0.6 V  
Internal programmable delay error  
Delay threshold voltage  
Delay charging current  
Delay discharge resistance  
4%  
1.23  
5.15  
VTH  
ID  
1.21  
4.85  
1.22  
5
V
µA  
Ω
RD  
70  
LATCH1, LATCH2 high-level input  
voltage  
VIH  
TA = –40ºC to +125ºC  
1.4  
0
6
V
VIL  
LATCH1, LATCH2 low-level input voltage TA = –40ºC to +125ºC  
0.4  
V
VOL  
Alert low-level output voltage  
IOL = 3 mA, TA = –40ºC to +125ºC  
70  
400  
mV  
ALERT1, ALERT2 pin leakage input  
current  
VOH = 3.3 V  
0.1  
1
µA  
µA  
LATCH1, LATCH2 digital leakage input  
current  
0 V VLATCH1 , VLATCH2 VS  
1
POWER SUPPLY  
TA = 25ºC  
850  
950  
IQ Quiescent current  
µA  
TA = –40ºC to +125ºC  
1150  
6
版权 © 2016–2019, Texas Instruments Incorporated  
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
6.6 Typical Characteristics  
at TA = 25°C, VREF = VS / 2, VSENSE = 0 V, VS = 5 V, VIN+ = 12 V, and ALERT1, ALERT2 pullup resistors = 10 kΩ (unless  
otherwise noted)  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
1. Input Offset Voltage Distribution (INA30xA1)  
2. Input Offset Voltage Distribution (INA30xA2)  
20  
15  
10  
5
INA30xA1  
INA30xA2  
INA30xA3  
0
-5  
-10  
-15  
-20  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Input Offset Voltage (mV)  
3. Input Offset Voltage Distribution (INA30xA3)  
4. Input Offset Voltage vs Temperature  
Common-Mode Rejection Ratio (mV/V)  
Common-Mode Rejection Ratio (mV/V)  
5. CMRR Distribution (INA30xA1)  
6. CMRR Distribution (INA30xA2)  
版权 © 2016–2019, Texas Instruments Incorporated  
7
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VREF = VS / 2, VSENSE = 0 V, VS = 5 V, VIN+ = 12 V, and ALERT1, ALERT2 pullup resistors = 10 kΩ (unless  
otherwise noted)  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-1.2  
-1.4  
-1.6  
INA30xA1  
INA30xA2  
INA30xA3  
-2  
-1.8  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
D008  
Common-Mode Rejection Ratio (mV/V)  
7. CMRR Distribution (INA30xA3)  
8. CMRR vs Temperature  
140  
120  
100  
80  
INA30xA1  
INA30xA2  
INA30xA3  
60  
40  
10  
100  
1000  
10000  
100000  
1000000  
Frequency (Hz)  
D009  
Gain Error (%)  
10. Gain Error Distribution (INA30xA1)  
9. CMRR vs Frequency  
Gain Error (%)  
Gain Error (%)  
11. Gain Error Distribution (INA30xA2)  
12. Gain Error Distribution (INA30xA3)  
8
版权 © 2016–2019, Texas Instruments Incorporated  
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VREF = VS / 2, VSENSE = 0 V, VS = 5 V, VIN+ = 12 V, and ALERT1, ALERT2 pullup resistors = 10 kΩ (unless  
otherwise noted)  
50  
40  
0.5  
0.4  
0.3  
0.2  
0.1  
0
INA30xA1  
INA30xA2  
INA30xA3  
30  
20  
10  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
INA30xA1  
INA30xA2  
INA30xA3  
-10  
-20  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
Temperature (èC)  
13. Gain Error vs Temperature  
14. Gain vs Frequency  
VS  
140  
120  
100  
80  
V
S - 1  
V
S - 2  
GND + 3  
GND + 2  
GND + 1  
GND  
60  
125ºC  
25ºC  
-40ºC  
40  
20  
0
2
4
6
8
10  
12  
14  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Output Current (mA)  
Frequency (Hz)  
16. Output Voltage Swing vs Output Current  
15. PSRR vs Frequency  
225  
200  
175  
150  
125  
100  
75  
150  
125  
100  
75  
50  
50  
25  
25  
0
0
-25  
-5  
-25  
-5  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
VS = 5 V  
VS = 0 V  
17. Input Bias Current vs Common-Mode Voltage  
版权 © 2016–2019, Texas Instruments Incorporated  
18. Input Bias Current vs Common-Mode Voltage  
9
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VREF = VS / 2, VSENSE = 0 V, VS = 5 V, VIN+ = 12 V, and ALERT1, ALERT2 pullup resistors = 10 kΩ (unless  
otherwise noted)  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Supply Voltage (V)  
Temperature (èC)  
19. Input Bias Current vs Temperature  
20. Quiescent Current vs Supply Voltage  
1050  
1000  
950  
900  
850  
800  
750  
700  
1000  
700  
500  
300  
200  
100  
70  
50  
30  
20  
10  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
1000 2000 5000 10000  
100000  
1000000  
Temperature (èC)  
Frequency (Hz)  
21. Quiescent Current vs Temperature  
22. Input-Referred Voltage Noise vs Frequency  
Input  
Output  
Time (1 s/div)  
Time (1 ms/div)  
4-VPP output step  
23. 0.1-Hz to 10-Hz Voltage Noise  
24. Voltage Output Rising Step Response  
版权 © 2016–2019, Texas Instruments Incorporated  
(Referred to Input)  
10  
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VREF = VS / 2, VSENSE = 0 V, VS = 5 V, VIN+ = 12 V, and ALERT1, ALERT2 pullup resistors = 10 kΩ (unless  
otherwise noted)  
Input  
Output  
VCM  
VOUT  
Time (1 ms/div)  
Time (5ms/div)  
4-VPP output step  
25. Voltage Output Falling Step Response  
26. Common-Mode Voltage Transient Response  
80.8  
80.6  
80.4  
80.2  
80  
79.8  
79.6  
79.4  
79.2  
VSUPPLY  
VOUT  
Time (5 ms/div)  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
28. LIMIT1 Current Source vs Temperature  
27. Start-Up Response  
5.3  
5.2  
5.1  
5
80.8  
80.6  
80.4  
80.2  
80  
79.8  
79.6  
79.4  
79.2  
4.9  
4.8  
4.7  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
29. LIMIT2 Current Source vs Temperature  
30. DELAY Current vs Temperature  
版权 © 2016–2019, Texas Instruments Incorporated  
11  
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VREF = VS / 2, VSENSE = 0 V, VS = 5 V, VIN+ = 12 V, and ALERT1, ALERT2 pullup resistors = 10 kΩ (unless  
otherwise noted)  
9.5  
8.5  
7.5  
6.5  
5.5  
4.5  
3.5  
2.5  
1.5  
0.5  
-0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
VLIMIT2  
ALERT2  
VSENSE  
VOUT  
VLIMIT1  
ALERT1  
VSENSE  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Time (600 ns/div)  
-5E-7  
7E-7  
1.9E-6  
3.1E-6  
4.3E-6  
5.5E-6  
Time (200 ns/div)  
DELAY = open  
D031  
31. Comparator 1 Total Propagation Delay  
32. Comparator 2 Total Propagation Delay  
(INA30x)  
(INA303)  
VOUT  
VLIMIT2  
ALERT2  
VSENSE  
VOUT  
VLIMIT2  
ALERT2  
VSENSE  
Time (600 ns/div)  
Time (600 ns/div)  
DELAY = open  
DELAY = 100 kΩ to VS  
34. Comparator 2 Total Propagation Delay  
33. Comparator 2 Total Propagation Delay  
(INA302)  
(INA303)  
1000  
800  
600  
400  
200  
0
VOUT  
VLIMIT2  
ALERT2  
VSENSE  
Time (600 ns/div)  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
DELAY = 100 kΩ to VS  
Temperature (èC)  
VOD = 1 mV  
36. Comparator 1 Propagation Delay vs Temperature  
版权 © 2016–2019, Texas Instruments Incorporated  
35. Comparator 2 Total Propagation Delay  
(INA302)  
12  
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VREF = VS / 2, VSENSE = 0 V, VS = 5 V, VIN+ = 12 V, and ALERT1, ALERT2 pullup resistors = 10 kΩ (unless  
otherwise noted)  
2200  
2000  
1800  
1600  
1400  
1200  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ALERT1 VOL  
ALERT2 VOL  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Low-Level Output Current (mA)  
Temperature (èC)  
VOD = 1 mV  
38. Comparator Alert VOL vs IOL  
37. Comparator 2 Propagation Delay vs Temperature  
120  
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
INA30xA1  
INA30xA2  
INA30xA3  
INA30xA1  
INA30xA2  
INA30xA3  
20  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
39. Comparator 1 Hysteresis vs Temperature  
40. Comparator 2 Hysteresis vs Temperature  
LATCH1, LATCH2  
ALERT1, ALERT2  
Time (2 ms/div)  
41. Comparator Latch Response  
版权 © 2016–2019, Texas Instruments Incorporated  
13  
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The INA30x feature a zero-drift, 36-V, common-mode, bidirectional, current-sensing amplifier, and two high-  
speed comparators that can detect multiple out-of-range current conditions. These specially designed, current-  
sensing amplifiers can be used in both low-side or high-side applications where common-mode voltages far  
exceed the supply voltage of the device. Currents are measured by accurately sensing voltages developed  
across current-sensing resistors (also known as current-shunt resistors). Current can be measured on input  
voltage rails as high as 36 V, and the device can be powered from supply voltages as low as 2.7 V.  
The zero-drift topology enables high-precision measurements with maximum input offset voltages as low as  
30 μV (max) with a temperature contribution of only 0.25 μV/°C (max) over the full temperature range of –40°C to  
+125°C. The low total offset voltage of the INA302 enables smaller current-sense resistor values to be used,  
improving power-efficiency without sacrificing measurement accuracy resulting from the smaller input signal.  
Both devices use a single external resistor to set each out-of-range threshold. The INA302 allows for two  
overcurrent thresholds, and the INA303 allows for both an undercurrent and overcurrent threshold. The response  
time of the ALERT1 threshold is fixed and is less than 1 μs. The response time of the ALERT2 threshold can be  
set with an external capacitor. The combination of a precision current-sense amplifier with onboard comparators  
creates a highly-accurate solution that is capable of fast detection of multiple out-of-range conditions. The ability  
to detect when currents are out-of-range allows the system to take corrective actions to prevent potential  
component or system-wide damage.  
7.2 Functional Block Diagram  
2.7 V to 5.5 V  
CBYPASS  
RLIMIT1  
0.1 mF  
LIMIT1  
VS  
INA30x  
RPULL-UP1  
RPULL-UP2  
10 kW  
10 kW  
ILIMIT1  
Power Supply  
0 V to 36 V  
+
-
ALERT1  
LATCH1  
IN+  
IN-  
+
OUT  
Gain = 20,  
50, 100  
RSENSE  
ILIMIT2  
LATCH2  
ALERT2  
DELAY  
+ (-)  
- (+)  
LOAD  
REF  
LIMIT2  
GND  
CDELAY  
Reference Voltage  
RLIMIT2  
14  
版权 © 2016–2019, Texas Instruments Incorporated  
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
7.3 Feature Description  
7.3.1 Bidirectional Current Sensing  
The INA30x sense current flow through a sense resistor in both directions. The bidirectional current-sensing  
capability is achieved by applying a voltage at the REF pin to offset the output voltage. A positive differential  
voltage sensed at the inputs results in an output voltage that is greater than the applied reference voltage.  
Likewise, a negative differential voltage at the inputs results in output voltage that is less than the applied  
reference voltage. The equation for the output voltage of the current-sense amplifier is shown in 公式 1.  
VOUT = ILOADì RSENSE ìGAIN + V  
(
)
REF  
where  
ILOAD is the load current to be monitored.  
RSENSE is the current-sense resistor.  
GAIN is the gain option of the device selected.  
VREF is the voltage applied to the REF pin.  
(1)  
7.3.2 Out-of-Range Detection  
The INA303 detects when negative currents are out-of-range by setting a voltage at the LIMIT2 pin that is less  
than the applied reference voltage. The limit voltage is set with an external resistor or externally driven by a  
voltage source or digital-to-analog converter (DAC); see the Setting Alert Thresholds section for additional  
information. A typical application using the INA303 to detect negative overcurrent conditions is illustrated in the  
Typical Application section.  
7.3.3 Alert Outputs  
Both ALERTx pins are active-low, open-drain outputs that pull low when the sensed current is detected to be out  
of range. Both open-drain ALERTx pins require an external pullup resistor to an external supply. The external  
supply for the pullup voltage can exceed the supply voltage, VS, but is restricted from operating at greater than  
5.5 V. The pullup resistance is selected based on the capacitive load and required rise time; however, a 10-kΩ  
resistor value is typically sufficient for most applications. The response time of the ALERT1 output to an out-of-  
range event is less than 1 μs, and the response time of the ALERT2 output is proportional to the value of the  
external CDELAY capacitor. The equation to calculate the delay time for the ALERT2 output is given in 公式 2:  
If DELAY is connected to VS with 100 kW  
1.5 ms  
tDELAY  
=
CDELAY ì VTH  
If CDELAY > 47 pF  
+ 2.5 ms  
ID  
where  
CDELAY is the external delay capacitor.  
VTH is the delay threshold voltage.  
ID is the DELAY pin current for comparator 2.  
(2)  
For example, if a delay time of 10 µs is desired, the calculated value for CDELAY is 492 pF. The closest standard  
capacitor value to the calculated value is 500 pF. If a delay time greater than 2.5 µs on the ALERT2 output is not  
needed, the CDELAY capacitor can be omitted. To achieve minimum delay on the ALERT2 output, connect a 100-  
kΩ resistor from the DELAY pin to the VS pin. Both comparators in the INA30x have hysteresis to avoid  
oscillations in the ALERTx outputs. The effect hysteresis has on the comparator behavior is described in the  
Hysteresis section.  
版权 © 2016–2019, Texas Instruments Incorporated  
15  
 
 
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
Feature Description (接下页)  
42 shows the alert output response of the internal comparators for the INA302. When the output voltage of the  
current-sense amplifier is less than the voltage developed on either limit pin, both ALERTx outputs are in the  
default high state. When the current sense amplifier output is greater than the threshold voltage set by the  
LIMIT2 pin, the ALERT2 output pulls low after a delay time set by the external delay capacitor. The lower  
overcurrent threshold is commonly referred to as the overcurrent warning threshold. If the current continues to  
rise until the current-sense amplifier output voltage exceeds the threshold voltage set at the LIMIT1 pin, then the  
ALERT1 output becomes active and immediately pulls low. The low voltage on ALERT1 indicates that the  
measured signal at the amplifier input has exceeded the programmed threshold level, indicating an overcurrent  
condition has occurred. The upper threshold is commonly referred to as the fault or system critical threshold.  
Systems often initiate protection procedures (such as a system shutdown) when the current exceeds this  
threshold.  
Power Supply  
0 V to 36 V  
2.7 V to 5.5 V  
Fault/Critical Threshold  
Supply  
INA302  
VS  
Warning Threshold  
INPUT SIGNAL  
RPULL-UP1  
ALERT1  
LIMIT1  
RLIMIT1  
LATCH1  
IN+  
+
VLIMIT1  
OUT  
RSENSE  
Supply  
IN-  
VLIMIT2  
RPULL-UP2  
VOUT  
ALERT2  
LIMIT2  
DELAY  
Load  
RLIMIT2  
ALERT1  
ALERT2  
CDELAY  
LATCH2  
REF  
GND  
GND  
tDELAY  
42. Out-of-Range Alert Responses for the INA302  
16  
版权 © 2016–2019, Texas Instruments Incorporated  
 
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
Feature Description (接下页)  
43 shows the alert output response of the internal comparators for the INA303. Both ALERTx outputs are in  
the default high state when the output voltage of the current-sense amplifier is less than the voltage developed at  
the LIMIT1 pin and is greater than the voltage developed at the LIMIT2 pin. The ALERT1 output becomes active  
and pulls low when the current-sense amplifier output voltage exceeds the threshold voltage set at the LIMIT1  
pin. The low voltage on ALERT1 indicates that the measured signal at the amplifier input has exceeded the  
programmed threshold level, indicating an overcurrent or out-of-range condition has occurred. When the current-  
sense amplifier output is less than the threshold voltage set by the LIMIT2 pin, the ALERT2 output pulls low after  
the delay time set by the external delay capacitor expires. The delay time for the ALERT2 output is proportional  
to the value of the external CDELAY capacitor, and is calculated by 公式 2.  
Power Supply  
Overcurrent  
0 V to 36 V  
2.7 V to 5.5 V  
Threshold  
Supply  
INA303  
VS  
Undercurrent  
Threshold  
RPULL-UP1  
Input Signal  
ALERT1  
LIMIT1  
RLIMIT1  
LATCH1  
IN+  
+
VLIMIT1  
VOUT  
OUT  
RSENSE  
Supply  
IN-  
VLIMIT2  
RPULL-UP2  
ALERT2  
LIMIT2  
DELAY  
ALERT1  
ALERT2  
RLIMIT2  
Load  
CDELAY  
LATCH2  
REF  
GND  
tDELAY  
43. Out-of-Range Alert Responses for the INA303  
版权 © 2016–2019, Texas Instruments Incorporated  
17  
 
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
Feature Description (接下页)  
44 shows the alert output response of the INA303 when the two ALERTx pins are connected together. When  
configured in this manner, the INA303 can provide a single signal to indicate when the sensed current is  
operating either outside the normal operating bands or within a normal operational window. Both ALERT1 and  
ALERT2 outputs behave the same in regard to the alert mode. The difference with ALERT2 is that the transition  
of the output state is delayed by the time set by the external delay capacitor. If the overcurrent or undercurrent  
event is not present when the delay time expires, ALERT2 does not respond.  
Power Supply  
0 V to 36 V  
2.7 V to 5.5 V  
VS  
Supply  
RPULL-UP  
Normal Operating Region  
INPUT SIGNAL  
INA303  
ALERT1  
LIMIT1  
ALERT  
RLIMIT1  
LATCH1  
IN+  
+
OUT  
VLIMIT1  
RSENSE  
VOUT  
Normal Operating  
Region  
IN-  
VLIMIT2  
ALERT2  
LIMIT2  
DELAY  
Load  
RLIMIT2  
ALERT  
LATCH2  
GND  
44. Current Window Comparator Implementation With the INA303  
18  
版权 © 2016–2019, Texas Instruments Incorporated  
 
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
Feature Description (接下页)  
7.3.3.1 Setting Alert Thresholds  
The INA30x family of devices determines if an out-of-range event is present by comparing the amplifier output  
voltage to the voltage at the corresponding LIMITx pin. The threshold voltage for the LIMITx pins can be set  
using a single external resistor or by connecting an external voltage source to each pin. The INA302 allows  
setting limits for two overcurrent conditions. Generally, the lower overcurrent threshold is referred to as a warning  
limit and the higher overcurrent threshold is referred to as the critical or fault limit. The INA303 allows setting  
thresholds to detect both undercurrent and overcurrent limit conditions.  
7.3.3.1.1 Resistor-Controlled Current Limit  
The typical approach to set the limit threshold voltage is to connect resistors from the two LIMITx pins to ground.  
The voltage developed across the RLIMIT1, RLIMIT2 resistors represents the desired fault current value at which the  
corresponding ALERTx pin becomes active. The values for the RLIMIT1, RLIMIT2 resistors are calculated using 公式  
3:  
I
TRIP ì RSENSE ìGAIN + V  
(
)
REF  
RLIMIT  
=
ILIMIT  
where  
ITRIP is the desired out-of-range current threshold.  
RSENSE is the current-sensing resistor.  
GAIN is the gain option of the device selected.  
VREF is the voltage applied to the REF pin.  
ILIMIT is the limit threshold output current for the selected comparator, typically 80 µA.  
(3)  
When solving for the value of RLIMIT, the voltage at the corresponding LIMITx pin as  
determined by the product of RLIMIT and ILIMIT must not exceed the compliance voltage of  
VS – 0.6 V.  
7.3.3.1.1.1 Resistor-Controlled Current Limit: Example  
For example, if the current level indicating an out-of-range condition (ITRIP) is 20 A and the current-sense resistor  
value (RSENSE) is 10 mΩ, then the input threshold signal is 200 mV. The INA302A1 has a gain of 20, so the  
resulting output voltage at the 20-A input condition is 4 V at the output of the current-sense amplifier when the  
REF pin is grounded. The value for RLIMIT is selected to allow the device to detect this 20-A threshold, indicating  
that an overcurrent event has occurred. When the INA302 detects this out-of-range condition, the ALERTx pin  
asserts and pulls low. For this example, the value of RLIMIT to detect a 4-V level is calculated to be 50 kΩ.  
版权 © 2016–2019, Texas Instruments Incorporated  
19  
 
 
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.3.1.2 Voltage-Source-Controlled Current Limit  
The second method for setting the out-of-range threshold is to directly drive the LIMITx pins with a programmable  
DAC or other external voltage source. The benefit of this method is the ability to adjust the current-limit threshold  
to account for different threshold voltages used for different system operating conditions. For example, this  
method can be used in a system with one current-limit threshold level that must be monitored during a power-up  
sequence, but different threshold levels must be monitored during other system operating modes.  
The voltage applied at the LIMITx pins sets the threshold voltage for out-of-range detection. The value of the  
voltage for a given desired current trip point is calculated using 公式 4:  
VSOURCE = ITRIP ì RSENSE ìGAIN + V  
(
)
REF  
where  
ITRIP is the desired out-of-range current threshold.  
RSENSE is the current-sensing resistor.  
GAIN is the gain option of the device selected.  
VREF is the voltage applied to the REF pin.  
(4)  
The maximum voltage that can be applied to the LIMIT2 pin is VS – 0.6 V and the  
maximum voltage that can be applied to the LIMIT1 pin must not exceed VS.  
7.3.3.2 Hysteresis  
The hysteresis included in the comparators of the INA30x reduces the possibility of oscillations in the alert  
outputs when the measured signal level is near the overlimit threshold level. For overrange events, the  
corresponding ALERTx pin is asserted when the output voltage (VOUT) exceeds the threshold set at either LIMITx  
pin. The output voltage must drop to less than the LIMITx pin threshold voltage by the hysteresis value in order  
for the ALERTx pin to deassert and return to the nominal high state. Likewise for underrange events, the  
corresponding ALERTx pin is also pulled low when the output voltage drops to less than the threshold set by  
either LIMITx pin. The ALERTx pin is released when the output voltage of the current-sense amplifier rises to  
greater than the set threshold plus hysteresis. Hysteresis functionality for both overrange and underrange events  
is shown in 45 and 46 for the INA302 and INA303, respectively.  
Overcurrent Threshold  
Critical Threshold  
Warning Threshold  
VLIMIT1  
VLIMIT1 - VHYS  
VLIMIT1  
VLIMIT1 - VHYS  
VLIMIT2  
VLIMIT2 - VHYS  
VOUT  
VOUT  
VLIMIT2 + VHYS  
VLIMIT2  
Undercurrent  
Threshold  
ALERT1  
ALERT2  
ALERT1  
ALERT2  
46. Comparator Hysteresis Behavior (INA303)  
45. Comparator Hysteresis Behavior (INA302)  
20  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
7.4 Device Functional Modes  
7.4.1 Alert Operating Modes  
Each comparator has two output operating modes: transparent and latched. These modes determine how the  
ALERTx pins respond when an out-of-range condition is removed. The device is placed into either transparent or  
latched state based on the voltage applied to the corresponding LATCHx pin, as shown in 1.  
1. Output Mode Settings  
OUTPUT MODE  
ALERTx transparent mode  
ALERTx latch mode  
LATCHx PINS SETTINGS  
LATCHx = low  
LATCHx = high  
7.4.1.1 Transparent Output Mode  
The comparators are set to transparent output mode when the corresponding LATCHx pin is pulled low. When  
set to transparent mode, the output of the comparators changes and follows the input signal with respect to the  
programmed alert threshold. For example, when the amplifier output violates the set limit value, the ALERTx  
output pin is pulled low. As soon as the differential input signal drops to less than the alert threshold, the output  
returns to the default high output state. A common implementation using the device in transparent mode is to  
connect the ALERTx pins to a hardware interrupt input on a microcontroller. The ALERTx pin is pulled low as  
soon as an out-of-range condition is detected, thus notifying the microcontroller. The microcontroller immediately  
reacts to the alert and takes action to address the overcurrent condition. In transparent output mode, there is no  
need to latch the state of the alert output because the microcontroller responds as soon as the out-of-range  
condition occurs.  
7.4.1.2 Latch Output Mode  
The comparators are set to latch output mode when the corresponding LATCHx pin is pulled high. Some  
applications do not continuously monitor the state of the ALERTx pins as described in the Transparent Output  
Mode section. For example, if the device is set to transparent output mode in an application that only polls the  
state of the ALERTx pins periodically, then the transition of the ALERTx pins can be missed when the out-of-  
range condition is not present during one of these periodic polling events. Latch output mode allows the output of  
the comparators to latch the output of the range condition so that the transition of the ALERTx pins is not missed  
when the status of the comparator ALERTx pins is polled.  
The difference between latch mode and transparent mode is how the alert output responds when an overcurrent  
condition is removed. In transparent mode (LATCH1, LATCH2 = low), when the differential input signal drops to  
within normal operating range, the ALERTx pin returns to the default high setting to indicate that the overcurrent  
event has ended.  
In latch mode (LATCHx = high), when an out-of-range condition is detected and the corresponding ALERTx pin  
is pulled low; the ALERTx pin does not return to the default high state when the out-of-range condition is  
removed. In order to clear the alert, the corresponding LATCHx pin must be pulled low for at least 100 ns. Pulling  
the LATCHx pins low allows the corresponding ALERTx pin to return to the default high level, provided the out-  
of-range condition is no longer present. If the out-of-range condition is still present when the LATCHx pins are  
pulled low, then the corresponding ALERTx pin remains low. The ALERTx pins can be cleared (reset to high) by  
toggling the corresponding LATCHx pin when the alert condition is detected by the system controller.  
版权 © 2016–2019, Texas Instruments Incorporated  
21  
 
 
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
The latch and transparent modes are illustrated in 47. As illustrated in this figure, at time t1, the current-sense  
amplifier exceeds the limit threshold. During this time the LATCH1 pin is toggled with no affect to the ALERT1  
output. The state of the LATCH1 pin only matters when the output of the current-sense amplifier returns to the  
normal operating region, as shown at t2. At this time the LATCH1 pin is high and the overcurrent condition is  
latched on the ALERT1 output. As shown in the time interval between t2 and t3, the latch condition is cleared  
when the LATCHx pin is pulled low. At time t4, the LATCH1 pin is already pulled low when the amplifier output  
drops below the limit threshold for the second time. The device is set to transparent mode at this point and the  
ALERT1 pin is pulled back high as soon as the output of the current-sense amplifier drops below the alert  
threshold.  
VLIMIT1  
VOUT  
(VIN+ - VIN-) x GAIN  
0 V  
t1  
t2  
t3  
t4  
t5  
Latch Mode  
LATCH1  
ALERT1  
Transparent Mode  
Alert Clears  
Alert Does Not Clear  
47. Transparent versus Latch Mode  
22  
版权 © 2016–2019, Texas Instruments Incorporated  
 
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Selecting a Current-Sensing Resistor (RSENSE  
)
Selecting the value of this current-sensing resistor is based primarily on two factors: the required accuracy of the  
current measurement and the allowable power dissipation across the current-sensing resistor. Larger voltages  
developed across this resistor allow for more accurate measurements to be made. Amplifiers have fixed internal  
errors that are largely dominated by the inherent input offset voltage. When the input signal decreases, these  
fixed internal amplifier errors become a larger portion of the measurement and increase the uncertainty in the  
measurement accuracy. When the input signal increases, the measurement uncertainty is reduced because the  
fixed errors are a smaller percentage of the signal being measured. Therefore, the use of larger-value, current-  
sensing resistors inherently improves measurement accuracy.  
However, a system design trade-off must be evaluated through the use of larger input signals for improving  
measurement accuracy. Increasing the current-sense resistor value results in an increase in power dissipation  
across the current-sensing resistor. Increasing the value of the current-shunt resistor increases the differential  
voltage developed across the resistor when current passes through the component. This increase in voltage  
across the resistor increases the power that the resistor must be able to dissipate. Decreasing the value of the  
current-shunt resistor value reduces the power dissipation requirements of the resistor, but increases the  
measurement errors resulting from the decreased input signal. Selecting the optimal value for the shunt resistor  
requires factoring both the accuracy requirement for the specific application and the allowable power dissipation  
of this component.  
An increasing number of very low ohmic-value resistors are becoming more widely available with values reaching  
down to 200 µΩ or lower, with power dissipations of up to 5 W that enable large currents to be accurately  
monitored with sensing resistors.  
8.1.1.1 Selecting a Current-Sensing Resistor: Example  
In this example, the trade-offs involved in selecting a current-sensing resistor are discussed. This example  
requires 2.5% accuracy for detecting a 10-A overcurrent event where only 250 mW is allowed for the dissipation  
across the current-sensing resistor at the full-scale current level. Although the maximum power dissipation is  
defined as 250 mW, a lower dissipation is preferred to improve system efficiency. Some initial assumptions are  
made that are used in this example: the limit-setting resistor (RLIMIT) is a 1% component, and the maximum  
tolerance specification for the internal threshold setting current source (1%) is used. Given the total error budget  
of 2.5%, up to 0.5% of error can be attributed to the measurement error of the device under these conditions.  
版权 © 2016–2019, Texas Instruments Incorporated  
23  
 
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
Application Information (接下页)  
As shown in 2, the maximum value calculated for the current-sensing resistor with these requirements is 2.5  
mΩ. Although this value satisfies the maximum power dissipation requirement of 250 mW, headroom is available  
from the 2.5% maximum total overcurrent detection error to reduce the value of the current-sensing resistor and  
to further reduce power dissipation. Selecting a 1.5-mΩ, current-sensing resistor value offers a good tradeoff for  
reducing the power dissipation in this scenario by approximately 40% and stays within the accuracy region.  
2. Calculating the Current-Sensing Resistor, RSENSE  
PARAMETER  
EQUATION  
VALUE  
UNIT  
DESIGN TARGETS  
IMAX  
Maximum current  
10  
A
PD_MAX  
Maximum allowable power dissipation  
Allowable current threshold accuracy  
250  
mW  
2.5%  
DEVICE PARAMETERS  
VOS  
Offset voltage  
30  
µV  
EG  
Gain error  
0.15%  
CALCULATIONS  
RSENSE_MAX  
VOS_ERROR  
ERRORTOTAL  
ERRORINITIAL  
ERRORAVAILABLE  
VOS_ERROR_MAX  
VDIFF_MIN  
2
Maximum allowable RSENSE  
Initial offset voltage error  
2.5  
0.12%  
0.19%  
2%  
mΩ  
PD_MAX / IMAX  
(VOS / (RSENSE_MAX × IMAX ) × 100  
2
(VOS_ERROR2 + EG  
)
Total measurement error  
Initial threshold error  
ILIMIT tolerance + RLIMIT tolerance  
Maximum allowable measurement error  
Maximum allowable offset error  
Minimum differential voltage  
Minimum sense resistor value  
Lowest-possible power dissipation  
Maximum error – ERRORINITIAL  
1%  
2
(ERRORAVAILABLE2 – EG  
VOS / VOS_ERROR_MAX (1%)  
VDIFF_MIN / IMAX  
)
0.48%  
6.3  
mV  
mΩ  
mW  
RSENSE_MIN  
PD_MIN  
0.63  
63  
2
RSENSE_MIN × IMAX  
24  
版权 © 2016–2019, Texas Instruments Incorporated  
 
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
8.1.2 Input Filtering  
The integrated comparators in the INA30x are very accurate at detecting out-of-range events because of the low  
offset voltage; however, noise present at the input of the current-sense amplifier and noise internal to the device  
can make the offset appear larger than specified. The most obvious effect that external noise can have on the  
operation of a comparator is to cause a false alert condition. If a comparator detects a large noise transient  
coupled into the signal, the device can easily falsely interpret this transient as an overrange condition.  
External filtering helps reduce the amount of noise that reaches the comparator and reduce the likelihood of a  
false alert from occurring because of external noise. The trade-off to adding this noise filter is that the alert  
response time is increased because the input signal and the noise are filtered. 48 shows the implementation  
of an input filter for the device.  
2.7 V to 5.5 V  
CBYPASS  
0.1 mF  
RLIMIT1  
LIMIT1  
VS  
RPULL-UP1  
RPULL-UP2  
10 kW  
10 kW  
ILIMIT1  
Power Supply  
0 V to 36 V  
+
ALERT1  
LATCH1  
IN+  
+
CFILTER  
RFILTER  
< 10 W  
OUT  
Gain = 20,  
50, 100  
RSENSE  
ILIMIT2  
IN-  
LATCH2  
ALERT2  
DELAY  
+
LOAD  
CDELAY  
REF  
LIMIT2  
GND  
RLIMIT2  
Reference Voltage  
48. Input Filter Implementation  
Limiting the amount of input resistance used in this filter is important because this resistance can have a  
significant effect on the input signal that reaches the device input pins by adversely affecting the gain error of the  
device. A typical system implementation involves placing the current-sensing resistor very near the device so the  
traces are very short and the trace impedance is very small. This layout helps reduce coupling of additional noise  
into the measurement. Under these conditions, the characteristics of the input bias currents have minimal effect  
on device performance.  
版权 © 2016–2019, Texas Instruments Incorporated  
25  
 
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
As shown in 49, the input bias currents increase in opposite directions when the differential input voltage  
increases. This increase results from the design of the device that allows common-mode input voltages to far  
exceed the device supply voltage range. When input filter resistors are placed in series with the unequal input  
bias currents, unequal voltage drops are developed across the input resistors. The difference between these two  
drops appears as an added signal that (in this case) subtracts from the voltage developed across the current-  
sensing resistor, thus reducing the signal that reaches the device input pins. Smaller-value input resistors reduce  
this effect of signal attenuation to allow for a more accurate measurement.  
160  
140  
120  
100  
80  
IB+  
IB-  
60  
-125 -100 -75 -50 -25  
0
25  
50  
75 100 125  
Differential Input Voltage (mV)  
49. Input Bias Current vs Differential Input Voltage  
The internal bias network present at the input pins shown in 50 is responsible for the mismatch in input bias  
currents that is shown in 49. If additional external series filter resistors are added to the circuit, the mismatch  
in bias currents results in a mismatch of voltage drops across the filter resistors. This mismatch creates a  
differential error voltage that subtracts from the voltage developed at the shunt resistor. This error results in a  
voltage at the device input pins that is different than the voltage developed across the shunt resistor. Without the  
additional series resistance, the mismatch in input bias currents has little effect on device operation. The amount  
of error these external filter resistors add to the measurement is calculated using 公式 6, where the gain error  
factor is calculated using 公式 5.  
V+  
VCM  
RS < 10 W  
RINT  
VOUT  
RSHUNT  
Bias  
CF  
RS < 10 W  
VREF  
RINT  
Load  
NOTE: Comparators omitted for simplicity.  
50. Filter at Input Pins  
26  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
The amount of variance in the differential voltage present at the device input relative to the voltage developed at  
the shunt resistor is based both on the external series resistance value as well as the internal input resistors, R3  
and R4 (or RINT as illustrated in 50). The reduction of the shunt voltage reaching the device input pins appears  
as a gain error when comparing the output voltage relative to the voltage across the shunt resistor. A factor can  
be calculated to determine the amount of gain error that is introduced by the addition of external series  
resistance. The equation used to calculate the expected deviation from the shunt voltage to what is measured at  
the device input pins is given in 公式 5:  
(1250 ´ RINT  
)
Gain Error Factor =  
(1250 ´ RS) + (1250 ´ RINT) + (RS ´ RINT  
)
where  
RINT is the internal input resistor (R3 and R4).  
RS is the external series resistance.  
(5)  
With the adjustment factor from 公式 5, including the device internal input resistance, this factor varies with each  
gain version, as shown in 3. Each individual device gain error factor is shown in 4.  
3. Input Resistance  
PRODUCT  
INA30xA1  
INA30xA2  
INA30xA3  
GAIN  
20  
RINT (kΩ)  
12.5  
5
50  
100  
2.5  
4. Device Gain Error Factor  
PRODUCT  
SIMPLIFIED GAIN ERROR FACTOR  
12,500  
INA30xA1  
11ìR +12,500  
(
)
S
1000  
INA30xA2  
INA30xA3  
RS +1000  
2500  
3ìR + 2500  
(
)
S
The gain error that is expected from the addition of the external series resistors is then calculated based on 公式  
6:  
Gain Error (%) = 100 - (100 ´ Gain Error Factor)  
(6)  
For example, using an INA302A2 and the corresponding gain error equation from 4, a series resistance of  
10 Ω results in a gain error factor of 0.99. The corresponding gain error is then calculated using 公式 6, resulting  
in a gain error of approximately 1% solely because of the external 10-Ω series resistors.  
版权 © 2016–2019, Texas Instruments Incorporated  
27  
 
 
 
 
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
8.1.3 Using the INA30x With Common-Mode Transients Greater Than 36 V  
With a small amount of additional circuitry, these devices can be used in circuits subject to transients higher than  
36 V. Use only zener diodes or zener-type transient absorbers (sometimes referred to as transzorbs). Any other  
type of transient absorber has an unacceptable time delay. Start by adding a pair of resistors as a working  
impedance for the zener diode, as shown in 51. Keep these resistors as small as possible, preferably 10 or  
less. Larger values can be used with an additional induced error resulting from a reduced signal that actually  
reaches the device input pins. Many applications are satisfied with a 10-resistor along with conventional zener  
diodes of the lowest power rating available because this circuit limits only short-term transients. This combination  
uses the least amount of board space. These diodes can be found in packages as small as SOT-523 or SOD-  
523.  
2.7 V to 5.5 V  
CBYPASS  
0.1 mF  
RLIMIT1  
RPULL-UP1  
RPULL-UP2  
LIMIT1  
VS  
10 kW  
10 kW  
ILIMIT1  
Power Supply  
0 V to 36 V  
+
ALERT1  
LATCH1  
IN+  
+
RPROTECT  
< 10 W  
OUT  
Gain = 20,  
50, 100  
RSENSE  
ILIMIT2  
IN-  
LATCH2  
ALERT2  
DELAY  
+
LOAD  
CDELAY  
REF  
LIMIT2  
GND  
RLIMIT2  
Reference  
Voltage  
51. Transient Protection  
28  
版权 © 2016–2019, Texas Instruments Incorporated  
 
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
8.2 Typical Application  
The INA30x are designed to be easily configured for detecting multiple out-of-range current conditions in an  
application. These devices are capable of monitoring and providing overcurrent detection of bidirectional  
currents. By using the REF pin of the INA303, both positive and negative overcurrent events can be detected.  
(+)  
) ( -  
Bidirectional  
Current Monitoring  
RSENSE  
2.7 V to 5.5 V  
CBYPASS  
RLIMIT1  
0.1 µF  
RPULL-UP  
RD  
LIMIT1  
INA303  
VS  
100 kW  
10 kW  
ILIMIT1  
+
-
ALERT1  
LATCH1  
System  
Alert  
IN+  
+
OUT  
Current  
Sense  
VS  
CBYP  
0.1 µF  
ILIMIT2  
IN-  
LATCH2  
ALERT2  
DELAY  
-
GND  
+
R1  
100 kW  
LIMIT2  
GND  
REF  
+
OPA313  
RLIMIT2  
R2  
CFLT  
100 kW  
0.1 mF  
52. Bidirectional Application  
版权 © 2016–2019, Texas Instruments Incorporated  
29  
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
Typical Application (接下页)  
8.2.1 Design Requirements  
To allow for bidirectional monitoring, the INA303 requires a voltage applied to the REF pin. A voltage that is half  
of the supply voltage is usually preferred to allow for maximum output swing in both the positive and negative  
current direction. To reduce the errors in the reference voltage, drive the REF pin with a low-impedance source  
(such as an op amp or external reference). A low-value resistor divider can be used at the expense of quiescent  
current and accuracy. For this design, a single alert output is preferred, so both ALERT1 and ALERT2 are  
connected together and use a single pullup resistor.  
8.2.2 Detailed Design Procedure  
To achieve bidirectional monitoring, drive the reference pin halfway between the supply with a resistor divider  
buffered by an op amp, as shown in 5. To reduce the current draw from the supply, use 100-kΩ resistors to  
create the divide-by-two voltage divider. The TLV313-Q1 is selected to buffer the voltage divider because this  
device can operate from a single-supply rail with low IQ and offset voltage. To minimize the response time of the  
ALERT2 output, a 100-kΩ pullup resistor was added from the DELAY pin to the VS pin. Select values for RSENSE  
,
RLIMIT2, and RLIMIT1 based on the desired current-sense levels and trip thresholds using the information in the  
Resistor-Controlled Current Limit and Selecting a Current-Sensing Resistor (RSENSE) sections. For this example,  
the values of RLIMIT1 and RLIMIT2 were selected so that the positive and negative overcurrent thresholds are the  
same. 5 shows the alert output of the INA303 application circuit with the capability to detect both positive and  
negative overcurrent conditions.  
5. Bidirectional Overcurrent Output Status  
OVERCURRENT PROTECTION (OCP) STATUS  
Positive overcurrent detection (OCP+)  
Negative overcurrent detection (OCP–)  
Normal operation (no OCP)  
OUTPUT  
0
0
1
8.2.3 Application Curve  
53 shows the INA303 device being used in a bidirectional configuration to detect both negative and positive  
overcurrent events.  
Positive Limit  
0 V  
Negative Limit  
Time (5 ms/div)  
53. Bidirectional Application Curve  
30  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
9 Power Supply Recommendations  
The device input circuitry accurately measures signals on common-mode voltages beyond the power-supply  
voltage, VS. For example, the voltage applied to the VS power-supply pin can be 5 V, whereas the load power-  
supply voltage being monitored (VCM) can be as high as 36 V. At power-up, for applications where the common-  
mode voltage (VCM) slew rate is greater than 6 V/μs with a final common-mode voltage greater than 20 V, the VS  
supply is recommended to be present before VCM. If the use case requires VCM to be present before VS with VCM  
under these same slewing conditions, then a 331-Ω resistor must be added between the VS supply and the VS  
pin bypass capacitor.  
Power-supply bypass capacitors are required for stability, and must be placed as close as possible to the supply  
and ground pins of the device. A typical value for this supply bypass capacitor is 0.1 µF. Applications with noisy  
or high-impedance power supplies may require additional decoupling capacitors to reject power-supply noise.  
During slow power-up events, current flow through the sense resistor or voltage applied to the REF pin can result  
in the output voltage momentarily exceeding the voltage at the LIMITx pins, resulting in an erroneous indication  
of an out-of-range event on the ALERTx output. When powering the device with a slow ramping power rail where  
an input signal is already present, all alert indications should be disregarded until the supply voltage has reached  
the final value.  
10 Layout  
10.1 Layout Guidelines  
Apply connections to the current-sense resistor, RSENSE, on the inside of the resistor pads to avoid additional  
voltage losses incurred by the high current traces to the resistor. Route the traces from the current-sense  
resistor symmetrically and side-by-side back to the input of the INA to minimize common-mode errors and  
noise pickup.  
Place the power-supply bypass capacitor as closely as possible to the supply and ground pins. The  
recommended value of this bypass capacitor is 0.1 µF. Additional decoupling capacitance can be added to  
compensate for noisy or high-impedance power supplies.  
Make the connection of RLIMIT to the ground pin as direct as possible to limit additional capacitance on this  
node. Routing this connection must be limited to the same plane if possible to avoid vias to internal planes. If  
the routing can not be made on the same plane and must pass through vias, make sure that a path is routed  
from RLIMIT back to the ground pin, and that RLIMIT is not simply connected directly to a ground plane.  
Routing to the delay capacitor must be short and direct. Keep the routing trace from the DELAY pin to the  
delay capacitor away from the ALERT2 trace (or any other noisy signals) to minimize any coupling effects. If  
no delay capacitor is used do not have any connection to the DELAY pin. Long trace lengths on the DELAY  
pin can cause noise to couple to the device, resulting in false trips.  
Pull up the open-drain output pins to the supply voltage rail; a 10-kΩ pullup resistor is recommended.  
版权 © 2016–2019, Texas Instruments Incorporated  
31  
INA302, INA303  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
www.ti.com.cn  
10.2 Layout Example  
SYSALERT2  
SYSALERT1  
Supply Voltage  
Power  
Supply  
RPULL-UP1  
Bottom or  
mid-layer  
trace  
CBYPASS  
RPULL-UP2  
VIA to Power  
Ground Plane  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VS  
IN+  
RSENSE  
Current Sense  
Output  
OUT  
IN-  
ALERT1  
ALERT2  
DELAY  
LIMIT2  
NC  
LIMIT1  
REF  
RLIMIT1  
CDELAY  
INA30x  
GND  
LATCH1  
LATCH2  
VIA to Analog  
Ground Plane  
8
RLIMIT2  
Load  
NOTE: Connect the limit resistors and delay capacitors directly to the GND pin; leave the DELAY pin unconnected or  
connected to VS through a pullup resistor if no delay is needed.  
54. Recommended Layout  
32  
版权 © 2016–2019, Texas Instruments Incorporated  
INA302, INA303  
www.ti.com.cn  
ZHCSG24C SEPTEMBER 2016REVISED MARCH 2019  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)TLVx313-Q1 低功耗轨至轨输入/输出 750µV 典型失调电压运算放大器》数据表  
德州仪器 (TI)《监测电流以识别多种超出范围的情况》应用报告  
11.2 相关链接  
6 列出了快速访问链接。类别包括技术文档、支持和社区资源、工具与软件,以及立即订购快速访问。  
6. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
INA302  
INA303  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016–2019, Texas Instruments Incorporated  
33  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA302A1IPW  
INA302A1IPWR  
INA302A2IPW  
INA302A2IPWR  
INA302A3IPW  
INA302A3IPWR  
INA303A1IPW  
INA303A1IPWR  
INA303A2IPW  
INA303A2IPWR  
INA303A3IPW  
INA303A3IPWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
90  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
I302A1  
2000 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
I302A1  
I302A2  
I302A2  
I302A3  
I302A3  
I303A1  
I303A1  
I303A2  
I303A2  
I303A3  
I303A3  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA302A1IPWR  
INA302A2IPWR  
INA302A3IPWR  
INA303A1IPWR  
INA303A2IPWR  
INA303A3IPWR  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
PW  
PW  
14  
14  
14  
14  
14  
14  
2000  
2000  
2000  
2000  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.9  
6.9  
6.9  
6.9  
6.9  
6.9  
5.6  
5.6  
5.6  
5.6  
5.6  
5.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA302A1IPWR  
INA302A2IPWR  
INA302A3IPWR  
INA303A1IPWR  
INA303A2IPWR  
INA303A3IPWR  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
PW  
PW  
14  
14  
14  
14  
14  
14  
2000  
2000  
2000  
2000  
2000  
2000  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
INA302A1IPW  
INA302A2IPW  
INA302A3IPW  
INA303A1IPW  
INA303A2IPW  
INA303A3IPW  
PW  
PW  
PW  
PW  
PW  
PW  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
14  
14  
14  
14  
14  
14  
90  
90  
90  
90  
90  
90  
530  
530  
530  
530  
530  
530  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
3600  
3600  
3600  
3600  
3600  
3600  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY